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Abstract 

Monte Carlo integration is often used for antialiasing in rendering pro­
cesses. Due to low sampling rates only expected error estimates can be stated, 
and the variance can be high. In this article quasi-Monte Carlo methods are 
presented, achieving a guaranteed upper error bound and a convergence rate 
essentially as fast as usual Monte Carlo. 
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1 Introduction 

Monte Carlo methods are by now widely used in the process of rendering photoreal­
istic images in computer graphics. As in many other fields, the essence of application 
of Monte Carlo methods is usually the evaluation of certain multidimensional inte­
grals. 

Intensive investigations in the theory of multivariate integration [NIE78], [NIE92] 
and recently also in information-based complexity theory [TRA88], [WOZ91] have 
brought up an alternative approach: Quasi-Monte Carlo methods. These are de­
terministic quadrature rules specifically fitted to multidimensional integration. Re­
quiring only a mild regularity of the integrand, they provide a considerably smaller 
error than standard Ylonte Carlo, and moreover, this error estimate is deterministic, 
i.e. guaranteed. Quasi-Monte Carlo methods replace random numbers by elements 
of low discrepa.ncy sequences, which are sequences of points which approximate the 
equidistribution in a multidimcnsional cube in an optimal way. 

So far low di sc r<'pancy sequences and quasi-~fonte Carlo met hods have not yet 
been applied in computer graphics. We think, however, that they might be quite 
useful in this fi.elcl. too . In the present paper we study the question of pixel over­
sampling in thf' process of rendering realistic images from this point of view. 

For details and bibliography on quasi-\1onte Carlo methods we refer to [NIE92]. 
Notation. facts and methods of rendering can be found in [FOL90] and [WAT93]. 
Antialiasing by o\·ersampling is treated in [C0084] , [DIPS.5]. [LEE85], [PAI89], 
[MIT87] and [\1IT91]. 

Since this paper addresses both specialists in computer graphics and multivariate 
integration. we include certain explanations of basic notions and facts from either 
fields. 

2 Oversampling 

An image of a (real) scene is obtainecl by putting a rectangular scrf'en between the 
eye (point) of the spectator and the scene. Through each point of the screen a ray 
is sent from the eye into the scene. The light radiation from thi s point of the scene 
towards the eye df'termines the color and brightness of the point on the screen. 

For simplicity w<> consider only one selected wavelength. i.e. monochromatic 
light (the full image is then obtained by superposition). So to each point .r = (u, v) 
of the screen t here corresponds a. radiance L( u, l' ). In practice. t he screen has to 
be divided into pixel s P, and the computer image is supposf'd tc show the average 
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radiancc L, on•r P,. 

L; l~d l. l(.r) d:r ( 1) 

where IP;I denot<'s the area of P,. The simple choice of approximating this integral 

by one point. <".g. the midpoint of P,. can lead to !arge deviation s from ( 1) and, in 
pa.rti cular. to aliasing ([ \VAT9:3]. [C008-1]). On the other hand. W<' cannot spend 
too many points on one pixel since the sc reen usually consists of arou nd 2.5 · 105 to 
106 pixel s. '.\loreo\·er. in certain sit uations (as e.g . global illumina tion of complex 
scenes) it is H~ry time consuming to obtain a value of the int<'grand L(u, v). (In 
fact. the values of l can be high dimensional integrals themselves . The quasi-Monte 

Carlo approach for their computation is treated in [HE194].) This sets the task of 
finding suitable integration rules for ( 1) using as little samples as possible (say from 
:3 to .)0. to indi catf' the possible range ). 

The integrand is usua lly only piPcewise smoot h. and we do not know the lines 
of jurnp discontinuities in ad\·ancf'. So hi ghe r ord e r numerical qu;-1dra.t ure does not 
work \\"Pli. Tlwrefor<' ,·arious fo rms of '.\lonte Carlo sampling ha\·<' be<'n proposed for 
the computation of ( 1 ). \Vf' discuss so rne of them in sect ion 6. Let us a lso mention 
that using t he sa m e sampling patt<'rn for a ll pixels is desirable. because it leads to 
highly e tti c ie nt implementations. si nce huffer techniques or e \·en hardware support 
ca n be appliPd (e .e;. t he accumu lat ion-b uffer [HAE90]. Z-buffer or item-buffer). In 
the present paper \\"f' confiiw our a na lysis to t hi s case. lt should lw mentioned, 
howeve r. that pattf' rn s varying from pixel to pixe l promise bettf'r ant ialia:;ing. We 
shall cliscuss low cliscrepancy approaches to this situation in a futur <" work. 

Le t the pixel P uncler cons iderat ion be parametrized in such a way that P = 
B = [O. l ]2

. Since a pixe l usua ll y co\·ers a small sector of the sccnC' . we can assume 
a simple geometry of tlw discontinuiti<'s of L(u . r·). In fact. scP1ws in photoreali sti c 
re nde rin g ar<' often hui lt from t riangu la r e lements . So we shall assunw t hat P can be 
decomposPd into the sum of (a fpw) subsets of Yery simple geonwt ry (e .g. triangles) 

in SUCh a way. t Ji at thP restriction of [ tO Ck is suffi c iently Sl1100th (p rPcise require­
ments will bP gin:·n below ). or e\·en of a given form. as e.g . lin ea r. He nce we are 
faced with tlw problem of opt ima ll y integrat ing piecewise smoo\ h fun ct ions with 
varying an<l a priory unknown <lomains of srnoot hness . By t hc physical meaning, 
l( u. i·) :'.'.:'. 0. a nd it is reasonab lP to ass um e a uniform bound l ( u. I') ::; l 0 , since the 
techni cal limit s of a screen rPstrict thc maximally representable intc·nsity anyway. 
Finally. t he number of ba sic s<' t s is assumecl to be bounded by <. ( s rnall) constant , 
f\' S f\'o- that is \\·e do not a ll ow . in particular. frac tal surfaces o r in finit<" georne tries. 
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3 Quasi-Monte Carlo Integration 

Let B = [O . 1] 5 be the s- dimensional unit cube and f be a square integrable function. 
The :\lonte Carlo method approximates the integral of f by 

N-1 

r J(1·) dx ~ ~ 'L J(.r;), 
Ja N 

i=O 

wherc {.r ; E B 1 0 :::; i < .V} is a set of random points. For !arge .V , the central 
limit theorem states that the deviation of the sum from the integral approaches a 

normal distribution , and a convergence rate of 0 ( JN) sets in witl' high probability 

[SOB91], [NIE92]. The low numbe r of samples , however, violates this assumption 

and only the m ean square e rror can be a.ffi rmed : 

( r ' .V-1 ) 2 
fE Ja f(.r) d.r - .\ ~ f(.r;) 

with a 2 being the ,·ariance of f. 
To overcome the probabilistic error of pure \lonte Carlo, the random sampling 

patte rn is replan'd 110\\' by a. df'terministic pattern. The calculation of the mea.n pixel 
color stays the sa.me and the method is t hen called quasi-Monte Carlo integration 
due to the use of qua.si-random numbers. Quasi -random numbers a re deterministic 
point sets. whi ch approximate the uniform distribution as much as possible. This 
can be exp ressed quantitatively by the notion of discrepancy. 

The discrepancy is a measure of the uniform distribution of a gi,·en (determinis­
tic) point set P\ = {.r0 •...• J" .\ · _ 1 }. lt is defined with respect to a fami ly of subsets 

of B. So let A be a non-empty set of Lebesgue-measurable subsets of B. We define 
the discrepancy of P\ with respect to A as 

1 

m(A. Pv) 1 D ( P.v . A ) = s u p ,\ s ( A.) - V . 
AEA · 

( 2) 

where ,\. 5 is t he Lebesgue measure o n B. and 

.V-! 

m ( .4. P.v ) = L \ A ( .r;) (3) 

i=O 

is the nurnber of e lernent s of Ps which fall into A.. Inserting (:3) into (2) yields 
another interprctation: D( P_\-. A ) is the maximal error of the quadrature formula 
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defined by Ps (with equa l weights -f:J) when integrating characleristic functions of 

elernents from A. 
The classical or extreme discrepancy D( PN) is obtained for 

A = {iI[a, .b,J I 0 ::=:; a; < b; ::=:; l.i = l, .... s} 
•=I 

v\:hen we consider the family of all such parallelepipeds with a 1 = a2 = · · · = as = 0, 
we get the sta.r discrepa.ncy D·( p_,. ). The isotropic discrepancy J ( Ps ) a.rises when A 
is taken tobe the family of a ll convex subsets of B (see [NIE92] for these definitions). 
For the purposes of a.nalyzing pixel oversampling (s = 2) it seems a.ppropriate to 

consider f urther cla.sses A formed of sets which reflect the basic geometry occurring 

most frequently in pixels: The cla.ss T. where A E T <=> A is a tri angle conta.ined 
in B. or the c lass [ of edges ( lines through the pixel), whe re A E [ <=> A is the 
inte rsPct ion of ß \\'ith a half-p lane. In the next section we ana lyzc the role of 
disc repancy for piwl integrat ion. 

4 Deterministic Error Bounds 

Using the notion s o f discrepancy o ne can est imate the determini stic e rror of the 

quasi - \lont<' Ca rl o quadratur<>. giq"n by a point set P.v. For the sa ke of simplicity 
we consider on l.\· the casP of smooth in tegrands a.nd s = 2. Let f: [O. 1] 2 -> 1R be a 

function with continuous mixed deri\·ative a
2

/(~,vl. The varia.tion o f }. in the sense 
r U V 

of Hardy and Krause is defi ned as 

\ '(f) = \,·( 1.l)(f) + \„·(J.O)(f) + \i(O.l)(j) 

whe rP 

[' [' 1 <Y_J( ~- i·) 1 du di· 
.f 0 .f 0 8u Ol' 

1
1 

\ ;-Jf(u. l )\ 
0 

du 
0 tl 

\ ·( 1.0)(.f) 

\ ·(0.1 )(f) [' 1 () f '. l. l') 1 du . 
.f o iJv 

(For th<' gen<'ral dPfinitions \\'e n~ fer to [\'IE92].) The classical l..,: oks ma.-Hlawka 

inequality for int Pgration on [O. 1]2 s tates that for a.ny set P.,. = {.r0 .... . .I'N-d C 
[0. l ]2 

1 

r i \'-J 

frc i f( .r) dJ· - ~ L fCr;) ::=:; \/(f). D.(Ps) 
I ' [U. Jj •=O 

(4) 
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(see ['.\IE92]). Due lo the discontinuities of the radiance fu11ction L(.r) we cannot 
apply (-!) directly. Instead we have to integrate over subregions of the square, and we 
need an analogue of (-!) for this situation. Such a result was obtained by Zarernba 
[ZAR70] (see also '.\iederreiter [NIE72] and de Clerk [DCL81]). \Ve shall restate 
Zarernba"s result in a form suited for our purposes . Let A be a non-empty class of 
Lebesgue measurable subsets of the square. Denote by 

A(I.ll {A n [O. a] x [O, b] 1 A E A,O :=:; a. b :::; 1} 

A(i .o) {.4 n [O.a] x [O, l] I A E A,O :=:; a :=:; l} 

A(o .•i {An [ü. l] x [ü,b] 1 A E A,O:::; b :::; l}. 

The following is basically Zaremba"s proposition 2.1 [ZAR70]: 

Proposition 4.1 For nll Ps = {1·0 ..... 1·.v-d C [O, 1]2 , all f1111clio11,.:; f with con­

tintwtts mi.rrd dfl"irntief „;~1
2

,L on [ü.1]2 and all .4 E A 

j 
1 \'-1 

.f(.r) d.r - ~ L f ( .r,) 
. \ •= Ü 

r. 1 EA 

< f( 1. 1) · D( Ps. A ) + \ ·( 1.1J (f) · D(P.v. A(1.i) ) 

+ \.·(1.oi(fl. D ( P\.A(1.o)l + v(o.•)ul. D(P\·. A (o.ii). 

For the sake of completeness we indicate the idea of the proof: 

Proof: Integration by parts gi\·es 

where 

(

1 [1 o2 f(a.b) 
Jo lo \ [O,aj(U )\[o.bj(t') 0a ob do db 

r1 of(a.l) 
lo \[O.aj(U) Oa da 

t of(t.b) 
lo \ [ü.bJ( l') ob db . 

We shaJl only mcntion ho\\' to handle j( 1
·
1 l. the rest is analogo11s. l)pfine 

1 
g(a.b. F\·) ::= ,\ 2(. -\ n [O.a] X [O.b]l- .\"m(An [O.a] X [O.b]. P\). 



4 DETER.\fINISTIC ERROR BO UNDS 

lt follows readily that 

N-1 1 f{1,1)(x)d1· - -~ ~ f l ,t)(x;) 

z,EA 
1 

[' [' <J2J(a b) 1 lo lo g(a, b, PN) oa 8,b da db 

< max lg(a,b , PN)I · \ ·( t.I )(f) 
O~a,b~ 1 

< D(P,v, .A(t,i)) . V(t.i)(f). 

7 

In computer graphics the surfaces are mostly textured in order to appear realistic. 
In a pixel 's geometry the restri ction of L( u , V) to a ck is such a texture function . In 
most cases these are interpolation polynomials. ff we consider the special situation 
that 

f(u , v) = ou + ßv + / (5) 

is linear. whi ch can oftPn be assumed in computer graphics, then \\"P get 

Corollary 4.1 lf f ls linear. of th e form ( 5). lhen 

r i .\ _, 

I~ f(.r)d.r - ~ ~ f( .r;) < 1 o + 3 + 11 · D ( P.v, .A) 

Since we scale the pixel to the unit square, we can assume that tlw function L( u, v) 
is (aside from di scontinuity jumps) slowly varying. Thus, we can cons ider lol and 
lßl to be smal l. as compared to hl- Hence we are left with tlw disc repancy as a 
measure of thP quality of oversampling patterns for concrete geonwt ries represented 
by .A. So two dirPctions of analysis ari se: 

1. l'.se set s of points with low discrepancy. in particular t hosc obtained by the 
basic known const ruct ions (see the next sect ion) and 

2. compute di screpancies of concrete oversampling patterns, whi ch are being used 
(see the sec tion 1). 

Direction 2 was first suggested by Shirley [SHI91 b], who computed t he star and the 
extreme discrepancy for certa in sampling strategies . 
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5 Low Discrepancy Sequences 

The analysis of the previous sect ion showed that we need point seq uences with low 
discrepancy. In what follow s we shortly review the basic ways of constructing such 
sequences. 

We define <I> as the radical inverse function: 

;=O j=O 

where the natural number b > l is the base, i E IN, and O' is a permutation of the 
set {0,1, .. . , b- l} . The values <I>b are always in the unit inte rval [0,1). To get 
an impression. how <I> acts on an i we assume O' to be the ide ntity. Then we can 
imagine <I> 2(i) simply by rewriting the binary representation of i mirrored at the 
decimal point 1

. 

The Halton and the Hammersley sequence a re s-di mension a l ,·ectors built out 
of radical im·erse functions in relati\·ely prime bases bj. so as to <irnid correlations 
between the components . For 0 ::::; i < JV we have : 

Hal to n points: x; = (<I> b1 (i) .. . . , <I> b,(i)) 

Hammersley points: I; = (_~, <I> b 1 (i), ... ,<I>b!-l (i)) 

The points a ll lie ins ide the s-d imensiona l unit cube B = [O, l )5
• because of the prop­

e rties of the radical inverses. If the permutations are not ide ntities. t he sequences 
are called scrambled. Scrambling is necessary, since the radical il1\·erse function has 
sequences of b1 equ idistant \·alues spaced by t· These sequencPs res ult in pieces 

) 

of lines in the multidimensional case. These pieces are prone to alias ing and are 
e liminated by sc rambling . The di screpancies D· (P.v) for both se ts are bounded by 

(see [01IE92]): 

s 1 rrs ( bj - 1 V b1 + l ) \- + v ') 1 b log 1 + -.)-
. . ;= t - og J -

(6) 

=> Df, alton E 0 ( Jo~~- .\') 

b i-J 'l.mn il rsl t y 
$ l srr-1 ( bj - 1 1 N b1 + l) 
-\. + -\. ·J 1 b og + -.>-
. - . - og J -

;= ! 

< (7) 

(
logs-l N) 

=> DHammen !.- y E Q N 

1 For fast algorithms fo r computing <f> we refer to [STR93] o r [HAL64] 



5 LOW DISCREPANCY SEQL ENCES 9 

• Th e !!-dimensional Hamm ersley Point Set: We now consider the Hammersley 
point set in two dimensions (s = 2): 

X; 

y; 

The first component simply scans the unit square in x-direct ion , whereas the 
second component behaves randomly at first sight. The fastest generation of 
this sequence can be performed for base b = 2 without sc rambling. Another 
reason for choosing this base is the low discrepancy of the sequence for this 
case. No values of the set need tobe precomputed, since all valnes are directly 
computable. Increasing the sarnpling rate N requires to di scard all previous 
sampling positions , therefore this pattern is not increment a l and hence not 
weil suited for adaptive O\'ersampling. For base b = 2 the abo,·e bound results 
lil 

D" ( P.v ) 

For arbitrary bases and <limensions, stronger bounds for /)" can be found in 
[FAU 86] . Exact values for dimension two are contained in [DCL86]. 

• Th e !2-d1:mensional Halton Point Set: For the Halton set t he bases b1 = 2 and 
b2 = :3 are chosen. The sampling pattern is 

I; <f> 2(i) 

y, <l> 3(i) 

This pattern is incrementaL meaning that increasing the number of samples 
is poss ible withou t discarding t he samples already drawn. 

In contrast to t he ext reme and star-discrepancy, little is known abo ut other types 
of discrepancy. \,Ve have the following inequalities between the different types of 
discrepancies (see [NIE92] ): 

D" ( P.v ) :::; D(P.v) s; 2s D"(PN) 

D (P.v ) :::; J (P.v) :::; 4sD(P.rv) 11s 

and consequently for s = 2 

(8) 
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Since any quadrangle splits into two triangles, we also have 

D(PN,[) < 2D(PN,T) 

D(PN) < 2D(PN, T) . 

10 

From (9) we get the following asymptotic estimate: There exist constants c1 , c2 > 0 
such that for all ·S 

log N Jlogx N 
C1------;;: ~ D( PN' T) ~ C2 N 

where PN stands for the Halton (.r = 2) or Hammersley (x = 1) point set. The lower 
bound holds for any N-point set (because it holds for D(PN ). see [SCH72]). The 
precise rate of D( PN. T) and D( PN, E) for the Hammersley or Halton sequences are 
not known. Neither is the optimal rate, i.e. 

inf D(P.v,A) 
Ps<:;;[o.1]2 

for A = T or E (see [SCH69] and [BEC87] for results in this direction). From the 
numerical point of \·iew the estimates above give very little. There is no way known of 
computing the isotropic discrepancy of a given point set. Estimating the triangular 
discrepancy by ( 8) through the star-discrepancy yield much too 1wssimistic results. 
Some numerical evidence is collected in section 7. 

6 Comparison to Usual Sampling Techniques 

In order to compare the Halton and Hammersley point sets to ot her sampling pat­
terns. some of the commonly used patterns on the unit square are listed (0 ~ i < N): 

• In r(.gular Ot'Ersampling the square is divided into N = n. · 171 rectangles, whose 
midpoints constitute the sa.mpling set: 

i mod n. + 0„3 

n. 
i div n. + o .. 3 

m 

• The Poisson sampling pa.ttern simply consists of N random positions chosen 
from realizations of two independent uniformly distributed on [O, 1] random 
rnriables ~ and v. This is t he pure \Ionte Carlo sampling. 

X; ~i 

Yi V; 
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• .Jiftered sampling is stratified Monte Carlo sampling and as such a combination 
of the first two sampling techni1ues. Stratification is a means to reduce the 
variance of the integrand. For N = n · m samples and ( and v independent 
random variables we have 

i mod n + (; 
.r i 

n 
i div n + v; 

y; = 
m 

• Poisson-Disc: As investigated in [YEL83] (see also [C0084]) the natural hu­
man eye's receptor distribution found in the border area of the retina usually 
does not alias despite the low density of receptors there. There the receptors 
are distributed randomly with a minimum distance d > 0. This pattern is 
generated by fixing a distance d > 0. Then we generate a random sequence of 
uniformly distributed points on [O. 1]2 . A point is accepted . if its distance to 
the already chosen points is not smaller than d, otherwise it is rejected. The 
process stops. if :V such samples are found. 

• ;V-Rook: The \:-rook pattern is generated by solving the problem in chess, that 
N rooks must be placed on an .V x N chessboard in such a way, that they 
cannot defeat each other in one move. Then in each occupied square a random 
point is chosen. So we proceed as follows: We generate a random permutation 
a- of size N and obtain 

X; 

y; = 

i+~ 

N 
a-( i) + V 

N 

The pattern is then fully stratified in each dimension [SHI9l a]. Observe that 
the Hammersley point set is a special case of the permutation technique for 
.V = 2m. Taking the .\' -rook pattern with the Hammersley p<:>rmutation results 
in a kind of „jittered Hammersley'' with similar performance . 

Our experiments show . that randomizing the Hammersley point set only in the 
first component result s in a sampling pattern which is superior to all examined 
patterns . This '' randomized Hammersley" point set has to be investigated 
further. 

Obviouslv the Halton and Hammersley point sets have much in common with 
the abü\"t" sampling patterns. In add ition the number N o[ poinls can be chosen 
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1 Pattern II Random j Stratified Min-Distance j N free j Storage j regular j Incremental 

Poisson • • • 
Poisson Disk • • • • • (•) 
J ittered • • 
n-Rook • • • • 
Regular • • • 
Hammersley • • • (• ) 
Halten • • • • • 
Scrambled Halten • • • • 

Table 1: The different sampling pattern and their properties 

freely and is not limitecl to a clecomposition of N into factors. ßoth sets satisfy a 
minimum distance property. 

In table 1 the properties are listed. The patterns are classified by type (ranclom 
or deterministic). stratification (implied by minimum distance or partition of the 
integration domain). free choice of the sample number N or restriction to a decom­
position of N into factors. the neecl of precalculation ancl storage ( for permutations 
for example). regularly spaced components, which are prone to aJiasing and the 
property of bPing incremental. Table 3 shows some of the sampling patterns for 

N = 6"1. 

7 Numerical Evidence About Discrepancies 

Here we present the results of some computational experiments carried out in con­
nection with the analysis of the previous sections. First we consider the triangular 
discrepan cy. In table 2 we computecl the theoretical bound base<l on (7) and (8), 
and compared it with numerical est imates. The latter were carriecl out by comput­
ing the maximal integration error over a !arge number of randornly chosen triangles. 
This shoulcl gi ,.e at !Pasl an i<lea about the behaviour of D( Pv. T). To get an im­
pression of the approximation of the true maximum by the ranclom procedure, we 
show results corresponding to two different numbers of triangles. 

For all patterns mentioned in section 5 and 6, we compare t he triangular dis­
crepancy. the random edge discrepancy and the star discrepancy in table 4. For all 
patterns we usecl the same 100.000 random triangles (edges or clomains of the form 
[O , (] x [ü. v], respectively). For the patterns, which involve randomness themselves, 
a range over 10 experiments is given so that the possible variance is shown. The 
discrepancies are rnarkecl by a tilde to emphasize that the results are only approxi­

mations. 
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1 N II 10000 random triangles l 100000 random triangles 1 theoretical estimate 1 

4 o .. 539712 0.591708 16.971 
16 0.18326 0.230355 9.381 
64 0.0660696 0.0777368 5.099 
256 0.032454 0.0364673 2.739 
1024 0.011869.5 0.0178952 l.~58 

4096 0.00521621 0.00715305 0.771 

Table 2: Triangular discrepancy of the Hammersley point set 

8 The QMC-Buffer and Further Numerical Re­
sults 

The quasi-\lonte Carlo buffer is a simple extension of the accumulation buffer 
[HAE90]. This buffer first was thought for Monte Carlo integration. For every 
pixel of the image there exists a color variable, in which the samples are summed 
up and averaged afterwards. The use of the same sampling pattern over all pixels 
allows to apply fast buffer techniques such as z-buffer or item-buffer . which are often 
even available from the display·s hardware at real time speed. 

We replace t hP patterns used in [HAE90] by low discrepancy point sets. Now we 
use the Halton SPt. The Q~IC-buffer algorithm then works as follows: 

1. For a base oversampling rate N1 use the Halton point set for generating an 
image using t he accumulation-buffer. 

2. For single pixels. whose variance is too high, perform a furthcr oversampling 
using . .r, for i > S 1 . 

Since the Halton seq uence is incrementaL no samples have tobe discarded if adaptive 
oversampling (see P.g. [LEE8.S]) is required in the second step. The first step of 
this algorithm can also be made adaptive: The variance over the whole image is 
calculated and tested by a y 2-test. lf the result is not satisfactory. we increase N 1 

and go on with step 1. lf the global variance is small enough, we proceed with step 
2 of the algorithm . 

So the QMC-buffer is an incremental algorithm which can lw carried out with 
adaptive oversampling. This algorithm performs with a deterministic error and a 
rate, which is. up to the logarithm, at least as good as pure Monte Carlo integration. 

Table .) now shows a textured verf,ion of the scene and i ~1e master image JM. 
In our experiments we used only simple scenes without textures. This restriction 
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makes sense. since through precalculation techniques like MipMapping or summed­
area-tables textures can be sampled with a low variance, leaving only the variance 
of the geometry of a scene in the pixel. We applied the different sampling patterns 
to the algorithm and calculated the Lrnorm of the difference of an image [ to a 
master image /M(an image, which was oversampled 2500-times), since an analytical 
solution was not accessible. The distance between two colors Ci and C2 is defined 
as 

d(Ci ,C2) = J(r1 - r2) 2 + (g1 -g2)2 + (b1 -b2 )2 

where r, g, and bare in [O, l] and are the intensities of the color components red, 
green and blue of a pixel value. The Lrnorm of the distance of two images is now 

2=a11 pixels i d2 (Ci, er) 
number of pixels 

The maximum norm of the scene then is given by 

II/ - r\,f ll x. = sup d( C;, C;M) 
all pixels i 

The results are collected in tables 6. 7 and 82
. Our images have a size of 5122 = 

2621 -IA pixels. so the maximum norm above involves the supremum over many el­
ementary parts of the scene. Considered from this point of vi ew. it is of interest 
to compare these results with the discrepancy calculations in table -L In order to 
compare the Lr and L:xo-norm with the discrepancies computed before, all values in 
tables 6, 1 and 8 were divided by the maximal possible d = VJ. The L2 norm gives 
a quality measure of the approximation of the master image by a lower sampling 
density. 

For the randomized algorithms. we calculated 20 experiments to give an impres­
sion of the \·ariance of these methods. For the low sampling d<'nsities ( 1..9) the 
low discrepancy sequences seem to perform bad. This seems to be caused by the 
origin x 0 = (0, 0), which is included in the low discrepancy sets _ while the other 
methods start with points in side the pixel. For the Halton point sPt we fixed this by 
omitting the first _V' elements, resulting in the range given for that pattern. Simply 
omitting .r0 then performs as good as the random patterns. For the higher sampling 
rates a clear superiority is observecl for the deterministic patterns. so 1·0 can be used 
without disadvantages. 

2 The implementation was clone on a HP9000 / 735 . We used drand48() a.s random generator . 
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9 Conclusion and Further Work 

We introduced the QMC-buffer for anti-aliased rendering. By applying the low 
discrepancy point sets, we obtain a convergence rate of about the same order as 
pure Monte Carlo methods. Especially applying the Halton sequence results in a 
very efficient incremental algorithm, which can easily be extended to adaptive pixel 
oversampling. By replacing randomness we obtain deterministi c algorithms with a 
guaranteed upper error bound. 

The phenomenon, that a randomized Hammersley point set always performs 
better than all other patterns, has to be investigated further. Moreover the optical 
qualities of the low discrepancy sequences have to be compared to the usual patterns 
by means of Fourier analysis. 

Our main interest lies in solving high dimensional integral equat ions like the 
radiance equation or t he complete five-dimensional description of a lens (time of 
aperture . size of lens and size of pixel) by the applicat ion of quasi random numbers. 
This is a promising efforl. since the low discrepancy sequences prrforrn weil for high 
dimension al in tegra ls. First results can be found in [HEI94]. 
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Random II Deterministi c 

Poisson Regular Grid 
• • . 

• • • • • • • • • • • • • • • 
• • • • 
• • • • • • • • • • 

• • • 
• ' • • • • • • • • • • 

• . „ . • • • • • • • • • • • • • • • • • • • • • • • • • • 
• • • • • • • • • • . • • • • • •• • • • • • • • • • 

• • • • • • • • • • • • • • • • • • • • 
Poisson Disk Hammersley 
• • . • • • • • • • • • • . • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
• • • • • • • • . 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
Jittered Halton 

• - • • • • • • • • . • • • • • • • • • • • • • . . • . . 
• • • • • • • • • • . 

• • • • • • • • • • • • • • • • • •• • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • - • 

.V-rook Scrambled Halton 
• • • • • • • • • • • • • • • • • • • • • • • . • • •• • • • • • • • • • • • • • • • • • • • • •• • • • 

' • • • • • • • • • • • • • . • • . 
• • • • • . 

• • • . . • . • . . • • • • • • • • • • • • • • • • • . • • • • • •• • • • • • • • • • • • • • 

Table 3: The different sampling patterns for N 64 
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[§ern N II D(PN, T) 

Poisson 4 0.590735 ... 0.909109 0.424 773 ... 0. 728038 0.439906 ... 0.703657 
16 0.269943 ... 0.4 75035 0.205515 .. . 0.35258 0.19317 ... 0.357886 
64 0.136628 ... 0.189286 0.124042 ... 0.162481 0.108418 ... 0.171163 
256 0.0702834 ... 0.104564 0.0469791...0.10384 0.0545187 ... 0.081455 
1024 0.0307715 .. . 0.0573265 0.0310258 ... 0.0594817 0.0243101...0.0567063 

Poisson Disk 4 0.522657 ... 0. 765606 0.380949 ... 0.618871 0.351455 ... 0.622014 
16 0.212796 ... 0.325906 0.186497 ... 0.319828 0.188717 ... 0.250398 
64 0.0903901 ... 0.115629 0.0749705 .. . 0.135366 0 .0692996 ... 0.100529 

256 0.0389122 ... 0.0639217 0.0373723 ... 0.0766956 0.0341753 ... 0.0503391 
1024 0.0191191 ... 0.0328588 0.0157817 ... 0.0308078 0.0154991...0.0304187 

Jittered 4 0.49858 ... 0.710208 0.331581...0.498499 0.332042 ... 0.588175 
16 0.215582 ... 0.277194 0.152869 ... 0.221958 0.182205 ... 0.239541 . 
64 0.0924101.. .0.123592 0.0628123 ... 0.08-1 0382 0.0702102 ... 0.0972717 
256 0.0330829 .. . 0.0420403 0.0240844 ... 0.03 l .j302 0.024 7497 ... 0.0363527 
1024 0.013.5303 ... o.o 159187 0.0091878 ... o.o 10.j 786 0.0105643 ... 0.013188 

N-rook ..j 0.-150272 ... 0.849446 0.354266 ... 0.461 .j..JJ 0.321364 ... 0.468145 
16 0.227336 ... 0.324756 0.155 7 42 ... 0.280876 0.119916 ... 0.214904 
64 0.109728 ... 0.145 775 0.0807091...0.139889 0.0605287 .. . 0.107181 

256 0.0507363 ... 0.0796776 0.044 7672 ... 0.0609385 0.0254601...0.04 79083 
1024 0.0276874 ... 0.0474817 0.0234402 ... 0.0330985 0.0141554 ... 0.0245528 

Regular Grid 4 o .. 5.59198 0.248758 0.434216 
16 0.231485 0.124932 0.226729 
64 0.102398 0.060865 0.112807 
256 0.0432194 0.0310497 0.0607353 
1024 0.0171027 0.0101752 0.0304701 

Hammersley ..j 0 . .j9 l 708 0.466508 0.498039 
16 0.23035-5 0.181719 0.170741 
64 0.0777368 0.0742586 0.0520124 

2.56 0.0364673 0.0349363 0.0146222 
1024 0.01789.j2 0.0149017 0.0040708 

Halton 4 0.695907 0.594563 0.497245 
16 0.235361 0.21432 0.199702 
64 0.116366 0.106892 0.0481554 
256 0.0371292 0.0311993 0.0168317 
1024 0.0139491 0.012062 0.0056194 

Scrambled Halton 4 0.613899 0.4 71222 0.497245 
16 0.283306 0.211999 0.159189 
64 0.10833 0.0755593 0.0563067 
256 0.0352614 0.033048 0.018281 
1024 0.0142124 0.0112995 0.0'.)543235 

Table 4: Discrepancies of patterns 
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T1b]P .): Textured image and master imagP 
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.\" 
12 13 Paue r11 

Po isso 11 L2 0.0170 ... 0.0286 0.0118 ... 0.0218 0.0093 ... 0.0226 0.0078 ... 0.0 194 0.0077 ... 0.0187 :: 

Lx 0.3917 ... 0.7041 0.3419 ... 0.5547 0.2875 ... 0.51.40 0.2853 .. . 0.49 13 0.2694 ... 0.4913 

Poisson Disk L2 0.0170 ... 0.0286 0.0099 ... 0.0154 0.0078 ... 0.0149 0.0062 ... 0.0119 0.0051...0.0104 
L-..: 0.3917 .. . 0.7041 0.2672 ... 0.4030 0.2468 ... 0.3781 0.1947 ... 0.3532 0.1811...0.3215 ; 

J i tl<'r<>d L2 0.0170 ... 0.0286 0.0113 ... 0.0217 0.0072 ... 0.0107 
L-:x:o 0.3917 ... 0.7041 0.3464 ... 0.5547 0.2128 ... 0.3464 

.\"-rook L2 0.0170 .. . 0.0268 0.0105 ... 0.0150 0.0077 ... o.o 132 0.0062 ... 0.0074 0.0052 ... 0.0066 
LXJ 0.3917 ... 0.6951 0.3147 ... 0.3917 0.2604 ... 0.3645 0.2060 ... 0.2785 0.1 789 ... 0.3215 

RPgul a: C rid L2 0.0169 0.0132 0.0072 

L"'° 0.39 17 0.3645 lJ.LJ32 

H am merslPy L" 0.0321 0.0169 0.0154 0.0091 0.0107 

'''- 0.7064 0.3917 0.3645 0.2445 0.2740 

II a l 10 11 L2 0.0177 .. 0.032 1 0.0 100 .. . 0.ül85 0.0080 ... 0.01.54 0.0058 ... 0.0113 0.0055 .. . 0.0122 
/,..,_ 0.398.) ... 0.7064 0.2853 .. . 0.3985 0.2491...0.364.j 0 2060 ... 0.3215 0.1947 ... 0.3192 

H a11d o 111ized '-2 0.0170 ... 0.0286 0.0 10 1 .0.0 163 0.0081.. .0 .0129 0 00.) 7 .. . 0.0085 0.0052 ... 0.0104 
ll a11111lt' rsl<'Y L '- o.:3917 ... 0.6973 0.249 1...0.3917 0.2604 ... 0.3668 0. 1857 ... 0.2445 0.1857 ... 0.2287 

Tablf' 6: Lrnorm and maximum error, Part 

Patt <>rn 

Po isso n L2 0.0070 . 0 Ol.)0 0.0055 ... 0.0144 0.0056 ... 0.0119 0.0047 ... 0.01.54 
Lx 0.2:377 ... 0.4823 0.1789 ... 0.4030 0.1653 ... 0.418\l 0.1630 ... 0.3532 

Poisson Di!'k L2 0.0047 ... 0.0096 0.0044 ... 0.0081 0.0043 ... 0.0069 0.0038 ... 0.0069 
L-..;:; 0. 1789 ... 0.3 124 0.1.)40 .. 0 2830 0. 1426 ... 0.219G 0. 1517 ... 0.2377 

.J it l<'r<> d L2 0.0048 ... 0.0092 0.0042 .. . 0.0061 
Lx 0. 16.)3 ... 0.3306 0.1404 ... 0.2762 

.\ - roo k /,2 0.0048 .. 0.006 1 o 004 1 ... 0 00.'>1 0.0037 . .0.00-1~ 0.0033 .. . 0.0045 

' L-x. 0. 1766 .. 0.2491 0. 1426 ... 0.2377 0.1313 . . 0 .2128 0 115.) ... 0. 1970 

n q~11 lar c; rid L2 0.0053 0.0046 
lx 0.2287 0. 1992 

H alll m f' rsl•' Y L2 0.0082 0.0079 0.0053 0.0066 
LX> 0.2287 0.2287 0.2083 0.2 174 

ll a lt on L" 0.004 7 ... 0.0087 0 0046 ... 0.0090 0.0038 .. . 0.001!1 0.0035 ... 0.0066 
L x; 0.1585 ... 0.2423 0. 1.)85 ... 0.2423 0.1177 ... 0.2287 0.129 1...0.2332 -

~ 

Ra ndomizPd L2 0 .0042 ... 0.0078 0.004 1 .. . 0.0075 0.0037 ... 0.00.10 0.0036 ... 0.0063 
11 am me rsl Py L" 0. 1743 ... 0.2445 0.1426 ... 0.2287 0.1155 ... 0.21:28 0.1381.. .0.2332 

Table 1: Lrnorm and maximum error, Part 11 
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15 16 
Pattern 

Poisson L2 0.0037.. .0.0102 0.0036 .. . 0.0086 0.0024 .. . 0.0071 0 0029 ... 0.0065 0.0016 ... 0.0050 
Loo 0.1404 ... 0.2808 0.1381...0.2694 0.1223 .. . 0.21 96 0. 1109 ... 0.2083 0.0725 ... 0.1834 

Poisson Disk L2 0.0029 ... 0.0056 0.0028 ... 0.0041 0.0022 ... 0.0040 0.0019 ... 0.0034 0.0010 ... 0.0022 
Loo 0 .1064 .. . 0 .2038 0 .1041 .. . o .1811 0.0883 ... 0.1540 0.0657 .. . 0.1291 0.0408 ... 0.1064 

J ittered L2 0.0029 ... 0.0040 0.0024 ... 0.0030 0.0020 ... 0.0024 0.0011...0.0014 
Loo 0.1132 ... 0.1925 0.0815 ... 0.1336 0.0611...0.1313 0.0430 ... 0.0792 

N-rook L2 0.0025 .. . 0.0037 0.0025 .. . 0.0036 0.0020 ... 0.0029 0.0020 ... 0.0025 0.0010 ... 0.0017 
L00 0.0996 .. . 0.2060 0.1064 .. . 0.2106 0.0725 ... 0.1721 0.679 ... 0.1743 0.0475 ... 0.0974 

Regular Grid L2 0.0033 0.0026 0.0022 0.0014 
Loo 0.1313 0.1404 0 .1041 0.0770 

Hammersley L2 0.0043 0.0032 0.0031 0.0022 0.0010 
Loo 0.1494 0.1087 0.1132 0.0860 0.0521 

Halton L2 0.0029 .. 0.0047 0.0025 ... 0.0038 0.0021.. .0.0036 0. 0018 ... 0.0024 0.0010. .. 0.0012 
L00 0.1041 .. 0.2015 0.0951..0.1766 0.0725 ... 0.1336 0. 0589 ... 0 .0815 0.0430 .. . 0.0747 

Randomized l 2 0.0024 .. 0.0041 0.0026 .. . 0.0030 0.0019 ... 0.0030 0.0017 ... 0.0022 0.0009 ... 0.0010 
Hammersley L-:xo 0.0906 ... 0 .18 11 0.0770 ... 0.1313 0.0657 ... 0.1223 0.0498 .. 0.0928 0.0385 .. . 0.0566 

Table 8: L2-norm and maximum error, Part 1 II 




