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Abstract—Autonomous driving is disrupting the conventional

automotive development. In fact, autonomous driving kicks

off the consolidation of control units, i.e. the transition from

distributed Electronic Control Units (ECUs) to centralized do-

main controllers. Platforms like Audi’s zFAS demonstrate this

very clearly, where GPUs, Custom SoCs, Microcontrollers, and

FPGAs are integrated on a single domain controller in order

to perform sensor fusion, processing and decision making on a

single Printed Circuit Board (PCB). The communication between

these heterogeneous components and the algorithms for Advanced

Driving Assistant Systems (ADAS) itself requires a huge amount

of memory bandwidth, which will bring the Memory Wall from

High Performance Computing (HPC) and data-centers directly

in our cars. In this paper we highlight the roles and issues

of Dynamic Random Access Memories (DRAMs) for future

autonomous driving architectures.

I. INTRODUCTION

Automotive industry is currently undergoing major changes
with respect to E/E architectures for enabling autonomy. First,
the current approach of hundred distributed ECUs which are
connected e.g. by CAN does not scale and it is not cost
efficient anymore. Therefore, there is a trend from distributed
ECUs to a dozen of consolidated domain controllers, which
are connected e.g. by Ethernet. This transition strongly dis-
rupts the current automotive development. Second, there is a
convergence of mainstream and mission-critical markets [1].
Due to cost and performance reasons, processing elements
like Graphic Processing Units (GPUs), which were originally
developed for the consumer sector, are now also considered for
safety critical applications. Third, more and more data coming
from various perception sensors has to be processed in real-
time in order to guarantee the functionality of advanced driving
assistant systems.

As a consequence, we will also see heterogeneous comput-
ing platforms similar to embedded consumer devices in future
automotive applications. For instance, Audi presented its A8
car recently, which features an advanced autonomy level-3
driver assistance platform called ”zentrales Fahrerassisten-

zsteuergerät” (zFAS) developed by TTtech. This platform
is Audi’s entry point for autonomy and clearly highlights
the major changes above. Compared to classical automotive
solutions, which consist of distributed ECUs, Audi has decided
to develop their zFAS system as a consolidated platform on a
single PCB. The reason for that is that the main task of this

system is sensor fusion and in many cases the computation on
raw sensor data is more accurate compared to the processing
of meta data (like object lists), which are computed from
preprocessing ECUs [2].

In particular, zFAS features [2]:
• An NVIDA K1 GPU for 360� image processing
• An Intel Mobile Eye System on Chip (SoC) for detection

of traffic signs, pedestrians, collisions, light and lanes
• An Intel Altera Cyclone Field Programmable Gate Array

(FPGA) for object and map fusion, parking pilot and data
pre-processing

• An Infineon Aurix CPU for assistance systems like the
level-3 traffic jam pilot

A major task of future ADAS platforms with autonomy
level-4 and level-5 is the inference of Neuronal Networks

(NN). A look in today’s HPC data-centers shows that instead
of GPUs even Application Specific Integrated Circuits (ASICs)
are applied for the efficient processing of NNs. This leads
to the conclusion that ASICs and heterogeneous SoCs with
custom NN hardware accelerators will be used in future
automotive platforms as well.

However, in all the discussions on automotive electronics,
the aspect of memory was not yet addressed sufficiently [3].
The ever increasing amount of large data-sets that have to
be processed in real-time by the heterogeneous compute
platforms must be buffered in large, fast and high endurance
consumer memories like DRAMs, which leads to several
challenges, which are discussed in the following sections of
this paper.

II. CHALLENGES RELATED TO DRAM MEMORY

A. Bandwidth Challenge

A very prominent example for a custom NN ASIC from
the HPC world is Google’s Tensor Processing Unit (TPU).
Google showed, that four out of six studied neural networks
are bandwidth-limited by the DRAM memory [4]. Due to
slow memory accesses the computational units are idling. This
shows that a fast execution of NNs is not only guaranteed by
performant application specific computational units but also
the memory subsystem must be designed wisely in an applica-
tion specific way in order to avoid hitting the so called Memory

Wall [5]. While automotive is mainly focusing on perception



with Sensors, Processing and car to car Communication the
problem of the memory wall for artificial intelligence is
currently not addressed and probably totally underestimated.
Current automotive applications require a DRAM bandwidth
of less than 60 GB/s, which can be provided easily with
standard DDR and LPDDR solutions. However, advanced
ADAS applications for autonomy level-4 and level-5 will
require up to 1024 GB/s memory bandwidth [3], which is
hard to realize with standard DDR and LPDDR technolo-
gies. Therefore, automotive must concentrate on other DRAM
solutions like Graphic DDR (GDDR) and High Bandwith

Memory (HBM) in order to cope with these high bandwidth
requirements. For example, four parallel HBM2 memories
can provide 1024 GB/s – however, this bandwidth is just
a theoretical maximum. The available sustainable memory
bandwidth is often much less and strongly depends on how
the data is stored in the memories, i.e. the memory access
pattern. Therefore, Application Specific Memory Controllers

are required in order to keep up the sustainable bandwidth [6].

B. Non-Deterministic Timing Behavior of DRAMs

DRAMs have a non-deterministic timing behavior [7],
which makes it difficult to provide predictable performance,
and thus guarantee the timing predictability of tasks [8].
Therefore, the automotive community has so far largely waived
the usage of DRAM for safety critical and real-time appli-
cations. For example, Infineon’s Aurix controller, which is
widely used for safety-critical applications, does not provide
a DRAM memory controller. Because of the requirement for
large memories and the mentioned convergence of mainstream
and mission-critical markets, automotive is forced to focus on
this type of memory.

C. Reliability vs. Termperature

DRAMs are very sensitive to high temperature, which
increases the leakage at the cells. In order to avoid data
corruption by retention errors, the refresh frequency needs to
be increased. However, the operating temperature for automo-
tive applications is specified between - 40�C up to 125�C.
Therefore, the refresh period must be decreased from 64 ms
to 4�8 ms in the worst case, which leads to a serious collapse
of the sustainable bandwidth [9].

D. Security Challenge

As DRAM process technology scales down, the electrical
interference between the memory cells increases, which leads
to disturbance errors. Recently, the Row Hammer problem [10]
and its exploit [11] have caused a lot of attention in research
and newspapers. By repeatedly opening and closing a DRAM
row, called Hammering, bits in adjacent rows can flip. This
effect can be exploited to write on memory locations with
prohibited access rights to e.g. gain kernel privileges or escape
a sandbox or hypervisor. Because automotive transitions to
open environments for Car2Car and Car2X communication,
the vulnerability of DRAM must be considered.

E. Safety Critical Applications

Furthermore, the communication between computational
units within a domain controller will be realized with shared
memory. The challenge is to establish a clear segregation
between safety-critical e.g. real-time applications and non-
safety-critical applications running on the same platform. Ex-
isting off-the-shelf real-time DRAM controllers, however, do
not support mixed criticality and therefore allow interference
between applications [12].
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