
Vom Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
genehmigte Dissertation

Verification Techniques
for

TSO-Relaxed Programs

Autor: Georgel Ionut Calin

Datum der Disputation: October 14, 2016

Vorsitzender Prof. Dr. Arnd Poetzsch-He�ter
1. Berichterstatter Prof. Dr. Roland Meyer
2. Berichterstatter Prof. Dr. Klaus Schneider

Dekan des Fachbereichs Informatik:
Prof. Dr. Klaus Schneider

D 386

Abstract

Knowing the extent to which we rely on technology one may think that correct programs
are nowadays the norm. Unfortunately, this is far from the truth. Luckily, possible
reasons why program correctness is di�cult often come hand in hand with some solutions.
Consider concurrent program correctness under Sequential Consistency (SC). Under SC,
instructions of each program’s concurrent component are executed atomically and in
order. By using logic to represent correctness specifications, model checking provides a
successful solution to concurrent program verification under SC.

Alas, SC’s atomicity assumptions do not reflect the reality of hardware architectures.
Total Store Order (TSO) is a less common memory model implemented in SPARC and in
Intel x86 multiprocessors that relaxes the SC constraints. While the architecturally de-
atomized execution of stores under TSO speeds up program execution, it also complicates
program verification. To be precise, due to TSO’s unbounded store bu�ers, a program’s
semantics under TSO might be infinite. This, for example, turns reachability under SC
(a PSpace-complete task) into a non-primitive-recursive-complete problem under TSO.

This thesis develops verification techniques targeting TSO-relaxed programs. To be
precise, we present under- and over-approximating heuristics for checking reachability in
TSO-relaxed programs as well as state-reducing methods for speeding up such heuristics.

In a first contribution, we propose an algorithm to check reachability of TSO-relaxed
programs lazily. The under-approximating refinement algorithm uses auxiliary variables
to simulate TSO’s bu�ers along instruction sequences suggested by an oracle. The oracle’s
deciding characteristic is that if it returns the empty sequence then the program’s SC-
and TSO-reachable states are the same.

Secondly, we propose several approaches to over-approximate TSO bu�ers. Combined
in a refinement algorithm, these approaches can be used to determine safety with respect
to TSO reachability for a large class of TSO-relaxed programs. On the more technical
side, we prove that checking reachability is decidable when TSO bu�ers are approximated
by multisets with tracked per address last-added-values.

Finally, we analyze how the explored state space can be reduced when checking TSO
and SC reachability. Intuitively, through the viewpoint of Shasha-and-Snir-like traces,
we exploit the structure of program instructions to explain several state-space reducing
methods including dynamic and cartesian partial order reduction.

iii

Acknowledgments

I am, first and foremost, indebted to Prof. Dr. Roland Meyer for his continuous guidance
throughout the duration of my PhD. For his insights into the various topics that together
encompass concurrency theory — and a part of which are included in this thesis — as well
as for his leading by example in terms of dedication, enthusiasm, exigency, and pedagogy,
I express to him, my supervisor, my deepest gratitude.

I sincerely thank Prof. Dr. Klaus Schneider for accepting to review this manuscript
and for his comments on it. Backtracking chronologically, I am thankful to the handful
of friends who read the draft of the thesis and helped with their valuable feedback.

I was very fortunate to interact with and to learn from a small yet select circle of
co-authors: Prof. Dr. Ahmed Bouajjani, Dr.-Ing. Egor Derevenetc, Dr. Zhenyue Long,
Prof. Dr. Rupak Majumdar, and Prof. Dr. Roland Meyer. I am in particular fond to
recall many fascinating discussions with Ahmed, Egor, and Roland during our reciprocal
visits in Paris and in Kaiserslautern. Dear colleagues, it was a pleasure to have worked
with and to have got to know you all !

I am furthermore grateful to have had such wonderful colleagues and friends during
my PhD time in Kaiserslautern. Dear Dan, Daniel, Egor, Emanuele, Florian, Georg,
Prof. Madlener, Peter, Reiner, Sebastian, Sebastian, and — foremost — dear Roland,
you have all been good friends many a time; I shall never forget it !

Last and without a doubt first in my heart, I am grateful for the continued support
and understanding of my intended better half, my parents, and my sisters. Thank you !

Kaiserslautern, January 31, 2016
Georgel Ionuţ Călin

v

Contents

1 Introduction 1
1.1 Contribution . 5
1.2 Related Work . 8
1.3 Thesis Structure . 9

2 Program Verification 11
2.1 Concurrent Programs . 12
2.2 Model Checking . 19

2.2.1 LTL and Safety Specifications 20
2.2.2 Partial Order Reduction for LTL≠X 25

2.3 Relaxed Memory Models . 33
2.3.1 SC and TSO Semantics 35
2.3.2 Unreachability as Safety Specification 38
2.3.3 Robustness as Safety Specification 40

3 Heuristics for TSO Reachability 43
3.1 Lazy TSO Reachability . 44

3.1.1 Soundness and Completeness 47
3.1.2 A Robustness-based Oracle 51

3.2 Over-approximating Bu�er Abstractions 52
3.2.1 Set Bu�er Abstractions 53
3.2.2 Multiset Bu�er Abstractions 57
3.2.3 Partial Coherence Abstractions 59

4 Partial Order Reduction 63
4.1 The Persistent Set Perspective 65
4.2 Traces for Partial Order Reduction 68

4.2.1 Soundness and Completeness 72
4.3 POR Techniques explained by Traces 74

4.3.1 Dynamic Partial Order Reduction 77
4.3.2 Cartesian Partial Order Reduction 77

vii

viii CONTENTS

5 Experimental Evaluation 83
5.1 Evaluation for Lazy TSO Reachability 84

5.1.1 Examples . 84
5.1.2 Evaluation . 85
5.1.3 Discussion . 88

5.2 Evaluation for Exploration Techniques 89
5.2.1 BFS and DFS Exploration for SC reachability 89
5.2.2 POR Exploration for SC reachability 91

6 Conclusion 95
6.1 Summary . 95
6.2 Future Work . 96

Bibliography 97

Appendices 107

A Detailed Proofs of Lemmas 6 and 11 109

B Amset(P) Reachability is Decidable 121

C A More Concise TSO Semantics 129

List of Acronyms

BFS Breadth-First Search

DFS Depth-First Search

FIFO First In, First Out

LTL Linear Temporal Logic

POR Partial Order Reduction

SC Sequential Consistency

SMT Satisfiability Modulo Theory

SPARC Scalable Parallel Architecture

TSO Total Store Order

WQO Well-quasi-ordering

WSTS Well-structured Transition System

ix

List of Algorithms

2.1 Naive DFS invariant checker 23
2.2 Naive DFS invariant checker with POR 29
2.3 Explicit-state (DFS) M reachability checker 38
2.4 Explicit-state (BFS) M reachability checker 39
3.1 Lazy TSO reachability checker 45
3.2 Combining abstractions for safety checking 56
4.1 Explicit-state trace-based M reachability checker 70
4.2 Refined explicit-state trace-based M reachability checker . . . 75
4.3 NextEvents using the local-events-first heuristics 76
4.4 Stateless dynamic POR under SC 79

xi

List of Figures

1.1 Dekker’s solution to critical-section-exclusion 2
1.2 Intuitive view of TSO memory 4
1.3 Approximating TSO behavior 6
1.4 Intuitive view of a multiset-approximating bu�er 7

2.1 Syntax of the IMP programming language 12
2.2 IMP implementation of a simplified Dekker algorithm 13
2.3 IMP implementation of the Dekker algorithm 14
2.4 Graph process translation rules 15
2.5 Graph processes for the simplified Dekker algorithm 16
2.6 Graph process for the first Dekker algorithm process 16
2.7 Transition system semantics for the simplified Dekker algorithm 17
2.8 Transition system semantics for di�erent atomicity assumptions 18
2.9 Transition system underlying the simplified Dekker algorithm 21
2.10 Typical model checker for TS ✏ Ï 25
2.11 Transition semantics of an IMP program that does not scale 26
2.12 Permuting a with independent actions b1, b2, 27
2.13 Ample set constraints . 30
2.14 IMP implementation of a turn-based mutex 31
2.15 Graph processes for the turn-based mutex 31
2.16 Transition semantics for the turn-based mutex 32
2.17 Assembly simplified Dekker algorithm 34
2.18 Assembly thread for the first Dekker algorithm process . . . 35
2.19 Simplistic transition semantics under TSO 36
2.20 A thread’s view of TSO memory 37
2.21 The happens-before relation æhb (·wit) 41

3.1 Approximations wrt TSO reachability 44
3.2 Extension of the Assembly simplified Dekker algorithm . . . 47
3.3 A safe program for which Algorithm 3.1 never terminates . . 51
3.4 Shape of a non-robustness witness 51

xiii

xiv LIST OF FIGURES

3.5 Shape of a set-approximating store bu�er 53
3.6 Set-abstracted transition semantics under TSO 54
3.7 A program that the set abstraction cannot prove safe 55
3.8 Multiset-abstracted transition semantics under TSO 58
3.9 Shape of a k-bounded set-approximating store bu�er 60
3.10 Partial coherence transition semantics under TSO 60

4.1 Trace Tr(‡) for the longest strict prefix of computation ·wit . 68
4.2 An Assembly program to showcase NextEventsLOCAL-FIRST 77
4.3 State-space of the Figure 4.2 program under M 78
4.4 Representation of Figure 4.2 program traces 80
4.5 An Assembly program to showcase cartesian POR 81
4.6 Representation of Figure 4.5 program traces 81

5.1 Trencher benchmarking results 85
5.2 The i-th thread of Lamport’s fast mutex 85
5.3 The Dekker algorithm modified to stress branching 86
5.4 The Dekker algorithm modified to stress unwinding 86
5.5 Side-by-side runtimes for the non-robust tests in Figure 5.1 . 87
5.6 Runtimes for Lamport’s fast mutex 87
5.7 Trencher vs Memorax runtimes for Figure 5.3 programs . 88
5.8 Trencher vs CBMC runtimes for Figure 5.4 programs . . . 88
5.9 Trencher benchmarking results (DFS vs BFS exploration) . 90
5.10 A non-robust program for which DFS analysis segfaults . . . 90
5.11 Trencher (DFS & BFS) results with further reduction . . . 91
5.12 The i-th thread of the Indexer program 92
5.13 Logscales of runtimes and explored states for the Indexer . . 92
5.14 Trencher local-events-first and dynamic POR comparison . 93

C.1 Detailed transition semantics under TSO 130

Chapter1
Introduction

Dekker’s solution dates back to 1959 and [...] has been considered a “curiosity”,
until these issues [...] became relevant for me again and Dekker’s solution acted
as the basis of my next attempts.

Edsger W. Dijkstra
About the sequentiality of process descriptions (EWD-35)

Half a century after Dijkstra wrote his 35th manuscript, Dekker’s mutual
exclusion solution is no longer a curiosity. In fact, many protocols can
nowadays ensure mutual exclusion in the classical sense: no concurrently
executing sequential processes simultaneously reach their critical sections.
Nonetheless, it is Dijkstra’s seminal work [Dij65] that has since opened the
door for an extensive amount of results in the area of concurrent algorithms.

Taking a stride in time, 5 years after Dijkstra received the Turing award
in 1972, Pnueli built on earlier work dating back to Prior’s tense logic to
unify reasoning about the verification of both sequential and concurrent
programs using temporal logic specifications [Pnu77]. Two decades later, in
1996, Pnueli also earned the Turing award for his “seminal work introducing
temporal logic into computing science”.

Shortly afterward, Lamport set the standard for memory consistency
models by formalizing sequential consistency [Lam79]. He too received the
Turing award in 2013 for his “fundamental contributions to the theory and
practice of distributed and concurrent systems”.

Under these auspices, Queille and Sifakis [QS82] and, independently,
Clarke and Emerson [CE81] proposed the first fully automated algorithms
for temporal-logic model checking. The latter three scientists went on to
co-receive the Turing award in 2007 for “their roles in developing model
checking into a highly e�ective verification technology”.

Fast-forwarding to more recent times — of yet-unknown future Turing
awardees — we find that Dijkstra’s predicament has once again resurfaced.

1

2 Chapter 1. Introduction

Indeed, given the ubiquitous nature of concurrency many “issues” have both
grown more complex and multiplied. Meanwhile, unlike half a century ago,
Dekker’s solution1 no longer serves as “the basis of next attempts”. Instead,
it became a way to showcase di�erences between the — now classical —
sequential consistency and other widely-deployed system architectures. To
better understand where we stand, consider the original Dekker algorithm
in Figure 1.1 — adapted from Dijkstra’s EWD-35 manuscript.

All variables used by machines A and B in Figure 1.1 are Boolean — with
the convention that turn œ {A, B} and flagA, f lagB œ {true, false}. Nodes
are assumed to be executed atomically. An edge annotated by “yes” is taken
out of a diagram node if the node query is positively answered. Conversely,
an edge annotated by “no” in the diagram is taken if the corresponding
node query is negatively answered. Edges with no labels are unequivocally
followed. The loop involving the top two nodes in both A and B set the
contention flags to false, thus yielding to the other machine. The middle
nodes lock the simultaneous access to the bottom nodes that contain the
critical sections and that alternate turn’s values.

turn = A?

flagA := false

flagA := true
flagB = true?

turn := B; CSA

flagA := false

Machine A

noyes

yes

no

turn = B?

flagB := false

flagB := true
flagA = true?

turn := A; CSB

flagB := false

Machine B

no yes

yes

no

yield
contention

if other’s turn

lock
simultaneous

access

alternate
turn

Figure 1.1: Dekker’s solution to non-blocking critical-section-exclusion for, as
named by Dijkstra, machines A and B. CSA and CSB denote the critical sections
of A and B and colored annotations indicate the three phases of the algorithm.

As pointed out by Dijkstra, the above Dekker algorithm implements non-
blocking critical-section-exclusion. That is, concurrently running A and B

does neither block a machine’s access to its critical sections nor does it
1Dekker’s solution will be called the Dekker algorithm throughout the manuscript.

3

witness both machines’ simultaneous access to their critical section nodes.
Intuitively, if both A and B were to reach their middle/lock nodes at

the same time then they would next move to their top/yield loop to reassess
their flag contention. This means that when both machines simultaneously
reach their lock nodes neither A nor B moves to the critical section nodes.
The machines might, however, reach their critical section nodes by entering
them one at a time. Assume, that critical-section-exclusion fails this way.
Moreover, wlog due to the algorithm symmetry, assume that A moves to its
critical section node first and (without leaving) it is followed by B’s move
to its critical section node. Then

(1) B is still in its top/yield loop,

(2) flagA = true holds since A could enter its critical section node, and

(3) if B were to leave its top/yield loop then turn := B must be — or
have been — executed in A.

The only way for B to get closer to its critical section node is if (3) occurs. In
that case, however, flagA = true blocks B from entering its critical section
node — since by assumption A cannot set flagA := false and, thus, move
out of its critical section node. This proves incorrect the assumption that
A and B move one at a time to their critical section nodes and, hence, it
shows that critical-section-exclusion holds.

To see that the Dekker algorithm does not block critical section access
(in the sense meant by Dijkstra), notice that

(1) A and B cannot be stuck together in their top/yield loop, i.e., the
machine whose turn it is can move to its middle/lock node, and

(2) if A and B are simultaneously in their middle/lock nodes then, after
they both move to their top/yield loops, one of the machines will stay
in its yield loop waiting for the other whose turn it is to reach the
critical section node (and, thus, alternate the turn).

Covertly, the critical-section-exclusive behavior of the Dekker algorithm
is governed by Lamport’s Sequential Consistency (SC) assumption: every
concurrent execution is the same as executing operations of the involved
machines in some sequential interleaved order and, restrictively, executing
operations of each machine adheres to the machine’s control flow order.

Nowadays however, the well-behaved SC assumption grows further apart
from the reality of microprocessors. For example, SPARC and Intel x86
multiprocessors implement the Total Store Order (TSO) memory model that
deliberately bu�ers write accesses between each concurrent machine and the
system’s shared memory. These bu�ered accesses are later flushed into the
shared memory, as depicted (for one machine) in Figure 1.2.

4 Chapter 1. Introduction

(x, v)
Machine bu�er
. . .

bu�er≠≠≠æ . . .

flush≠≠≠æ

Shared Memory

0 x

Figure 1.2: Intuitive view of TSO memory for a machine. An assignment x := v

is enqueued as a pair (x, v) in the bu�er of the machine that executes it and is later
flushed into the shared memory. Variables used in conditionals take their value
from the same machine’s most recently bu�ered variable-and-value pair (for the
same variable) or from memory if no such pair exists.

On one hand, de-atomizing write accesses under TSO speeds up overall
concurrent execution. On the other hand, concurrent behavior under TSO
is more di�cult to grasp and to reason about. For example, since executions
under TSO of concurrent machines are generally a strict superset of their
executions under SC, critical-section-exclusion does not always hold for the
Dekker algorithm on a TSO-governed microprocessor. To see this, consider
the following two-step TSO execution of the machines in Figure 1.1 starting
from their top yield nodes with turn = A and flagA = flagB = true:

(1) machine A places (flagA, true) in its local bu�er and proceeds to its
critical section node;

(2) machine B places (flagB, true) in its local bu�er and since machine
A’s changes have not been flushed to the shared memory it can also
move to its critical section node.

Hence, we can conclude that — when executed under TSO — the Dekker
algorithm is not critical-section-exclusive. In fact, for the Dekker algorithm,
critical-section-exclusion does not hold regardless of the execution’s initial
concurrent state or assumptions on flagA, flagB and turn. This leads to
the following architecture-agnostic question:

How is critical-section-exclusion checked for concurrent machines?

To address such questions, automated program verification both has been
and continues to be a promising solution. We use model checking [CGP99;
BK08], a well known approach to verification, as the starting point to our
study. Roughly speaking, model checking asks whether a finite-state system
model M satisfies some (given) temporal logic correctness specification Ï. In
its classical sense, model checking comes with a serious limitation, namely,
it targets finite-state models. By contrast, many of the systems that are
of interest today are inherently infinite-state. This, in particular, holds for
most programs executed under TSO. To be precise, if one were to verify
programs executed on specific SPARC or Intel x86 multiprocessors then the
chip’s exact bu�er size would be of consequence and the program’s execution

1.1. Contribution 5

model would be finite. However, since the TSO bu�er paradigm is the same
for di�erent chip variants, it is customary to assume bu�ers unbounded. This
latter assumption produces the blow-up from a finite model for the program
state-space under SC to an infinite model for the program state-space under
TSO: all that is needed is for some memory writes to be performed within
a loop. Nevertheless, this also makes possible using and advancing recent
results in the analysis of infinite-state systems.

To conclude, the earlier question gives way to the more specific question
that we target in our study:

How does one verify safety of programs under TSO?
We next outline the scientific contribution of the thesis. We then briefly

survey related work. Specific connections to closely-related work are high-
lighted, in situ, throughout the thesis. To sum up the introduction, we end
it by delineating the thesis structure.

1.1 Contribution
In this thesis we develop algorithms that verify TSO-relaxed programs.
By programs we now mean collections of machines à la Dijkstra. In the
manuscript the machines are substituted by, for most means and purposes
synonymous, collections of processes or of threads. As already mentioned,
the core feature of the TSO memory model is that write accesses are bu�ered
between a program’s concurrent machines and the system’s shared memory.
While the TSO de-atomizing of memory writes speeds up program execution,
it also makes program behavior more di�cult to understand and analyse.
Take for instance the reachability problem for concurrent programs. It is
known that for programs under SC the reachability problem is only PSpace-
complete [Koz77]. Reachability under TSO, on the other hand, was recently
proved to be non-primitive-recursive-complete decidable [Ati+10]. The main
verification techniques that we develop are actually approximating heuristics
targeting this di�cult yet decidable problem.

Figure 1.3 depicts the idea behind using approximations to check system
correctness under TSO. Roughly speaking, program correctness can often
be encoded as a TSO unreachability problem using the specification of the
system’s bad behaviors. We have already seen a bad behaviors example: the
bad behaviors for the Dekker algorithm are those system runs that witness
non-exclusive critical section execution.

To address under-approximating TSO reachability, we propose the lazy
TSO reachability algorithm from [Bou+15]. Intuitively, write bu�ering is
introduced — guided by oracle queries — only where needed to refute the
specification instead of everywhere in the program. Concretely, the ora-
cle returns sequences of operations in one of the program’s machines and
satisfies two natural requirements:

6 Chapter 1. Introduction

TSO behavior

an under-approximation

an over-approximation

bad behaviors

Figure 1.3: Approximating TSO behavior for analyzing system correctness. The
system is incorrect if an under-approximation contains a bad behavior. The system
is correct if an over-approximation contains no bad behaviors. In the picture, it
cannot be concluded that the system is incorrect with respect to the given bad
behaviors using either of the two depicted approximations.

(1) if the oracle returns the empty sequence then the program’s SC- and
TSO-reachable states are the same;

(2) otherwise, the oracle returns an operation sequence that starts with a
write access (as in, e.g., shared variable assignments) and that ends
with a read access (as in, e.g., conditional checks).

If the oracle outputs the empty sequence then — according to (1) — the
easier SC reachability task produces the same answer as that of checking
TSO reachability. If, on the other hand, the oracle outputs some non-empty
sequence ‡ then the TSO delays that ‡ may produce by bu�ering its write
accesses can be encoded using finitely many auxiliary (and machine local)
variables. The under-approximating heuristics can then a�rmatively answer
TSO reachability by checking SC reachability in the system that includes
the encoded delays (the program refined by ‡) or it repeats the refinement.

Consider the earlier (Figure 1.1) Dekker algorithm. As discussed, we
know that critical-section-exclusion fails under TSO. Assume that the oracle
returns the sequence ‡ = “flagA := false”;“flagA := true”;“flagB = true?”
of operations. The bottom nodes in A (i.e., A without yield contention)
are modified to additionally encode the TSO delays of flagA := false and
flagA := true past flagB = true? using auxiliary variables aux1 and aux2:

flagA := true
flagB = true?

turn := B; CSA

aux1 := false

aux2 := true
flagB = true?

flagA := aux1

flagA := aux2

flagA := aux1 no no

1.1. Contribution 7

The added (red colored) nodes have the e�ect of delaying flagA := false
and flagA := true as TSO bu�ers would. Using this modified variant of the
Dekker algorithm one can check that a program state where both critical
sections are simultaneously accessed is reachable under SC. E.g., A could
access its critical section, delay its writes to flagA using the added behavior
until (inclusively) failing the flagB = true? check, B would then be able to
go to its critical section and, finally, A would assign the auxiliary variable
values (corresponding to flushing TSO bu�ers) and also access its critical
section. This can be seen as an alternative proof to the Dekker algorithm’s
lack of critical-section-exclusion under TSO.

To address the complementary problem of proving a system correct with
respect to TSO unreachability, we propose a few abstractions of TSO bu�ers
as well as a refinement algorithm that exploits them. More precisely, inspired
by abstractions from [KVY11], we develop methods for over-approximating
a program’s TSO behaviors to soundly establish correctness. Furthermore,
for over-approximations using multiset-abstracted bu�ers with per-variable
last-added-value information — as depicted in Figure 1.4 — we find that
reachability is decidable.

(x, 2)bu�er≠≠≠æ
last(x, M)

Machine M ’s multiset-approximating bu�er

(x, 1)
(x, 1)

(x, 2)

(y, 0)

flush≠≠≠æ

Figure 1.4: Intuitive view of a multiset-approximating bu�er. Bu�ering a new
pair (x, 3) would replace (x, 2) as variable x’s last added value last(x, M) by pushing
it into the depicted “bag”. Flushing the pair (x, 2) from x’s last added value position
is possible i� no other (x, ú) pair — for the same variable — is in the multiset bu�er.

Finally, we show that Partial Order Reduction (POR) approaches, as
introduced to address the model checking state-explosion, can be generalized
to account for TSO memory. Concretely, we show that both the persistent
set approach [God96] and the partial-order semantics of runs [Maz86] benefit
from the independence of operations executed by di�erent machines.

Intuitively, (under TSO) atomic components of conditional checks and
of variable assignments consist of

• a machine-local operation whose precise interleaving with operations
of the other machines is inconsequential to program correctness, and

• a non-local operation whose interleaving with non-local operations of
the other machines might alter safe/unsafe program behavior.

Using this insight and the trace-based POR perspective [Maz86; SS88]
we survey and adapt several reduction techniques including dynamic and
cartesian partial order reduction.

8 Chapter 1. Introduction

1.2 Related Work
There are various surveys that discuss memory consistency models, viz.
Adve and Gharachorloo [AG96], Higham et al. [HKV97], Luchangco [Luc01],
Steinke and Nutt [SN04], Arvind and Maessen [AM06], Alglave [Alg10], as
well as Alglave et al. [AMT14]. Owing to its longevity and simplicity, the
TSO memory model received a lot of attention. Its origins can be tracked
to the Scalable Parallel Architecture (SPARC) [WG94] developed at Sun
Microsystems starting in the late 1980s. SPARC processors were the first
widely-deployed multiprocessors to allow TSO-relaxed program executions
and were, more recently, followed by Intel x86 processors [Int06]. Out of
the available TSO models — see, e.g., [HKV97; BM08; BP09] — we chose
to use the “Intel x86 programmer’s memory model” version introduced by
Owens et al. [OSS09a; Sew+10].

Coincidentally, there is continuous interest in the research community for
advancing verification to checking real — typically C [KR88] — programs.
This is a tremendous open-ended task already for concurrent programs in an
SC environment. In the context of TSO, the task becomes even more com-
plicated and, sometimes, verification is still intertwined with validation: see,
e.g., recent work on linearizability specifications [Bur+12; GMY12; DSD14].
Fortunately, for other correctness criteria like (non-)reachability [Ati+10],
robustness [BMM11], persistence [AAN15], or data-race-freedom [Adv+91]
specification validation is relatively seamless.

Complexity-wise, Alur et al. [AMP96] showed it is undecidable whether a
finite-state memory model implements an SC specification. Soon afterward,
Atig et al. [Ati+10] proved that checking reachability under TSO is decidable
— non-primitive-recursive-complete to be specific — and also generalized
the result to slightly more relaxed memory models [Ati+12]. By contrast,
for robustness the situation is more optimistic: both in the case of TSO
as well as for the other memory models considered so far, robustness is
PSpace-complete [BMM11; Cal+13; DM14; Der15]. Furthermore, in the
context of testing, checking that a given individual computation satisfies
a certain memory consistency model was showed to be, typically, between
P and NP-complete [GK97; Fur+14].

Most of the correctness criteria mentioned as well as some of the above
complexity results are accompanied by verification algorithms. We continue
by pointing out closely-related results for algorithmic development towards
relaxed-memory program verification.

Hangal et al. [Han+04], Roy et al. [Roy+06], and Baswana et al. [BMP08]
implemented algorithms to check that a computation satisfies constraints of
a specific memory model while Yang et al. [Yan+04] gave a non-operational
(i.e. axiomatic) yet executable specification framework that reduces memory
model conformance to either Prolog or SAT constraint solving.

Park and Dill [PD95] and Huyhn and Roychoudhury [HR06] proposed

1.3. Thesis Structure 9

using explicit state model checking with operational finite state models to
prove program safety. This was furthered by Burkhardt et al. [BAM07] who
reduced consistency checking to SAT solving and, ultimately, by Burkhardt
and Musuvathi [BM08] as well as Burnim et al. [BSS11] who implemented
monitoring algorithms.

Several tools target state reachability under relaxed memory models.
Memorax [Abd+12b] implements a sound and complete decision proce-
dure that combines an automata-based abstraction of the set of feasible
program computations with backward reachability analysis. The tool also
implements a counterexample-guided fence insertion algorithm that com-
putes fence sets forcing a program’s adherence to a given safety specifi-
cation. A later version of the tool [Abd+12a] uses predicate abstraction
to allow for infinite-state program analysis. Remmex [LW11; LW13] im-
plements acceleration to perform forward reachability analysis by exactly
representing store bu�er contents as finite automata. The bounded model
checker CBMC [CKL04] encodes memory model constraints as SAT formu-
las [AKT13]. Due to its under-approximate nature, CBMC is sound but not
complete. Alternative approaches for TSO reachability bound the number
of allowed context switches [ABP11] or the size of store bu�ers [Alg+13]
as well as use a scheduler to explore the reduced state-space of bounded
programs [Abd+15].

Algorithms have additionally been implemented to check triangular-race
freedom [Owe10] and robustness [BDM13], as well as persistence [AAN15]
and state-based robustness [Liu+12]. All these approaches yield methods for
automatic inference of memory fences, as do the robustness-approximating
tools in [BM08; AM11; BSS11; Alg+14]. Other methods for fence inference
include those in [KVY10; KVY11] and may cause unnecessary over-fencing.
Finally, existing compiler optimization approaches either add memory fences
to enforce sequential consistency [Sur+05] or remove redundant memory
fences to improve performance [VZ11].

1.3 Thesis Structure

In Chapter 2 we survey related and necessary preliminaries. We start by
summarizing a handful of model checking ideas through the introduction of
Linear Temporal Logic and Partial Order Reduction. We then explain how
the SC and TSO memory models determine di�erent program semantics and
we highlight the reachability and robustness correctness specifications. This
sets the stage for our theoretical contributions in Chapters 3 and 4.

In Chapter 3 we introduce under- and over-approximating heuristics for
checking reachability of TSO-relaxed programs.

First, in Section 3.1, we describe how to check TSO reachability lazily:
using queries to an oracle, store bu�ering is introduced only where needed

10 Chapter 1. Introduction

to refute the specification. On the more technical side, in Section 3.1.1 we
prove that lazy TSO reachability yields a semi-decision procedure, i.e., an
algorithm that always returns correct answers and that is guaranteed to
terminate whenever some goal state is TSO-reachable. Finally, to show
that e�cient oracles exist, in Section 3.1.2 we explain how the robustness
correctness specification can be used to implement a robustness-based oracle.

For over-approximating analysis, in Section 3.2.1 we first describe how
bu�ers can be abstracted by sets. Subsequently, we generalize the ba-
sic abstraction to two other set-based abstractions and come up with an
abstraction refinement algorithm for checking safety that combines them.
In the more technical side of this contribution we prove that reachability
is decidable for a multiset bu�er abstraction with per-address last-added-
value information. To be precise, we prove decidability by showing that the
multiset-abstract semantics is a well-structured transition system with ef-
fectively computable minimal predecessors and a decidable well-quasi order.
For clarity the details of the proof are deferred to Appendix B.

In Chapter 4, to speed up the search both in the concrete as well as in
the approximating semantics we revise state-space reduction techniques for
TSO-relaxed programs. We first recall, in Section 4.1, the classical persistent
set approach [God96] in the context of TSO-relaxed programs. Afterward,
in Section 4.2, we use Shasha-and-Snir-like computation traces [SS88] to
describe an equivalent understanding of POR under TSO while focusing
on the amount of achievable reduction. Finally, through the introduced
viewpoint of computation traces, in Section 4.3 we recall two well known
exploration techniques for partial order reduction.

Chapter 5 is dedicated to experimental evaluation. Finally, in Chapter 6
we summarize the thesis and discuss some ideas for future work. The picture
below depicts dependencies (directed edges) between Chapters 2, 3 and 4.

2

2.1

2.3

2.2

2.3.1

2.2.1

2.3.3

2.3.2

2.2.2

3

3.2

3.1 3.1.2

3.1.13.2.1 3.2.2

3.2.3

4.1

4.2

4

4.3 4.3.1

4.3.2

Chapter2
Program Verification

Contents
2.1 Concurrent Programs 12
2.2 Model Checking . 19

2.2.1 LTL and Safety Specifications 20
2.2.2 Partial Order Reduction for LTL≠X 25

2.3 Relaxed Memory Models 33
2.3.1 SC and TSO Semantics 35
2.3.2 Unreachability as Safety Specification 38
2.3.3 Robustness as Safety Specification 40

We are interested in verifying programs that implement reactive systems.
Known examples include safety-critical embedded systems and operating
systems running on servers, systems that are typically non-terminating and
interact continuously with their environment. Therefore, their appropriate
modeling and meaningful analysis is, more often than not, required.

The importance of modeling is brought forward already in Section 2.1
by introducing a typical imperative language for concurrent programs. We
highlight complications that may arise for this idealized program language
due to di�erent assumptions concerning the atomicity of instructions. Based
on this idealized understanding of programs we then present a few core ideas
behind model checking in Section 2.2. Concretely, we describe the standard
Linear Temporal Logic (LTL) safety specifications as well as partial order
reduction for LTL without the next operator.

Taking a step in the direction of a more concrete model, in Section 2.3 we
explain how checking safety generalizes to the infinite-state TSO program
semantics. In this context we describe two safety specifications for programs
running under TSO: unreachability and robustness.

11

12 Chapter 2. Program Verification

ÈprogÍ ::= program ÈnameÍ variables ÈvMapÍ ÈprocListÍ
ÈvMapÍ ::= a description of the initial shared variable values

ÈprocListÍ ::= Á | ÈprocÍ ; ÈprocListÍ
ÈprocÍ ::= process ÈnameÍ begin ÈstatementsÍ end

ÈstatementsÍ ::= Á | ÈstatementÍ ; ÈstatementsÍ
ÈstatementÍ ::= ÈlabelÍ : ÈbasicÍ

ÈbasicÍ ::= skip

| x := ÈexprÍ — for some x œ V

| if ÈexprÍ then ÈstatementsÍ else ÈstatementsÍ fi

| while ÈexprÍ do ÈstatementsÍ od

ÈexprÍ ::= x œ V | v œ D

| funÈexprÍ for some fun œ D æ D

| fbinÈexprÍ ÈexprÍ for some fbin œ D ◊ D æ D

Figure 2.1: Syntax of the IMP programming language. We assume that ÈnameÍ
and ÈlabelÍ strings uniquely identify process names and labels. For simplicity we
don’t go into the details of (arithmetic and logical) functions fun and fbin.

2.1 Concurrent Programs

We are concerned with asynchronous concurrent programs and follow the
modeling approaches of [MP95; CGP99]. Therefore, we assume a program
consists of concurrent processes described through sequential statements.
Statements operate on a program’s finite set of shared variables V that
range over a finite domain D ´ {0, 1}. The statements of disjoint processes
are delimited, through labels, by unique entry and exit points.

Figure 2.1 describes our idealized programming language that we call,
henceforth, IMP. IMP programs use standard arithmetic and logical func-
tions as well as the notation “if ÈexprÍ then ÈstatementsÍ fi” instead of
the lengthier “if ÈexprÍ then ÈstatementsÍ else skip; fi”.

To illustrate the IMP language and subsequent modeling formalisms we
primarily use mutual exclusion algorithms, colloquially called mutexes. The
formal structure of a mutex process is the following [AKH03]:

while true do

// non-critical section

// entry section

// critical section

// exit section

od

2.1. Concurrent Programs 13

program Simplified variables flag0 = flag1 = 0
process P0 begin

1: while true do

// non-critical section

2: flag0 := 1; // P0 wants critical section access

3: while (flag1 = 1) do // busy wait for turn

4: skip;

od;

5: skip; // critical section

6: flag0 := 0; // retract P0’s contention

od

end

process P1 begin

7: while true do

// non-critical section

8: flag1 := 1; // P1 wants critical section access

9: while (flag0 = 1) do // busy wait for turn

10: skip;

od;

11: skip; // critical section

12: flag1 := 0; // retract P1’s contention

od

end

Figure 2.2: IMP implementation of a simplified Dekker algorithm. In their entry
(red-colored) sections both processes signal they want to access their critical section
by setting their flags to 1. This is undone in their exit (blue-colored) sections.

Intuitively, devising a mutual exclusion algorithm requires designing its
entry and exit sections such that both critical-section-exclusion as well as
starvation-freedom hold. While critical-section-exclusion asks that at most
one process is in its critical section at a time, starvation-freedom requires
that if some process is in its entry section then that process will eventually
access its critical section.

The processes of the Figures 2.2 and 2.3 IMP programs adhere to the
above structure of mutexes. As we will see, both programs satisfy critical-
section-exclusion (under standard SC and atomicity assumptions) while only
the Figure 2.3 program satisfies starvation-freedom.

To compactly describe the model checking framework we additionally
use process graphs as a visual representation for IMP processes. Apart from
being at least as expressive as IMP processes, process graphs allow a few
simplifications that make program models smaller. They are, intuitively, an
abbreviated version of program graphs from [MP92; BK08].

Formally, given some description process P begin ÈstatementsÍ end,

14 Chapter 2. Program Verification

program Dekker variables turn = flag0 = flag1 = 0
process P0 begin

1: while true do

// non-critical section

2: flag0 := 1; // P0 wants critical section access

3: while flag1 = 1 do // check for contention from P1
4: if turn ”= 0 then // check if P1 is given priority

5: flag0 := 0; // yield since P1 has priority

6: while turn ”= 0 do // busy wait for P0’s turn

7: skip;

od;

8: flag0 := 1; // re-affirm P0’s contention

fi;

od;

9: skip; // critical section

10: turn := 1; // give turn to P1
11: flag0 := 0; // retract P0’s contention

od

end

process P1 begin

12: while true do

// non-critical section

13: flag1 := 1; // P1 wants critical section access

14: while flag0 = 1 do // check for contention from P0
15: if turn ”= 1 then // check if P0 is given priority

16: flag1 := 0; // yield since P0 has priority

17: while turn ”= 1 do // busy wait for P1’s turn

18: skip;

od;

19: flag1 := 1; // re-affirm P1’s contention

fi;

od;

20: skip; // critical section

21: turn := 0; // give turn to P0
22: flag1 := 0; // retract P1’s contention

od

end

Figure 2.3: IMP implementation of the Dekker algorithm. In the entry sections
critical-section-contention is resolved, if necessary, in favor of the process whose
turn it is. In the exit sections the turn is flipped and the flags are reset.

2.1. Concurrent Programs 15

G(¸ : while ÈexprÍ do ÈwlistÍ od; ÈlistÍ) :=

¸ = exit(ÈwlistÍ) entry(ÈwlistÍ)entry(ÈlistÍ)
ÈexprÍ¬ÈexprÍ

JÈwlistÍK

G(¸ : if ÈexprÍ then ÈilistÍ
else ÈelistÍ fi; ÈlistÍ) :=

¸

entry(ÈlistÍ)

entry(ÈilistÍ)

entry(ÈelistÍ)

ÈexprÍ

¬ÈexprÍ

JÈilistÍK

JÈelistÍK

G(¸ : x := ÈexprÍ; ÈlistÍ) :=
¸

entry(ÈlistÍ)x := ÈexprÍ

G(¸ : skip; ÈlistÍ) :=
¸

entry(ÈlistÍ)skip

Figure 2.4: Graph translation rules for process P begin ÈstatementsÍ end. For
any list of statements ÈlistÍ we assume that entry(ÈlistÍ) returns the entry label for
ÈlistÍ and that exit(ÈlistÍ) returns the exit label for ÈlistÍ with the excepction of
exit(ÈstatementsÍ) and the top level entry(Á) which return a termination label ¸‹.
If (¸, ÈexprÍ, ¸

Õ) œ Òæ and ÈexprÍ contains no x œ V then either ÈexprÍ evaluates
to true in which case ¸ and ¸

Õ are merged or ÈexprÍ evaluates to false in which
case the transition and the resulting unreachable graph section are removed; if
(¸, skip, ¸

Õ) œ Òæ then ¸ and ¸

Õ are merged as well.

the process graph G(P) := (Loc, Act, ¸0, Òæ) is the graph with initial location
¸0 œ Loc identifying the entry label of ÈstatementsÍ and transition relation
Òæ ™ Loc ◊Act ◊Loc obtained as described in Figure 2.4. This particularly
implies that the transition labels Act are either assignments x := ÈexprÍ or
conditions1 ÈexprÍ that contain at least a variable x œ V .

Figure 2.5 depicts the process graphs of the IMP program in Figure 2.2
and Figure 2.6 the process graph G(P0) of the first Dekker algorithm process.

The correspondence between IMP processes and their process graphs
should be transparent. Take the simplified version of the Dekker algorithm
as example. Its process P0 performs the following in a loop: (1) it sets flag0
to 1 thus signaling its intent to advance to the critical section; (2) it waits

1Any expression ÈexprÍ is a condition in the following general terms: if ÈexprÍ evaluates
to either 1 or true then the expression is true; otherwise the expression is false.

16 Chapter 2. Program Verification

P0P0

1, 2
3, 4

5, 6

flag0 := 1

flag1 = 1

flag1 ”= 1
flag0 := 0

P1P1

7, 8
9, 10

11, 12

flag1 := 1

flag0 = 1

flag0 ”= 1
flag1 := 0

Figure 2.5: Graph processes for the simplified Dekker algorithm.

P0P0

1, 2 3 4 5

6, 789, 1011

flag0 := 1

flag1 ”= 1

turn := 1

flag0 := 0

flag1 = 1
turn = 0

turn ”= 0

flag0 := 0

turn = 0
turn ”= 0

flag0 := 1

Figure 2.6: Graph process for the first Dekker algorithm process. Colored labels
identify transitions preserved in the algorithm’s simplified version.

for its turn by checking if the other process also set its flag flag1 to 1; and
(3) if flag1 is not set to 1 it advances to its critical section (line label 6).

The common program structure of the Dekker algorithm and of its sim-
plified version should be clearer by looking at the process graphs in Fig-
ures 2.5 and 2.6. Indeed, process P0 for both these algorithms adheres to
the looping behavior described above. However, only in the case of the
Dekker algorithm can the potential simultaneous busy-wait of P0 and P1 be
resolved: this is achieved using the extra shared variable turn.

So far we used the mutual exclusion problem to introduce two ways to
model concurrent systems: IMP programs and process graphs. We rely on
transition systems to describe and analyze the systems’ semantics/behavior.

A transition system is a tuple (Act, S, æ, s0, AP, L) where Act is a set
of actions, S a set of states, æ ™ S ◊ Act ◊ S a transition relation, s0 œ S

an initial state, AP a set of atomic propositions, and L : S æ 2AP a state-
labeling function. A transition system is finite if its states S, actions Act,
and propositions AP are all finite.

Given some IMP program P, its transition system semantics TS(P)
describes an interleaved execution model for P. Formally, let ‹0 œ V æ D

be P’s initial variable valuation and let G(Pi) := (Loci, Acti, ¸0,i, Òæi) be
the process graphs for P’s processes Pi (where i œ [1..N] for N œ N). The
transition semantics TS(P) := (Act, S, æ, s0, AP, L) is defined by actions
Act := Act1 fi . . .fiActN changing states S := (Loc1 ◊ . . .◊LocN)◊(V æ D)

2.1. Concurrent Programs 17

¸0, ¸

Õ
0, 0 : 0

{}

¸1, ¸

Õ
1, 1 : 1

{f0}
cs, ¸

Õ
0, 1 : 0

{cs, f0}
¸0, cs

Õ
, 0 : 1

{cs

Õ}

¸1, ¸

Õ
0, 1 : 0

{f0}
¸0, ¸

Õ
1, 0 : 1

{}

cs, ¸

Õ
1, 1 : 1

{cs, f0}
¸1, cs

Õ
, 1 : 1

{cs

Õ
, f0}

flag0 = 1
flag1 = 1

flag0 := 1 flag1 := 1

flag1 := 1 flag0 := 1
flag1 ”= 1 flag0 ”= 1

flag0 = 1 flag1 = 1

flag0 := 1 flag1 := 1
flag1 := 0flag0 := 0

flag1 := 1flag0 := 1

Figure 2.7: Transition system semantics for the simplified Dekker algorithm over
the finite atomic propositions set AP = {cs, cs

Õ
, f0 := (flag0 = 1)}. Valuations

have ordered entries for flag0 and flag1 and the labeling function L is indicated
by annotated sets. We use ¸0 := 1, 2, ¸1 := 3, 4, and cs := 5, 6 for the P0 locations
and ¸

Õ
0 := 7, 8, ¸

Õ
1 := 9, 10, and cs

Õ := 11, 12 for the P1 ones.

starting from the initial state s0 := ((¸0,1, . . . , ¸0,N), ‹0).
The transition relation æ relates ((¸1, . . . , ¸N), ‹) and ((¸Õ

1, . . . , ¸

Õ
N), ‹

Õ)
through a œ Act if ¸i

a≠æ ¸

Õ
i for some process graph G(Pi) where i œ [1..N].

If ((¸1, . . . , ¸N), ‹) a≠æ ((¸Õ
1, . . . , ¸

Õ
N), ‹

Õ) and ¸i
a≠æ ¸

Õ
i then ¸j = ¸

Õ
j for all j ”= i

and either

• a is a store x := v that updates valuation ‹ to ‹

Õ := ‹[x := v], or

• a is a condition over V that must hold for variable valuation ‹ = ‹

Õ.

Atomic propositions AP ™ Cond(V) fi tN
i=1 Loci consist of conditions

Cond(V) over P’s variables and of process labels. The labeling function L
provides the AP-labeling for each of TS(P)’s states, L(((¸1, . . . , ¸N), ‹)) :=
AP fl ({¸1, . . . , ¸N } fi {ÈexprÍ œ Cond(V) | ÈexprÍ evaluates to true for ‹}).

Figure 2.7 shows TS(Simplified) for the simplified Dekker algorithm.
As we will show in Section 2.2, a thorough analysis of IMP programs can

be performed using the previous transition semantics. However, as classical
manuscripts point out [CGP99; BK08], special care should be given to the
granularity of program statements.

18 Chapter 2. Program Verification

¸0, ¸

Õ
0, 0 : 0¸1, ¸

Õ
0, 1 : 0 ¸0, ¸

Õ
1, 0 : 1

¸1, ¸

Õ
1, 1 : 0 ¸1, ¸

Õ
1, 0 : 1

x := 1 ≠ y y := 1 ≠ x

x := 1 ≠ yy := 1 ≠ x

¸0, ¸

Õ
0, 0 : 0

ú, ú, 0 : 0

¸1, ¸

Õ
1, 1 : 1

¸1, ¸

Õ
0, 1 : 0 ¸0, ¸

Õ
1, 0 : 1

¸1, ¸

Õ
1, 1 : 0 ¸1, ¸

Õ
1, 0 : 1

ú, ¸

Õ
0, 0 : 0 ¸0, ú, 0 : 0

yc := y xc := x

xc := x yc := y
x := 1 ≠ yc y := 1 ≠ xc

¸1, ú, 1 : 0 ú, ¸

Õ
1, 0 : 1

x := 1 ≠ yc y := 1 ≠ xc

y := 1 ≠ xc x := 1 ≠ yc

¸1, ú, 1 : 0 ú, ¸

Õ
1, 0 : 1

xc := x yc := y

y := 1 ≠ xc x := 1 ≠ yc

Figure 2.8: Transition system semantics for di�erent atomicity assumptions. The
non-standard transition semantics depicted below assumes that assignments are
implemented by locally copying the values of right-hand-side variables and then
evaluating the assignment expression using these values. For simplicity, the labeling
is left out and ú symbols mark intermediary locations. In the bottom transition
system xc and yc are used to copy locally x and y.

Indeed, one typically assumes actions a œ Act are atomic when modeling
concurrent systems. This is a natural yet restrictive assumption.

As a hands-on example regarding the importance of atomicity, consider
the two processes below that perform symmetric assignments concurrently.

P0
¸0 ¸1

P1
¸

Õ
0 ¸

Õ
1

x := 1 ≠ y y := 1 ≠ x

Figure 2.8 shows the transition semantics for this example both when
assignments are indivisible (top transition system, on grey background) as
well as when they have a simple load-and-store implementation (bottom
transition system). The colored state where x = y = 1 can only be found in
the latter system.

In Section 2.2 we assume all actions to be atomic. Under relaxed memory,
(as we will in detail explain in Section 2.3) this is no longer the case.

2.2. Model Checking 19

2.2 Model Checking

In this section we recall a few known results about model checking concurrent
systems starting from the transition system semantics of IMP programs.
Being such an extensively studied topic, we only present a small subset of
existing results that directly relates to our later contributions in the context
of programs running under TSO-relaxed memory.

Generally speaking, the model checking problem asks if a finite-state
system model M satisfies some temporal logic correctness specification Ï.
Concretely, a model checking session consists of several phases exploiting
the existence of some — typically automated — model checker. The central
phases of model checking are enumerated below.

• The modeling phase: interpret both the system to be analyzed and the
specification to be checked in a way understood by the model checker.

• The running phase: check whether the specification holds for the given
system model by executing the model checker.

• The analysis phase: interpret (as user) the results of the running phase,
i.e., handle potential counterexamples found in the running phase by

(1) using simulation to check the validity of these counterexamples,

(2) refining the model or the specification to better reflect reality, and

(3) repeating the entire model-checking procedure if necessary.

Through planning and administering verification by model checking one
may add additional phases to the ones described above. For example, the
analysis phase may be enriched to account for the running phase stopping
due to the model checker running out of memory. This can furthermore
be combined with some reasonable model refinement or reduction. A more
detailed discussion can be consulted, e.g., in [BK08].

The common understanding of model checking corresponds more closely
to its intuitive description. Namely, assuming that the system model and
correctness specification are predefined and match the model checker input,
the model checking procedure checks whether the specification holds — and
it returns a counterexample when this check fails.

So far, in Section 2.1, we described the syntax and transition semantics
of concurrent programs. In the following Section 2.2.1 we describe linear
time specifications and highlight safety properties. We then present LTL,
the classical logic for linear-time property specification. To end our model
checking narrative, in Section 2.2.2 we describe POR reduction for transition
systems and show that it preserves correctness for the LTL≠X subset of LTL.

20 Chapter 2. Program Verification

2.2.1 LTL and Safety Specifications

Linear-time properties are an important specification mechanism used to
reason about executions of a system. Whenever possible, either a state-based
or an action-based approach is followed to analyze concurrent systems. To
describe LTL and safety specifications we adopt the commonly-used state-
based approach that abstracts actions away by taking only predicates over
states into consideration.

In the following, let TS = (Act, S, æ, s0, AP, L) be a transition system.
An execution of TS is a maximal alternating succession of states and actions
starting with the initial state. Note that each TS execution corresponds to
an execution in the system that TS models.

Formally, an execution of TS is any initial maximal execution fragment.
An execution fragment is either a finite alternating sequence of states and
actions ending with a state, i.e.,

fl = s0a1s1 . . . ansn such that si≠1
ai≠æ si for all i œ [1..n]

or an infinite alternating sequence of states and actions, i.e.,

fl = s0a1s1 . . . such that si≠1
ai≠æ si for all i Ø 1.

An execution fragment is maximal if it is infinite or if it ends in a state with
no outgoing transitions. An execution fragment is initial if it starts with
the initial state in TS .

Since we are mainly interested in states visited during executions, instead
of some execution s0

a
1≠æ s1 . . . we consider sequences L(s0)L(s1) . . . that

track atomic propositions valid along such executions. Such sequences of
words over the alphabet 2AP are called traces.

In the remainder of the subsection we assume that TS has no terminal
state, i.e., no state without outgoing transitions. This assumption implies
that all traces are infinite words and is not a serious restriction.2

We use trace(fl) for the trace of some execution fl, Traces(s) for the traces
of all execution fragments starting in the state s, and Traces(TS) for the
traces of all executions of the transition system TS . Formally, the trace
of a finite execution fragment fl = s0a1s1 . . . ansn is defined as trace(fl) :=
L(s0)L(s1) . . . L(sn) while the trace of an infinite execution fragment fl =
s0a1s1 . . . is defined as trace(fl) := L(s0)L(s1)

Consider, for example, the transition system TSSimplified in Figure 2.9.
This transition system is the simplification of the transition system seman-
tics TS(Simplified) in Figure 2.7 with transition labels discarded.

2A transition system TS with terminal states can be extended by a state s

deadlock

with
s

deadlock

æ s

deadlock

and such that s æ s

deadlock

for each terminal state s in TS .

2.2. Model Checking 21

¸0, ¸

Õ
0, 0 : 0

{}

¸1, ¸

Õ
1, 1 : 1

{f0}
cs, ¸

Õ
0, 1 : 0

{cs, f0}
¸0, cs

Õ
, 0 : 1

{cs

Õ}

¸1, ¸

Õ
0, 1 : 0

{f0}
¸0, ¸

Õ
1, 0 : 1

{}

cs, ¸

Õ
1, 1 : 1

{cs, f0}
¸1, cs

Õ
, 1 : 1

{cs

Õ
, f0}

Figure 2.9: Transition system — TSSimplified — underlying the simplified Dekker
algorithm. The atomic proposition f0 in AP = {cs, cs

Õ
, f0 := (flag0 = 1)} signals

that process P0 wants to enter its critical section.

A TSSimplified execution in which the two processes enter their critical
sections in an alternate fashion is the following

fl := ((¸0, ¸

Õ
0), 0 : 0) æ ((¸1, ¸

Õ
0), 1 : 0) æ ((cs, ¸

Õ
0), 1 : 0) æ ((cs, ¸

Õ
1), 1 : 1)

æ ((¸0, ¸

Õ
1), 0 : 1) æ ((¸0, cs

Õ), 0 : 1) æ ((¸1, cs

Õ), 1 : 1)
æ ((¸1, ¸

Õ
0), 1 : 0) . . .

The trace of the above execution fl is the infinite word

trace(fl) = ÿ {f0} {cs, f0} {cs, f0} ÿ {cs

Õ} {cs

Õ
, f0} {f0} . . .

Linear-time properties specify, intuitively, desired behavior of the system
under consideration. Formally, a linear-time property (LT property) over the
set of atomic propositions AP is a subset of

!
2AP"Ê, the set of all Ê-words

over 2AP .3 Let � be an LT property and assume TS is a transition system
without terminal states over the same set of atomic propositions. We say
that TS satisfies �, denoted by TS ✏ �, i� Traces(TS) ™ �. Similarly,
some state s satisfies �, denoted by s ✏ �, i� Traces(s) ™ �.

3

!
2AP"Ê denotes all words resulting from infinite concatenations of finite 2AP words.

22 Chapter 2. Program Verification

Consider once more the simplified Dekker algorithm. The critical-section-
exclusion condition can be described by the following LT property:

�mutex := {A0A1 . . . œ !
2AP"Ê | {cs, cs

Õ} ”™ Ai for all i Ø 0}.

By a quick analysis one finds that {cs, cs

Õ} ”™ L(s) for any TSSimplified
state s. Hence, TSSimplified ✏ �mutex, since Traces(TSSimplified) ™ �mutex,
and the simplified Dekker algorithm satisfies critical-section-exclusion.

The starvation-freedom condition for process P0 in the simplified Dekker
algorithm can be described by the following LT property:

�¬ starving := {A0A1 . . . œ !
2AP"Ê | if f0 œ Ai and cs /œ Ai for some i Ø 0

then cs œ Aj for some j > i}.

Since, e.g., ÿ {f0}Ê belongs to Traces(TSSimplified) but not to �¬ starving
we find that TSSimplified 2 �¬ starving. This means that the simplified Dekker
algorithm does not satisfy starvation-freedom.

Safety Specifications Safety intuitively means that “along all traces of
the transition system, nothing bad happens ”. Many LT properties encode
safety and invariants are one of the most well-known type of safety properties
— e.g., critical-section-exclusion is an invariant.

Let Ï ::= true | a œ AP | ¬Ï | Ï · Ï define propositional logic (PL) over
some set of atomic propositions AP. An LT property �inv over AP is an
invariant if there is a PL formula Ï over AP such that

�inv = {A0A1 . . . œ !
2AP"Ê | Ai ✏ Ï for all i Ø 0}.

The formula Ï is typically called the invariant- or state-condition of
�inv. For example, the mutual exclusion property �mutex from earlier is an
invariant with invariant-condition ¬(cs · cs

Õ).
Let ✏ define the satisfaction relation for PL formulas over AP, i.e., for

any set X ™ AP , X ✏ Ï if there is a satisfying assignment ‰ : AP æ B such
that ‰(a) = true i� a œ X and ‰(a) = false i� a /œ X. Note that

TS ✏ �inv i� trace(fl) œ �inv for all executions fl of TS
i� L(s) ✏ Ï for all states s of any TS execution
i� L(s) ✏ Ï for all states reachable in TS .

The notion of invariant can, hence, be explained as follows: �inv is an
invariant for the transition system TS if its invariant-condition Ï holds for
all states reachable from the initial state in TS .

Algorithm 2.1 shows a simple Depth-First Search (DFS) algorithm for
invariant checking and is similar in nature to Algorithm 2.3 on page 38.

2.2. Model Checking 23

Algorithm 2.1 Naive DFS invariant checker
Input: Finite transition system TS and invariant-condition Ï

Output: true if TS satisfies “always Ï” and, otherwise, false
Global Variable: visited ™ S, initially visited = ÿ

1: procedure Explorer(TS , s)
2: if s /œ visited then // check that a new S state is explored
3: if L(s) 2 Ï then
4: return false;
5: end if
6: add s to visited;
7: for all s

Õ œ S such that s æ s

Õ do
8: if ¬ Explorer(TS , s

Õ) then
9: return false;

10: end if
11: end for
12: end if
13: return true;
14: end procedure

To turn Algorithm 2.1 into an invariant model-checker one would have to
return, additionally to the Boolean value, the current s state at line 4 and, re-
spectively, the current s

Õ state at line 9. Then, whenever Explorer(TS , s0)
would return false, the stack of states leading to this outcome would be a
counterexample sequence of TS states.

Even though invariants are an important class of properties, not all safety
properties are invariants. For example, in the simplified Dekker algorithm,
the LT property asking that “the critical-section cs is entered only after
process P0 signaled its contention through f0” is a safety property although
it is not an invariant.

Intuitively, an LT property � is a safety property if every infinite word
w œ !

2AP"Ê such that w 2 � contains a bad prefix. A bad prefix is some
finite prefix w

Õ œ !
2AP"ú where “something bad has happened” and, hence,

no Ê-continuation of the bad prefix w

Õ will fulfill �.
Formally, an LT property � over AP is a safety property if for all words

w œ !
2AP"Ê \ � there exists a finite prefix wfin-pref of w such that

� fl {w

Õ œ !
2AP"Ê | wfin-pref is a prefix of w

Õ} = ÿ.

Any such finite prefix wfin-pref of w is called a bad prefix for � and the
set of all bad prefixes for � is denoted by BadPref (�).

To see that invariants are safety properties, let �inv be an invariant with
invariant-condition Ï. All finite words A0 . . . An œ !

2AP"+ with Ai≠1 ✏ Ï for

24 Chapter 2. Program Verification

i œ [1..n] and An 2 Ï are bad prefixes of minimal length and BadPref (�) =
{A0 . . . An œ !

2AP"+ | Ai≠1 ✏ Ï for i œ [1..n] and An 2 Ï}.

!
2AP"ú.4

Let Pref (S) define the prefix closure of a set S ™ !
2AP"Ê, i.e.,

Pref (S) := {w œ !
2AP"ú | w is the prefix of some word in S}.

To conclude, we notice that safety properties are system requirements
verifiable using finite prefixes of traces.

Corollary 1 ([BK08]). Let TS be a transition system without terminal
states and let � be a safety property. Then,

TS ✏ � if and only if Pref (Traces(TS)) fl BadPref (�) = ÿ.

Proof. To prove the left-to-right implication, let TS ✏ � and assume, to
the contrary, that w

Õ œ Pref (Traces(TS)) fl BadPref (�). By definition of
Pref (Traces(TS)), w

Õ is the prefix of some trace w œ Traces(TS) and, by
definition of BadPref (�), w /œ �. Hence, TS 2 �, which contradicts the
initial assumption.

For the reverse direction, let Pref (Traces(TS)) fl BadPref (�) = ÿ and
assume, to the contrary, that TS 2 �. Then trace(fl) /œ � for some execution
fl of TS . Therefore, trace(fl) starts with a bad prefix w

Õ for �. But then w

Õ œ
Pref (Traces(TS)) fl BadPref (�) contradicts our previous assumption.

Additional to safety, liveness completes the picture behind LT properties.
Intuitively, a liveness property over AP is an LT property � such that any!
2AP"ú word can be extended to some

!
2AP"Ê word that satisfies �. One

can, in fact, show that every LT property is equivalent to the intersection of
a safety and a liveness property. Since our contributions in Chapters 3 and 4
target safety specifications, we do not further detail liveness specifications.

Linear Temporal Logic Alternatively to the set-description used so far,
LT properties can be more concisely expressed using the LTL formalism.

Given some set of atomic propositions AP, LTL over AP is defined by

Ï ::= true | a œ AP | ¬Ï | Ï · Ï | X Ï | Ï U Ï,

i.e., LTL is PL enhanced with the step (X) and until (U) operators.
Using the until operator one can then derive the temporal modalities

eventually (⌃) and always (⇤). Formally, ⌃Ï := true U Ï and ⇤Ï := ¬⌃¬Ï.
To give some examples, the LTL specifications for �mutex and �¬ starving

from page 22 are ⇤¬(cs · cs

Õ) and ⇤(f0 · cs æ ⌃cs). Moreover, the earlier
safety property stating that “the critical-section cs is entered only after

4We use
! "

+ to denote the positive Kleene closure, i.e.,
! "ú without Á.

2.2. Model Checking 25

model checkerTransition system TS LTL specification Ï

Representation �¬Ï of ¬Ï

Traces(TS) fl �¬Ï = ÿ ?

TS ✏ Ï counterexample showing TS 2 Ï

yes no

Figure 2.10: Typical model checker for TS ✏ Ï. The LTL specification is used to
construct a representation �¬Ï for its complement. The model checker then checks
whether Traces(TS) and �¬Ï are disjoint.

process P0 signaled its contention through f0” could be specified in LTL as
⇤(f0 · ¬cs æ X cs).

To recapitulate, a concurrent system can be modeled by an IMP program
whose semantics is a transition system TS . Undesired system behavior can
then be modeled by an LT property �¬Ï (constructible from some desirable
LTL specification Ï). Finally, one can check if the system has the desired
behavior by checking whether TS ✏ �¬Ï.

Figure 2.10 sketches the model checking approach for verifying TS ✏ Ï.
We refrain from discussing the model checking procedure in depth since its
details are only loosely connected to our contributions.

2.2.2 Partial Order Reduction for LTL≠X

As is generally the case for concurrent systems, their semantic state-space
may grow exponentially wrt the number of concurrent components.

Consider, for example, an IMP program that concurrently increments n

variables x1, . . . , xn within n processes

process Pi begin xi := 1 end.

The transition semantics of this program for n = 2 is shown in Figure 2.11.
In general, for n œ N processes, the transition semantics contains 2n states
and n! di�erent executions. This does not fare well with any exploration
technique used while model checking. However, as long as the intermediary
states reached after the execution of either x1 := 1, . . . , xn := 1 are irrelevant

26 Chapter 2. Program Verification

¸0, ¸

Õ
0, 0 : 0 ¸1, ¸

Õ
1, 1 : 1

¸1, ¸

Õ
0, 1 : 0

¸0, ¸

Õ
1, 0 : 1

x1 := 1

x2 := 1

x2 := 1

x1 := 1

Figure 2.11: Transition semantics of an IMP program that does not scale. The
state labeling L is left out and valuations for variables x1 and x2 are separated
by a colon. We use ¸0 and ¸1 for the entry and exit locations of process P1 and,
respectively, ¸

Õ
0 and ¸

Õ
1 for the entry and exit locations of process P2.

for the property checked, it su�ces to consider an arbitrary interleaving of
di�erent process commands.

Briefly put, Partial Order Reduction (POR) aims to reduce the number
of execution interleavings that need to be analyzed when model checking.
To show that POR preserves correctness for model checking LTL≠X we
introduce the notions of independent actions and stuttering. Afterward, we
sketch the essential constraints behind the POR-underlying ample sets. A
more detailed presentation can be found in, e.g., [CGP99; BK08].

Independent actions and stutter equivalence As before, we assume
that TS = (Act, S, æ, s0, AP, L) is a transition system without terminal
states. Furthermore, we assume TS is transition-deterministic, use a(s)
for the state reached from s by following the a-labeled transition, and use
enabled(s) to denote the set of actions a œ Act for which s

a≠æ a(s) in TS .
Intuitively, the two characteristics of the independence of two actions

a, b œ Act, both enabled in some state s œ S, are (1) enabledness: executing
a does not disable b and vice versa, and (2) commutativity: executing either
“b after a” or “a after b” yields the same state.

Formally, actions a ”= b œ Act are independent in TS if for any s œ S

with a, b œ enabled(s):

b œ enabled(a(s)), a œ enabled(b(s)), and a(b(s)) = b(a(s)).

We say a and b are dependent in TS if they are not independent.
A first observation about independent actions is that any a œ enabled(s)

can be permuted with the actions of an execution fragment fl starting in s,
provided that action a is independent from the action labels of fl.

Figure 2.12 depicts the intuition behind Corollary 2 below.

2.2. Model Checking 27

s0 s1 s2 . . .

u0 can be extended to

s0 s1 s2 . . .

u0 u1 u2 . . .

b1 b2

a

b1 b2

b1 b2

a a a

Figure 2.12: Permuting a with independent actions b1, b2, . . .

Corollary 2 ([PW97; BK08]). Let s be a state of some action-deterministic
transition system TS and assume that

fl := s0
b

1≠æ s1
b

2≠æ s2 . . . with s0 := s

is an execution fragment starting in s. Then, for any action a œ enabled(s)
that is independent from b1, b2, . . ., it holds that a œ enabled(si) and

fl

Õ := s0
a≠æ u0

b
1≠æ u1

b
2≠æ u2 . . .

is an execution fragment starting in s such that ui = a(si).

Proof (sketch). Using the definition of independent actions and execution
fragments one can prove by induction over i Ø 1 that

• a and bi+1 are enabled in state si = bi(. . . b1(s)),
• bi is enabled in state ui≠1 = bi≠1(. . . b1(a(s))), and
• a(si) = ui = bi(ui≠1).

This implies that fl

Õ is indeed an execution fragment starting in s.

Partial Order Reduction’s connection to LTL specifications relies on in-
dependent stutter actions. Intuitively, an action a œ Act is a stutter action5

if L(s) = L(a(s)) for all transitions s

a≠æ a(s) in TS .
Two execution fragments fl := s0

a
1≠æ s1

a
2≠æ s2 . . . and fl

Õ := u0
b

1≠æ
u1

b
2≠æ u2 . . . are stuttering equivalent — denoted by fl ≥st fl

Õ — if there exist
sequences 0 = i0 < i1 < . . . and 0 = j0 < j1 < . . . such that, for all k Ø 0,

L(sik) = . . . = L(sik+1

≠1) = L(ujk) = . . . = L(ujk+1

≠1).

We call a finite sequence of identically labeled execution fragment states
a block. Intuitively, fl ≥st fl

Õ if trace(fl) and trace(flÕ) can be partitioned in
infinitely many blocks such that equivalent blocks are labeled the same.

An LTL formula Ï is invariant under stuttering i�, for all stuttering
equivalent fl ≥st fl

Õ, trace(fl) ✏ Ï if and only if trace(flÕ) ✏ Ï.
Consider now LTL≠X , the subset of LTL that excludes the next step

operator. Lamport, in [Lam83], motivates excluding the X operator when
5Stutter actions are sometimes called invisible actions in the literature.

28 Chapter 2. Program Verification

reasoning about programs since “increasing the expressiveness of temporal
logic with a next operator would destroy the entire logical foundation for its
use in hierarchical methods”. Furthermore, as proved through Corollary 3
below, every LTL≠X formula is invariant under stuttering. For more details
concerning stuttering principles, the reader can consult, e.g., [Str04].

Corollary 3 ([PW97]). Any LTL≠X property is invariant under stuttering.

Proof. Let TS be an arbitrary transition system over AP. By structural
induction, every LTL≠X formula (over AP) is invariant under stuttering.

For the base cases, LTL≠X formulas true and a are both invariant
under stuttering. To see this, let fl ≥st fl

Õ. By definition of ✏ for LTL, both
trace(fl) ✏ true and trace(flÕ) ✏ true. On the other hand, for a, by definition
of stutter invariance L(s0) = L(u0). Hence, by definition of ✏ for LTL,
trace(fl) ✏ a i� trace(flÕ) ✏ a.

For the induction step case, assume that Ï and Â are LTL≠X formulas
that are invariant under stuttering and, as before, let fl ≥st fl

Õ. We make the
following case distinction:

Ï

Õ = ¬Ï Since trace(fl) ✏ Ï i� trace(flÕ) ✏ Ï, by definition of ✏, also trace(fl) ✏
Ï

Õ i� trace(flÕ) ✏ Ï

Õ.

Ï

Õ = Ï · Â Since trace(fl) ✏ Ï i� trace(flÕ) ✏ Ï and trace(fl) ✏ Â i� trace(flÕ) ✏
Â, by definition of ✏, also trace(fl) ✏ Ï

Õ i� trace(flÕ) ✏ Ï

Õ.

Ï

Õ = Ï U Â On the one hand, since fl ≥st fl

Õ, if Ï fails to hold for some block
starting with k then L(sik) = L(ujk) and

L(sik)L(sik+1) . . . is stuttering-equivalent to L(ujk)L(ujk+1)

Then, since Â is invariant under stuttering, L(sik)L(sik+1) . . . ✏ Â

i� L(ujk)L(ujk+1) . . . ✏ Â. Hence, trace(fl) ✏ Ï

Õ i� trace(flÕ) ✏ Ï

Õ.
On the other hand, if Ï always holds for trace(fl) and trace(flÕ) then
trace(fl) 2 Ï

Õ and trace(flÕ) 2 Ï

Õ.

By structural induction we conclude that every LTL≠X formula is invariant
under stuttering.

One could, therefore, use the stuttering-reduced transition system TS Õ

instead of the original system TS for model checking LTL≠X specifications.
Intuitively, since a ≥st-class of TS executions is represented by at least one
execution in TS Õ, model checking correctness is guaranteed for LTL≠X .

Algorithm 2.2 includes POR in the earlier invariant checker given in
Algorithm 2.1. When TS and its sub-system explored by the algorithm are
equivalent wrt stuttering, we know that using POR preserves correctness of
LTL≠X and, in particular, of invariant checking.

2.2. Model Checking 29

The main di�erence between the two invariant checking algorithms is
highlighted at Line 7. Namely, while Algorithm 2.1 explores all transitions
enabled in a state, the POR-enhanced algorithm only considers a subset
ample(s) ™ enabled(s) when constructing the reduced system.

Algorithm 2.2 Naive DFS invariant checker with POR
Input: Finite transition system TS and invariant-condition Ï

Output: true if TS satisfies “always Ï” and, otherwise, false
Global Variable: visited ™ S, initially visited = ÿ

1: procedure POR-Explorer(TS , s)
2: if s /œ visited then // check that a new S state is explored
3: if L(s) 2 Ï then
4: return false;
5: end if
6: add s to visited;
7: for all a œ ample(s) do // ample(s) ™ enabled(s)
8: if ¬ POR-Explorer(TS , a(s)) then
9: return false;

10: end if
11: end for
12: end if
13: return true;
14: end procedure

Ample set constraints What makes POR work correctly in combination
with checking LTL≠X specifications is an appropriate choice for the ample
transitions out of each state.

Assume we want to check TS ✏ Ï for some LTL≠X specification Ï and
let TS Õ be the POR-reduced version of TS . Intuitively,

(1) TS and TS Õ should be equivalent wrt LTL≠X specifications,
(2) TS Õ should be smaller (and thus easier to analyze) than TS , and
(3) the e�ort to compute TS Õ should be less than to check TS ✏ Ï.
Figure 2.13 outlines the standard constraints on ample sets that ensure

point (1) above [CGP99; BK08]. An in-depth analysis of finer constraints
can be found, e.g., in [God96].

Intuitively, the ample set constraints ensure that for any TS execution

fl0 := s0
a

1≠æ . . .

am≠≠æ¸ ˚˙ ˝
prefix in TS Õ

s

b
1≠æ s1

b
2≠æ s2 . . .

there exists some TS Õ execution fl

Õ such that fl0 ≥st fl

Õ.

30 Chapter 2. Program Verification

(C0) ample(s) = ÿ i� enabled(s) = ÿ.
(C1) Let fl = s

a
1≠æ s1 . . .

an≠æ sn
a≠æ u be a finite execution fragment in

TS that starts with s. If a /œ ample(s) and some action b œ ample(s) are
dependent then ak œ ample(s) for some k œ [1..n].
(C2) If ample(s) ”= enabled(s) then every a œ ample(s) is a stutter action.
(C3) For all cycles s0, s1, . . . , sn in TS Õ, if (in TS) a œ t

kœ[1..n] enabled(sk)
then also a œ t

kœ[1..n] ample(sk).

Figure 2.13: Ample set constraints. (C0) ensures that if s has a successor in
TS then it has a successor in TS Õ too. (C1) implies that any a œ ample(s) and
b œ enabled(s) \ ample(s) are independent. (C2) guarantees that any a œ ample(s)
can be performed earlier in a stutter-equivalent execution. (C3) makes certain that
no non-stutter action may be postponed forever.

Technically, fl

Õ can be constructed as the limit of the sequence (fli)iØ0 by
iteratively using the following transformations:

• if b = bn+1 is the earliest b œ ample(s) action occurring in the sequence
(bi)iØ1 then, by constraints (C0)–(C3), b is a stutter action that is
independent of b1, . . . , bn. Then

fl1 := s0
a

1≠æ . . .

am≠≠æ¸ ˚˙ ˝
common fl

0

prefix

s

b≠æ u0
b

1≠æ u1 . . .

bn≠æ¸ ˚˙ ˝
stutter equivalent

un
bn+1≠≠≠æ sn+2 . . .

¸ ˚˙ ˝
common su�x

• if bi /œ ample(s) for all i Ø 1 then, by constraints (C0)–(C3), any
arbitrary a œ ample(s) is independent of b1, b2, . . . and

fl1 := s0
a

1≠æ . . .

am≠≠æ¸ ˚˙ ˝
common fl

0

prefix

s

a≠æ u0
b

1≠æ u1
b

2≠æ u2 . . .¸ ˚˙ ˝
stutter equivalent su�x

For constructing the entire sequence (fli)iØ0 one has to iteratively substitute
fli for fl0 and fli+1 for fl1 in the above description.

To conclude, consider the IMP implementation of the turn-based mutual
exclusion protocol shown in Figure 2.14. Similarly to the earlier simplified
Dekker algorithm (Figure 2.2 on page 13), this algorithm underpins the
Dekker algorithm on page 14.

The following Figure 2.15 depicts the process graphs of Algorithm 2.14
while Figure 2.16 shows its transition semantics TS(Turn). As one can
notice, by using POR almost half of the TS(Turn) states are reduced — 5
out of 12 to be precise.

Actually, any TS(Turn) action

a œ {turn = 0, turn ”= 0, turn = 1, turn ”= 1}
is independent from the stutter actions skip0 and skip1, the two actions
denoting x := x in P0 and, respectively, y := y in P1.

2.2. Model Checking 31

program Turn variables turn = x = y = 0
proc P0 begin

1: while true do

x := x; // non-critical section

2: while (turn ”= 0) do // busy wait for turn

3: skip od;

4: skip; // critical section

5: turn := 1; // hand turn to P1
od

end

proc P0 begin

6: while true do

y := y; // non-critical section

7: while (turn ”= 1) do // busy wait for turn

8: skip od;

9: skip; // critical section

10: turn := 0; // hand turn to P0
od

end

Figure 2.14: IMP implementation of a turn-based mutex. In the entry sections
critical-section-contention is always resolved in favor of the process whose turn it
is. In the exit sections the turn is flipped.

P0P0
1

2, 3

4, 5

skip0

t = 0

t ”= 0

t := 1

P1P1
6

7, 8

9, 10

skip1

t = 1

t ”= 1

t := 0

Figure 2.15: Graph processes for the turn-based mutex. We use t as short notation
for turn, skip0 for x := x from P0, and skip1 for y := y from P1.

This permits selecting

{skip0} = ample(((¸0, ¸

Õ
0), 0)) = ample(((¸0, ¸

Õ
1), 1))

and
{skip1} = ample(((¸1, ¸

Õ
0), 0))

as ample sets.

32 Chapter 2. Program Verification

¸0, ¸

Õ
1, 0

ÿ

¸1, ¸

Õ
1, 0

ÿ

cs, ¸

Õ
1, 0

{cs}

¸0, ¸

Õ
0, 0

ÿ

¸1, ¸

Õ
0, 0

ÿ

cs, ¸

Õ
0, 0

{cs}
¸0, cs

Õ
, 1

{cs

Õ}

¸0, ¸

Õ
1, 1

ÿ

¸0, ¸

Õ
0, 1

ÿ

¸1, cs

Õ
, 1

{cs

Õ}

¸1, ¸

Õ
1, 1

ÿ

¸1, ¸

Õ
0, 1

ÿ

skip0

skip1

t = 0

t ”= 1

t := 1

t ”= 1

skip0

t = 1

t ”= 0

t := 0

t ”= 0

skip1

skip0

t ”= 1

skip1

t := 1

t = 0

skip0

skip1 skip1

t ”= 0

skip0

t := 0

t = 1

Figure 2.16: Transition semantics for the turn-based mutex assuming atomic
propositions set AP = {cs, cs

Õ}. Valuations show the entry for turn and the labeling
function L is indicated by annotated sets. Since the assignments x := x and y := y
do not change anything we do not depict the values of x and y in the transition
system states. We use ¸0 := 1, ¸1 := 2, 3, and cs := 4, 5 for P0 locations and ¸

Õ
0 := 6,

¸

Õ
1 := 7, 8, and cs

Õ := 9, 10 for P1 locations. POR-reduced transitions and states are
indicated by dashed lines.

2.3. Relaxed Memory Models 33

2.3 Relaxed Memory Models
Model checking concurrent IMP programs as in Section 2.2 relies on two
key assumptions: action atomicity and sequential consistency. We already
sketched how the atomicity assumption may impact a system’s semantics in
the example at the end of Section 2.1. The restrictive behavior of sequential
consistency is a finer assumption (implicit to the SC memory model) that
is best understood by comparison to more relaxed memory models.

Total Store Order (TSO) is one such relaxed memory model that is more
relaxed than SC. Additional to its relative simplicity its fame is due to its
hardware implementation in both SPARC and Intel-x86 multiprocessors.
In the spirit of hardware circuit implementations, in the remainder of the
manuscript (Chapters 3—5) we use an idealized Assembly representation
of programs. While the principles behind TSO-relaxed programs could be
presented as a concretization of IMP programs and transition systems, we
choose to use a separate automata-based description for clarity.

A (non-deterministic) automaton over a (not necessarily finite) alphabet
� is a tuple A = (�, S, æ, s0), where S is a set of states, æ ™ S ◊ � ◊ S is
a set of transitions, and s0 œ S is an initial state. The automaton is finite if
�, S and æ are finite. We write s

a≠æ s

Õ if (s, a, s

Õ) œ æ and we extend the
transition relation to sequences w œ �ú as expected:

s

w≠æ s

Õ i� s

a
1≠æ . . .

an≠æ s

Õ for w = a1 . . . an œ �ú and n œ N.

We say that state s œ S is reachable if s0
w≠æ s for some w œ �ú and that

letter a precedes b in w, denoted by a <w b, if w = w1 · a · w2 · b · w3 for some
w1, w2, w3 œ �ú. Moreover, we say the set LF (A) := {w œ �ú | s0

w≠æ s œ F}
is the language of A with final states F ™ S.

As mentioned above, we use automata to describe Assembly programs
and their transition semantics in the context of relaxed memory models.

A (concurrent) Assembly program P is a finite sequence of threads
identified by indices t from TID. For brevity we overload a thread’s name
and its index. Each thread t := (Comt, Qt, It, q0,t) is a finite automaton
with transitions It that we call instructions. Each thread’s instructions It

are labeled by commands from the set Comt which we define in the next
paragraph. We assume, wlog, that states of di�erent threads are disjoint.
This implies that instructions of di�erent threads are distinct. Furthermore,
we use I :=

v
tœTID It for the disjoint union of instructions and Com :=t

tœTID Comt for all commands. For an instruction inst := (s, cmd, s

Õ) œ I

we define cmd(inst) := cmd, src(inst) := s, and dst(inst) := s

Õ to be the
command, source state and, respectively, destination state of inst.

To define the set of commands, let DOM be a finite domain of values
that we also use as addresses ADR. We assume that values [0..|TID|] are
in DOM. For each thread t, let REGt be a finite set of registers that take
their values from DOM. We assume per-thread disjoint sets of registers.

34 Chapter 2. Program Verification

t1t1 q0,1

q1,1

q2,1

qm,1

mem[x] Ω 1

r1 Ω mem[y]

check r1 = 0

t2t2 q0,2

q1,2

q2,2

qm,2

mem[y] Ω 1

r2 Ω mem[x]

check r2 = 0

Figure 2.17: Assembly simplified Dekker algorithm.

The set of expressions of thread t, denoted by EXPt, is defined over registers
from REGt, constants from DOM, and (unspecified) operators over DOM.
If r œ REGt and e, e

Õ œ EXPt, the set of commands Comt consists of loads
from memory r Ω mem[e], stores to memory mem[e] Ω e

Õ, memory fences mf,
assignments r Ω e, and conditionals check e. We write REG :=

v
tœTID REGt

for all registers and EXP :=
t

tœTID EXPt for all expressions.
The Assembly program from Figure 2.17 is a further simplified version

of the Dekker algorithm. It consists of two threads t1 and t2 implementing
critical-section-exclusion. Initially, the addresses x and y contain 0. The first
thread signals its intent to enter the critical section by setting the content
of address x to 1. Next, the thread checks whether the second thread wants
to enter the critical section. It loads the content of address y and, if it is 0,
the first thread enters its critical section. The critical section is indicated
by the control state qm,1. The second thread behaves symmetrically.

One can best notice the similarity between the simplified Assembly
program in Figure 2.17 and the simplified Dekker algorithm (Algorithm 2.2)
by looking at the process graphs in Figure 2.5. Intuitively, the simplified
Assembly version synthesizes the fastest control flow to the critical section
in the IMP processes (modulo the use of addresses and registers instead of
variables and of Assembly commands instead of process graph actions).

The more realistic example depicted in Figure 2.18 shows the Assembly
thread representation of the Dekker process graph in Figure 2.6. For clarity,
the commands corresponding to the actions highlighted in Figure 2.6 are
colored in red in Figure 2.18 as well. Similarly to the Assembly simplified
Dekker algorithm in Figure 2.17, addresses x and y correspond to the two
original flags flag0 and flag1 from Algorithm 2.3. Furthermore, address a

in Figure 2.18 corresponds to the original turn variable, registers r1 and ra

are used to implement the original program graph conditions and, like in
Figure 2.17, the thread’s critical section is indicated by control state qm,1.

2.3. Relaxed Memory Models 35

t1t1

qm,1

mem[x] Ω 1 r1 Ω mem[y]

check r1 ”= 1

check r1 = 1

mem[a] Ω 1

mem[x] Ω 0

ra Ω mem[a]

check ra = 0
check ra ”= 0

mem[x] Ω 0
ra Ω mem[a]

check ra ”= 0

check ra = 0

mem[x] Ω 1

Figure 2.18: Assembly thread for the first Dekker algorithm process. The high-
lighted commands correspond to the colored transitions from Figure 2.6.

2.3.1 SC and TSO Semantics

The semantics of a concurrent Assembly program P under memory model
M œ {TSO, SC} follows [OSS09b]. We define it as the state-space automaton
XM(P) := (E, SM, �X,M, s0). Each state s = (pc, val, buf) œ SM is a tuple
where the program counter pc : TID æ Q holds the current control state
of each thread, the valuation val : REG fi ADR æ DOM holds the values
stored in registers and at memory addresses, and the bu�er configuration
buf : TID æ (ADR ◊ DOM)ú holds a sequence of address-value pairs.

In the initial state s0 := (pc0, val0, buf0), the program counter holds the
initial control states, pc0(t) := q0,t for all t œ TID, all registers and addresses
contain value 0, and all bu�ers are empty, buf0(t) := Á for all t œ TID.

The TSO transition relation �X,TSO satisfies the rules in Figure 2.19.
A more concrete semantics that makes explicit the partial order of events
can be consulted in Appendix C. TSO architectures implement (FIFO) store
bu�ering, which means stores are bu�ered and their e�ects become visible
only later in the shared memory. An intuitive view of how bu�ers are used
to access shared memory under TSO is depicted in Figure 2.20.

Formally, a load from an address a takes its value from the most recent
store to address a that is bu�ered. If there is no such bu�ered store, the
load takes its value from the shared memory. This is modeled by the two
rules (RB) and (RM). Through rule (LS) store operations are enqueued as
address-value pairs to the bu�er. Rule (WM) non-deterministically dequeues
store operations and executes them in the shared memory. Rule (LF) states
that a thread can execute a fence only if its bu�er is empty. As can be
understood from Figure 2.19, events labeling TSO transitions take the form
E ™ TID◊(I fi{flush})◊(ADRfi{‹}). Furthermore, this minimal semantics
can be easily extended to include locks and atomically executing command
sequences — more details can be found in Appendix C.

36 Chapter 2. Program Verification

cmd = r Ω mem[ea], a = ‚ea, buf(t)¿({a} ◊ DOM) = (a, v) · —

s

(t,inst,a)≠≠≠≠≠≠æ (pcÕ
, val[r := v], buf)

(RB)

cmd = r Ω mem[ea], a = ‚ea, buf(t)¿({a} ◊ DOM) = Á

s

(t,inst,a)≠≠≠≠≠≠æ (pcÕ
, val[r := val(a)], buf)

(RM)

cmd = mem[ea] Ω ev, a = ‚ea, v = ‚ev,

s

(t,inst,a)≠≠≠≠≠≠æ (pcÕ
, val, buf[t := (a, v) · buf(t)])

(LS)

buf(t) = — · (a, v)

s

(t,flush,a)≠≠≠≠≠≠æ (pc, val[a := v], buf[t := —])
(WM)

cmd = mf, buf(t) = Á

s

(t,inst,‹)≠≠≠≠≠≠æ (pcÕ
, val, buf)

(LF)

cmd = r Ω e, v = ‚e

s

(t,inst,‹)≠≠≠≠≠≠æ (pcÕ
, val[r := v], buf)

(LA)

cmd = check e, ‚e ”= 0

s

(t,inst,‹)≠≠≠≠≠≠æ (pcÕ
, val, buf)

(LC)

Figure 2.19: Transition semantics rules for XTSO(P) assuming s = (pc, val, buf)
with pc(t) = q and inst = q

cmd≠≠≠æ q

Õ in thread t. With the exception of rule (WM),
the program counter is always updated by pcÕ = pc[t := q

Õ]. We use ‚e for the result
of atomically evaluating expression e under valuation val and buf(t)¿({a} ◊ DOM)
for the projection of buf(t) to store operations that access address a.

The simpler SC semantics executes stores atomically instead of bu�er-
ing them [Lam79]. Technically, the set of state-space automaton states
stays unchanged and rules (LS) and (WM) of �X,TSO in XTSO(P) by the
immediately-flushing rule (LSWM) of �X,SC in XSC(P).

cmd = mem[ea] Ω ev, a = ‚ea, v = ‚ev

s

(t,inst,a)(t,flush,a)≠≠≠≠≠≠≠≠≠≠≠≠æ (pcÕ
, val[a := v], buf)

(LSWM)

As mentioned earlier, the state-space automaton XTSO(P) that describes
the TSO semantics is a (potentially infinite-state) transition system. For the
SC semantics, since stores are not bu�ered we rediscover a concrete version
of the model checking framework where neither conditions nor assignments
(in the IMP sense) are atomic. In other words, by adopting a load-and-check
implementation of IMP conditions and a load-and-store implementation of
IMP assignments one would get an interleaving transition system semantics
similar to the one in Section 2.1.

2.3. Relaxed Memory Models 37

REGt

Local Memory

(a, v)
buf(t)

. . .

bu�er≠≠≠æ . . .

flush≠≠≠æ

Shared Memory

0
a

Figure 2.20: A thread’s view of TSO memory. Evaluating EXP expressions during
the execution determines the address-value pairs (a, v) that stores enqueue in the
bu�er and then flush into the shared memory. Loads from address a take their value
from the most recent bu�ered (a, v) pair or from memory if no such pair exists.

Since we target safety specifications, we are interested in a program’s
finite computations under M œ {TSO, SC}. For a program P they are given
by CM(P) := LF (XM(P)), where F is the set of states with empty bu�ers.
With this choice of final states, we avoid incomplete computations that have
pending stores. Note that, since all SC states have empty bu�ers, P’s SC
computations form a subset of its TSO computations: CSC(P) ™ CTSO(P).
We will use ReachM(P) to denote the set of all states s œ F that are reachable
by some computation in CM(P).

To give an example, the Assembly program in Figure 2.18 admits the
TSO computation ·wit below whose first thread store is flushed at the end:

·wit = store1 · load1 · store2 · flush2 · load2 · flush1. (2.1)

Consider an event e = (t, inst, a). Function thread(e) := t identifies
the thread that produced the event. Using inst(e) := inst we refer to the
instruction of the event. For flush events, inst(e) gives the instruction of the
matching store event. Lastly, by addr(e) := a we denote the address that is
accessed (if any). In the given example

thread(store1) = thread(flush1) = thread(load1) = t1,

thread(store2) = thread(flush2) = thread(load2) = t2,

inst(store1) = inst(flush1) = q0,1
mem[x]Ω1≠≠≠≠≠æ q1,1,

inst(load1) = q1,1
r

1

Ωmem[y]≠≠≠≠≠≠æ q2,1,

inst(store2) = inst(flush2) = q0,2
mem[y]Ω1≠≠≠≠≠æ q1,2,

inst(load2) = q1,2
r

2

Ωmem[x]≠≠≠≠≠≠æ q2,2,

addr(store1) = addr(flush1) = addr(load2) = x, and
addr(store2) = addr(flush2) = addr(load1) = y.

38 Chapter 2. Program Verification

2.3.2 Unreachability as Safety Specification

As described in the context of model checking, certain safety properties
— invariants to be precise — can be verified by considering a system’s
reachable states. Such safety specifications can, hence, be easily encoded as
unreachability queries. From a practical point of view, typical sanity checks
and assertions available in many programming languages can be encoded
as unreachability queries. State reachability can, therefore, be seen as a
desirable analysis for Assembly programs under relaxed memory.

Given a memory model M œ {SC, TSO}, the M reachability problem
expects as input a program P and a set of goal states G ™ SM. Wlog, we
assume that goal states (pc, val, buf) specify a program counter pc (through
per-thread marked control states) while leaving the memory valuation and
bu�ers unconstrained. Formally, the M reachability problem asks if some
state in G is reachable in the automaton XM(P).

Given: A parallel program P and goal states G.
Problem: Decide LF flG(XM(P)) ”= ÿ.

We will use notation ReachM(P) fl G for the set of goal states that are
reachable by some computation in CM(P).

A naive explicit-state Depth-First Search (DFS) implementation able to
check M reachability is shown in Algorithm 2.3.

Algorithm 2.3 Explicit-state (DFS) M reachability checker
Input: Memory model M, marked program P and state s œ SM
Output: true if some goal state is M-reachable from s in P

false if no goal state is M-reachable from s in P
Global Variable: visited ™ SM, initially visited = ÿ

1: procedure ExplicitDFS(M, P, s)
2: if s /œ visited then // check that a new SM state is explored
3: if s œ G then
4: return true;
5: end if
6: add s to visited;
7: for all e œ E such that s

e≠æ s

Õ œ �X,M do
8: if ExplicitDFS(M, P, s

Õ) then
9: return true;

10: end if
11: end for
12: end if
13: return false;
14: end procedure

2.3. Relaxed Memory Models 39

Algorithm 2.3 is a decision procedure for Assembly programs under
SC. Intuitively, on one hand, ExplicitDFS(SC, P, s0) decides positive SC
reachability instances since true is returned if and only if the depth-first
recursion can construct a computation – œ CSC(P) such that s0

–≠æ s and
s œ G. On the other hand, if ExplicitDFS(SC, P, s0) does not return
true then the global variable visited eventually includes all the finitely-many
states SSC of XSC(P) and the procedure returns false.

Under TSO however, Algorithm 2.3 is not guaranteed to terminate even
for positive instances when a goal state is reachable. Indeed, if the depth-first
recursion explores a loop in an input Assembly program for which a state’s
bu�er content grows then ExplicitDFS never terminates. A possible solu-
tion to this problem is to use a Breadth-First Search (BFS) implementation
for M reachability, like the one in Algorithm 2.4.

Algorithm 2.4 Explicit-state (BFS) M reachability checker
Input: Memory model M, marked program P and states frontier ™ SM
Output: true if some goal state is M-reachable from s œ frontier in P

false if no goal state is M-reachable from any s œ frontier in P
Global Variable: visited ™ SM, initially visited = ÿ

1: procedure ExplicitBFS(M, P, frontier)
2: frontier Õ := ÿ; // will contain the next depth-level frontier
3: for all s œ frontier do
4: if s /œ visited then // only check new SM states
5: if s œ G then
6: return true;
7: end if
8: add s to visited;
9: for all e œ E such that s

e≠æ s

Õ œ �X,M do
10: add s

Õ to frontier Õ;
11: end for
12: end if
13: end for
14: if frontier Õ ”= ÿ then
15: return ExplicitBFS(M, P, frontier Õ);
16: else
17: return false;
18: end if
19: end procedure

Like the preceding depth-first algorithm, Algorithm 2.4 is a decision
procedure under SC. Furthermore, owing to its breadth-first approach, this
algorithm is also guaranteed to terminate correctly for positive instances of

40 Chapter 2. Program Verification

TSO reachability. However, neither of the two presented algorithms is a
decision procedure for programs where no goal state is TSO-reachable.

It should be clear by now that TSO reachability is a hard problem. To be
precise, it was only recently proved that TSO reachability is non-primitive-
recursive-complete decidable [Ati+10] — Memorax [Abd+13] provides a
sound and complete implementation that follows the decidability proof’s
approach. As further witness to the problem’s intractability, approximative
heuristics for TSO reachability (and for the a�erent fence synthesis problem)
abound [KVY10; ABP11; KVY11; LW11; Liu+12; Alg+13; Bou+15].

2.3.3 Robustness as Safety Specification
Robustness [SS88; AM11; BDM13] is a (non-invariant-based) complexity-
wise simpler correctness criterion. Two of its aspects make it appealing in
comparison to TSO reachability checking:

(1) checking robustness is only PSpace-complete [BMM11] and

(2) if robustness holds for some program P then its SC- and TSO-reachable
states are the same, i.e., ReachSC(P) = ReachTSO(P).

Moreover, since checking SC reachability is PSpace-complete [Koz77], (2)
actually implies that TSO reachability can be checked using two PSpace
procedures for any program for which robustness holds.

Intuitively, robustness requires that for each TSO computation of an
Assembly program there is an SC computation that has the same data
and control dependencies. Delays due to store bu�ering are still allowed,
as long as they do not produce dependencies between instructions that SC
computations forbid.

Formally, dependencies between computation events are described in
terms of the happens-before relation. More precisely, given a computation
· œ CTSO(P), the happens-before relation æhb (·) is a union of the three
relations that we define below: æhb (·) := æpo fi ¡ fi æcf .

The program order relation æpo represents the order in which threads
issue their commands: æpo :=

t
tœTID æt

po. Each æt
po relation gives the

order of non-flush events in thread t: if ·

Õ is the subsequence of all non-flush
events of thread t in · then æt

po := <· Õ .
The equivalence relation ¡ links, in each thread, flush events and their

matching store events: (t, inst, a) ¡ (t, flush, a).
The conflict relation æcf orders accesses to the same address. Assume,

on the one hand, that · = ·1 · store · ·2 · load · ·3 · flush · ·4 such that
store ¡ flush, events store and load access the same address a and
come from thread t, and there is no other store event store

Õ œ ·2 such that
thread(store

Õ) = t and addr(store

Õ) = a. Then the load event load is an
early read of the value bu�ered by the event store and store æcf load.

2.3. Relaxed Memory Models 41

store1 store2

flush1 flush2

load1 load2
po po

cfcf

Figure 2.21: The happens-before relation æhb (·wit).

On the other hand, assume · = ·1 · e · ·2 · e

Õ · ·3 such that e and e

Õ are either
load or flush events that access the same address a, neither e nor e

Õ is an
early read, and at least one of e or e

Õ is a flush to a. If there is no other
flush event flush œ ·2 with addr(flush) = a then e æcf e

Õ.
As a first relevant observation, one can notice that any two computations

with the same happens-before relation will reach the same state.

Lemma 4. If –, — œ CTSO(P), s0
–≠æ s, and æhb (–) =æhb (—) then s0

—≠æ s.

Proof. Assume s0
—≠æ s

Õ. Since – and — have the same program order æpo, it
means s and s

Õ have the same program counter pc. Moreover, since – and —

have the same conflict order æcf , s and s

Õ have the same memory valuation
val. Finally, since computations – and — empty the bu�ers, s and s

Õ have
empty bu�ers. In conclusion, s = s

Õ.

To give an example, Figure 2.21 depicts the happens-before relation of
the computation ·wit introduced earlier, on page 37.

The robustness correctness criterion is defined as follows: a program P
is said to be robust against TSO i� for each computation · œ CTSO(P) there
exists a computation ‡ œ CSC(P) such that æhb (·) = æhb (‡).

As already mentioned, a convenient benefit of robustness is that, if a
program P is robust then the same set of states are reachable in P both
under SC as well as under TSO:

Theorem 5 ([Bou+15]). If a program P is robust against TSO then its SC-
and TSO-reachable states are the same: ReachSC(P) = ReachTSO(P).

Proof. The ™ inclusion holds by CSC(P) ™ CTSO(P). For the reverse, assume
that there is a TSO computation · œ CTSO(P) such that s0

·≠æ s. Since P is
robust, there is an SC computation ‡ œ CSC(P) such that æhb (·) =æhb (‡).
Then ‡ œ CTSO(P) and, by Lemma 4, s0

‡≠æ s so s is SC-reachable.

We will use Theorem 5 in Section 3.1.2 to justify that robustness can be
used to implement an oracle for lazily checking TSO reachability.

Chapter3
Heuristics for TSO Reachability

Contents
3.1 Lazy TSO Reachability 44

3.1.1 Soundness and Completeness 47
3.1.2 A Robustness-based Oracle 51

3.2 Over-approximating Bu�er Abstractions 52
3.2.1 Set Bu�er Abstractions 53
3.2.2 Multiset Bu�er Abstractions 57
3.2.3 Partial Coherence Abstractions 59

Undeterred by the di�culty of the TSO reachability problem, we propose
two verification approaches: lazy TSO reachability for under-approximating
and using set-based abstractions for over-approximating.

A sketch of the idea behind using approximations for TSO reachability
is depicted in Figure 3.1. Approximations provide a set of advantages over
the complete method [Abd+13] for TSO reachability. The common target of
approximations is that they provide methods meant to be generally faster.
Indeed, both finite- and infinite-state approximations may yield faster on-
the-fly reachability checking. This can, e.g., be achieved by (1) looking for
bad behaviors within iterative refinement steps, as lazy TSO reachability
does, or by (2) approximating the system’s semantics with a simpler (and
algorithmically easier to encode) semantics, as set-based abstractions do.
Furthermore, approximations usually facilitate re-using existing program
verification techniques, thus sharing the analysis burden when necessary.

We present the iterative approach to lazy TSO reachability in Section 3.1.
Lazy TSO reachability uses queries to an oracle to identify sequences of
instructions that lead to states reachable under TSO and not reachable under
SC. In Section 3.1.1, the most technical part of the manuscript, we explain

43

44 Chapter 3. Heuristics for TSO Reachability

CTSO(P)

an under-approximation

an over-approximation

bad behaviors

Figure 3.1: Approximations wrt TSO reachability. TSO reachability checks if
some TSO computation of P represents a bad behavior, i.e., ends in a goal state.
This could be done either using an under-approximation or an over-approximation.
If a bad behavior belongs to an under-approximation then this is a bad behavior
of the program, while if no bad behavior belongs to an over-approximation then
the program has no bad behaviors. In the picture, it cannot be concluded that the
program is safe (or unsafe) wrt TSO reachability using the depicted approximations.

how the lazy TSO reachability algorithm yields a sound and complete semi-
decision procedure. Afterward, in Section 3.1.2, we show how robustness
— the inspiration for lazy TSO reachability — can be used to implement a
robustness-based oracle.

In Section 3.2 we present several abstractions that can be used to prove
safety of programs under TSO. First, we outline how to use a set abstraction
of bu�ers to account for TSO relaxation. Subsequently, we generalize this
abstraction and come up with an abstraction refinement algorithm for check-
ing safety under TSO. In the more technical side of this contribution we
prove that reachability is decidable for the multiset bu�er abstraction with
per-address last-added-value information: the multiset-abstract semantics is
a well-structured transition system with computable minimal predecessors
and decidable well-quasi order.

3.1 Lazy TSO Reachability
Instead of solving reachability under TSO directly, the algorithm we pro-
pose solves SC reachability and, if no goal state is reachable, tries to lazily
introduce store bu�ering on a certain control path of the program. The al-
gorithm delegates choosing the control path to an oracle function O. Given
an input program R, the oracle returns a sequence of instructions I

ú in that
program. Formally, the oracle satisfies the following requirements:

• if O(R) = Á then ReachSC(R) = ReachTSO(R);

• otherwise, O(R) = inst1inst2 . . . instn such that cmd(inst1) is a store,
cmd(instn) is a load, and — for all i œ [1..n ≠ 1] — cmd(insti) ”= mf

and dst(insti) = src(insti+1).

3.1. Lazy TSO Reachability 45

Intuitively, whenever O(R) returns the empty sequence then the SC- and
TSO-reachable states of R coincide. Otherwise, O(R) returns an instruction
sequence in one of R’s threads. This instruction sequence starts with a store,
ends with a load, and contains no memory fence in-between.

The lazy TSO reachability checker is outlined in Algorithm 3.1. As input,
it takes a program P and an oracle O. We assume some control states in
each thread to be marked to define a set of goal states. The algorithm
returns true i� the program can reach a goal state under TSO.

Algorithm 3.1 Lazy TSO reachability checker.
Input: Marked program P and oracle O
Output: true if some goal state is TSO-reachable in P

false if no goal state is TSO-reachable in P
1: R := P;
2: while true do
3: if ReachSC(R) fl G ”= ÿ then // check if G states are SC-reachable
4: return true;
5: else
6: ÿ := O(R); // ask the oracle where to use store bu�ering
7: if ÿ ”= Á then
8: R := R ü ÿ;
9: else

10: return false;
11: end if
12: end if
13: end while

Algorithm 3.1 works as follows. First, it creates a copy R of the program
P. Next, it checks if a goal state is SC-reachable in R (Line 3). If that is
the case, the algorithm returns true. Otherwise, it asks the oracle O where
in the program to introduce store bu�ering. If O(R) ”= Á, the algorithm
extends R to emulate store bu�ering on the path O(R) under SC (Line 8)
and it goes back to the beginning of the loop. If O(R) = Á, by the first
property of oracles, R’s reachable states under SC and under TSO are the
same. This means the algorithm can safely return false (Line 10). Since R
emulates TSO behavior of P, the algorithm solves TSO reachability for P.

Let ÿ := O(R) = inst1inst2 . . . instn and let t := (Comt, Qt, It, q0,t) be
the thread of the instructions in ÿ. The modified program R ü ÿ replaces
thread t by a new thread tü ÿ. The new thread emulates under SC the TSO
semantics of ÿ.

Formally, the extension of t by ÿ is tüÿ := (ComÕ
t, Q

Õ
t, I

Õ
t, q0,t). The thread

tüÿ is obtained from t by adding sequences of instructions starting from q0 :=

46 Chapter 3. Heuristics for TSO Reachability

src(inst1). To remember the addresses and values of the bu�ered stores, we
use auxiliary registers ar1, . . . , ar

max

and vr1, . . . , vr

max

, where max Æ n ≠ 1
is the total number of store instructions in ÿ. The sets ComÕ

t ´ Comt and
Q

Õ
t ´ Qt are extended as necessary.

We define the extension by describing the new transitions that are added
to I

Õ
t for each instruction insti. In our construction, we use a variable count

to keep track of the number of store instructions already processed. Initially,
Q

Õ
t := Qt and count := 0. Based on the type of instructions, we distinguish

the following cases.
If cmd(insti) = mem[e] Ω e

Õ, then we increment count by 1 and add
instructions that remember the address and the value that are being written
in the auxiliary registers ar

count

and vr

count

.
If cmd(insti) = r Ω mem[e], we add instructions to I

Õ
t that perform a load

from memory only when a load from the simulated bu�er is not possible.
More precisely, if j œ [1, count] is found so that arj = e then register r is
assigned the value of vrj . Otherwise, register r receives its value from the
address indicated by e.

qi≠1 · · ·

· · ·

qi

check ar

count

”= e check ar1 ”= e

r Ω mem[e]

check ar1 = e

check ar

count

= e

r Ω vr1

r Ω vr

count

If cmd(insti) is an assignment or a conditional, we add the instruction
(qi≠1, cmd(insti), qi) to I

Õ
t. By the definition of an oracle, cmd(insti) is

never a fence command.
The above cases handle all instructions in ÿ. So far, the extension added

new instructions to I

Õ
t that lead through the fresh states q1, . . . , qn. Out of

control state qn we then recreate the sequence of stores remembered by the
auxiliary registers. Afterwards, we return to the control flow of the original
thread t.

qn

· · ·
dst(instn)

mem[ar1] Ω vr1 mem[ar

max

] Ω vr

max

Next, we remove inst1 from the program. This prevents the oracle from
discovering in the future another instruction sequence that is essentially
the same as ÿ. As we will show, this is key to guaranteeing termination
of the algorithm for acyclic programs. However, the removal of inst1 may
reduce the set of TSO-reachable states. To overcome this problem, we insert

3.1. Lazy TSO Reachability 47

t1t1

q0,1

q1,1

q2,1

qm,1

r1 Ω mem[y]

check r1 = 0

q1

q2

ar1 Ω x vr1 Ω 1 check ar1 ”= y

check ar1 = y

r1 Ω vr1

mem[ar1] Ω vr1
r1 Ω mem[y]

m

e

m

[ar

1] Ω v

r

1

mf

t2t2

q0,2

q1,2

q2,2

qm,2

mem[y] Ω 1

r2 Ω mem[x]

check r2 = 0

Figure 3.2: Extension by q0,1
mem[x]Ω1≠≠≠≠≠≠æ q1,1

r1Ωmem[y]≠≠≠≠≠≠æ q1,2 of the Assembly
simplified Dekker algorithm in Figure 2.18. The goal state (pc, val, buf) where
val(x) = val(y) = 1 and val(r1) = val(r2) = 0 is now SC-reachable.

additional instructions. Consider an instruction inst œ It with src(inst) =
src(insti) for some i œ [1..n] and check that inst ”= insti. We add instructions
that recreate the stores bu�ered in the auxiliary registers and return to
dst(inst).

qi

· · ·
dst(inst)

mem[ar1] Ω vr1 mem[ar

count

] Ω vr

count

cmd(inst)

Similarly, for all load instructions insti as well as out of q1 we add in-
structions that flush and fence the pair (ar1, vr1), make visible the remaining
bu�ered stores, and return to state q in the original control flow. Below,
q := src(insti) if insti is a load and q := dst(inst1), otherwise. Intuitively,
this captures behaviors that delay inst1 past loads earlier than instn, and
that do not delay inst1 past the first load in ÿ.

qi

· · ·
q

mem[ar1] Ω vr1 mf

mem[ar

count

] Ω vr

count

Figure 3.2 shows the extension of the program in Figure 2.18 by the
instruction sequence q0,1

mem[x]Ω1≠≠≠≠≠æ q1,1
r

1

Ωmem[y]≠≠≠≠≠≠æ q1,2.

3.1.1 Soundness and Completeness
We show that Algorithm 3.1 is a decision procedure for acyclic programs.
From here until (inclusively) Theorem 8 we assume programs to be acyclic,
i.e., their instructions and control states form directed acyclic graphs.

48 Chapter 3. Heuristics for TSO Reachability

Theorem 9 then explains how Algorithm 3.1 yields a semi-decision pro-
cedure for all programs.

We first prove the extension sound and complete (Lemma 6): extending
R by sequence ÿ := O(R) does neither add nor remove TSO-reachable states.
Afterwards, Lemma 7 shows that if Algorithm 3.1 extends R by ÿ (Line 8)
then, in subsequent iterations of the algorithm, no new sequence returned
by the oracle is the same as ÿ (projected back to P). Next, by the first
condition of an oracle and using Lemma 7, we establish that Algorithm 3.1
is a decision procedure for acyclic programs (Theorem 8). Finally, we show
that Algorithm 3.1 can be turned into a semi-decision procedure for all
programs using a bounded model checking approach (Theorem 9).

Lemma 6. Let ADR fi REG be the addresses and registers of program R
and let ÿ := O(R). Then, (pc, valÕ, buf) œ ReachTSO(R ü ÿ) if and only if
(pc, val, buf) œ ReachTSO(R) and val(a) = valÕ(a) for all a œ ADR fi REG.

Let t be the thread that is modified by R ü ÿ. To prove Lemma 6,
one can show that for any prefix –

Õ of – œ CTSO(R) there is a prefix —

Õ of
— œ CTSO(R ü ÿ), and vice versa, that maintain the following invariants.

I-0 s0
–Õ≠æ (pc, val, buf) and s0

—Õ
≠æ (pcÕ

, valÕ, buf Õ).

I-1 If pc and pcÕ di�er, they only di�er for thread t. If pc(t) ”= pcÕ(t), then
pc(t) = dst(insti) and pcÕ(t) = qi for some i œ [1..n ≠ 1].

I-2 valÕ(a) = val(a) for all a œ ADR fi REG.

I-3 buf and buf Õ di�er at most for t. If buf(t) ”= buf Õ(t), then pcÕ(t) = qi for
some i œ [1..n ≠ 1] and buf(t) = (\ar

count

, \vr

count

) · · · (‰
ar1,

‰
vr1) · buf Õ(t)

where count stores are seen along ÿ from src(inst1) to dst(insti).

For clarity, the proof of Lemma 6 is presented in Appendix A.
We now show that the oracle never suggests the same sequence ‡ twice.

Since in Rü ÿ we introduce new instructions that correspond to instructions
in R, we have to map back sequences of Iü instructions from R ü ÿ to se-
quences of I instructions from R. Intuitively, the mapping gives the original
instructions from which the sequence was produced.

Formally, we define a family of projection functions hÿ : I

ú
ü æ I

ú with
hÿ(Á) := Á and hÿ(w · inst) := hÿ(w) · hÿ(inst). For an instruction inst œ Iü,
we define hÿ(inst) := inst provided inst œ I. We set hÿ(inst) := insti if inst
is a first instruction on the path between qi≠1 and qi for some i œ [1..n]. In
all other cases, we skip the instruction, hÿ(inst) := Á. Then, if R0 := P is
the original program, ÿj is the sequence that the oracle returns in iteration
j œ N of the while loop, and w is a sequence of instructions in Rj+1, we define
h(w) := hÿ

0

(. . . hÿj (w)). This latter function maps sequences of instructions
in program Rj+1 back to sequences of instructions in P.

3.1. Lazy TSO Reachability 49

We are ready to state our key lemma. Intuitively, Lemma 7 states that
the oracle does not repeat itself.

Lemma 7. Let R0 := P and Ri+1 := Ri ü ÿi for each ÿi := O(Ri) as in
Algorithm 3.1. If ÿj+1 ”= Á then h(ÿj+1) ”= h(ÿi) for all i Æ j.

Proof. Assume, to the contrary, that h(ÿj+1) = h(ÿi) for some i Æ j where
ÿj+1 := O(Rj+1) and ÿi := O(Ri). Furthermore, let instfirst be the first
(store) instruction and inst last be the last (load) instruction of the instruction
sequence ÿj+1. Similarly, let inst Õ

first and inst Õ
last be the first and last instruc-

tions of the sequence ÿi. Since h(ÿj+1) = h(ÿi) it means that h(instfirst) =
h(inst Õ

first) and h(inst last) = h(inst Õ
last).

However, since all control flows of Ri+1 := Riüÿi that recreate h(inst Õ
first)

before h(inst Õ
last) also place a fence between the two, no other later sequences

returned by the oracle have h(inst Õ
first) come before h(inst Õ

last). This in par-
ticular means that ÿj+1 = O(Rj+1) where h(instfirst) comes before h(inst last)
does not exist. In conclusion, the initial assumption is false.

We can now prove Algorithm 3.1 is sound and complete for acyclic pro-
grams (Theorem 8). Lemma 7 and the assumption that the input program
is acyclic ensure that if no goal state is found SC-reachable (Line 4), then
Algorithm 3.1 eventually runs out of sequences ÿ to return (Line 7). If that
is the case, O(R) returns Á in the last iteration of Algorithm 3.1. By the
first oracle condition, we know that the SC- and TSO-reachable states of R
are the same. Hence, no goal state is TSO-reachable in R and, by Lemma 6,
no goal state is TSO-reachable in the input program P either. Otherwise, a
goal state s is SC-reachable by some computation · in Rj for some j œ N
and, by Lemma 6, there is a TSO computation in P corresponding to · that
reaches s.

Theorem 8. For acyclic programs, Algorithm 3.1 terminates. Moreover, it
returns true on input P if and only if ReachTSO(P) fl G ”= ÿ.

Proof. It is immediate that Algorithm 3.1 terminates for acyclic programs.
On the one hand, the number of instruction sequences that start with a
store and end with a load (as the second oracle condition requires) is finite
in such a program P. On the other hand, by Lemma 7, at each iteration the
oracle returns a sequence that di�ers (in P) from the previous ones. These
two facts imply termination.

We now prove that ReachTSO(P) fl G ”= ÿ i� Algorithm 3.1 returns true
on input P. For the easy direction (≈), assume that Algorithm 3.1 returns
true on input P. This means that ReachSC(R)flG ”= ÿ in the last iteration of
the algorithm’s loop. Then, by ReachSC(R) ™ ReachTSO(R) and Lemma 6,
we know that ReachSC(R) ™ ReachTSO(P). Hence, ReachTSO(P) fl G ”= ÿ.

For the reverse direction (∆), assume that ReachTSO(P) fl G ”= ÿ. Fur-
thermore, let R0 := P and Ri+1 := Ri ü ÿi for ÿi := O(Ri). By the

50 Chapter 3. Heuristics for TSO Reachability

initial termination argument we know there exists j œ N such that the al-
gorithm terminates with R = Rj in its last loop iteration. That means
that either the check in Line 3 of the algorithm succeeds, in which case Al-
gorithm 3.1 returns true, or the check in Line 7 of the algorithm fails, i.e.
O(Rj) = ‘ and ReachSC(Rj) fl G = ÿ. In the latter case, by the first oracle
condition we know that ReachTSO(Rj) fl G = ÿ and, by Lemma 6, we get
ReachTSO(Rj) ™ ReachTSO(R0). Then, ReachTSO(P) fl G = ÿ contradicts
the above assumption and concludes the proof.

To establish that Algorithm 3.1 yields a semi-decision procedure for
all programs, one can use an iterative bounded model checking approach.
Bounded model checking unrolls the input program P up to a bound k œ N
on the length of computations. Then Algorithm 3.1 is applied to the result-
ing programs Pk. If it finds a goal state TSO-reachable in Pk, by Lemma 6,
this state corresponds to a TSO-reachable goal state in P. Otherwise, we
increase k and try again. By Theorem 8, we know that Algorithm 3.1 is a de-
cision procedure for each Pk. This implies that Algorithm 3.1 together with
iterative bounded model checking yields a semi-decision procedure that ter-
minates for all positive instances of TSO reachability. For negative instances
of TSO reachability, however, the procedure is guaranteed to terminate only
if the input program P is acyclic.

Theorem 9. We have ReachTSO(P)flG ”= ÿ if and only if, for large enough
k œ N, Algorithm 3.1 returns true on input Pk.

Proof. Assume that ReachTSO(P) fl G ”= ÿ. Then there exist some state
s œ G and – œ CTSO(P) such that s0

–≠æ s. Let k be the length of – and G

Õ

be the goal states of XTSO(Pk). There exists a computation — œ CTSO(Pk)
that mimics – and reaches s

Õ œ G

Õ. Hence, G

Õ fl ReachTSO(Pk) ”= ÿ and, by
Theorem 8, Algorithm 3.1 returns true on input Pk.

For the reverse direction, assume that Algorithm 3.1 returns true on
input Pk for some k œ N. Let s

Õ
0 be the initial state of XTSO(Pk) and,

as before, G

Õ be the goal states of XTSO(Pk). By Theorem 8, there exists
s

Õ œ G

Õ fl ReachTSO(Pk) and — œ CTSO(Pk) such that s

Õ
0

—≠æ s

Õ. Since Pk

unrolls P up to bound k, there exists a computation – œ CTSO(P) that
mimics — and reaches s œ G. Therefore, G fl ReachTSO(P) ”= ÿ.

An example of a safe program — wrt TSO unreachability1 — for which
the algorithm described in Theorem 9 does not terminate is depicted in Fig-
ure 3.3. The program is safe since none of its goal states is TSO-reachable:
the initial control states will never be left since the conditionals will never
succeed. However, although every Pk that unrolls the program in Figure 3.3
up to k œ N is found safe, the algorithm only stops if a TSO-reachable state
is found or if O(R) = ‘, which is never the case.

1Although this program is safe wrt TSO unreachability it is not safe wrt robustness.

3.1. Lazy TSO Reachability 51

t1
q0,1 qm,1

check r1 = 2

mem[x] Ω 1 ≠ r1

r1 Ω mem[y]

t2
q0,2 qm,2

check r2 = 2

mem[y] Ω 1 ≠ r2

r2 Ω mem[x]

Figure 3.3: A safe program for which Algorithm 3.1 never terminates.

The underlying reason why always O(R) ”= ‘ is that there are infinitely
many sequences instm

store · inst load where m œ N and

either inststore = q0,1
mem[x]Ω1≠r

1≠≠≠≠≠≠≠≠æ q0,1 and inst load = q0,1
r

1

Ωmem[y]≠≠≠≠≠≠æ q0,1

or inststore = q0,2
mem[y]Ω1≠r

2≠≠≠≠≠≠≠≠æ q0,2 and inst load = q0,2
r

2

Ωmem[x]≠≠≠≠≠≠æ q0,2.

3.1.2 A Robustness-based Oracle
We conclude this section by describing how robustness — introduced in
Section 2.3.3 — can be used as an oracle.

Our robustness-based oracle is best described in terms of the following
characterization of robustness from earlier work [BDM13]: a program P is
not robust against TSO i� CTSO(P) contains a computation, called witness,
as in Figure 3.4. In contraposition this can be stated as follows.

Theorem 10 ([BDM13]). A program P is robust against TSO if and only
if the set of TSO computations CTSO(P) contains no witness.

Intuitively, a witness · delays stores of only one thread in P. The other
threads adhere to the SC semantics. Conditions (W1) – (W4) in Figure 3.4
describe formally this restrictive behavior. Furthermore, condition (W5)
implies that no computation ‡ œ CSC(P) can satisfy æhb (·) = æhb (‡).

· =
store

load flush

·1 ·2 ·3 ·4

Figure 3.4: A witness · with store ¡ flush and store-delaying thread t :=
thread(store) = thread(load) satisfies the following constraints: (W1) Only thread
t delays stores. (W2) Event flush represents the first delayed store of t and load

is the last event of t past which flush is delayed. So ·2 contains neither flush
events nor fences of t. (W3) Sequence ·3 contains no events of thread t. (W4)
Sequence ·4 consists only of flush events e of thread t. All these events e satisfy
addr(e) ”= addr(load). (W5) We require load æ+

hb e for all events e in ·3 · flush.

To give an example, computation ·wit from page 37 is a witness for the
Assembly Dekker algorithm in Figure 2.18. Indeed, in no SC computation

52 Chapter 3. Heuristics for TSO Reachability

of this program can both loads read the initial values of x and y. Relative
to Figure 3.4, we have store = store1, load = load1, flush = flush1,
·3 = store2 · flush2 · load2, and ·1 = ·2 = ·4 = Á.

The robustness-based oracle, given input P, finds a witness · as described
in Figure 3.4 and returns the sequence of instructions for the events in
store · ·2 · load that belong to thread t. If no witness exists, it returns Á.

By Theorems 5 and 10, we find that the robustness-based oracle indeed
satisfies the oracle conditions from Section 3.1. Furthermore, given a robust
program and the robustness-based oracle as input, Algorithm 3.1 returns
within the first iteration of its while loop.

3.2 Over-approximating Bu�er Abstractions

In this section we describe several over-approximative abstractions for the
earlier (Figure 2.19) TSO semantics. Throughout this section we use kbuf to
denote, for k œ {s, m} fi N, the various bu�er abstractions. More precisely,
we use s to denote the set abstraction of TSO bu�ers, m the multiset bu�er
abstraction, and k œ N the partial coherent abstraction [KVY11] that uses
a k-bounded queue.

The first natural abstraction that we describe approximates TSO bu�ers
by sets, as first introduced in [KVY11]. After we prove that this first ab-
straction preserves TSO reachability properties we generalize it to multisets
and, as introduced in [KVY11], enhance it by bounded queues. Using similar
invariant arguments we are able to show all the bu�er abstractions preserve
TSO reachability properties.

We acknowledge that the abstractions we present may arguably be either
imprecise or too expensive for many safe programs. However, additionally
to being useful for a large class of programs, they are a good alternative to
the non-primitive-recursive-complete TSO reachability approach [Ati+10;
Abd+13]. Furthermore, these set-based abstractions may very well serve as
the basis for better over-approximations.

A novel aspect in our study consists in identifying that, when dealing
with spurious set-bu�er abstraction counterexamples, the multiset-bu�er
abstraction is naturally complementary to partial coherence abstractions.
This makes it possible to come up with a refinement algorithm for checking
safety wrt TSO reachability using partial coherence abstractions.

Furthermore, we show that reachability is decidable for the multiset
bu�er abstraction with per-address last-added-value information. This is
the case since the multiset-abstract semantics is provably a well-structured
transition system with computable minimal predecessors and decidable well-
quasi order. We present the details to the decidability proof in Appendix B.

3.2. Over-approximating Bu�er Abstractions 53

3.2.1 Set Bu�er Abstractions
The most natural way to approximate TSO bu�ers is by using sets instead
of queues. For a little extra precision we also assume that the structure of a
thread’s set-bu�er approximation tracks the last bu�ered values per address.
Such a set-based abstraction corresponds to a partial coherence abstraction
with k = 0 bounded-bu�ers [KVY11]. Figure 3.5 depicts the intuitive view
that a thread’s bu�er is an ADR ◊ DOM subset with protuberances for per-
address last added values.

(a, v

Õ)bu�er≠≠≠æ
last(a,

sbuf)

sbuf(t)

(a, v)
flush≠≠≠æ

Figure 3.5: Shape of a set-approximating store bu�er. Bu�ering a new pair (a, v

ÕÕ)
replaces (a, v

Õ) as a’s last added value. Flushing (a, v

Õ) from a’s last added value
position is possible i� no other (a, v) pair — for the same address a — is in the set.

Figure 3.6 describes formally the set-based abstract semantics Aset(P).
In contrast to the concrete TSO semantics on page 36 (Figure 2.19) store
flushes are now (non-deterministically) either destructive or non-destructive:
a pair (a, v) in the set bu�er can be flushed either by rule (WM-D), and thus
be removed from sbuf, or by rule (WM-ND), and thus the flush would leave
sbuf unaltered. The other rules of Aset(P) stay the same — up to using sets
(as described in Figure 3.5) instead of queues for bu�ers.

Similarly to the concrete TSO semantics, abstract TSO computations in
the semantics Aset(P) are defined by the automaton language LF (Aset(P))
where F is the set of states with empty (set) bu�ers. Lemma 11 below
shows that abstract TSO computations in Aset(P) are also a superset of
P’s concrete TSO computations: CTSO(P) = LF (XTSO(P)) ™ LF (Aset(P)).
The detailed proof of Lemma 11 is presented in Appendix A.

Lemma 11. For any program P, CTSO(P) ™ LF (Aset(P)).

To prove Lemma 11, one can show that for any prefix –

Õ of – œ CTSO(P)
such that s0

–Õ≠æ s := (pc, val, buf) the following invariants are maintained:

I-7 s0
–Õ≠æ s

Õ := (pcÕ
, valÕ, sbuf) is a valid computation prefix in Aset(P).

I-8 pc = pcÕ and val = valÕ.

I-9 for all threads t and addresses a, last(a, buf(t)) = last(a,

sbuf(t)) and
(a, v) œ buf(t) fl (ADR ◊ DOM) i� (a, v) œ sbuf(t).

54 Chapter 3. Heuristics for TSO Reachability

cmd = r Ω mem[ea], a = ‚ea, ÷ v = last(a,

sbuf(t))

s

(t,inst,a)≠≠≠≠≠≠æ (pcÕ
, val[r := v], sbuf)

(RB)

cmd = r Ω mem[ea], a = ‚ea, sbuf(t) fl ({a} ◊ DOM) = ÿ
s

(t,inst,a)≠≠≠≠≠≠æ (pcÕ
, val[r := val(a)], sbuf)

(RM)

cmd = mem[ea] Ω ev, a = ‚ea, v = ‚ev

s

(t,inst,a)≠≠≠≠≠≠æ (pcÕ
, val, sbuf[t := sbuf(t) fi (a, v)])

(LS)

sbuf(t) = S ‡ {(a, v)}, v ”= last(a,

sbuf(t)) ‚ S fl ({a} ◊ DOM) = ÿ
s

(t,flush,a)≠≠≠≠≠≠æ (pc, val[a := v], sbuf[t := S])
(WM-D)

sbuf(t) = S ‡ {(a, v)}
s

(t,flush,a)≠≠≠≠≠≠æ (pc, val[a := v], sbuf)
(WM-ND)

cmd = mf, sbuf(t) = ÿ
s

(t,inst,‹)≠≠≠≠≠≠æ (pcÕ
, val, sbuf)

(LF)

cmd = r Ω e, v = ‚e

s

(t,inst,‹)≠≠≠≠≠≠æ (pcÕ
, val[r := v], sbuf)

(LA)

cmd = check e, ‚e ”= 0

s

(t,inst,‹)≠≠≠≠≠≠æ (pcÕ
, val, sbuf)

(LC)

Figure 3.6: Transition semantics rules for Aset(P) assuming s = (pc, val, sbuf)
with pc(t) = q and inst = q

cmd≠≠≠æ q

Õ in thread t. Except for rules (WM-D) and
(WM-ND), the program counter is always updated by pcÕ = pc[t := q

Õ]. We use (as
before) ‚e for the result of evaluating expression e under val and last(a,

sbuf(t)) for
the last value to address a bu�ered by thread t stores. Operators fi and ‡ denote
set union and, respectively, disjoint set union.

With the same meaning of goal state as described for TSO reachability
in section 2.3.2, we use notation Reachset(P) fl G for the set of goal states
that are reachable by some abstract TSO computation in Aset(P). Using
Lemma 11 one can conclude that the set bu�er abstraction is a safe over-
approximation for TSO reachability.

Theorem 12. For any program P, ReachTSO(P) fl G ™ Reachset(P) fl G.

Proof. Let s œ ReachTSO(P) fl G and assume · is a TSO computation that
ends in this state s. By Lemma 11, computation · belongs to the language
LF (Aset(P)) of the abstract semantics Aset(P). Hence, s œ Reachset(P)
and, since s œ G as well, we conclude that s œ Reachset(P) fl G.

Theorem 12 guarantees that if no TSO goal state is reachable in Aset(P)

3.2. Over-approximating Bu�er Abstractions 55

t1t1

q0,1

qm,1

mem[x] Ω 1

mem[x] Ω 2

mem[x] Ω 3

t2t2

q0,2

qm,2

check r= 1

r Ω mem[x]

check r= 2

r Ω mem[x]

check r= 1

Figure 3.7: A program that the set abstraction cannot prove safe. This program
can be proved safe using the multiset bu�er abstraction as well as using a k-bounded
partial coherence abstraction where k Ø 3.

then the program P is safe under TSO reachability. Concretely, this means
that Reachset(P) fl G = ÿ implies ReachTSO(P) fl G = ÿ.

For example, for the Figure 3.3 program on page 51 we have2

Reachset(P) = {(pc, val, sbuf) | pc = (q0,1, q0,2), val œ {x, y, r1, r2} æ {0, 1},

and sbuf ™ {(x, 0), (x, 1)} ◊ {(y, 0), (y, 1)}}.

To see that these are indeed the reachable states, notice that the state
(pc0, val0,

sbuf) with sbuf(t1) = {(x, 0), (x, 1)} and sbuf(t2) = {(y, 0), (y, 1)}
is reachable in Aset(P). From this state one can reach any possible {0, 1}-
valued configuration of ADR fi REG by appropriately interleaving (WM-ND)
flushes and (RM) memory loads. The states with smaller bu�er contents
can then be reached using (WM-D) flushes.

Since no state ((qm,1, qm,2), val, buf) belongs to the above set Reachset(P)
the Figure 3.3 program is safe wrt TSO reachability.

As one may think, the set bu�er abstraction is not su�ciently precise for
some safe programs. Figure 3.7 depicts an Assembly program that cannot
be proved safe wrt TSO reachability using the set-bu�er abstraction. This
prompts looking for finer abstractions like the ones we are about to present.

Let’s assume that some program P is unsafe wrt reachability under the
set bu�er abstraction. This will be witnessed by some counterexample com-
putation in Aset(P). If the counterexample is a valid TSO computation we
would know, according to Theorem 12, that P is indeed not safe wrt TSO
reachability. However, if the counterexample is spurious, i.e., it is not a
concrete TSO computation, one must decide what measures can be taken

2I.e., for the Figure 3.3 program, Reachset(P) contains 2 ◊ 2 ◊ 2 ◊ 2¸ ˚˙ ˝
valuation

◊ 4 ◊ 4¸˚˙˝
bu�ers

states.

56 Chapter 3. Heuristics for TSO Reachability

towards deciding TSO reachability. An informed decision should rely on the
two reasons why an Aset(P) counterexample may be spurious:

(i) the number of distinct address-value pairs bu�ered and flushed di�ers;

(ii) the set abstraction loses the order of bu�ered address-value pairs.

To address point (i) above we propose the multiset bu�er abstraction
Amset(P), a natural extension to the presented set bu�er abstraction. Using
the theory of Well-structured Transition System we furthermore conclude,
in Section 3.2.2, that reachability in this finer abstraction is still decidable.

To address the second reason (ii) why an Aset(P) counterexample may
be spurious we present partial coherence abstractions in Section 3.2.3. Intu-
itively, given some k œ N, a k-bounded partial coherence abstraction Ak(P)
refines the set bu�ers by combining them with (per-thread) k-bounded
queues — setting k to 0 defaults to a set abstraction. These abstractions
were introduced by Kuperstein et al. [KVY11] and represent one way for
regaining potentially relevant orderings of bu�ered stores.

Algorithm 3.2 Combining abstractions for unreachability checking.
Input: Marked program P
Output: true if P is safe (no goal state is TSO-reachable in P)

false if P is not safe (some goal state is TSO-reachable in P)
1: if Reachmset(P) fl G = ÿ then // check reachability in Amset(P)
2: return true;
3: else
4: while true do
5: if previous check finds a concrete CTSO(P) counterexample then
6: return false;
7: else
8: // use previous counterexamples to find a finer k œ N
9: if Reachk(P) fl G = ÿ then // check reachability in Ak(P)

10: return true;
11: end if
12: end if
13: end while
14: end if

Algorithm 3.2 depicts a possible way to combine the partial coherence
and multiset abstractions that we will present next. The algorithm should
be interpreted as a refinement scheme that uses partial coherence as a failsafe
when reachability is unsuccessful under the multiset abstraction.

If, for example, finding a finer k œ N at line 8 of Algorithm 3.2 would
simply increment the value of k then the algorithm would eventually (and

3.2. Over-approximating Bu�er Abstractions 57

correctly) terminate for programs whose goal states are TSO reachable. As
is, termination in other cases is generally not guaranteed.

3.2.2 Multiset Bu�er Abstractions
A simple extension to the previous set bu�er abstraction sees multisets re-
place the bu�er sets. Stated di�erently, starting from the concrete TSO se-
mantics, the multiset bu�er abstraction tracks per-thread-and-address last-
added values while replacing the queue structure of the TSO bu�ers by
multisets.

We use a numeric-valued function notation for multisets. Formally, given
some finite ground set S, any mapping f : S æ N defines a multiset. We will
also use [a1, . . . , an]i

1

,...,in as notation for the multiset containing distinct
elements a1, . . . , an œ S with multiplicities i1, . . . , in œ N. Intuitively, a
multiset f over ground set S is the same as [a1, . . . , an]i

1

,...,in i�

f(a) =
I

ij if a = aj for some j œ [1..n],
0 otherwise, i.e., if a œ S \ {a1, . . . , an}.

To give some concrete examples, [] always denotes the empty multiset while
[(0, 1)]2 denotes the multiset containing twice the pair (0, 1).

Figure 3.8 describes the multiset-based abstract semantics Amset(P). In
contrast to the concrete TSO semantics on page 36 (Figure 2.19) stores add
and flush address-value pairs to/from a multiset instead of to/from a queue.
Similarly to the Figure 3.5 set bu�ers (used by the Figure 3.6 semantics), the
last-added address-value pairs are per-address tracked. This reflects in the
way address-value pairs are flushed from the multiset bu�er mbuf. Namely,
an address-value pair (a, v) is flushed from mbuf either

(1) if it’s value v is di�erent from the last-added one for address a, or
(2) if its multiplicity mbuf((a, v)) is higher than 1, or
(3) if mbuf ¿({a} ◊ DOM) is precisely the multiset [(a, v)]1.

The latter case takes care that it never occurs for neither (1) nor (2) to hold
while a last-added address-value pair is flushed before another pair having
the same address but a di�erent value.

As before, abstract TSO computations in Amset(P) are defined by the
automaton language LF (Amset(P)) where F is the set of states with empty
bu�ers. Moreover, Lemma 13 below posits, unsurprisingly, that Amset(P)
computations are a finer superset of P’s concrete TSO computations, i.e.,
CTSO(P) = LF (XTSO(P)) ™ LF (Amset(P)) ™ LF (Aset(P)).
Lemma 13. For any program P, CTSO(P) ™ LF (Amset(P)) ™ LF (Aset(P)).
Proof (sketch). Proving the left-hand-side inclusion follows similarly to the
proof of Lemma 11. More precisely, one can show that for any prefix –

Õ of
– œ CTSO(P) such that s0

–Õ≠æ s := (pc, val, buf) the following — slightly
strengthened — invariants are maintained:

58 Chapter 3. Heuristics for TSO Reachability

cmd = r Ω mem[ea], a = ‚ea, ÷ v = last(a,

mbuf(t))

s

(t,inst,a)≠≠≠≠≠≠æ (pcÕ
, val[r := v], mbuf)

(RB)

cmd = r Ω mem[ea], a = ‚ea, mbuf(t)¿({a} ◊ DOM) = []

s

(t,inst,a)≠≠≠≠≠≠æ (pcÕ
, val[r := val(a)], mbuf)

(RM)

cmd = mem[ea] Ω ev, a = ‚ea, v = ‚ev

s

(t,inst,a)≠≠≠≠≠≠æ (pcÕ
, val, mbuf[t := mbuf(t) ‡ [(a, v)]1])

(LS)

mbuf(t) = f ‡ [(a, v)]1, v ”= last(a,

mbuf(t)) ‚ f((a, v)) ”= 0 ‚ f ¿({a} ◊ DOM) = []

s

(t,flush,a)≠≠≠≠≠≠æ (pc, val[a := v], mbuf[t := f])
(WM)

cmd = mf, mbuf(t) = []

s

(t,inst,‹)≠≠≠≠≠≠æ (pcÕ
, val, mbuf)

(LF)

cmd = r Ω e, v = ‚e

s

(t,inst,‹)≠≠≠≠≠≠æ (pcÕ
, val[r := v], mbuf)

(LA)

cmd = check e, ‚e ”= 0

s

(t,inst,‹)≠≠≠≠≠≠æ (pcÕ
, val, mbuf)

(LC)

Figure 3.8: Transition semantics rules for Amset(P) assuming s = (pc, val, mbuf)
with pc(t) = q and inst = q

cmd≠≠≠æ q

Õ in thread t. Except for rule (WM), the program
counter is always updated by pcÕ = pc[t := q

Õ]. We use ‚e for the result of evaluating
expression e under val, last(a,

mbuf(t)) for the last value to address a bu�ered by
thread t stores, and f ¿({a}◊DOM) for the projection of f to store operations that
access address a. Furthermore, unlike in Figure 3.6, here the operator ‡ denotes
multiset merge/addition.

I-10 s0
–Õ≠æ s

Õ := (pcÕ
, valÕ, mbuf) is a valid computation prefix in Amset(P).

I-11 pc = pcÕ and val = valÕ.

I-12 for all threads t and addresses a, last(a, buf(t)) = last(a,

mbuf(t)) and,
for all values v œ DOM, |buf(t)¿({(a, v)})| = mbuf(t)((a, v)).

By complete induction one can then infer that – œ LF (Amset(P)).
To prove the right-hand-side inclusion it remains to show, by complete

induction over the length of some arbitrary Amset(P) computation, that all
Amset(P) computations are also Aset(P) computations.

As before, we use notation Reachmset(P) fl G for the set of goal states
that are reachable by some abstract TSO computation in Amset(P). Using
Lemma 13 one can conclude that the multiset bu�er abstraction is a safe
over-approximation for TSO reachability.

3.2. Over-approximating Bu�er Abstractions 59

Theorem 14. For any program P, ReachTSO(P) fl G ™ Reachmset(P) fl G.

Proof. Let s œ ReachTSO(P) fl G and assume · is a TSO computation that
ends in this state s. By Lemma 13, computation · belongs to the language
LF (Amset(P)) of the abstract semantics Amset(P). Hence, s œ Reachmset(P)
and, since s œ G as well, we conclude that s œ Reachmset(P) fl G.

Theorem 14 guarantees that if no TSO goal state is reachable in Amset(P)
then the program P is safe under TSO reachability. Concretely, this means
that Reachmset(P) fl G = ÿ implies ReachTSO(P) fl G = ÿ.

However, in order for the multiset abstraction to be useful, checking
reachability in Amset(P) should, at the very least, be decidable. This is not
immediate. First o�, unlike for the always-finite Aset(P), the finer multiset-
abstracted semantics Amset(P) is, typically, infinite-state. In fact, to prove
that reachability in Amset(P) is decidable we show that, for an appropriately
chosen (and decidable) Well-quasi-ordering (WQO) over its states, Amset(P)
is a Well-structured Transition System (WSTS) with e�ectively computable
minimal predecessors.

Theorem 15. For any program P, Amset(P) reachability is decidable.

The proof of Theorem 15 is presented in detail in Appendix B.
Possible algorithms for reachability in Amset(P) may, therefore, either

chose to implement a typical backward reachability arising from computing
minimal predecessors or, perhaps more e�ciently, rely on a state-of-the-art
forward EEC algorithm [GRB06].

3.2.3 Partial Coherence Abstractions

If the multiset abstraction fails to prove a program safe, partial coherence
abstractions can be used as a last resort.

Intuitively, a k-bounded partial coherence abstraction Ak(P) enhances
set bu�ers by per-thread k-bounded queues. As depicted in Figure 3.9, for
each thread, a k-bounded queue together with an ADR ◊ DOM set with
protuberances for per-address last added values are used to approximate
store bu�ering.

Figure 3.10 describes the k-bounded partial coherence semantics Ak(P).

As before, abstract TSO computations in Ak(P) are defined by the
automaton language LF (Ak(P)) where F is the set of states with empty
bu�ers. Moreover, Lemma 16 below posits, unsurprisingly, that Ak(P) com-
putations are also a finer superset of P’s concrete TSO computations, i.e.,
CTSO(P) = LF (XTSO(P)) ™ LF (Ak(P)) ™ LF (Aset(P)).

Lemma 16. For any program P, CTSO(P) ™ LF (Ak(P)) ™ LF (Aset(P)).

60 Chapter 3. Heuristics for TSO Reachability

(a, v

Õ)bu�er≠≠≠æ
last(a,

kbuf)

kbuf(t)

(a, v)
(a, v) · · · (a, v) flush≠≠≠æ

k-bounded queue

Figure 3.9: Shape of a k-bounded set-approximating store bu�er. The set compo-
nent from Figure 3.5 serves as failsafe when the k-bounded queue is full. Reusing
the k-bounded queue is possible only if both the set and queue components are
empty. E.g., before reusing the k-bounded queue out of the depicted configuration,
all ADR◊DOM pairs in kbuf(t) must be flushed (the items in the queue are flushed
first, (a, v) second, and (a, v

Õ) last).

cmd = mem[ea] Ω ev, a = ‚ea, v = ‚ev, |Q| < k, R = ÿ
s

(t,inst,a)≠≠≠≠≠≠æ (pcÕ
, val, kbuf[t := (a, v) · Q])

(LS-Q)

cmd = mem[ea] Ω ev, a = ‚ea, v = ‚ev R = ÿ ‚ |Q| = k

s

(t,inst,a)≠≠≠≠≠≠æ (pcÕ
, val, kbuf[t := (Q, R fi (a, v))])

(LS-S)

Q = Q

Õ · (a, v),

s

(t,flush,a)≠≠≠≠≠≠æ (pc, val[a := v], sbuf[t := (QÕ
, R)])

(WM-Q)

|Q| = 0, R = S ‡ {(a, v)}, v ”= last(a,

kbuf(t)) ‚ S fl ({a} ◊ DOM) = ÿ
s

(t,flush,a)≠≠≠≠≠≠æ (pc, val[a := v], sbuf[t := (Q, S)])
(WM-SD)

R = S ‡ {(a, v)}
s

(t,flush,a)≠≠≠≠≠≠æ (pc, val[a := v], sbuf)
(WM-SND)

Figure 3.10: Transition transition semantics rules for Ak(P) assuming s =
(pc, val, kbuf) with pc(t) = q and inst = q

cmd≠≠≠æ q

Õ in thread t. Except in
(WM-Q), (WM-SD) and (WM-SND), the program counter is always updated by
pcÕ = pc[t := q

Õ]. As before ‚e evaluates e under val, last(a,

kbuf(t)) tracks the
last value to address a bu�ered by thread t stores, and fi and ‡ denote union and
disjoint set union. Moreover, we use (Q, R) to denote the k-bounded queue and set
components making up kbuf(t). Being the same as in the — Figure 3.6 — As(P)
semantics, rules (RB), (RM), (LF), (LA), (LC) are omitted.

Proof (sketch). Proving the left-hand-side inclusion follows similarly to the
Lemma 11 proof. Namely, one can show that for any prefix –

Õ of – œ
CTSO(P) such that s0

–Õ≠æ s := (pc, val, buf) the following invariants hold:

I-13 s0
–Õ≠æ s

Õ := (pcÕ
, valÕ, mbuf) is a valid computation prefix in Ak(P).

3.2. Over-approximating Bu�er Abstractions 61

I-14 pc = pcÕ and val = valÕ.

I-15 for all threads t and addresses a, last(a, buf(t)) = last(a,

kbuf(t)) and,
if kbuf(t) = (Q, R) such that Q is the queue and R the set component
then buf(t) = Q

Õ ·Q such that (a, v) œ Q

Õ fl(ADR◊DOM) i� (a, v) œ R.

By complete induction one can then infer that – œ LF (Ak(P)).
To prove the right-hand-side inclusion it remains to show, by complete

induction over the length of some arbitrary Ak(P) computation, that all
Ak(P) computations are also Aset(P) computations.

As before, we use notation Reachk(P) fl G for the set of goal states
that are reachable by some abstract TSO computation in Ak(P). Using
Lemma 16 one can then conclude that each k-bounded partial coherence
abstraction is a safe over-approximation for TSO reachability.

Theorem 17. For any program P, ReachTSO(P) fl G ™ Reachk(P) fl G.

Proof. Let s œ ReachTSO(P) fl G and assume · is a TSO computation that
ends in this state s. By Lemma 16, computation · belongs to the language
LF (Ak(P)) of the abstract semantics Ak(P). Hence, s œ Reachk(P) and,
since s œ G as well, we conclude that s œ Reachk(P) fl G.

Overall, we showed that each component of the hierarchy of approxi-
mations depicted below preserves TSO reachability properties. The partial
coherence approximations are naturally ordered using their precision and,
correspondingly, verification complexity. This allows for a gradual approxi-
mation scheme, as depicted in Algorithm 3.2.

set

multiset

0-bounded
partial coherence

1-bounded
partial coherence

. . .

™

= ™ ™

Furthermore, using the theory of well-structured transition systems we
could show that reachability in the multiset abstraction with per address
last-added-values is decidable. Appendix B contains the details of our proof.
Tight complexity bounds for this problem are not yet known. Such bounds
might be found through a reduction from/to the ExpSpace-complete Petri
net coverability problem [Lip76; Rac78]. This, however, seems to be non-
trivial. Indeed, our attempts to find a reduction from Petri net coverability
led to the conclusion that the nets require zero-test arcs.

Chapter4
Partial Order Reduction

Contents
4.1 The Persistent Set Perspective 65
4.2 Traces for Partial Order Reduction 68

4.2.1 Soundness and Completeness 72
4.3 POR Techniques explained by Traces 74

4.3.1 Dynamic Partial Order Reduction 77
4.3.2 Cartesian Partial Order Reduction 77

Explicit-state model checking is a state-of-the-art method for verifying
concurrent programs. However, it typically su�ers from exponential state-
space explosion due to thread interleaving. Partial Order Reduction (POR)
is one way to address this problem and it relies on building a subset of all
program executions that is su�cient to explore all relevant states.

We described POR for LTL≠X in the context of finite transition systems
in Chapter 2. Now we introduce and discuss POR approaches applicable to
the (potentially infinite) state-spaces of Assembly programs. Concretely,
we show that — with a small change — the happens-before trace notion due
to Shasha and Snir [SS88] is a good candidate to represent equivalent inter-
leaved executions.1 Technically, we present a state-space program semantics
that includes trace information and can be used to check program safety.
Moreover, in the context of reachability, we describe necessary conditions for
an exploration method to be a POR technique as well as su�cient conditions
for it to be optimal in the sense that no two executions with the same trace
are explored. Finally, we show that the given state-space semantics is the
backbone that can explain both dynamic partial order reduction [FG05] and

1The (Mazurkiewicz) traces used in this chapter resemble the happens-before relation
in Section 2.3.3 and di�er from the Section 2.2.1 traces used for model checking.

63

64 Chapter 4. Partial Order Reduction

cartesian partial order reduction [Gue+07], two POR techniques introduced
first in the context of finite transition systems under SC.

We describe POR for Assembly programs using persistent sets [God96]
in Section 4.1. Apart from using the richer Assembly modeling language,
the details of the persistent set perspective are very similar to the POR
description in [Lin14]. Section 4.2 contains the chapter’s main theoretical
contribution: a trace-based description of Partial Order Reduction and an
analysis of the reduction achievable in Assembly programs. To conclude,
in Section 4.3 we recall two well known POR techniques in the context of
Assembly programs under TSO.

Related work Various approaches to Partial Order Reduction exist in the
literature, the majority of which target systems with finite state-spaces. The
POR concept was independently studied by Valmari [Val90], Peled [Pel93],
and Godefroid [God96]. Each of them introduced their own, albeit similar,
variant of ample sets — called stubborn, ample and, respectively, persistent.

On the theoretical side, Mazurkiewicz traces [Maz86] are the algebraic
concept to underpin both POR as well as Shasha and Snir traces [SS88].
On the practical side, Peled showed that POR can be combined with model
checking LTL≠X on-the-fly [Pel96] while Flanagan and Godefroid came up
with a way to statelessly explore a concurrent program’s reduced state-
space dynamically [FG05]. More recently, dynamic POR has been enhanced
to explore exactly one interleaving trace and never initiate sleep-set blocked
exploration in [Abd+14] and, in [Abd+15], it has been generalized to TSO.
Concretely, [Abd+15] implements dynamic POR using a scheduler for the
depth-first traversal of the finite state-space of bounded programs specified
through LLVM IR [LA04]. In other work, systems with dynamically allo-
cated resources [KR08], bounded model checking [MP09; KWG09; CMM13],
as well as concolic testing [SKH12], are combined with dynamic POR.

In other POR-related research, stateful POR exploration is claimed to
be comparably as e�ective as dynamic POR [YWY06; Yan+08], POR is
developed through compositional confluence detection (à la Milner [Mil89]),
and empirical bounds for static and dynamic POR using di�erent depen-
dency approximations are found [GHV09]. Yet more recent works discuss
minimality of stubborn sets when checking deadlocks [VH10] as well as stat-
ically finding stubborn sets heuristically (using guard-based necessary en-
abling/disabling sets of transitions) [Laa+13]. Further results target the
e�cient implementation of condition (C3) in Figure 2.13 (page 30) [BLL06;
BBR10] — the so called cycle proviso — while other results [Sie12] seek to
relax the stuttering restriction (C2). Finally, in [Gue+07] Gueta et al. pro-
pose an alternative dynamic POR method which they call cartesian POR.
Their approach uses cartesian vectors for states in order to determine step-
wise longest transition sequences that threads can perform without context

4.1. The Persistent Set Perspective 65

switches. Intuitively, this yields an iterative batch state-space exploration
where only the last per-thread transitions may be dependent.

4.1 The Persistent Set Perspective
As described in Section 2.2.2, Partial Order Reduction exploits action inde-
pendence. Similarly to the model checking setting, events e1 and e2 that
are enabled in some state s œ SM are independent if both enabledness and
commutativity hold. Formally, e1 and e2 such that s

e

1≠æ s1 and s

e

2≠æ s2 are
independent i� e2 œ enabled(s1), e1 œ enabled(s2), and there exists s

Õ œ SM
such that s1

e

2≠æ s

Õ and s2
e

1≠æ s

Õ. By the symmetric anti-reflexive relation
I ™ E ◊ E consisting of independent events in a program’s semantics we
denote the program’s independence relation while by its complement set
D := (E ◊ E) \ I we denote the program’s dependence relation.

Due to the systems’ complexity, checking (in)dependence is di�cult. For
example, a su�cient syntactic condition for events e1, e2 œ enabled(s) to be
independent is that thread(e1) ”= thread(e2) and addr(e1) ”= addr(e2). This
condition corresponds to the one in [God96] that requires disjoint active
processes and disjoint accessed objects. However, it does not yield a criteria
to e�ectively check (in)dependence for any two events e1, e2 œ enabled(s).

Turning to persistence, a set S of events — all of which are enabled in
state s — is persistent in s i�, for all execution fragments

s1
e

1≠æ . . .

en≠1≠≠≠æ sn
en≠æ s

Õ

starting from s1 := s and staying outside of S up to sn — i.e., ei /œ S for all
i œ [1..n ≠ 1] — it holds that en is independent from all events e œ S.

Note that the above definition of persistent sets implies that if some set
S is persistent in state s then all execution fragments starting in s and using
non-S events contain only events independent from any e œ S.

Algorithmically computing persistent sets is not an easy task. More
precisely, there is a tradeo� between computing small persistence sets (and
thus getting more reduction) and the time required for the finer dependence
analysis. For example, the simplest algorithm to compute a persistent set
(in s) from [God96] has worst-case time complexity O(|enabled(s)|2) and
performs the following steps:

1. Take an event e œ enabled(e) and let S := {e}.

2. For all events e œ S and e

Õ œ enabled(s), add e

Õ to S if

(a) thread(e) = thread(eÕ) or
(b) thread(e) ”= thread(eÕ) and there exists some state s

Õ œ SM such
that e and e

Õ are dependent in s

Õ.

66 Chapter 4. Partial Order Reduction

3. Repeat step 2 until an initially-disabled event is introduced in S or
until fixpoint. If an initially-disabled event is added to S then the set
enabled(s) is returned.

Applied to the relaxed memory semantics, the above algorithm computes a
subset S ™ enabled(s) such that no event e œ enabled(s) \ S belongs to the
same thread as any of the S events and no event e œ enabled(s) \ S accesses
the same address as any of the S events.

In fact, due to the relaxed memory semantics, e, e

Õ œ enabled(s) are
either dependent or independent for all SM states and it is not possible that
an initially-disabled event is introduced in S by the algorithm’s step 2. This
simplifies steps 2.b and 3 of the previous algorithm from [God96].

To summarize su�cient conditions describing the independence relation
I for XM(P), let events e, e

Õ œ enabled(s) such that cmd := cmd(inst(e))
and cmd Õ := cmd(inst(eÕ)). The events e and e

Õ are independent if

(1) both cmd and cmd Õ are either a store corresponding to a bu�ering
event, a memory fence, a conditional, or an assignment — while not
concomitantly being stores of bu�ering events in the same thread;

(2) one of cmd and cmd Õ is a load r Ω mem[e] and the other is either

– a store corresponding to a bu�ering event such that if thread(e) =
thread(eÕ) then also addr(e) ”= addr(eÕ),

– a memory fence,
– a conditional check e

Õ such that e

Õ does not depend on r,
– an assignment r

Õ Ω e

Õ such that e does not depend on r

Õ and also
e

Õ does not depend on r,
– a load r

Õ Ω mem[eÕ] such that e does not depend on r

Õ and also e

Õ

does not depend on r,
– a store corresponding to a flush event with addr(e) ”= addr(eÕ);

(3) one of cmd and cmd Õ is a store corresponding to a flush event and the
other one is either

– a store corresponding to a bu�ering event,
– a memory fence (in some other thread),
– a conditional check,
– an assignment,
– a load such that addr(e) ”= addr(eÕ),
– a store corresponding to a flush event with addr(e) ”= addr(eÕ).

4.1. The Persistent Set Perspective 67

The above conditions are not precise because they do not account for
identically overwritten/re-read values. E.g., two bu�er (respectively flush)
events to the same address are independent if they bu�er (respectively flush)
identical values. Similarly, two load events with, e.g., cmd = r Ω mem[r + r

Õ]
and cmd Õ = r

Õ Ω mem[r + r

Õ] are independent if r = r

Õ = 0 in state s.
In the context of TSO, we call local all the events that are executing a

memory fence, a conditional, an assignment, or that are bu�ering a store.
These events are local in the sense that their execution does not imply
a direct flow of address valuations. More precisely, while memory fences,
conditionals and assignments do not involve addresses at all, bu�ering stores
represent only an intermediary step when updating some addresses’ value.
In the context of SC, only memory fences, conditionals and assignments are
local since stores update addresses atomically.

A straightforward algorithm2 that computes persistent sets can, hence,
perform the following steps:

1. search for a thread t such that enabled(s, t) — i.e., the set of events
e œ enabled(s) with t = thread(e) — consists of only local events;

2. if such a thread exists return enabled(s, t); otherwise return enabled(s).

The worst-case time complexity of the above algorithm is O(|enabled(s)|).
Its correctness is immediate from the earlier conditions (1)–(3). Indeed, if
the algorithm returns S = enabled(s, t) for some thread t then all events in
S are independent from all other threads’ events in all execution fragments

s1
e

1≠æ . . .

en≠1≠≠≠æ sn
en≠æ s

Õ

starting from s1 := s and staying outside of S. Intuitively, this holds since S
contains only local events of thread t. Formally, one can prove that all non-S
events e1, . . . , en≠1, en are independent from any e œ S by induction over
the length of the execution fragment. A di�erent proof approach involving
stubborn sets can be consulted in [Lin14].

However, it is actually local events and not so much persistent sets that
drive a local-events-based partial order reduction. Consider, for example,
the local-events-first reduction implemented under SC in Trencher [Der15]
(through which the DFS exploration of the state-space follows local events
of a thread for as long as possible). Both such a local-events-first reduced
exploration as well as an exploration that uses persistent sets computed by
the above algorithm have one thing in common. Namely, they aim to explore
a smaller number of interleavings of local events from di�erent threads.

In the following, we will describe a systematic way to achieve state-space
reduction for Assembly programs that generalizes local-events-based POR
(as used by the methods mentioned above) as well as other known approaches
such as dynamic and, respectively, cartesian partial order reduction.

2This algorithm restates Algorithm 12 from Linden’s PhD thesis [Lin14].

68 Chapter 4. Partial Order Reduction

store1 store2

flush1 flush2

load1 load2

fo fo

po po

cfcf

Figure 4.1: Trace Tr(‡) for the longest strict prefix of (page 37) computation
·wit. Trace Tr(·wit) is obtained by including the light-colored event and relations.

4.2 Traces for Partial Order Reduction

As seen in Section 2.2.2 and in Section 4.1, existing POR techniques rely on
an a priori defined valid dependency relation between computation events.
Here, we formalize these dependencies for Assembly programs under TSO
using a trace relation [Maz86; SS88]. More precisely, for any prefix ‡ of
some computation · œ CTSO(P), we define the trace of ‡ as the union of the
three relations that we describe below, Tr(‡) := æpo fi æfo fi æcf .

The program order relation æpo is the union of the per-thread program
order relations: æpo :=

t
tœTID æpo (t, ‡). If ‡

Õ is the subsequence of all
non-flush events of thread t in the prefix ‡ then æpo (t, ‡) := <‡Õ .

The follow order relation æfo links, per-thread, matching store and flush
events: (t, inst, a) æfo (t, flush, a). How this can be technically achieved is
described in Appendix C.

The conflict relation æcf orders accesses to the same address. On the
one hand, assume ‡ = ·1 ·store ··2 ·load ··3 ·flush ··4 such that store æfo
flush, events store and load access the same address a and come from
the same thread t, and there is no other store event store

Õ œ ·2 such that
thread(store

Õ) = t and addr(store

Õ) = a. We then say that the event load

is an early read of the value bu�ered by store and store æcf load.
On the other hand, assume ‡ = ·1 · e · ·2 · e

Õ · ·3 such that e and e

Õ are
either load or flush events that access address a, neither e nor e

Õ is an early
read, and at least one of e or e

Õ is a flush to a. If there is no flush event
flush œ ·2 such that addr(flush) = a then e æcf e

Õ.
To give an example, Figure 4.1 depicts the trace of the longest (strict)

prefix of computation ·wit introduced on page 37.
Compared to the happens-before relation on page 40 — which in turn

adapts Shasha and Snir traces [SS88] — the follow order relation æfo is
unidirectional instead of bidirectional like the equivalence ¡. Furthermore,
compared with both the happens-before relation on page 40 as well as with
Alglave’s definition of global happens-before [Alg10], we define traces for
computation prefixes instead of for computations. Finally, the chronological

4.2. Traces for Partial Order Reduction 69

traces in [Abd+15] restrict our trace definition such that every subgraph

store

flush load

e2 e3e1

fo cf

cf
cf po

with same-thread events store, flush, and load, is replaced by

store

flush

e2

load

e3e1

fo
cf

cf
cf po

In the following, we will use Á to denote the trace of the computation
prefix containing no events and TracesM(P) to denote the set of traces of
prefixes of computations in CM(P).

Similarly to Lemma 4 in Section 2.3.3 for the happens-before relation,
we prove in Lemma 18 that any two computation prefixes with the same
trace reach the same state. Using Lemma 18 one could then prove that
every linearization of a trace in TracesM(P) is a CM(P) computation prefix
that reaches the same state in SM.

Lemma 18. Let Tr(‡), Tr(‡Õ) œ TracesM(P) such that Tr(‡) = Tr(‡Õ). If
s0

‡≠æ s œ �ú
X,M then also s0

‡Õ≠æ s œ �ú
X,M.

Proof. Assume s0
‡≠æ s œ �ú

X,M and s0
‡Õ≠æ s

Õ œ �ú
X,M. Since ‡ and ‡

Õ have
the same program order æpo, s and s

Õ have the same program counter pc.
Moreover, since ‡ and ‡

Õ have the same conflict order æcf , s and s

Õ have
the same memory valuation val. Finally, since computation prefixes ‡ and
‡

Õ have the same æfo unmatched store events and æpo orders these store
events the same, s and s

Õ have the same bu�er contents. Hence, s = s

Õ.

Given a program P and a memory model M œ {TSO, SC} we define
the transition semantics that includes trace information as the state-space
automaton YM(P) := (E, SM ◊ TracesM(P), �Y,M, (s0, Á)). The transition
relation �Y,M relies on �X,M described on page 35 of Section 2.3.1 and is
defined by the following constraint:

(s, tr) e≠æ (sÕ
, tr Õ) œ �Y,M i� there exists a computation prefix ‡ such that

Tr(‡) = tr , Tr(‡ · e) = tr Õ
, and s0

‡≠æ s

e≠æ s

Õ œ �ú
X,M.

Notice that, for general programs, YM(P) may be infinite already if M = SC.
This, indeed, depends on whether TracesM(P) is infinite or not.

70 Chapter 4. Partial Order Reduction

Algorithm 4.1 depicts a state exploration algorithm that uses YM(P) to
solve M reachability. It is a decision procedure i� a fixpoint set visited ™ SM
is always reached. This is the case if the state-space SM of XM(P) is finite.
Such a situation arises, e.g., if M = TSO and the input program is acyclic or
if M = SC. On the other hand, if SM is infinite, like for some cyclic programs
under M = TSO, the algorithm can be a decision procedure for positive
cases of M reachability. However, as we will explain later in more detail,
whether Algorithm 4.1 is a decision procedure for positive M reachability
cases depends on choosing a good exploration heuristics.

Algorithm 4.1 Explicit-state trace-based M reachability checker
Input: Memory model M, marked program P and state (s, tr) of YM(P)
Output: true if some goal state is reachable from (s, tr) in P

false if no goal state is reachable from (s, tr) in P
Global Variable: visited ™ SM, initially visited = ÿ

1: procedure ExplicitReach(M, P, s, tr)
2: if s /œ visited then // check that we explore a new state in XM(P)
3: if s œ G then
4: return true;
5: end if
6: add s to visited;
7: for all e œ NextEvents(M, P, s, tr) do
8: let (sÕ

, tr Õ) such that (s, tr) e≠æ (sÕ
, tr Õ) œ �Y,M in

9: if ExplicitReach(M, P, s

Õ
, tr Õ) then

10: return true;
11: end if
12: end for
13: end if
14: return false;
15: end procedure

Di�erent exploration heuristics for Algorithm 4.1 depend on the choice of
the NextEvents procedure used in Line 7. Furthermore, di�erent strate-
gies for the Line 7 loop (e.g. depth- or breadth-first) give way to di�erent
implementations of the algorithm. Note that the most general heuristics for
NextEvents(s, tr) returns all events e such that s

e≠æ s

Õ œ �X,M. This
corresponds to a full state-space exploration (similar to the exploration in
Algorithms 2.3 and 2.4 from Section 2.3.2).

We will say that Algorithm 4.1 explores some computation prefix ‡ if
the stack of events during recursive calls ever amounts to ‡. Furthermore,
we say that Algorithm 4.1 uses Partial Order Reduction for P i� at least
sometime during the recursive calls within ExplicitReach(M, P, s0, Á) the
procedure NextEvents(M, P, s, tr) returns a strict subset of all events e

4.2. Traces for Partial Order Reduction 71

such that s

e≠æ s

Õ œ �X,M. Furthermore, we say that Algorithm 4.1 uses
state-reducing POR for P if, upon calling ExplicitReach(M, P, s0, Á), for
all (s, tr) œ SM ◊ TracesM(P) and for at least some state s

Õ œ SM such
that s

e≠æ s

Õ œ �X,M, NextEvents(M, P, s, tr) never returns the event
e œ E leading to s

Õ. Intuitively, the above conditions are necessary for
NextEvents to implement POR exploration.

Su�cient conditions for NextEvents to implement trace-optimal POR
exploration (in the sense that no two computation prefixes with the same
trace are explored) can be explained as follows. First, NextEvents should
implement state-space exploration, meaning, NextEvents(M, P, s, tr) ™
enabled(s) for all states s — whether Algorithm 4.1 uses POR or state-
reducing POR is not relevant. Second, and more importantly, the pro-
cedure NextEvents must constrain ExplicitReach(M, P, s0, Á) to not
(recursively) call ExplicitReach twice with the same input. The latter
condition implies that Algorithm 4.1 never explores prefixes ‡ ”= ‡

Õ with
Tr(‡) = Tr(‡Õ). We prove this claim in Theorem 19 below.

Theorem 19. If ExplicitReach(M, P, s0, Á) does not recursively call itself
with the same input twice then Tr(‡) ”= Tr(‡Õ) for all explored ‡ ”= ‡

Õ.

Proof. Assume that ExplicitReach(M, P, s0, Á) explores two computation
prefixes ‡ ”= ‡

Õ such that tr := Tr(‡) = Tr(‡Õ) even tough ExplicitReach
is not called twice with the same input. Wlog, assume that the prefix
‡ is explored first, i.e., the last event of ‡ is considered in Line 7 and
ExplicitReach(M, P, s, tr) is called in Line 9 for some state s œ SM such
that s0

‡≠æ s œ �ú
X,M.

If the prefix ‡

Õ is explored as well then its last event is also considered
in Line 7 of some recursive call of ExplicitReach(M, P, s0, Á). As before,
ExplicitReach(M, P, s

Õ
, tr) is then called in Line 9 for some state s

Õ œ SM

such that s0
‡Õ≠æ s

Õ œ �ú
X,M.

However, by Lemma 18, s = s

Õ yields a contradiction to ExplicitReach
not having been called twice with the same input.

While Theorem 19 describes a general measure for Algorithm 4.1 to be
trace-optimal, it addresses neither its correctness nor how to implement it.

In the following subsection we explain why Algorithm 4.1 is sound for
positive instances of reachability — i.e., if the algorithm returns true then
some goal state is M-reachable — as well as describe su�cient conditions
on NextEvents such that the algorithm is complete for positive instances
of reachability — i.e., if some goal state is M-reachable then the algorithm
does not return false.

72 Chapter 4. Partial Order Reduction

4.2.1 Soundness and Completeness
Regardless of the heuristics that one uses for NextEvents, the procedure
ExplicitReach in Algorithm 4.1 is a sound under-approximation for state-
based reachability under M œ {SC, TSO}. Furthermore, if a heuristics for
NextEvents is safe then ExplicitReach is precise enough to cover the
program’s reachable states. Turning back to soundness, we show that some
goal state is M-reachable in P when ExplicitReach returns true.

Lemma 20. If ExplicitReach(M, P, s0, Á) returns true then some goal
state is M-reachable in P.

Proof. Assume that Algorithm 4.1 returns true. Let (s, tr) be the parame-
ters of ExplicitReach when the Line 3 check first succeeds, i.e. s œ G.

When this happens, the recursive calls of ExplicitReach explored a
computation prefix ‡ such that (s0, Á) ‡≠æ (s, tr) œ �ú

Y,M. This additionally
means that s0

‡≠æ s œ �ú
X,M.

Now, let the event sequence · œ E

ú flush the bu�er contents of state s

(in some arbitrary thread-interleaving order). Then s0
‡··≠≠æ s

Õ œ �ú
X,M and

s

Õ œ ReachM(P) fl G.

Furthermore (and similarly to Algorithms 2.3 and 2.4), if the state-space
SM of program P is finite then Algorithm 4.1 is a decision procedure. Note
that this holds even if TracesM(P) is infinite.

Lemma 21. If the state-space SM of XM(P) is finite then Algorithm 4.1
always terminates with the correct answer.

Proof. By Lemma 20 we know that if Algorithm 4.1 returns true then there
exists some goal state that is M-reachable in P. Therefore, assume that
ExplicitReach(M, P, s0, Á) does not return true. Note that this implies
none of the ExplicitReach recursive calls returns true either.

Because of the Line 2 check, we know that every successful recursion
of the algorithm adds a state to the set visited at Line 6. Therefore, since
visited ™ SM and SM is finite, if no ExplicitReach recursive call returns
true (according to our assumption) then visited will reach a fixpoint. Hence,
ExplicitReach(M, P, s0, Á) terminates and returns false.

Correctness of Algorithm 4.1 depends on which NextEvents heuristics
is chosen in the implementation. Lemma 20 shows that if Algorithm 4.1
returns true then it soundly does so. However, in order for the algorithm
to always return correct answers the NextEvents calls must not throw
away all events that might be relevant to reaching goal states. In order
to formalize the latter, we have to describe what it means for a certain
heuristics to be “safe”.

Recall that given memory model M, the M reachability problem expects
as input a program P and a set of goal states G ™ SM. For simplicity, we

4.2. Traces for Partial Order Reduction 73

previously assumed that goal states are signaled by marked states in each of
the threads. Technically however, when checking M reachability we would
use two dedicated addresses agoal, asuccess œ ADR such that, out of every
marked control state qm,t of thread t, transitions are added that set asuccess
to 1 if the marked states are simultaneously reachable in all threads.

Concretely, by adding the Assembly instructions below to each thread
the address agoal would be used to count how many threads reached their
marked control states and when all threads successfully reach their marked
control states, i.e., when mem[agoal] = |TID|, asuccess would be set to 1. The
atomic instructions used here are a natural extension of the XM(P) semantics
and guarantee that their internal commands are executed as if running on
SC and in one shot, without any intermediary interleaving. More details
concerning atomic instruction can be consulted in Appendix C.

qm,t

qsink,t

atomic { r Ω mem[agoal], mem[agoal] Ω r + 1 }

atomic { r Ω mem[agoal], check r = |TID|, mem[asuccess] Ω 1 }

Using the above modeling artifact, we can consider goal states to be
those states (pc, val, buf) in SM for which val(asuccess) = 1. As before, the M
reachability problem decides whether LF flG(XM(P)) ”= ÿ.

To give an example extending ·wit on page 37, the computation

·reach := ·wit · atomic1 · atomic2 · atomic, (4.1)

reaches under TSO the goal state (pc, val, buf) where pc = (qsink,1, qsink,2)
and val(asuccess) = 1. Here, by atomic we mean the events produced by one
of the two instructions

qsink,t
atomic { rΩmem[a

goal

], check r=|TID|, mem[a
success

]Ω1 }≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ qsink,t

that sets the value of address asuccess to 1, by atomic1 the events produced by
instruction (qm,1, atomic { r Ω mem[agoal], mem[agoal] Ω r + 1 }, qsink,1) and,
by atomic2 the (thread t2) symmetric events.

Now, we say that the procedure NextEvents provides a safe heuristics
for Algorithm 4.1 if, whenever ExplicitReach(M, P, s0, Á) returns false,
ExplicitReach(M, P, s0, Á) explores at least one computation prefix ‡ such
that s0

‡≠æ s œ �ú
X,M for all possible memory valuations val¿(ADR æ DOM)

of states s = (pc, val, buf) reachable in XM(P). Intuitively, since checking
reachability is encoded by setting asuccess to 1, to guarantee correctness it
su�ces to explore computation prefixes leading to states in XM(P) that have
di�erent memory valuations val¿(ADR æ DOM).

74 Chapter 4. Partial Order Reduction

To sum up, we prove that if NextEvents implements a safe heuristics
then ExplicitReach(M, P, s0, Á) always returns correct results.

Theorem 22. If the procedure NextEvents implements a safe heuristics
and ExplicitReach terminates on input (M, P, s0, Á) then some goal state
of P is M-reachable i� ExplicitReach(M, P, s0, Á) returns true.

Proof. The easy implication holds by Lemma 20. For the reverse direction
we do a proof by contradiction.

Assume that s œ ReachM(P) fl G and that ExplicitReach(M, P, s0, Á)
returns false. Since NextEvents implements a safe heuristics it means the
algorithm explored some computation · œ CM(P) that reaches some state
s = (pc, val, buf) with val(asuccess) = 1 in XM(P).

Hence, the algorithm recursively called ExplicitReach(M, P, s, Tr(·))
in Line 9. Furthermore, the (first) recursive call ExplicitReach(M, P, s, ú)
returns true since the Line 3 check succeeds and this gets propagated back
to the initial recursive call.

Thus, the assumption that ExplicitReach(M, P, s0, Á) returns false
was incorrect.

Note that, as it stands, Theorem 22 has to assume termination for the
TSO memory model (Lemma 21 guarantees termination for SC). Indeed,
when the state-space STSO of XTSO(P) is not finite, both a depth-first and
a breadth-first implementation of the Line 7 loop in Algorithm 4.1 may
not su�ce. Nevertheless, safe heuristics are an essential building block to
guarantee correctness of ExplicitReach(M, P, s0, Á) when termination is
assumed/given. As we will see in Section 4.3, there exist various implemen-
tations of safe POR exploration heuristics.

4.3 POR Techniques explained by Traces
Prior to describing dynamic and cartesian POR, we explain the ideas behind
the local-events-first heuristics. This lightweight POR-inducing heuristics
was implemented — for the SC memory model — in Trencher and adheres
to the following schema:

(1) if some local event is explored out of some state s œ SM then the
thread of that event becomes the favorite thread;

(2) as long as the favorite thread for the exploration is set, only events of
the favorite thread can be explored;

(3) if the favorite thread is set and a non-local event of this thread is
explored then the favorite thread is reset to ‹.

4.3. POR Techniques explained by Traces 75

Recall that, under TSO, local events are those events that are neither
load nor flush events. Under SC, since stores are immediately followed by
the matching flush events, only events for assignments, conditionals, and
memory fences are local.

Algorithm 4.2 implements the local-events-first heuristics by refining the
ExplicitReach procedure in Algorithm 4.1. Di�erences from the generic
Algorithm 4.1 on page 70 are highlighted.

Algorithm 4.2 Refined explicit-state trace-based M reachability checker
Input: Memory model M, marked program P and state (s, tr) of YM(P)
Output: true if some goal state is reachable from (s, tr) in P

false if no goal state is reachable from (s, tr) in P
Global Variable: visited ™ SM, initially visited = ÿ

1: procedure ExplicitReach(M, P, s, tr , favorite)
2: if s /œ visited then // check that we explore a new state in XM(P)
3: if s œ G then
4: return true;
5: end if
6: add s to visited;
7: for all e œ NextEventslocal-first(M, P, s, tr , favorite) do
8: let (sÕ

, tr Õ) such that (s, tr) e≠æ (sÕ
, tr Õ) œ �Y,M in

9: if e is a local event then
10: favoriteÕ := thread(e);
11: else
12: favoriteÕ := ‹;
13: end if
14: if ExplicitReach(M, P, s

Õ
, tr Õ

, favoriteÕ) then
15: return true;
16: end if
17: end for
18: end if
19: return false;
20: end procedure

Algorithm 4.3 shows the procedure for computing next events using the
local-events-first heuristics. Concretely, NextEventsLOCAL-FIRST returns
all events enabled in state s if favorite = ‹. If an event e out of these is local
then the highlighted Line 9–13 instructions in Algorithm 4.2 restrict com-
putation continuations following event e to explore within thread thread(e).
On the other hand, if favorite ”= ‹ then NextEventsLOCAL-FIRST returns
all events of thread favorite enabled in state s. If an event e out of these is
non-local then the highlighted Line 9–13 instructions in Algorithm 4.2 reset
favorite to ‹ and, hence, allow further continuations of the exploration by

76 Chapter 4. Partial Order Reduction

other threads. These principles behind local-events-first heuristics guarantee
that NextEventsLOCAL-FIRST provides a safe heuristics for Algorithm 4.2.
Then, since Algorithm 4.2 is essentially Algorithm 4.1 up to using favorite,
we know that Theorem 22 applies.

Corollary 23. The function NextEventsLOCAL-FIRST implements a safe
exploration heuristics under memory model M.

Proof. Assume that NextEventsLOCAL-FIRST does not implement a safe
heuristics under M. Then there exists a state s = (pc, val, buf) reachable in
XM(P) such that val ¿ (ADR æ DOM) ”= valÕ ¿ (ADR æ DOM) for all states
s

Õ = (pcÕ
, valÕ, buf Õ) reachable using NextEventsLOCAL-FIRST.

Let ‡ be the computation prefix that reaches s under memory model
M, i.e., s0

‡≠æ s œ �ú
X,M. We will show that there exists another prefix ‡

Õ

explored by Algorithm 4.2 such that Tr(‡) = Tr(‡Õ). Using Lemma 18, this
will then yield s = s

Õ, which will then contradict our initial assumption.
Let ‡ ¿ t := –

t
0 · e

t
1 · –

t
1 . . . · e

t
n(t) · –

t
n(t) where n(t) œ N be the projection of

‡ to thread t such that all e

t
1, . . . , e

t
n(t) are non-local events and –

t
0, . . . , –

t
n(t)

consist only of local events. The prefix ‡

Õ interleaves non-local events the
same as in ‡. However, whenever it executes some non-local e

t
i, for some

i œ [1..n(t)], it executes the entire –

t
i immediately after. Similarly before

executing any non-local event, ‡

Õ interleaves block-wise entire sequences –

t
0.

Since the projections ‡ ¿ t and ‡

Õ ¿ t are the same for all threads t œ TID,
the program order æpo is the same for both ‡ and ‡

Õ. Moreover, æfo is the
same in ‡ and ‡

Õ since flush events still occur after their corresponding store
events. Finally, since the interleaving of non-local events in both ‡ and ‡

Õ

is the same, the conflict order æcf is the same for ‡ and ‡

Õ. In conclusion
Tr(‡) = Tr(‡Õ) with ‡

Õ as described above.

Algorithm 4.3 NextEvents using the local-events-first heuristics
1: procedure NextEventslocal-first(M, P, s, tr , favorite)
2: result := ÿ
3: for all e œ enabled(s) do
4: if favorite = ‹ or favorite = thread(e) then
5: append e to result;
6: end if
7: end for
8: return result

9: end procedure

Figure 4.3 shows the local-events-first heuristics in action: it depicts the
state-space explored by Algorithm 4.2 for the Figure 4.2 program below.

4.3. POR Techniques explained by Traces 77

t1t1
r1 Ω 1 ≠ r1 check r1 = 1

t2t2
r2 Ω 1 ≠ r2 check r2 = 1

Figure 4.2: An Assembly program to showcase NextEventsLOCAL-FIRST.

The state-space in Figure 4.3 is reduced since per-thread adjacent blocks
of local events are considered in a shot. Figure 4.4 explains this by depicting
the events in all Figure 4.2 program executions when checking reachability.

4.3.1 Dynamic Partial Order Reduction
Algorithm 4.4 describes the reimplementation of the original dynamic POR
exploration for Assembly programs and SC reachability. However, unlike
in [FG05], Assembly programs do not require per-thread-unique transitions
out of each global state. In the algorithm, we use notation last(æcf (·, a))
for the last event e in computation · that accessed a and src(last(æcf (·, a)))
for the last (source) SC state prior to the event e in s0

·≠æ s. The algorithm
is stateless in the sense that the explored states are not tracked using some
kind of visited set. Instead, the input computation · to StatelessDPOR
and per-state-and-thread sets of backtracking events are used to guide the
exploration of the state-space.

The section of the algorithm that updates backtrack states (Lines 6–19)
is essential for the Line 22 loop: backtrack(s) used in the loop will likely be
enlarged by subsequent recursive calls to StatelessDPOR. Furthermore,
since backtrack is updated whenever the depth-first exploration encounters
same-address accessing events, dynamic POR will explore (as intended) all
relevant interleavings of a finite, loop-free state-space.

In its simplest form, dynamic POR is essentially a DFS exploration of all
traces of an input program with a finite, loop-free state-space (i.e., conflict
resolution as in Figure 4.4 is done using DFS). This is what, e.g., the tool
accompanying [Abd+15] does for programs described as LLVM IR [LA04].

4.3.2 Cartesian Partial Order Reduction
Cartesian POR relies on computing so called cartesian vectors: vectors of
thread-local computation prefixes so that at most pairwise-last transitions
of distinct prefixes are dependent. In the words of Gueta et. al [Gue+07],
“a cartesian vector for a state describes a sequence of transitions that each
thread can perform without context switches”. In other words, cartesian
POR exploration interleaves cartesian vector prefixes and performs context
switches between these prefixes only upon each prefix’s full processing.

The cartesian POR idea can be rephrased in terms of traces as: given
some state s reachable in program P find traces tr œ TracesM(P) starting

78 Chapter 4. Partial Order Reduction

s0

assign1

assign1

assign1

assign1

assign2

assign2

assign2

assign2

check1

check1

check1

check1

check2

check2

check2

check2

atomic1

atomic1

atomic1

atomic1

atomic2

atomic2

atomic2

atomic2

atomic

atomic

Figure 4.3: State-space of the Figure 4.2 program under M œ {SC, TSO}. Labels
of transitions correspond to events in XM(P). Their indexes indicate the event’s
thread. Non-local events atomic1, atomic2, and atomic are, as in ·reach on page 73,
used to determine when both threads reach their marked control states — the
bottom state in the picture is the only one with val(asuccess) = 1. Local events
assigni and checki (for i œ {1, 2}) are determined by instructions of thread ti. The
dotted transitions as well as the inner 4 states with only incoming dotted transitions
are reduced by the local-events-first heuristics. Practically, a DFS implementation
of Algorithm 4.2 finds the bottom state within only 7 steps in the reduced state-
space while a BFS implementation will explore the 13 non-reduced transitions.

4.3. POR Techniques explained by Traces 79

Algorithm 4.4 Stateless dynamic POR under SC
Input: Marked program P and computation ·

Output: true if some goal state is SC reachable in P
false if no goal state is SC reachable in P

Global Variables: enabled, backtrack œ SSC ◊ TID ‘æ 2�
X,SC ,

initially backtrack(s, t) = ÿ for all s œ SSC and t œ TID

1: procedure StatelessDPOR(P, ·)
2: let s œ SSC such that s0

·≠æ s;
3: if s œ G then
4: return true;
5: end if
6: for all t œ TID do // update backtrack states
7: for all e œ enabled(s, t) do
8: if addr(e) = a and last(æcf (·, a)) ”= Á then
9: let slast = src(last(æcf (·, a))) and t = thread(e);

10: if enabled(slast, t) ”= ÿ then
11: add enabled(slast, t) to backtrack(slast, t);
12: else
13: for all t

Õ œ TID do
14: add enabled(slast, t

Õ) to backtrack(slast, t);
15: end for
16: end if
17: end if
18: end for
19: end for
20: if ÷ t œ TID.enabled(s, t) ”= ÿ then // depth-first search
21: let backtrack(s, t) = enabled(s, t) and done = ÿ;
22: while ÷ (tÕ

, e) œ backtrack(s) \ done do
23: add (tÕ

, e) to done;
24: if inst(e) is a store then
25: let ·

Õ = · · e · flush with e æfo flush;
26: else
27: let ·

Õ = · · e;
28: end if
29: if StatelessDPOR(P, ·

Õ) then
30: return true;
31: end if
32: end while
33: end if
34: return false;
35: end procedure

80 Chapter 4. Partial Order Reduction

assign1

check1

atomic1

atomic

assign2

check2

atomic2

atomic

po

po

po

po

po

po
cf

cf

cfcf
cf cf

Figure 4.4: Representation of Figure 4.2 program traces: any prefix trace con-
taining at most 7 events identifies a set of possible computations. By abuse of
notation the last event in each thread is denoted by atomic as on page 73. The
dotted conflict relations depict events accessing address agoal — conflict resolution
determines di�erent traces. The Figure 4.3 state-space reduction is the result of
considering the two blocks of local events in a shot.

from s such that at most the last per-thread events of tr are dependent.
Taking the Figure 4.2 program as example, the first cartesian vectors

that one would determine contain three events — corresponding to the
assigni æpo checki æpo atomici order (for i œ {1, 2}) in Figure 4.4. When
using cartesian POR exploration, these cartesian vectors are interleaved and
the procedure is then reiterated starting from the newly reached states.

For an informative example, consider the Figure 4.5 program and its
traces shown in Figure 4.6. This program depicts (as Assembly) the Figure
5(a) concurrent program of Gueta et al. [Gue+07] limited to two increments.

Since the only conflicting accesses of the Figure 4.5 program are implied
by their program-order-last loads, starting from the initial SC state s0 one
first finds either of the following two cartesian vector pairs:

(load1; store1, load2; store2 + flush2; load

Õ
2; store

Õ
2 + flush

Õ
2; load

ÕÕ
2),

(load1; store1 + flush1; load

Õ
1; store

Õ
1 + flush

Õ
1; load

ÕÕ
1, load2; store2).

Continuing the cartesian POR exploration one will then extend the above
prefixes to include the second increment in each of the threads, and then to
verify the checks by ordering the conflicting atomic events.

The symmetric handling of finding new cartesian vectors (recall that in
our context these are per-thread sequences of events) prompts for a parallel
(and perhaps BFS) implementation of this exploration method. This could
be achieved by adapting the saturation-based implementation proposed by
Gueta et. al [Gue+07].

As a concluding remark, using traces to represent the partially-ordered
event structure of a program is the way to go. The clarity they provide helps
to easily grasp complex methods such as cartesian and dynamic POR.

4.3. POR Techniques explained by Traces 81

t1t1

r1 Ω mem[x]

mem[x] Ω r1 + 1

r1 Ω mem[x]

mem[x] Ω r1 + 1

r1 Ω mem[y] check r1 < c

t2t2

r2 Ω mem[y]

mem[y] Ω r2 + 1

r2 Ω mem[y]

mem[y] Ω r2 + 1

r2 Ω mem[x] check r2 < c

Figure 4.5: An Assembly program to showcase cartesian POR.

load1 store1+flush1

load

Õ
1 store

Õ
1+flush

Õ
1

load

ÕÕ
1

check1

atomic1

atomic

load

ÕÕ
2

check2

atomic2

atomic

po

po

po

po

po

po
cf

cf

cfcf
cf cf

store2+flush2

store

Õ
2+flush

Õ
2

load2

load

Õ
2

po

po

po
po

po

po

po
po

cf cf

cfcf

Figure 4.6: Representation of Figure 4.5 program traces: any prefix trace with at
most 15 events identifies a set of possible computations. The loadi and storei+
flushi events identify the first value-incrementing load and subsequent store+flush
in ti and their primed version the second value-incrementing load and store+flush
in the corresponding thread. The load

ÕÕ
i event represents the load preceding the

final bound check in thread ti. By abuse of notation the last event in each thread is
denoted by atomic as on page 73. The dotted conflict relations depict (1) events of
the threads accessing addresses x and y and (2) events accessing address agoal. As
in the earlier Figure 4.4 depiction, conflict resolution determines di�erent traces.

Chapter5
Experimental Evaluation

It is often said that experiments should be made without preconceived ideas.
That is impossible. Not only would it make every experiment fruitless, but
even if we wished to do so, it could not be done. Every man has his own
conception of the world, and this he cannot so easily lay aside.

Henri Poincaré
Science and hypothesis

To asses the e�ciency of the introduced verification techniques we imple-
mented several algorithms on top of the tool Trencher [Der15]. Trencher
was initially developed to check robustness and implements the algorithms
in [BDM13] for finding witness computations and for deriving fences. Our
subsequent evaluation is two-fold.

In Section 5.1 we provide a comparison between our implementation of
lazy TSO reachability and two other tools that can be used to check TSO
reachability, Memorax [Abd+12b] (revision 4f94ab6) and CBMC [CKL04]
(version 4.7). Additionally to typical test cases we highlight two fami-
lies of programs for which our implementation outperforms Memorax and
CBMC, respectively. We then conclude that the three di�erent approaches
to check TSO reachability are good for orthogonal input classes.

In Section 5.2 we compare some of the POR techniques introduced in
the previous chapter. To be precise, we first compare Trencher’s standard
depth-first [Der15] and a breadth-first implementation of SC reachability.
Second, we compare a dynamic POR implementation for SC reachability
with Trencher’s standard [Der15] local-events-first reduction under SC.
Our findings in both cases advocate that Trencher’s standard implemen-
tation (DFS and local-events-first reduction) is faster for typical benchmark
examples. However, we also confirm the existence of test inputs for which
both (1) a BFS implementation of SC reachability, and (2) dynamic POR
in spite of local-events-first reduction, are more advantageous.

83

84 Chapter 5. Experimental Evaluation

5.1 Evaluation for Lazy TSO Reachability
We implemented lazy TSO reachability on top of Trencher [Der15] by
reusing the algorithm for finding witness computations described in [BDM13]
to derive a robustness-based oracle. Trencher originally used the Spin
model checker [Hol97] as a back-end for carrying SC reachability checking.
The current implementation uses a simpler SC model checker equipped with
the local-events-first reduction technique described in Section 4.3. By using
the simpler model checker our implementation does not need to compile
verifier executables (pan) as is the case for Spin.

We have implemented Algorithm 3.1 with the following amendments.
First, the extension does not delete the store instruction inst1. This first
simplification ensures the extended program has a (sound) superset of the
TSO behaviors of the original program. Second, the extension only adds
instructions along q1, . . . , qn. The remaining instructions were added to
ensure all behaviors of the original program exist in the extended program,
once inst1 is removed — as just noted, our implementation does not remove
inst1. The resulting algorithm is guaranteed to yield correct results for any
cyclic program when (and if) it returns. Of course, it cannot be guaranteed
to terminate in general. Finally, our implementation explores extensions
due to di�erent instruction sequences in parallel, rather than sequentially.

Our hypothesis is that when analyzing certain classes of programs lazy
TSO reachability is better suited to find bugs than other existing approaches.
We compare our prototype implementation against two other verifiers that
support the TSO semantics: Memorax [Abd+12b] (revision 4f94ab6) and
CBMC [CKL04] (version 4.7). Memorax implements a reachability checker
that is both sound and complete by reducing it to checking coverability in a
well-structured transition system. CBMC is an SMT-based bounded model
checker for C programs. Consequently, it is sound, but not complete: it is
complete only up to a given bound on the number of loop iterations in the
input program.

5.1.1 Examples

We first tested our implementation on a small set of examples. Figure 5.1
summarizes characteristics of the examples taken from the initial Trencher
tests: number of threads (T), states (St), and transitions (Tr). The first ex-
ample is a model of the buggy Parker class from Java VM [Dic09]. The next
three examples are mutual exclusion protocols implemented using shared va-
riables. These protocols do not guarantee mutual exclusion under TSO. We
tested the Dekker and Peterson’s algorithms for two threads and Lamport’s
fast mutex [Lam87] for three threads. The last three tests from Figure 5.1
give statistics concerning reachability in robust test cases for the lock-free
stack and for the MCS and CLH locking algorithms from [HS08].

5.1. Evaluation for Lazy TSO Reachability 85

Program T St Tr RQ CPU Real
1 Parker (non-robust) 2 11 10 4 8 5
2 Peterson (non-robust) 2 14 18 12 21 13
3 Dekker (non-robust) 2 24 30 30 171 70
4 Lamport (non-robust) 3 33 36 27 1839 694
5 MCS Lock 4 52 50 30 127 61
6 CLH Lock 3 43 41 70 10 7
7 Lock-Free Stack 4 46 50 14 9 7

Spin Clang CPU Real
132 1987 10 1229
788 9861 100 1651

2270 38413 670 3600
4358 22297 330 3061
454 4498 20 1653
452 12083 90 1998
38 475 0 518

Figure 5.1: Trencher benchmarking results. Times are in milliseconds. The
right-hand-side table shows the higher times needed when using Spin.

We also performed three parametrized tests. First, we varied the number
of threads in Lamport’s fast mutex [Lam87] (see Figure 5.2). Next, inspired
by examples of the fence-insertion tool musketeer [Alg+14], the modified
Dekker in Figure 5.3 adds a branching structure parametric over N to both
program threads. Lastly, the program in Figure 5.4 places stores to address
x on a length N loop in thread t1: since t1 expects to load the initial y value
while t2 expects to load 1 and then 0 from x, an execution that reaches the
goal state goes through the length N loop twice.

ti

mem[x] Ω i

ry Ω mem[y]

check ry ”= 0

check ry = 0

mem[y] Ω i

rx Ω mem[x]

check rx ”= i

ry Ω mem[y]

check ry ”= i

check rx = i

mem[y] Ω 0

Figure 5.2: The i-th thread of Lamport’s fast mutual exclusion protocol. The
goal state is reachable under TSO if, e.g., the stores mem[x] Ω i are all bu�ered past
the loads ry Ω mem[y] that all load the initial 0 value at y.

5.1.2 Evaluation
We ran the tests on a QEMU @ 2.67GHz virtual machine (16 cores) with
8GB RAM running GNU/Linux. The table in Figure 5.1 summarizes the
results of the Trencher benchmark tests. The RQ columns indicate the
number of SC reachability queries raised by Trencher. The CPU and Real
columns give the total CPU and wall-clock time that a test took.

86 Chapter 5. Experimental Evaluation

t1t1

· · ·

r Ω mem[a]

’ i œ [0..N ≠ 1] check r = i

mem[a] Ω (i + 1) mod N

mem[x] Ω 1

r1 Ω mem[y]

check r1 = 0

t2t2

· · ·

r Ω mem[b]

’ i œ [0..N ≠ 1] check r = i

mem[b] Ω (i + 1) mod N

mem[y] Ω 1

r2 Ω mem[x]

check r2 = 0

Figure 5.3: The Dekker algorithm modified to stress branching. The highlighted
branching structures contain operations that manipulate distinct addresses a, b /œ
{x, y} between the accesses to x and y. The ’-quantified notation indicates 2 ◊ N

transitions in each thread that store (i+1) mod N at the address that r previously
loaded its value from (the notation spans N intermediary states marked by · · ·).
Each intermediary state is the target of precisely one check r = i labeled transition
for some i œ [0..N ≠ 1] as well as the source of one mem[a] Ω (i + 1) mod N labeled
transition for that same i. If the first store is delayed past the last load in either of
the two threads then a goal state is TSO-reachable.

t1

check r0 < N

check r0 = N

r1 Ω mem[y]

check r1 = 0

r0 Ω 0

mem[x] Ω r0

r0 Ω r0 + 1

t2
mem[y] Ω 1

r2 Ω mem[x]

check r2 = 1

r2 Ω mem[x]

check r2 = 0

Figure 5.4: The Dekker algorithm modified to stress unwinding. The highlighted
loops in thread t1 write 0, 1, . . . , N ≠ 1 to x and non-deterministically reset r0 to 0
or continue with reading from y. The unwinding needed to reach a goal state under
TSO increases for larger values of N . Concretely, a goal state is TSO-reachable if
t1 goes through the (length N) loop two times: once to satisfy check r2 = 1 and
the second time to satisfy check r2 = 0.

5.1. Evaluation for Lazy TSO Reachability 87

1 2 3 4

0

0.2

0.4

0.6

0.8

Test order index from Figure 5.1.
wa

ll-
cl

oc
k

tim
e

(s
ec

on
ds

)

Memorax
Trencher

CBMC

Figure 5.5: Side-by-side runtimes for
the non-robust tests in Figure 5.1.

The graph in Figure 5.5 depicts
the running times of the three tools
on the non-robust examples from
Figure 5.1. For CBMC, we used the
mutual exclusion algorithms’ ver-
sions that its authors provide. For
Memorax, we hand-wrote *.rmm

files for the first 4 test programs.
We did not perform a comparison
for robust programs: if SC reach-
ability returns false on an input
program, our implementation de-
cides mutual exclusion as fast as
Trencher is able to determine ro-
bustness. Moreover, CBMC imple-
ments strictly an under-approximative method where the number of loop
iterations is bounded. Our robust tests, however, contain unbounded loops.

2 3 4

0

23

39

N — number of threads

wa
ll-

cl
oc

k
tim

e
(s

ec
on

ds
)

Memorax
Trencher

CBMC

Figure 5.6: Runtimes for Lamport’s fast
mutex (depicted in Figure 5.2).

The high time needed to ver-
ify Lamport’s mutex — compared
to the other Figure 5.1 tests —
is justified by the correlation be-
tween the program’s data domain
size and its number of threads.
The graph in Figure 5.6 shows that
CBMC is fastest for a larger num-
ber of threads. This is the case
since, actually, the smallest unwind
bound su�ces for CBMC to con-
clude reachability. For Memorax
and Trencher the system runs out
of memory when N = 5. This un-
derlines once again just how trou-
blesome the state-space explosion is for TSO reachability. Although it is
not easily noticeable in the picture, Memorax’s exponential scaling is better
than Trencher’s: although Trencher is slightly faster than Memorax
for N œ {2, 3}, Memorax clearly outperforms Trencher when N = 4.

The graphs in Figure 5.7 show that for programs as in Figure 5.3 our
prototype is faster than Memorax. It seems Memorax cannot cope well
with the branching factor that the parameter N introduces. The right-
hand-side graph in Figure 5.7 serves to show that Trencher’s behavior
with varying N is also exponential but less steep.

Similarly, the Figure 5.8 graphs show that for programs as in Figure 5.4
our prototype is faster than CBMC. Indeed, with increasing N , an ever
larger number of constraints need to be generated by CBMC. For Trencher,

88 Chapter 5. Experimental Evaluation

regardless of the value of N , it takes three SC reachability queries to conclude
TSO reachability. As before, from the right-hand-side graph in Figure 5.8
we see that Trencher’s behavior is also exponential but less steep.

10 20 30 40

0

15

30

60

value of N in Figure 5.3

wa
ll-

cl
oc

k
tim

e
(s

ec
on

ds
)

Trencher
Memorax

500 1,000 1,500 2,000 2,500 3,000

0

59

value of N in Figure 5.3

wa
ll-

cl
oc

k
tim

e
(s

ec
on

ds
)

Trencher

Figure 5.7: Side-by-side runtimes of Trencher and Memorax for Figure 5.3
programs with increasing values of N . Memorax takes ƒ 1.5 minutes for N = 50.

3 5 7 9 11 13

0

8

15

45

value of N in Figure 5.4

wa
ll-

cl
oc

k
tim

e
(s

ec
on

ds
)

Trencher
CBMC

20 40 60 80 100 120 140 160

0

19

value of N in Figure 5.4

wa
ll-

cl
oc

k
tim

e
(s

ec
on

ds
)

Trencher

Figure 5.8: Side-by-side runtimes of Trencher and of CBMC for Figure 5.4
programs with increasing values of N . CBMC takes ƒ 8.5 minutes for N = 20.

5.1.3 Discussion
Because we find several witnesses in parallel, throughout the experiments our
implementation required up to 2 iterations of the loop in Algorithm 3.1. In
the case of robust programs, one iteration is always su�cient. This suggests
that robustness violations are really the critical behaviors leading to goal
states unreachable under SC to become reachable under TSO.

The experiments indicate that, at least for some programs with a high
branching factor, our implementation is faster than Memorax if a useful
witness can be found within a small number of iterations of Algorithm 3.1.
Similarly, our prototype is faster than CBMC for programs that require a

5.2. Evaluation for Exploration Techniques 89

high unwinding bound to make visible TSO behavior needed for reaching
a certain goal state. Although the two programs by which we show this
are rather artificial, we expect such characteristics to occur in actual code.
Hence, our approach seems to be strong on an orthogonal set of programs.
In a portfolio model checker, it could be used as a promising alternative to
other existing techniques.

To evaluate the practicality of our method, more experiments are needed.
In particular, we hope to be able to substantiate the above conjecture for
concrete programs with behavior like that depicted in Figures 5.3 and 5.4.
Unfortunately, there seems to be no clear way of translating (compiled) C
programs into Assembly syntax without substantial abstraction. To handle
C code, an alternative would be to re-implement our method within CBMC.
This approach, however, would force us to determine a priory a good-enough
unwinding bound. Moreover, we could no longer conclude safety of robust
programs with unbounded loops.

5.2 Evaluation for Exploration Techniques

We implemented in Trencher [Der15] several new algorithms for state-
space exploration and tested both how fast they are as well as how much
state reduction they achieve.

First, motivated by a class of examples that Trencher’s default DFS
exploration cannot cope with, we tested an alternative BFS implementation.
Our hypothesis is that DFS and BFS explorations are well suited for di�er-
ent classes of input programs. Furthermore, as already empirically shown
in [Der15] for DFS exploration, we think that using Trencher’s default
live variable analysis and local-events-first state-space reduction is generally
better than not using them — both for DFS and for BFS exploration.

Second, we implemented a non-stateless version of dynamic POR —
essentially Algorithm 4.4 enhanced by tracking the visited set of states. We
then tested it against the default local-events-first heuristics implemented in
Trencher. Our hypothesis is that this dynamic POR implementation (with
visited states tracked) is slower for standard examples while being faster for
specific classes of examples like the Indexer algorithm from [FG05].

5.2.1 BFS and DFS Exploration for SC reachability

The example in Figure 5.10 made us recognize the need for an alternative
BFS exploration to Trencher’s standard DFS one: using BFS exploration
it can be successfully checked that this Assembly program is non-robust.

To compare the DFS and BFS implementations of Trencher’s SC
reachability we evaluated the Figure 5.9 benchmark tests. These tests are
variations of the Figure 5.1 ones (and a subset of the [Der15] Table 7.3 tests).

90 Chapter 5. Experimental Evaluation

Program T St Tr CPU Real
1 Dekker (not fenced) 2 24 30 431 165
2 Dekker (fenced) 2 28 34 0 0
3 Peterson (not fenced) 2 14 18 168 56
4 Peterson (fenced) 2 16 20 1 0
5 Lamport (not fenced) 3 33 36 12572 3577
6 Lamport (fenced) 3 39 42 2 1
7 CLH Lock 3 42 41 94 29
8 MCS Lock 2 54 58 41 11
9 Cilk WSQ (incorrect use) 5 80 79 103267 28597
10 Cilk WSQ (correct use) 3 73 72 35 10
11 Lock-free stack 4 46 50 0 0

CPU Real
489 171

1 0
161 55

0 0
14916 4291

1 1
103 31
46 12

126098 36693
23 6
0 0

Figure 5.9: Trencher benchmarking results (DFS vs BFS exploration). Times
are in milliseconds. The analysis reports on robustness-enforcing fence insertion as
in [BDM13] and the examples are a subset of the test benchmark used in [Der15].
The right-hand-side table shows the mostly higher times for BFS exploration.

t1t1

r1 Ω mem[x] r2 Ω mem[y]

mem[x] Ω 1 + r1 + r2

t2t2

r1 Ω mem[x] r2 Ω mem[y]

mem[x] Ω 1 + r1 ú r2

Figure 5.10: A non-robust program for which DFS analysis segfaults.

Evaluation and Discussion We ran tests on a computer with a 1.7 GHz
Intel Core i7 processor (2 cores with 2 threads each) with 8GB RAM running
OS X Yosemite. The table in Figure 5.9 summarizes the control results of
Trencher on our selected benchmark tests. As in Figure 5.1, the columns
CPU and Real give the total CPU time and the wall-clock time a test takes
while columns T, St, and Tr describe how many threads, control states, and
state-changing transitions each test has.

Figure 5.9 shows that, for several standard examples from the literature
(the benchmark tests that take more than 10 milliseconds are depicted), the
DFS exploration is generally faster than the BFS exploration. This holds
even when using live variable analysis and/or the local-events-first reduction
(as described in Section 4.3) under SC. One reason for this behavior is that,
for each SC reachability query of the fence insertion benchmark, the BFS
approach has to store the fringe of the explored state-space in a queue instead
of only relying on the system stack as is the case when using DFS.

However, Figure 5.11 shows that no particular combination of DFS/BFS
and/or live variable analysis and/or simple partial order reduction is a “best”
silver bullet technique. Indeed, how fast each SC reachability query returns
and how many states it explores depends, intuitively, on how deep (for BFS)
or on how deep and how far to the right (for left-to-right DFS exploration)

5.2. Evaluation for Exploration Techniques 91

a goal state can be found in the state-space.

1 3 5 7 8 9 10

101

102

103

104

Test order index from Figure 5.9.

lo
gs

ca
le

of
wa

ll-
cl

oc
k

tim
e

(m
ill

ise
co

nd
s)

1 3 5 7 8 9 10

103

104

105

106

107

nu
m

be
r

of
ex

pl
or

ed
st

at
es

DFS+POR+liveness BFS+POR+liveness DFS+liveness BFS+liveness
DFS+POR BFS+POR DFS BFS

Figure 5.11: Trencher (DFS & BFS) results with two further reductions: live
variable analysis and local-events-first POR (named POR in the legend).

5.2.2 POR Exploration for SC reachability
To compare dynamic POR exploration and the DFS implementation with
local-event-first heuristics of Trencher’s SC reachability (Algorithm 4.2
with M = SC) we once more evaluated the benchmark tests in Figure 5.9.
As before, we used tests that take more than 10 milliseconds, namely, the
unfenced Dekker, Peterson and Lamport algorithms, the algorithm models
for the lock free stack and the CLH and MCS locks [HS08], and two use
cases for Cilk-5’s work-stealing queue [FLR98].

Furthermore, we used the Indexer program from [FG05] to demonstrate

92 Chapter 5. Experimental Evaluation

that, for certain classes of programs, dynamic POR outperforms the simpler
local-events-first reduction. The Indexer program’s i

th thread is depicted
using the Assembly syntax in Figure 5.12.

ti
id Ω i

check m < 4

check m = ≠1

m Ω m + 1 w Ω 11m + id

h Ω 7 ú w mod 128

check r ”= 0 h Ω (h + 1) mod 128
check r = 0

mem[h] Ω w

r Ω mem[h]

Figure 5.12: The i-th thread of the Indexer program that manipulates a shared
hash table (the memory in our interpretation). Each thread seeks to insert into
the table at hash index h := 7 ú w mod 128 a fixed (in the picture 4) number of
messages w. If a hash table collision occurs then the next free entry in the table
is used. We artificially inserted marked control states such that a goal state is not
reachable — when no POR is used this enforces the full state space exploration.

Evaluation and Discussion As before, we ran the tests on a computer
with a 1.7 GHz Intel Core i7 processor (2 cores with 2 threads each) with
8GB RAM running OS X Yosemite.

Figure 5.13 shows that for the Indexer program depicted in Figure 5.12
the local-events-first heuristics cannot cope with an increasing number of
threads as well as dynamic POR exploration can.

2 3 4 5 6 7
100

101

102

103

104

105

N — number of threads

wa
ll-

cl
oc

k
tim

e
(m

ill
ise

co
nd

s)

dynamic POR
local-events-first

2 3 4 5 6 7

102

103

104

105

106

107

N — number of threads.

nu
m

be
r

of
ex

pl
or

ed
st

at
es

dynamic POR
local-events-first

Figure 5.13: Logscales of runtimes and explored states for the N -threaded Indexer
program while running Trencher with live variable analysis turned on.

Figure 5.14 shows that, for the Figure 5.9 benchmark tests that take more
than 10 milliseconds, the DFS exploration with local-events-first reduction

5.2. Evaluation for Exploration Techniques 93

is faster than the dynamic POR exploration. Concerning explored states,
since the tested exploration techniques are DFS-based they explore a similar
number of states. Subtle di�erences in the number of explored states are
the result of either (1) the order in the parallelization of the SC checks
performed, or (2) the order in which transitions are explored, as dictated by
the two (essentially di�erent) algorithms.

1 3 5 7 8 9 10

101

102

103

104

Test order index from Figure 5.9.

lo
gs

ca
le

of
wa

ll-
cl

oc
k

tim
e

(m
ill

ise
co

nd
s)

1 3 5 7 8 9 10

103

104

105

106

107

nu
m

be
r

of
ex

pl
or

ed
st

at
es

local-first POR+liveness dynamic POR+liveness local-first POR dynamic POR

Figure 5.14: Trencher local-events-first (local-first POR in the legend) and
dynamic POR comparison with and without live variable analysis.

To conclude, just like when o�ered the choice of either DFS or BFS
exploration, there is no POR silver bullet technique — both the dynamic
POR and the local-events-first reduction can, depending on the considered
test, be faster and/or reduce more states than the other.

Chapter6
Conclusion

All human knowledge begins with intuitions, proceeds from thence to concepts,
and ends with ideas.

Immanuel Kant
Critique of pure reason

This thesis presents new algorithms to verify TSO-relaxed programs.
The TSO memory model’s core feature is that stores are bu�ered between a
program’s threads and the system’s shared memory. While the TSO stores’
de-atomization speeds up program execution, it also makes programs more
di�cult to understand and analyse. Consider, for instance, the reachability
problem — the main problem that we target. While reachability under SC
is only PSpace-complete [Koz77], the TSO reachability problem is tougher:
non-primitive-recursive-complete decidable to be precise [Ati+10].

6.1 Summary
Owing to TSO reachability’s high complexity, we develop approximating
techniques that target this problem.

To under-approximate TSO reachability we propose an algorithm to
check it lazily [Bou+15]. Lazy TSO reachability simulates store bu�ering
using thread-auxiliary variables between oracle-indicated control locations.
The two natural properties of an oracle guarantee that:

• if the oracle indicates an empty sequence of instructions then the easier
SC reachability task produces the same answer as TSO reachability.

• if the oracle outputs some non-empty sequence ÿ of instructions then
the TSO delays that bu�ering ÿ stores produces is encoded using finitely
many thread-auxiliary registers. By iteratively performing this refinement
and by checking SC reachability in the program with the encoded delays
TSO reachability can eventually be a�rmatively answered.

95

96 Chapter 6. Conclusion

To over-approximate TSO reachability we propose abstractions of TSO
bu�ers and algorithms that exploit them. Furthermore, we determine that
reachability of TSO reachability with multiset-abstracted bu�ers and per
variable last-added-value information is decidable.

Finally, we show that partial order reduction approaches introduced for
the model checking problem are generalizable to account for TSO memory.
Intuitively, we stress that TSO stores consist of

• a machine-local operation whose precise interleaving with operations
of the other machines is inconsequential to program correctness, and

• a non-local operation whose interleaving with non-local operations of
the other machines might interfere with safe program behavior.

Using this insight and the trace-based POR perspective [Maz86; SS88]
we develop and adapt several reduction techniques including dynamic and
cartesian partial order reduction.

6.2 Future Work
The theory behind lazy TSO reachability seems not to need to be developed
for the finite case and then extended via bounded model checking to general
programs: through an e�cient enumeration of oracle suggestions one should
still achieve semi-decidability. Furthermore, it would be interesting to know
how an enumeration-based oracle compares to our robustness-based oracle
in terms of e�ciency.

Both happens-before-based properties like robustness [BMM11] and per-
sistence [AAN15] as well as set-based bu�er approximations bring us closer
to verifying a larger class of programs under TSO. It would be worthwhile
to assess which other set-based abstractions might help enlarge this class of
programs. Furthermore, tight complexity bounds for reachability in the mul-
tiset abstraction with per address last-added-values are not yet known. A
possible way to find such bounds would be through a reduction from/to the
ExpSpace-complete Petri net coverability problem [Lip76; Rac78]. This,
however, might be non-trivial: our attempts to find a reduction from Petri
net coverability led to the conclusion that the nets might need zero-test arcs.

For further advances on the topic of partial order reduction the recent
study of Rodŕıguez et al. [Rod+15] that combines POR with net unfoldings
seems to be the most promising starting point.

Finally, the experimental evaluation could be improved through more
tests and repeating runs to provide a statistically sounder ’-score for the
compared implementations. Furthermore, more algorithms (including the
over-approximating refinement and the cartesian POR one) could be imple-
mented and evaluated. Concerning POR algorithms, it is likely more e�cient
to implement a scheduler-intensive approach similar to the one in [Abd+15]
instead of explicitly storing partially-ordered computation traces.

Bibliography

[AAN15] P. A. Abdulla, M. F. Atig, and T. P. Ngo. “The best of
both worlds: trading e�ciency and optimality in fence inser-
tion for TSO”. In: 24th European Symposium on Programming.
Vol. 9032. LNCS. Springer, 2015, pp. 308–332.

[Abd+12a] P. A. Abdulla, M. F. Atig, Y-F. Chen, C. Leonardsson, and
A. Rezine. “Automatic fence insertion in integer programs via
predicate abstraction”. In: 19th International Symposium on
Static Analysis. Vol. 7460. LNCS. Springer, 2012, pp. 164–180.

[Abd+12b] P. A. Abdulla, M. F. Atig, Y-F. Chen, C. Leonardsson, and A.
Rezine. “Counter-example guided fence insertion under TSO”.
In: 18th Tools and Algorithms for the Construction and Analy-
sis of Systems. Vol. 7214. LNCS. Springer, 2012, pp. 204–219.

[Abd+13] P. A. Abdulla, M. F. Atig, Y-F. Chen, C. Leonardsson, and
A. Rezine. “Memorax, a precise and sound tool for automatic
fence insertion under TSO”. In: 19th Tools and Algorithms for
the Construction and Analysis of Systems. Vol. 7795. LNCS.
Springer, 2013, pp. 530–536.

[Abd+14] P. A. Abdulla, S. Aronis, B. Jonsson, and K. F. Sagonas.
“Optimal dynamic partial order reduction”. In: 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, 2014, pp. 373–384.

[Abd+15] P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson, C. Leonards-
son, and K. F. Sagonas. “Stateless model checking for TSO and
PSO”. In: 21st Tools and Algorithms for the Construction and
Analysis of Systems. Vol. 9035. LNCS. Springer, 2015, pp. 353–
367.

[Abd+96] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. “Gen-
eral decidability theorems for infinite-state systems”. In: 11th

97

98 BIBLIOGRAPHY

Annual IEEE Symposium on Logic in Computer Science. IEEE
Computer Society, 1996, pp. 313–321.

[ABP11] M. F. Atig, A. Bouajjani, and G. Parlato. “Getting rid of store-
bu�ers in TSO analysis”. In: 23rd Computer Aided Verification.
Vol. 6806. Springer, 2011, pp. 99–115.

[Adv+91] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer.
“Detecting data races on weak memory systems”. In: 18th
Annual International Symposium on Computer Architecture.
ACM, 1991, pp. 234–243.

[AG96] S. V. Adve and K. Gharachorloo. “Shared memory consistency
models: a tutorial”. In: IEEE Computer 29.12 (1996), pp. 66–
76.

[AJ96] P. A. Abdulla and B. Jonsson. “Verifying programs with unreli-
able channels”. In: Information and Computation 127.2 (1996),
pp. 91–101.

[AK95] P. A. Abdulla and M. Kindahl. “Decidability of simulation and
bisimulation between lossy channel systems and finite state sys-
tems (extended abstract)”. In: 6th International Conference on
Concurrency Theory. Vol. 962. LNCS. Springer, 1995, pp. 333–
347.

[AKH03] J. H. Anderson, Y.-J. Kim, and T. Herman. “Shared-memory
mutual exclusion: major research trends since 1986”. In: Dis-
tributed Computing 16.2-3 (2003), pp. 75–110.

[AKT13] J. Alglave, D. Kroening, and M. Tautschnig. “Partial orders
for e�cient BMC of concurrent software”. In: 25th Computer
Aided Verification. Vol. 8044. LNCS. Springer, 2013, pp. 141–
157.

[Alg+13] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. “Soft-
ware verification for weak memory via program transfor-
mation”. In: 22nd European Symposium on Programming.
Vol. 7792. Springer, 2013, pp. 512–532.

[Alg+14] J. Alglave, D. Kroening, V. Nimal, and D. Poetzl. “Don’t sit
on the fence - a static analysis approach to automatic fence
insertion”. In: 26th Computer Aided Verification. Vol. 8559.
LNCS. Springer, 2014, pp. 508–524.

[Alg10] J. Alglave. “A shared memory poetics”. PhD thesis. University
Paris 7, 2010.

[AM06] Arvind and J.-W. Maessen. “Memory model = instruction re-
ordering + store atomicity”. In: 33rd International Sympo-
sium on Computer Architecture. IEEE Computer Society, 2006,
pp. 29–40.

BIBLIOGRAPHY 99

[AM11] J. Alglave and L. Maranget. “Stability in weak memory mod-
els”. In: 22nd Computer Aided Verification. Vol. 6806. LNCS.
Springer, 2011, pp. 50–66.

[AMP96] R. Alur, K. L. McMillan, and D. Peled. “Model-checking of
correctness conditions for concurrent objects”. In: 11th Annual
IEEE Symposium on Logic in Computer Science. IEEE Com-
puter Society, 1996, pp. 219–228.

[AMT14] J. Alglave, L. Maranget, and M. Tautschnig. “Herding cats:
modelling, simulation, testing, and data mining for weak mem-
ory”. In: ACM Transactions on Programming Languages and
Systems 36.2 (2014), 7:1–7:74.

[Ati+10] M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi.
“On the verification problem for weak memory models”. In:
37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM, 2010, pp. 7–18.

[Ati+12] M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi.
“What’s decidable about weak memory models”. In: 21st Euro-
pean Symposium on Programming. Vol. 7211. LNCS. Springer,
2012, pp. 24–46.

[BAM07] S. Burckhardt, R. Alur, and M. M. K. Martin. “CheckFence:
checking consistency of concurrent data types on relaxed mem-
ory models”. In: Programming Language Design and Imple-
mentation. ACM, 2007, pp. 12–21.

[BBR10] J. Barnat, L. Brim, and P. Rockai. “Parallel partial order re-
duction with topological sort proviso”. In: 8th IEEE Interna-
tional Conference on Software Engineering and Formal Meth-
ods. IEEE Computer Society, 2010, pp. 222–231.

[BDM13] A. Bouajjani, E. Derevenetc, and R. Meyer. “Checking and
enforcing robustness against TSO”. In: 22nd European Sym-
posium on Programming. Vol. 7792. LNCS. Springer, 2013,
pp. 533–553.

[BK08] C. Baier and J.-P. Katoen. Principles of model checking. MIT
Press, 2008.

[BLL06] D. Bosnacki, S. Leue, and A. Lluch-Lafuente. “Partial-order re-
duction for general state exploring algorithms”. In: 12th SPIN
Workshop. Vol. 3925. LNCS. Springer, 2006, pp. 271–287.

[BM08] S. Burckhardt and M. Musuvathi. “E�ective program verifi-
cation for relaxed memory models”. In: 20th Computer Aided
Verification. Vol. 5123. LNCS. Springer, 2008, pp. 107–120.

100 BIBLIOGRAPHY

[BMM11] A. Bouajjani, R. Meyer, and E. Möhlmann. “Deciding robust-
ness against total store ordering”. In: 38th International Collo-
quium on Automata, Languages and Programming. Vol. 6756.
LNCS. Springer, 2011, pp. 428–440.

[BMP08] S. Baswana, S. K. Mehta, and V. Powar. “Implied set closure
and its application to memory consistency verification”. In:
20th Computer Aided Verification. Vol. 5123. LNCS. Springer,
2008, pp. 94–106.

[Bou+15] A. Bouajjani, G. Calin, E. Derevenetc, and R. Meyer. “Lazy
TSO reachability”. In: 18th Fundamental Approaches to Soft-
ware Engineering. Vol. 9033. LNCS. Springer, 2015, pp. 267–
282.

[BP09] G. Boudol and G. Petri. “Relaxed memory models: an oper-
ational approach”. In: 36th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. ACM, 2009,
pp. 392–403.

[BSS11] J. Burnim, C. Stergiou, and K. Sen. “Sound and complete mon-
itoring of sequential consistency for relaxed memory models”.
In: 17th Tools and Algorithms for the Construction and Anal-
ysis of Systems. Vol. 6605. LNCS. Springer, 2011, pp. 11–25.

[Bur+12] S. Burckhardt, A. Gotsman, M. Musuvathi, and H. Yang.
“Concurrent library correctness on the TSO memory model”.
In: 21st European Symposium on Programming. Vol. 7211.
LNCS. Springer, 2012, pp. 87–107.

[Cal+13] G. Calin, E. Derevenetc, R. Majumdar, and R. Meyer. “A
theory of partitioned global address spaces”. In: 33rd IARCS
Annual Conference on Foundations of Software Technology
and Theoretical Computer Science. Vol. 24. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2013, pp. 127–139.

[CE81] E. M. Clarke and E. A. Emerson. “Design and synthesis of syn-
chronization skeletons using branching-time temporal logic”.
In: Logics of Programs, Workshop, Yorktown Heights, New
York. Vol. 131. LNCS. Springer, 1981, pp. 52–71.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking.
MIT Press, 1999.

[CKL04] E. Clarke, D. Kroening, and F. Lerda. “A tool for checking
ANSI-C programs”. In: 10th Tools and Algorithms for the Con-
struction and Analysis of Systems. Vol. 2988. LNCS. Springer,
2004, pp. 168–176.

BIBLIOGRAPHY 101

[CMM13] K. E. Coons, M. Musuvathi, and K. S. McKinley. “Bounded
partial-order reduction”. In: Object-Oriented Programming,
Systems, Languages & Applications. ACM, 2013, pp. 833–848.

[Der15] E. Derevenetc. “Robustness against relaxed memory models”.
PhD thesis. University of Kaiserslautern, 2015.

[Dic09] D. Dice. A race in LockSupport park() arising from weak mem-
ory models. https://blogs.oracle.com/dave/entry/a_

race_in_locksupport_park. 2009.
[Dij65] E. W. Dijkstra. “Solution of a problem in concurrent program-

ming control”. In: Communications of ACM 8.9 (1965), p. 569.
[DM14] E. Derevenetc and R. Meyer. “Robustness against Power

is PSPACE-complete”. In: 41st International Colloquium on
Automata, Languages and Programming. Vol. 8573. LNCS.
Springer, 2014, pp. 158–170.

[DSD14] J. Derrick, G. Smith, and B. Dongol. “Verifying linearizability
on TSO architectures”. In: 11th Integrated Formal Methods.
Vol. 8739. LNCS. Springer, 2014, pp. 341–356.

[FG05] C. Flanagan and P. Godefroid. “Dynamic partial-order reduc-
tion for model checking software”. In: 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages. ACM, 2005, pp. 110–121.

[Fin87] A. Finkel. “A generalization of the procedure of Karp and
Miller to well structured transition systems”. In: 14th Interna-
tional Colloquium on Automata, Languages and Programming.
Vol. 267. LNCS. Springer, 1987, pp. 499–508.

[FLR98] M. Frigo, C. E. Leiserson, and K. H. Randall. “The Imple-
mentation of the Cilk-5 Multithreaded Language”. In: Pro-
gramming Language Design and Implementation. ACM, 1998,
pp. 212–223.

[FS01] A. Finkel and P. Schnoebelen. “Well-structured transition sys-
tems everywhere!” In: Theoretical Computer Science 256.1-2
(2001), pp. 63–92.

[Fur+14] F. Furbach, R. Meyer, K. Schneider, and M. Senftleben. “Mem-
ory model-aware testing - a unified complexity analysis”. In:
14th International Conference on Application of Concurrency
to System Design. IEEE Computer Society, 2014, pp. 92–101.

[GHV09] J. Geldenhuys, H. Hansen, and A. Valmari. “Exploring the
scope for partial order reduction”. In: 7th International Sym-
posium on Automated Technology for Verification and Analysis.
Vol. 5799. LNCS. Springer, 2009, pp. 39–53.

https://blogs.oracle.com/dave/entry/a_race_in_locksupport_park
https://blogs.oracle.com/dave/entry/a_race_in_locksupport_park

102 BIBLIOGRAPHY

[GK97] P. B. Gibbons and E. Korach. “Testing shared memories”. In:
SIAM Journal of Computing 26.4 (1997), pp. 1208–1244.

[GMY12] A. Gotsman, M. Musuvathi, and H. Yang. “Show no weakness:
sequentially consistent specifications of TSO libraries”. In: 26th
International Symposium on Distributed Computing. Vol. 7611.
LNCS. Springer, 2012, pp. 31–45.

[God96] P. Godefroid. “Partial-order methods for the verification of
concurrent systems - an approach to the state-explosion prob-
lem”. PhD thesis. University of Liège, 1996.

[GRB06] G. Geeraerts, J.-F. Raskin, and L. Van Begin. “Expand, en-
large and check: new algorithms for the coverability problem
of WSTS”. In: Journal of Computer and System Sciences 72.1
(2006), pp. 180–203.

[Gue+07] G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. “Cartesian
partial-order reduction”. In: 14th SPIN Workshop. Vol. 4595.
LNCS. Springer, 2007, pp. 95–112.

[Han+04] S. Hangal, D. Vahia, C. Manovit, J.-Y. J. Lu, and S.
Narayanan. “TSOtool: A program for verifying memory sys-
tems using the memory consistency model”. In: 31st Interna-
tional Symposium on Computer Architecture. IEEE Computer
Society, 2004, pp. 114–123.

[HKV97] L. Higham, J. Kawash, and N. Verwaal. “Defining and com-
paring memory consistency models”. In: 10th Parallel and Dis-
tributed Computing Systems. ISCA, 1997, pp. 349–356.

[Hol97] Gerard J. Holzmann. “The Model Checker SPIN”. In: IEEE
Transactions on Software Engineering 23.5 (1997), pp. 279–
295.

[HR06] T. Q. Huynh and A. Roychoudhury. “A memory model sen-
sitive checker for C#”. In: 14th International Symposium on
Formal Methods. Vol. 4085. LNCS. Springer, 2006, pp. 476–
491.

[HS08] M. Herlihy and N. Shavit. The art of multiprocessor program-
ming. Morgan Kaufmann, 2008.

[Int06] Intel. Intel 64 and IA-32 architectures software developer’s
manual. http : / / www . intel . com / content / www / us /

en / processors / architectures - software - developer -

manuals.html. 2006–.
[Koz77] D. Kozen. “Lower bounds for natural proof systems”. In: Foun-

dations of Computer Science. IEEE Computer Society, 1977,
pp. 254–266.

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

BIBLIOGRAPHY 103

[KR08] H. Kastenberg and A. Rensink. “Dynamic partial order re-
duction using probe sets”. In: 19th International Conference
on Concurrency Theory. Vol. 5201. LNCS. Springer, 2008,
pp. 233–247.

[KR88] B. W. Kernighan and D. Ritchie. The C programming language,
second edition. Prentice-Hall, 1988.

[KVY10] M. Kuperstein, M. Vechev, and E. Yahav. “Automatic infer-
ence of memory fences”. In: 10th Formal Methods in Computer-
Aided Design. IEEE Computer Society, 2010, pp. 111–119.

[KVY11] M. Kuperstein, M. T. Vechev, and E. Yahav. “Partial-
coherence abstractions for relaxed memory models”. In: 32nd
ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 2011, pp. 187–198.

[KWG09] V. Kahlon, C. Wang, and A. Gupta. “Monotonic partial order
reduction: an optimal symbolic partial order reduction tech-
nique”. In: 20th Computer Aided Verification. Vol. 5643. LNCS.
Springer, 2009, pp. 398–413.

[LA04] C. Lattner and V. S. Adve. “LLVM: A compilation framework
for lifelong program analysis & transformation”. In: 2nd IEEE
/ ACM International Symposium on Code Generation and Op-
timization. IEEE Computer Society, 2004, pp. 75–88.

[Laa+13] A. Laarman, E. Pater, J. van de Pol, and M. Weber. “Guard-
based partial-order reduction”. In: 20th SPIN Workshop.
Vol. 7976. LNCS. Springer, 2013, pp. 227–245.

[Lam79] L. Lamport. “How to make a multiprocessor computer that
correctly executes multiprocess programs”. In: IEEE Transac-
tions on Computers 28.9 (1979), pp. 690–691.

[Lam83] L. Lamport. “What good is temporal logic?” In: IFIP Congress
on Information Processing. 1983, pp. 657–668.

[Lam87] L. Lamport. “A Fast Mutual Exclusion Algorithm”. In: ACM
Transactions on Computer Systems 5.1 (1987), pp. 1–11.

[Lin14] A. Linden. “On the verification of programs on relaxed memory
models”. PhD thesis. Université de Liège, 2014.

[Lip76] R. Lipton. The reachability problem requires exponential space.
Tech. rep. 62. Yale University, 1976.

[Liu+12] F. Liu, N. Nedev, N. Prisadnikov, M. T. Vechev, and E. Ya-
hav. “Dynamic synthesis for relaxed memory models”. In: Pro-
gramming Language Design and Implementation. ACM, 2012,
pp. 429–440.

104 BIBLIOGRAPHY

[Luc01] V. Luchangco. “Memory consistency models for high perfor-
mance distributed computing”. PhD thesis. Massachusetts In-
stitute of Technology, 2001.

[LW11] A. Linden and P. Wolper. “A verification-based approach to
memory fence insertion in relaxed memory systems”. In: 18th
SPIN Workshop. Vol. 6823. LNCS. Springer, 2011, pp. 144–
160.

[LW13] A. Linden and P. Wolper. “A verification-based approach to
memory fence insertion in PSO memory systems”. In: 19th
Tools and Algorithms for the Construction and Analysis of Sys-
tems. Vol. 7795. LNCS. Springer, 2013, pp. 339–353.

[Maz86] A. W. Mazurkiewicz. “Trace theory”. In: Advances in Petri
Nets 1986, Part II: Relationships to Other Models of Concur-
rency. Vol. 255. LNCS. Springer, 1986, pp. 279–324.

[Mil89] R. Milner. Communication and concurrency. PHI Series in
Computer Science. Prentice Hall, 1989.

[MP09] J. V. Meulen and C. Pecheur. “Combining partial order reduc-
tion with bounded model checking”. In: 32nd Communicating
Process Architectures Conference. Vol. 67. Concurrent Systems
Engineering Series. IOS Press, 2009, pp. 29–48.

[MP92] Z. Manna and A. Pnueli. The temporal logic of reactive and
concurrent systems - specification. Springer, 1992.

[MP95] Z. Manna and A. Pnueli. Temporal verification of reactive sys-
tems - safety. Springer, 1995.

[OSS09a] S. Owens, S. Sarkar, and P. Sewell. “A better x86 memory
model: x86-TSO”. In: Theorem Proving in Higher Order Log-
ics. Vol. 5674. LNCS. Springer, 2009, pp. 391–407.

[OSS09b] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model:
x86-TSO (extended version). Tech. rep. CL-TR-745. University
of Cambridge, 2009.

[Owe10] S. Owens. “Reasoning about the implementation of concur-
rency abstractions on x86-TSO”. In: 24th European Conference
on Object-Oriented Programming. Vol. 6183. LNCS. Springer,
2010, pp. 478–503.

[PD95] S. Park and D. L. Dill. “An executable specification, analyzer
and verifier for RMO (Relaxed Memory Order)”. In: SPAA:
Annual ACM Symposium on Parallel Algorithms and Archi-
tectures. ACM, 1995.

BIBLIOGRAPHY 105

[Pel93] D. Peled. “All from one, one for all: on model checking using
representatives”. In: 5th Computer Aided Verification. Vol. 697.
LNCS. Springer, 1993, pp. 409–423.

[Pel96] D. Peled. “Combining partial order reductions with on-the-
fly model-checking”. In: Formal Methods in System Design 8.1
(1996), pp. 39–64.

[Pnu77] A. Pnueli. “The temporal logic of programs”. In: Foundations
of Computer Science. IEEE Computer Society, 1977, pp. 46–
57.

[PW97] D. Peled and T. Wilke. “Stutter-Invariant Temporal Properties
are Expressible Without the Next-Time Operator”. In: Infor-
mation Processing Letters 63.5 (1997), pp. 243–246.

[QS82] J.-P. Queille and J. Sifakis. “Specification and verification of
concurrent systems in CESAR”. In: International Symposium
on Programming, 5th Colloquium. Vol. 137. LNCS. Springer,
1982, pp. 337–351.

[Rac78] C. Racko�. “The covering and boundedness problems for vector
addition systems”. In: Theoretical Computer Science 6 (1978),
pp. 223–231.

[Rei85] W. Reisig. Petri nets: an introduction. Springer-Verlag New
York, Inc., 1985.

[Rod+15] C. Rodŕıguez, M. Sousa, S. Sharma, and D. Kroening.
“Unfolding-based Partial Order Reduction”. In: 26th Interna-
tional Conference on Concurrency Theory. Vol. 42. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015,
pp. 456–469.

[Roy+06] A. Roy, S. Zeisset, C. J. Fleckenstein, and J. C. Huang. “Fast
and generalized polynomial time memory consistency verifica-
tion”. In: 18th Computer Aided Verification. Vol. 4144. LNCS.
Springer, 2006, pp. 503–516.

[Sew+10] P. Sewell, S. Sarkar, S. Owens, F. Zappa-Nardelli, and M. O.
Myreen. “x86-TSO: a rigorous and usable programmer’s model
for x86 multiprocessors”. In: Communications of ACM 53.7
(2010), pp. 89–97.

[Sie12] S. F. Siegel. “Transparent partial order reduction”. In: Formal
Methods in System Design 40.1 (2012), pp. 1–19.

[SKH12] O. Saarikivi, K. Kähkönen, and K. Heljanko. “Improving dy-
namic partial order reductions for concolic testing”. In: 12th In-
ternational Conference on Application of Concurrency to Sys-
tem Design. IEEE Computer Society, 2012, pp. 132–141.

106 BIBLIOGRAPHY

[SN04] R. C. Steinke and G. J. Nutt. “A unified theory of shared
memory consistency”. In: Journal of the ACM 51.5 (2004),
pp. 800–849.

[SS88] D. Shasha and M. Snir. “E�cient and correct execution of
parallel programs that share memory”. In: ACM Transactions
on Programming Languages and Systems 10.2 (1988), pp. 282–
312.

[Str04] J. Strejček. “Linear temporal logic: expressiveness and model
checking”. PhD thesis. Masaryk University in Brno, 2004.

[Sur+05] Z. Sura, X. Fang, C.-L. Wong, S. P. Midki�, J. Lee, and D. A.
Padua. “Compiler techniques for high performance sequentially
consistent Java programs”. In: 10th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming.
ACM, 2005, pp. 2–13.

[Val90] A. Valmari. “Stubborn sets for reduced state space genera-
tion”. In: 10th Applications and Theory of Petri Nets. Vol. 483.
LNCS. Springer, 1990.

[VH10] A. Valmari and H. Hansen. “Can stubborn sets be optimal?”
In: 31st International Conference on Applications and Theory
of Petri Nets. Vol. 6128. LNCS. Springer, 2010, pp. 43–62.

[VZ11] V. Vafeiadis and F. Zappa-Nardelli. “Verifying fence elimi-
nation optimisations”. In: 18th International Symposium on
Static Analysis. Vol. 6887. LNCS. Springer, 2011, pp. 146–162.

[WG94] D. Weaver and T. Germond, eds. The SPARC architecture
manual version 9. PTR Prentice Hall, 1994.

[Yan+04] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind.
“Nemos: A framework for axiomatic and executable specifi-
cations of memory consistency models”. In: 18th International
Parallel and Distributed Processing Symposium. IEEE Com-
puter Society, 2004.

[Yan+08] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby. “E�-
cient stateful dynamic partial order reduction”. In: 15th SPIN
Workshop. Vol. 5156. LNCS. Springer, 2008, pp. 288–305.

[YWY06] X. Yi, J. Wang, and X. Yang. “Stateful dynamic partial-order
reduction”. In: 8th International Conference on Formal Engi-
neering Methods. Vol. 4260. LNCS. Springer, 2006, pp. 149–
167.

Appendices

107

AppendixA
Detailed Proofs of Lemmas 6 and 11

A bit of preparation is required prior to proving Lemma 6. Namely, in the
proof of Lemma 6 we rely on computations that delay flush events locally
the least. Lemma 24 explains what are these computations.

Lemma 24. Let – œ CTSO(R) and t œ TID. There exists –̈ œ CTSO(R) such
that æhb (–) = æhb (–̈) and, for all events e

store

¡ e

flush

within thread t,
if –̈¿ t := –prefix · e

store

· –

Õ · e

flush

· –su�x then either
(1) –

Õ := — · e

load

· —

Õ and all events e œ —

Õ are flushes,
or (2) all events e œ –

Õ are local assignments or conditionals.

Proof. Intuitively, the theorem states that flush events of thread t delayed
past same-thread local events, may be delayed less without changing the
happens-before relation of the computation. Local events are assignments,
conditionals, and store events in the same thread.

Let – := –1 · e

store

· –2 · e · –3 · e

flush

· –4 such that e

store

¡ e

flush

are
events of thread t, e is a local event in t and thread(eÕ) ”= t for all events
e

Õ œ –3.
We denote by –0 := –1 ·e

store

·–2 ·–3 ·e
flush

·e ·–4 the TSO computation
that first performs the flush e

flush

and then the event e. Notice that since
–3 contains no events e

Õ with thread(eÕ) = t, feasibility of computation –0
is ensured and æhb (–) = æhb (–0) holds.

Starting with the last flush event in –, we use the above reordering of
events e to locally delay flush events less. In the end we obtain computation
–̈ in which no flush event of thread t can be locally delayed less.

Furthermore, in order to reference instructions of R ü ÿ that the exten-
sion adds we give an alternative, more concrete, description for some of the
transition sequences in the main text. Recall that variable count keeps track
of the number of store instructions processed along ÿ.

109

110 Appendix A. Detailed Proofs of Lemmas 6 and 11

If cmd(insti) = mem[e] Ω e

Õ, we said count is incremented and instruc-
tions that remember the value and address in ar

count

and vr

count

are added.

qi≠1 qi
ar

count

Ω e vr

count

Ω e

Õ
(A.1)

If cmd(insti) = r Ω mem[e] we said instructions are added that load from
memory only when a load from the simulated bu�er is not possible. More
precisely, if some j œ [1, count] such that arj = e is found, r is assigned the
value of vrj . Otherwise, the register r receives its value from the address ‚

e.

qi≠1 · · ·

· · ·

qi

check ar

count

”= e check ar1 ”= e

r Ω mem[e]

check ar1 = e

check ar

count

= e

r Ω vr1

r Ω vr

count

Alternatively, assuming qcheck,i,count

:= qi≠1, this can be stated as adding

{(qcheck,i,count

, check ar

count

= e, qbuf,i,count

)} (A.2)
‡ {(qcheck,i,count

, check ar

count

”= e, qcheck,i,count≠1)} (A.3)
‡ {(qbuf,i,count

, r Ω vr

count

, qi)} (A.4)
...
‡ {(qcheck,i,1, check ar1 = e, qbuf,i,1)} (A.5)
‡ {(qcheck,i,1, check ar1 ”= e, qmem,i)} (A.6)
‡ {(qbuf,i,1, r Ω vr1, qi)} (A.7)

‡ {(qmem,i, r Ω mem[e], qi)} (A.8)

We said that out of control state qn we create a sequence of stores to
flush the contents of the auxiliary registers and return to the code of the
original thread.

qn · · · dst(instn)
mem[ar1] Ω vr1 mem[ar

max

] Ω vr

max

Alternatively, we could have stated it as adding

{(qn, mem[ar1] Ω vr1, qflush,1)} (A.9)
...
‡ {(qflush,max≠1, mem[ar

max

] Ω vr

max

, dst(instn))} (A.10)

111

Furthermore, for all instructions inst œ It with src(inst) = src(insti) for
some i œ [1..n] and for which inst ”= insti we added instructions that flush
the stores bu�ered in the auxiliary registers and return to dst(inst).

qi · · · dst(inst)
mem[ar1] Ω vr1 mem[ar

count

] Ω vr

count

cmd(inst)

Alternatively, we could have stated it as adding

{(qi, mem[ar1] Ω vr1, qnext,i,1)} (A.11)
...
‡ {(qnext,i,count≠1, mem[ar

count

] Ω vr

count

, qnext,i,count

)} (A.12)
‡ {(qnext,i,count

, cmd(inst), dst(inst))} (A.13)

Finally, for all load instructions insti, where i < n, as well as out of
q1 we added instructions that flush and fence the pair (ar1, vr1), make the
remaining bu�ered stores in the auxiliary registers visible, and return to q.
Here q := src(insti) in the load case and q := dst(inst1) otherwise.

qi · · · q

mem[ar1] Ω vr1 mf

mem[ar

count

] Ω vr

count

Alternatively, we could have stated it as adding

{(qi, mem[ar1] Ω vr1, qfence,i)} (A.14)
‡ {(qfence,i, mf, qorig,i,2)} (A.15)
‡ {(qorig,i,2, mem[ar2] Ω vr2, qorig,i,3)} (A.16)
...
‡ {(qorig,i,count

, mem[ar

count

] Ω vr

count

, q)} (A.17)

We can now turn to the actual proof of Lemma 6.

Proof of Lemma 6. Assume that t is the thread of ÿ := inst1 · . . . · instn,
XTSO(R ü ÿ) := (Eü, Sü, �X,TSO, sü, Fü), I and Q are the instructions and
states of R, ADR and REG are registers and addresses used by R, and Iü
are the instructions I

Õ
t of R ü ÿ as described in Section 3.1.

A direct result of Lemmas 24 and 4 is that TSO computations of R that
delay flushes of t locally the least reach all the states in the set ReachTSO(R).
Assume – œ CTSO(R) is a computation where flushes of t are delayed locally
the least as Lemma 24 describes and let s0, . . . , sm œ STSO for some m œ N
be all the states along the transition sequence s0

–≠æ s, i.e., s0 := s0 and
sm := s. Also, for all k œ [0..m], let –k denote prefixes of – with s0

–k≠æ sk.
We prove by induction over state indexes k œ [0..m] that there exist

prefixes —k of — œ CTSO(R ü ÿ) and states s

Õ
0, . . . , s

Õ
m œ Sü along sü

—≠æ s

Õ œ
�ú

X,TSO with s

Õ
0 := sü and s

Õ
m := s

Õ such that the following invariants hold:

112 Appendix A. Detailed Proofs of Lemmas 6 and 11

I-0 s0
–k≠æ (pc, val, buf) and sü

—k≠æ (pcÕ
, valÕ, buf Õ).

I-1 If pc and pcÕ di�er, they only di�er for thread t. If pc(t) ”= pcÕ(t), then
pc(t) = dst(insti) and pcÕ(t) = qi for some i œ [1..n ≠ 1].

I-2 valÕ(a) = val(a) for all a œ ADR fi REG.

I-3 buf and buf Õ di�er at most for t. If buf(t) ”= buf Õ(t), then pcÕ(t) = qi for
some i œ [1..n ≠ 1] and buf(t) = (\ar

count

, \vr

count

) · · · (‰
ar1,

‰
vr1) · buf Õ(t)

where count stores are seen along ÿ from src(inst1) to dst(insti).

For the induction base case k = 0, –0 = ‘, s0 = s0, pc = pc0,
val = val0, and buf = buf0. Then, for —0 := ‘ and s

Õ
0 = sü, invariants I-0...3

hold.
For the induction step case, assume that invariants I-0...3 hold for

k < m and that sk
e≠æ sk+1 := (pc+, val+, buf+) for some e œ E. We use

a case distinction over possible events e to define the prefix —k+1 such that
s

Õ
0

—k+1≠≠≠æ s

Õ
k+1 := (pcÕ

+, valÕ+, buf Õ
+) and invariants I-0...3 hold for k + 1.

If thread(e) := t

Õ ”= t it means inst(e) œ Iü is enabled in pcÕ(tÕ), so
there exist e

Õ œ Eü and s

Õ
k+1 œ Sü such that inst(eÕ) := inst(e) and

(sÕ
k, e

Õ
, s

Õ
k+1) œ �X,TSO in XTSO(R ü ÿ). We define —k+1 := —k · e

Õ and
find that, by the �X,TSO semantics (Figure 2.19) and under the assumption
that invariants I-0...3 hold for k, invariants I-0...3 also hold for k + 1.

If thread(e) = t we make the following case distinction over e and pcÕ(t).
1 “e is a flush event.” This first case deals with the possibility that a

store operation is flushed. Depending on whether buf Õ(t) ”= ‘, we either flush
the oldest address-value pair of buf Õ(t) or the first address-value auxiliary
registers pair. By Lemma 24, the later case can only happen when pcÕ(t) = qi

for some i œ [2..n ≠ 1] and insti performs a load or i = 1.
If buf Õ(t) ”= ‘ we flush the oldest write access bu�ered. Let e

flush

œ Eü and
s

Õ
k+1 œ Sü such that, according to rule (WM), (sÕ

k, e

flush

, s

Õ
k+1) œ �X,TSO.

We define —k+1 := —k · e

flush

and invariants I-0...3 hold for k + 1 since
(0) I-0,3 hold for k so s0

–k+1≠≠≠æ sk+1 and s

Õ
0

—k+1≠≠≠æ s

Õ
k+1, implying invariant

I-0 holds for k + 1.
(1) I-1 holds for k, pc+(t) = pc(t), and pcÕ

+(t) = pcÕ(t), so invariant I-1
holds for k + 1.

(2) I-2,3 hold for k, so events e and e

flush

update the same address by
a same value and invariant I-2 holds for k + 1.

(3) I-3 holds for k and events e and e

flush

remove one address-value pair
from both buf(t) and buf Õ(t), so invariant I-3 holds for k + 1.

Otherwise, buf Õ(t) = ‘ and count stores are encountered from src(inst1)
to pcÕ(t) = qi for some i œ [1..n ≠ 1]. Then buf(t) = (\ar

count

, \vr

count

) ·
. . . · (‰

ar1,

‰
vr1) and, by Lemma 24, we know insti is either the first store

inst1 of ÿ or a load. Either way, let e1, . . . , e

count

, e

flush

, e

fence

œ Eü match

113

equations (A.14–A.17) in the extension and s

Õ
k+1 œ Sü such that events ej

are, for all j œ [1..count], the bu�ering events for the stores (A.14,A.16–
A.17), e

flush

is the flush event for the store (A.14), e

fence

is the event for
the fence (A.15), and s

Õ
k

e

1

·e
flush

·e
fence

·e
2

·...·e
count≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ s

Õ
k+1 œ �ú

X,TSO according to
rules (ST,MEM,F) in Figure 2.19. We then define —k+1 := —k · e1 · e

flush

·
e

fence

· e2 · . . . · e

count

· e and find that invariants I-0...3 hold for k + 1 since
(0) I-0,3 hold for k so s0

–k+1≠≠≠æ sk+1 and s

Õ
0

—k+1≠≠≠æ s

Õ
k+1, i.e. invariant I-0

holds for k + 1.
(1) I-1 holds for k and pc+(t) = q = pcÕ

+(t), where q := src(insti) if insti

is a load and q := dst(inst1) otherwise, so invariant I-1 holds for k + 1.
(2) I-2,3 hold for k, events e and e

flush

update the same address by the
same value and, since the other events do not update any address, invariant
I-2 holds for k + 1.

(3) I-3 holds for k, and events e2, . . . , e

count

place the corresponding
address-value pairs that match buf+(t) into buf Õ

+(t), so invariant I-3 holds
for k + 1.

2 “e is not a flush event, pcÕ(t) = qi for i œ [1..n ≠ 1], inst(e) ”= insti+1.”
Event e corresponds to an instruction that does not follow ÿ. Then, events
for instructions (A.11–A.13) place the auxiliary address-value pairs into
buf Õ

+(t) and then perform cmd(inst(e)). Let e1, . . . , e

count

, e

Õ œ Eü and
s

Õ
k+1 œ Sü such that ej are, for j œ [1..count], the bu�ering events for

stores (A.11–A.12), e

Õ is the event of instruction (A.13), and s

Õ
k

e

1

·...·e
count

·eÕ≠≠≠≠≠≠≠≠æ
s

Õ
k+1 œ �ú

X,TSO, according to the Figure 2.19 rules. We define —k+1 :=
—k · e1 · . . . · e

count

· e

Õ and find that invariants I-0...3 hold for k + 1 since
(0) I-0 holds for k so s0

–k+1≠≠≠æ sk+1 and s

Õ
0

—k+1≠≠≠æ s

Õ
k+1, i.e. invariant I-0

holds for k + 1.
(1) I-1 holds for k and pc+(t) = dst(inst(e)) = pcÕ

+(t), so invariant I-1
holds for k + 1.

(2) I-2 holds for k and the events e and e

Õ update at most one REG
register by the same value, so invariant I-2 holds for k + 1.

(3) I-3 holds for k, the bu�ering store events e1, . . . , e

count

make the
address-value pairs of the auxiliary registers explicit in buf Õ

+(t), and if events
e and e

Õ are bu�ering events for stores then they add the same address-value
pair, so invariant I-3 holds for k + 1.

3 “inst(e) performs a store and 2 fails.” We analyze the following two
subcases depending on the value of pcÕ(t).
3a “pcÕ(t) = qi≠1 for some i œ [1..n ≠ 1].” Since 2 does not hold, inst(e) =

insti and auxiliary registers track the store insti. Let ea, ev œ Eü be events
for the instructions in (A.1) and s

Õ
k+1 œ Sü such that s

Õ
k

ea·ev≠≠≠æ s

Õ
k+1 œ

�ú
X,TSO according to the �X,TSO rule for local assignments. We define

—k+1 := —k · ea · ev and find that invariants I-0...3 hold for k + 1 since
(0) I-0 holds for k so s0

–k+1≠≠≠æ sk+1 and s

Õ
0

—k+1≠≠≠æ s

Õ
k+1, i.e. invariant I-0

114 Appendix A. Detailed Proofs of Lemmas 6 and 11

holds for k + 1.
(1) I-1 holds for k, pc+(t) = dst(insti), and pcÕ

+(t) = qi, so invariant I-1
holds for k + 1.

(2) I-2 holds for k and no memory changes occurred outside of auxiliary
registers, so invariant I-2 holds for k + 1.

(3) I-3 holds for k and (\ar

count

, \vr

count

) matches the address-value pair
added by e to buf+(t), so invariant I-3 holds for k + 1.
3b “pcÕ(t) = pc(t) ”= src(inst1).” This case is similar to having thread(e) ”=

t since inst(e) œ Iü. Then there exist e

Õ œ Eü and s

Õ
k+1 œ Sü such that

inst(eÕ) = inst(e) and (sÕ
k, e

Õ
, s

Õ
k+1) œ �X,TSO in XTSO(R ü ÿ). We de-

fine —k+1 := —k · e

Õ and find that, by the �X,TSO semantics (Figure 2.19),
invariants I-0...3 continue to hold for k + 1.

4 “inst(e) performs a load and 2 fails.” We analyze the following sub-
cases depending on the value of pcÕ(t).
4a “pcÕ(t) = qi≠1 for some i œ [1..n ≠ 1].” Since 2 does not hold, inst(e) =

insti and we use (A.4–A.7,A.8) to load from e only when no register arj

matches e for any j œ [1..count].
If there exists a largest j œ [1..count] such that arj = e then r will take

its value from the auxiliary register vrj . Let e

count

, . . . , ej , e

assign

œ Eü
and s

Õ
k+1 œ Sü such that ek are, for all k œ [j + 1..count], the events for

negative conditional checks (A.3,A.6), ej is the event for the earliest positive
conditional check (A.2,A.5), e

assign

is the event for an instruction (A.4,A.7),
and s

Õ
k

e

count

·...·ej ·e
assign≠≠≠≠≠≠≠≠≠≠≠æ s

Õ
k+1 œ �ú

X,TSO according to the rules for conditionals
and local assignments in �X,TSO. We define —k+1 := —k ·e

count

·. . .·ej ·e
assign

and find that the invariants I-0...3 hold for k + 1 since
(0) I-0 holds for k so s0

–k+1≠≠≠æ sk+1 and s

Õ
0

—k+1≠≠≠æ s

Õ
k+1, i.e. invariant I-0

holds for k + 1.
(1) I-1 holds for k, pc+(t) = dst(insti), and pcÕ

+(t) = qi, so invariant I-1
holds for k + 1.
(2) I-2 holds for k, both e and e

assign

update r by the same value, and
no other event e

count

, . . . , ej changes any address, so invariant I-2 holds for
k + 1.
(3) I-3 holds for k and no event alters bu�er contents, so invariant I-3 holds
for k + 1.

Otherwise, arj ”= e holds for all j œ [1..count] and the register r will take
its value from the address indicated by e. Namely, let e

count

, . . . , e1, e

load

œ
Eü and s

Õ
k+1 œ Sü such that ek are, for all k œ [1..count], the events for

negative conditional checks (A.3,A.6), e

load

is the event for instruction (A.8),
and s

Õ
k

e

count

·...·e
1

·e
load≠≠≠≠≠≠≠≠≠≠æ s

Õ
k+1 œ �ú

X,TSO according to the rule for conditionals
in �X,TSO and (LB/LM). We define —k+1 := —k · e

count

· . . . · e1 · e

load

and
find that invariants I-0...3 hold for k + 1:
(0) I-0 holds for k so s0

–k+1≠≠≠æ sk+1 and s

Õ
0

—k+1≠≠≠æ s

Õ
k+1, i.e. invariant I-0

holds for k + 1.

115

(1) I-1 holds for k, pc+(t) = dst(insti), and pcÕ
+(t) = qi, so invariant I-1

holds for k + 1.
(2) I-2 holds for k, both e and e

load

update r by the same value, and no
other event e

count

, . . . , e1 changes any address, so invariant I-2 holds for
k + 1.
(3) I-3 holds for k and no event alters bu�er contents, so invariant I-3 holds
for k + 1.
4b “pcÕ(t) = qn≠1.” Since 2 does not hold, inst(e) = instn. Furthermore,

because count = max, additionally to performing the events that simulate
the load behavior as in subcase 4a , the extension returns to the original
program flow using events for (A.9–A.10) and makes the auxiliary registers
address-value pairs explicit in buf Õ

+(t).
Let e

Õ
1, . . . , e

Õ
max

œ Eü and s

Õ
k+1 œ Sü such that e

Õ
k are, for all k œ [1..max],

the bu�ering events for stores (A.9,A.10), and s

ÕÕ
k+1

e

Õ
1

·...·eÕ
max≠≠≠≠≠æ s

Õ
k+1 œ �ú

X,TSO
according to (LS) from Figure 2.19, with s

ÕÕ
k+1 being notation for s

Õ
k+1 from

4a . We define —k+1 := —

Õ
k+1 · e

Õ
1 · . . . · e

Õ
max

, where —

Õ
k+1 is notation for —k+1

from 4a , and find that the invariants I-0...3 hold for k + 1 since
(0) I-0 holds for k so s0

–k+1≠≠≠æ sk+1 and s

Õ
0

—k+1≠≠≠æ s

Õ
k+1, i.e. invariant I-0

holds for k + 1.
(1) I-1 holds for k and pc+(t) = dst(instn) = pcÕ

+(t), so invariant I-1 holds
for k + 1.
(2) I-2 holds for k, both events e and e

load

update r by the same value, and
no other event e

count

, . . . , e1, e

Õ
1, . . . , e

Õ
max

changes any address, so invariant
I-2 holds for k + 1.
(3) I-3 holds for k and events e

Õ
1, . . . , e

Õ
max

place the corresponding address-
value pairs that match buf+(t) into buf Õ

+(t), so invariant I-3 holds for k + 1.
4c “pcÕ(t) = pc(t).” This case is similar to 3b . Let e

Õ œ Eü and s

Õ
k+1 œ Sü

such that inst(eÕ) = inst(e) and (sÕ
k, e

Õ
, s

Õ
k+1) œ �X,TSO in XTSO(Rüÿ). We

define —k+1 := —k · e

Õ and find that, by the �X,TSO semantics (Figure 2.19),
the invariants I-0...3 hold for k + 1.

5 “inst(e) is an assignment, conditional, or memory fence and 2 fails.”
We analyze the following subcases.
5a “pcÕ(t) = qi≠1 for i œ [1..n ≠ 1].” Since 2 does not hold, inst(e) = insti

is either a conditional or an assignment.
If cmd(insti) = r Ω e let e

Õ œ Eü and s

Õ
k+1 œ Sü such that inst(eÕ) =

(qi≠1, r Ω e, qi) and (sÕ
k, e

Õ
, s

Õ
k+1) œ �X,TSO by the �X,TSO rule for local

assignments. We define —k+1 := —k · e

Õ and find that the invariants I-0...3
hold for k + 1 since
(0) I-0 holds for k so s0

–k+1≠≠≠æ sk+1 and s

Õ
0

—k+1≠≠≠æ s

Õ
k+1, i.e. invariant I-0

holds for k + 1.
(1) I-1 holds for k, pc+(t) = dst(insti), and pcÕ

+(t) = qi, so invariant I-1
holds for k + 1.

116 Appendix A. Detailed Proofs of Lemmas 6 and 11

(2) I-2 holds for k and e is evaluated the same by both e and e

Õ, so the
register r is updated by the same value and invariant I-2 holds for k + 1.
(3) I-3 holds for k and no event alters bu�er contents, so invariant I-3 holds
for k + 1.

Otherwise, cmd(insti) = check e. Let e

Õ œ Eü and s

Õ
k+1 œ Sü such that

inst(eÕ) = (qi≠1, check e, qi) and (sÕ
k, e

Õ
, s

Õ
k+1) œ �X,TSO by the �X,TSO

rule for conditionals. We define —k+1 := —k · e

Õ and find that the invariants
I-0...3 hold for k + 1 since
(0) I-0 holds for k so s0

–k+1≠≠≠æ sk+1 and s

Õ
0

—k+1≠≠≠æ s

Õ
k+1, i.e. invariant I-0

holds for k + 1.
(1) I-1 holds for k, pc+(t) = dst(insti), and pcÕ

+(t) = qi, so invariant I-1
holds for k + 1.
(2) I-2 holds for k and both e and e

Õ do not change any address, so invariant
I-2 holds for k + 1.
(3) I-3 holds for k and no event alters bu�er contents, so invariant I-3 holds
for k + 1.
5b “pcÕ(t) = pc(t).” This case covers the remaining possibilities when e is

an assignment, conditional, or memory fence. Similar to cases 3b and 4c ,
let e

Õ œ Eü and s

Õ
k+1 œ Sü such that inst(eÕ) = inst(e) and (sÕ

k, e

Õ
, s

Õ
k+1) œ

�X,TSO in XTSO(R ü ÿ). We define —k+1 := —k · e

Õ and find that, by the
�X,TSO semantics (Figure 2.19), invariants I-0...3 hold for k + 1.

The above case distinction covers all possibilities for events e that –

may perform from sk. Hence, by complete induction, the extension does
not remove TSO-reachable states: if s = (pc, val, buf) is reachable by –

then there exists s

Õ = (pcÕ
, valÕ, buf Õ) and — œ CTSO(R ü ÿ) such that s

Õ is
reachable by — in R ü ÿ, pc = pcÕ, val(a) = valÕ(a) for all a œ ADR fi REG,
and buf = buf Õ are empty.

For the reverse direction, let f· : CTSO(R) æ CTSO(R ü ·) be the map
– ‘æ — that the inductive proof implies, respectively f· : E æ E

ú
ü its restric-

tion to events matching the di�erent inductive cases. Furthermore, consider
computations — œ CTSO(R ü ÿ) that do not interleave events of other threads
within the events of sequences f· (e). Such computations reach the entire
set ReachTSO(R ü ÿ). E.g., since local events e

count

, . . . , e1 as in case 4a
that precede e

load

can be performed right before e

load

, the above restriction
does not change the set of TSO-reachable states in R ü ÿ. Note that f· is
a bijection between such computations — and computations – œ CTSO(R)
that delay flushes locally the least wrt t.

Another induction can show that for each computation — as described
above there exists a computation – œ CTSO(R) such that invariants I-0...3
hold for prefixes of — and –. This implies that the extension by ÿ does not
add TSO-reachable states.

117

Proof of Lemma 11. Let – œ CTSO(P) be any computation of an arbitrary
Assembly program P. Furthermore, assume that sk := (pck, valk, bufk) œ
STSO — for some m œ N and all k œ [0..m] — are all the states along the
transition sequence s0

–≠æ s œ �ú
X,TSO, i.e., state s0 in the state sequence

is XTSO(P)’s initial state s0 and sm := s. Also, for all k œ [0..m], let –k

denote prefixes of – with s0
–k≠æ sk œ �ú

X,TSO.
We will prove by induction over k œ [0..m] that – œ LF (Aset(P)). More

precisely, we show by induction that there exist (abstract) states s

Õ
0, . . . , s

Õ
m œ

A
S in Aset(P) for which the following invariants hold:

I-7 A
s0

–k≠æ s

Õ
k := (pcÕ

k, valÕk,

sbufk) is a valid computation prefix in Aset(P).

I-8 pck = pcÕ
k and valk = valÕk.

I-9 for all threads t and addresses a, last(a, bufk(t)) = last(a,

sbufk(t))
and (a, v) œ bufk(t) fl (ADR ◊ DOM) i� (a, v) œ sbufk(t).

For the induction base case k = 0, –0 = ‘, s0 = s0, s

Õ
0 = A

s0, and
invariants I-7...2 hold.

For the induction step case, assume that invariants I-7...2 hold for
k < m and that sk

e≠æ sk+1 for some e œ E. We use a case distinction over
possible events e with t := thread(e) to show that there is some state s

Õ
k+1

such that invariants I-7...2 hold for k + 1.
1 “e is a flush event.” We distinguish the following cases depending if

the pair (a, v) that e flushes is the last {a} ◊ DOM or (a, v) pair in bufk(t).
1a “e flushes the last {a} ◊ DOM pair (a, v) in bufk(t).” Then, by picking

rule (WM-D) for s

Õ
k

e≠æ s

Õ
k+1 in Aset(P), invariants I-7..9 hold for k +1 since

(0) I-7 holds for k so A
s0

–k≠æ s

Õ
k

e≠æ s

Õ
k+1 is a valid computation prefix,

i.e. invariant I-7 holds for k + 1.
(1) I-8 holds for k and pck+1 = pck = pcÕ

k = pcÕ
k+1 while valk+1 and

valÕk+1 update the same address a by the same value v, so invariant I-8
holds for k + 1.

(2) I-9 holds for k, the last-added values in both the concrete bufk and
abstract sbufk bu�ers for address a are no longer defined after being flushed
by e, hence, last(a, bufk+1(t)) = ‹ = last(a,

sbufk+1(t)), and all other bu�er
values stay unchanged, hence, (a, v) œ bufk+1(t) i� (a, v) œ sbufk+1(t), so
invariant J-3 holds for k + 1.
1b “e flushes the last (a, v) pair with v ”= last(a, bufk(t)) in buf(t).” Like in

case 1a above, the preconditions for picking rule (WM-D) are fulfilled,
and by choosing it for s

Õ
k

e≠æ s

Õ
k+1 in Aset(P), invariants I-7..9 hold for

k + 1: I-7 and I-8 for the same reasons (0) and (1) as above, and I-9 since
last(a, bufk+1(t)) = last(a, bufk(t)) = last(a,

sbufk(t)) = last(a,

sbufk+1(t))
and since removing the last occurrence of an (a, v) pair additionally preserves
(a, v) œ bufk+1(t) i� (a, v) œ sbufk+1(t).

118 Appendix A. Detailed Proofs of Lemmas 6 and 11

1c “neither 1a nor 1b hold.” Then the (a, v) pair that e flushes is neither
the last added for address a in the thread nor the last added of its kind.
Therefore, by picking rule (WM-ND) for s

Õ
k

e≠æ s

Õ
k+1 in Aset(P), invariants

I-7..9 hold for k + 1 since
(0) I-7 holds for k so A

s0
–k≠æ s

Õ
k

e≠æ s

Õ
k+1 is a valid computation prefix,

i.e. invariant I-7 holds for k + 1.
(1) I-8 holds for k and pck+1 = pck = pcÕ

k = pcÕ
k+1 while valk+1 and

valÕk+1 update the same address a by the same value v, so invariant I-8
holds for k + 1.

(2) I-9 holds for k, the last-added values for both the concrete bufk and
abstract sbufk stay unchanged so last(a, bufk+1(t)) = last(a,

sbufk+1(t)) as
in case 1b above, and all existing bu�er values are still present in both the
concrete and abstract bu�ers, i.e., (a, v) œ bufk+1(t) i� (a, v) œ sbufk+1(t),
so invariant J-3 holds for k + 1.

2 “e performs a store.” Then, by following rule (LS), s

Õ
k

e≠æ s

Õ
k+1 in

Aset(P) and invariants I-7..9 hold for k + 1 since
(0) I-7 holds for k so A

s0
–k≠æ s

Õ
k

e≠æ s

Õ
k+1 is a valid computation prefix,

i.e. invariant I-7 holds for k + 1.
(1) I-8 holds for k and rule (LS) advances the program counter in the

same way in both XTSO(P) and Aset(P) so pck+1 = pcÕ
k+1 while ADR fi REG

stay unchanged, i.e., valk+1 = valk = valÕk = valÕk+1, so invariant I-8 holds
for k + 1.

(2) I-9 holds for k, the last-added values for the concrete bufk and ab-
stract sbufk are updated only for address a in the (LS) precondition for which
last(a, bufk+1(t)) = v = last(a,

sbufk+1(t)) and all existing bu�er values are
still present in both the concrete and abstract bu�ers, i.e., (a, v) œ bufk+1(t)
i� (a, v) œ sbufk+1(t), so invariant J-3 holds for k + 1.

3 “e performs a load from the bu�er.” Then, by following rule (RB),
s

Õ
k

e≠æ s

Õ
k+1 in Aset(P) and invariants I-7..9 hold for k + 1 since

(0) I-7 holds for k and ÷v = last(addr(e), sbuf(t)) so A
s0

–k≠æ s

Õ
k

e≠æ s

Õ
k+1

is a valid computation prefix, i.e. invariant I-7 holds for k + 1.
(1) I-8 holds for k and rule (RB) advances the program counter in the

same way in both XTSO(P) and Aset(P) so pck+1 = pcÕ
k+1 while ADR fi REG

is changed the same way since I-9 holds for k, i.e., valk+1 = valÕk+1, so
invariant I-8 holds for k + 1.

(2) I-9 holds for k, the last-added values for the concrete bufk and for
the abstract sbufk are not changed and all existing bu�er values are still
present in both the concrete and abstract bu�ers, i.e., (a, v) œ bufk+1(t) i�
(a, v) œ sbufk+1(t), so invariant J-3 holds for k + 1.

4 “e performs a load from memory.” Then, by following rule (RM), s

Õ
k

e≠æ
s

Õ
k+1 in Aset(P) and invariants I-7..9 hold for k + 1 since
(0) I-7 holds for k and ” ÷v = last(addr(e), sbuf(t)) so A

s0
–k≠æ s

Õ
k

e≠æ s

Õ
k+1

is a valid computation prefix, i.e. invariant I-7 holds for k + 1.

119

(1) I-8 holds for k and rule (RM) advances the program counter in the
same way in both XTSO(P) and Aset(P) so pck+1 = pcÕ

k+1 while ADR fi REG
is changed the same way since I-9 holds for k, i.e., valk+1 = valÕk+1, so
invariant I-8 holds for k + 1.

(2) I-9 holds for k, the last-added values for the concrete bufk and for
the abstract sbufk are not changed and all existing bu�er values are still
present in both the concrete and abstract bu�ers, i.e., (a, v) œ bufk+1(t) i�
(a, v) œ sbufk+1(t), so invariant J-3 holds for k + 1.

5 “e is determined by a memory fence.” Then, by following rule (LF),
s

Õ
k

e≠æ s

Õ
k+1 in Aset(P) and invariants I-7..9 hold for k + 1 since

(0) I-7 holds for k and sbuf(t) = ÿ (since I-9 holds for k) so A
s0

–k≠æ s

Õ
k

e≠æ
s

Õ
k+1 is a valid computation prefix, i.e. invariant I-7 holds for k + 1.
(1) I-8 holds for k and rule (RM) advances the program counter in the

same way in both XTSO(P) and Aset(P) so pck+1 = pcÕ
k+1 while ADR fi REG

is changed the same way since I-9 holds for k, i.e., valk+1 = valÕk+1, so
invariant I-8 holds for k + 1.

(2) I-9 holds for k, the last-added values for the concrete bufk and for
the abstract sbufk are not changed and all existing bu�er values are still
present in both the concrete and abstract bu�ers, i.e., (a, v) œ bufk+1(t) i�
(a, v) œ sbufk+1(t), so invariant J-3 holds for k + 1.

6 “e performs an assignment or a conditional check.” Then, by follow-
ing either rule (LA) or rule (LC), s

Õ
k

e≠æ s

Õ
k+1 in Aset(P) and invariants I-7..9

hold for k + 1 since
(0) I-7 holds for k so A

s0
–k≠æ s

Õ
k

e≠æ s

Õ
k+1 is a valid computation prefix,

i.e. invariant I-7 holds for k + 1.
(1) I-8 holds for k and the program counter advances in the same way in

both XTSO(P) and Aset(P) so pck+1 = pcÕ
k+1 while ADR fi REG is changed

the same way since I-9 holds for k, i.e., valk+1 = valÕk+1, so invariant I-8
holds for k + 1.

(2) I-9 holds for k, the last-added values for the concrete bufk and for
the abstract sbufk are not changed and all existing bu�er values are still
present in both the concrete and abstract bu�ers, i.e., (a, v) œ bufk+1(t) i�
(a, v) œ sbufk+1(t), so invariant J-3 holds for k + 1.

The above case distinction covers all possibilities for events e that may
be performed from sk along –. Therefore, by complete induction, invariants
I-7..9 hold for sm. Then, since I-9 in particular implies sbufm(t) = ÿ for all
threads t, by I-7 and I-9 we conclude that – œ LF (Aset(P)).

AppendixB
Amset(P) Reachability is Decidable

As one should understand by now, the story behind program correctness
overlaps multiple formalisms like logic, automata, and transition systems.
Well-structured transition systems (WSTS) [FS01] specialize the latter and,
in doing so, they generalize many other infinite state modeling formalisms
like Petri nets [Rei85] or lossy channel systems [AJ96].

The WSTS framework is the outcome of generalizing decision procedures
for Petri net termination and boundedness [Fin87] as well as lossy channel
system control state reachability and simulation [AK95; Abd+96]. WSTS
decidability results rely on the existence of a Well-quasi-ordering (WQO)
between states that is (simulation-wise) compatible with the transitions.
Using the WSTS framework we show that checking Amset(P) reachability
is decidable. Therefore, we recall a few well-structured transition systems
results that, in combination with showing that Amset(P) is a WSTS with
decidable WQO, lets us conclude decidability.

Well-quasi-orderings A preorder or quasi-order (qo) over some set X is
any binary relation Æ over X that is both transitive and reflexive. We use
x < y to denote x Æ y ”Æ x and (X, Æ) to denote qo Æ over X. Furthermore,
we say that the set Y ™ X is an antichain if x ”Æ y for all x, y œ Y .

A well-quasi-ordering (WQO) over X is any qo (X, Æ) such that, for any
infinite sequence x0, x1, . . . in X, there exist indexes i < j such that xi Æ xj .

By definition, every WQO over X is well-founded (Noetherian), i.e.,
there is no infinite strictly decreasing chain x0 > x1 > . . . in X.

Lemma 25. If (X, Æ) is a WQO then any infinite sequence x0, x1, . . . in X

contains an infinite increasing subsequence xi
0

Æ xi
1

Æ . . . with i0 < i1 < . . .

Proof. Consider an infinite sequence (xk)kœN in X and let (xnd(k))kœN be its
subsequence of elements that are not dominated by successors, i.e., for all
xnd(i) there is no xj with xnd(i) Æ xj and nd(i) < j.

121

122 Appendix B. Amset(P) Reachability is Decidable

If the sequence (xnd(k))kœN were infinite then, by the WQO definition,
it would contain two comparable elements. However, this would contradict
the assumption that (xnd(k))kœN elements are not dominated by successors.
Hence, the sequence (xnd(k))kœN must be finite.

Now, let max be the maximum index in the sequence (xnd(k))kœN. Since
every xn with n > max is dominated by at least one successor, one can start
an infinite increasing subsequence of (xnd(k))kœN from any such xn.

A straightforward corollary of the previous lemma is that there are no
infinite antichains in (X, Æ).

Lemma 26. If (X, Æ) is a WQO then there is no infinite antichain in X.

Proof. To the contrary, assume that Y ™ X is an infinite antichain and let
x0, x1, . . . be an infinite sequence in Y . Since x0, x1, . . . is also a sequence
in X, by Lemma 25, it contains a subsequence of increasing elements. This
contradicts the assumption that Y is an infinite antichain.

Upward-closed sets Given qo Æ, an upward-closed set is any set I ™ X

such that x œ I and x Æ y entail y œ I. The upward closure of a set S ™ X

is øS := {x œ X | x Ø y for some y œ S}.
Let (X, Æ) be a WQO and let S ™ X be a subset of X. A set of minimal

elements of S is any subset min(S) ™ S such that (1) min(S) is an antichain,
and (2) for every x œ S there exists m œ min(S) such that m Æ x.

The above definition does not say how many minimal elements are in an
arbitrary set. We can actually show that, given a WQO (X, Æ), every set
S ™ X contains finitely many minimal elements min(S).

Lemma 27. Let (X, Æ) be a WQO and let S ™ X. A set min(S) of minimal
elements exists and this set is finite.

Proof. To the contrary, assume there is no finite set of minimal elements.
We construct a sequence (xk)kØ0 in S such that xi ”Æ xj for all 0 Æ i < j,
i.e., such that no element in the sequence is dominated by any successor.

If, at some point, no j + 1 such that xi ”Æ xj+1 for all 0 Æ i Æ j exists,
then we can construct a set of minimal elements from {x0, . . . , xj}. This
contradicts the proof’s initial assumption.

If, on the other hand, the sequence (xk)kœN is infinite, then its elements
form an infinite antichain. This contradicts Lemma 26.

Note that min(S) need not be unique since antisymmetry is not required
for the WQO (X, Æ). Intuitively, each set min(S) is a good representation
for the (potentially infinite) set S. Furthermore, the sets captured precisely
by their minimal elements are upward closed.

Lemma 28. Let (X, Æ) be a WQO and let I ™ X be an upward-closed set.
If min(I) is a set of minimal elements then I = ømin(I).

123

Proof. We prove both I ™ ømin(I) and I ™ ømin(I) to draw the conclusion.
Let x œ I. By definition of min(I) there is m œ min(I) such that m Æ x.

So, by definition of the upward closure, x œ ømin(I).
Let x œ ømin(I). By definition of the upward closure, there exists m œ

min(I) such that m Æ x. Then, since min(I) ™ I, m œ I. Hence, by
definition of an upward-closed set, x œ I.

The decision procedure for well-structured transition system control state
reachability relies on increasingly growing sequences of upward closed sets.
The WQO assumption guarantees that these sequences stabilize, thus en-
suring that the algorithm terminates.

Lemma 29. Let (X, Æ) be a WQO. Any infinite increasing sequence I0 ™
I1 ™ . . . of upward-closed sets eventually stabilizes, i.e., there exists k œ N
such that Ik = Ik+1 =

Proof. To the contrary, assume there exists an infinite increasing sequence
I0 ™ I1 ™ . . . that does not stabilize, i.e., for each i œ N there exists j > i

such that Ii (Ij .
We can then extract an infinite subsequence In

0

(In
1

(. . . out of
(Ik)kœN and we can construct an infinite sequence x0, x1, . . . such that xi œ
Ini \ Ini≠1

for all i > 0.
Since (X, Æ) is a WQO the sequence (xk)kœN contains a comparable pair,

i.e., xi Æ xj for some i < j. Then, since xi œ Ini and Ini is upward-closed,
also xj œ Ini . And, since Ini (Inj≠1

, this means that xj œ Inj≠1

. This,
however, contradicts xj œ Inj \ Inj≠1

.

Well-structured transition systems A transition system is a structure
(�, æ, . . .) where � is a set of configurations and æ™ � ◊ � is any set of
transitions.1

We write æú for the reflexive and transitive closure of æ and æi with
i œ N for the i-step iteration of æ. Furthermore, we use succ(“) to denote
the set {“

Õ œ � | “ æ “

Õ} of immediate “ successors and pred(“) to denote
the set {“

Õ œ � | “

Õ æ “} of immediate “ predecessors. We restrict our
attention to finitely branching transition systems, i.e., transition systems
whose successor sets succ(“) are all finite.

A well-structured transition system (WSTS) (�, æ, Æ) is a transition
system (�, æ) equipped with a WQO Æ ™ � ◊ � that is also compatible2

with the transition relation, i.e., for all “1, “2, “

Õ
1 œ � with “1 æ “2 and

“1 Æ “

Õ
1 there exists “

Õ
2 œ � with “

Õ
1 æú

“

Õ
2 and “2 Æ “

Õ
2.

1Transition systems can have additional structure like initial states, transition/state
labels, etc. For example, process graphs, the transition semantics of IMP programs, and
automata are all transition systems.

2Compatibility states that Æ is a weak simulation relation à la Milner [Mil89].

124 Appendix B. Amset(P) Reachability is Decidable

Let (�, æ, Æ) be a WSTS and let I ™ � be a set of configurations.
Backward reachability analysis seeks to compute

predú(I) := {“ œ � | “ æú
“

Õ for some “

Õ œ I}

as the limit of I0 ™ I1 ™ . . . with I0 := I and Ii+1 := Ii fi pred(Ii). Although
the approach does not work in general, it works for upward-closed sets I

since, by Lemmas 29 and 30, such a sequence stabilizes.

Lemma 30. Let (�, æ, Æ) be a WSTS and I ™ � an upward-closed set.
Then, predú(I), pred(I) and I fi pred(I) are upward-closed.

Proof. Let “1 œ predú(I) and assume “1 æú
“2 for some “2 œ I. If “1 Æ “

Õ
1

then (iterated) compatibility entails “

Õ
1 æú

“

Õ
2 for some “

Õ
2 Ø “2. Since “2 œ I

and I is upward-closed it means “

Õ
2 œ I. Hence, “

Õ
1 œ predú(I) which proves

predú(I) is upward-closed.
Let “1 œ pred(I) and assume “1 æ “2 for some “2 œ I. If “1 Æ “

Õ
1 then

compatibility entails “

Õ
1 æú

“

Õ
2 for some “

Õ
2 Ø “2. Since “2 œ I and I is

upward-closed it means “

Õ
2 œ I. Hence, “

Õ
1 œ pred(I) which proves pred(I) is

upward-closed.
The fact that I fi pred(I) is upward-closed is a direct implication of

upward-closed sets being closed under union.

Theorem 31. Let (�, æ, Æ) be a WSTS with “ œ � and let I ™ � be an
upward-closed set. Then predú(I) =

t
iœN Ii = Ik for some k œ N such that

Ik = Ik+1. Furthermore, I is reachable from “ i� “ œ predú(I).

Proof. From Lemma 30 we know that the sets Ii are upward-closed. Then,
from Lemma 29 we know the sequence I0, I1, . . . stabilizes, i.e., there is k œ N
with Ik = Ik+1, so pred(Ik) ™ Ik. This implies that Ik = Ik+1 = Ik+2 = . . .,
hence,

t
iœN Ii = Ik. Moreover, since predú(I) = pred(. . . pred(I)) =

t
iœN Ii,

we also have predú(I) = Ik.
Assume that I is reachable from “, i.e., there exists “

Õ œ I such that
“ æi

“

Õ for some i œ N. Then, “ œ Ii ™ Ik = predú(I).
If, on the other hand, “ œ predú(I) then “ œ Ik so there exists “

Õ œ I = I0
and i œ N (i Æ k) such that “ æi

“

Õ. Hence, I is reachable from “.

Intuitively, a decision procedure for backward reachability that checks
whether some upward-closed I is reachable from “ œ � would

(1) generate the sequence of upward-closed sets I0 ™ I1 ™ . . . ,
(2) check for stabilization Ik = Ik+1, and
(3) check for membership “ œ Ik.

The problem with this approach is that each of the sets I0, I1, . . . is infinite.
A solution for it is to reason in terms of minimal elements Mi of the sets
Ii. Indeed, one can show that “ œ Ik with Ik = Ik+1 i�, for appropriately
chosen M0, M1, . . ., “ Ø “

Õ with “

Õ œ øMk and øMk = øMk+1.

125

Formally, the decision procedure for WSTS backward reachability will
compute a sequence of minimal elements such that

M0 := min(I) and Mi+1 := min(Mi fi
€

“œMi

minpred(“)) for all i œ N.

The above definition relies on minpred() returning a set of minimal ele-
ments min(pred(ø{“})) for the predecessors of any ø{“}. Surprisingly, the
finite sets Mi are precisely minimal elements for the upward-closed Ii.

Lemma 32. If I is an upward-closed set, I0 = I and Ii+1 := Ii fi pred(Ii),
then Ii = øMi for all i œ N.

Proof. We prove the statement by induction over i œ N.
For the induction base case we invoke Lemma 28 with I = I0.
For the induction step case assume Ii = øMi. We then find that

Ii+1 = Ii fi pred(Ii)
{ induction hypothesis } = øMi fi pred(

€

“œMi

ø{“})

{ distributivity of pred() over fi } = øMi fi
€

“œMi

pred(ø{“})

{ Lemma 28 for pred(ø{“}) } = øMi fi
€

“œMi

ømin(pred(ø{“}))

{ distributivity of ø over fi } = ø
1
Mi fi

€

“œMi

min(pred(ø{“}))
2

{ definition of minimal elements } = ømin(Mi fi
€

“œMi

min(pred(ø{“})))

Since min(pred(ø{“})) = minpred(“) we conclude that Ii+1 = øMi+1.

From Lemma 27 we know that min() is computable for all finite input
sets if Æ is decidable. As for minpred(), deciding backward reachability by
constructing the sequence M0, M1, . . . requires that minpred() is e�ectively
computable. In the following, we say that a WSTS has computable minimal
predecessors if minpred(“) is computable for any “ œ �.

Theorem 33. Let WSTS (�, æ, Æ) have computable minimal predecessors
and decidable Æ. Consider “ œ � and let I ™ � be an upward-closed set such
that min(I) is known. Then it is decidable whether I is reachable from “.

Proof. The algorithm computes the sequence M0, M1, . . . described above
until it finds øMk = øMk+1. The equality is decidable since Æ is decidable
and the sets Mi are finite. Then, by Theorem 31, I is reachable from “ i�
“ Ø “

Õ for some “

Õ œ Mk. The latter can be checked since Mk is finite.

126 Appendix B. Amset(P) Reachability is Decidable

To prove that Amset(P) reachability is decidable we first show that, for
the standard WQO over multiset-abstracted states, Amset(P) is a WSTS.
Afterward, we show that minpred() is e�ectively computable and invoke
Theorem 33 to conclude.

Given two states (pc, val, buf) and (pcÕ
, valÕ, buf Õ) of Amset(P) we define

(pc, val, buf) Æ (pcÕ
, valÕ, buf Õ) i� pc = pcÕ, val = valÕ, and buf Æ buf Õ.

The comparison of bu�er contents buf Æ buf Õ in Amset(P) requires
that, for all addresses a œ ADR, values v œ DOM and threads t œ TID,
last(a, buf(t)) = last(a, buf Õ(t)) and buf(t)((a, v)) Æ buf Õ(t)((a, v)).

Using Lemmas 34 and 35 we can deduce that the Amset(P) comparison
defined above is a WQO.

Lemma 34. Both (N, Æ) and (X, =) for finite sets X are WQO.

Proof. Since Æ™ N ◊ N is both transitive and reflexive Æ is a qo. Further-
more, for any infinite sequence (xi)iœN of natural numbers there exists j œ N
such that 0 < j and x0 Æ xj . Hence, (N, Æ) is a WQO.

Since =™ X ◊X is both transitive and reflexive = is a qo. Furthermore,
since X is finite, for any infinite sequence (xi)iœN in X there exists some x

element of X that is repeating. Hence, there exist i < j such that xi = xj =
x, proving that (X, =) is a WQO.

Lemma 35. If (X, Æ) and (Y, ı) are WQO then (X ◊Y, Æ ◊ ı) is a WQO.

Proof. Let (xi, yi)iœN be an infinite sequence of X ◊ Y elements where the
pair components are explicit. Since (xi)iœN is an infinite sequence in X and
(X, Æ) is a WQO, by Lemma 25, there exists a subsequence xn

0

, xn
1

, . . .

such that xni Æ xni+1

for all i œ N.
Consider the sequence yn

0

, yn
1

, . . . with the same indexes as the ones
in the (xni)iœN subsequence above. Since and (Y, ı) is a WQO, again by
Lemma 25, there exists a subsequence ynÕ

0

, ynÕ
1

, . . . of such that ynÕ
i

Æ ynÕ
i+1

for all i œ N.
But then the (xi, yi)iœN subsequence (xnÕ

0

, ynÕ
0

), (xnÕ
1

, ynÕ
1

), . . . is ordered,
thus proving that (X ◊ Y, Æ ◊ ı) is a WQO.

To show that Amset(P) is a WSTS we show that the above defined WQO
is compatible with the transition relation. Assume s1, s2, s

Õ
1 are states of

Amset(P) such that s1 æ s2 and s1 Æ s

Õ
1. We show that there exists s

Õ
2 such

that s

Õ
1 æú

s

Õ
2 and s2 Æ s

Õ
2 through the following case distinction over the

event e that s1 æ s2 performs:

(flush) If e performs a flush of some address-value pair (a, v) in a thread
t then, since buf1(t) Æ buf Õ

1(t), this flush can also be performed out
of s

Õ
1 as the last in a sequence of a-modifying flushes meant to ensure

last(a, buf2(t)) = last(a, buf Õ
2(t)). Then, since the valuation of address

a changes the same from s1 to s2 as it changes from s

Õ
1 to s

Õ
2 and since

the WQO buf1 Æ buf Õ
1 is preserved, it must hold that s2 Æ s

Õ
2.

127

(store) If e bu�ers some (a, v) store of some thread t then, since val1 = valÕ1
the same address-value pair can be performed from s

Õ
1. Moreover, since

the event e changes the control in the same way and since the WQO
buf1 Æ buf Õ

1 is preserved, it must hold that s2 Æ s

Õ
2.

(fence) If e performs a memory fence in thread t it means buf1(t) is empty.
Since this is reflected through last(a, buf1(t)) = ‹ = last(a, buf Õ

1(t))
for all a œ ADR, the memory fence can also be performed from s

Õ
1 and

the control change would be the same, hence s2 Æ s

Õ
2.

(load) If e performs a load in some thread t from some address a then,
since val1 = valÕ1 and last(a, buf1(t)) = last(a, buf Õ

1(t)), the same load
can be performed from s

Õ
1. Moreover, since s1 Æ s

Õ
1 and the event e

only changes the control and register valuation, these changes are the
same from s1 to s2 as from s

Õ
1 to s

Õ
2. Hence, it must hold that s2 Æ s

Õ
2.

(assignment) If e performs an assignment then, since val1 = valÕ1, the same
assignment can be performed out of s

Õ
1 with the same (and only) con-

trol flow and register changes. Hence, it must hold that s2 Æ s

Õ
2.

(conditional) If e performs a conditional then, since val1 = valÕ1, the same
conditional can be performed out of s

Õ
1 with the same (and only) con-

trol flow change. Hence, it must hold that s2 Æ s

Õ
2.

What remains to be shown is (Lemma 36) that minpred(s) is e�ectively
computable for any Amset(P) state s = (pc, val, buf). Intuitively, this is the
case since Amset(P) is finitely branching and, for each backward transition
from s, one can determine the necessary conditions on the state s as well as
the minimal changes needed in spre such that spre æ s.

Concretely, we define minpred(s) := min(S), with S the smallest set so
that spre œ S if spre

e≠æ s and 0 · (1 ‚ 2 ‚ 3 ‚ 4 ‚ 5) where:

0: if e doesn’t perform a flush and thread(e) = t then pcpre(t) contains
the pre-inst(e) state in t

1: if e performs a flush of some address-value pair (a, v) of thread t then
bufpre(t)(a) = buf(t)(a) + 1 and last(a, bufpre) = ‹ if bufpre(t)(a) = 1

2: if e bu�ers some (a, v) store of some thread t then bufpre(t)(a) + 1 =
buf(t)(a) with last(a, bufpre) = v

3: if e performs a fence in thread t then buf(t) = []

4: if e performs a load from a in thread t then this is reflected in the
register change between valpre and val

5: if e performs an assignment in thread t then this is reflected in the
register change between valpre and val

128 Appendix B. Amset(P) Reachability is Decidable

Lemma 36. If s is an Amset(P) state then minpred(s) = min(pred(ø{s})).

Proof (sketch). We prove the equality by showing double inclusion.
Let spre œ minpred(s). Since we defined minpred() as the least fixed

point satisfying 0 · (1 ‚ 2 ‚ 3 ‚ 4 ‚ 5) we must show that spre œ pred(ø{s}).
Equivalently, we must show spre æ s

Õ for some s

Õ œ ø{s}. The latter holds
by definition of upward-closure and minpred().

Now, let spre œ min(pred(ø{s})). To show that spre œ minpred(s) we
must show that spre æ s. This can be done using a case analysis for the
event that changes spre to s.

AppendixC
A More Concise TSO Semantics

Figure C.1 depicts a more concrete TSO semantics that makes explicit the
event counters of the partially-ordered structure of computation events and
(as, e.g., [OSS09b]) also takes locks into consideration. We abstracted away
from these details for a clearer presentation of our findings. Including event
counters and locks does not change our results.

In terms of syntax this means that the commands Comt of a thread t

may consist — additionally to loads, stores, memory fences, assignments,
and conditional checks as in Section 2.3 — of lock and unlock commands.
Their intuitive behavior is the following: if no thread holds the program’s
global lock and some thread t executes the lock instruction then all other
threads can only execute instructions producing local events until thread t

releases the global lock by executing a matching unlock instruction.
As far as semantics is concerned, up to the incomplete definition of the

initial state, the rules in Figure C.1 e�ectively describe a more complete TSO
semantics XTSO(P). In the initial state s0 := (ec0, pc0, val0, buf0, lock0), the
event counter holds the initial values of per-thread event counters, ec0(t) := 0
for all t œ TID, no thread holds the global lock, lock0 := ‹, and — as per the
Section 2.3.1 semantics — the program counter holds initial control states,
pc0(t) := q0,t for all t œ TID, all registers and addresses contain value 0, and
all bu�ers are empty, buf0(t) := Á for all t œ TID. The SC semantics can,
again, be derived by atomically performing rules (LS) and (WM) for stores.

Atomic instructions atomic { cmd1; . . . ; cmdn } can be implemented by
having their inner commands performed, in sequence, within a lock-unlock

environment. Semantically,

s

atomic { cmd
1

; ...; cmdn }≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠æ s

Õ is defined as s

lock≠≠≠æ cmd
1≠≠≠æ · · · cmdn≠≠≠æ unlock≠≠≠≠æ s

Õ,

where the intermediary states between s and s

Õ are omitted.

129

130 Appendix C. A More Concise TSO Semantics

cmd = r Ω mem[ea], a = ‚ea, buf(t)¿(N ◊ {a} ◊ DOM) = (id, a, v) · —, lock œ {t, ‹}
s

(t,ec(t),inst,a)≠≠≠≠≠≠≠≠≠æ (ecÕ
, pcÕ

, val[r := v], buf, lock)
(RB)

cmd = r Ω mem[ea], a = ‚ea, buf(t)¿(N ◊ {a} ◊ DOM) = Á, v = val(a), lock œ {t, ‹}
s

(t,ec(t),inst,a)≠≠≠≠≠≠≠≠≠æ (ecÕ
, pcÕ

, val[r := v], buf, lock)
(RM)

cmd = mem[ea] Ω ev, a = ‚ea, v = ‚ev, id = ec(t)

s

(t,id,inst,a)≠≠≠≠≠≠≠æ (ecÕ
, pcÕ

, val, buf[t := (id, a, v) · buf(t)], lock)
(LS)

buf(t) = — · (id, a, v), lock œ {t, ‹}
s

(t,id,flush,a)≠≠≠≠≠≠≠≠æ (ec, pc, val[a := v], buf[t := —], lock)
(WM)

cmd = mf, buf(t) = Á

s

(t,ec(t),inst,‹)≠≠≠≠≠≠≠≠≠æ (ecÕ
, pcÕ

, val, buf, lock)
(LF)

cmd = r Ω e, v = ‚e

s

(t,ec(t),inst,‹)≠≠≠≠≠≠≠≠≠æ (ecÕ
, pcÕ

, val[r := v], buf, lock)
(LA)

cmd = check e, ‚e ”= 0

s

(t,ec(t),inst,‹)≠≠≠≠≠≠≠≠≠æ (ecÕ
, pcÕ

, val, buf, lock)
(LC)

cmd = lock, buf(t) = Á, lock = ‹
s

(t,ec(t),inst,‹)≠≠≠≠≠≠≠≠≠æ (ecÕ
, pcÕ

, val, buf, t)
(Lock)

cmd = unlock, buf(t) = Á, lock = t

s

(t,ec(t),inst,‹)≠≠≠≠≠≠≠≠≠æ (ecÕ
, pcÕ

, val, buf, ‹)
(Unlock)

Figure C.1: Transition rules for XTSO(P) assuming s = (ec, pc, val, buf, lock) with
pc(t) = q and inst = q

cmd≠≠≠æ q

Õ in thread t and such that lock œ {‹}fiTID indicates
the thread that holds the global lock. The event and program counters are updated
by ecÕ = ec[t := ec(t)+1] and pcÕ = pc[t := q

Õ]. We use ‚e for the result of atomically
evaluating expression e under val and buf(t)¿ (N ◊ {a} ◊ DOM) for the projection
of buf(t) to store operations that access address a.

Curriculum Vitae

Personal Data

Name Georgel Ionu� C�lin
Birthdate April 1986

Birthplace Filia�i, Romania
Email calin@cs.uni-kl.de

Education

Oct. 10 – Jan. 16 Computer Science PhD.
University of Kaiserslautern, Kaiserslautern, Germany

Oct. 08 – Sep. 10 Computer Science MSc.
Saarland University, Saarbrücken, Germany

Sep. 05 – Jun. 08 Mathematics BSc.
Jacobs University Bremen, Bremen, Germany

Sep. 01 – Jun. 05 Secondary School.
Colegiul Na�ional Fra�ii Buze�ti, Craiova, Romania

Sep. 93 – Jun. 01 Elementary School.
�coala cu Clasele I - VIII, Filia�i, Romania

	Introduction
	Contribution
	Related Work
	Thesis Structure

	Program Verification
	Concurrent Programs
	Model Checking
	LTL and Safety Specifications
	Partial Order Reduction for LTL\X

	Relaxed Memory Models
	SC and TSO Semantics
	Unreachability as Safety Specification
	Robustness as Safety Specification

	Heuristics for TSO Reachability
	Lazy TSO Reachability
	Soundness and Completeness
	A Robustness-based Oracle

	Over-approximating Buffer Abstractions
	Set Buffer Abstractions
	Multiset Buffer Abstractions
	Partial Coherence Abstractions

	Partial Order Reduction
	The Persistent Set Perspective
	Traces for Partial Order Reduction
	Soundness and Completeness

	POR Techniques explained by Traces
	Dynamic Partial Order Reduction
	Cartesian Partial Order Reduction

	Experimental Evaluation
	Evaluation for Lazy TSO Reachability
	Examples
	Evaluation
	Discussion

	Evaluation for Exploration Techniques
	BFS and DFS Exploration for SC reachability
	POR Exploration for SC reachability

	Conclusion
	Summary
	Future Work

	Bibliography
	Appendices
	Detailed Proofs of Lemmas 6 and 11
	Multiset-abstracted TSO Reachability is Decidable
	A More Concise TSO Semantics

