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REGULARIZING PROPERTIES OF A TRUNCATED NEWTON-CG 
ALGORITHM FOR NONLINEAR INVERSE PROBLEMS 

MARTIN HANKE• 

Abstract. This paper develops truncated Newton methods as an appropriate tool for nonlinear 
inverse problems which are ill-posed in the sense of Hadamard. In each Newton step an approximate 
solution for the linearized problem is computed with the conjugate gradient method as an inner 
iteration. The conjugate gradient iteration is terminated when the residual has been reduced to a 
prescribed percentage . U nder certain assumptions on the nonlinear operator it is shown that the 
algorithm converges and is stable if the discrepancy principle is used to terminate the outer iteration. 
These assumptions are fulfilled , e.g., for the inverse problem of identifying the diffusion coefficient in 
a parabolic differential equation from distributed data. 
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1. Introduction. The stable numerical solution of nonlinear inverse problems 

( 1.1) F(a) = u, F : V( F) C X --+ Y , 

is one important matter of scientific computing. For example, consider the differential 
equation 

( 1.2) Ut - di V ( a grad u) = f , for X E n c RN, t > 0 , 

with suitable boundary conditions. An important inverse problem in ground water 
filtration is the reconstfuction of the transmissivity coefficient a as a function of x in 
a porous medium n from (partial) knowledge of the piezometric head u in n within a 
given time inverval T. Here, F in (1.1) would be the nonlinear parameter-to-solution 
mapping with 

V(F) = {a E .C"'(n) 1 essinfa > O}, 

and the range of F would belong to some observation space, e.g., .C 2 (n x T). 
Inverse problems are often ill-posed in the sense that even when a is uniquely 

determined by the right-hand side u of ( 1.1), the mapping u !--' a lacks continuity. 
This is a severe numerical problem when the given data ü are noisy and 

(1.3) 

in the norm topology of Y. As a consequence there is need for regularization and 
several possibilities for regularizing (1.1) are treated in [6] . 

Like for well-posed problems Newton type methods are one important option for 
solving (1.1) and have been applied with success in various applications: cf., e.g., 
[7, 20] for the parameter identification problem (1.2), [18, 21] for a related problem 
arising in impedance tomography, and [9, 14] for inverse scattering problems. 
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On the other side, only few rigorous theoretical treatments of Newton type meth­
ods for ill-posed problems can be found in the literature. Exceptions are the works by 
Bakushinskii [1, 2], Nashed and Chen [17], and Blaschke et al. [4, 3]. 

The present paper develops inexact Newton type methods as a natural setting 
for nonlinear inverse problems. The basic idea is the computation of a regularized 
approximation of the linearized problem by an inner iteration, namely by a conjugate 
gradient method. Iterative methods for the linearized equation are particularly inter­
esting for parameter identification problems where it is usually much cheaper to apply 
the Frechet derivative to a single argument ( which requires the solution of a differential 
equation, cf. Kravaris and Seinfeld [13]), than to assemble the whole ( usually dense) 
derivative matrix and invert it afterwards. A posteriori stopping criteria for the inner 
and the outer iteration are suggested that make the algorithm a regularizing method 
in the sense of [6, Def. 3.1]. 

lt has to be mentioned that inexact or truncated Newton methods have some 
tradition for large-scale well-posed problems (cf., e.g., Nash and Sofer [16] and the 
references given there) but those works do not address nor apply to ill-posed problems. 

2. The algorithm. Throughout it will be assumed that X and Y are Hilbert 
spaces; the same notation II · II and ( · , ·) is used for the norms and inner products in 
X and Y, respectively. For a linear operator T : X -+ Y, T* : Y -+ X denotes the 
adjoint operator. 

Newton's method is based on the Taylor expansion of F. Assuming that at is a 
solution of the nonlinear problem (1.1) and an is some approximation of at then 

(2.1) 

where R(at;an) is the Taylor remainder. Adding the noise term ü - u to (2.1), and 
solving for a t - an this yields 

(2.2) 

The right-hand side of (2.2) splits in two parts: the first part, Yn := ü - F(an), 
is computable whereas the second part is not. In other words: the ideal update 
x := at - an solves the linear equation 

(2.3) 

with Tn = F'(an) and right-hand side Yn as in (2.2), however, only Yn is known with 

(2.4) 

Here, ö is the bound on the data error ( 1.3) which is assumed to be available. 
Although, in general, solving (2.3) for x is still ill-posed, there is a well-developed 

theory on how to regularize linear ill-posed problems with inexact data, cf., e.g., 
[8, 15, 6]. Several methods for approximating the solution of (2.3) have been suggested; 
CGNE, the conjugate gradient method applied to the normal equation 

belongs to the most powerful ones. The regularizing effect of CGNE comes from early 
termination of the iteration. Nemirovskii and Plato (cf. [11, Sect. 3.3]) have established 
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n=O 
llhile llii. - F(an)ll > r6 do 

begin % outer iteration 
y = ii. - F(an), T = F'(an) 
Xo = Ü 

ro = y 
Wo= Y 
lTO = 1 
k=O 
repeat % inner iteration 

dk = T*wk 

ak = i1T*rkil 2 /llTdkll 2 

Xk+l = Xk + akdk 

rk+1 = Tk - akTdk 

ßk = llT*rk+1ll 2 /llT*rklJ 2 

Wk+l = Tk+l + ßkWk 

lTk+l = 1 + ßklTk 

k=k+1 
until llrkll < P llYll 
an+I =an+ Xk 

n=n+1 
end 

return an . 

ALGORITHM 2 .1. Truncated N ewton-CGNE 

that the so-called discrepancy principle is a suitable stopping criterion for this purpose. 
This rneans that xo = 0 is in sorne sense the best possible approxirnation of the solution 
x of (2.3) if the error (2.4) dorninates the right-hand side Yn, while otherwise CGNE 
should be stopped with iterate Xk as soon as the data fit llYn - Tnxkll has the order 
of the error (2.4) in the right-hand side. This leads to the following two conclusions 
concerning a cornbination of inner and outer iteration for the nonlinear problern: 

• If llü - F(an)ll has reached the order of 8 then there is no sense in iterating 
any further. 

• Even when this is not the case the outer iteration can only rnake any further 
progress via (2 .3) if llR(at;an)ll ~ llYnll· Otherwise the linearized equation 
provides little additional inforrnation. 

In order to guarantee such an inequality - at least for an sufficiently close to a t 
- the following assurnption on the Taylor rernainder terrn will turn out useful if not 
necessary: for a certain ball ß C V(F) around the exact solution at of (1.1), and some 
C > 0 let 

(2.5) llF(ä) - F(a) - F'(a)(ä - a)ll ::; Cllä - all llF(ä) - F(a)ll 

for all a, ä E ß. lt must be rnentioned that an inequality like (2.5) is a nontrivial 
restriction in ill-posed problems; cf. the discussion in [12], where such an assumption 
has been employed for a convergence analysis of the nonlinear Landweber iteration. 
On the other hand, (2.5) is fulfilled for example for the inverse problem (1.2) with 
steady state or transient rneasurernents of u in L 2 (n) provided that the exact solution 
at is sufficiently smooth, cf. [ö, Ex. 11.1] and [10]. 

Consider the truncated Newton-CGNE. scheme of Algorithm 2.1, where for the ease 
of notation y and T stand for Yn and Tn, respectively. Algorithrn 2.1 requires an input 
guess a0 of a t and two tolerance pararneters p and T for the stopping rules of the inner 
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and the outer iteration. Although any p < 1 and r ~ 1 would make sense for this 
purpose the theoretical results in Sect. 5 require p2 r > 2. 

The inner iteration ( CGNE) differs slightly from [11 , Algorithm 2.3] in that it 
maintains an additional variable Wk connected to dk via dk = T*wk; dk is the same 
as in [11]. Wk and the additional scalar ak are required for the analysis in Sect. 3. 
In view of the theoretical results in [11] the discrepancy principle is the most natural 
stopping rule for CGNE; it requires an explicit upper bound for llYn - Ynll · (2.4) and 
(2.5) yield a bound which is not implementable, namely 

However, during the iteration it can be presumed that ö ~ llu - F(an)ll, and hence 
any sufficiently large fraction of llü - F( an)ll may serve as an upper bound for the 
right-hand side when an is sufficiently close to a t. The CGNE iteration is therefore 
terminated as soon as 

(2 .6) 

where 0 < p < 1 should be a fixed, but not too small parameter. According to 
the stopping rule (2.6), Algorithm 2.1 belongs to the general dass of inexact Newton 
methods investigated in detail by Dembo, Eisenstat and Steihaug [5] for well-posed 
optimization problems. 

The essential ingredient for the convergence analysis of Algorithm 2.1 is a mono­
tonicity result for CGNE concerning the iteration error. The discrepancy principle per 
se is not an appropriate stopping rule for this purpose (cf. Example 3.3 in the fol­
lowing section), but fortunately monotonicity can nevertheless be established in the 
particular case (2.6) used above. From this follows that an converges to a solution of 
(1.1) as n---+ oo, provided the data u are given exactly and a0 and at are sufficiently 
close (cf. Theorem 4.2). 

For a theoretical analysis of the perturbed data case the inner iteration needs to 
be modified by an additional backtracking step in order to enforce equality in (2.6), 
cf. Sect. 5. While this does not affect the convergence analysis of Sect. 4, the advantage 
is that an depends continuously on ü through this modification. Thus, it follows from a 
general argument that the truncated Newton-CGNE method is a regularization method 
when p2 r > 2. 

3. Preli~inaries about CGNE. The convergence analysis for Algorithm 2.1 re­
quires a few properties of CGNE, which go beyond the general theory developed in [11], 
and which may be of independent interest. 

Given a linear operator T : X ---+ Y and a right-hand side y E Y the kth iterate 
Xk of CGNE (with initial guess x0 = 0) belongs to the kth Krylov subspace 

Kk(T*y; T*T) = span{T*y, (T*T)T*y, ... , (T*T)k- 1T*y} , 

and among all elements x E Kk(T*y; T*T) , Xk minimizes the residual llY - Txk\I. If 
P denotes the orthogonal projector onto R(T) then this minimizing element is unique 
as long as Py does not belang to an invariant subspace of TT* of dimension k - 1; for 
the ease of presentation this will tacitly be presumed throughout the sequel and, as 
will be shown later on , this is no restriction for the new results to be presented below. 
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As in [11] it is convenient to use the connection to the so-called residual polyno­
mials. Let lh be the set of all polynomials of degree k or less, and set 

II2 := {p E Ilk 1 p(O) = 1}. 

Then there is a 1-1 relation between elements X E Kk(T*y; T*T) and p E rrz via the 
representation 

(3.1) y - Tx = p(TT*)y 

of the corresponding residual; see [11, Sect. 2.1] for details. In particular, Pk E II2 
shall denote the residual polynomial associated with Xk, the kth CGNE iterate. 

The bilinear form 

(3.2) [cp, 7/J] := ( cp(TT*)y, 7/;(TT*)y) 

defines an inner product for <p, 7f; E IIk, and with this inner product and (3.1) the 
minimizing property of Xk can be reformulated as follows: Pk solves the minimization 
property 

(3.3) [p, p] --+ min among p E IIZ . 

If q E IIk-1 is an arbitrary polynomial of degree k - 1 then the polynomial p given by 
p(.X) = Pk(.X) + t.Xq(A) belongs to IIZ for every t ER, and hence, by virtue of (3 .3), 

(3.4) 1 d 1 [Pk, .Xq] = 2 dt [p, p] t=O = Ü for all q E Ilk-1 . 

In particular, defining q = qk-1 by Pk = 1 - Aqk-1, it follows from (3.4) that 

(3.5) 

an identity which will be useful later on. 
Polynomials can also be used to rewrite the update (cf. Algorithm 2.1) 

(3 .6) 

In fact, it is easy to see that 

(3. 7) with 

-However, Sk will in general not belang to rrz. Instead, since the vetors Wk are updated 
by Wk+l = rk+l + ßkwk with rk+1 = y - Txk+1, it follows from (3 .7) that 

and hence, sk(O) and ak of Algorithm 2.1 enjoy the same recurrence relation, i.e. , 

(3.8) 

lt is an immediate consequence of the minimization property of the CGNE iterates 
that llY - Txkll is monotonically decreasing for k = 0, 1, .... lt is also known (cf., 
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e.g„ [11, Sect. 3.1]) that for y = Tx the actual error llx - Xkll is decreasing, too. The 
following result considers the iteration error for perturbed right-hand sides. 

THEOREM 3.1. Let/ 2'.: 2, k* E N, and x E X satisfy llY - Txll :S E:. lf 

(3.9) llY - Txkll 2 + llY - Txk+1II2 > 1 llwkll E, 
Clk 

k=O,l, ... ,k*-1, 

then llx - Xk II is strictly monotonically decreasing for k = 0, 1, .. . , k* , and 

k.-1 
llxll 2 - llx - Xk.11 2 > (! - 2) E: L Dk llwkll · 

k=O 

Proof. By virtue of (3.6), 

llx - Xk - DkT*wkll 2 

llx - xkll 2 - ak( 2x - 2xk - akT*wk, T*wk) 

llx - xkll 2 - ak( Tx - Txk, Wk) - ak( Tx - Txk+1, Wk) 

llx - xkll 2 - ak( y-Txk, Wk) - ak( y- Txk+1, Wk) + 
2ak( y - Tx, Wk). 

Inserting the definitions (3.1) and (3. 7) of the corresponding polynomials this becomes 

llx-xkll 2- llx-xk+ill 2 = ak[pk,sk]+ak[pk+1,sk]-2ak(y-Tx,wk), 

with [·, ·] as in (3.2). By (3.8), sk(.X) = ak + .Xq(.X) for some polynomial q E lh_1 , and 
hence, it follows from (3.4) and (3.5) that 

llx - xkll 2 - llx - Xk+1II2 akak ([pk, 1] + [Pk+I i 1]) - 2ak( y - Tx, Wk) 

akak ([Pk,Pk] + [Pk+11Pk+1l) ~ 2ak( Y - Tx, Wk). 

Consequently, since [pk, Pk] = llY - Txkll 2, the given assumptions yield 

(3.10) 

for all k = 0, ... , k* - l. Since / ;::: 2, the right-hand side is nonnegative which 
shows that the sequence {llx - xkll} is strictly decreasing for k in the given range. 
Furthermore, since xo = 0 the second assertion follows by taking the sum of (3.10) 
from k = 0 to k* - l. D 

Corresponding to the assumptions of Theorem 3.1 denote by k(E) the stopping 
index of the discrepancy principle as the smallest index k = k( E:) for which 

lt is easy to see that k* in Theorem 3.1 can never be larger than k(c): in fact, since 
Sk := Sk/ak E rrz it follows from the minimization property of r GNE that 
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and hence, by (3.9), 

This shows that llY - Txk.-1 II > ~c:, which in turn implies that k* ~ k(c:). 
Furthermore, since k( c:) is never larger than what has been called in [11] the 

ultimate termination index k = "' of CGNE, the projected right-hand side Py cannot 
belong to an invariant subspace of dimension k. - 1 of TT* if k* is as in Theorem 3.1. 

LEMMA 3.2. Under the assumptions of Theorem 3.1 the inequality 

(3.11) 

implies (3.9) provided that k > O; furthermore, there are only finitely many k for which 
(3.11) can hold. 

Proof. With the same notation as before, 

and Sk is the polynomial which has been denoted p~2] in [11]. Consequently, [sk, sk] is 
strictly monotonically decreasing with k by [11 , Theorem 3.2]; in particular, 

so that (3.11) implies (3.9). Since the stopping index of the discrepancy principle 
is a well-defined finite number (cf. [11, Sect. 3.3]) the remark following Theorem 3.1 
implies that (3.11) can only hold for finitely many indices k. 0 

The following example shows that Theorem 3.1 is sharp in the sense that / cannot 
be replaced by any number smaller than two, and that the assertion would not hold 
for 

(3 .12) 

instead of (3.9), whatever the value of c might be. 
EXAMPLE 3.3. Let T : X -+ Y be a compact linear operator with singular 

system { Un, Vn, µn 1 n ~ O}, i.e„ 

n = 0,1„.„ 

and {un} and {vn} are orthonormal bases of X and Y, respectively. Assume without 
loss of generality that µo = 1; recall that µn -+ 0 as n -+ oo. 

Fora given n E N let y := µ~vo + Vn, so that the CGNE iterates are 

Xo = Ü, 

with 

-2 1 + µ~ 
a = µn 1 + µ'!i 
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Consequently, for x := µ~uo + (µ;; 1 
- µn)Un the "iteration error" llx - xkll behaves 

for large n like 

llx - xoll ,..., µ-:i 1 
, llx - x1ll = µn - 2µ~ + O(µ~), 

Therefore, if n is sufficiently large, llx - xkll is decreasing in the first iteration, and 
increasing in the second one. 

Consider now the quantities llY - Tx1 II and JJw1JI / <71. Straightforward computa­
tions show that 

y - Tx1 = y - aTT*y, 

"th et l+µ
2 

d h w1 l+ß = 2µf, an ence, 

wi/<71 = y - ~ß TT*y, 
1+ 

"::11 = ~ (1 - µ~)(1 + µ~)1/2. 

Since the assumptions of Theorem 3.1 hold with c: = llY - TxlJ = µ~, the right-hand 
side of (3.9) behaves like f µ~ for k = 1 and n -+ oo, whereas the corresponding right­
hand side of (3.12) behaves like cµ!. As a matter of fact, (3.9) with / 2'. 2 will not 
hold, but (3.12) will hold for k = 1 and n sufficiently large. 

Another result that will be required in Sect. 5 is the following straightforward 
extension of the stability analysis in [11, Sect. 2.6]. 

LEMMA 3.4. For 8 > 0 let Ts : X -+ Y be bounded linear operators and Ys E Y. 
Furthermore, denote by x% the k th CG NE iterate for Ts x = Ys. If Ts -+ T and y0 -+ y 
as 8 -+ 0, and if Py does not belong to a k - 1 dimensional invariant subspace of TT*, 
then x% is well-defined for all 8 sufficiently small, and x% converges to the kth iterate 
of CGNE for Tx = y as 8-+ 0. 

The proof of this lemma is exactly the same as the proof of Theorem 2.11 in [11] 
because the corresponding moments ( ys, T'fjys ), 0 :S m :S 2k - 1, still converge to 
( y, Tmy) as 8 -+ 0, and this is all that is required for the proof to go through. 

4. Convergence analysis for exact data. After these preliminaries reconsider 
the nonlinear operator F whose Taylor remainder satisfies (2.5 ), i.e., 

(4.1) llF(ä) - F(a) - F'(a)(ä - a)ll :S Cllä - all llF(ä) - F(a)ll 
for some C > 0 and all a, ä in a certain ball ß C V(F). lt will be assumed throughout 
this section that F(a) = u has a solution at E ß, and that the right-hand side u E Y is 
given exactly. The following lemma applies the monotonicity result from the previous 
section to the ~onlinear context. 

LEMMA 4.1. Consider the (n + l)st outer iteration of Algorithm 2.1. Let/> 2, 
0 < p < 1, and assume that (4.1) holds for some C > 0. If an E ß with llat - anll < 
p2 /(tC) then the inner iteration terminales after kn < oo steps, and 

an+l = lln + Xkn = lln + F'(an)*vn 

with a certain Vn E Y. M oreover, the following inequalities hold: 

(4.2) llu - F(an)ll llvnll < 
1

: 
2 

; 2 (llat - anll 2 - llat - an+1ll 2
), 

(4.3) llu - F(an)ll 2 < 
1

: 
2 

llF'~~n)ll
2 

(llat - anll 2 - \Jat - an+1ll 2) · 
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Proof. According to Sect. 2, x = at - an is a solution of (2 .3), and Yn = u - F(an) 
satisfies (2.4) with ö = 0. By ( 4.1) and the closeness assumption of the lemma, 

and hence, x satisfies the requirements of Theorem 3.1 with E = ~ llu - F(an)ll · 
Substituting 'F in (3.11) accordingly, it follows from Lemma 3.2 that the stopping 
rule (2.6) determines a finite stopping index kn for the inner iteration, and that (3.9) 
is fulfilled with k. = kn. (Note that for k = 0 (3.9) does always hold.) In other words , 
Theorem 3.1 applies to the inner iteration with k. = kn. 

Consider the updates of an and Xk in Algorithm 2.1. lt follows that (writing 
F'(an) for T again) 

kn-1 
an+l =an+ Xkn =an+ L O'.kdk =an+ F' (an)*vn 

k=O 

Since 

x = at - an and 

kn-1 
with Vn = L O'.kWk. 

k=O 

Theorem 3.1 asserts that llat - an+1 II < llat - anll, and that 

( 4.4) 

Since ak is always nonnegative, the right-hand side of ( 4.4) can be estimated from 
below by "~ 2 p2 llu - F(an)ll llvnll which yields (4 .2) . The right-hand side of (4.4) can 

alternatively be estimated from below by "~ 2 
p2ao llu - F( an)ll llwoll · Since wo = Yn = 

u - F(an) according to Algorithm 2.1 , and since 

this yields 

( 4.6) 

as was to be shown. D 
Lemma 4.1 states that the inner iteration is a well-defined terminating loop, pro­

vided that a t - an is sufficiently small. lt is easy to see that the same inequalities ( 4.2) 
and ( 4.3) would hold if the inner iteration is terminated before the stopping criterion 
(2.6) is met . This is important for practical purposes because usually the number of 
inner iterations is co.nstrained by some maximum number kmax· 

THEOREM 4.2. Assume that ü = u = F(at) for some at E V(F) , and that F 
satisfies ( 4.1) for some C > 0 in a ball ß C V( F) around a t. Let 0 < p < 1. lf 
a0 E ß and llat - aoll < p2 /(2C) then the iterates {an } of Algorithm 2.1 converge to 
a solution of (1.1) as n ___... oo. 
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Proof. Lemma 4.1 can be applied with / = p2 /(Cllat - aoll). This shows that 
llat - anll is monotonically decreasing, and therefore stopping rule (2.6) returns a 
well-defined stopping index kn for each inner iteration. 

lt will be shown next that the iteration errors en = at - an, n E N, forma Cauchy 
sequence. Given m, n E N with m > n let l E { n, . .. , m} be chosen in such a way 
that 

( 4.7) i = n, ... ,m. 

Consider now 

( 4.8) 

Inserting the definition of Vn from Lemma 4.1 it follows that 

1-1 1-1 

1( e1 - en, e1 )1 = jl::( F'(ai)*vi, e1 )j ::; L llvill llF'(ai)etll , 
1=n i=n 

where the last factor can be estimated by using (4.1) and the definition (4.7) of l: 

llF'(ai)etl l = llF'(ai)ei - F'(ai)(a1 - ai)ll 

< llu - F(ai) - F'(ai)eill + llF(a1) - F(ai) - F'(ai)(a1 - ai)ll + llu - F(ai)ll 

< Cllat - aill llu - F(ai)ll + Clla1 - aill llF(a1)- F(ai)ll + llu - F(a1)ll 
3 . 

< 2 llu - F(ai)ll + 2 llu - F(a1)ll 

< ~ llu - F(ai)ll · 

Therefore, ( 4.2) implies that 

1( e1 - en,el )1 :S _]_2 ~ (llat - anll 2 
- llat - atll 2

), 
1- 2p 

which, together with ( 4.8) yields 

where c = _i_
2

.],, + 1 does not depend on l, n, or m. In the same way one obtains 
~- p' ' 

so that 

\lam-anll 2 = llem-enll 2 :S 2\\ em -et\\ 2 +2llei- en ll 2 

< 2c(llat - anll 2 
- !lat - amll 2

) · 

The right-hand side tends to zero for n, m --+ oo because of the monotonicity of the 
iteration error, and hence, {an} is a Cauchy sequence. 
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Denote the limit of an by a. Since !IF'( an)ll remains uniformly bounded it follows 
from ( 4.3) by summation that z::=;:;o=O llu-F( an)ll 2 converges, and therefore F( an) ___. u 
as n ___. oo. Thus , it has -been shown that a is a solution of (1.1), and the proof is 
complete. 0 

Note that the theorem makes no assertion as to which solution {an} does converge. 
The proof of Theorem 4.2 uses a technique from [12] which has been developed 

for the convergence analysis of the nonlinear Landweber iteration. In [12] a somewhat 
weaker assumption on F has been employed, namely 

( 4.9) llF(a) - F(a) - F'(a)(a - a)ll ~ TJ llF(a) - F(a)ll, TJ< 1/2. 

lt is easy to see that the proof of Theorem 4.2 remains valid under the same assumption 
(4.9), provided that it holds in a ball ß around at; in this case, however, p must be a 
number in the interval ( ..fITI, 1 ). 

5. Regularizing properties for inexact data. So far, Algorithm 2.1 has been 
considered for exactly given right-hand side u only. In practice only an approximation 
ü = us will be known with 

( 5.1) llus - ull ~ 8 · 

To emphasize this point the corresponding iterates will be denoted by a~ further on. 
In case of perturbed data it is important to stop the outer iteration sufficiently early 
to prevent divergence. Algorithm 2.1 terminates the outer loop as soon as the residual 
norm is of the order of the noise level 8: more precisely, if r is a fixed positive number 
then the stopping index n(8) is the smallest iteration index n E N 0 for which 

(5.2) llus - F(a~ )ll ~ r8. 

The following result shows that this stopping criterion actually does terminate the 
outer iteration for adequate values of r. 

PROPOSITION 5.1. Let 0 < p < 1 and r > 2/ p2. Furthermore, let a be a solution 
of ( 1.1) with F satisfying ( 4.1) for some C > 0 in a ball ß C D( F) around a. If aß E ß 
· :ffi · l l t · II sll p

2
r-

2 h Al h ll d fi zs su czent y c ose o a, z.e., a - a0 < 2c {i+r) , t en gorit m 2.1 is we - e ned 

and terminates after n(8) < oo outer iterations. Moreover, for n = O,l, ... ,n(8), 
lla - a~ll is monotonically decreasing. 

Proof. Without loss of generality it will be assumed that n( 8) > 0. The proof 
goes by induction on n. Assume that 

(5.3) 
p2 r - 2 

lla - a~ ll < 2C(l + r) 

for some n < n( 8). By assumption this is fulfilled for n = 0. lt will be shown that the 
associated inner iteration does terminate, and that lla - a~+i II < lla - a~ll · According 
to (2.3) and (2.4) the given right-hand side Yn = us - F(a~) is an approximation of 
the right-hand side Yn of (2.2) with 

llYn - Ynll ~ 8 + llR(a; a~ )ll · 
This can be further estimated by using ( 4.1), namely 

llYn - Ynll < 8 + Clla - a~ ll llu - F(a~ )ll 
< (1 + Clla - a~ ll) 8 + Clla - a~ ll llus - F(a~) ll -
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Since !lu6 -F(a~)ll > r8 as n < n(8) this yields 

(5.4) llYn - Ynll ~ E := 
1 + (l + r)Clla - a~ll llu6 - F(a~)ll · 

T 

Defining 

it follows that /c = p2 llu6 - F( a~ )II so that (3 .11) and (3.9) hold for all inner iterations 
up to the stopping index. Since / > 2 by assumption (5.3), the stopping index kn 
of (2 .6) for the inner iteration is well-defined according to Lemma 3.2. Moreover, 
Theorem 3.1 shows that the iteration error is decreasing up to the stopping index, and 
hence, 

lla - a~+1 II < lla - a~ll · 

This implies that a~+l satisfies (5.3) again, which completes the induction step. 
lt remains to show that the outer iteration terminates . From Theorem 3.1 follows 

that 

II 
6

11
2 

II 
6 

11
2 / - 2 

p
2 

llu0 
- F(a0n)ll 2, a - an - a - an+l > -,- llF' (a~)ll2 

compare ( 4.6), which means that for some c > 0, independent of n, 

Consequently, 

00 

L llu6 
- F(a~)ll 2 ~ clla - agll 2 < oo, 

n=O 

showing that F(a~) --+ u6 as n --+ oo if the outer iteration would not terminate. 
However, this would also imply that (5.2) holds for some finite n(8) which is a contra­
diction. lt follows that the outer iteration does indeed terminate according to (5.2) . 
D 

Note that the constraint T > 2/ p2 > 2 is somewhat restrictive: in practice, one 
would like to choose T close to 1 to enforce a good data-fit of the final reconstruction; 
on the other hand, the tolerance p for the inexact Newton step should be sufficiently 
small to benefit from the quadratic Newton approximation. Advice on how to choose 
p and T is given in Section 6. 

lt is possible to extend Proposition 5.1 to the case that F satisfies (4 .9) instead 
of (4.1). This, however, yields even stronger restrictions on possible combinations of 
p and T, namely 

1 > p2 > 2,,., , T > (2 + 2ry)/(p2 
- 2ry) , 

where 'T/ is the constant in ( 4.9). Note that the lower bound for T is similar to the one 

in [12]. 
12 



To establish regularizing properties of Algorithm 2.1, the inner iteration has to 
be slightly modified by a final linear backtracking step in order to satisfy (2.6) with 
equality: 

MODIFIED INNER ITERATION . Let { Xk 1 k = 0, ... , kn} be the iterates of the inner 
iteration with residuals {rk} as in Algorithm 2.1 within the (n+ l)st outer iteration, so 

that llrknll < Plli/nll :S llrkn-111 · Then llYn - Tn(Xkn-1 + Altkn-1T,7wkn-i)ll = Plli/nll 
for 

and the computation of a~+l in Algorithm 2.1 is modified in the following way: define 

(5 .5) 

and Let 

(5.6) 

Note that 0 :S ,\ < 1 so that :hn lies on the linear line segment between Xkn-1 and 
Xkn' and the step from Xkn-1 to Xkn can be interpreted as a damped CGNE step. lt 
follows that all previous results- for Algorithm 2.1 remain valid for this modification, 
after replacing akn-l by akn-l everywhere. When kn = 1 then llrkn-1 II = llroll = 
lli/nll and it follows that in this case ,\ is bounded from below by 1 - p. Consequently, 
when kn = 1 then &o = -Xao 2': (1 - p)ao, and hence, llF'(an)ll 2 in (4.5), (4.6), and 
( 4.3) must be replaced by l~p jjF'( an)ll 2 for the modified algorithm. 

When the inner iteration is terminated after a maximum number of kmax iterations 
without matching the stopping criterion (2.6) then, of course, no backtracking step is 
performed. 

To formulate the following results consider a set of approximations { u6 } corre­
sponding to different noise levels 0 < {j < bo. Throughout, let n( b) be the stopping 
index of the outer iteration corresponding to the right-hand side u6

. As before, an 
and a~ denote the outer iterates of Algorithm 2.1 for the right-hand sides u and u6 , 

respectively. 
LEMMA 5.2. With the above modification (5.5), (5.6), Algorithm 2.1 is stable in 

the following sense: if n :S n(b) for all {j sufficiently small, then a~----+ an as {j----+ 0. 
Proof The proof goes by induction on n, where nothing is to prove for n = 0. 

Assume that a~ ----+ an as {j ----+ 0, and that n + 1 :S n( b) for all {j sufficiently small. 
Denote by T 0 = F' ( a~) and y0 = u6 - F( a~) the linear operator and right-hand side 
for the inner iteration of Algorithm 2.1 with data u6 . In the same way let T = F'(an) 
and y = u- F( an) correspond to the inner iteration with exact right-hand side u. The 
modified updates in (5.5) are denoted by x6 and x, respectively. 

For the unperturbed right-hand side the inner iteration terminates after kn steps, 
say, and according to the remarks following Theorem 3.1, Py does not belong to an 
invariant subspace of dimension kn - 1 of TT*. N ow, by assumption, 

To----+ T, Yo ----+ Y, b----+O, 
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and hence, Lemma 3.4 applies to the present setting. lt follows that 

0 
Xkn ---> Xkn' 

as b---> 0. On the other hand, the right-hand side of (2.6) converges to PllYll as b---> 0, 
so that the inner iteration with perturbed right-hand side necessarily terminates either 
after kn or kn - 1 iterations for b sufficiently small. (The latter can only occur if (2.6) 
holds with equality for k = kn - 1 in the unperturbed data case, and in particular, 
only for kn - 1 ~ 1.) According to (5.5), the final output x0 of the inner iteration is 
the unique element on the interpolating linear spline through xL, xt_1 and xt_2 

(when kn > 1), for which 

llYo - Tox
0

ll = P llYoll . 

Like the edges of the spline, this element depends continuously on b, and it therefore 
follows that x0 converges to x as b---> 0. This shows that a~+l ---> an+l as b ---> 0. 0 

lt becomes clear from the proof of this lemma why Algorithm 2.1 had to be 
modified. Without modification it could happen ( although only in very exceptional 
situations) that for some k and n 

(5.7) 

in which case the inner iteration will terminate with kn = k + 1. Given arbitrarily 
close perturbations u0 of u, however, it cannot be predicted whether the perturbed 
inner iteration will terminate after kn or kn - 1 steps. When the latter is the case for 
some sequence b ---> 0, a~+l will not converge to an+i in general. 

The above results enable the application of a technique from [12] which states 
that convergence for unperturbed data and monotonicity and stability for perturbed 
data yield a regularization method. 

THEOREM 5.3. Fix 0 < p < 1 and T > 2/ p2, and let u0 and a~(o) be defined 

as before. If F satisfies ( 4.1) in some ball ß C V( F), and if ao = aß is sufficiently 
close to a solution of (1.1) in this ball then the iterates a~(o) of Algorithm 2.1 with the 
modification (5.5), (5.6), converge to a solution of (1.1) as b---> 0. 

Proof Denote by at the limit of the iterates an of the modified Algorithm 2.1; 
at is a solution of (1.1) by Theorem 4.2. Assume first that n(bm) = n is constant for 
some subsequence Öm ---> 0 ( as m ---> oo) and corresponding right-hand sides u6

m. By 
Lemma 5.2, <Tom)---> an and hence, F(a~(om))---> F(an) as m---> oo. Taking the limit 

Öm ---> 0 in ( 5.2) it follows that an is a solution of ( 1.1), and therefore an = a t. 
For the remainder, it suffices to consider subsequences {n(bm)}m which are mono­

tonically increasing to infinity as m ---> oo and Öm ---> 0. In other words, n( Öm) > n( b1) 
form> l, and therefore it follows from Proposition 5.1 that 

Given c > 0 the last term on the right-hand side becomes smaller than c/2 for some 
l sufficiently large by Theorem 4.2. For this fixed value of l, on the other hand, the 
other term on the right-hand side becomes smaller than c/2 for „([ m sufficiently large 
because of the stability of the modified algorithm, cf. Lemma 5 1. This shows that 
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for all m sufficiently large, and hence, a~(om) --+ at as m--+ oo. 0 
The same result would be true for the original Algorithm 2.1 without any further 

modification if it were known that ( 5. 7) never occurs throughout the iteration with 
exact data u. 

6. Concluding remarks. Instead of CGNE other Krylov subspace methods 
could be used for the inner iteration. For example, similar properties can be es­
tablished for the Landweber method as inner iteration. In this case, monotonicity 
with stopping criterion (2.6) follows from a result of Defrise and de Mol (cf. [6, Propo­
sition 6.3]). Of course, C GNE should outperform the Landweber iteration. 

The restrictions on p and T, i.e., p2r > 2 are very conservative. Possible combina­
tions of p and T include, for example, p = 0.9 and T = 2.5, or p = 0.8 and T = 3.2, but 
smaller values of p and T may work very weil in applications. In fact, Theorem 3.1 
only states that for certain x and y with lly-Txll :S E the iteration error may increase 
in the ( k* + 1 )st iteration. In most circumstances the iteration error will still decrease 
during subsequent iterations, so that the inner iteration could be continued beyond 
the termination index k*. Another reason for this conservative estimate is the fact 
that the first factor of the upper bound E in (5.4) is a severe overestimation in early 
stages of the i teration w hen 6 ~ II ü - F( a~ ) II · 

To allow more inner iterations it is also possible to switch to the stopping criterion 
suggested by Theorem 3.1: terminate the inner iteration with Xk when 

(6.1) 

Here, p is the same parameter as before. lt follows from Lemma 3.2 that the corre­
sponding stopping index is never smaller than the one determined by (2.6). 

In practical applications the inner iteration will also be terminated when a maxi­
mum number of kmax iterations has been made. As mentioned before, all theoretical 
results in this paper allow such an additional constraint. lt should be mentioned 
that kmax = 1 leads to the method of steepest descent which has been analyzed by 
Scherzer [19]. 

A final remark on condition (2.5) may be appropriate. lt is an important aspect 
of the present work that all results can be formulated under very general conditions 
on the nonlinearity of F. Of course, (2.5) is nevertheless restrictive; still, conditions 
of this type seem necessary to deduce local convergence for every element u from the 
range of F. For comparison, with weaker assumptions on F the papers [1, 2, 17] did 
only establish convergence for certain right-hand sides u of ( 1.1). Blaschke et al. [ 4, 3] 
deduce convergence of their Newton type schemes for all possible elements in the range, 
however, only under more restrictive assumptions on F than (2.5). For example, for 
the aforementioned problem of identifying the coefficient a of (1.2) inequality (2.5) is 
fulfilled but the assumptions from [4, 3] are not . 

Algorithm 2.1 is currently tested on an inverse problem in electrical impedance 
tomography. The corresponding numerical results shall be published elsewhere. 
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