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Abstract

Abstract

Multiway Quicksort, i.e., partitioning the input in one step around several pivots, has
received much attention since Java 7’s runtime library uses a new dual-pivot method that
outperforms by far the old Quicksort implementation. The success of dual-pivot Quicksort
is most likely due to more efficient usage of the memory hierarchy, which gives reason to
believe that further improvements are possible with multiway Quicksort.

In this dissertation, I conduct a mathematical average-case analysis of multiway Quick-
sort including the important optimization to choose pivots from a sample of the input.
I propose a parametric template algorithm that covers all practically relevant partitioning
methods as special cases, and analyze this method in full generality. This allows me to
analytically investigate in depth what effect the parameters of the generic Quicksort have
on its performance. To model the memory-hierarchy costs, I also analyze the expected
number of scanned elements, a measure for the amount of data transferred from memory
that is known to also approximate the number of cache misses very well. The analysis
unifies previous analyses of particular Quicksort variants under particular cost measures
in one generic framework.

A main result is that multiway partitioning can reduce the number of scanned elements
significantly, while it does not save many key comparisons; this explains why the earlier
studies of multiway Quicksort did not find it promising. A highlight of this dissertation is
the extension of the analysis to inputs with equal keys. I give the first analysis of Quicksort
with pivot sampling and multiway partitioning on an input model with equal keys.



Zusammenfassung

Seit in Version 7 der Java runtime library ein neuer dual-pivot Quicksort zum Einsatz
kommt, der deutlich schneller als die vorherige Implementierung arbeitet, hat multiway
Quicksort, also das Partitionierung bzgl. mehrerer Pivotelemente zugleich, einige Aufmerk-
samkeit auf sich gezogen. Der Erfolg von dual-pivot Quicksort ist hochstwahrscheinlich
auf eine effizientere Verwendung der Speicherhierarchie zuriickzufiihren, was Grund zu
der Annahme gibt, dass weitere Verbesserungen mit multiway Quicksort moglich sind.

In dieser Dissertation wird die mathematische Average-Case-Analyse von multiway
Quicksort beschrieben, wobei ausdriicklich die wichtige Optimierung, die Pivotelemente
aus einem Sample der Eingabe zu ziehen, das sogenannte pivot sampling, beriicksichtigt
wird. Dazu wird ein parametrischer Algorithmus vorgestellt und symbolisch in seinen
Parametern analysiert, der alle in der Praxis relevanten Partitionierungsmethoden als Spe-
zialfall abdeckt. Das ermoglicht eine detaillierte analytische Untersuchung des Effekts,
den die Wahl der verschiedenen Parameter auf die Effizienz des Verfahrens hat. Um Kos-
ten bzgl. der Speicherhierarchie zu modellieren, wird das KostenmafS “scanned elements”
verwendet, dem die mit dem Hauptspeicher ausgetauschte Datenmenge zugrunde liegt,
und das bekanntermafsen die Anzahl an cache misses gut approximiert. Die Analyse in
dieser Arbeit vereinheitlicht frithere Untersuchungen konkreter Partitionierungsmethoden
bzgl. bestimmter Kostenmafie unter dem Dach einer vereinheitlichten Theorie.

Ein Ergebnis dieser Arbeit ist, dass multiway Quicksort deutliche Vorteile bzgl. des
Kostenmafies scanned elements bringen kann, wiahrend die Anzahl Schliisselvergleiche
nicht wesentlich verbessert wird. Das ist eine mogliche Erklarung, warum multiway Quick-
sort nicht schon in der Vergangenheit als vielversprechende Variante angesehen wurde.

Dariiber hinaus gelang in dieser Dissertation erstmals die Verallgemeinerung der Ana-
lyse von Quicksort mit multiway partitioning und pivot sampling auf Eingaben mit glei-
chen Schliisseln.
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Preface

Dear Reader,

By the time you are reading these words, I may call myself doctor rerum naturalium on
the basis of the present dissertation, and of course this was a primary objective for me to
write this work. However, I tried hard to make it useful beyond that.

Purpose of this Book. Ibelieve that when one computational method is significantly faster
than another, there must be an intrinsic reason for that, one that persists in a simplified
model that we can analyze mathematically. And I believe that we make progress in under-
standing what makes one algorithm faster than another from exactly such analyses.

The goal of my research hence is to rigorously derive mathematical theorems about
the performance of practical algorithms in a realistic, but clean and well-defined model
of reality. When a generic analysis of a parametric template algorithm is possible, we
can then reason analytically about good choices for the parameters and obtain a solid
machine-independent basis for tuning practical implementations.

In this work I present a unified analysis of multiway Quicksort and give tentative
advise on which Quicksort variants to use in practice (Chapters 7 and 9). In particu-
lar, I demonstrate that there is genuine potential in multiway partitioning to speed up
Quicksort w.r.t. efficient use of memory references that cannot easily be obtained by other
optimizations.

Apart from those results on Quicksort many of which did not appear in the literature
before, this book also serves as a reference for mathematical tools and techniques used
in obtaining these results. It naturally happened that my analysis makes use of several
mathematical techniques and facts. I found that—once things are viewed from the right
angle—I could replace more and more specific own arguments by general properties of
existing notions, from discrete math to real analysis, a bit of complex analysis and a good
deal of stochastics. That way Chapter 2 which introduces the mathematical preliminaries
grew by itself to its 80-odd pages.

While there are good books with comprehensive surveys on techniques for the analysis
of algorithms, e.g., references [165, 64, 103, 73, 97], and others focusing on the analysis of

vii



a specific class of algorithms or data structures, e.g., [112, 113, 47], I know only a single
source that discusses in breadth and depth analytical tools to analyze Quicksort: Robert
Sedgewick’s dissertation [162], finished 1975.

I tried to continue the story of the analysis of Quicksort in Sedgewick’s spirit: eternal
truths derived in a clear model of reality using techniques thoroughly introduced from the
basics; and not forgetting to discuss their practical implications. The techniques are math,
the subject is computer science.

I can merely tell one further chapter of the story—a lot has happened since 1975—but
I tried to give a broader overview of the field in Section 1.7.

Intended Audience. The imaginary reader I had in mind when writing this book is a
mathematically inclined computer scientist who knows about basic algorithms and data
structures covered in a typical introductory course and has some proficiency in real analy-
sis and elementary math, but who is not an expert in the analysis of algorithms.

Concepts from complex analysis and stochastics appear in this work, but an intuitive
understanding suffices to follow the presentation. I try to give these intuitions and indeed
the arguments used in this work are mostly elementary.

Chapter 2 collects all (mathematical) facts used in this work that are not derived on the
spot. Instead of reproducing formal proofs of these statements I mostly refer to external
sources; I rather devote the space to share an intuition why a statement holds and how
it relates to the analysis of Quicksort or other mathematical results. I sorely missed such
comments escaping the tight corset of definition-theorem-proof purism from many math
textbooks and lectures, so I put special effort in providing them in my own work.

My Highlights. I would like to point out my two favorite results in this book: Section 7.3
shows how to compute for any multi-pivot sampling scheme an equivalent one for single-
pivot Quicksort that produces pivots of the “same quality” (it is made precise there what
I mean by this). This allows us to separate savings that are truly coming from multiway
partitioning from those that are merely a consequence of better pivots. I have long had
this in mind as a vague concept, but only the generic setup in this work finally made it
possible to formalize the idea.

My second highlight is the analysis of Quicksort with equal keys (Chapter 8). Al-
though there are some technical nuisances left, the simplicity and elegance of the final
result (Theorem 8.17) is very pleasing. Shortly after finishing this dissertation, I could
generalize the result for single-pivot Quicksort to any expected-profile input [183], thus
confirming Conjecture 8.5 of Sedgewick and Bentley. The foundations for that are laid in
Chapter 8 of this work.

A Remark on Style. I tried to keep the style of writing as formal as appropriate for a

dissertation, but as vivid and flowery as possible whenever when I felt this would help
conveying the facts at hand more clearly and effectively.

viii



Preface

Wherever possible I try to “look into the box” of used techniques and results: provide
an idea for why they hold instead of using them as a black box.

Digressions. I found that interesting connections to other areas suggested themselves
quite insistently during the preparation of this material. Unlike the look-into-the-box
comments, such connections had no direct contribution to the purpose of this work. The
same is true for the historical contexts, discussions about notations and names, and blind
alleys of thought I spend quite some of my time on. Yet these side paths were among the
most rewarding parts for me and felt reluctant doing away with them altogether.

I finally settled for a compromise: I would keep digressions like this one, but typeset
them separately from the main text; the latter is written so that digressions may be skipped
without disturbing the main line of thought. I hope the reader will find my digressions
helpful; but if not, they are at least easy enough to spot and skip.

For these reasons many parts are longer than ultimately necessary, but I think it made
them much better, too—in terms of the content they present and in terms of efficiency
of reading: I am convinced that a slightly longer text will guide the reader in less time
through a complicated argument than a shorter one that leaves parts unclear or implicit.

Elegant Proofs. This is especially true for mathematical proofs. Like many mathemati-
cians I find elegance in a proof that is short, but sometimes brevity of the presentation is
mistaken for elegance of the argument. E.W. Dijkstra suspected that this might even be
done on purpose: “I should point out that my ideal of crisp clarity is not universally shared.
Some consider the puzzles that are created by their omissions as spicy challenges, without which
their texts would be boring; others shun clarity lest their work is considered trivial.” ([45], p. 1).

It might not be far-fetched to assume that someone who mistakes brevity for clarity
also mixes up confusing presentation with depth of a topic.

If the proofs in this work are found trivial to understand, I will take it as the greatest
compliment: it means I succeeded in presenting my thesis the way I intended to.

History of this Work. I started working on the analysis of Quicksort almost five years
ago, when I was in my last year as computer science student. Quite coincidentally I got to
know of the success of a new dual-pivot Quicksort implementation in Java 7, and I started
digging through the immense literature on Quicksort . ..but no theoretical analysis of this
algorithm was known! Since I had already been working regularly as ,Hiwi” (student
research assistant) in the group of my later advisor Markus Nebel, I discussed this topic
with him and we decided to make it my master’s thesis project. Since the initial analysis
of YBB Quicksort was so well received in the algorithms community, I stuck to the topic
for further research towards my Doktor (Ph.D.).

The articles I coauthored in that time extended the analysis in various directions, but
mostly dealt with YBB Quicksort only. The analytical tools however extend naturally to a
whole class of algorithms, and for my dissertation I finally tackled the unified analysis of a

ix



very general class of Quicksort variants, covering all practically relevant implementations.
My work has taken this transition from concrete to general in several respects:

» from very concrete algorithms (even assembly implementations)
to generic, parametric templates,

» from counting comparisons and swaps
to analyzing a generic class of cost measures,

» from specific methods to solve particular recurrences exactly
to methods for asymptotic approximations of sweeping generality,

» from counting configurations combinatorially
to stochastic characterizations of the main mechanisms, and

» from computing specific terms ad hoc
to reusing more and more known results from mathematics.

Since I started analyzing Quicksort almost five years ago, a lot has also changed for
myself. Instead of a student, I am now an employee of the university with teaching duties;
visiting conferences, giving talks and collaborating with other researchers have become
routine. My two kids were born in this time, and the third one will be with us before this
book will be available in print. Priorities have shifted and views have changed.

Although this happened in parallel to and quite independently of my work on Quick-
sort, many happy personal memories will remain entangled with certain stages of this
work. In that sense, Quicksort will always be a part of my life.

Acknowledgments. A lot has happened in the years while I worked towards this dis-
sertation. I wish to thank all my family, friends and colleagues for accompanying and
supporting me in this time.

Without my advisor and mentor, Markus Nebel, I would be nowhere near where I am
today. His open-door policy always invited discussions and digressions and I am deeply
thankful for his continuous support and his professional and personal advice.

I am also much obliged to my two external reviewers, Robert Sedgewick and Martin
Dietzfelbinger, for their rigorous scrutiny of this work and their fair and precise reports.
Martin Dietzfelbinger and Markus Nebel provided me with lists of thoughtful comments
and detailed corrections, which improved this work a lot. I am also very thankful for the
comments of Raphael Reitzig and my wife Lydia who proof-read substantial parts of this
work and contributed numerous corrections and improvements.

I greatly profited from the experience, expertise and advice of my coauthors Ralph
Neininger, Hosam M. Mahmoud and Conrado Martinez. The discussions with Hosam on
language and style had lasting influence on my writing. Many of the ideas underlying
Chapter 7 are synergistic outcomes of extensive whiteboard sessions with Conrado and
Markus, and I am sure our fruitful collaboration will continue.

I also enjoyed the stimulating atmosphere in the “theory hallway” of our group in
Kaiserslautern. With Raphael Reitzig, Ulrich Laube, Frank Weinberg, and Wolfgang
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Schlauch, we had countless late-afternoon discussions on research, teaching, typography,
politics, technology, history, and psychology. These were not exactly the most productive
moments, but they shaped and sharpened my thinking in many subtle ways. These were
good times that kept me motivated, and I will miss them.

Finally, I am greatly indebted to my family, most importantly my wife Lydia, for her
never-ending support and love, and my kids, Theodor and Aurelia, for their amazing
energy and creativity. I share my time between my passions, research and family, but my
love is fully yours. You are the joy and solid root of my life, this work would never have
been finished without you!

Kaiserslautern, October 2016 Sebastian Wild
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Appetizer

A SILENT REVOLUTION has been taking place in sorting: within the last decade, all sorting
methods in Oracle’s widely used Java runtime library have been rewritten entirely; other
libraries are likely to follow. Always concerned about breaking existing client programs,
maintainers of programming libraries are very conservative in adopting new trends; so
how come two youngsters among the sorting algorithms, dual-pivot Quicksort and Tim-
sort, have taken over from the old guard so quickly?

Sorting. Sorting is fundamental to computer science in several respects. Sorting algo-
rithms are widely used to demonstrate techniques and concepts, both in a technical and
an educational sense. The problem is easy to state,

rearrange a list of elements A[l],...,A[n] from a totally ordered universe, so
that A[1] < --- < Alnl,

yet is rich enough to allow for many different solutions with different qualities. Writing a
sorting method is easy enough to be one of the first programming exercises, yet devising
a robust, efficient library implementation still is a challenging task for experts.

Sorting is also fundamental in the sense that it is used as a subroutine in many ap-
plications and more sophisticated algorithms: we sort lists to facilitate searching, both for
humans and computers; we use sorting to solve the togetherness problem, bringing equal
items of one category together; various algorithms rely on sorted inputs to simplify their
invariants and speed up further processing. The extensive use has been fostered by the
ubiquitous availability of good library sorting methods.

Despite the large number of sorting algorithms that most algorithms textbooks dis-
cuss, library implementations use only very few of them: unless a stable sort is required,
in which case Mergesort variants, including Timsort, are preferred, the vast majority of
sorting methods is based on Quicksort.
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Appetizer

The purpose of this work is to deepen our understanding of what makes this sorting
method so efficient, and to guide the development of future library implementations.

Quicksort. In its simplest form Quicksort works as follows. We select an arbitrary el-
ement to act as pivot. The remaining elements are split into two groups: those smaller
than the pivot go to the left, the others to the right. This step is called partitioning. After
partitioning, we can put the pivot element between the two groups; this is its correct posi-
tion in the final sorted output. The two segments left and right of the pivot are sorted by
repeating this procedure, until segments contain at most one element.

This strategy can be realized on a computer as a recursive procedure and is particularly
efficient because the part of the code that is executed most often is extremely short and
fast. Implementing Quicksort is also simple in principle, but the devil is in the details
when it comes to maximum efficiency and robustness against degenerate cases.

Multiway Quicksort. It has long been thought that using more than one pivot, i.e., directly
splitting elements into more than two groups, would not make Quicksort more efficient.
This is true if we count how many comparisons between elements we use. Nevertheless
does Oracle’s Java runtime library nowadays contain a dual-pivot Quicksort that clearly
outperforms single-pivot Quicksort, which raises the following questions:

What makes Java’s dual-pivot Quicksort fast?

What can be gained from multiway partitioning in general?

These are the driving questions behind this thesis. Our method is the mathematical analy-
sis of algorithms; we derive mathematical statements in well-defined models of reality.
By choosing models that are independent of specific hardware, but still reflect common
behavior of modern computers, we derive lasting truths about Quicksort that help settling
the above questions.
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1

Introduction

1.1

SORTING is a very practical task and several sorting algorithms had long been known
and used when the first computers were built [103]. Not so Quicksort. Its recursive
nature makes it inconvenient to execute Quicksort physically by hand. Quicksort was only
discovered in the early 1960s and first published by Hoare [79, 82]; with its fifty-odd years,
it is the youngster among the classic sorting methods—and just about the right age for a
midlife crisis.

History

Quicksort’s youth was turbulent. A humongous collection of potential improvements to
the basic algorithm have been proposed and tested [162]. A few turned out very successful
and have found their way into basically all productive-use implementations; most notably
choosing pivots from a small sample, e.g., the median-of-three strategy, and using a spe-
cial purpose method for small subproblems. Many others were found to be detrimental
to overall performance, both in experiments and by mathematical analysis. After final
changes to Quicksort in the 1990s, almost all programming libraries used almost identical
versions of the algorithm: classic Quicksort had reached calm waters. Or so it seemed.

One of the variations of Quicksort that used to be deemed not helpful is multiway par-
titioning: splitting the array into more than two parts at once, using several pivot elements.
Sedgewick [162], Hennequin [77] and Tan [173] analyzed this idea; they all discarded it
on the basis of inferior comparison and swap counts. Multiway Quicksort was put in the
dustbin of history.

The Dual-Pivot Era. It was to lie there for almost two decades, until Vladimir Yaroslav-
skiy, software developer at Sun Microsystems at that time, experimented with a dual-pivot
Quicksort variant. Together with Jon Bentley and Joshua Bloch, he developed a Java ver-
sion that was 10% faster in practice than the state-of-the-art implementation of classic
Quicksort used in the Java runtime library at that time. This finding was so surprising that
fellow developers were initially reluctant to believe it, but the Yaroslavskiy-Bentley-Bloch
(YBB) algorithm was deployed to millions of devices with the release of Java 7 in 2011,
which offers it as the default sorting method for primitive-type arrays.

And Besides ... I first got to know about the advent of dual-pivot Quicksort from an
article on Java 7 in the German computer magazine c’t [110]. It contains a small paragraph
entitled ,Und aufierdem ...” (“And besides ... ") which states that, oh, by the way, Oracle
replaced the Quicksort implementation with a new dual-pivot Quicksort that seems to run
twice as fast on many inputs. Here is the original paragraph of the mentioned German
article:

. Fiir die Sortierung numerischer Arrays, fiir die bisher eine optimierte Quicksort-Variante benutzt
wurde, kommt nun der Dual-Pivot-Quicksort-Algorithmus von Viadimir Yaroslavskiy zum Ein-
satz, der in der Regel ungefiihr doppelt so schnell ist wie der alte Algorithmus. Auch fiir den Spezi-
alfall der stabilen Sortierung von Object-Arrays und Collections, fiir den bisher einfach Mergesort
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benutzt wurde, gibt es einen neuen, schnelleren Algorithmus namens TimSort, der seine Stirken
insbesondere dann ausspielt, wenn Teile der Eingabedaten bereits vorsortiert sind.” (Lau [110],

p-177)
Remarkably, this news did not create a stir among software developers. It might be taken

as sign of a good programming library that users do not have to be interested in its
implementation. For an algorithms researcher, its success is nothing less than a sensation.

Apart from its superior performance in running time studies, little was known about YBB
Quicksort at the time of its deployment in Java 7. How could this substantial improve-
ment to the well-studied Quicksort algorithm have escaped the eyes of generations of
researchers? Why had YBB Quicksort not been discovered much earlier?

I devoted my master’s thesis [182] to a classical average-case analysis of basic variants
of dual-pivot Quicksort. The results seemed conclusive: YBB Quicksort needs 5 % less
comparisons in the asymptotic average than classic single-pivot Quicksort, and also less
than the other dual-pivot partitioning algorithms studied earlier. The savings result from
subtle asymmetries in YBB partitioning. This effect might have been overlooked in the past,
so that using two pivots was discarded because the right partitioning method had not yet
been found; the contribution of Yaroslavskiy, Bentley and Bloch was to finally devise such
a method. This makes a nice, coherent story, but the true reasons for the success of YBB
Quicksort are not that simple.

Results in the second classical cost measure for sorting, the number of element swaps,
clearly favor classic Quicksort: YBB Quicksort needs over one and a half times the number
of swaps of classic Quicksort. Similar results hold for the number of primitive instructions
of typical low-level implementations of the algorithms.

But if the YBB Quicksort actually uses more instructions, how come it is still faster in
practice? And why was this discrepancy between theory and practice not noticed earlier?
In my master’s thesis, I could not settle these questions.

Little Glossary of Quicksort Terms

At this point, a few remarks are in order about the meaning of certain phrases, some of
which we already used above. Many concepts remain vague here; we put the relevant
ones in more concrete terms later.

Partitioning is the process of splitting a set of elements into the equivalence classes
w.r.t. their relation to the pivot element(s). In a linear arrangement of the ele-
ments, all elements of one class form a segment. How we obtain this rearrange-
ment procedurally is left unspecified for now.

Quicksort means all methods that follow the abstract idea to sort by repeatedly parti-
tioning a sublist around pivot elements. It is unspecified still how partitioning is
achieved, how many pivots are used, how these are chosen, in what order sublists
are processed, and how the bookkeeping for the latter is done.

1.2
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Pivot Sampling is the process of selecting pivot values from a sample of elements of

the input. We may use any selection scheme that uses only the relative ranking of
the sample elements; most common choices pick pivots as specific order statistics
of the sample. A well-known example is the median-of-three scheme.

Single-pivot / dual-pivot / four-way / multiway Quicksort are all Quicksort variants

with the indicated number of pivots or segments per partitioning step. How
partitioning is achieved and how pivots are selected is unspecified.

Multiway vs. Multi-pivot. Even though k-pivot Quicksort is a coined term in
the Quicksort literature, I will mainly use s-way Quicksort in this work, since the
number of segments is a much more convenient parameter than the number of
pivots for the notation introduced later. The reader might moreover appreciate
the similarity between multiway Quicksort and multiway Mergesort, and the
correspondence of s-way Quicksort to s-ary search trees.

I am not the first researcher to speak of multiway Quicksort; Flajolet [61] used the
same term in a 2001 editorial.

Classic Quicksort is a single-pivot Quicksort with the crossing-pointer partitioning

method of Sedgewick and Hoare as given in Algorithm 2. Classic Quicksort may
or may not be combined with pivot sampling.

YBB Quicksort is a dual-pivot Quicksort with the three-way partitioning method of

Yaroslavskiy, Bentley and Bloch (YBB partitioning) as given in Algorithm 4. The
pivot-sampling strategy is left unspecified.

Java 7’s dual-pivot Quicksort (Java 7 Quicksort) means the concrete code used for

Array.sort(int[]) in version 7 (bi47) of Oracle’s Java runtime library. It is
an implementation of YBB Quicksort, but adds further optimizations: pivots are
chosen as tertiles of five elements, sublists with less than 47 elements are sorted by
Insertionsort, inputs consisting of at most 67 runs (correctly ordered subranges)
are sorted with a Mergesort variant instead of Quicksort, and equal pivots are
treated specially, to name the most important ones.

Rectification of Names. Vladimir Yaroslavskiy re-initiated research on Quicksort with

two pivots, and I concluded from the publicly available documents” that he was also the
main driving force in its development, and hence referred to the partitioning method
simply as Yaroslavskiy’s algorithm in my previous works. Only recently have I learned from
personal communication that the new dual-pivot Quicksort algorithm should rightfully
be attributed to the trio of Vladimir Yaroslavskiy, Jon Bentley and Joshua Bloch, since all
were involved in the development of the algorithm very early on. This is also documented
in the Javadoc of the OpenJDK sources.?



Recent Developments - 1.3

In creative projects, a team often develops ideas that none of its members would have
had alone, and separating contributions is hardly possible. By no means was I trying to
do so in using the name Yaroslavskiy’s algorithm, and I wish to replace it by Yaroslavskiy-
Bentley-Bloch (YBB) Quicksort.

One could have used Java 7’s (or JDK/JRE 7’s) dual-pivot Quicksort for the algorith-
mic principle, as well, but I prefer to give credit to the creators of the algorithm instead of
emphasizing the algorithmically irrelevant fact that it was first implemented in Java. It has
been demonstrated independently by several authors that YBB Quicksort performs just as
well if implemented in C/C++ [182, 105, 9], and certainly other programming languages
will follow.

? See in particular the discussions on the Open]DK mailing list core-libs-dev, archived online:
http://mail.openjdk. java.net/pipermail/core-1ibs-dev/2009-September/002630.html.
In class java.util.DualPivotQuicksort, see, e.g., http://grepcode.com/file/repository.

grepcode.com/java/root/jdk/openjdk/7-b147/java/util/DualPivotQuicksort. java.

1.3 Recent Developments

Together with my advisor Markus Nebel, I continued the study of YBB Quicksort. It
turns out that even for comparisons, the lead of YBB Quicksort evaporates if we take into
consideration how pivots are selected in practice (ninther for classic Quicksort, tertiles-of-
five for dual-pivot Quicksort): YBB Quicksort actually needs more comparisons [136, 137].

After I presented the results of my master’s thesis at the European Symposium on Algo-
rithms (ESA) 2012 [184], the intriguing questions caught the interest of other researchers.
One group from Ilmenau, Germany, around Martin Aumdiiller and Martin Dietzfelbinger,
has addressed the question of how many comparisons can be saved with any dual-pivot
partitioning method [8].

A Plausible Answer. Another group from Waterloo, Canada, around Alejandro Lépez-
Ortiz and Ian Munro, first suggested a plausible explanation for the success of dual-pivot
Quicksort. They argue that what makes YBB faster is that it incurs fewer cache misses,
see [105]: Kushagra et al. determine 20 % savings over classic Quicksort in the asymptotic
average for the basic versions of the algorithms. Taking pivot sampling into account, the
savings drop to something slightly below 10 %, but this is still a significant improvement
over classic Quicksort [137]. It even matches the observed speedup in running times.

I would like to see the term cache misses being used with caution, as its meaning is
rather narrow and tied to a specific hardware event. But I am confident that Kushagra
et al. are right: the influence of the memory hierarchy makes the difference for dual-pivot
Quicksort. The reason is a long-lasting trend in computer hardware design that has been
referred to, somewhat dramatically, as the “memory wall” —and was predicted 20 years

ago [189, 125].


http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-September/002630.html
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/DualPivotQuicksort.java
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/DualPivotQuicksort.java
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1.4 The Memory Wall

Since the earliest electronic computers in the middle of the 2oth century, processor manu-
facturing techniques have improved dramatically. Moore’s law has become folklore, pre-
dicting a doubling of the number of transistors in integrated circuits roughly every two
years. Net CPU speed increased at a similar rate, and still does, partly because more
transistors can be used, partly because transistors become more efficient individually, and
partly because more sophisticated processor architectures have been invented. Memory
capacity has increased at a similar rate.

Memory Bandwidth. Ample memory to hold data and ample computing power to process
it are both in vain if computation has to wait for data to arrive. Backus [12] called this the
von-Neumann bottleneck, and there is considerable evidence that this bottleneck is tighten-
ing.

Based on the extensive data for the STREAM benchmark [119, 118], CPU speed has
increased with an average annual growth rate of 46 % over the last 25 years, whereas
memory bandwidth, the net amount of data transferable between RAM and CPU in a given
amount of time, has increased by only 37 % per year in the same period. One should not
be too strict about the exact numbers since they are averages over different architectures
and measurements are not evenly distributed over time. Still, processor speed has been
growing considerably faster than memory bandwidth for a long time. Figure 1 shows
how machine balance, the ratio of speed over bandwidth, has developed over time for the
STREAM data.

Figure 1: Development of machine balance, the ra-
tio of CPU speed over memory bandwidth,
in the last 25 years. Each point shows one
reported result of the STREAM benchmark.
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Data. McCalpin [119, 118] describes the STREAM benchmark itself. The machine-balance data is taken from www.cs.
virginia.edu/stream/by_date/Balance.html, accessed on 2015-12-15. Entries from 1991, when STREAM was
first released, have been removed. The reported dates are the dates of submission to the STREAM mailing list, not the
years of construction of the machines. These initial entries could thus skew the picture. Three entries with machines
balance larger than 500 were treated as outliers. They had a measured bandwidth of 0.0, so suitable accuracy cannot
be guaranteed there, so they have likewise been removed.


www.cs.virginia.edu/stream/by_date/Balance.html
www.cs.virginia.edu/stream/by_date/Balance.html
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A significant increase in imbalance is undeniable. Note that Figure 1 is on a logarith-
mic scale, so the difference between CPU and memory transfer speed grows exponentially.
The linear regression indicates a little over 5% annual increase in imbalance. Wulf and
McKee [189] warned in 1995 that if this trend continues like this, at some point in the
future any further improvements of CPUs will be futile: the processor is waiting for data
all the time; we hit a “memory wall”. It is debatable if and when this extreme will be
reached [57, 125], and consequences certainly depend on the application. In fact, net
bandwidth has grown much faster than predicted in the mid 1990s [189], but it still does
not keep pace with CPU speed improvements. We bought some time.

Implications for Sorting. Wall or no wall—the relative costs of memory accesses have
increased significantly over the last two decades: in 1993, when Bentley and Mcllroy de-
signed the gold standard of classic Quicksort implementations [20], the average machine
balance was still below ten; 20 years later, their implementation has to compete with dual-
pivot Quicksort on machines with balance around 30. The model of computation has
changed.

In this respect it is quite plausible why the improvement of dual-pivot Quicksort went
unnoticed for so many years: it was not there! In the computational model of their time,
the researchers correctly concluded that the use of several pivots does not pay off. What
may now be the most efficient way to sort, was really no good when the aforementioned
studies on dual-pivot Quicksort were conducted. But computers have changed since then,
and so should our algorithms: nowadays it pays off to save memory transfers, even at the
cost of (slightly) increased effort inside the CPU.

Scanned Elements: A Model for Bandwidth. If we compare algorithms for today’s ma-
chines with the yardsticks of yesterday, our conclusions will not be accurate. We should
not expect to find YBB Quicksort outperform classic Quicksort, if we measure efficiency by
comparison and swap counts only. We have to take bandwidth consumption into account.
We need a simple abstract model for that, one that is independent of specific machines
and suitable for the mathematical analysis of algorithms.

Scanned elements can serve this purpose for Quicksort [137]. Scanned elements are
closely related to cache misses for an idealized cache and roughly proportional to the
amount of memory transferred on a typical machine, but defined abstractly as the number
of steps of scanning indices. We discuss this model in depth later.

Multiway Quicksort

From the observations discussed above, a natural question arises: if dual-pivot Quick-
sort is faster nowadays because of a better balance of CPU costs and memory bandwidth
demands, are more pivots even better?

As mentioned above, the idea of s-way Quicksort, i.e., partitioning the input into s
segments at once (using s — 1 pivots), is not novel at all. Hennequin [77] and Tan [173]
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considered such Quicksort variants more than 20 years ago, but their comparison-focused
analysis showed no compelling advantages of using s > 2.

Kushagra et al. [105] revived that question recently. They proposed a three-pivot
Quicksort implementation that indeed uses even less memory transfers than YBB Quick-
sort and performed very well in preliminary running-time studies.

This shows that multiway partitioning is practical nowadays, but it is merely a start.
Do improvements continue if we increase s further? What are good multiway partitioning
algorithms? Should we favor asymmetric partitioning schemes, such as in YBB Quicksort,
over symmetric procedures? How does multiway partitioning interact with tried-and-
tested optimizations of classic Quicksort? The game is afoot—again.

Aim and Scope of this Dissertation

This work is concerned with practical variants of Quicksort, i.e., methods that could readily
be implemented in a low-level procedural language, and perform reasonably well on real-
istic input sizes. A handful of such Quicksort versions are known for binary partitioning,
and many options are conceivable for multiway Quicksort. Moreover, there are strategies
that can be combined orthogonally with any such partitioning method: choosing better
pivots by sampling, truncating recursion and using a special-purpose sort for small sub-
problems, precautions against rare bad cases, and special handling of equal keys, to name
the most important ones. Among all possible combinations, which are the most efficient
ones? What is it that makes them efficient? And how sensitive is efficiency to (small)
changes of these parameters?

Only analytically can we explore this vast design space in its generality. In the work
at hand, I thus approach answers to these questions by means of mathematical analysis
of algorithms as opposed to doing running time studies. We will derive provably correct
statements about the performance of Quicksort. As traditionally done in the field, the
results will be of an asymptotic kind, i.e., about the limiting behavior for large input sizes.
I do this to keep both calculations and the interpretation of results tractable.

We confine our statements to a well-defined, theoretical model of computation and
consider corresponding measures of cost. For analyzing memory-bandwidth costs in
Quicksort, we will use the number of scanned elements.

We will analyze a parametric template algorithm: The partitioning step divides the
array into s parts and the s — 1 pivots are chosen as order statistics from a sample of k
elements of the input. Some additional degrees of freedom concern how the rearrangement
of elements itself is done. The only fixed part is that partitioning should proceed in one
pass over the array and in place, i.e., using only a constant amount of additional working
memory.

This covers basically all practically relevant partitioning algorithms: Hoare’s original
crossing-pointers scheme [82], later revised by Sedgewick [161], Lomuto’s partitioning [18],
the dual-pivot method studied in Sedgewick’s Ph.D. thesis [162], YBB Quicksort [191, 184]
and the recently proposed Waterloo four-way Quicksort [105]. In this work, we unify

10
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the analyses of these algorithms, including the option to choose pivots from a sample,
and extend them to the new cost measure of scanned elements. This allows us to reason
analytically about promising candidates for a 21st century Quicksort which will have to
excel both in terms of used CPU cycles as well as required memory transfers.

Most statements concern the random-permutation model, i.e., all permutations of in-
put elements are equally likely, and elements are distinct. But we also go beyond that; we
consider the practically relevant situation of duplicate keys in the input. An early version
of the Unix system sort gained notoriety for its dramatic failure in the presence of dupli-
cates: it had quadratic running time on binary inputs [20]. Under a natural random model
for inputs with many equal keys, we will analyze how much can be gained by collecting
elements equal to pivots during partitioning. Our analysis is the first ever for generalized
Quicksort with equal keys, and we show that the same relative speedup is achieved with
pivot sampling and multiway partitioning as for the random-permutation case.

¢ ¢ ¢

For a qualification work, which is what this dissertation is to be after all, it should be clari-
fied what my original contributions are. I extracted the algorithmic core of YBB Quicksort
from the original Java code, and provided the first average-case analysis of the basic YBB
Quicksort without pivot sampling and Insertionsort cutoff in my master’s thesis. New
contributions in this dissertation are

1 the introduction of generic one-pass partitioning as a parametric algorithm template
generalizing all known practical partitioning methods (Chapter 4),

2 the analysis of generic one-pass partitioning with pivot sampling under various
cost measures (Chapter 5), unifying previous analyses in the common framework
of element-wise charging schemes,

3 the precise analysis of branch misses,

4 the systematic computation of expectations involving Dirichlet distributed random
variables arising in the analysis of partitioning using Dirichlet calculus (Chapter 2),

5 the distinction between scanned elements and cache misses (Chapter 3), which allows
us to separate errors from asymptotic approximations from inaccuracies of the cost
model,

6 the resolute use of distributional formulations for recurrences and partitioning costs
throughout this work and

7 the direct extraction of asymptotic approximations of expected costs from the distri-
butional recurrence with the distributional master theorem (DMT) (Chapter 6), a version
of Roura’s continuous master theorem rephrased in distributional terms;

8 the first analysis of Quicksort with pivot sampling and multiway partitioning on
inputs with equal keys (Chapter 8), and

9 a comprehensive discussion of the influence of the parameters of generic one-pass
partitioning on the performance of Quicksort (Chapter 7).

11
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I have always found collaborative research efforts most enjoyable and rewarding on many
levels, and some results are genuine group efforts for which I cannot claim sole authorship:

1 Generic one-pass partitioning was inspired by discussions with Martin Aumtdiller
and Timo Bingmann at the Dagstuhl seminar 14 091; Martin Aumiiller worked indepen-
dently and concurrently on a similar partitioning scheme afterwards. 3 The analysis of
branch misses was done together with Conrado Martinez and Markus Nebel. 5 The idea
to have a clean cost measure to approximate cache misses was mine, but the final defini-
tion and name was formed in extensive discussions with Conrado Martinez and Markus
Nebel. 6 Discussions with Hosam Mahmoud and Ralph Neininger and the elegance
of their work lead to my fondness for distributional formulations. Without their guid-
ance during our cooperative work on the distributional analysis of YBB Quicksort and
Quickselect, I would not have been courageous enough to extensively use distributional
recurrences for my work. 8 The work on equal keys originated in a discussion with
Conrado Martinez, Markus Nebel, Martin Aumdiller and Martin Dietzfelbinger. First at-
tempts to obtain ]E[Aq] were a joint effort with Conrado Martinez, which laid the ground
for the solution now presented in this work. 9 The discussion chapter includes many in-
sights that emerged while exchanging thoughts with numerous researchers, most notably
Conrado Martinez, Markus Nebel and Martin Aumiiller. Instead of tracing all these ideas
to their origins, I briefly list what is solely my contribution in that chapter: the optimal-
ity criterion for sampling vectors in the case of finite-size samples, the heuristic rule for
finding good sampling vectors, the optimality criteria for comparison trees based on the
Hu-Tucker algorithm, the considerations regarding the benefit of two comparison trees,
and the discovery of the jellyfish paradox.

¢ ¢ ¢

Outline. In the remainder of this first chapter we give a rather comprehensive literature
overview on the analysis of Quicksort. In Chapter 2, I introduce all mathematical tools
used in the analysis. Most techniques and results are well-known, but I made an effort to
collect them all in consistent notation and convey at least the intuition behind the results;
where helpful, I included detailed proofs.

In Chapter 3, we discuss the model assumptions for the analysis: what are the costs
of an execution, and how are random inputs for the average-case analysis drawn. I then
present in Chapter 4 my parametric template algorithm for multiway Quicksort, generic
one-pass partitioning. The main part of this work then is the analysis of this generic algo-
rithm when pivots are chosen from a sample. This is done in two steps. First, we analyze
a single partitioning step in Chapter 5. Then we set up and solve a recurrence equation for
overall costs based on that in Chapter 6.

We obtain the expected costs of Quicksort under generic one-pass partitioning sym-
bolically in the parameters of the algorithm. In Chapter 7, we discuss in detail how to
choose the various parameters wisely.

12
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1.7.1

Related Work

The main analysis assumes the random-permutation model. In Chapter 8, we leave
this familiar environment and consider inputs with equal keys. We describe Quicksort
versions that take advantage of such inputs, and we give the first ever analysis of Quicksort
on equal keys with pivot sampling and multiway partitioning. Chapter 9 gives concrete
hints for finding sensible Quicksort variants, and lists directions for future research.

In the appendix, you find a comprehensive index of notations and details on biblio-
graphic references.

Related Work

Some work directly related to YBB Quicksort and the latest twists of Quicksort history have
already been mentioned in the introduction above. This work has been influenced by many
other papers on Quicksort and related topics. We summarize the most important ones in
this section, and how they interface with our work. Likewise, we attempt to put the present
work in a wider context. Much more is known about Quicksort than can be covered in a
sensibly sized section; the collection has to remain selective. The present selection puts a
clear emphasis on the mathematical analysis of Quicksort. We mostly ignore literature on
empirical results on Quicksort and we do not discuss parallel versions, implementations
on specific hardware or specialized variants for certain data types like strings.

Towards Classic Quicksort

The first published version of Quicksort is due to Hoare [80] and appeared in the algo-
rithms columns of the Journal of the ACM in 1961. Hoare also first described the average-
case analysis of the number of comparisons in Quicksort, and anticipated the most relevant
optimizations of the basic algorithm in his 1962 journal article [82]; however, he did not
foresee a reason to partition around several pivot elements (or bounds, as he calls them) at
once. In an independent and concurrent work, Hibbard [78] discussed binary search trees
under the random permutation model. He was the first to note the close correspondence
between them and Quicksort; he solved essentially the same recurrence equation when
analyzing the external path length of binary search trees.

Hoare suggested to choose the median of a small sample as pivot to improve per-
formance. Singleton [170] devised a careful implementation in 1969 that puts this into
practice. It uses the median of three elements, namely the first, the last and the middle
element of the input.

Hoare’s partitioning method works by advancing two pointers outside-in; they start at
opposite ends of the array and move towards each other until they have met—as Knuth
puts it, this is “burning the candle at both ends” ([103], p.114). Singleton was the first to
note that stopping pointers on elements equal to the pivot prevents quadratic behavior on
inputs with many equal keys.

Bentley [17] proposed a simpler, one-way partitioning method in 1984; Bing-Chao and
Knuth [24] described essentially the same method two years later. They also analyzed it in
detail. Bentley attributes the method to Nico Lomuto, and it is thus referred to as Lomuto
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partitioning. In direct competition, Hoare’s crossing pointer method is slightly faster than
Lomuto partitioning, and thus remained the method of choice.

The details of how to implement Hoare’s crossing pointer scheme remained subject
of discussions, until Robert Sedgewick came up with an implementation that unites the
advantages of all previous versions, see Knuth’s digression on Quicksort (pp 287-289)
in his 1974 article [101] on structured programming. We refer to Sedgewick’s code as
Sedgewick-Hoare partitioning, and it is this method that we have in mind when we speak
of classic Quicksort, see Algorithm 2 in this work.

Sedgewick’s Work

Sedgewick devoted his Ph.D. thesis [158], finished in 1975, to the meticulous analysis of
some ten Quicksort variants. A reprint of Sedgewick’s thesis [162] appeared five years
later; when giving page numbers etc. in the following, I always refer to the 1980 publi-
cation. Sedgewick’s thesis is probably the most comprehensive source on Quicksort to
this day, in particular in terms of techniques for its mathematical analysis. We sum up
Sedgewick’s contributions in the following.

Sedgewick derives the precise expected costs of his Quicksort variants, including the
variations

» to truncate recursion and switch to Insertionsort, either directly on each small sub-
problem, or in one pass over the whole array at the very end,

» a generic scheme to select the pivot from a fixed-size sample,

» and to unroll inner loops of the partitioning method.

Moreover, he studies in detail the Samplesort algorithm of Frazer and McKellar [66] and
an adaptive sampling strategy by van Emden [55] which tries to postpone the choice for a
pivot as long as possible.

In passing, Sedgewick extends the mathematical toolbox for the analysis of algorithms.
Even though not all of the following tools are his sole invention, it is his contribution to
give a detailed account on how to apply them to Quicksort.

» Sedgewick describes the solution of the generalized Quicksort recurrence, i.e., with
the pivot chosen from a sample. He uses the differential-operator method for Euler
differential equations; a sketch of this method is also given in the first edition of The
Art of Computer Programming [100] from 1973, see solutions to Exercise 5.2.2—29.

» He also covers the computation of variances from a recurrence for the probability
generating function of the complete distribution.

Sedgewick proposed and discussed a dual-pivot Quicksort: Program 5.1 in [162]. To my
knowledge this is the first ever published implementation of multiway Quicksort, and
probably the most underappreciated contribution of Sedgewick’s work. Sedgewick pro-
moted dual-pivot partitioning mainly as an efficient method to deal with many duplicate

14



1.7.3

1.7.4

Practical Tweaks in the Nineties

keys; but when he determined the swap cost of his method and found that it needs 140 %
more swaps than single-pivot Quicksort, he deemed it unworthy of further study.

Sedgewick presented parts of his thesis, in more condensed and digested form, in two
journal articles: one focusing on analysis [159] and another dealing with implementation
issues [161]. A third article [160] adds a detailed treatment of inputs with equal keys; we
discuss it in detail in Section 1.7.9.

Practical Tweaks in the Nineties

Bentley and Mcllroy [20] made noteworthy progress on the practical side. Besides set-
ting a good example for how to design and evaluate running-time studies, they devised a
practical implementation of fat-pivot partitioning, a method that divides the array into three
segments: elements strictly smaller than the pivot, elements strictly larger than the pivot,
and elements equal to the pivot. At that time, many practical implementations exhibited
quadratic behavior on inputs with many equal keys, although Sedgewick [162] recognized
and discussed this problem in detail, and the method to avoid it by stopping pointers on
equal elements had been known at least since the 1969 implementation of Singleton [170].
Removing elements equal to the pivot had been deemed too costly before, but the method
of Bentley and Mcllroy achieves this without excessive overhead in case there are no du-
plicates.

They also introduced ninther sampling, which picks the median of three elements, each
of which is chosen independently as the median of three elements. It took ten years be-
fore Durand published the first rigorous mathematical analysis of Quicksort with ninther

sampling [49].

Introsort. The combination of its ubiquitous use and its quadratic worst-case make
Quicksort a possible target of denial-of-service attacks by making the server sort a worst-
case input. Mcllroy describes an elegant method to compute such an adversarial input for
any Quicksort variant [124].

Shuffling inputs before they are sorted protects against this attack; another possibility
is to make Quicksort self-monitoring. With an additional parameter that we decrement in
each recursive call, we can check before partitioning if we are already further down in the
recursion tree than we should ever get in a usual case, e.g., at depth more than 21d(n),
and if so, resort to a method with linearithmic worst-case guarantee before things get out
of hand. The idea for this introspective sort is due to Musser [133] and has been widely
adopted in practice; interestingly enough, not in the Java library.

Off-the-Shelf Theorems for Solving Recurrences

Classical master theorems, as presented, e.g., by Cormen et al. [35] can help to analyze
divide-and-conquer algorithms that divide a problem into a fixed number of equal-sized
parts whose size is a fixed fraction of the overall problem size. For Quicksort and similar
algorithms, subproblem sizes are not fixed fractions. Roura [154, 153] derived two gen-
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eralized versions of the master theorem which he calls the discrete master theorem and
the continuous master theorem (CMT). The former applies to algorithms that split a prob-
lem into a fixed number of subproblems with fixed relative sizes, but not all subproblems
need to be of the same size. The latter covers algorithms like Quicksort that produce a
fixed number of subproblems, whose relative subproblem sizes are random variables whose
distribution is well approximated by a fixed continuous distribution.

An important contribution of Roura’s is the precise error analysis when the above as-
sumptions hold only in the limit for large n. This makes the theorems widely applicable.
In many cases, Roura’s improved master theorems yield the leading-term coefficient of the
solution instead of only an order-of-growth statement. Martinez and Roura [116] exem-
plify the use of the CMT in a detailed study of different sampling strategies for Quicksort
and Quickselect. We discuss the CMT in detail in Section 2.6.

In a similar vein, Chern et al. [30] derive a general solution for recurrences that corre-
spond to a Cauchy-Euler differential equation for the generating function of the sequences.
The costs in Quicksort are again the prime example for such a sequence. The set of re-
currences to which their solution applies is smaller than for Roura’s theorems, but Chern
et al. can give more precise solutions, in particular if the toll function is relatively small.
For such cases, the overall solution is dominated by contributions of initial values, which
Roura’s theorems ignore completely. Their statement is inherently limited to an order of
growth in such cases. In contrast, Chern et al. explicitly include initial conditions.

Recurrences like the one for costs in Quicksort can be seen as a transformation: given
a sequence of toll costs, e.g., the cost of one partitioning step in Quicksort, the recurrence
transforms this into the sequence of total costs. In fact, for costs of divide-and-conquer
algorithms, this transformation is a linear operator. Fill et al. [60] adopt this view and
transfer it to the realm of generating functions: the recurrence induces a transformation
that turns the generating function of the toll sequence into the generating function of total
costs. For Quicksort-type recurrences, this transformation involves integration and differ-
entiation to solve the Cauchy-Euler differential equation discussed by Chern et al. [30].
Fill et al. [60] then show that these operations, and also the Hadamard product, can be
applied to a singular expansion of the generating function, instead of the function itself,
and then yield a corresponding singular expansion of the generating function for the total
cost. From the latter, one can then extract an asymptotic expansion of the coefficients by
classical singularity analysis [62].

1.7.5 Analysis of Pivot Sampling

In his 1962 article on Quicksort, Hoare already suggested to choose the pivot as “the median
of a small random sample of the items in the segment. [...] It is very difficult to estimate the
savings which would be achieved by this” ([82], p.12). It took almost a decade to approach
these savings analytically; van Emden [55] gave the first derivation of the leading term
of costs of median-of-(2t 4 1) sampling strategy in 1970. He does not rigorously address
error terms in this article, though.
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Sedgewick [159] solved the recurrence explicitly for the median-of-three case and gave
an asymptotic approximation for the general case. He used generating-function tech-
niques, namely the operator method to solve the Cauchy-Euler differential equation for
the generating function of costs.

In his Ph.D. thesis [162], Sedgewick also considered the more general case that we
pick the Rth smallest element from a sample of k elements, where R is randomly chosen,
as well, according to a given distribution. For his MIX implementation of Quicksort the
optimal choice among all distributions for R is to deterministically select the median, i.e.,
fix R = |k/2] —1.

Hennequin [77] extends Sedgewick’s techniques to multiway Quicksort: he analyzes
the generic model that we pick random order statistics from a sample, and shows that it is
optimal w.r.t. comparisons for his multiway Quicksort to deterministically pick pivots as
equidistant quantiles.

The widely used ninther a.k.a. pseudo-median-of-nine proposed by Bentley and Mcll-
roy [20] can be seen as a special case of selecting a randomly chosen rank from a sample
of nine elements; but it was only in 2000 that Durand first computed the resulting cost ex-
plicitly in her mémoire de DEA [48] (master’s thesis). She presented the result in an English
article [49] that was published in 2003.

Chern et al. further extended the generating-function based analysis and derived a
general theorem to solve recurrences arising, e.g., in the analysis of pivot sampling, in a
journal article [30] from 2002; we already discussed their work in Section 1.7.4. They apply
their theorem to the generalized remedian strategy: the remedian of order zero is simply
one random element, the remedian of order t + 1 is the median of three elements, each
of which is a remedian of order t. The casest =0, t = 1 and t = 2 thus correspond to
a random pivot, median-of-three resp. ninther sampling. Chern et al. do not give closed
forms for expected costs, but they show that their framework applies, so coefficients can in
principle be given at least for any fixed t. Similarly, Chern et al. briefly discuss alternative
pivot-selection strategies, e.g., using the maximum of a number of minima, each chosen
from a sample.

Chern and Hwang [29] addressed a related question: what happens if we do not
use median-of-three pivots in all partitioning steps, but only for the first k levels of the
recursion, switching back to random pivots after that? They showed that the improvement
is essentially linear in k until k ~ % In(n); for larger k, costs are asymptotically the same
as for median-of-three Quicksort. In a similar vein, they considered a hybrid strategy that
does k levels of Quicksort partitioning before switching to Insertionsort, irrespective of the
current subproblem size.

Quicksort and Search Trees

Hibbard noted the intimate relation between classic Quicksort and binary search trees in
his article [78] on BSTs published in 1962; he had been working concurrently with Hoare
who published his article on Quicksort in the same year, and he immediately saw the
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connection to Hoare’s work: averaged over all permutations, the number of comparisons
in Quicksort and the internal path length of a binary search tree are the same.

Fringe-Balanced Trees. The correspondence of Quicksort and BSTs is lost when we con-
sider Quicksort with median-of-three pivot selection, but we can restore it with a modifi-
cation of BSTs that is interesting in its own right: fringe-balancing.

In a fringe-balanced search tree, leaves have buffers that hold up to k elements. If a new
element is to be inserted into a leaf, it is simply added to the buffer. If the buffer becomes
full, the median of the k buffered elements is selected as key for a new internal node which
takes the place of the leaf. Two new leaves with the smaller and larger elements from the
overflown buffer are attached to the new internal node in the tree. This effectively enforces
a local rebalancing of subtrees near the leaves, i.e., at the fringe of the tree.

One Idea, Five Names? Fringe-balanced trees appear under various names in the liter-
ature; the idea seems to have been rediscovered several times. Walker and Wood [176]
traced the origin of fringe-balanced trees to the 1965 dissertation of Bell [16]. They dis-
cussed them under the name k-locally balanced BSTs in 1976. Instead of an explicit leaf
with a buffer, they use binary nodes and keep the k-node subtrees at the fringe balanced
by rotations.

Apparently independently, Greene developed fringe-balanced trees as we introduced
them above in his Ph.D. thesis [74], finished in 1983. Greene calls them diminished trees
and analyzes them in detail.

Concurrently to Greene, Huang and Wong worked on two articles [88, 89] on search
trees whose fringe subtrees must be complete BSTs; their SR trees are fringe-balanced with
k = 3, which they generalized to iR trees, whose parameter i corresponds to k, the leaf
buffer size. Like Walker and Wood [176], Huang and Wong enforce trees at the bottom to
be balanced instead of introducing special leaf nodes.

The name fringe-balanced trees derives from the term fringe analysis that Eisenbarth
et al. coined in an article [52] from 1982. Fringe analysis approximates the evolution
of the shape of a tree by only considering how often a fixed number of small subtrees
occurs at the fringe, i.e., at the leaves, of a tree. One then studies how the multiplicities
of these fringe subtrees change upon random insertions. Yao first used this idea in a 1978
article [190] to study the average number of nodes in 2—3 trees and B-trees; the earliest
appearance of a fringe-analysis idea seems to be in the 1973 edition of Knuth’s book The
Art of Computer Programming [100] in Exercise 6.2.4-10 on a B-tree variant (it became
Exercise 6.2.4-8 in the second edition [103]).

Although initially invented to study balanced trees, fringe analysis is a perfect fit for
the analysis of fringe-balanced trees; Poblete and Munro [145] did that in 1985. They used
the term fringe heuristic to describe local rebalancing rules, but they did not use the term
fringe-balanced tree. The first use of that term I could find was in a paper by Devroye [39]
from 1993 with the title “On the expected height of fringe-balanced trees”; interestingly
Devroye did not use the term fringe-balanced anywhere in the text of the article. In
more recent literature, the name fringe-balanced (binary search) trees has become widely
accepted, see, e.g., Mahmoud [114] and Drmota [47].
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I think fringe-balanced aptly describes the idea underlying these trees, and I will use this
term throughout this work. Fringe-balancing has the same effect on the internal path
length of a search tree as median-of-k pivot selection has on the comparison count of
Quicksort, see, e.g., Hennequin [77] and Section 8.7 of this work.

It is not per se easier to analyze path lengths of search trees than comparisons in
Quicksort, but some reasoning is more comfortable in one world, and some tricks work
only in the other world; see, e.g., the surprisingly simple derivation of the path length for
BSTs given by Knuth [103] in his Section 6.2.2 (page 430). We will make heavy use of the
connection between Quicksort and search trees in Chapter 8, when we study Quicksort
(and search trees) with equal keys.

Fringe-Balanced Trees: A Natural Model. Devroye and Kruszewski [41] devised methods
to synthesize graphics of naturally looking trees. Their method works by first generating
a random generalized binary search tree, which is then drawn according to certain rules:
internal nodes become branches of the tree whose length, width and branching angle de-
pends mostly on the subtree size that is attached to that node. The trees they generate are
essentially fringe-balanced trees with a second parameter: when a leaf buffer overflows,
we do not necessarily choose the median as value for the new node, but any fixed order
statistic of the sample. They simulate this by their random splitting process using beta
distributed relative subtree sizes.

s-Ary Search Trees. As we can partition into s segments at once instead of only two in
Quicksort, we can have s-way branching nodes instead of only binary search trees. Mah-
moud [112] described the resulting s-ary search trees in detail. Note that in the literature on
search trees, the branching factor s is often called m. Hennequin [77] made the connection
between s-ary search trees and s-way Quicksort explicit.

Random Split Trees. Devroye noted in an article published in 1998 that the analysis of
many random tree variants can be unified in a single framework: random split trees. His
framework covers BSTs, s-ary search trees, fringe-balanced trees, quadtrees and tries, and
under mild assumptions Devroye obtains asymptotic approximations to D, the depth of
the last inserted element.

This extension is not directly relevant for Quicksort, but noteworthy in its own right.
Moreover, the result of Devroye’s analysis has technical similarities with our solution of
the Quicksort recurrence: Devroye [40, Theorem 2] shows that [E[D,,] = 1Elnn where p
is the expected entropy of his splitter random variable V. We derive a very similar result
using quite different techniques in Chapter 6.

Limit Distributions

Computing the expected costs of Quicksort would be pointless if actual realizations of the
random costs were not likely to be close to it. Deriving statements about the distribution
of Quicksorts cost has hence been an active field of research.

Lo
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Variance. The distribution of the number of comparisons is characterized by the number
of permutations of size n on which Quicksort needs exactly k comparisons. These numbers
fulfill a recurrence similar to the average number of comparisons. For each n, we get
a different distribution over the number of comparisons whose probability generating
functions G, (z) = kankzk fulfill a recurrence similar to that for the expected number
of comparisons: Gn(z) = zn1 Y o1 Gr_1(2)Gn_x(z)/n with Go(z) = 1; see Exercise
6.2.2-8 of Knuth [103]. Taking derivatives and extracting coefficients, Knuth determines
the variance for the number of comparisons in classic Quicksort as 7n? —4(n + 1)2H(2) —
2(n+1)Hy +13n.

Concentration. Since the standard deviation is thus bounded by a linear function in n,
we find with Chebyshev’s inequality that for any fixed probability p € (0,1) and deviation
¢ > 0, there is a minimum size ng such that for n > ny, the costs deviate from the mean by
less than ¢ percent with probability p. Such an existential guarantee is already reassuring,
but the values of ny from Chebyshev’s inequality will usually be very large, since the mean
is only by a logarithmic factor larger that the standard deviation. This result is known at
least since the early 1970s.

Exploiting much more of the specific structure in Quicksort, McDiarmid and Hay-
ward [121, 122] showed in 1992 that the probability for large deviations is in fact much
smaller than that. They explicitly included median-of-(2t + 1) Quicksort in their work.

From a practitioner’s point of view, it is reassuring that not only the average perfor-
mance of Quicksort is good, but also that chances are low to deviate much from it on
every single input, as long as it is a random permutation. The actual distribution of costs
in Quicksort is not as important from a practical point of view, but it has many interesting
features from a mathematical point of view, and its study has fostered the development of
useful methodology.

Existence of a Limit Law. Regnier [148] first showed in 1989 that the normalized num-
ber of comparisons (C;, — E[Cn])/n converges in distribution to a limit distribution. Her
martingale-based proof is not constructive. Hennequin [76, 77] showed that the first twelve
cumulants of the distributions converge for n — oo, and he formulates a conjecture for all
others. The existence of all cumulants is known to imply that the limit distribution is char-
acterized by cumulants or moments, which extends Regnier’s finding also for Hennequin’s
multiway Quicksort.

The Contraction Method. A relatively new and successful tool for the analysis of algo-
rithms had its premiere in giving the first characterization of the limit distribution of
Quicksort: the contraction method. Rosler [151] showed that the distribution of normalized
costs for sorting an input of size n with Quicksort can be described by a distributional re-
currence that transforms distributions with smaller parameters into the distribution for n.
This mapping of probability distributions is a contraction in the complete metric space of
centered distributions with the minimal ¢, metric (a.k.a. Wasserstein metric or Mallow’s
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metric), so if we iterate the mapping from any starting point, it converges to a unique
fixed-point by Banach'’s fixed-point theorem.

The limit law is the unique solution of the fixed-point equation among all centered
distributions, and the normalized cost distribution of Quicksort converges to it in the
¢, metric, which is known to imply convergence in distribution and in first and second
moments. As we do not have a simple, explicit representation for the solution of the
fixed-point equation, the limit distribution is only given implicitly. We can nevertheless
compute, e.g., asymptotic variances directly from the fixed-point equation with much less
computational effort than a direct recurrence for the variance.

Rosler on one hand, and Rachev and Riischendorf on the other hand independently
developed the general methodology behind this idea in two articles, [152] and [146], that
appeared in 1992 resp. 1995. The name contraction method is due to Rachev and Riischen-
dorf. In a joint effort, Rosler and Riischendorf [150] reviewed the method systematically
in 2001, including many examples and the abstraction of weighted branching systems. In the
same year, Neininger [138] extended the method to multivariate random variables, which
allowed him to compute, e.g., covariances between different cost measures; Neininger and
Riischendorf [140] further developed the contraction method on the basis of Zolotarev
metrics in 2004. This allows them to handle recurrences with a normal limit law, which
usually do not yield a contracting map in the {, metric.

Non-Uniform Input. Eddy and Schervish [50] describe the remarkable fact that for any
distribution of pivot ranks, i.e., any choice for probabilities q)fn) for the pivot to have rank
j in an array of n elements, one can recursively identify a family of distributions over the
permutations of [1..n], so that classic Quicksort with a deterministic pivot choice has the
given probability to select a pivot of a certain rank. What is more, they show that recursive
calls operate on inputs drawn from the same family of distributions, i.e., randomness is
preserved. This means that, e.g., any pivot-sampling scheme can be simulated by changing
the input distribution accordingly instead.

Since in the recursion we always have segment sizes j — 1 and n —j if the pivot has rank j,
(comparison) costs only depend on q}n) + qg‘j(ji] )» and any distribution for which this
equals 2/n implies the same costs as uniformly random permutations. For example, the
distribution qlﬁn) = T é]ﬂ 7, which at first sight seems to imply unbalanced partitioning,
yields the same distribution of costs as does the random-permutation model.

Limit Density. The characterization of limit distributions as fixed point of a mapping is
still implicit. Eddy and Schervish [50] used the fixed-point equation to numerically ap-
proximate the limit distribution of Quicksort, by successively substituting an initial guess
for the characteristic function, the moment generating function or the density into the
fixed-point equation.

A succinct precise description of, e.g., the density of the Quicksort limit law is still
not known; in fact, even the existence of a density is not obvious a priori. Tan showed
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in his Ph.D. thesis [173] in 1993 that the limit distribution of Quicksort indeed has a
positive continuous density with support IR>o; he published the result in a joint article
with Hadjicostas [174] in 1995.

Phase Changes. Limit distributions for normalized costs of divide-and-conquer algo-
rithms usually fall into one of only a few classes: they can be normal distributions (with
a certain mean and variance), an otherwise unknown distribution like Quicksort (non-
normal case), or they might not exist at all, e.g., because of fluctuations of the costs in
n. Other well-known distributions do not seem to occur often in such applications. Mah-
moud [113] analyzed many classical sorting algorithms and reports asymptotic normality
for almost all of them. Interestingly, as one varies certain parameters, limit distributions
exhibit a phase transition from one class to another.

Chern and Hwang [29] studied a collection of different cost measures with linear ex-
pectation, e.g., the number of partitioning steps in (generalized) Quicksort or the number
of nodes in m-ary search trees. For such cost measures there is a phase transition from
normality to non-existence as either the number of pivots or the size of the sample for
pivot selection exceed certain thresholds. Chern and Hwang characterize these thresholds.

Another type of phase transition happens when one varies the order of growth of the
toll function in a Quicksort-like recurrence. Hwang and Neininger [91] study limit laws in
the setting of the classic Quicksort. Roughly speaking for tolls smaller than /n, limit laws
are normal, for larger tolls they are non-normal.

Limit Law of Multiway Quicksort. The contraction method works for multiway Quicksort
as well as in the single-pivot case; but one has to fix a partitioning method.

Tan shows the existence of a density in his Ph.D. thesis [173] for his multiway Quick-
sort based on iterative binary partitioning; see Section 1.7.8 for details on the algorithm. He
also extends the contraction-method argument for his multiway Quicksort and generalizes
the numerical approximations of Eddy and Schervish [50] for the limit density.

For the normalized number of comparisons in Hennequin’s generalized Quicksort [77],
Chern et al. [30] sketch the derivation of the limit distribution with the method of moments,
using their transfer theorem to asymptotically solve the recurrence for all moments.

For YBB Quicksort, we obtained the limit distribution of the normalized number of
comparisons, swaps, and number of Bytecode instructions with the contraction method
after noting that, conditioned on pivot values, partitioning costs are sufficiently concen-
trated; this was a joint work with Ralph Neininger and Markus Nebel [186].

Multiway Quicksort

Hoare anticipated almost all modifications of his basic algorithm that actually improve its
practical efficiency in his 1962 article on Quicksort [82]; but partitioning around more than
one pivot at the same time was not on his list. In fact until recently, only few researchers
studied multiway Quicksort.
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Sedgewick’s Dual-Pivot Quicksort. To my knowledge, Sedgewick gave the first ever im-
plementation of a multiway Quicksort in his Ph.D. thesis [162] in 1975. His “two-partition”
Quicksort (Program 5.1 on page 150) is a three-way Quicksort, splitting the input around
two pivots. Sedgewick proposed it as a method to efficiently deal with many equal keys,
generalizing from a fat-pivot method with one pivot. He analyzed and discarded it for
its excessive swap count. As we will discuss in this work, Sedgewick’s original dual-pivot
Quicksort needs more comparisons, more swaps, and also more scanned elements, i.e.,
memory bandwidth, than classic Quicksort.

Hennequin’s Generalized Quicksort. Over a decade later, Hennequin studied in detail
a generalized Quicksort with an arbitrary number of pivots chosen from a sample in his
doctoral thesis [77] finished in 1991. He focused on the analysis of comparisons and
left some implementation details of his framework unspecified. Hennequin’s partitioning
method conceptually operates on linked lists, which makes it hard to determine, e.g.,
sensible swap counts; some more details are given in Chapter 4.

His analysis results in slight savings for multiway Quicksort, but they are so small
that Hennequin comes to the following conclusion: “II apparait ainsi que I'utilisation de la
médiane apporte asymptotiquement un gain significatif sur les cofits moyens en particulier pour
les premiéres valeurs t = 1 ou t = 2. Le multipartitionnement semble par contre beaucoup moins
intéressant dans la pratique sauf si on peut réduire de facon significative la valeur de a(s) (par
exemple par hachage sur les neeuds). On note de plus que la constante K ¢ n'est pas monotone
ens ; lescas s = 3 ou s = 5 sont ainsi moins bons que les multipartitionnements avec s = 2
ou s = 4.” (Hennequin [77], p.54) (Using the median seems to bring, asymptotically,
a significant gain for the average costs, especially for the first values t = 1 or t = 2.
Multiway partitioning, on the other hand, seems much less interesting in practice unless
one can significantly reduce the value of a(s) [the leading-term coefficient of partitioning
costs] (for example by hashing nodes). One further notes that the constant K, is not
monotonic in s; the cases s = 3 and s = 5 are thus worse than multiway partitioning with
s =2 and s = 4, respectively.)

Apart from his French doctoral thesis, Hennequin never published his results on mul-
tiway Quicksort; his 1989 article [76] on the analysis of Quicksort considers the case s = 2
only.

Tan’s Iterative Binary Partitioning Quicksort. A second doctoral thesis, finished two years
after Hennequin’s, also covers the analysis of a multiway Quicksort variant: Tan [173]
considered the cost of iterative binary partitioning: Initially we choose s — 1 pivots, for s a
power of two, and then perform a binary partition of the array around the median of these
s — 1 pivots. Afterwards we partition the left segment using the first quartile of the s — 1
pivots and the right segment likewise around the third quartile, and so on, until we have s
segments after 1d(s) levels of partitioning.

With respect to the number of comparison, Tan’s algorithm is equivalent to Hen-
nequin’s generalized Quicksort, but unlike that, iterative binary partitioning clearly works

23



1

Introduction

in-place on an array. Tan reported on a small running time study where his multiway
Quicksort performed slightly better than classic Quicksort; it has to be noted, however,
that he did not use pivot sampling, which might have changed the picture. Tan focused
in his work on the distribution of the number of comparisons; we already discussed his
corresponding results in Section 1.7.7.

Tan published a journal article [174] in 1995 with results from his thesis, wherein he
considers the single-pivot case only—exactly as Hennequin did. This indicates that in the
mid 1990s, the algorithms community still saw multiway Quicksort more as a gimmicky
generalization, a training ground for (graduate) students to exercise and demonstrate their
skills on, rather than as a helpful optimization of practical use.

Dual-Pivot Quicksort in Java. It so happened that the extraordinarily successful revival
of dual-pivot Quicksort in practice remained unnoticed by the algorithms community for
years. Starting in the fall of 2008, Russian Java developer Vladimir Yaroslavskiy started
experimenting with Quicksort variants using two pivots in his free time at Sun Microsys-
tems. Over the course of one year, he refined his sorting program so as to perform well on
many types of inputs. With the help of experienced Java library developer Joshua Bloch
and expert for practical algorithms Jon Bentley, Yaroslavskiy developed a sorting method
that consistently outperformed the existing library implementation. In September 2009,
Yaroslavskiy announced to the Java mailing list that the Yaroslavskiy-Bentley-Bloch (YBB)
Quicksort was to be included in the Open]DK sources [94].

Shortcomings in Early Analyses of YBB Quicksort. While otherwise relying entirely on
running time experiments, Yaroslavskiy’s announcement [94] also contains a mathemati-
cal analysis of YBB Quicksort (without sampling); he also gave this analysis as part of an
article [191] that he posted on his personal website. Unfortunately, the presented analy-
sis is based on overly simplistic assumptions and so does not give the correct results.
Concerning the number of comparisons during partitioning, Yaroslavskiy assumed the
following: “for elements from left part (one comparison), center and right parts (2 comparisons)”
([191], p. 4); in other words, elements are always compared to the small pivot first. This is
actually not the case in YBB Quicksort [184], so they erroneously obtain the same number
of comparisons as for classic Quicksort.

In terms of swaps, Yaroslavskiy wrote about classic Quicksort: “We assume that average
number of swaps during one iteration is 1/2* (n—1). It means that in average one half of elements
is swapped only.” ([191], p.4) This is far too pessimistic; it is known that on average,
only every sixth comparison is followed by a swap; see, e.g., Knuth [103], p.121. So
the obtained result is roughly thrice the actual swap count. Similarly, the number of
swaps in one dual-pivot partitioning round is assumed to be %(n — 2), which is the swap
count for Sedgewick’s dual-pivot Quicksort; YBB Quicksort needs only about $n swaps
per partitioning step [184].
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Iliopoulos and Penman [92] published a paper on dual-pivot Quicksort concurrently to
my analysis of YBB Quicksort. They claim to analyze Sedgewick’s dual-pivot Quicksort,
but without commenting on the important difference, they actually count comparisons
under the same simplistic scheme that Yaroslavskiy [191] assumed: Small elements “only
need to be compared with one of the pivots. However if an element is greater than i then it needs
to be compared with the other pivot as well, to determine whether or not it is greater than j. We
refer to Sedgewick [4] for code for a version of this scheme.” (Illiopoulos and Penman [92], p. 3)
For the number of swaps they reproduce Sedgewick’s analysis of his dual-pivot Quicksort.
Later they refer to running time studies of the dual-pivot Quicksort in Java, which does
not fit their analysis, though.

Waterloo Four-Way Quicksort. Kushagra et al.,, a group of four researchers from Wa-
terloo, Canada, analyzed multiway Quicksort variants with respect to caches misses; we
discuss this part of their work in Section 1.7.11. They note that Tan’s iterative binary par-
titioning is suboptimal w.r.t. cache misses, and they propose an alternative partitioning
scheme that works in one pass over the array with a similar invariant as Sedgewick’s dual-
pivot Quicksort. It is worth noting that the number of comparisons coincides with both
Hennequin’s and Tan’s algorithms for three pivots, but the number of scanned elements is
substantially smaller.

Swaps in Tan’s and Waterloo Quicksort. In terms of swaps, Tan’s method is very efficient.
Its first pass partitions into two segments around a pivot chosen as median of three. This
entails = + O(1) swaps in expectation [159]. The second pass subdivides both ranges into
two segments each, using a pivot that is distributed randomly among its segment. The
second pass then needs another % + O(1) swaps. This makes an overall leading-term
coefficient of % ~ 0.338462, which compares quite favorably to the coefficient % of classic
Quicksort. The leading-term coefficient for Waterloo partitioning is % ~ 0.646154, almost
twice as much.

Note that there is a mistake in the analysis of Kushagra et al. [105]: They count only
“T_z swaps for the crossing-pointer part of their algorithm, since the “swaps made during
partitioning using single pivot was analysed by Sedgewick in 1977 [6] and their number is given
by “T’Z " ([105], p- 49). It apparently escaped their notice that the pivot here has a different
distribution, so this result is not applicable. As in the first pass of Tan’s method, the
pivot is effectively chosen as the median of the three pivots, and the correct number of

crossing-pointer swaps is thus “T_“.

Generic k-Pivot Quicksort of Aumiiller et al. Aumidiller studied a generic multiway Quick-
sort implementation under different cost models, both mathematically and experimentally,
in his doctoral thesis [7] finished in 2015. His work emerged independently of my thesis
and some parts are similar. We discuss the differences in detail in Section 4.6.4. Aumdiller’s
algorithmic framework is a subclass of generic one-pass partitioning considered herein.
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1.7.9 Equal Keys

By equal keys, we mean the possibility to have duplicate elements in the input. In appli-
cations, these might actually be keys for whole records of data, so that equal keys not
necessarily means equal records. When I started my thesis, surprisingly little was known
about Quicksort’s performance under input models with duplicates, and some of the re-
sults are not very well known; to the best of my knowledge, this section lists all relevant
works on Quicksort with equal keys. We give a brief summary of them here; Chapter 8
contains a more detailed discussion.

Burge [27] first analyzed binary search trees under a model with equal keys in 1976.
He inspired Sedgewick to his seminal article [160] on Quicksort with equal keys in 1977.
Sedgewick derived bounds on the performance of Quicksort programs in the exact-profile
model, where the multiplicities of all keys are fixed and all orderings are equally likely,
and the random-u-ary-word model, where keys are chosen i.i.d. uniformly from the universe
{1,...,u}. He analyzed three concrete implementations in detail; the winner of his com-
petition was the classic Quicksort that stops scanning on equal elements. This algorithm’s
performance on random permutations is good and it does degrade in the presence of
duplicates.

If we consider only the number of comparisons, we should actually be able to take
advantage of duplicates: there are less than n! different orderings, so from an information-
theoretic perspective, finding the right one is an easier problem than for n distinct elements.
In an article [178] from 1985, Wegner proposed several Quicksort variants intended to
do so. Unfortunately, he only partly analyzed his algorithms, and did not give detailed
implementations.

Only with the engineering article of Bentley and Mcllroy [20] eight years later has
a fat-pivot partitioning method found widespread use in practice. Sedgewick and Bent-
ley [163, 164] reported on the detailed analysis of this algorithm in the exact-profile model
in two talks given in 1999 and 2002; they apparently never published these results in an
article. They show that fat-pivot Quicksort is optimal in the sense that it achieves an
information-theoretic lower bound up to constant factors; the analysis only applies to a
randomly chosen single pivot. Sedgewick and Bentley uttered the conjecture that this con-
stant approaches one as k — oo when the pivot is chosen as median of k. The same duo
previously adapted fat-pivot Quicksort to obtain an efficient string sorting algorithm [21].

On the analytical side, Kemp [98] studied binary search trees from inputs with du-
plicates in much more detail. He considered BSTs built by successively inserting inputs
under the exact-profile model and derives expected values for typical measures of the
trees. Kemp transfers these results to the expected-profile model, where keys are chosen i.i.d.
from a given discrete distribution. Archibald and Clément [3] extend this work by deriving
variances.

Notably, all these results on equal keys concern single-pivot Quicksort without pivot
sampling, and the used methodology seems hard to generalize. In Chapter 8, we will
hence seek a new way to analyze Quicksort on inputs with duplicates, one that allows us
to handle multiway partitioning and pivot sampling.
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1.7.10 Bit Complexity and Symbol Comparisons

The efficiency of Quicksort in the comparison model is well understood, but how does
Quicksort compete with, e.g., Radixsort? This is essentially a question of models. To
determine the relative order of two elements, Radixsort uses several symbol comparisons
and effectively treats elements as strings over some alphabet with lexicographic order. For
Quicksort, we usually assume that key comparisons are atomic operations, and count each
of these comparisons as one unit of cost. When sorting strings, the cost of one comparisons
is no longer constant.

The word-RAM model offers a way to smoothly transition from uniform operation
costs to logarithmic operation costs: The usual arithmetic and bitwise operations on words
of w bits can be done in constant time, larger numbers have to be treated as strings of
words. By letting w be a function of n, the number of elements, we obtain different
classical models as special cases: a constant w corresponds to logarithmic operation costs,
and with a word size large enough to hold all occurring numbers, we obtain the uniform
cost model.

In other words, the comparison model corresponds to sorting single words; as we
assume m distinct elements, w must be at least 1d(n) in this case. For Radixsort, one
usually assumes a smaller, typically constant, word size w; how would Quicksort perform
with such word sizes?

Analysis of Fill and Janson. Fill and Janson first addressed this question in a conference
paper [58] in 2004; in 2012 they published a more comprehensive full version [59] of it. In
their setting, we draw input elements i.i.d. from a continuous distribution over the unit
interval, and interpret them as infinite bit-strings given by their binary representation.
Comparing two such elements proceeds bitwise from the beginning of the two strings,
and continues until the first differing bit is found. The cost measure is the number of bit
comparisons needed.

For a uniform distribution, Fill and Janson reported an expected value of asymptot-
ically nln(n)ld(n) bit comparisons, which means that a single key comparison inspects
1d(n)/2 = 1d(y/n) bits on average. For this case they proceeded in two steps: First they
derived the precise expectation by summing over all pairs (i,j) of indices the probability
that the ith and jth smallest elements are directly compared, times the expected number
of leading bits these numbers have in common. This is an extension of the well-known
technique for counting comparisons without solving recurrences; see, e.g., Section 7.4.2 of
Cormen et al. [35]. The exact result is

= A 1
22 et

They then applied Rice’s method [63] to the exact expression to obtain an asymptotic

expansion.
For non-uniform distributions whose density fulfills a certain condition, Fill and Jan-
son determined the expected number of bit comparisons. Here, they took a different route,
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which I will call prefix-wise analysis: For any fixed common prefix of bit strings, the number
of times the rightmost bit of this prefix is compared and found equal in two keys is the
overall number of key comparisons between two keys with this given prefix. To get the
total number of bit comparisons, Fill and Janson thus summed this, i.e., the expected num-
ber of key comparisons between keys with a given fixed prefix, over all possible prefixes.
To simplify analysis they used the poissonization trick here.

Poissonization. Instead of a fixed size n, we consider an input of random size N, where N
is Poisson distributed. The mean of the distribution is left as parameter and takes the role
of n. It is a well-known property of the Poisson distribution that a random variable that
has a binomial Bin(N, p) marginal distribution conditional on N, has, upon unconditioning,
again a Poisson distribution, with mean pN. For algorithms like Quicksort and data
structures like tries, where subproblem sizes are multinomially distributed, we thus get
Poisson-sized subproblems again.

The big advantage of the Poisson model is that after poissonization, subproblem sizes
are independent of each other. This is what simplifies analysis. To obtain results in the usual
model, with fixed n, there are rules for analytic depoissonization, see Section VIII.5.3 of
Analytic Combinatorics [64].

With Poisson-sized inputs, the number of key comparisons between elements from a given
interval only depends on the probability that elements are drawn from this interval; the
numbers are independent for all prefixes of the same length, so it suffices to determine
this number to sufficient precision. Fill and Janson omit the depoissonization step.

Seidel’s Trie-Argument. Seidel [167] rephrased the prefix-wise analysis of Fill and Janson
in terms of tries. He also assumes infinite strings as input. Although the strings are
infinite, there is only a finite number of common prefixes that is shared by at least two
input strings. Since subproblems with a single element entail no key comparisons, we
can restrict our attention to common prefixes shared by at least two elements, of which
we only have finitely many. These prefixes correspond exactly to the internal nodes of
the trie built from the input strings. By proving matching upper and lower bounds on
additive parameters of tries built from uniform memoryless sources, Seidel obtains the
leading term in the uniform case without sophisticated analytical machinery.

Seidel’s analysis extends to any strongly faithful sorting algorithm, i.e., to any algorithm
for which the expected number of key comparison between elements of a given subrange
of the input depends only the number of elements in this range. Subrange here means
the set of elements of ranks 1,1+ 1,...,j for some 1 < i < j < n. Quicksort’s faithfulness
follows from the well-known fact that it directly compares the elements of rank i and j with
probability jiﬁ, namely if and only if one of these two elements is the first element from
the corresponding subrange that is chosen as pivot. Since pivots are chosen uniformly at
random, this probability depends only on the difference j —1i, not on i or j itself.
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Unfaithful Sampling. The bit complexity of Quicksort with pivot sampling is still an open
question. Simple analyses in the style of Seidel [167] are not possible; single-pivot Quick-
sort with median-of-three is already not strongly faithful in the sense of Seidel: when sorting
all 6! permutations of {1, ..., 6}, we in total do 3432 key comparisons among keys {1, 2, 3,4},
but slightly more, namely 3456, comparisons among the keys {2, 3,4,5}. This means that
the average number of key comparisons in subranges of the input depends not only on
the size of the subrange, but also on its location in the input. Therefore Quicksort with
pivot sampling is not strongly faithful.

Note that the analysis of Clément et al. [31] sketched below does not rely on faithful-
ness, so there is still hope.

Dynamical Sources. Vallée et al. [175] extend the results of Fill and Janson [59] to a wider
class of input models, namely suitably tamed dynamical sources; the n input strings are
still drawn i.i.d., but the next symbols of a single string can depend on the already gener-
ated prefix almost arbitrarily. The analysis is given in more detail by Clément et al. [32],
an extended article for which the authors were joined by Nguyen Thi. They essentially
follow the analysis of Fill and Janson [58], but generalize it in two ways: for the algorithm
under consideration, they only need the expected number of key comparisons performed
between elements from specific ranges of the universe; for the source, some analytical tame-
ness property is required. They also include Insertionsort and Bubblesort in their analysis,
and the class of sources contains all memoryless and Markov sources.

For Quicksort, the leading term of the number of symbol comparisons is
%nln(n) ld(n), where H(S) is the (binary) entropy of the source S. Clément et al.
also extend a lower bound argument of Seidel [167] to find that any sorting algorithm that
does not make use of the fact that we are sorting strings needs at least ﬁ(s)nln(n) Id(n)
symbol comparisons in the asymptotic average to sort n i.i.d. strings emitted by the source
S. Exactly as for ordinary key comparisons on random permutations, and as in the case of
equal keys, Quicksort uses only 2In2 ~ 1.38629 times the number of symbol comparisons

required by any comparison-based sorting algorithm.

Memory Hierarchy

The growing influence of the memory hierarchy on the design of algorithms has been
known for a long time; since Aggarwal and Vitter [1] proposed the external-memory
model (EMM) at ICALP 1987, many researchers studied classic algorithmic problems in
the context of memory hierarchies. Meyer et al. [129] edited a monograph on the topic.

In the context of sorting, LaMarca conducted a systematic study in his Ph.D. the-
sis [108] in 1996; extended versions are published as joint work with Ladner [106, 107].
LaMarca proposed memory-tuned versions of most classical sorting algorithms and
demonstrates that they often run faster than versions classically optimized for CPU ef-
ficiency only. He also derived the number of cache miss counts of his algorithms in a
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simplified model; he argued that in the context of such analyses, one can assume a direct-
mapped cache without degrading prediction accuracy considerably.

For classic Quicksort, LaMarca and Ladner [107] reported approximately
2n ( n > 5n 3M

B "\M) st s
cache misses for a cache that can hold M keys and works with blocks of B keys. According
to their measurements, this was very accurate in predicting the number of cache misses in
their setup, but some parts of their analysis are heuristic.

Their optimizatio