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Abstract. Free form volumes in rational Bezier representation are derived via 
homogeneous coordinates. Some properties and constructions are presented and 
two applications of free form volumes are discussed: definition ot solid primitives 
and curve and surface modelling by the way of volume deformation. 
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1. Introduction 

While in the past, CAGD has been mostly concemed with curves and surfaces, more 
recently, there has been an increasing interest in higher dimensional, trivaria.te objects 
such as free form volumes which a.re suita.ble to describe inhomogeneous solids. The two 
most widely used methodes of representing solids a.re the Constructive Solid Geometry 
Representa.tion (CSG-Rep.) - a. solid based method - and the Bounda.ry Representa.tion 
(B-Rep.) - a. surfa.ce based method (see e.g. [Cas85)). However, free form cha.racter of 
both methods is not very substa.ntial, and they also assume intemal homogeneity. On the 
other ha.nd, free form volumes, of which this pa.per is dealing with, possess per definition 
a. very high free form cha.ra.cteristic and describe every interior point as weil as every point 
on the boundary surfa.ce of the volume uniquely. No assumption on intema.l homogeneity 
or structure is done. Beside solid modelling, there a.re some more applica.tions of free form 
volumes, for instance, the description of spa.tia.l movement or deforma.tion of a. surfa.ce, 
the description of physica.l fields, such a.s tempera.ture or pressure, etc. as functions of 
severa.l variables, e.g. the positional coordina.tes, the modifica.tion of curves a.nd surfa.ces 
through volume deforma.tion, etc. 

Free form volumes ca.n be defined by the tensor (Ca.rtesia.n) product definition, 

1 m n 
~~~ i . Je V(u,v,w) = L-L-L- V;,j,JcU v'w , u,v,we(C,l]. (1) 
i ::() j ::() /c::O 
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The above given definition is based on monomials , in CAGD (Computer Aided Geomelric 
Design) Bernstein polynomials, see [Far 92], [Hos 92], 

B~ ( w) = (~)w"(l -w)"-k, w E [O, l] , (2) 

of degree n in w, and analogously for 11 and u, are very popular. This is, because 
the expansion in terms of Bernstein polynomials yields, firstly, a. numerically very stable 
behavior of all algorithms. Secondly, a geometric relationship between subject ar..d coef­
ficients of its defining equation. Note, that these properties are not available in case of 
monomials, Lagrange or Hermite polynomials. Probably this is one of the main reasons 
why Bezier representations, which are based on the use of Bernstein polynomials, became 
the de facto industry standard in CAGD during the past years. Thus, a tensor product 
Bi::ier volume - briefly TPB volume - of degree (/, m , n) in (u, 11, w) is defined by 

1 m n 

V(u,v,w) = LLL vi.j.1:Bf(u)Bj(v)B;(w), tL,v ,w E[O, l]. (3) 
i=O j=O k=O 

The coefficients V;.j.l: E_ IR.3 are called Be::ie~ points. They form, connected in the ordering 
given by their subscripts, a spatial net which is called Bi.zier :;r:d, [Hos 92]. 

Because of the polynomial character of (3) only polynomials can be represented exactly, 
sphere (segments ) for example, cannot be constructed by (3) . Therefore many (primary) 
elements of CAD systems can not be converted exactly into this kind of free form repre­
sentation. Rational Bezier representations overcome this disadvantage for the most part: 
primary elements like conic sections and quadrics, as well as tori aod cyclids, for exa.mple, 
ca.o be constructed, thus allowing exact conversion from CSG-Rep . a.nd B-Rep. ba.sed 
solid primitives into rational free form representation. 

This paper is concerned with free form volumes in rational Bezier representation defined 
via. the Cartesiao product. Ma.thematical description using homogeneous coordinates, 
properties a.nd constructions such a.s point and derivative evalua.tion, degree ra.ising, sub­
division, a.nd continuity conditions a.re presented in Section 2. Section 3 aod 4 discuss 
two exa.mples of application of free form volumes: genera.tion of solid primitives defined 
by rational TPB volumes aod curve aod surfa.ce modelling by free form deformation. 

II. Bezier Volumes 

U sing homogeneous coordinates ri, points R = ( x, y, z) T of 1R:1 ca.n be represented by 
points R = (r1, r2, r3, r4)T of JR:' via the projection of JR:' into the hyperplaoe r4 = 1 
according to (cf. Figure 1) 

for r4 
-:/: 0 

for r4 = 0. 

The center of projection is the origin of the 40 cartesia.n coordina.te system. A point 
R = (x,y,z)T is the projection of w(x,y,z, l)T, where w-:/: 0, w E JR. The real number 
w is called weighi of the corr~ponding point. Note, R E JR4 a.nd eR E JR4, e -:/: 0, e E JR, 
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describe the same point of IR3
. H( R) is unlimited for r4 --. 0, r 4 i= 0. In this way infinite 

points of IR.3 can be described by finite points of IR.4 with r 4 = 0. In IR.3 these points 
will be represented by direction vectors , [Pie 87]. 

r 4 = 1 

Figure 1. Introducing homogeneous coordinates via projection H( ·) 
of points of IR.3 into the plane r3 = 1. 

N ow, a rational tensor product Bi.zier vo/ume - briefly rational T PB volume - of degree 
(l,m,n) in (u,v,w) is defined by, [Kir89], [Las90], 

V(u) = ?-l(V(u)), (4) 

where 
1 m n 

V(u) = L L L Vi,j,k s:(u) Bj(v) B;(w)' u, v, w E (0, l], 
i=O j=O k=O . 

and u = (u, v, w). V(u) is called homogeneous form of V(u). Thus, a rational TPB 
volume of degree (l,m,n) in IR3, V(u), is defined by a. non-rational, polynomial TPB 
volume of degree (l, m, n) in JR4, V(u), i.e. is the projection of a. polynomia.l TPB volume 
into the hyperpla.ne r4 = 1. 

If ·t V· . - (V1 v2 V3 V4 )T - ( · . yT . · )T E 104 h v we wn e s.;,Jc - i,j,k, i,j,Jc, i,j,k• i,j,k - w,,1,1c i,j,Jc• w,,1,1c in·, w ere i.J,lc = 
( X;.j,Jc, YiJ,Jc, Z;J,Jc) T E IR3, w;,;,1c E IR, a.nd assume 

l m n 

L L L W;.j,Jc B!(u) Bj(v) B;(w) i= 0, u, v, w E (0, l], 
i=O j=O /c=O 

then, 
I m n 

L L L W;.j,k V;,j,k Bf ( u) Bj( V) B;( w) 
i=O j=O lc=O 

l m n 
(5) V(u) = 

L L L w;,j,Jc Bf(u) Bj(v) B';(w) 
i=O j=O k=O 
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and 30 Be=ier points V,,,,k are projections , V;,, ,k = H.(V;,1,k), of 4D Bhier points V;,j,k· 
Bezier points form in their natural ordering, given by their subscripts, the vertices of the 
Bhier grid. Scalars '-'-'i.; ,k E IR are called weights: if we increase one r,,.,•; ,, ,k the volume 
will be pulled towards the corresponding V; ,j ,k · 

The assumption of ( 5) will be fulfilled if weights w; ,j,k are non-negative and all 8 corner 
Bezier points of the grid are no infinite control points what will be required from now 
on. If a control point Vi.; .k is a point al infinity, i.e. w;,j,k = 0, we replace, according 
to definition of 11.( ·), Wi ,;,k v .. ;.k by v .. j,k in the numerator of (5). Note, infinite control 
points, also called control vectors, can be eliminated by degree elevation (cf. [Far 92] 
p. 260) as stated by (7) . 

One of the weights ( e.g . wo.o.o) can be normalized to be of value one and on boundary 
curves u = 0, v = 0 and w = 0, the parametrization can be chosen so that, for instance 
w1 ,o.o, = wo,m,o = r,,.,·0 .o,n = 1. All other weights directly influence the shape of the volume. 
If all weights are equal, (.:>) yields the non-rational, polynomial TPB volume because 
Bernstein polynomials su;n to one (see e.g. [Far 92] p. 42, [Hos 92] p. 116) . 

Positive weights result in volumes which have all the properties and algorithms we do 
know from polynomial representations. Because of definition ( 4) via the projection H.( ·), 
properties of rational TPB volumes can be deduced from properties of the non-rational 
TPB volume scheme. This means that relations between Bezier grid and rational TPB 
volume can be deduced from those of the underlying Bezier curve s~heme, and that many 
constructions in different parameters commute, such as degree raising, de Casteljau con­
struction and derived constructions , segmentation for example. We list a few properties 
(see [Kir89], [Las90]). 

Convex hull property. The rational TPB volume lies completely within the convex 
hull of its Bezier points. 

Parametric surfaces. The parametric surfaces of constant u are rational TPB surfaces 
of degree (m, n) and analogously for pararnetric surfaces of constant v and w, respectively. 

Parametric lines. Lines u, v = constant, so-called w parameter lines, are rational Bezier 
curves of degree n and analogously for v and for u parameter lines. 

Boundary surfaces. The boundary surfaces of a rational TPB volume are rational 
TPB surfa.ces whose Bezier points and weights are the corresponding boundary points 
and weights of the Bezier grid. 

Boundary curves. The boundary curves of a rational TPB volume a.re rational Bezier 
curves whose Bezier points a.nd weights are the corresponding bounda.ry points a.nd weights 
of the Bezier grid. 

Vertices. The eight vertices of a rational TPB volume coincide with the eight corre­
sponding vertices of the Bezier grid. 

Visual approximation. The Bezier grid gives a. rough impression of the rational TPB 
volume. 

Derivatives. The partial derivatives of order (p, q, r) of a. rational TPB volume of degree 
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(l.m,n), V(u) = N (u )/ D (u) , are given by (cf. [Far92] p. 2.')6) 

8°' 1 ( o°' (P) (q) (r) 0 :J 0° - J ) 
OU°' V (u ) = D(u) o u 0 N( u ) - [r i J k ou3D(u) 8u->-ßN (u) , (6) 

where 1 = {i=(i,j,k): i = O(l)p, j = O(l)q, k = O(l)r and (i,j,k) # (0,0,0)} and 
ß = lil = i + j + k, using the notation 

O°' ()IPI 
-
0 

F(u) = -
0 

F(u) 
U°' uP 

ap+q+r 

-8-uP_O_v_q_f)_u;_·J ( u) ' 

where P = (p, q, r ), a = IPI = p + q + r, to indicate partial derivatives of a (vector valued) 
function F ( u). Oeri vati ve calculation of D( u) is according to 

O°' / f 1 1 1-p m-q n-r 
D( ) _ · m · n · '""''""''""' p,q,r 1-p( ) Bm-q( ) Bn-r( ) 

OU°' u - (/ - p) ! ( m - q) ! ( n - r) ! L..1 L..,; L..,; b. w;.;,k B; u J v k w ' 
i:.') ;=0 k=O 

with forward differences C:.p,q ,rwi,J,k, and similarly for N(u) , employing forward differences 
t::,_P.q,r(w · · kV · k)-

• • ; . &,) , 

Degree raising. If we write a rational TPB· volume, (4), of degree (l,m,n) as one 0f 
degree (/ + .\, m, n) , the new 40 Bezier points VtJ.k are given by 

v>- ~ .\ (;) C~i) v 
i.j,k = L..,; I (I+>.) i-l ,j,k · 

l=O • 

(i) 

This can be seen as follows: .\(u)V(u), with an arbitrary real-valued function .\(u) which 
does not vanish on [O, l], and V(u) are associated with the same rational TPB volume 
V(u). If we choose .\(u) to be of degree A, .\(u) = L:;=o .\1Bt(u), then .\(u)V(u) is 
of degree l + .\ in u, and equa.tion (7) results. As a. special case, ,\ = 1, the degree 
( l + 1, m, n) Bezier points are gi ven by 

1 i l ( . ) . 
vi.J,k = .\o 1 - / + 

1 
v,,j,1i: + .\1 1+

1 
vi-1,j,1i: • 

(7) means, since A1 E JR, that there is an infinite number of wa.ys to represent a. degree 
(l,m,n) volume as one of degree (l + .X,m,n). The same holds, with corresponding 
formulae, for degree ra.ising in the v a.nd w variables. 

Point and derivative evaluation. A volume point V(u0 }, for a.ny uo = (uo,vo,wo), 
uo, vo, w0 E [ 0, 1], can be computed by repeated de Casteljau steps a.da.pted on 40 Bezier 
points in u, v a.nd w, for exa.mple in the u direction by the recursion formula. 

vß.6.F. (u ) = (1 - u )vß-1,6,f.(Uo) + u vß.6.F. (Uo) 
er,...,,< 0 0 er,...,,< 0 er+l."r,< (8) 

a.nd a.na.logously for v a.nd w, where 

v::~:~ = Ver,...,,< a.nd V(u0) = v~;.~(u0 ) a.nd V(11"~ = H(V(uo)). 
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This result stems from the fact that in (4), the de Casteljau algorithm can ~~ applied sep­
arately to each of the parameter directions. The de Casteljau steps in different directions 
commute, and the result is independent of the order. Similarly, the derivative of order 
(p, q, r) of a rational TPB volume of degree (/, m, n) can be found using the de Casteljau 
algorithm. Indeed, starting with equation (6) derivatives of N(u) are given by 

f)P+q+r [I m 1 n 1 
-----N(u) = · · · ~p,q,r(w/-p,m-q,n-ryl-p,m-q,n-r) 
fJuP 0Vq ßwr ( [ _ p) ! ( m _ q) ! ( n _ r) ! 0,0,0 0 ,0 ,0 ' 

with forward differences ~p,q,r(wß,o,{yß.o,{) which are now operating on both the subscripts c:r,...,,e: a,..,,( 

and superscripts, and similarly for derivatives of D(u). 

Subdivision. A rational TPB volume of degree (l, m, n) can be subdivided into two 
rational TPB volumes of the same degree which join along the parametric surface corre­
sponding to u = Uo with l continuous derivatives in u direction. The Bezier points v~:;.: 
and V!:~:= of the two subsegments can be found by applying the de Casteljau a.lgorithm 
for u = u0 to all i p · lygons of the Bezier grid. Using the parameter transformations 
ü = u/uo for u E [ 0, u0 ] and ü = (u - ti0 )/(1 - u0 ) for u E [u0 , 1], respectively, we can 
reparametrize the subsegments to again be defined on the unit cube. 

Continuity conditions. To construct Ger or er continuous rational volumes, V(u) 
and V(ü), defined via hom.)geneous coordinates, i.e. as volumes V(u) and V(ü), we have 
to take into account that all 77(u)V(u) and V(u) with an arbitrary real va.lued function 
77( u) which does not vanish for any u of parameter domain, a.re associa.ted with the sa.me 
rational volume V(u) in IR3, a.nd similarly for V(ü). In view of this the two 3D volumes 
meet continuously along a common regula.r bounda.ry surfa.ce B, V(ü)IB = V(u)IB, iff 
the lR4 representa.tions sa.tisfy 

V(ü)j 8 = e(u) V(u)IB. (9) 

Note, V a.nd V do not ha.ve to meet continuously, for V and V joining continuously. 

Suppose Bis given by v = 1, ü = 0, V(ü,O,w) = V(u,1,w) for a.11 ü = u, w = w, then 
continuity condition (10) results in 

V i,O,k = {!o V i,m,k , 

where {!o = e( ü, 0, w) = con3t. =/: 0 or in terms of inhomogeneous coordina.tes of IR3 

Wi,O,k V;,o,k = {!oWi,m,k V1,m,k 

Wi,0,k l!o Wi,m,k 

end therefore, 

V;,o,k = V;,m,k • 

Iff {!o = 1, then w;,o.k = w;,m,k a.nd polynomia.l denominators of V(u) and V(ü) join 
continuously too. 

V(u) a.nd V(ü} join GCr continuously (with contact of order r) across B iff (cf. [Hos92]) 
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30 - 30 
!J-o V(ü )j = -

8
_ (g(ü)V(u(ü)))j , a = O(l)r, 

UV B v0 B 
(10) 

where V( u ) has been reparametrized by u >-+ u ( ü ). Applying the chain rule we get the 
following additional condition for a GC 1 continuous connection in V direction 

(11) 

where eo > 0, b1 > 0, and for a GC2 continUOUS join in V Jirection the additional 
condition 

where we have used the abbreviations 

30 
Uo = 3- u(ü)I ' ver B 

aer 
Ver = ~- v(ü)I , 

uver B 

aer 
W 0 = !J- w(ü)I , 

uver B 
aer 1 eer = !J- e(ü) . 

uver B 

Notice, V and V do not have to meet GCr continuously, for V and V joining GCr 
continuously. 

Suppose V(u), of degree (/, m, n), and V(ü), of degree (/, m, n), join continuously along 
boundary surface B given as above, then, GC~ continuity condition (11) results in 

e1 V;,m,k 

+. ((t ·) "1.0.ov + . "1.0,ov + J.. "0.1.ov eo - i aou i,m,k ta1u i-1,m,k mvou i,m-1,k 

+ (n - k)eoß0
•
0

•
1V · + kc ß 0

•
0

•
1V · _ ) i,m,k 1 1,m,k 1 ' 

where, for the purpose of solving (11) by comparing coefficients and to keep ca.lculations 
easy, we assumed functions (!o, g1 and bo = v1 to be constants, such tha.t enbo > 0, 
function u1 to be linear in u, u1 = ( 1 - u )a0 + uai, a0 , a1 E JR, and function W1 to be 
linear in w, w1 = ( 1 - w )Co+ wc1, eo, c1 E JR. ( •) represents four conditions: the fourth 
equa.tion of ( •) is a. condition on volume weights and looks exactly like ( *) but with 
weights Wi,j,Jc a.nd Wi,j,Jc, the first three equa.tions of ( *) a.re conditions on the products 
of weights and 30 Bezier points. If we solve the WiJ,Jc equa.tion for g1wi,m,Jc and insert 
this expression in the condition for w;,1,1c V;,1,1c a. formula. for 30 Bezier points Vi,1,1c, very 
simila.r to ( *) can be derived: 

mßo,1.a:y . o Je = ... ~ ((l ·) "1,0,ov + · "1,0,o-.rr =-- - 1 aQWi+l,m,JcU i,m,/c ia1Wi-l,m,/cU . V i-1,m,lc 
Wi,l,lc 

+ mbowi,m-1,1cß0·1·°V;,m-1,1c + (n - k)CoWi,m,lc+lß
0
·
0

•
1
Vi,m,/c 

+ kc1wi,m,1c-1ß0·0•
1V;,m,Jc-1) . 

To get, for GC1 continuity, necessa.ry and sufficient conditions for Bezier points and 
weights, more genera.l factors (!o, e1 a.nd u1, v1, w1 ha.ve tobe a.llowed. However, ca.lcula-
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tions become very technical, extensive and difficult to view. We omit them, but want to 
point out that [Was 91] gives a very detailed treatment of GCr continuous Bezier surfaces 
what can be extended to volume representations . 

III. Solid Primitives 

Compared with solid definitions such as CSG or B-Rep, TPB volumes possess a very 
high free form characteristic, describe every interior point as well as every point on the 
boundary surface of the volume uniquely, and no assumptions are clone on internal homo­
geneity or structure. On the other side, they also allow the exact representation of solid 
primitives. Bezier volumes can be constructed in various ways. First, by specification of 
all control points (and weights), second, by interpolation or approximation of digitized 
points, and third , by performing sweep, spin, loft, etc. transformations on profile sur­
faces , (Cas 85], [Sai 87]. Rational volumes are in particular very useful for giving exact 
descriptions of solid primitives such as sphere, cylinder, torus , etc. Following the idea 
of [Faro 85], we calculate Bezier poincs of volumes V( u) by performing a continuum of 
geometric transformations M ( w) on a profile surface F( u, v ). Tobe able to generate solid 
primitives as well as free form volumes we base our considerations on rational represen­
tations and homogeneous coordinates. Therefore, M( w) might be given by the following 
4 x 4 matrix 

m1 ,1 m1 .2 ml,3 tl 

m2,1 m2.2 m2,3 t2 

M(w) = 
m3,l m3,2 m3,3 t3 

pl p2 p3 s 

where m 0 ./J indicates rota.tion, reßection, scaling a.nd shear, tß indica.tes tra.nsla.tion, 
p0 perspective projection, and s an overall scaling. In the following we demonstra.te 
the construction of solid primitives applying this method. We s~art by looking at Sweep 
volumes which result by moving a. given surface F( u, v) along a prescribed curve K( w) 
which is sometimes referred to a.s directrix. Translation volumes a.re special sweep volumes 
a.nd we a.re going to discuss them first. Translation volumes are specified by 

Theorem 1. Let K(w) be homogeneous form of a rational Bezier curve K(w) of degree 
n with 4D Bezier points Ki. = (Kl, K~, Ki, K:) T = (ß1cKl, ß1c) T, where K1c = (x1c, yi., z1c) T 
and weights ß1c (w.l.o.g. ßo = ßn = 1). 
Let F(u, v) be homogeneous form of a. rational TPB surfa.ce F(u, v) of degree (l, m) with 
4D"Bezierpoints F;J = (F}.;,F?J,F~..;•F~.;)T = (ß;JF'[,,ß;J)T,whereF;,j = (xiJiYiJ,ZiJ)T 
and weights ßiJ (w.l.o.g. ßo.o = ß1.o = ßo,m = 1). 
40 Bezier points V;,j,lc = (Vl,j,lcl Vl,j,lc• v~,j.lc• vt„,1c) T = (wiJ,Jc V[;,1c, Wi,j,Jc) T' with weights 
w;,1,1c a.nd V;J,lc = ( x;J,1c, Yi,j,lc, z;J,1c) T of a. rational Bezier solid, V( u ), represented in 
homogeneous form V(u), a.nd genera.ted by moving of F(u,v) along K(w), such tha.t 
V(u,v,0) = F(u,v), V(O,O,w) = K(w), are given by 

V · ·1c - M1cf · · •,J, - 1,J ' (13) 

where M0 = 14 a.nd 
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K4K4 
0 k 0 0 K4Kt - KlK4 

0 k 0 " 

0 K4K4 0 K4K2 - K2K4 
M" 0 " 0 " 0 " 

( K~)2 0 0 K~Kt K4K3 - K3K" 
0 " 0 " 

0 0 0 K4K4 

0 " 

Proof. Since all 77(w)V(u), with non-vanishing real-valued function 77(w), are associated 
with the same sweep volume of cooordinate space, V(u) has tobe defined by 

V(u) = 77(w) M(w) F(u, v) (14) 

with 

where !3 is a 3 x 3 unite matrix and T = T( w) = (t1( w), t2 ( w ), t3 ( w)) T describes moving 
of F(u,v) along K(w). 

Since V(O,O,w) = K(w) and V(u,v,0) = F(u,v), (14) implies 

K(w) = 17(w) M(w) Ko. 

Solving this 4 x 4 system of linear equations for the components of 17(w) M(w) yields 

71(w) M(w) = 
1 

(K~)2 

K~K4(w) 

0 

0 

0 

0 

K~K"(w) 

0 

0 

0 K~K1 (w) - K~K4(w) 

0 K~K2(w) - K5K"(w) 

K~K"( w) K~K3 ( w) - K~K"( w) 

0 K~K"(w) 

Now, K(w) = (K1(w), K2 (w), K3 (w), K4(w))T is given in Bezier representa.tion, therefore 
we ha.ve 

" 
71(w) M(w) = L McBk(w) 

k=O 

with Mc as given in Theorem 1. Substituting the Bezier representa.tions of F(u,v) and 
of V(u) a.s well a.s (•) into (14) yields by comparing coefficients (13). D 

Note, while 3D Bezier points V;J,k E lR:3 result by moving the surfa.ce net defined by 
F;J according to the control points of directrix K(w), this is not true for volume weights 
Wi,j,k E lR:3, a.ccording to Theorem 1 they a.re given by 

ßi.j ßk 
w · ·k - --

'·'· - (.l • .vo,o 
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Also notice, although V(u) was generated by moving a surface along a w line, parametric 
surfaces of constant u are congruent a.s weil and the same holds for isoparametric surfaces 
of constant v. 

For n = 1 the trivariate analogy of a cylindrical surface is created for which Bezier points 
10 w direction define parallel lines , 

V;,j,o = F;,j , V;,j,1 = F;,i + T, 

where T = K 1 - Ko is translation vector and w; ,j,k = ß;,j, for all i,j and k = 0, l. 

A generalization of the translation volume is the blending volume (/oft volume, [Sai 87]): 
here two non-congruent surfaces F0

( u, v) and Fn( u, v) defined by Bezier points F?.j and 
F~i are connected appropriately. For polynomial blending, n ha.s to be specified and, in 
case of n > 1, Bezier points of intermediate nets F7,1, k = 1 ( 1) n - l. Then, 

V;,j,k = F7.1 . (15) 

Bezier points F7.1 of intermediate nets can be provided in different ways. For example, via 
interpolation of n -1 intermediate surfaces ( skinning, lofting), via continuity construction 
(s . Secti0n II), if F?.; and F~1 are supposed tobe boundary surfaces of connecting volume 
segmen~s or, via interactive input procedures. 

n = 1 gives a very special blending volume, the linear blending volume. lt is the trivari­
ate generalization of a ruled surface and thus is sometimes called ruled volume (see e.g. 
[Cas 85]). Oefined by taking a convex combination, 

V ( u) = ( 1 - w) F 0 
( u, V) + w Fn ( u, v) , w E [ 0, l] , 

of surfaces F0 (u, v) and Fn(u, v) , n = 1, Bezier points are given by (15) . 

Volumes of revolution also referred to as spin volumes are sweep volumes as well and can 
be created easily as stated by, [Kir 89], [Las 90], 

Theorem 2. Let F( u, v) be the homogeneous form of a rational TPB surface F( u, v) of 
degree (l,m) with 40 Bezier points F,J = (FlJ,F1J,F~J•Ft.;)T = (ß,JF[;.ß•J)T, where 
F,,j = (xiJ1YiJ1ZiJ)T and weights ß1,j (w.l.o.g. ßo.o = ß1,o = ßo.m = 1). 
The rational TPB volume V(u) of degree (l,m,n), n = 2, with 40 Bezier points 

V,,,,k = MA: F,.;, (16) 

where 
Mo = '•' 

cos !!. 
2 

-sin !!. 
2 0 0 cosa - SlilQ 0 0 

sin !!. cos !!. 0 0 sinc:r cosa 0 0 
Mi 

2 2 
M2 - -

0 0 cos !!. 0 0 0 1 0 2 

0 0 0 cos !!. 
2 0 0 0 1 

represents a rotation of F( u, v) through the arc er, with lc:rl :::; 180°, round the z-axis 
such tha.t V( u, v, 0) = F( u, v ). 
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Proof. Fora rotation of F(u,v) about the z-axis by the angle a, M of (14) now has 
to be given by 

cos Q - sin a 0 0 

s1n a cos Q 0 0 
M 

0 0 0 

0 0 0 1 

With the same arguments as in proof of Theorem 1 we result in equation ( *) but with 
Mk now given by 

K1 K1 +K1 K1 

c~&lg+(K5Jg 
K1 K~-K 1 K~ 

- (~&Jl+(i<5 )l 0 0 

K2Kö-K 1 K~ K1 K1 +K1 K2 
0 0 ( ~öJ2+(K5i2 (~öig+(i<~ig 

Mk = KJ (*) 
0 0 :.:..&. 0 KJ 

0 

0 0 0 
K• 
Kt 0 

Noi.c, k = 0 yields M0 = 14 . Since Mk is supposed to represent a rotation, entries of 
Mk, k = 1, 2 can be specified further: 

Rotations ( about the z-axis by the angle a) can be described exactiy by rational quadratics 
defined by Bezierpoints Kk = (Kl, Kk, K~,I\~)T = (ßkKLßk)T, k = 0, 1, 2, where ßo = 1, 
ß1 = cos ~, ß2 = 1 and rotation of K 0 by a, R(a), yields K 2 while rotation of Ko by 
~' R(~), followed by a radial scaling with 1/ cos ~' S(l/ cos ~), gives K 1 , see [Hos92] 
p.152. 

Now, solving of K2 = 77R(a)Ko and of K1 = 775(1/ cos ~)R(~)Ko for the components of 
77R(a) andof 775(1/cos~)R(~) proovesthat 77R(a) isequal M2 and 775(1/cos~)R(~) 
is equal M 1 in ( *) and that components are given as stated in Theorem 2. D 

Note, Bezier points V;,j,l = M 1 F;,j become infinite control points for lal = 180°. Figures 
2 and 3 show two exa.mples of volumes of revolution, in both cases solid definition involves 
several infinite control points. 

Figure 2. Solid half-torus described 
by a rational TPB volume of degree 

(1, 2, 2). 

11 

Figure 3. Pa.rt of a solid hyperboloid 
of revolution of one sheet described by a 
rational TPB volume of degree (1, 1, 2). 



Rotations about the x-axis and the y-axis can be described analogously. 

Since matrices Mk (and start point K0 ) define directrix K(w), different curves can be 
described by changing these matrices and all w parameter lines of V (u) will adapt the 
geometry introduced by the Mk. For example., if we choose paramPter s2 m 

2 

K(w) = 77(w)M(w)Ko = L MkKo Bz(w) (li) 
k=O 

wi th Mk = sk Mk, M" according to ( 16), s0 = s2 = 1, appropriately, we obtain an arc of an 
ellipse, parabola or hyperbola, [Kir89], [Las90]: a parabola results for s2 = s· = 1/ cos ~. 
because in that case K( w) is a non-rational, polynomial quadratic Bezier curve (all 
weights are equal!), for s2 > s" a hyperbola results, for s2 < s· an ellipse and, for s2 = 1 
we have Theorem 2, i.e. K(w) defines a circle, see Figure 4. 

1 

1 1 

1 

1 

' ' 1 • ' . . 
u·~~~~~~l-= = = =\= ~::: :;7' r; 1 , "' 1 , " I 

1 f ; / , ; I .. . . . . 
' 

' 

Figure 4. Three rational TPB volumes with arcs of circles (s 2 = 1, left), parabolas 
( s2 = s·, middle) and hyperbolas ( s2 = 3s", right) as w parameter lines. 

IV. Curve and Surface l\1odelling 

Free form volumes can be interpreted as deformation of the associated parameter domain, 
i.e. the unit cube, under the ma.pping induced by their defining equa.tion. In general, 
the position of every point in the interior as weil as those on the boundary surfaces is 
altered. lt is of particular interest for designers to be a.ble to embed curves, surfaces, and 
volumes in the pa.rameter domain of a. free form volume, since this a.llows concentra.ting 
on well-defined subsets of the pa.rameter space. In simple cases, these subsets a.re in fact 
isopara.metric lines and planes, which under the deformation a.re mapped to isopa.ra.metric 
curves and surfa.ces of the free form volume. The more interesting subsets, however, a.re 
non-isopa.rarnetric subsets, which might be given by a.ny kind of representation. In context 
of these more genera.l non-isopara.metric subsets, the term FFD ( Free Form Deformation) 
is commonly used, (Sed 86], (Cha 89], (Coq 90, 91]. 

In order to ca.rry out a.n FFD modelling process, for every point of the object we must first 
find the a.ssociated para.meter value in the para.meter space of the voiume. For this, we 
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define a b'ox-shaped local coordinate system, the deformation domain , which includes all 
parts of the object to be deformed . lt might be subdivided into sub-boxes corresponding 
to a segmented TPB volume. By comparing coordinates , we find the sub-box Q0 , defined 
by Po, U , V , and W as in Figure 5 which contains the given point P of the object . We 
have 

P=P0 +uU+vV+wW, 

where local coordinates u , v, w are calculated by 

u = V x W · (P - Po) 
V x W - U V = U x W · (P - Po) 

UxW · V ' 
w = 

(18) 

U x V· (P - Po) 
UxV · W 

Now we have to prescribe the polynomial degree, corresponding weights and a control 
point grid which covers the deformation domain. Figure 6 illustrates this process in case 
of a volume segment of degree (3, 2, 2). Tbe control points of the grid are given by 

i j k 
V k = Pc+ -U + -V+ -W 

' ·
1

• / m n ' 
(19) 

and initialy weights w;,j,k are chosen to be equal to one. 

Figure 5. Local coordinate system. Figure 6. Control point grid. 

The actual deformation of the object involves translation of points, V;J,1c ........ V;J.Ju 
changing of weights, w;,;,1c ........ w;J,Jc, and evaluation of the FFD defining equation with 
coeffi.cients ViJ,lci weights Wi,j,lc, and parameter values U 1 V 1 W of the object point p 
calculated above. 

From a mathematical point of view, the FFD construction involves composing two map­
pings, the mappings of the ob ject and of the volume definition ( d. Figure 7) and has 
been investigated in [DeR 88, 93] a.nd [Las 93]. For the case of modelling a rational Bezier 
·curve using a rational TPB volume the mathematical foundation for exactly and explicitly 
describing the FFD is given by 

Theorem 3. Let K(t) = (u(t), v(t), w(t))T be a rational Bezier curve of degree N with 
Bezier points Kr= (ur, vr, wr)T and weights ßr. 
Let V(u, v, w) = (x(u,v,w), y(u,v,w), z(u,v,w))T be a rational TPB volume of degree 
(l,m,n) with Bezier points V;,;,1c = (x1,;,1c,Y1.;,1c,z1,;,1c)T and wei6i:ns w 1,J,lc· 
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V(t) = V(K(t)) = V(u (t), v(t), w(t)) is rational and can be represented as ra.;onal Bezier 
curve of degree r N, r = l + m + n. \Ve have , in terms of homogeneous coordinates, 

rN 

V(t) = V(K(t)) = L VR B[;,Y(t), (20) 
R=O 

VR = L B1·m·"(I) c~m·"(N,I) v~;,Q"(ui„,v{!,w{..,), (21) 
lll=R 

with combinatorial constants 

(22) 

and, 

(23) 

f v 

Figure 7. FFD a.s a. composition of two ma.ppings: Deformation of pla.na.r curves 
K 1(t) a.nd K 2(t) by a. surfa.ce ma.pping F(u, v): JR2 ........ Etl. 

Proof of Theorem 3, a.na.logously like the proofs presented in [Las 93} (cf. [DeR 93)). 

Llll=R ha.s the mea.ning of summa.tion over a.ll 1 = (1",I",I"'), where I" = (/f, ... , Ii), 
I" = (lf, ... ,l~), I"' = (If, ... ,I:) a.nd where 0$1r, ... ,1r $ N, 0 $ lf, ... ,l~ $ N, 
0 $ lf, ... 'l: $ N, III= II"l+II"l+II,.,I = lr+ ... +1r+1;+ ... +l~+lf+. -·+1: = R. 

L Plea.ae note, notation varies from tbe one used in [Las 93). 
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V~.';;,-; is defined recursively by de Casteljau 's construction . The argument ( u~„, vf!, wj ... ) 
indicates that ~„~·~ has to be calculated by performing l de Casteljau constructions 
in u direction for the u parameter values given by the indices l" = ur .... , lt), i.e. 
for the parameter values Uf", ... , u.1„ , m de CastelJ. au constructions in v direction for 

1 1 

thc v parameter values given by the indices 11' = (I~, ... , l~), i.e. for the parameter 
value~ Vfj', .. . , vr~ and n de Ca'iteljau constructions in w direction for the w parameter 
values given by the indices Iw = (ff, ... ,/;:'), i.e. for the parameter values wr~, ... , wr:· 
Calculations for different oarameter values commute, and the order in which we carry out 
calculations has no inftuence on the final result. 

Note, isoparametric lines of ( u, v, w) domain space should not be handled by Theorem 3 
which, in that case, would yield degree raised isoparametric Bezier curves of V(u, v, w). 

Spline curves are processed using Theorem 3 one curve segment at a time. Modelling b~' 
spline volumes requires the detertnination of intersections of K(t) and boundary planes 
of volume segments in domain space and splitting of K(t) at these intersection points 
by addi!.g new knots applying de Casteljau's curve subdivision algorithm. -i:'hen, for all 
segment~ of V(u) Theorem 3 can be adapted. Smoothness of V(K(t)) results from 
application of the chain rule: if K(t) is ca-continuous in t = t•, and V(u) is C6-

continuous in the corresponding point K(t) = K(t*) of (u, v, w) domain space, V(K(t)) 
is ce-continuous in V(K(t*), with e =min {a, b} . 

Generalizing Theorem 3, the mathematical foundation for the FFD approach to rational 
surface design via rational volume modelling is provided by, [Las 93] (cf. [DeR 93]), 

Theorem 4. Let F(µ, v) = (u(µ,v), v(µ,v), w(µ,v))T be a. rational TPB surface of 
degree (L, },.') with Bezier points Fr.J = (ur,J, vr,J, wr,J)T and weights ßr.J. 
Let V(u,v,w) = (x(u,v,w),y(u,v,w),z(u,v,w))T be a. rational TPB volume of degree 
(/, m, n) with Bezier points Vi,j,k = (x;,j,k, Yi,j,k, Zi,j,k)T and weights w;,j,k· 

V(µ, v) = V(F(µ, v)) = V(u(µ,v), v(µ,v), w(µ,v)) is rational and can be represented a.s 
rational TPB surface of degree (rL, rM), r = l+m+n. We ha.ve, in termsof homogeneous 
coordin.-.tes, 

rL rM 

V(µ,v) = V(F(µ,v)) = L L VR,s B'°l(µ) B'SM(v), (24) 
R=O S=O 

where 4D Bezier points VR,s = (Vk,5 , Vh.s, Vl5 , V~5)T = (OR,sVk.s,OR.s)T a.re given 
by l 

VR,s - L L Bl,m,n(I,J) c~m,n(L,I) c~m,n(M,J) v~;,c;'(u~„J„,Vi!J•7tl1i-1-). (25) 
lllzR lll=S 

Etlj=R with 1 = (11',11',I"') has the same meaning as in Theorem 3, EtJl•S with 

J = ( J•' JV' J"') simila.rly. Consta.nts c~m,nc L, 1) a.nd c~rn,n( M, J) a.re calcula.ted 
a.ccording to (22) a.nd B'·m·n(I, J) is defined as in (23) but now using surface weights 
ßr.J. v~;,c;' is specified by de Ca.steljau's construction. 

2 Pleaae note, calculation of combinatorial constants is wrong in [Las 93) Section IV .2. 
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Like for curves, remarks concerning isoparametric planes of dom~in space of V( u) as weil 
as treatment of spline surfaces prove to be right again. 

We observe that because FFDs involve functional composition, the degree of FFDs can 
gro·· · very quickly. High degrees might cause problems in successing intc•·rogation actions 
such a.s intersection calculations and also might not be supported by some CAD systems. 
Therefore, the exact description of FFDs will not always be the best approach. Suitable 
approximation techniques taking advantage of the knowledge of the exact and explicit 
FFD representation tc describe V(K(t)) and V(F(u, v)) by lower polynomia.l degrees 
are under investigation. 
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