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ABSTRACT

It is shown that Tikhonov regularization for ill-posed operator equation
Kz = y using a possibly unbounded regularizing operator L yields an order-
optimal algorithm with respect to certain stability set when the regulariza-
tion parameter is chosen according to the Morozov’s discrepancy principle.
A more realistic error estimate is derived when the operators K and L are
related to a Hilbert scale in a suitable manner. The result includes known
error estimates for ordininary Tikhonov regularization and also the estimates
available under the Hilbert scale approach.

1 INTRODUCTION

Many problems in science and engineering have their mathematical formula-
tion as an operator equation

Kz =y (1)

where K : X — Y is a bounded linear operator between Hilbert spaces X
and Y with its range R(K) not closed in Y (c.f. Groetsch [2]), Engl [1]). It
is well known that if R(K) is not closed then the equation (1) or the problem
of solving (1) is ill-posed (cf. Groetsch [3]). A prototype of an ill-posed
equation is the Fredholm integral equation of the first kind,

b
[ k(s,Da(t)dt = y(s), a<s<b
with a non-degenerate kernel k(.,.) € L?([a, b] x [a,b]) and X =Y = L*[a, b].
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Regularization procedures are employed for obtaining stable approximate
solutions of ill-posed equations of the type (1). These procedures are espe-
cially useful when the data available is inexact. That is, we may have an
approximation § of y with a known error level § > 0, ||y — g|| < é.

In this paper we consider the well known Tikhonov regularization method
using a possibly unbounded regularizing operator L. In fact, we assume that
L:D(L) C X — Zisaclosed densily defined linear operator between Hilbert
spaces X and Z. Then Tikhonov regularization involves minimization of the
map

z |Kz - g? +ol|Le|?, =€ D(L). (2)

It is known that if K and L satisfy the relation
IKz|? + [|Lz|* > 7llz]?, 2 € D(L), (3)

for some v > 0, then the map in (2) attains its minimum at a unique element
T4(7) € D(L). (See e.g., Locker and Prenter [5], Morozov [9], Nair, Hegland
and Anderssen [10].)

It is also known that if y € R(A) + R(A)*, A = K|p(1), then the set
S,:={r e D(L):||Kz —y| < |Ku-yl|,Yue D(L)}
is nonempty, and there exists a unique Z(y) € S, such that

IL2()Il < llLzll, Yz €Sy,

and
ZTo(y) = 2(y) as a —0.

(cf. [5], [9], [10].) What one would like to have is the convergence
zo(9) > 2(y) as a—0 and 6 —0. (4)

But examples can be easily constructed where this is no longer true. There-
fore a strategy has to be adopted for choosing the regularization parameter
a = a(d,y) so as to have the convergeence in (4). For this purpose we con-
sider the simple procedure suggested by Morozov ([8], [9]), namely, to choose
a = «a(d,y) such that

“Ki'a - g“ = 6’ (5)



where Z, = z4(7). It is known that if
(I = Pr)yll >0 and [|(I - PL)gll >,

where P, : Y — Y is the orthogonal projection onto the closure of the set
{Kz :xz € D(L),Lz = 0}, then there exists a unique « depending on § and
y satisfying (5)(cf. Morozov [9], Section 10). Note that if L is injective, then
P =10,

We show that the Tikhonov regularization together with the parameter

choice strategy (5) yield an order-optimal algorithm with respect to the
stabilizing set

M, = {z € D(L): |La| < p}.
That is, we show that
12 — Zall = O(E(M,, 6)),

where = 2(y), To = ©o(9) and E(M,,d) is the best possible mazimal error
defined by

E(M,,6) = ir}1{fsup{||3: — Ru||:z € M,,v €Y,|| Kz —v| <}

In order to obtain more realistic error estimates, we relate the operators K
and L with a Hilbert scale in a suitable manner. The resulting error estimates
include known estimates for ordinary Tikhonov regularizaation, that is for
the case L = I, and also the well known estimates available under Hilbert
scales approach. Our proofs are simpler and straight forward.

2 MAIN RESULTS

Let K : X - Y and L : D(L) C X — Z be as in the earlier section
satisfying the condition (3) and y € R(A) such that ||(I — Pp)y|| > 0, where
A= K|pyand P, : Y — Y is the orthogonal projection onto the closure of
the set {Kz:z € D(L),Lz = 0}. Let § € Y satisfy

ly =gl <6 <[I(I = Pr)yl, (6)

and let @ = (4, §) be the unique positive real satisfying (5).
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For p > 0 let
M, ={z € D(L): ||La| < p}

and
e(Mj,8) = sup{||z| : = € M,, | Kal| < 5}.

It is proved in Micchelli and Rivlin [7] that
e(M,,6) < E(M,,8) < 2e(M,,9).

Using the notation z = Z(y) and T, = z,(y), we have the following order—
optimal result.

THEOREM 1 Ifz € M, for some p > 0, then

12 = Zall < 2e(M,, 9).

Proof. Since I, minimizes the map (2), it follows from (5) and (6) that

0* + al|Lza|” = [|KZo—§l*+ allLzal?
< |[|K2—gl* + ol L]
< 6%+ a||L§7[|2.
Hence
|LZq|l < ||LZ||.

Using this, we obtain

“L(5E = joz)”2 = <L(9:" - ia)a L(i - ia))
= (Li”, L:f?) — 2R6<L§7, Liy) + (LZq, LTo)
< 2((Lz,Lz) — Re(Lz,LZ,).

Thus
IL(& = Za)||* < 2/(L&, L(Z — Za))- (7)
From this it follows that |L(Z — &,)|| < 2p. Also, since Kz =y, |ly—7g|| < ¢

and (5), we have
K (2 — Za)|| < 26. (8)



Thus,

T—Tq T — Ty
uL( ' )us;) s ||K( 2 )56

so that (£ — Z,)/2 € M, and ||Z — Z4|| < 2e(M,,9). a

To obtain a more realistic estimate for the error ||z — Z,||, we consider
a Hilbert scale (Xy)ser with Xy = X, and assume that there exists a > 0,
b>0,c>0and d > 0 such that

|Kz|| = cllz]|-a, VzeX (9)

and
|Lal| > dljzl,, Vo € D(L) N X, (10)

Now recall the interpolation inequality (cf. Krein and Petunin [4])

lzlls < llelizllzll;™, Vo € X,

where r < s <t and 0 = ;:—j Taking r = —a, t = b and s = 0, it follows
from the interpolation inequality and (9) and (10) that
0 1-9
Kz \" (L] b
< (A2} pA==l f = , 11
Joi < (L) (L), o 25 )

for every x € D(L) N X.

THEOREM 2 Ifz € M,N X, for some p > 0, then

b

) ~ p _a:-b 5 a+b

— Tl <2(= o .
17 = Zall < (d) (c)

Proof. From (11), it follows that for every x € M, N D(L),

5\’ /p\1-? b
“x“ﬁ(z) (5 - -

so that



Now the result follows from Theorem 1. a

Next we obtain an improved estimate under stronger assumptions on Z.
For this first we require the following result.

LEMMA 1 If B is a bounded self adjoint operator on X and 0 < 7 < 1,
then

IB"2|| < |[Bzl[|lzll"", Vz € X.

Proof. The result is obvious if either 7 = 0 or 7 = 1. Therefore assume that
0 <7 < 1. As a consequence of the spectral theorem we have

IB7z||? = /J \Td(Esz, 7), Vi € X,

where J is an open interval containing the spectrum of B and {E)},ec, is the
spectral family for B. Now by Holder’s inequality we have,

1B z|? < (/JA2d<E,\:L‘,x)>T(/Jd(E)\x,x))l_T
= ||Bz|*"||z|**~"

foreveryz € X and 0 < 7 < 1. O

THEOREM 3 Suppose D(L*L) C X,, & € D(L*L) and L*Lt = (K*K)"u
for someu € X and 0 <v < 1/2. Then

1& = Zal| < co(26)”,

where

2a
2(al/ " b) o o (1) m (\/2“U”> 2(av+b)+a |
Cc

2(av +b) +a d

Proof. Since z — &, € D(L*L) C Xy, from (11) we have

i s 0 " s 1-0
“i‘ —jall < <||K($c_xa)|l) (”L(‘rd_‘ra“> ’ (12)
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where # = b/(a + b). Now using the fact that L*Lz = (K*K)"u, 0 < v < 1,
the relation (7) implies

IL(E - 2l < 20(K*K)", & — Za)]
= 2[(u, (K*K)" (27 Za))l
< 2flull(K*K)" (2 = Za)ll-

Taking B = (K*K)"? and 7 = 2v in Lemma 1, and using (8), we obtain

(K" K)" (2 = Za) |

1K (@ = )™ & — Zall™™

%
< (20)*)@ -zl

Here we used the relation ||(K*K)Y?z| = ||Kz||. Thus,

IL(E — a)|| < /20|ull(20)" |3 — Fqf| 272
Therefore, (12) gives

1-6

o 1\? [ /2llu] i e i
Hx—iFaH < (E) ( : (25)8+u(1 0)“37 _ faH(l 0)(1—-2 )/2,

so that

1-0
0
“i. o i.ﬂ“l—(l—e)(l—Ql’)/Q S <%) ( 2(‘;““) (25)9_“,(1_9).

From this the result follows by observing that 0 + (1 —0) = (av +b)/(a +b)
and 1 — (1 —0)(1 —2v)/2 = [2(av + b) + a]/2(av + b). a

COROLLARY 1 (i). If L =1 and 7 = (K*K)"u for some u € X and
0 <wv<1/2, then
12 — all < 2fluf|=Fom.

(i1). Suppose & € D(L*L) and & = L*Lu for some u € X. Then

o 1\%% (1\B% o
e -zall <2(5)" ()™ Iulmont,
C



(111). Suppose & € D(L*L) and L*Li = K*u for some u € X. Then

a+2b

b 2a+2b
]_ a+b 2||u||
Pl <2z .
I = Zall < (c) ( d

Proof. The estimates in (i), (ii) amd (iii) are obtained from Theorem 3 by
taking b = 0, v = 0 and v = 1/2 respectively. o

REMARKS. We note that in Corollary 1, the result (i) is the well known
optimal order result for ordinary Tikhonov regularization, and (iii) is the
best rate obtained by Natterer [11] under the frame work of Hilbert scales.
Also the estimates in (i) and (ii) are of better order than the classical result
in Theorem 2. Receently Mair [6] obtained results similar to the ones in
Theorems 1 and 2 with v/2 in place of 2, but under the apriori choice a =
62/p?. The estimate in Theorem 3 may be compared with the one obtained
by Schréter and Tautenhahn [12] for ||.||, under the frame work of Hilbert
scales. In fact, using the estimate in Theorem 3 the following estimate for
the error in Hilbert scale norm ||.||, can be deduced:

12 = Zallr < c1(26)*
with
2(av+b) —r
2(av +b) +a

1

and ¢ = [(l/c)2b—r(2u+1)( /2||u”/d)2a+2r]2(a“+b)+a,
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