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Abstract

Monte Carlo integration is often used for antialiasing in rendering pro-
cesses. Due to low sampling rates only expected error estimates can be stated,
and the variance can be high. In this article quasi-Monte Carlo methods are

presented, achieving a guaranteed upper error bound and a convergence rate
essentially as fast as usual Monte Carlo.
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1 Introduction

Monte Carlo methods are by now widely used in the process of rendering photoreal-
istic images in computer graphics. As in many other fields, the essence of application
of Monte Carlo methods is usually the evaluation of certain multidimensional inte-
grals.

Intensive investigations in the theory of multivariate integration [NIE78], [NIE92]
and recently also in information-based complexity theory [TRASS], [WOZ91] have
brought up an alternative approach: Quasi-Monte Carlo methods. These are de-
terministic quadrature rules specifically fitted to multidimensional integration. Re-
quiring only a mild regularity of the integrand, they provide a considerably smaller
error than standard Monte Carlo, and moreover, this error estimate is deterministic,
i.e. guaranteed. Quasi-Monte Carlo methods replace random numbers by elements
of low discrepancy sequences, which are sequences of points which approximate the
equidistribution in a multidimensional cube in an optimal way.

So far low discrepancy sequences and quasi-Monte Carlo methods have not yet
been applied in computer graphics. We think, however, that they might be quite
useful in this field. too. In the present paper we study the question of pixel over-
sampling in the process of rendering realistic images from this point of view.

For details and bibliography on quasi-Monte Carlo methods we refer to [NIE92].
Notation. facts and methods of rendering can be found in [FOL90] and [WAT93].
Antialiasing by oversampling is treated in [COO084|, [DIP85]. [LEES5], [PAI89],
[MIT87] and [MIT91].

Since this paper addresses both specialists in computer graphics and multivariate
integration. we include certain explanations of basic notions and facts from either

fields.

2 Oversampling

An image of a (real) scene is obtained by putting a rectangular screen between the
eye (point) of the spectator and the scene. Through each point of the screen a ray
is sent from the eve into the scene. The light radiation from this point of the scene
towards the eve determines the color and brightness of the point on the screen.
For simplicity we consider only one selected wavelength. i.c. monochromatic
light (the full image is then obtained by superposition). So to each point r = (u,v)
of the screen there corresponds a radiance L(w,v). In practice. the screen has to
be divided into pixels P, and the computer image is supposed tc show the average
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radiance L, over P,.

. 1
L,:'—[-ﬂ/}; L(r)dr (1)

where |P,;| denotes the area of P,. The simple choice of approximating this integral
by one point. e.g. the midpoint of P,. can lead to large deviations from (1) and, in
particular. to aliasing ([WAT93]. [COO34]). On the other hand. we cannot spend
too many points on one pixel since the screen usually consists of around 2.5 - 10° to
10° pixels. Moreover. in certain situations (as e.g. global illumination of complex
scenes) it is very time consuming to obtain a value of the integrand L(u,v). (In
fact, the values of L can be high dimensional integrals themselves. The quasi-Monte
Carlo approach for their computation is treated in [HEI94].) This sets the task of
finding suitable integration rules for (1) using as little samples as possible (say from
3 to 50. to indicate the possible range).

The integrand is usually only piecewise smooth. and we do not know the lines
of jump discontinuities in advance. So higher order numerical quadrature does not
work well. Therefore various forms of Monte C‘arlo sampling have been proposed for
the computation of (1). We discuss some of them in section 6. Let us also mention
that using the same sampling pattern for all pixels is desirable. because it leads to
highly efficient implementations. since buffer techniques or even hardware support
can be applied (e.g. the accumulation-buffer [HAE90]. Z-buffer or item-buffer). In
the present paper we confine our analysis to this case. It should be mentioned,
however. that patterns varyving from pixel to pixel promise better antialiasing. We
shall discuss low discrepancy approaches to this situation in a future work.

Let the pixel P under consideration be parametrized in such a way that P =
B = [0.1]%. Since a pixel usually covers a small sector of the scene. we can assume
a simple geometry of the discontinuities of L(wu.r). In fact, scenes in photorealistic
rendering are often built from triangular elements. So we shall assume that P can be
decomposed into the sum of (a few) subsets of very simple geometry (e.g. triangles)

5, il o
[ = 1‘)/\.:1( k -

in such a way. that the restriction of L to (' is sufficiently smooth (precise require-
ments will be given below). or even of a given form. as e.g. linear. Hence we are
faced with the problem of optimally integrating piecewise smooth functions with
varying and a priory unknown domains of smoothness. By the physical meaning,
L(u.v) > 0. and it is reasonable to assume a uniform bound L(u. ) < Ly, since the
technical limits of a screen restrict the maximally representable intensity anyway.
Finally. the number of basic sets is assumed to be bounded by « (small) constant,
K < K. that is we do not allow. in particular. fractal surfaces or infinite geometries.
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3 Quasi-Monte Carlo Integration

Let B = [0.1]° be the s-dimensional unit cube and f be a square integrable function.
The Monte (‘arlo method approximates the integral of f by

N-

JEEIEES

1=0

where {r; € B |0 < < N} is a set of random points. For large .V, the central
limit theorem states that the deviation of the sum from the integral approaches a

normal distribution, and a convergence rate of O (\/I—T> sets in with high probability
[SOB91]. [NIE92]. The low number of samples, however, violates this assumption

and only the mean square error can be affirmed:

1E</Bf(.z «/z——Zf ) =%

with 0% being the variance of f.

To overcome the probabilistic error of pure Monte Carlo, the random sampling
pattern is replaced now by a deterministic pattern. The calculation of the mean pixel
color stays the same and the method is then called quasi-Monte (‘arlo integration
due to the use of quasi-random numbers. Quasi-random numbers are deterministic
point sets. which approximate the uniform distribution as much as possible. This
can be expressed quantitativelv by the notion of discrepancy.

The discrepancy is a measure of the uniform distribution of a given (determinis-
tic) point set Py = {rg...... ry_1}. It is defined with respect to a family of subsets
of B. So let A be a non-empty set of Lebesgue-measurable subsets of B. We define
the discrepancy of P\ with respect to A as

m{A. Py)

D(Py.A) = sup N

A€A

As(A) —

where A, is the Lebesgue measure on B. and

{As Py 2\4 (3)

is the number of elements of Py which fall into A. Inserting (3) into (2) yields
another interpretation: D(Pxy.A) is the maximal error of the quadrature formula
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defined by Py (with equal weights 37) when integrating characteristic functions of

elements from A.
The classical or extreme discrepancy D(Py) is obtained for

A= {H[(l,.[),] | OS“:’ <bi < 1,1 = 1.....3} .

=1

When we consider the family of all such parallelepipeds with a; = a;, = -+ = a, = 0,
we get the star discrepancy D*(Py). The isotropic discrepancy J( Py ) arises when A
is taken to be the family of all convex subsets of B (see [NIE92] for these definitions).
For the purposes of analyzing pixel oversampling (s = 2) it seems appropriate to
consider further classes A formed of sets which reflect the basic geometry occurring
most frequently in pixels: The class 7. where A € T & A is a triangle contained
in B. or the class £ of edges (lines through the pixel), where A € £ & A is the

intersection of 3 with a half-plane. In the next section we analvze the role of
discrepancy for pixel integration.

4 Deterministic Error Bounds

Using the notions of discrepancy one can estimate the deterministic error of the
quasi-Monte ("arlo quadrature. given by a point set Py. For the sake of simplicity
we consider only the case of smooth integrands and s = 2. Let [ :[0.1]* = IR be a

8 ¥ . ¥ % y 32 v 3 . S e .
function with continuous mixed derivative % The variation of f in the sense
of Hardyv and Krause is defined as

V) = VO + VEI(f) + V()

1,192 .
\'(1.1)(‘/.) . / E_()_Mldu dv
Jo

where

o | Oudv
1.
PO(f) = / ()i“_l) du
Jo ()u,
il 5
(00) £y df(l.v) i
! (f) = /0 N — dv .

(For the general definitions we refer to [NIE92].) The classical Koksma-Hlawka
inequality for integration on [0.1]* states that for any set Py = {r,...... rn-_1} C

[0.1)2
1 N-1

[ =0

< V(f) - D*(Py) (4)
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(see [NIE92]). Due to the discontinuities of the radiance function L(r) we cannot
apply (4) directly. Instead we have to integrate over subregions of the square, and we
need an analogue of (1) for this situation. Such a result was obtained by Zaremba
[ZART70] (see also Niederreiter [NIET2] and de Clerk [DCL81]). We shall restate
Zaremba's result in a form suited for our purposes. Let A be a non-empty class of
Lebesgue measurable subsets of the square. Denote by

AT = fAN[0.a] x[0,b]| A€ A,0<ab< 1}

AL — 14N [0.a] x[0.1]] A€ A,0<a<1}
A = L4AN[0.1] x[0,6] | A€ A0<HL 1},

The following is basically Zaremba's proposition 2.1 [ZAR70]:

Proposition 4.1 For all Py = {rg...... rx-o1) C [0,1)3, all functions f with con-
32 v
tinuous mired derivative ==L on [0.1)* and all A € A

du

1=0
z, €

< f(1.1)- D(Pyv. A) + VAU ). D(Py. A1)
VO f) - D(Py. ATD) 4 VOD(F) - D(Py. A

For the sake of completeness we indicate the idea of the proof:
Proof: Integration by parts gives

flucv) = fOY ey = fO% 0) = FOD(u,v) + f(1.1) .

where

1 g d*f(a.t
8.0y = //\[o,a](u)\[o.b](v) e ))(I" db
0

Jo 0(1(31)
: df(a.1)
(1.0) e - . : da
N u.e) A\{O'](u) 9a
! df(1.b)
FO () = /\ R iLLE
4 (0.5] b

We shall onlv mention how to handle f('!), the rest is analogous. Define

gla.b.Pyv) == A(AN[0.a] x [0.5]) — %m(Aﬂ [0.a] x [0.8]. Py) .
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[t follows readily that

N-

(1,1) (11) —
/Af (z)d Z

e

0% f(a.b)
(a,b, Py) 5a b ———~da db

< b, Py)|- VMY
< o?}ﬂ’illga N)| (f)

< (P,.V,A(l'l)) . V“'”(f) )

In computer graphics the surfaces are mostly textured in order to appear realistic.
In a pixel’s geometry the restriction of L(u,v) to a C is such a texture function. In
most cases these are interpolation polynomials. If we consider the special situation
that

flu,v) =au+ pPv+~ ()

is linear. which can often be assumed in computer graphics, then we get

Corollary 4.1 If [ is linear, of the form (5), then

N—-1
[ e =5 X pw| <l 3450 DRy A)

+la| - D(Pn. AM) + |B] - D(Py, A%V .

Since we scale the pixel to the unit square. we can assume that the function L(u,v)
is (aside from discontinuity jumps) slowly varying. Thus, we can consider |a| and
|3| to be small. as compared to |y|. Hence we are left with the discrepancy as a
measure of the quality of oversampling patterns for concrete geometries represented
by A. So two directions of analvsis arise:

1. Use sets of points with low discrepancy. in particular those obtained by the
basic known constructions (see the next section) and

2. compute discrepancies of concrete oversampling patterns, which are being used

(see the section T).

Direction 2 was first suggested by Shirley [SHI91b]. who computed the star and the
extreme discrepancy for certain sampling strategies.
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5 Low Discrepancy Sequences

The analysis of the previous section showed that we need point sequences with low
discrepancy. In what follows we shortly review the basic ways of constructing such
sequences.

We define ¢ as the radical inverse function:

®y(i.o) = Z o(a;(i)) b2~ when i = Eaj(i) &
=0 1=0

where the natural number b > 1 is the base, : € IV, and o is a permutation of the
set {0,1,...,b — 1}. The values ®;, are always in the unit interval [0,1). To get
an impression. how @ acts on an ¢ we assume o to be the identity. Then we can
imagine ®,(z) simply by rewriting the binary representation of : mirrored at the
decimal point !.

The Halton and the Hammersley sequence are s-dimensional vectors built out
of radical inverse functions in relatively prime bases b;, so as to avoid correlations
between the components. For 0 <1 < N we have:

Halton points: r; = (&, (2)...., b,,(2))
Hammersley points: r; = (—

The points all lie inside the s-dimensional unit cube B = [0, 1)°. because of the prop-
erties of the radical inverses. If the permutations are not identities. the sequences

are called scrambled. Scrambling is necessary, since the radical inverse function has

sequences of b; equidistant values spaced by bL These sequences result in pieces
i

of lines in the multidimensional case. These pieces are prone to aliasing and are
eliminated by scrambling. The discrepancies D*( Py') for both sets are bounded by

(see [NIE92]):

3 1 o B =1 b; + 1
[);lqlton < ~F (.) Jlog 5 log N + ! P ) (6)
. sl : 2

-1
= S 1 bj' -1 bj + 1
I)H'me(rslry 3 V + T H <2 log bJ lOg N + B >

- log" ' N
= D[{ammerc“.ry € O <T>

'For fast algorithms for computing ® we refer to [STR93] or [HAL64]
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o The 2-dimensional Haramersley Point Set: We now consider the Hammersley
point set in two dimensions (s = 2):

i
N
yi = O4(2)

The first component simply scans the unit square in z-direction, whereas the
second component behaves randomly at first sight. The fastest generation of
this sequence can be performed for base b = 2 without scrambling. Another
reason for choosing this base is the low discrepancy of the sequence for this
case. No values of the set need to be precomputed, since all values are directly
computable. Increasing the sampling rate N requires to discard all previous
sampling positions, therefore this pattern is not incremental and hence not

well suited for adaptive oversampling. For base b = 2 the above bound results
in

r; =

. 1 ‘ .
D ([)j\') < W(logz N + l)

. log N
= D 60( N )

For arbitrary bases and dimensions, stronger bounds for * can be found in
[FAUS6]. Exact values for dimension two are contained in [DCL36].

e The 2-dimensional Halton Point Set: For the Halton set the bases b; = 2 and
b, = 3 are chosen. The sampling pattern is
r; = Ps(i)
yo = ®3(2)

This pattern is incremental. meaning that increasing the number of samples
is possible without discarding the samples already drawn.

In contrast to the extreme and star-discrepancy, little is known about other types

of discrepancy. We have the following inequalities between the different types of
discrepancies (see [NIE92]):

D (Py)
D(P~)

2°D*(Pn)

<
< 4sD(Py)'/®

D(Px)

<
J(Pwy) <

and consequently for s = 2

D(Px.T) < J(Pv) <164/ D*(Pn) . (8)
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Since any quadrangle splits into two triangles, we also have

D(Pn,E) < 2D(Pn,T)
D(Py) < 2D(Pn,T).

From (9) we get the following asymptotic estimate: There exist constants ¢;,¢; > 0
such that for all .V
log N

log" N

N
where Py stands for the Halton (r = 2) or Hammersley (z = 1) point set. The lower
bound holds for any N-point set (because it holds for D(Py). see [SCH72]). The
precise rate of D(Px.7T) and D(Py, &) for the Hammersley or Halton sequences are
not known. Neither is the optimal rate, i.e.

Cy

<SD(Pv,T)<

inf  D(Py,A)
Py Clo.1]?
for A =T or & (see [SCH69] and [BECST] for results in this direction). From the
numerical point of view the estimates above give very little. There is no way known of
computing the isotropic discrepancy of a given point set. Estimating the triangular
discrepancy by (8) through the star-discrepancy yield much too pessimistic results.
Some numerical evidence is collected in section 7.

6 Comparison to Usual Sampling Techniques

In order to compare the Halton and Hammersley point sets to other sampling pat-
terns. some of the commonly used patterns on the unit square are listed (0 < < N):

e In reqular oversampling the square is divided into N = n-m rectangles, whose
midpoints constitute the sampling set:

: mod n + 0.5

= —

Z n

rdivn+0.5

m

U =

e The Poisson sampling pattern simply consists of N random positions chosen
from realizations of two independent uniformly distributed on [0, 1] random
variables & and v. This is the pure Monte Carlo sampling.

2, = &

Yy: = Vi
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e Jittered sampling is stratified Monte Carlo sampling and as such a combination
of the first two sampling techniques. Stratification is a means to reduce the

variance of the integrand. For N = n - m samples and ¢ and v independent
random variables we have

t mod n + &
r = —
n
vdivn+
Yy = ——

m

e Poisson-Disc: As investigated in [YEL83] (see also [COO84]) the natural hu-

man eye's receptor distribution found in the border area of the retina usually
does not alias despite the low density of receptors there. There the receptors
are distributed randomly with a minimum distance d > 0. This pattern is
generated by fixing a distance d > 0. Then we generate a random sequence of
uniformly distributed points on [0.1]%. A point is accepted. if its distance to
the already chosen points is not smaller than d, otherwise it 1s rejected. The
process stops. if NV such samples are found.

e N-Rook: The N-rook pattern is generated by solving the problem in chess, that

N rooks must be placed on an N x N chessboard in such a way, that they
cannot defeat each other in one move. Then in each occupied square a random

point is chosen. So we proceed as follows: We generate a random permutation
o of size N and obtain

2y = Jud

' N
o) +v

R

The pattern is then fully stratified in each dimension [SHI91a]. Observe that
the Hammersley point set is a special case of the permutation technique for
N = 2™ Taking the .NV-rook pattern with the Hammersley permutation results
in a kind of "jittered Hammersley” with similar performance.

Our experiments show. that randomizing the Hammersleyv point set only in the
first component results in a sampling pattern which is superior to all examined

patterns. This "randomized Hammersley” point set has to be investigated
further.

Obviously the Halton and Hammersley point sets have much in common with
the above sampling patterns. In addition the number N of points can be chosen
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| Pattern | Random | Stratified | Min-Distance | N free [ Storage | regular | Incremental |
Poisson ° ° o
Poisson Disk ° ° ° ° ° (o)
Jittered . .
n-Rook ° . B .
Regular ° ° °
Hammersley . . (o)
Halton B B ®
Scrambled Halton o °

Table 1: The different sampling pattern and their properties

freely and is not limited to a decomposition of N into factors. Both sets satisfy a
minimum distance property.

In table 1 the properties are listed. The patterns are classified by type (random
or deterministic). stratification (implied by minimum distance or partition of the
integration domain). free choice of the sample number N or restriction to a decom-
position of N into factors. the need of precalculation and storage (for permutations
for example). regularly spaced components. which are prone to aliasing and the
property of being incremental. Table 3 shows some of the sampling patterns for

N = 64.

7 Numerical Evidence About Discrepancies

Here we present the results of some computational experiments carried out in con-
nection with the analysis of the previous sections. First we consider the triangular
discrepancy. In table 2 we computed the theoretical bound based on (7) and (8),
and compared it with numerical estimates. The latter were carried out by comput-
ing the maximal integration error over a large number of randomly chosen triangles.
This should give at least an idea about the behaviour of D(P\.T). To get an im-
pression of the approximation of the true maximum by the random procedure, we
show results corresponding to two different numbers of triangles.

For all patterns mentioned in section 5 and 6, we compare the triangular dis-
crepancy. the random edge discrepancy and the star discrepancy in table 4. For all
patterns we used the same 100.000 random triangles (edges or domains of the form
[0,€] x [0.v], respectively). For the patterns, which involve randomness themselves,
a range over 10 experiments is given so that the possible variance is shown. The
discrepancies are marked by a tilde to emphasize that the results are only approxi-
mations.
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| N || 10000 random triangles | 100000 random triangles I theoretical estimate |

4 0.539712 0.591708 16.971
16 0.18326 0.230355 9.381
64 0.0660696 0.0777368 5.099
256 || 0.032454 0.0364673 2.739
1024 || 0.0118695 0.0178952 1.458
4096 || 0.00521621 0.00715305 0.771

Table 2: Triangular discrepancy of the Hammersley point set

8 The QMC-Buffer and Further Numerical Re-
sults

The quasi-Monte (arlo buffer is a simple extension of the accumulation buffer
[HAE90]. This buffer first was thought for Monte Carlo integration. For every
pixel of the image there exists a color variable, in which the samples are summed
up and averaged afterwards. The use of the same sampling pattern over all pixels
allows to apply fast buffer techniques such as z-buffer or item-buffer. which are often
even available from the display’s hardware at real time speed.

We replace the patterns used in [HAFE90] by low discrepancy point sets. Now we
use the Halton set. The QMC-buffer algorithm then works as follows:

1. For a base oversampling rate N; use the Halton point set for generating an
image using the accumulation-buffer.

2. For single pixels. whose variance is too high, perform a further oversampling
using r, for 1 > \V}.

Since the Halton sequence is incremental, no samples have to be discarded if adaptive
oversampling (see e.g. [LEES85]) is required in the second step. The first step of
this algorithm can also be made adaptive: The variance over the whole image is
calculated and tested by a y*-test. If the result is not satisfactorv. we increase N;
and go on with step 1. If the global variance is small enough, we proceed with step
2 of the algorithm.

So the QMC-buffer is an incremental algorithm which can be carried out with
adaptive oversampling. This algorithm performs with a deterministic error and a
rate, which is. up to the logarithm, at least as good as pure Monte (‘arlo integration.

Table 5 now shows a textured version of the scene and 'lie master image IM.
In our experiments we used only simple scenes without textures. This restriction
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makes sense, since through precalculation techniques like MipMapping or summed-
area-tables textures can be sampled with a low variance, leaving only the variance
of the geometry of a scene in the pixel. We applied the different sampling patterns
to the algorithm and calculated the L,-norm of the difference of an image I to a
master image /™ (an image, which was oversampled 2500-times). since an analytical

solution was not accessible. The distance between two colors (', and (5 is defined
as

d(C1,C2) = V(11 — 1) + (g1 — 92)? + (b1 — by)?

where r. g, and b are in [0,1] and are the intensities of the color components red,
green and blue of a pixel value. The L;-norm of the distance of two images is now

2all pixels 1 d*(C;, CM)

number of pixels

1= 1M, =

The maximum norm of the scene then is given by

=M= sup  d(Ci,CM).

all pixels :

The results are collected in tables 6. 7 and 8%, Our images have a size of 5122 =
262144 pixels. so the maximum norm above involves the supremum over many el-
ementary parts of the scene. Considered from this point of view. it is of interest
to compare these results with the discrepancy calculations in table 4. In order to
compare the L,- and L, ,-norm with the discrepancies computed before, all values in
tables 6, 7 and 8 were divided by the maximal possible d = \/? The L, norm gives
a quality measure of the approximation of the master image by a lower sampling
density.

For the randomized algorithms. we calculated 20 experiments to give an impres-
sion of the variance of these methods. For the low sampling densities (1..9) the
low discrepancy sequences seem to perform bad. This seems to be caused by the
origin o = (0.0). which is included in the low discrepancy sets. while the other
methods start with points inside the pixel. For the Halton point set we fixed this by
omitting the first .V’ elements, resulting in the range given for that pattern. Simply
omitting ro then performs as good as the random patterns. For the higher sampling
rates a clear superiority is observed for the deterministic patterns. so ro can be used
without disadvantages.

2The implementation was done on a HP9000/735. We used drand48() as random generator.
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9 Conclusion and Further Work

We introduced the QMC-buffer for anti-aliased rendering. By applying the low
discrepancy point sets, we obtain a convergence rate of about the same order as
pure Monte Carlo methods. Especially applying the Halton sequence results in a
very efficient incremental algorithm, which can easily be extended to adaptive pixel
oversampling. By replacing randomness we obtain deterministic algorithms with a
guaranteed upper error bound.

The phenomenon, that a randomized Hammersley point set always performs
better than all other patterns, has to be investigated further. Moreover the optical
qualities of the low discrepancy sequences have to be compared to the usual patterns
by means of Fourier analysis.

Our main interest lies in solving high dimensional integral equations like the
radiance equation or the complete five-dimensional description of a lens (time of
aperture, size of lens and size of pixel) by the application of quasi random numbers.
This is a promising effort. since the low discrepancy sequences perform well for high
dimensional integrals. First results can be found in [HEI94].
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L

Random

Deterministic

Poisson

Regular Grid

Table 3: The different sampling patterns for N = 64
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| Pattern | N [ D(P~n.T) | D(Pn,E) | D*(Pn)
Poisson 4 0.590735...0.909109 0.424773...0.728038 0.439906...0.703657
16 || 0.269943...0.475035 0.205515...0.35258 0.19317...0.357886
64 || 0.136628...0.189286 0.124042...0.162481 0.108418...0.171163
256 || 0.0702834...0.104564 | 0.0469791...0.10384 0.0545187...0.081455
1024 {| 0.0307715...0.0573265 | 0.0310258...0.0594817 | 0.0243101...0.0567063
Poisson Disk 1 0.522657...0.765606 0.380949...0.618871 0.351455...0.622014
16 | 0.212796...0.325906 0.186497...0.319828 0.188717...0.250398
64 || 0.0903901...0.115629 | 0.0749705...0.135366 | 0.0692996...0.100529
256 || 0.0389122...0.0639217 | 0.0373723...0.0766956 | 0.0341753...0.0503391
1024 || 0.0191191...0.0328588 | 0.0157817...0.0308078 | 0.0154991...0.0304187
Jittered 4 0.49858...0.710208 0.331581...0.498499 0.332042...0.588175
16 || 0.215582...0.277194 0.152869...0.221958 0.182205...0.239541
64 || 0.0924101...0.123592 | 0.0628123...0.08-10382 | 0.0702102...0.0972717
256 || 0.0330829...0.0420403 | 0.0240844...0.0315302 | 0.0247497...0.0363527
1024 || 0.0135303...0.0159187 | 0.0091878...0.0105786 | 0.0105643...0.013188
N-rook 4 0.450272...0.849446 0.354266...0.461543 0.321364...0.468145
16 | 0.227336...0.324756 0.155742...0.280876 0.119916...0.214904
64 || 0.109728...0.145775 0.0807091...0.139889 | 0.0605287...0.107181
256 || 0.0507363...0.0796776 | 0.0447672...0.0609385 | 0.0254601...0.0479083
1024 || 0.0276874...0.0474817 | 0.0234402...0.0330985 | 0.0141554...0.0245528
Regular Grid 1 0.559198 0.248758 0.434216
16 || 0.231485 0.124932 0.226729
64 || 0.102398 0.060865 0.112807
256 || 0.0432194 0.0310497 0.0607353
1024 || 0.0171027 0.0101752 0.0304701
Hammersley 1 0.591708 0.466508 0.498039
16 || 0.230355 0.181719 0.170741
64 || 0.0777368 0.0742586 0.0520124
256 || 0.0364673 0.0349363 0.0146222
1024 || 0.0178952 0.0149017 0.0040708
Halton 1 0.695907 0.594563 0.497245
16 || 0.235361 0.21432 0.199702
64 || 0.116366 0.106892 0.0481554
256 || 0.0371292 0.0311993 0.0168317
1024 || 0.0139491 0.012062 0.0056194
Scrambled Halton 1 0.613899 0.471222 0.497245
16 || 0.283306 0.211999 0.159189
64 || 0.10833 0.0755593 0.0563067
256 | 0.0352614 0.033048 0.018281
1024 || 0.0142124 0.0112995 0.09543235

Table 4: Discrepancies of patterns
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Table 5: Textured image and master image
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\ 1 2 3 1 5
Pattern
Poisson L 0.0170...0.0286 | 0.0118...0.0218 | 0.0093...0.0226 | 0.0078...0.0194 | 0.0077...0.0187
L~ || 0.3917...0.7041 | 0.3419...0.5547 | 0.2875...0.5140 | 0.2853...0.4913 | 0.2694...0.4913
Poisson Disk | Lo 0.0170...0.0286 | 0.0099...0.0154 | 0.0078...0.0149 | 0.0062...0.0119 | 0.0051...0.0104
L~ || 0.3917...0.7041 | 0.2672...0.4030 | 0.2468...0.3781 | 0.1947...0.3532 | 0.1811...0.3215
Jittered Lo 0.0170...0.0286 | 0.0113...0.0217 0.0072...0.0107
L~ || 0.3917...0.7041 | 0.3464...0.5547 0.2128...0.3464
N -rook Lo 0.0170...0.0268 | 0.0105...0.0150 | 0.0077...0.0132 | 0.0062...0.0074 | 0.0052...0.0066
L~ | 0.3917...0.6951 | 0.3147...0.3917 | 0.2604...0.3645 | 0.2060...0.2785 | 0.1789...0.3215
Regular Girid | Lo 0.0169 0.0132 0.0072
L~ | 0.3917 0.3645 0.2332
Hammersley | Lo 0.0321 0.0169 0.0154 0.0091 0.0107
L~ || 0.7064 0.3917 0.3645 0.2445 0.2740
Halton Lo 0.0177...0.0321 | 0.0100...0.0185 | 0.0080...0.0154 | 0.0058...0.0113 | 0.0055...0.0122
L~ || 0.3985...0.7064 | 0.2853...0.3985 | 0.2491...0.3645 | 0.2060...0.3215 | 0.1947...0.3192
Randomized | L. 0.0170...0.0286 | 0.0101...0.0163 | 0.0081...0.0129 | 0.0057...0.0085 | 0.0052...0.0104
Hammersley | L || 0.3917...0.6973 | 0.2491...0.3917 | 0.2604...0.3668 | 0.1857...0.2445 | 0.1857...0.2287

Table 6: L,-norm and maximum error, Part |

[l . 6 it 8 9
Pattern
Poisson La 0.0070...0.0150 | 0.0055...0.0144 | 0.0056...0.0159 | 0.0047...0.0154
L || 0.2377...0.4823 | 0.1789...0.4030 | 0.1653...0.4189 | 0.1630...0.3532
Poisson Disk | La 0.0047...0.0096 | 0.0044...0.0081 | 0.0043...0.0069 | 0.0038...0.0069
| L~ || 0.1789...0.3124 | 0.1540...0.2830 | 0.1426...0.2196 | 0.1517...0.2377
Jittered Lo 0.0048...0.0092 0.0042...0.0061
L~ | 0.1653...0.3306 0.1404...0.2762
N-rook I La 0.0048...0.0061 | 0.0041...0.0051 | 0.0037...0.0048 | 0.0033...0.0045
, L~ ] 0.1766...0.2491 | 0.1426...0.2377 | 0.1313...0.2128 | 0.1155...0.1970
Regular Grid | Lo 0.0053 l 0.0046
L~ || 0.2287 T 0.1992
Hammerslev | Lo 0.0082 0.0079 0.0053 0.0066
L || 0.2287 0.2287 0.2083 0.2174
Halton Lo 0.0047...0.0087 | 0.0046...0.0090 | 0.0038...0.0059 | 0.0035...0.0066
L || 0.1585...0.2423 | 0.1585...0.2423 | 0.1177...0.2287 | 0.1291...0.2332
Randomized { Lo 0.0042...0.0078 | 0.0041...0.0075 | 0.0037...0.0050 | 0.0036...0.0063
Hammersley | L. || 0.1743...0.2445 | 0.1426...0.2287 | 0.1155...0.212%8 | 0.1381...0.2332

Table 7: L;-norm and maximum error, Part [I
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N 15 16 25 36 64
Pattern
Poisson Lo 0.0037...0.0102 | 0.0036...0.0086 | 0.0024...0.0071 | 0.0029...0.0065 | 0.0016...0.0050
Lo || 0.1404...0.2808 | 0.1381...0.2694 | 0.1223...0.2156 | 0.1109...0.2083 | 0.0725...0.1834
Poisson Disk | Lo 0.0029...0.0056 | 0.0028...0.0041 | 0.0022...0.0040 | 0.0019...0.0034 | 0.0010...0.0022
Lo || 0.1064...0.2038 | 0.1041...0.1811 | 0.0883...0.1540 | 0.0657...0.1291 | 0.0408...0.1064
Jittered Lo 0.0029...0.0040 | 0.0024...0.0030 | 0.0020...0.0024 | 0.0011...0.0014
L 0.1132...0.1925 | 0.0815...0.1336 | 0.0611...0.1313 | 0.0430...0.0792
N-rook Lo 0.0025...0.0037 | 0.0025...0.0036 | 0.0020...0.0029 | 0.0020...0.0025 | 0.0010...0.0017
L~ || 0.0996...0.2060 | 0.1064...0.2106 | 0.0725...0.1721 | 0.679...0.1743 0.0475...0.0974
Regular Grid | Lo 0.0033 0.0026 0.0022 0.0014
Lo 0.1313 0.1404 0.1041 0.0770
Hammersley | L, 0.0043 0.0032 0.0031 0.0022 0.0010
Lo || 0.1494 0.1087 0.1132 0.0860 0.0521
Halton L- 0.0029...0.0047 | 0.0025...0.0038 | 0.0021...0.0036 | 0.0018...0.0024 | 0.0010...0.0012
L~ || 0.1041...0.2015 | 0.0951..0.1766 | 0.0725...0.1336 | 0.0589...0.0815 | 0.0430...0.0747
Randomized | Lo 0.0024...0.0041 | 0.0026...0.0030 | 0.0019...0.0030 | 0.0017...0.0022 | 0.0009...0.0010
Hammersley | L. || 0.0906...0.1811 | 0.0770...0.1313 | 0.0657...0.1223 | 0.0498..0.0928 | 0.0385...0.0566

Table 8: Ly-norm and maximum error, Part 111





