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1) Introduction

Due to several space research projects, e.g. the european space project
HERMES, there is a growing interest in the study of so called real gas
effects. To describe such effects on a kinetic level, one needs a generalized
Boltzmann equation. The present paper is concerned with such an equation.
We will study the initial value problem for the spatially homogeneous case.

The plan of our paper is as follows: In section 2 we will describe the
Boltzmann equation and introduce some notation. The subsequent section
contains the definition of the function spaces for the scattering cross
sections and we will discuss there some basic physical estimates. In section
4 we will prove the existence theorems and we will show in section 5, that
the solution of our Kkinetic equation is positive, if the initial condition is
nonnegative and the inelastic part of the scattering cross section is positive.
Section 6 contains two series representations of the solution of the
Boltzmann equation and we will prove there an existence theorem for the
case of initial conditions which are negative on sets with positive, but
sufficiently small Lebesgue measure.

2) The Boltzmann equation

The evolution of the distribution function of a spatially homogeneous gas
consisting of molecules with internal energy is given by:

aa—tf(t,v,si) = J6.£,0(tv,ep)

2.1
with J(o,f,g) = :12-[ m o(E,eq,ep.es €5 .0.0) [f'g'y + f'ug’ o
! - fg. - fugl dQ(n')deydey’ depdw.
In (2.1) we have used the following notations:
II' = R3xR,xA;xS, with A; = {(e;',e5) : O<e, O<ey’ and ey + ey’ < 1}, (2.2)

E = -12— lv-wl? + ¢ + ¢, ,C = VZE(I - e -ey) and e =¢/E, i=1,2. (2.3)

v o= -12— (v +w+17c), gy = eE,

(2.4)
w' = —‘12— (v+w-17c), & = eE,
f' = f(t,v',ey), £, =ftw,ey), f,="Ff(tw,ey) (2.5)
and the scattering cross section has the form
o(E,eq,ez,eq,€5',x) = o4(E,eq,e5,e1,€5',x) + M 3(eq-eq) 3(ex-e5). (2.6)

1-¢e' - e



This scattering cross section shows that one has to distinguish between
two types of collisions: on the one hand there are inelastic ones described
by o4, one the other hand we have elastic collisions: the relative velocity of
the two colliding particles can change, the internal energies remain
unchanged.

3) The space of scattering cross sections and basic physical estimates

In this section we introduce the function spaces for the scattering cross
sections for both inelastic and elastic collisions and show some properties
of the collision operator. As usual we denote by C(X = Y) the space of
continous functions from a metric space X into a metric space Y.

Definition 3.1: The set S of the inelastic scattering cross sections is the set
of all measurable real valued functions k defined on R,xA;xA;xS, which
have the properties:

(i) ke C(lR_._XAl = Li(Ai)(["i,l]))
(ii ) k(E,e,e’,x) = k(E,e',e,x) a.e (3.1
(iii) eg +ex=1 > k(Eee,x) =0 a.e.

The set of all nonnegative functions in S will be denoted by S,.

So = {kesS: IlkIISO = (sup [ |k(E,e,e’,x)| I/ 1-e;-ep de'dx { o },

Ee)  Axs,
Sy = {kesS: llkllS1 = sup 1—1€ [ |k(E,e,e’,x)| |/ 1-¢'-e de'dx { o }.
(E,E) Alxsz
As usual we denote : k. (Ee) = 2n [Ik(E,e,e',x)I |/ 1-e' -e dedx .
A1XSZ

Remark: Condition (3.1) is the so called detailed balance condition?.

Condition ( iii ) ensures that particles which have relative velocity zero can
not collide. We remark that (Sg, | . ||SO) and (Sy, | . "S1) are Banach
spaces.

Analogously to definition 3.1 we introduce the function space of the elastic
scattering cross sections



Definition 3.2: I is the set of all measurable real valued functions ¢ defined
on R,xA{xS, which have the properties:

(i) o € C(R,xAy » Ly([-1,1])
(ii) ey + ey = 1 > O(E,e,X) =0 a.e.

I, denotes the set of all nonnegative o € I.

o = (kel:lkl, = sup | I|k(Eex|dx < w3,
(E,E) [_1’1]
L = (kel:lkly = sup =] Ik(Bexldx <)

(E,e) [_1,1]

and we write: o (E,e) = ZTtJ |o(E,e,x)| dx.
-1,1]

The Boltzmann equation (2.1) and equation (2.6) indicate that one is
interested in solutions, which depend on pairs of scattering cross sections.
Therefore we introduce

Definition 3.3: Wg is the cartesian product of Sy and Iy equipped with the
norm:

= - =
Wq 3 k=(ky,kp) Ikllo Ik, SO+ "kzulo
W, is the cartesian product of S; and I; equipped with the norm
= - =
W, 3 k=(kyky) Ikl = kgl + Tl
For any element of Wy or Wy we write: k. (E,e) = k. (E,e) + k. (E,e).

Notation: For any nonnegative integer k we introduce

Ifll = l (A + [v[% + g)¥ [f(v,g))| deydv
[Rsle+

with corresponding function spaces L; . As usual we denote L; o by L, if
there is no confusion possible.

The detailed balance condition in Defintion 2.1 ensures that the collision
operator in (2.1) has the property!:



[ otvepI(kfg) dvde =

1§[ |/1 - e - ey o(Eeqeqesex ) [f'gs + flug - fg. - fugl (3.2
o

Lo + @u = @ - @'x] dQ(n') dej'dey’ depdw

for measurable functions ¢,f and g and ¢ € W for which the integral on left
hand side of (3.2) converges. By inspection of (2.1) the collision operator can
be split into a gain and a loss term

J(o,f,g) = G(o,f,g) - V(o,f,g) (3.4)

where the functions G and V are nonnegative if the scattering cross section
and the functions f and g are nonnegative. We have the following pro-
position; for the proof we refer to ref. 1):

Proposition 3.1: Let ¢ be in W . Then both G(s,-,-) and V(o,",") are mappings
from L;xL; into Ly and there hold the estimates:

I'V(o,f.8)lo < 2nlallolflollglo and  IG(s,f,8)lo < 2rlisloliflloliglo - (3.9)

Moreover G(o,’,’) and V(o,’,’) are mappings fromL; y xL; ) into L;,, k = 1,
and we have

IV(o,f,@)llx < mllolip (Ifllo gl + liglio Ifll)

IG(o,f,2)lli < wliolg (Ifllg llgl + lglolifll) -

(3.6)

If we define for o €Wg,, the operator

Quiofi) = Jofg) + B{f[ gwe) depdw + g | fwep) desdw ), 3.7
R3xRR, R3xR,

then we have for h 2 2n|o| the following monotonicity properties:
(i)0s<f,0<sg = Qulof,g =20

(3.8)
(ii)0<sg<f = Qulogg < Quloff .

Now suppose we have found a solution f(:) of (2.1) in C([0,t5]>L; o). Then,
because of (3.2), we have :

t
| ftviep) deydv | folv,ep deydv + | | J(o,6(5),£() (v,e9) degdv ds
R3xR, R3xR, 0 R3xR,
(3.9)
= [ folv,eq) deydv
R3xR,



From this equation it follows that f(-) solves

2 f(tve) + hEtve) | folve) dedv = QulofD(tv,e) (3.10)
R3xR,

with initial value fy for any h > 0, which is equivalent to

t

f() = foe Pt + [ e ht-9Q (o,f(s),f(s)) ds . (3.11)
o

Otherwise, if we have a solution of (3.10) in C([0,t5]2L; o) then the

function

2(0) = | fltv,e) degdv
R3xR,

solves dgz(t) + hzgz(t) = hz2(t) with initial condition z(0) = zy, which implies
z(t) = zo, so that f(-) solves (2.1). In the following we call (3.10)
Arkeryd's equation®.

At the end of this section we note a scaling property of the solution of
(2.1). Suppose f(-) € C([0,t5]-L;,) solves (2.1) with initial condition fq.
For any X € R, we introduce gg = Afy. If we define g(t) = Af(At) then we
have g(-) € C([0,to/2]>L, ) and

At t

Mo + X[ Jof,0(s)ds = Mo + [ J6,AF(ks) Af(Xs)) ds
(0] (0]

glt) = Af(AL)

¢
go +| Jogls),gls) ds
(0]

which means, that g() solves (2.1) with initial condition Afg.

4) The existence theorems

Theorem 4.1: Let f, be a nonnegative function with [[fgllo = 1 and let ¢ be a
nonnegative element of Wq. For any tg > O there exists a unique function
f(-) € C([0,tp]=Ly o) which solves (2.1). In addition we have the properties:

(i)Vtz20: f(t) 20 and [f(t)g =1. (4.1)
(ii ) If we have |[fgll; = C < o, then there holds:

Ytz0; I v f(t,v,eq) deydv = [ v folv,ey) deydv

R3xR, R3xR,
(4.2)

"f(t)"1 = “fo"1-



(iii ) Suppose we have 6 (E,e) < C(1+E) and [fgll < © for a k = 2. Then there
exists a constant C' depending only on [fgll;, t;, C such that

Vte[0t]: IfWl < C lfolly
(4.3)
For k = 2 we have [f(t)ll; < [fgll, expl4C B, [Ifoll; t1 with some B, > 0.

Remark: (4.3) is the equivalent of Povzner's inequality® for the present case.

Proof: Let tg be a positive fixed time. Because of (3.9) and (3.10) we seek a
solution of Arkeryd's equation in C([0,t5]L; o). To this end we define the
following sequence {f (-)}:

f,() = fgeht,

t (4.4)

fra(t) = foe Pt + [ &Rt Q (o,f (s),fn(s) ds, n 2 1,
o

where we have h > 2xt|lollo. We note that each f,, is in C([0,tg]>L; o) because
f, has this property. Moreover, due to (3.8), we can see easily by induction:

Vne N : f .4t 2 f (t) 20. (4.5)

Moreover we have an upper bound for the L; norms of f_(t) for any positive

time:
t
Ilfn+1(t)||0 = [ fn+1(t,v,81) dSIdV = "fo"o e'h" * Le-h(t—s) ||fn(S)||ods y (46)

which yields by induction: [f, ,(t)[lg < 1. As a consequence of (4.5) and (4.6)
and of the Levi proerty of Ly o> , the sequence {f,(t)} converges pointwise
in Ly o towards a function f(t). Moreover, because L;([0,t5]xR3xR,) has the
Levi property too, we get in addition:

f(-) € L1([0,t0]fo3xIR+) and VneN,te[0,tg]: f(O)2f (t)2 O . (4.7)

We get from the monotonicity (3.8) of Q, that f(:) solves (3.11) in
L([0,t]xR3xR,). To see that f(-) is in C([0,to]>Ly o) we simply calculate:

IE®) - £allp = | [ ftv,e) - £a(t,v,e9] deydv

R3xR,
t (4.8)

= [ [ eh9) [Qu(6,f(5),£(s) - Qulo,frls),fnls)] ds
O R3xR,

which means that [[f(t) - f (t)lg is increasing in time. Therefore pointwise
convergence at tg implies uniform convergence on [0,tg]. This yields, that
f(-) solves Arkeryd's equation, and (4.1) is proved.



To prove (ii ) we simply notice that the functions f,(-) are in C([0,t5]=L, 4),
if fo is in Ly 4. In addition we have convergence of {f (-)} towards the
function f(:) of part (i) of the proof, so that f(-) solves Arkeryd's equation
in C([0,tg]=L; ). Now (4.2) is an easy consequence of (3.2) and the non-
negativity of f(-).

To prove ( iii ) we first notice two simple estimates:

- for any (v,g), (w,e5) € R3xR, we have

1+ Iilv—wl"Z tegteg < (L+|v[Z+g) + 1+ WP+ ey (4.9)
- for real numbers a,b 20 and s 21 and 0 < 8s < 1 we have¥:

(@ +bS) < (a+b)S < a%+bS+ B (a®Sb!17¥)s + a(1-3)sp3s) (4.10)

Because of the monotonicity and the nonnegativity of the functions f()

we have:
t

fra® = fo + [ J(0,f,(s),Fu(s) ds
(0]

t
s | [hea®] Falsweddepdw - hfou(s) 1ds
o R3xR,

¢
< fo + | Jo,fuls)fals) ds . (4.11)
(o]

For arbitrary functions f,g € L;, we have from proposition 3.1
IJ(o,f,g)ll < © and there holds:

[ @+ V2 + gk Jio,fg) deydv =
R3xR,
(4.12)

J oy(Ese.e’m) |1 -ef —ey [+ VIZ+e)K+ 1+ w2+ ex)k

(R3xR,)%xA;xS,

S

-+ vIZ ek -+ [w|Z + ex)K]

© [f(v,e)glw,ep) + f(w,e5)g(v,e9)1dQ(n)de’de,dwde dv

ox(Ee,n) [+ [VIZ + gDk + (1 + W2 + gr)K

Lol Ll

3 2
(R°xR,)*x S, T L L (g lwl2 + 82)k]

- [f(v,eq)g(w,e5) + f(w,e5)g(v,e4)1dQ(n)desdwde dy
In (4.12) we have used the notations (2.3) and (2.4) and in addition
~ _ 1 ¥
vV = E(v+w+n lv-wl)

Due to (4.10) we have:



A+ V2 + ek + A+ W% +e)k < (1+1+[VIZ+ W%+ gl +e)K
= (1 +1+|v]2+ W%+ + )k
< (+ V2 + gk + (1 + w2 + er)k
+ Bl + [vIZ + ¢k + |w|? + g,) 17Dk

(1 + V|2 + g )IIRA 4 |w|Z + g5)0K)

and there is an analogous estimate for (1 + V]2 + g)k + (1 + |W|Z + g;)K.

Using this inequality we get with the help of (4.9) and (4.12):

It ®le = [ @+ V12 + e £ q(tv,ep degdy
R3xR,
t
£ "fo"k o+ [ [ 2C [(1 * |Vl2 + 81) + (1 * |W|2 * 82)]
0 R3xR,

“ Bl + V|2 + €)%K + |w|2 + g) 1=K
+(1+ |v]Z + gDk 4+ |w|2 + ,)5K]
: % [fa(s,v,e)f(s,w,e5)] depdwdeydyv ds.
This yields:
t
If a1l < lfoll + [ 2CBy LIf () spe+1lIf ()Ml 15y
o
+ "fn(s)"1+(1—8)k"fn(s)HSk] ds .

We choose now 3 such that we have k=1 and we get from (4.13):

t
"fn+1(t’)"k < "fo“k + [ 2C6k ["fn(S)HZ‘"fn(S)"k—l+ “fn(S)lllnfn(S)“k]ds
o

Let us consider the special case k=2 first. From (4.14) and part ( ii ) of the

proof we get:

t
Ifne1®lz < lfolla + | 4CBy Ifoly Ifa(s)l> ds,
o

which yields by induction:

VnelN: Ilfn+1(t)||2 < "fo"z exp[4CBz ||fo"1t]

Because of the convergence theorems of Lebesgue this upper bound holds
for the limit function f(-) too. So (4.3) is proved for the special case k=2.
To prove (4.3) for any k > 2 we notice: If we have for a sequence {x,(*)} of

functions the estimate:

(4.13)

(4.14)

(4.15)



- {0 =
t
Xn+1{t) € Xg + At + [ AoXp(s) ds with A5 > Oand x5 > O,
o
then there holds: x,(t) < xgexp[A,t] + %‘L (exp[ipt]l - 1)
2

Now (4.3) follows from (4.14) and (4.15) by induction on k.
LLL

To prove existence and uniqueness of the solution of (2.1) for the case
o € Wy we approximate such a ¢ by a sequence of bounded scattering cross
sections and show convergence of of the corresponding solutions. We
remind the reader on the splitting (3.4) of the collision operator into a
gain and a loss part.

Theorem 4.2: Let o € W; and fg5 € L;, k22, be nonnegative functions.
For any to > O there exists a unique function f € C([0,t5]>L, 4) with the
properties:

(i) Vt=20:f(t) =20.

(ii) f(0) = fo and d.f(t) = J(of(t),f(t)

(iii ) If@®Wlo = Ifolo and IE@WIy = lifolly .

Remark: As usual we assume: [[fpllg = 1.

Proof: Let ty be a positive fixed time. We have
o.(E,e) < C(+E) (4.16)
We first notice a simple estimate: For real numbers C20, x,y 21 we have

2Cxy =z C(x+Yy) (4.17)

To perform a truncation of ¢ we introduce for m € IN the function

| , x € [0,m]
Om(x) = 1-(x-m) , x € Jm,m+1]
0 , X > m
and denote:
om(Eee',x) = O, (E)d(E,.e,e’ x) (4.18)

We introduce for functions f,g € L; ; the operators
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Q.o .f.8) = Jof.g) + 15 WL o f [ Giwey) glwey)dwde,
R3xR, (4.19)

bg i LIKW,SZ) f(w,e,) dwdsz]
R3xR,

and

h[ ¢ f d(w,e5) glw,e5)dwde,

Qn"(om.f.g) = Glo,,.f.g) - V(cof,g) +
[ :‘leR+

N 1=

(4.20)
¢g Pplw,e5) f(w,sz)dwdsz]

R3xR,

where we have: {(v,e;) = (1+|v|2 +¢,). We notice the following monotonicity
properties, which are easy consequences of (4.16) and (4.17): For hz4nC
we have

- 0<fg = 0=< Q,"(6,,f.8 < Q,'lc,,f.g for any m € N o
4.21

- jsmand 0<f,g = 0 < Q,"(0;,f,g) < Qy"(o,f.8)

To construct our solution of (2.1) in C([0,to]>L; ) we proceed now in an
analogous way to the proof of Arkeryd> for the case of the Boltzmann
equation for monoatomic gases. We first note that, because of theorem
4.1, there exists for any m € N a unique function f,'() € C([0,to]>L )
which solves (2.1) and that, because of (4.2) this function is a solution of

de £, ') + WY lIfoll fn'® = Qu (6 ().f (1) (4.22)

Moreover, using (4.21) and an analogous iteration procedure as (4.4) we see
that there is a unique solution f,"(-) € C([0,t5]=L; ) of

de £, + hollfolly fn () = Qu (0 fim (), F () (4.23)

which has in addition the properties:

- 0<f"(t) < f,'(t) which implies : [f ,"(t)lly < [If "y = Ifolly i

- for j < m we have f;"(t) < f,"(t).

Now due to the Levi property of L;; we obtain, that {f,,(.)} converges in
Li([O,to]xIRsle,,) towards a function f(-) and because of (4.21) this function
solves in Ll([O,to]lesleJ

t
f(t) = Ffoe P9t + [ e h¥(t=9)Q, "(5,f(s),f(s)) ds (4.25)
o
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and we have [[f(t)ll; < Ifolly. In addition, due to (4.21) and (4.24), [If(t)-f,," (D)l
is monotonically increasing in time so that we get that f(-) solves (4.25) in
C([0,tp]>Ly 4). To see that f(-) solves (2.1) for the given o we have to show
If(W)lly = lIfoll;. To this end we simply notice that due to (4.3) [If,,'(t), is
uniformly bounded in m and this implies®:

lim Ilfm'(t) ~ fm"(t)lll = 0.
m—>co

on sufficiently small time intervalls. Now an iteration procedure yields the
desired result.

It remains to be proved that f(-) is the unique solution of (2.1) which
conserves energy. To see this we assume that there is another nonnegative
function g € C([0,to]=L;4) which solves (2.1) with lig(t)l; = lIfoll;. As a
consequence of this, g(-) solves (4.25) which implies g(-) > f(-). Because g(-)
is assumed to be different from f(-), there are some time t, for which we
have g(t) > f(t) on a set with positive Lebesgue measure. But this implies:
lg®lly > IfWlly = lIfoll; and we obtain the desired contradiction.

/77

S) Positivity of the solution

What has been shown so far is, that there is a nonnegative solution of
(2.1), if we have a nonnegative initial condition and a nonnegative scattering
cross section in Wg or W;. In this section we will strengthen our
requirements on ¢ = (04,05) a little bit. We assume the inelastic scattering
cross section oy to be an almost everywhere positive function. If this
happens we will show that the solution of (2.1) is almost everywhere positive
for any positive time. The key fact to prove this claim is, that we have
from the definition of the approximating sequence (4.4) and the monotonicity
property (4.21) of Q,"(o,’,-) and the implicit formula (4.25) for the solution
of (2.1) the following estimate:

t

f(t) = [ el (t=9)G(q,,f(s),f(s)) ds 2 f e hd(t-9)G(q, fo.fo) ds , (5.1)
o (o)

where we have, as in (4.20), {(v,e;) = (1+|v|% + ;). G(oy,",) is the gain part of

J for a purely inelastic scattering cross section (c4,0).

The proof of our claim will be done in two steps. In the first step we will

show that the positivity of f(t), t € ]O,ty], on an intervall implies the

positivity on R3xR,. By an intervall we denote a set of the form

B(3,vy)xI(3,eq) with
(5.2)

BG,v) ={veR3: [v-vyl <8 and IG,g) ={c € R,: [e-g < 8).

In a second step we show, that there is an intervall, on which G(oy,fg,fg) is
positive, provided that f is positive on a set of positive Lebesgue measure.
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Lemma S5.1: Let o; be a positive function in W,. Suppose the assumptions
of theorem 4.2 hold and in addition, that there are a § > 0, a v, € R3 and
an g € R,, such that the solution f(-) of (4.25) has the property:

f(t) > 0 on B(3,vy)xI(3,ey), if t > O. (5:3)
Then there exists a z » 0, independent of §, v4 and g4, such that

f(t) > 0 on B(8(1+z),v{)xI(8(1+z),¢,). (5.4)

Proof: By (4.21) and (5.1) we see, that (5.4) is proved if we can show, that
(5.3) implies

jz > 0, independent of §, vy and ¢;:
(5.5)
Gloy,f(s),£(0) > 0 on B(5(1+2),v)xI(8(1+2),£0) \ B(5,v9)xI(3,5,), if s > 0.

To this end we make for fixed v € R3 the transformation of integration
variables w = ¢ = v-w and obtain

G(oy,f(s),f(s)) (v,e) =

J /1 - e - ey’ oy(Eee' ) f(s,v,e) f(s,w'es") dQ(n)de'derdc, (5.6)

R3xR,xAxS,

where we have

2
E = J%l-+g+gz,
. c ! - . . .
A\ = vV + é "’%VZE(i - € - ez) ) g4 = elE,
' C ) p . 4 '
wo= v+-2——21/2E(1 -e' -ep), g5 = exE.

Notice, that the collision energy in (5.6) is independent of v. We have to
distinguish between two cases:

- I, =[0b],b <25

- I,y =[a,b]l,ab>0.

Because the techniques of the proof are exactly the same in both cases we
consider here only the first one. Obviously, a set of the form (5.5) can be
written as a disjoint union of three sets:

B(5(1+2),v)xI(3(1+2),£9) \ B(,v)xI(3,¢) =

I:U Al(v,z)} U B(3,v,)x]b,b(1+2) ] U [U Az(v,z)]

Ve c)B(S,vi) VE aB(S,Vi) (5.7)



= 4 =

where we have Ay(v,z) = {(1+E)(v-v)}x[0,b], E; € [0,z1}

and  Ax(v,z) = {((1+E)) (v=v,) ,(1+Ex)D), ELE, € [0,21).

Let vg € dB(38,vy) be a given fixed vector. We set V = v - v4 and ¢ = b.
We choose 1 L V and co = -A V. Then we have for ¢, € R,:

E° = 15 lcol? + 65 + b = 15 XoZ 842 + g5 + b, which implies
2
IV' £ V1|2 = IW' = V1|2 = 812(1 - lz‘o) + '50(1 = el' = ez') .
26
If we choose now ¢,° = % and ¢, = ,© 4

1 2¢2, 3 ’
5 )\0 81 + 5 b
5= 5'EY, £/9= 6PE9 and kg = O,

then we have |v' - v4| < § and, due to the continuity of the functions v', w',
gy and £5', we obtain the following statement:

There exists a z3 > O such that there are for all (v,e) € A(vg,z3) sets
U, (§) c R3, Uy(&) C R,, Us(§,E) C A and U,(§,E) C S, with the
property:

\ (c,s,e',n') € ul(Ei)XuZ(Ez)Xu:;(Ei,Ez)XU4_(E1,§2):

v' € B(3,vy), w' € B(3,vy), ¢ € [0,b]l, £, € [O,b].

But now, due to (5.6), we see that G(oy,f(s),f(s))(v,e) is positive. In addition,
the above construction shows that z3 is independent of the particular
choice of vg which implies

G(oy,f(s),f(s)) > O on [U Az(v,z3)]
ve oB(3,vy)

An anologous discussion of the two other sets yields the existence of two
numbers z; and z, such that we have

G(oy,f(s),f(s)) > O on [U Ai(v,zi)j| and
Ve oB(3,vy)

G(o4,f(s),f(s)) > 0 on B(,v))x]b,b(1+z5)]

We take now z = min(z,z5,z3) and we get (5.5) from the decomposition
(5.7).
/77
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Corollary: Suppose the assumptions of theorem 4.2 hold and o, is a positive
function. Then the positivity of f(t), t € ]0,t5], on an intervall B(8,v)xI(8,e9)
implies the positivity of f(t) on R3xR,.

Lemma S5.2: Suppose the assumptions on theorem 4.2 hold, and let o; be a
positive function. Then there exist a § > 0, v4 € R3 and an gy € R, such
that the solution f(-) of (4.25) has the property:

f(t) > 0 on B(5,v)xIG,ey), if t > 0. (5.8)

Proof: Due to (5.1), the Lemma is proved, if we can show, that G(oy,fq,fg)
is positive on an intervall. We set Q = {(v,g) : fo(v,gy) > 0}. Q has a positive
Lebesque measure, because we have [fgllg = 1.

We choose a Vitali covering® of O with axis parallel cubes, such that there
are§ > 0, ¥, € R3, &, € R, with:

(i)0<8<—113 (5.9)
(ii )1(48,%,) = [-48 + %, §;+ 48 ] , which implies ] 2 45 (5.10)
(iii ) V (v,e) € R3xR, with B(3,v)xI(3,e,) C B(48,V,)x 1(45,%,) holds: (5.11)

8
u(Q n BG,v)xIG@,e)) = 0 p(B@,vIxIG,g)) ,

Here y is the 4 dimensional Lebesque measure. To discuss G(oy,fo,fo) we
start with (5.6) and we perform the following additional transformations of
integration variables

(eg,e5) = (z = ef'+exy = e-ep) , Ay = {(z,y) : z € [0,1] , -z<sy<z)
sy =X - z'=1- ‘s p= [[EL

Yy =, 172 1=z, z Iy VZ

y >y =L @201y

and we obtain:

G(Oi,fo,fo)(v,il) 2

E-2|x|2
1 . \
41/5 'E—Z'V-E o4(E,e,e’,m'n’)
R3xR, B(}/E/2,0) 0 (5.12)
“[folv + g + x,y") folv + g - x,E - 2|x|%2- y") 1
- dy"d3x depd3c
2 " - 2 "
with : E = —;— +g +gy,€ = (ef,e): ef =% and ey’ = -IQ%EI—ZX (5.13)

. _ X
and 7 =|7|'
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Consider now a fixed v € B(5,vy) and & € [, £ +3]. Obviously we have
from (5.12):

G(O1,fo,fo)(v,81) 2

[ [ £ +28 E-2|x|

1
4|/2 o4(E,e.e’,n'n’)
2]/
B(5,0) B(}/E/2,0) 0 E7VE (5.14)

“[folv + g + x,y") folv + g - x,E = 2|x[2 - y")1]

+ dy"d3x de,d3c

Due to (5.10) and (5.13) we have in (5.14): E = 63. Moreover, for x € B(§,0)
we have

g—lxlz—b‘ p 5—82—820 and §-|x|2+SSE-2|x|2.

These two estimates yield together with (5.9):

G(G1,fo,f0)(v,81) 2

] £y +28
1
412 o4(E,e,e’', 7))
I =
B(3,0) & A (5.15)
“[fglv + g + x,y") folv + g - x,E - 2|x|2 - y") 1
~dy"wd3x de,d3c
with A = B(S,O)x[-zr—E -1x|2-8, g -|x|?+8] . We notice, that the mapping
B(3,0)X[Z -IxI2-3, 2 ~IxI%+3] > BG.0X(E -IxI?-3, & -IxI245] ,
(5.16)

(x,y") = (-x,E-2|x|2-y")

is a measure preserving bijection. Now we want to show, that the right
hand side of (5.15) is positive. To this end, due to (5.16), we have to show

S )5 E —Ix12-5. E _|x2 1 S 5 [E -1x12-5. E —|x12
ulan B(,v+3)x[5 -Ix12-5, < -IxI +81) > 5 u(B(s,v+§)x[z Ix12-5, 5 -IxI +81), (5.17)
where we have x = x"' +v +-§—, x' € B(3,0). To prove (5.17) we define

A = B(S,v%)x[f -|x'|2-8, E -Ix'1%+8]

2
- = C\fE _|y12-s E _ + c\E 11245 E
A B(8,v+5)x[2 |x']4-8, > 3], A B(S,v+§)x[2 Ix'|4+§, 2+8]

E E _ |
Ay = B(S,v%)x[—z— =53 -Ix'|2+38] .
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We have: A = Aju A” and Ayu A" = B(8,v+£2)x[52 =5 E +§].

Due to (5.11) we have: p(On[A;uA*]) > 0.8 p(Aju A*) = 0.8 u(A) = % —gns’*.
Now we can calculate:

w(@Qn A) = p(Qn[AjuA~]) 2 p(Qn Ay and
w(Qn [A U A*1) = w(Qn Ay + w(Qn A*), which yields:

p(@Qn Ay) = w(Qn [AjU A™D) - p(QnA*) 2 p(Qn [Aju ATD) - p(A)
4 _3 8 54 - 17
z [s 108} 373" = joo WA

which proves (5.17) and so the Lemma is proved.
i

Lemma 5.1 and Lemma 5.2 together yield the following theorem.

Theorem S5.1: Suppose the assumptions of theorem 4.2 hold and let o4 be a
positive function. Then the solution f(:) of (4.25) has the property:

Vt>O0:f(t)>O0ae on R3xR,.

In this section we will introduce two series representations of the solution
of the Boltzmann equation (2.1) for bounded scattering cross sections. Both
are of the form

(e o]
fto) = > ¥t L), (6.1)
i=0
with real valued functions ¥;. The functions l;(c) take their values in Ly
if fg is in Ly . They can be calculated recursively from fy. Because of the
special form (6.1) of the solution of (2.1), such series are well suited for
the study of the dependence of the solution f(-,0) of (2.1) on the scattering
cross section o which will be the topic of a subsequent paper.”’ It should
be noticed here, that series representations of solutions of kinetic equations

8 or to get
9,10)

have been used so far mainly in the case of model equations
explicit solutions of the Boltzmann equation for monoatomic gases.
The first of our series comes from the proof of local existence and
uniqueness of (2.1) by means of classical Banach space techniques. It is not
required, that ¢ is nonnegative. We note a proposition which follows from
proposition 3.1; for the proof we refer to ref. 1).
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Proposition 6.1: Let o be in W. Suppose the series (6.1) converges absolutely
for some tg in Ly, k 2 0. Then we have

co n
J0.f(t0,0,f(t0,0) = > > ¥ 1 (te) ¥ilte) JO,lh1(0),1x(0) in Ly,  (6.2)
n=0 k=0

Motivated by this proposition we introduce the following sequence of
functions

Definition 6.1: Let ¢ be in Wq and f, in L;. Then we define the following
sequence {G, (o)} of functions:

Go(O) = fo
n-1 (6.3)
_ 1
Gul0) = 5 > J(6,Gy 1 ,(0),Gu(0), n = 1.
u=0

Corollary of proposition 6.1: Using (3.5) and proposition 6.1 we can see
easily from (6.3):

n-1 .
1Ga@lo < L 3 an lloll 16,1, @)lo I1G,@o ,
u=0
which yields: [G,(0)llg < [411: ||o|[]n. (6.4)

Theorem 6.1: Let be 6 € W, and fg € Ly with [fgllg = 1. Let {G,,(c)} be the
sequence defined in (6.3). Then there holds:

1
47 |lol
on [-tg,to]. Moreover f(-,0) € C([-tg,to]l?L; o) and f(-,0) solves (2.1) in
C([—t’O’tO]—)Ll,O)‘

[o0]
For any tg with [tg| < converges f(t,0) = Z t™ G,(c) uniformly
n=0

Remark: With the help of the sequence {G,(c)} we have a representation of
the solution of (2.1) also for sufficiently small negative times.

(00}
Proof: The uniform convergence of Z t" G,(o) follows from (6.4), if the
n:

absolute value of t is smaller then [4x|ol|]"!. Moreover the mapping
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[o0]
[-totol 2t - Z t" G,(o)
n=0 1 (6.5)
is in C([-tg,tol”Ly o) , if Itgl < ———,.
00 1,0 (0} A "6"

Due to proposition 6.1 we have for arbitrary t € [-tg,tgo] :

[0 0] n .
Jof(t0),f(te) = > >t J(6,Gy y(0),Gylo))
n=0 k=0
= Z t™ (n+1) G,.q(0) ,
n=0

which yields for t € [-tg,to] because of the uniform convergence of the series:

(00)
n=0

t t
[ J(0,£(s,0),£(s,0)) ds 2. s® () G (o) ds
o

(o]
i t
Y | s" ) Gpug(o) ds

n=0 O
= D> Guylo = flto) - fo.
n=0

///

Corollary of theorem 6.1: From the theorem of the extension of the solution
of differential equations in Banach spaces®’ we can deduce easily, that the
solution of (2.1) is analytic on [0,o[, if both the scattering cross section
and the initial condition are nonnegative.

So far we have constructed a series representation (6.5) of the solution of
(2.1) which converges for sufficiently small positive and negative times.
Starting from (6.5) we will construct a series representation of the solution
of (2.1) which converges for any nonnegative time, if the initial condition
fo and the scattering cross section ¢ are nonnegative.

Definition 6.2: We introduce for nonnegative o € Wg and fo € L; o and
h 2 2x|oll the following sequence {H, (o)} of functions:

Ho(O) = fo

i1 (6.6)
Ho@ = 25 Y QuoH, 1 () H) ,ifn>1,

u=0

where Q(o,,’) is given by (3.7).
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Proposition 6.2: The functions {H,(-) } of (6.6) have the properties

(i)¥n=20:Hu0) 20 _ (6.7)

(ii)¥nz20: [H,0lo = [ H, (v,gy) dedv = 1, if [follg = 1. (6.8)
R3xR ,

(iii ) From |Ifgllo =1 and [Ifpll; < © we have: [[H,(o)ll; = lIfgll;- (6.9)

Proof: Part (i ) is an immediate consequence of the definition of H, and
(3.8). To prove (i) and ( iii ) we remark, that we have for functions f and
g € Ly i, k=0,1, the property

[ (A + [vI2 + g™ J(o,f,g) deydv = O (6.10)
R3xR,

for m = 0, if k = 0 and m = 0,1, if k = 1. Because of (6.7) we get

IH, (o = [ H, (v,s) de,dv
R3xR

n-1
= ﬁ Z 0+ h[ [ H,_1-,(0) deqdv ][ I H, (o) deydv 1.
u=0 R3xR, R3xR,

and (6.8) follows by induction. To prove ( iii ) we use (6.10) to get:

[Hy)lly = [ (1 + |vl% + ¢)H,(v,gy) deydv
R3xR,

1n—1
= 45 2, 9 *
u=0

¢ B s V2 eOH 0 degdv | Hpy (o) degdv
R3xR, R3xR,

N

|+ w2+ epHy 4 (0) degdv [ Hy(0) degdv
R3xR, R3xR,

and (6.9) follows from (6.8) by induction.
17/

Lemma 6.1: Let 06 € W and f € Ly o be nonnegative functions and suppose
h = 2 |loll. Then we have for the equation

d, ®(t,o) = Qu(o,0(t,0),0(t,0))

(6.11)
©(0,0) = fq
a solution only for positive times t < h™! and this solution is unique.
Moreover it is given by:
(o]
O(to) = Y t* h® Hp() . (6.12)

n=0
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Proof: Local existence and uniqueness can be obtained by standard
techniques of the theory of differential equations in Banach spaces. 4
In addition we get from those techniques the nonnegativity of the solution
®. Therefore we have:

d. | ©(t,0) degdv d, o0l

R3xR, _
= | Qulo,0(t,0),0(t,0) deydv
R3xR,
= h 0ty |
1
hich yields: O(t,0) =
which yields: [®(t,0)lo i

So we have, that h™! is an upper bound for existence time for the solution
of (6.11). To prove, that there is a solution of (6.11) for t < h™1, we consider
the series (6.12). Due to proposition 6.2, the partial sums

N

> t® h™ H,(0)

n=0
of this series converge absolutely and uniformly in L; o for 0 < t < h-1.
This implies, that the function

¥(to) = ) t® h® Hu(
n=0

is in C([0,to]~Ly o) if to < h™'. In addition we have?:

0 n
Qn(6,¥(t,0),¥(to) = > t* h® > Qulo,Hp ,(0),H,(0) ,
n=0 U"'O

(o 0]
= > 2 b1 H, (o),
n=0

which yields:

t
¥(t,o) - fo = | Qulo,¥(s,0,¥(s,0) ds for 0 < t { hl.
o 7

Theorem 6.2: Let 6 € Wy, fo € L o be nonnegative functions with |fgllg = 1.
Suppose we have h = 2n |lo|l. Let ¥(-,0) be the solution of (6.11). Then the
function

R,3t - f(t,o) = e PW(z(t),0) with t(t) = h7l(1 - e™h?) (6.13)

solves the Boltzmann equation (2.1).
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Proof: We first note: t(-) € C{R,~[0,h7'[). Due to this property of <(:)
and due to Lemma 6.1, we have

f(,0) € CY[0,o[ = Lyp) (6.14)
Due to the fact, that ¥(-,0) solves (6.11) we have
de f(t,o) = -hf(t,e) + e Bt Q,lo,¥(x(t),0),¥(x(t),0) 7Pt

= -hf(t,o) + Qulo.e™Pt¥(x(t),0), e Pt¥ (x(t),0))

= -hf(t,0) + Qu(0,f(t,0),f(t,0)),

which implies that the function f(-,c) of (6.13) solves Arkeryd's equation.
r 4

Remark: We have shown, that the solution (2.1) for nonnegative scattering
cross sections and initial conditions can be represented in the form:

ft,o) = Y eht(d-ehyn H (0 . (6.15)
=0

Theorem 6.3: Let 0 € W be a nonnegative function. Suppose we have an
initial condition fg € Ly o with:

1% ag = [ folv,e)) deydv > O and Ifollo = 1.
R3xR,

Then there exists a unique solution of (2.1) for 0 < t < -In(1-ag)
27 ol ag

Proof: As in the case of nonnegative initial conditions a function f(-,0)
solves (2.1) iff it solves

d, f(t,0) + h f(t,0) | folvepdedv = Qulo,f(t,0),f(t,0)

R3xR,
(6.16)

£(0,0) = fo

We define the following sequence {H, (o)}

Ho'(O) = fo
n-1

Ho) = 25 D QuloHp 4 ,(0).H, (o), n21,
u=0

where we have h 2 2nt|lsl|. We consider the following sequence of functions:
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m

Yn(to) = > expl-aghtl (1 - expl-aght)™ H, '(0) [aghl™™
n=0

and note: If {Y,(-,0)} converges absolutely and uniformly on [0,tolin L; ¢

for some to > O, then Y(,0) solves (6.16) in C([0,t5]-L; o) and so it solves
(2.1).

For functions f, g € L; o and nonnegative 6 € W and h 2 2r|s| we have
the following estimate

|Qn(o,f,8)l(v,e)) < [Glo,f,g)l(v,eq) +

8 [h - 2r ct(Ee)]
3
R3xR,
+ [f(v,epgw.en) + fw,ex)g(v,ep] desdw |

< Glolfllgh +

'3 [ [h - 2n ot(E,e)]
2 3
R>xR,
- [IF1v,e)lglw,e0) + IFl(w,ex)Igl(v,ep] dendw

= Qpulo,lfl,lgh,
which yields by induction [[H,'(0)lg < h™. Therefore we get

m
1Y, (tollo < 2. expl-aght] (1 - expl-aghtD™ ag™.
n=0

which shows, that the sequence {Y,,(-,0)} converges absolutely and uniformly
on intervalls [0,t], if t satisfies the inequality

£ 1 - expl-aght] e t < In (1—aQ).
ap agh

If we choose now h = 2xr|oll, we get the desired result.
LT
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