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Abstract

Certain brain tumours are very hard to treat with radiotherapy due to their irregular shape

caused by the infiltrative nature of the tumour cells. To enhance the estimation of the tumour

extent one may use a mathematical model. As the brain structure plays an important role for

the cell migration, it has to be included in such a model. This is done via diffusion-MRI data.

We set up a multiscale model class accounting among others for integrin-mediated movement

of cancer cells in the brain tissue, and the integrin-mediated proliferation. Moreover, we model

a novel chemotherapy in combination with standard radiotherapy.

Thereby, we start on the cellular scale in order to describe migration. Then we deduce

mean-field equations on the mesoscopic (cell density) scale on which we also incorporate cell

proliferation. To reduce the phase space of the mesoscopic equation, we use parabolic scaling

and deduce an effective description in the form of a reaction-convection-diffusion equation on

the macroscopic spatio-temporal scale. On this scale we perform three dimensional numerical

simulations for the tumour cell density, thereby incorporating real diffusion tensor imaging

data. To this aim, we present programmes for the data processing taking the raw medical

data and processing it to the form to be included in the numerical simulation. Thanks to the

reduction of the phase space, the numerical simulations are fast enough to enable application

in clinical practice.
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Zusammenfassung

Gehirntumore, insbesondere solche in einem fortgeschrittenen Stadium wie etwa Glioblas-

toma multiforme, sind sehr schwer mit Radiotherapie zu behandeln, ein Umstand, der von

der stark irregulären Ausbreitung und Form dieser Tumoren herrührt. Die Ursache dafür

ist die Infiltration des umliegenden Gewebes durch die Tumorzellen. Um deren Ausbreitung

besser abschätzen zu können, schlagen wir die Verwendung einer Klasse von mehrskaligen

mathematischen Modellen vor. Da die Gehirnstruktur für die Zellbewegung von entscheiden-

der Bedeutung ist, muss sie in einem solchen Modell berücksichtigt werden. Hier werden

wir dies unter Verwendung von Diffusions-MRT Daten bewerkstelligen. Wir schlagen einen

mehrskaligen Modellierungszugang vor, der unter Anderem die Bewegung der Tumorzellen

und Proliferation berücksichtigt, beides initiiert durch die Bindung der Tumorzellen an das

umliegende Gewebe. Zudem modellieren wir eine neuartige Chemotherapie, die betreits in

klinischen Tests ist oder war und die genau diese Zell-Gewebe Bindungen hemmen soll.

Das Therapiemodell ergänzen wir mit der aktuell standardmäßigen Wahl von Radiotherapie,

beschrieben durch das LQ-Modell.

Wir starten auf der zellulären Ebene, um Migration zu modellieren, skalieren das re-

sultierende Partikelsystem auf die mesoskopische (Zelldichte-) Skala und inkludieren hier die

Proliferation. Um den hochdimensionalen Phasenraum zu reduzieren, setzen wir parabolische

Skalierung ein und leiten eine Reaktions-Advektions-Diffusionsgleichung als makroskopisches

(nur von Ort und Zeit abhängiges) Modell her. Dieses simulieren wir in 3 Dimensionen auf

realen MRT Daten. Dafür präsentieren wir auch Programme, um medizinische Daten für

unseren Modellierungszugang aufzubereiten.

Die numerischen Simulationen sind aufgrund der Reduktion des Phasenraumes schnell

genug, um relevante Informationen für die klinische Anwendung zu liefern.
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Chapter 1

Introduction

In recent years, the understanding of tumours in general and brain tumours in special evolved

a lot. So in surgery the neoplastic areas are often marked in order to enhance the contrast

between healthy and affected tissue. This enables the surgeon to resect the tumour in a

more exhaustive way. In radiotherapy external beam radiation is delivered in such a way that

also complex shapes of tumours get a deadly dose, while side-effects for the patient are

minimized. For certain tumours also brachytherapy is applied, where a radiating substance is

implanted in the cavity left by the resection in order to irradiate tumour cells that infiltrated

the healthy tissue near the tumour site. However, even today with all of these possibilities

to treat tumours, high grade glioma (for example glioblastoma multiforme) are not curable

in general. This is due to the highly infiltrative behaviour of glioma cells in a high grade

tumour. A key feature thereby is the migration of glioma cells along fibre tracts in the brain.

So, in order to determine the actual tumour extent (or a good approximation of it) it is of

particular importance either to track the migrating cells, which is not possible in the brain,

or to use data-based mathematical modelling that enables to simulate the tumour spread

into the brain tissue in order to get a better assessment of the infiltrated regions. Clearly this

task is highly non-trivial, and this present text is a step in the direction of data-based (and

patient specific) mathematical modelling of tumour growth. We focus here on cell migration

and proliferation – important features during the infiltration. Especially the cell migration

is hard to describe exhaustively, because there is a multitude of processes involved in cell

movement; for more details, we included in the following section a short description of the

most important ones.

The main reason for personalized mathematical modelling of high grade glioma is enabling

better treatment by predicting the tumour spread in the brain. As the resection volume

is constrained by the surrounding brain components, the prediction will not enhance the

resection, but will render available additional information such that the target volumes in

1



2 CHAPTER 1. INTRODUCTION

radiotherapy can be adapted to enhance the treatment. There are three prominent target

volumes: the gross target volume (GTV), which is the region that is identified as tumour by

diagnostics; the clinical target volume (CTV), which is the adaptation of the gross target

volume to include further possible regions at risk from the point of view of tumour spread

relying on the expertise of clinicians. For example it is more probable that a tumour invades

certain regions like white matter tracts due to their special structure. Finally the planning

target volume (PTV), which is the clinical target volume augmented by a security margin.

The latter is necessary in order to control uncertainties in the positioning of the patient and

in the therapeutic dose delivery.

The most interesting part where mathematical modelling can help is the assessment of

clinical target volume upon starting from the gross target volume. Here additional information

can support the expertise of the medical doctors, because numerical predictions reveal finer

structures in the tumours, that are not visible by standard diagnosis (see figure 4.2 in chapter

4).

This text is largely based on the publications [EHS15] and [HS16] with some adaptation

to clarify the presentation.

Key properties of the multiscale model class presented here are very few free parame-

ters (in fact, a single one), thus increasing the reliability of the final simulation outcomes,

along with a biologically motivated mesoscopic proliferation description that does without

introducing further free parameters. Additionally, we present a complete working pipeline

ranging from the medical data (available by the common diagnostics in clinical practice) to

the data meeting the requirements of the mathematical model. The numerical simulations

of the model are done in three dimensions in order to enable direct interpretation of the

results. This is a step forward from the previous works [EHKS14, EKS16], which are a source

of inspiration for this text.

1.1 Biological background

The process of cell migration can be divided into five major steps (see [HW03, PDY09, PD99]

for general information on cell migration and [BBPSP14] for a very detailed overview of the

involved subcellular processes):

• Polarization: This refers to the distinction between a cell front (the direction in

which the cell selects for migration) and its rear. The polarization is triggered by

environmental diffusion and non-motile signals as chemoattractants and variations in

the substrate, leading on the macroscale to chemotaxis and haptotaxis, respectively.

• Protrusion: By polarization, the cell acquires an orientation (front, rear). This is the

base of the de novo formation of protrusions (like lamellopodia and filopodia) at the



1.2. OUTLINE 3

front. Here we have to differentiate between three processes: extension of the plasma

membrane, formation and reinforcement of a cell skeleton supporting cell membrane

extension, and forming cell-substrate contacts.

• Adhesion: After the formation of cell-substrate contacts, the cell adheres to the extra-

cellular matrix (ECM) with the aid of so-called integrin receptors, a large superfamily

of heterodimeric cell surface receptors that are able to bind to different ligands on the

ECM. Moreover, cell-cell adhesions are mediated by cadherins, a class of transmem-

brane proteins.

• Regulation and integration: Intracellular signalling cascades triggered by the bind-

ings of integrins and other receptors retain the cell polarity and drive subcellular pro-

cesses like actin polymerization leading to a cell membrane stabilization.

• Cell body translocation and retraction of the rear: After reinforcement of the

cytoskeleton the cell contracts and relocates the nucleus. Then the rear is retracted

and the cell moves in the previously selected front direction.

The influence of these processes has been described in quite a few mathematical models (see

for example [GO04] for a continuum model describing cell movement based on viscoelastic

descriptions, [AP08] for adhesion mechanisms based on the modelling of the ECM as elastic

material, [SLR12] for a cell motility model including actin flow and adhesion and [AZ16]

for a further mathematical model taking actin dynamics into account). Here we focus on

the cell-substrate (especially cell-ECM) bindings as key for the migration. This will allow to

include haptotaxis and it remains for future work to include cell-cell adhesion, chemotaxis,

and more into a multiscale model for cell migration. Several of these processes are discussed

in more detail in chapter 6. Cell-tissue interactions are essential for all dynamics performed

by cells in vivo, including migration, proliferation, and even mere survival [GG04, UGR99,

GW96]. Haptotaxis - the motion of cells in the direction of the gradient of a non-diffusing

environmental cue (here tissue) - plays an essential role in tumour spread [GKL+96, UGR99],

the more so in the case of glioma moving in the highly anisotropic brain tissue. Therefore,

we concentrate our modelling effort on the description of these interactions.

1.2 Outline

Aiming at simulating a brain tumour in its natural environment, we set up a data-based

multiscale model class or a multiscale modelling cascade ranging from the cellular level

incorporating subcellular dynamics to the macroscopic one, where the tumour bulk is ob-

served. We use for the transition between the scales the classical tools of averaging (cellular
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→ meso, known from the deduction of the Boltzmann equation), and parabolic scaling (meso

→ macro, a standard approach in the kinetic theory of active particles [Bel08]).

• Chapter 2 (Modelling): This chapter starts motivating brain tumour models followed

by a short glimpse on some of the existing ones. Then we set our foundation, a

cellular model incorporating subcellular dynamics. Here we employ two different driving

processes: the velocity jump process, explored in connection to cell migration e.g. in

[Alt80, EO05, PH13, EHKS14, EKS16, EHS15, HS16], and a Gaussian process. From

the microscopic processes, we deduce mesoscopic equations using the standard tools for

mean field equations. On this intermediate scale we include proliferation via cell-tissue

interactions (published in [EHS15]) and deduce from the so augmented mesoscopic

equations some effective ones on the macroscopic scale by parabolic scaling. One key

property of this modelling is the incorporation of real data, so we include patient

specific information about the tumour environment. Yet missing in the context of

modelling is the rigorous proof of the convergence of the averaging as well as the

parabolic scaling; especially the latter is a non-trivial task, although there is a new

result proving convergence of a similar model to a hyperbolic system of limit equations

[NU16].

• Chapter 3 (Data): We dedicate this chapter to the description and processing of the

available medical data, so we explain which data types (CT and MRI) are available in

the context of brain tumour diagnosis and how they can be exploited in the context of

mathematical modelling. Thus we are able to estimate the directional distribution of

fibres with the aid of the so-called orientation distribution function, a well-known and

often assessed quantity in medical computer vision. Then a method of estimating the

overall volume fraction of tissue fibres based on diffusion measurements is presented

(published in [EHS15]). The data chapter closes with a collection of example codes

and recommendations of software packages useful for the data processing.

• Chapter 4 (Numerics): We present a method of discretizing the macroscopic equa-

tions describing the tumour spread. We focus on the preservation of several features

(non-negativity, local mass conservation) expected from the simulated cell density.

This is of particular importance for the later real world interpretation of the results.

We provide a numerical convergence analysis of the building blocks of the code and

present outcomes of numerical simulations, all done in three space dimensions (we use

a single two dimensional simulation for comparison purposes).

• Chapter 5 (Therapy): We present a related model, where a novel idea of chemother-

apy concurrently to radiotherapy is modelled (published in [HS16]). There we proceed
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through the same steps (parabolic scaling) in order to arrive at a macroscopic descrip-

tion that is handled with the numerical scheme presented in chapter 4. We show then

numerical outcomes of different therapy strategies motivated by the standard choice

of radiotherapy in clinical practice.
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Chapter 2

Modelling

2.1 Introduction

Although cell migration and dispersal happen directly in nature and are observable at least

in vitro, there are reasons to use and prefer mathematical modelling. On the one hand math-

ematical research, here we mean modelling, analysis and simulation of the corresponding

models, involve lower costs in comparison to biological or chemical research, for no labora-

tories, neither materials other than a computer, are necessary. On the other hand one may

concentrate on one single effect and perform analysis without observing cross interactions.

While biologists need cell populations with gene-knockouts, which are to be produced first,

mathematicians just model the desired effect having the possibility to reduce or increase the

complexity. In this way a sensitivity analysis can be done both in a cost-effective and fast way.

Nevertheless, the biological verification of the mathematical findings has to be yet assessed

in comparison with reality, but the precomputation step done by mathematical modellers

can save resources and provide more insight into the phenomenon of interest. The described

way culminates in testing different hypotheses about complex biological systems in order to

identify the crucial ingredients involved (see e. g. [HHB+07], where structural forming of the

liver was analyzed with respect to the key processes leading to the observed pattern).

Nevertheless, there are different pitfalls, which have to be circumvented. One of them

is the use of abundant parameter sets. While these actually deliver the degrees of freedom

in a model, they have to be chosen in such a way that they can be measured in a reliable

manner, or at least the majority of them. There is no point in having a complex mathemat-

ical description involving lots of unknowns, because models including many parameters can

exhibit completely different behaviour, so they are not tailored to the problem (an essential

property of a model) rendering the results questionable. Contrariwise, if the model has only

one free parameter that cannot be assessed by measurements, this has a few advantages:

7
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The flexibility is preserved so the free parameter and hence the model itself can be adjusted

to real data; the reliability of the model is increased, because there are no cross influences

stemming from further free parameters. So the model behaviour is preserved in a better way

through large ranges of the actual value of the parameter. Thus we will set up models which

are as simple as possible with respect to their number of free parameters but still including

the desired aspects.

Another pitfall in mathematical modelling are the scales, on which the phenomena of

interest are described. Many processes in nature occur on largely varying scales. An example

is cell migration. While the cells migrate on the scale of micrometres per minute [CS95], the

subcellular processes like binding of chemical substances to cell surface receptors as well as

nutrient exchange between the environment and the cell are clearly taking place on another

scale, where the cell surface receptors or signalling channels are of importance. These are

very small compared to the size of a cell and the involved biochemical processes are much

faster than the actual migration.

A mathematical model has to take this into account, resulting in different (sub)models

for different scales. Averaging and scaling procedures are typically used to connect the scales,

leading to mean-field equations and effective descriptions on the higher scale of interest. In the

above example of cell migration, there are two different scales influencing each other. There

is the possibility to break down the larger scale onto the finer one to have an integrated model

on the finest scale. This is typically done via introducing free parameters and unnecessary

complexity, which is clearly not optimal in the eyes of a mathematician. Another approach

is to sacrifice the fine dynamics for a coarser model on a large scale, hence rewriting the

fine effects as macroscopic terms. This is not the best way to go either, as it leads to a

mathematical model where the terms on the macroscopic scale are imposed without the

aid of a derivation. So then we have to abstain from the direct motivation of these terms.

As we do not want to relinquish important information, we use the technique of multiscale

modelling, where the scales are connected appropriately into a single model. Recently quite

a few models of this type were proposed (see e. g. [Bel08, BD08, BBNS12, EO05]).

2.2 Tumour Modelling

Now we are moving on towards the core of the present work, tumour modelling. Because

there are many cell types and hallmarks involved [HW00, HW11], an exhaustive description is

out of reach, but concentrating on certain relevant aspects may help obtaining useful results.

We focus in this work only on brain tumours and especially glioblastoma multiforme (GBM),

where as mentioned the brain structure plays an essential role in tumour development and

spread. In clinical applications it is not important to know the local variation of the cell

types contained in a certain tumour bulk; much more relevant for the therapy planning is
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the reliable information about the location and hence the extent of the tumour at a certain

time. Thus the model has to be a spatio-temporal description of the tumour mass. The main

characteristics of GBM are the high migration speed of the cells (around 0.21 µm/s [CS95])

along with a highly infiltrative behaviour, thus a highly anisotropic spread. Due to these traits,

GBM has a very poor prognosis – clinical studies suggest a median survival rate of about

one year (12.1 months) after diagnosis [YJDS15], but GBM account for around 15 % of

all diagnosed neurologic neoplasia [SMvdB+05]. One of the consequences of the mentioned

infiltrative behaviour is that a high number of brain tumours cannot be located in a reliable

manner, because the techniques of non-invasive imaging cannot reveal the true magnitude

of the tumour extent [WSP+14, HNRW15]. Thus there is an urgent need to enhance the

diagnostic instruments in order to refine the spatial information, so that it can be used for

better therapy planning, particularly applicable to radiotherapy, where such information is

essential. Hence this is quite an active field of research.

In the last years, image processing and segmentation techniques evolved in order to en-

hance the visual contrast between the healthy brain and the tumour tissue (see e.g. [WSP+14]

for a tumour progression mapping and [HNRW15, FBZ+16, KIN+01]). This clearly has the

advantage that only a few images are needed; however, this is also the main disadvantage,

as only single distinct time points are taken into account, while it would be desirable to have

evolutionary information. However, registering image sequences is economically often not

feasible. Another problem with the imaging techniques is that they can only be applied to a

specific image and hence are confined to the given resolution, while finer structures, which

are not represented, may also be of importance. One possibility to overcome these issues is

to set up a biologically motivated and physically reasonable mathematical model describing

the tumour growth. Such an instationary model can be simulated up to every time point of

interest, while these simulations are typically cheap, fast, repeatable, and do not have any

side effects for the patient.

However, each mathematical model has to be validated in order to get the simulation

results as near to reality as possible. This validation is quite a hard task for certain models,

because reliable information is sparse and often not accessible. However, in clinical practice

so-called follow-ups are typically made. They are images taken at a later time point after

treatment, and they can be used to train mathematical models. Especially in the brain, where

the inherent structure is of tremendous importance to the actual shape of the tumour, it is

important to personalize not only therapy, but also the corresponding mathematical models.

As mentioned, the diagnostics provides image data, which can be used to account for the

individual brain structure. For the extraction of usable information from typical medical data

sets we refer to chapter 3 in this work.
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What is important?

- A tumour model has to rely on physical and biological assumptions, like finite cell

speed or Newton’s law of motion (here we neglect the relativistic changes to a

motion, because cells are very slow compared to the speed of light).

- Due to the complexity involving lots of modelling scales, the resulting model should

be a multiscale one.

- The model should be compatible with patient data stemming from the standard

diagnostic process.

- The model has to be simple enough to do model validation and verification using

real data.

What should be avoided?

- A tumour model should not contradict causality or other principles of physics.

- A model should not have too many free parameters, which cannot be assessed by

measurements.

2.3 Previous Models, State of the Art

Before we set up the multiscale model class used in this thesis, we want to present different

kinds of tumour models or more correctly, different kinds of modelling techniques. Thereby

we try to state the different advantages and disadvantages in an objective and clear way.

• Individual based, agent based & cellular automaton models

These are approaches where the individual cell behaviour is modelled. The main ad-

vantage (which may also turn out to be a disadvantage, if the model is not set up

carefully) is for sure the flexibility. Different forces and interactions of the agents can

be prescribed in a descriptive and concise way. Nevertheless one may be tempted to

rely on biologically wrong assumptions in order to generate presumptive patterns and

traits. This claims for a very careful introduction of the modelling assumptions with a

verification that the desired property is not already introduced right at the beginning,

but to let it evolve out of reasonable presumptions. The model class under considera-

tion can also be used for the in silico replication of in vitro experiments rendering the
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model validation and parameter estimation a simpler task to accomplish. So the con-

nection between the biological experiment and the mathematical model is much more

direct as in the other types of models. Cellular automaton models (see e. g. [MBG+06]

for in vitro cell network formation, [OGR+03] for biological cell simulation, [SP12] for

a multiscale cellular Potts model and [RK08] for a glioma invasion model) are based

on physical principles like energy minimization expressed by the so-called Hamiltonian.

It is connected to Hamiltonian systems, that are understood very well, contrary to the

equations arising from complex multiscale models. The most important practical ad-

vantage of this type of modelling is the computational stability. The implementation

is very straightforward and less error-prone when compared to PDE models, where

essential properties have to be preserved. The most important one, but also in general

the hardest to acquire, is the non-negativity of a solution. On the individual level,

however, problems like preservation of non-negativity do not occur. So from this point

of view, the agent-based models are optimal, but they are based on the simulation of

single trajectories. Unfortunately, if a density describing the population of agents is of

interest, many trajectories are needed, dramatically impacting the overall computation

time. Even if many trajectories are simulated, these may form a null set or differ in

certain properties from the desired cell density. So the outcome may not be as reliable

as for other types of models.

• Pure macroscopic models

Here, in contrast to the previous paragraph, we will focus only on models for glioma

spread in brain tissue. They consist of different types of macroscopic PDEs describing

the evolution of densities and concentrations involved in the relevant processes. Among

them, those forming the class of reaction-diffusion or reaction-convection-diffusion

equations for a cell density ρ(t, x) are the most prominent ones. The prototype of

such an equation is

∂tρ − div (D(x)∇ρ) + div (u(x)ρ) = g(ρ).

The diffusion coefficient D may be a spatially dependent tensor, as introduced in

[JMD+05], or a diffusion coefficient depending on the position, especially on white

and grey matter [RAJRS09, HCS+12]. This latter approach is a bit counterintuitive,

because the labelling of white and grey matter is not a sharp one; especially sub-

ject to the lacking spatial resolution in real patient data, such an assumption is not

realistic. D may also represent a fixed constant diffusion rate. The term involving

the coefficient u describes drift, which is often omitted, but can be selected in a

way to approximate a prescribed shape in the simulation. The reaction term g(ρ)

accounts for the tumour growth, where most often either a logistic or even an expo-

nential growth is employed. Examples of models using this prototype of equations are
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[JJHD+15, RAJRS09, HCS+12, ARGQ09]. A simple example, taken from [HCS+12],

is the model

∂tρ = div (D∇ρ) + Cρ

(

1 − ρ

k

)

− T (ρ), (2.1)

where T describes a therapy term using the LQ model [HCS+12], D is a single valued

diffusion coefficient and the growth is standard logistic. This is oversimplified, because

it generates symmetric outcomes not observed in clinical practice [SC+12], but has

very few free parameters (the parameters of the therapy term are available in data)

for which it is sufficient to use only two segmentation images for the estimation. So

the authors of [HCS+12] are able to optimize the therapy to arrive at the lowest

simulated tumour. This is very difficult (if possible at all) to achieve with some more

complicated models like the multiscale ones. The question, however, is how adequate

such simplified models as in (2.1) are to account for the actual tumour growth. The

multiscale model presented in this work leads to a macroscopic equation as depicted

here, however, the parameters D, u and g are more sophisticated, as they originate from

the interaction between the model scales and are deduced formally out of biologically

and physically plausible assumptions. Further extensions would include the description

of the remodelling of the tissue and more complicated diffusion terms, as non-linear

and also degenerate diffusion [ZSU16, ZSH].

• Kinetic models

Kinetic models, especially kinetic velocity jump processes were introduced to describe

migration of bacteria [Alt80], but have also been applied to mesenchymal motion,

which is part of the invasion process of gliomas, in [Hil06] and even for glioma migra-

tion using real patient data in [PH13]. These models are simpler than the presented

multiscale model is, as there is only one modelling scale, but this makes the analy-

sis more intuitive than in the case involving subcellular dynamics. However, from an

idealistic perspective, this is exactly what is missing in the monoscale models. They

cannot be based on biological principles, which is for the assumed aim a necessity.

Nevertheless, modelling assumptions have to be made and the kinetic models are a

valuable tool for describing the migratory behaviour of cells. Extensions of the kinetic

models using a multiscale modelling approach were proposed in the context of the

kinetic theory of active particles [Bel08]. The model class presented in this text is

stated in this modelling framework; thereby we chose specific forms for the parameter

functions and did the explicit scaling of the model to the macroscopic scale.

• Hybrid models

Hybrid models try to combine the advantages of the individual models with those of

the pure PDE approach by introducing some quantities as continuum variables, while
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others are assumed to be discrete. Anderson and Chaplain [AC98] started hybrid mod-

elling for angiogenesis and blood vessel growth in the presence of a tumour resulting

in the expected formation of blood vessels. Later on, hybrid modelling was applied to

tumour growth and invasion [ARGQ09]. However, as hybrid models combine individual

processes with PDE models, they inherit also the disadvantages of the agent-based

descriptions. Hence they simulate only one single trajectory at once, leading to the

same computational problems as their pure discrete analogues.

As all model types presented in this subsection have strong disadvantages, we do not

employ them directly, but opt for a multiscale approach. This has also some disadvantages:

the mathematical theory has not evolved as far as for the other model classes, and the

numerical simulation of the models is often infeasible, so that it is necessary to rescale them

in order to obtain correct macroscopic descriptions which can be well handled numerically

2.4 Multiscale Models

Here we want to lay the very foundations of the multiscale model to be analyzed in the

following. The model basis stems from [KS12b, SS10] with slight modifications. It was

analyzed in [KS12b, EHKS14, EKS16, EHS15] and also in a slightly changed mesoscopic

form in [HS16].

2.4.1 Microscopic Description

The task is now to model tumour cell migration on the microscopic scale. With this we

mean the scale on which cell migration (for an observer) takes place, namely the cell scale.

The aim is to deduce a macroscopic model including real medical data, hence finally, we are

interested in spatial scales of around 2 mm, which is very large in comparison to the size of

an individual cell. We do not want to make the microscopic description too complex, so the

standing assumption is that a cell can be described as a point. At first glance, this is very

restrictive, but we do not want to describe interactions on the microscopic scale, so there

is no need to track the actual shape and extent of a cell; for models including them see

for example [WO16]. For the description of the movement of such point particles, we will

employ Newton’s law. While this is problematic for higher speeds as argued in the relativity

theory, where a Newtonian particle can exceed the speed of light, cells are slow enough, so

that relativistic effects are negligible. So let now x(t) be the position of a single cell and v(t)

its corresponding velocity. Then Newton’s law reads (for a normalized cell mass)

dx = v dt

dv = F dt.
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Remark 2.4.1. We mentioned the normalized cell mass, but this statement can be recast

from an algebraic viewpoint equivalently as a normalized force F . The classical Newton law

can be written as

ẋ = v

ρv̇ = F,

hence using the transform F → F/ρ will result in the previously stated equations.

Subcellular dynamics, in particular receptor bindings are essential for the migration of

a cell, because the only possibility of a cell to interact with its environment is through

the membrane, which plays thus the important role of transmitter of forces necessary for

migration. In general, these forces are exerted on other cells, myelinated axon bundles and

the extracellular matrix (ECM). We focus only on the latter one, since Guo and Giancotti

[GG04] conclude that the ECM is of crucial importance for migration as well as proliferation

(a process modelled later on). Cells interact with the ECM through cell surface receptors,

of which the so-called integrins, a class of heterodimeric surface receptors, are the most

prominent ones [GG04]. We neglect as a first step towards a multiscale model the bindings

to other cells (cell-cell adhesion, see discussion) and myelinated axons, although the latter

form a substrate of low resistance to migrating cells [GW96]. This simplification is done,

because the interaction with the ECM is the most crucial (and ubiquitious) ingredient in cell

behaviour, especially in migration and proliferation [GG04] (see also table 3 in [UGR99] for

known effects of a variety of integrins in glioma biology).

The forces necessary for migration and acceleration (pulling of the cells at the ECM, other

cells, and myelinated axons) have to be included in Newton’s law. However, the mentioned

forces are only imposed on the subcellular scale, but they transmit as a small contribution to

the cellular one. So there are two possibilities to succeed: first, one can adjust the modelling

scale and opt for a subcellular-scale model, where the forces are directly included. However,

this increases complexity (typically by introducing additional unknowns) and is harder to

interpret on a reasonable spatial scale (given by the medical data). Second, one may incor-

porate the net effect of the forces exhibited at the subcellular scale into Newton’s law (on

the cellular scale) with the aid of a stochastic process S(t) depending on events occurring

on the subcellular scale (we choose a velocity jump and alternatively a Gaussian process).

This distances us from incorporating the forces explicitly as acceleration (v̇ = F ), however,

due to the large variety of different cell surface receptors and ECM ligands (see table 1 in

[UGR99]), we incorporate the forces using a stochastic process. This means that we do not

need to track the whole complexity of the subcellular scale, which is hidden in the noise,

but only the large scale effect. It still remains to discuss in which equation the stochastic

term should be included. Candidates are the x-equation, meaning stochastic perturbations
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of the position, and the v-equation leading to velocity perturbations. This is connected to

the question of whether to use the Einsteinian (x) or the Ornstein-Uhlenbeck (v) theory of

Brownian motion1. A critical discussion is available in [Nel67], but in essence the Ornstein-

Uhlenbeck theory has several advantages, especially on short time scales, so we adopt it and

include the stochastic process into the v-equation. This leads to

dx = v dt

dv = dS(t),

where the latter equation is so far only written in a symbolic way.

As mentioned before, we opt for simplicity of the subcellular scale and do not model it

in a quantitative way, as it is very hard to get exact numbers of the different integrins, since

they are abundant (around 105 per cell [BTZ+05]); instead we write a model accounting

for essential features. So the extracellular matrix, although containing a variety of different

macromolecules, is represented by a single variable. As the ECM by its own is very difficult

to acquire, but abundant in all body tissues, we approximate the ECM by the macroscopic

volume fraction of tissue fibres, here denoted by Q. The latter quantity is estimated as

described in the data chapter 3. The other needed variable has to be connected to the

integrins. As mentioned before, it is pointless to use a quantitative approach measuring

the binding state of each individual receptor (here it would be necessary to distinguish

between different components of the ECM, as certain receptors bind only to specific ligands

(see e. g. table 1 in [UGR99])). Hence we use a single variable y for the density of bound

integrins over a cell. Although the number of receptors is not conserved in general, the

consideration of a unitless (mathematical) density y (so y ∈ [0, 1]) has the advantage that

its range is constant (and known) over time. This is a slight deviation from the previous

works [EHKS14, EKS16, EHS15], where y was the density of receptors bound to the ECM,

but scaled with the (absolute) number of integrins (R0 in [EHKS14, EKS16, EHS15]).

For the previously introduced variables, we set up the qualitative reaction scheme (as in

[EHKS14, EKS16, EHS15])

Q + (1 − y)
k+

−−⇀↽−−
k−

y. (2.2)

This describes a “binding” reaction happening with positive rate k+, where the ECM (Q)

interacts with the free receptors (1 − y) and bound receptors (y) are formed. The reverse

“unbinding” reaction takes place with positive rate k−.

Note 2.4.1. - The reaction scheme (2.2) is only assumed to be valid in the averaged,

mean field sense and not for a single receptor. The latter assumption would be too

1In this text, we will consequently use the term Brownian motion for the physical process of a
random motion and Wiener process for the mathematical description of Brownian motion.
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restrictive, as the integrin family is very heterogeneous [UGR99], leading to a bunch

of distinct reaction schemes.

- In previous works [EHKS14, EKS16, EHS15], the number of free receptors (here 1−y),

is computed as R0−y, where R0 denotes the number of integrins per cell. This quantity

is assumed to be conserved in [EHKS14, EKS16, EHS15].

Now we employ mass action kinetics to arrive at the simple ODE

ẏ = −(k+Q + k−)y + k+Q. (2.3)

Note that the equation is the same as in [EHKS14, EKS16, EHS15] with R0 = 1 in the

notations therein.

Assumptions:

- The volume fraction Q is proportional to ECM with Q ∈ [0, 1] or Q ∈ (0, 1),

because Q = 0 and Q = 1 are not sensible values for body tissues.

- The cell surface receptors, here integrins, of density y are able to interact with

the volume fraction of tissue fibres. Moreover, it is assumed that y ∈ (0, 1).

- The binding rate is k+ > 0, comparable to k−.

- The detachment rate is k− > 0, comparable to k+.

- The mass action kinetics description is valid for the simple reaction scheme (2.2).

In the last paragraph we introduced the simple, qualitative subcellular model (2.3), so

far not combined with the cell-scale model consisting of Newton’s law for the movement.

Before this is done, it is important to analyze for equation (2.3), whether the assumptions,

especially about the range of y, remain valid, once fulfilled.

Lemma 2.4.1. Let Q ∈ [0, 1]. Then (0, 1) is a trapping region for (2.3).

Proof. We only need to show, that G(y) = −(k+Q + k−)y + k+Q points inwards on the

boundaries of the domain [0, 1], namely G(0) > 0 and G(1) < 0. This is obvious.

To make the scaling done in the following feasible, we need more properties of the

equation (2.3). These will be collected in the next lemma.
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Lemma 2.4.2. The only steady state of (2.3) is given by

y⋆ =
k+Q

k+Q + k− , (2.4)

which is moreover exponentially stable.

Proof. This is a simple calculation.

For the incorporation of the subcellular dynamics, it is convenient (and for the analysis

necessary) to measure only the derivations of the subcellular variable y from its steady state,

so the new variable under consideration is

z = y − y⋆

with z(t) ∈ Z = [−y⋆, 1 − y⋆].

Note 2.4.2. The transformation of y to z was also done in [EHKS14, EKS16, EHS15, HS16]

as well as in earlier papers like [EO05]. The notation of z is not the same as in [EHKS14,

EKS16, EHS15, HS16], but the negative of it. We introduced this change in order to preserve

the orientation, so higher z values correspond to more cell-ECM bindings.

In general, the volume fraction of tissue fibres Q is spatially dependent and we include

the total differential dz
dt

instead of ż into the mesoscopic model. By computation, we have

dz

dt
= ẏ − d

dx
y⋆ dx

dt

= −(k+Q(x) + k−)z − f ′(Q(x))v · ∇xQ,

using the convenient notation f(s) = k+s
k+s+k− . The symbol y⋆ was only introduced in order

to express the equilibrium state, whereas f will be used during the rest of the text. All in

all, when the subcellular scale is already included in the model, we have the microscopic–

subcellular scale model

dx = v dt

dv = dS(t, x(t), v(t), z(t))

dz = −
(

(k+Q(x(t)) + k−)z(t) + f ′(Q(x(t)))v(t) · ∇xQ(x(t))
)

dt.

(2.5)

Now the point is to choose a reasonable stochastic term S(t, x, v, z), which clearly needs to

depend on z to express the connection between the cellular and subcellular scales. Moreover,

the dependence on x is mandatory, as we want to include patient specific tissue information,

typically available in a spatio (-temporal) manner. In previous papers [KS12b, EO05, PH13],

the stochastic term was chosen as a velocity jump process with the kernel

K(x, v, v′) = q(x, v). (2.6)
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We denote in the following by X ⊂ Rd the spatial region and by V ⊂ Rd the region of

admissible velocities. During this text V will be a scaled sphere. Then q : X × V → R is the

tissue fibre orientation distribution. We assume it to be normalized, so
∫

V

q(x, v) dv = 1 for all x ∈ X.

In the case where V is a scaled sphere, q(x, v) represents the quantity q(x,v̂)
ω

in [EHKS14,

EKS16, EHS15, HS16], where ω is the normalization due to the sphere volume and v̂ =
v

|v| is the direction. In chapter 3 we estimate the quantity q(x, θ), where θ ∈ S2 is the

orientation. The kernel q is important as it represents also the solution F of the detailed

balance equation K(v, v′)F (v′) = K(v′, v)F (v) (see e. g. [CMPS04]), which will represent

the equilibrium distribution (in v) of the later cell density. The velocity jump process is then

sufficiently described by this equilibrium distribution (or equivalently by the kernel K) and

a turning rate, the latter being assumed to depend on z in an affine way, because the forces

necessary for migration on the subcellular scale (only included via the variable z) are the

cause of the turning. We will select the rate to be λ[S] = λ0 + λ1z > 0, corresponding to

[EHKS14, EKS16, EHS15], with a change in the sign of λ1 to compensate the sign change

of z.

We introduce also a second stochastic process driven by a standard Wiener process.

The velocity jump process with turning rate λ represents the reorientation on the time scale
1
λ

, however, it is not clear whether this reorientation happens on exactly this times scale

or faster. The cause for this is, as we only track the cell as a point (representing a cell

centre like the centre of mass or the nucleus), the reorientations may take place instantly

or very fast when the cell undergoes irregular shape changes during movement. For these

fast reorientations a Gaussian process (leading to instant reorientation) is more appropriate.

Moreover, it is standard to the mathematical modelling community. Now we start with the

velocity jump process case.

In the situation at hand it is very complicated to write an explicit equation on the

microscopic scale as in [SS10], but as we are not particularly interested in the microscopic

scale, we opt for directly writing an equation on the mesoscopic scale, where the process

can be described with the aid of the turning kernel K acting on the velocity space. Then

the equation with a pure reorientation term on the mean field scale reads for a mesoscopic

density distribution function of tumour cells p : [0, T ] × X × V × Z → R

∂tp(t, x, v, z) = λ[S]

∫

V

(

K(v, v′) p(v′) − K(v′, v) p(v)
)

dv′ (2.7)

As mentioned before, we want to use the orientation distribution of tissue fibres q(x, v)

to dictate the direction of motion irrespective of previous cell reorientations, which can be

achieved by the kernel K as in (2.6).
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The microscopic model (now in absence of the reorientation effects) reads

dx = v dt

dv = 0 dt

dz =
(

−(k+Q + k−)z − f ′(Q)v · ∇xQ
)

dt.

(2.8)

In order to remain compatible with the former case, our aim is to have the same “turn-

ing rate” and the same equilibrium distribution q(x, v). This can be achieved by using the

modified microscopic model

dx = v dt

dv =

√

2(λ0 + λ1z)

q(x, v)
dWt

dz = −
(

(k+Q + k−)z + f ′(Q)v · ∇xQ
)

dt,

(2.9)

where the second equation needs to be clarified. Here we have to assume that inf
x∈X, v∈V

q(x, v) ≥
α > 0, which is indeed the case for our choice of the orientation distribution of tissue fibres

(see chapter 3). The driving process Wt is a d-dimensional standard Wiener process: Wt is a

time-continuous martingale with W0 = 0 and W 2
t − t is a martingale. As v is not guaranteed

to stay in V by the second equation of (2.9) (especially if V is a sphere), we only consider

the contribution in V of the right hand side of the second equation of (2.9) on v. This is

a projection onto V of the right hand side of the second equation. We intentionally wrote

the system (2.9) without the (complicated) projection, as it is quite non-trivial to arrive at

a Wiener process on manifolds (here the sphere). While the Stratonovich calculus is often

employed in physics (mainly to have a classical chain rule), it is here not appropriate and we

use Itô calculus instead. This is because the Stratonovich integral leads to an anticipating

process (while the Itô integral does not), which is counterintuitive for cell behaviour, as this

would mean that the cell utilizes future information for the migration, what is clearly not the

case and should be avoided in a mathematical model. The stochastic term connects (for the

velocity variable) to the operator

(λ0 + λ1z)∆V

( ·
q(v)

)

on the mesoscopic scale (see e. g. [KS12a]). Now we investigate the equilibrium distribution.

We aim to solve

∆V

(

g

q(v)

)

= 0

for a function g : V → R. On the sphere S2 (which will be the case later on), the solution

space is spanned by q(v), as the nullspace of the Laplace-Beltrami operator is one-dimensional
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[FS08]. In an arbitrary domain V ⊂ Rd, we get p(v) = q(v) ·h(v), where h is some harmonic

function and p(t, x, v, z) is as before the density of tumour cells.

Theorem 2.4.1. Let Q ∈ C1,1(X) and q be smooth enough such that the diffusion coeffi-

cient

√

2(λ0+λ1z)
q(x,v) in (2.9) is at least globally Lipschitz-continuous in x and v. For our choice

for q this reduces to the assumption, that the water diffusion tensor (see data chapter 3)

is continuously differentiable DW ∈ C1,1(X). Then there exists a (strongly unique) strong

solution to (2.9).

Proof. Apply theorem 5.2.9 in [KS12a].

2.4.2 Mesoscopic Description

The growth of the tumour cell population is, of course, an important issue, hence it has to

be modelled as well. We will dwell on this later on, but first the microscopic models have to

be converted into mesoscopic ones. This is done via averaging (see for example [KS12b] or

[Oel91]). Here we denote by

p : [0, T ] × X × V × Z → R

(t, x, v, z) → p(t, x, v, z)

the cell density at time t, position x, velocity v, and normalized receptor binding state z.

If not stated otherwise, we will assume in the following that X = Rd, V = sSd−1, and

Z = [−f(Q), 1 − f(Q)] with homogeneous Dirichlet boundary conditions. For the sake of

simplicity, we assumed that the space V is given by the scaled sphere sSd−1, where s is

the mean speed of a tumour cell and is assumed to be constant. This means, in particular,

that we are merely interested in the direction of the cell velocity as the essential feature

dictating the cell orientation. This newly introduced parameter s may be measured reliably

via experiments in a Petri dish or even with mouse models. Chicoine and Silbergeld [CS95]

estimated it to be around 0.21 · 10−6 m
s . We need to include the units of all parameters due

to compatibility issues with the real patient data. This is a proceeding contrary to usual

mathematical modelling, where all units are removed via non-dimensionalization.

Using the standard approach of deriving mean field equations (see e. g. appendix A in

[KS12b]) we get

∂tp(t, x, v, z) + divx(vp) − ∂z

((

(k+Q + k−)z + f ′(Q)v · ∇xQ
)

p
)

= (λ0 + λ1z)



q(x, v)

∫

V

p(v′) dv′ − p(v)



 (2.10)
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in the velocity jump process case. The equation consists of a combination of the spatial drift

term (∂tp + divx(vp)), the drift in the internal variable

−∂z

((

(k+Q + k−)z + f ′(Q)v · ∇xQ
)

p
)

,

and a reorientation term (as in equation (2.7)). Equation (2.10) is a hyperbolic equation that

fits in the kinetic theory of active particles (see e.g. [Bel08]), which is an extension of the

standard kinetic theory to particles with an additional variable, a so-called activity, starting

with the famous Boltzmann-equation, but recently also applied to cell migration, see e.g.

[Hil06, Hil05, PH13, Alt80].

Remark 2.4.2. Let us define the turning operator L[λ] as

L[λ]p = λ ·


q(x, v)

∫

V

p(v′) dv′ − p(v)



 .

This operator describes the change of velocity (here reorientation) from v′ to v and thus

the reorientation term of equation (2.10) can be written as L[λ0 + λ1z]p. Hillen [Hil06]

investigated this operator in more detail:

- The turning operator defined in the previous equation is a linear Hilbert-Schmidt

operator on the weighted space L2(V, q−1). This space consists of all measurable

functions such that the corresponding norm induced by the scalar product

〈f, g〉 =

∫

V

f(v) g(v)
1

q(v)
dv

is finite.

- The nullspace of the operator is given by the span of q denoted as usual by 〈q〉, hence

we have for all f(v) = Cq(v) with C ∈ R that L[λ]f = 0.

- The operator L[λ] is invertible on the orthogonal complement 〈q〉⊥ with the pseudo

inverse given by the multiplication operator with − 1
λ

.

These are the main properties of this operator needed subsequently for handling this

mesoscopic model.

Now let us have a look at the previous microscopic model (2.9) incorporating the Wiener

process as driving force:

dx = v dt

dv =

√

2(λ0 + λ1z)

q(x, v)
dWt

dz = −
(

(k+Q(x) + k−)z + f ′(Q(x))v · ∇xQ(x)
)

dt
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The corresponding mesoscopic equation is the well-known Fokker-Planck form (see e.g.

[KS12a])

∂tp(t, x, v, z) + divx(vp) − ∂z

((

(k+Q + k−)z + f ′(Q)v · ∇xQ
)

p
)

= (λ0 + λ1z)∆V

(

p

q(x, v)

)

, (2.11)

where p : X × V × Z → R denotes as before the (mesoscopic) tumour cell density function.

Note that the Fokker-Planck equation here is used in a formal sense, because the rigorous

derivation of the Fokker-Planck equation needs much stronger assumptions leading to a

strong solution of (2.11).

Remark 2.4.3. Let us consider the operator

M[λ]p = λ∆V

(

p

q

)

with V = S2. So the essential change between the velocity jump description and the one

considered here is the operator acting on the velocity space. Then the following hold:

- The operator M[λ] generates for all λ ∈ R a strongly continuous contraction semi-

group on the weighted space L2(V, q−1) (confer the first point of remark 2.4.2).

- The nullspace of M[λ], λ ∈ R is given by the span of q.

- In the case d = 3, the only biological relevant one, the inverse of M with V being a

sphere is given by Green’s formula using the explicit representation of Green’s function.

Proof. The first statement is clear by theorem 12.40 in [RR06].

For the second statement, assume w.l.o.g. s = 1 and look at the L2(S2)-complete

L2(S2)-orthogonal system of spherical harmonics (eigenfunctions of the Beltrami operator)

(see e.g. [FM12, FS08, Fre12]) Yn,k, n ∈ N and k = −n, ..., n. An explicit representation of

these is available. So the fully normalized real spherical harmonics are given by

Yn,k(θ, φ) =



























√
2

√

(2n+1) (n−|k|)!
4 π (n+|k|)! P

|k|
n (cos(θ)) sin(|k| φ) if k < 0

√

2n+1
4 π

P k
n (cos(θ)) if k = 0

√
2

√

(2n+1) (n−|k|)!
4 π (n+|k|)! P k

n (cos(θ)) cos(k φ) if k > 0

using the standard parametrization of the 2-sphere (θ ∈ [0, π] and φ ∈ [0, 2 π]) and the

associated Legendre polynomial

P k
n (t) = (−1)k(1 − x2)

k

2
dk

d tk
Pn(t),
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where Pn(t) is the standard Legendre polynomial. Then the nullspace of the Beltrami operator

is given by the span of the zeroth order function Y0,0 ≡ 1√
4 π

= const. Transferring to the

case at hand, we see that p
q

has to be constant and hence the nullspace of M is given by

〈q〉.
For the third statement, we define Green’s function on the sphere S2 as [Fre12]

G(ξ, η) =
1

4π
(ln(1 − ξ · η) + 1 − ln(2)) .

Then by Green’s formula

f(ξ) =
q(ξ)

λ

∫

S2

G(ξ, η)g(η) dη

solves M[λ]f = g in S2 subject to the condition
∫

S2

f(ξ) dξ = 0.

Remark on the assumptions:

We assumed the convergence of the empirical density of (2.9) to a solution of the

equation (2.11). For more information on this topic and rigorous proofs, we refer to

[Var66, SV07] or to chapter 5 in [KS12a].

2.4.3 Modelling Proliferation via Cell-Tissue Interaction

In order to model proliferation, we focus on the different modelling scales and different

growth notions. For the latter, there are two distinct possibilities. First, the phenomenological

modelling on the microscopic scale by using birth (and correspondingly death) processes is

a very detailed way to model population increase, but at the cost of introducing complex

stochastic processes (and also more free parameters, which is clearly to avoid). This was done

in [Ste00], where also a rigorous proof of the convergence of a microscopic system (without

birth and death phenomena and with an SDE for the position only) to a generalized Keller-

Segel model can be found. The main problem with this modelling procedure is that, while

being accurate on the microscopic scale, it is not clear whether the fine-grained information

is necessary, especially if the available data for the model cannot reveal the fine-grained

structures. Moreover, clinicians are merely interested in the tumour bulk – an area of high

tumour cell concentration, in which for a reasonably sized glioblastoma about 109 cells

are present, so including cell division is a computational intense task to do. However, with

increasing computational power this can be done in reasonable time [HHB+07] and by using

massive parallelization [CS14, CS15]. But until we are able to compute the required amount

of cells and receive data with a very fine resolution (at the moment we use only data with a
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voxel size of 2 mm), we utilize the second growth notion, namely density growth. This has

several advantages: As we are interested in population (rather than individual) behaviour, the

use of a population growth is the natural way to accomplish this. Moreover, if we only track

the cell population within one given voxel (this will be done using finite volumes in chapter

4), we do not depend on finer resolutions and can include a variety of medical data. The

microscopic cell scale is the coarsest one to include cell division in a natural way, however,

we are merely interested in cell density growth, so we want to include the proliferation on

a modelling scale describing a cell density. Typically this is done on the macroscopic scale

[RAJRS09, HCS+12], but in this text, we will use the mesoscopic scale for the proliferation

modelling. On this scale, we have to do with probability densities (from the averaging of the

stochastic multi-particle systems). If we drop the assumption of the normalized integral, we

get physical densities (integrable and non-negative functions) for which we can introduce

a source term describing the proliferation. This is exactly the way we take to model the

proliferation on the mesoscopic scale.

The authors of [EKS16] proposed to include proliferation also on the mesoscopic scale

using the go-or-growth hypothesis. In essence it states that a cell either migrates or pro-

liferates, but not simultaneously. While the go-or-growth hypothesis has been confirmed

by many studies (see for example [BG99, GKL+96, HES+08]), there are recently a few

works providing strong evidence that proliferation is not discontinued in favour for migration

[MRP+05, UdJPK09]. Thus we seek for an alternative to modelling proliferation. A way to

cope with this is to rely on the binding state of the cell surface receptors, already included

in the model at the subcellular scale. Such bindings of receptors are necessary for the intra-

cellular machinery to trigger many essential biological processes, including cell survival and

proliferation [UGR99, GG04]. So in [EHS15] we proposed the mesoscopic proliferation term

acting on the mesoscopic scale:

P(p) = µ





∫

V

∫

Z

p(t, x, v, z) dz dv





∫

Z

Q(x)χ(x, z, z′)p(t, x, v, z′) dz′. (2.12)

This can be recast directly in the context of the kinetic theory of active particles (KTAP)

[Bel08] as proliferation during interaction between the tumour cells (here represented by p, as

before) and the ligands of the receptors (here the volume fraction of tissue fibres modelling

the ECM, denoted by Q), hence expressing the necessity of ECM-presence for proliferation.

The function µ depending on the macroscopic cell density acts as a generic growth rate as

in the typical ODE growth models. We select it to be

µ(s) = cg(1 − s), for all s ≥ 0 (2.13)

where the constant cg is a volume growth rate for the tumour cell density. It can be estimated

as shown in chapter 4 and [EHS15]. The integral kernel χ : X × Z × Z → R+ (here called



2.4. MULTISCALE MODELS 25

“proliferation kernel”) describes the change of the internal state during proliferation from the

state z′ to z. We assume it to be a probability density in the second variable z, meaning that

the cell is in a valid binding state after mitosis. This is not restrictive. After using moment

expansions done in the next section, the macroscopic net effect of the proliferation term P
applied to either model with velocity jump or Gaussian process corresponds to the modified

logistic growth

ġ = cgQ(x)(1 − g)g.

Hence we gain some insight by using this type of modelling instead of a macroscopic growth

term like pure logistic or Gompertzian growth: Our approach is more accurate from the

modelling perspective, as we have a biological motivation behind the proliferative action

rather than only use some (arbitrary) growth term. This insight is directly capable to be

interpreted in a clinical context, as the proliferation term acts on a cell density - a quantity

that can be observed.

Assumptions about proliferation:

- The proliferation is conditioned by the interaction of cells with the tissue.

- The proliferation kernel χ(x, z, z′) is a probability kernel in the second variable,

hence
∫

Z

χ(x, z, z′)dz = 1

and it characterizes the transition from an internal state z′ to another state z

during mitosis.

2.4.4 From Mesoscopic to Macroscopic Description

The reasons to move on from a mesoscopic to a macroscopic setting are twofold. First,

the mesoscopic equation does have a very high-dimensional phase space, in our context of

dimension dim(X) + dim(V ) + dim(Z) = 2 · d + 1. In particular, in the 3D case, this results

in solving a time-dependent partial differential equation in seven dimensions, but also in 2D,

we need to discretize five dimensions (additional to the time), which is far from being trivial.

Nevertheless, this can be done, but if the aim is to personalize medical treatment (using

personalized, data-based mathematical modelling), the time needed to solve such a large

problem is not feasible.
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The second reason to make the transition is that the medical practitioners can only detect

a (partial) tumour extent, so there is no reliable initial condition for the velocity and internal

binding state, both being in the context of the mesoscopic model. However, the ultimate aim

of model validation cannot succeed without reliable information at the initial time. There is

also a practical argument against the mesoscopic equation: The units included especially in

the velocity variable are much finer than those of the available data, as the typical tumour

cell velocity is around 10−7 m
s = 0.1µm

s , whereas the data resolution is around 2 mm. This

would render the numerical simulation for the mesoscopic equation on such data error prone.

So either we can get access to finer data allowing to handle all problems occurring with fine

resolution (like the necessity of parallelization, due to the size of the resulting discretized

systems), or we need to employ some scaling technique like hyperbolic [BD08] or parabolic

scaling [PH13]. We choose the latter in order to arrive at a diffusion dominated equation,

which provides an (at least qualitatively) enhanced description when compared to the existing

models [JJHD+15, ARGQ09]. So the time units will be scaled from seconds to days or even

weeks, whereas the spatial scale will be converted from micrometres to millimetres, hence

to a resolution observable in clinical practice. Thus the variables are transformed as follows:

t → ε2t and x → εx for a small parameter ε.

2.4.5 First Multiscale Model Relying on the Mesoscale De-

scription (2.10)

We already introduced in (2.10) the model (on the mesoscopic scale):

∂tp + divx(vp) − divz

((

(k+Q + k−)z + f ′(Q)v · ∇xQ
)

p
)

= L[λ(z)]p.

Including proliferation via cell-tissue interactions as in (2.12) we get

∂tp + divx(vp) − divz

((

(k+Q + k−)z + f ′(Q)v · ∇xQ
)

p
)

= L[λ(z)]p + P(p). (2.14)

Here we assume full space solutions in the x variable and homogeneous Dirichlet boundary

conditions for the z variable. From the biological interpretation this means that the boundary

states (recast in y) 0 and 1 are unlikely. In fact y = 0 means that no receptor is bound,

which corresponds to a dead cell, while y = 1 means that all receptors are bound, a state

never observed in reality.

Lemma 2.4.3. Let Q ∈ W 1,∞(X) and q ∈ L∞(X × V ) for X = Rd, V = sSd−1 and

Z = (−f(Q), 1 − f(Q)). Then the equation (2.14) is well-posed in the sense that there

exists a unique solution in L∞(0, T ; L1 ∩ L∞(X × V × Z)) to initial data p0 fulfilling

p0 ∈ L1(Rn × V × Z) ∩ L∞(Rn × V × Z). This solution stays non-negative, given non-

negative initial data.
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Proof. See the proofs [KS12b] or [NU16]. Using the local Lipschitz (and so the growth

condition) on µ, we can apply the localized proof (Theorem 4) in [NU16] with the additional

term of C(R) ||f j − f j−1||L∞(0,T0;L1(Rn×V ×Y )) (in the notations of the paper [NU16]) on

the right hand side in the third equation of the proof.

Remark 2.4.4. It is possible to relax the assumptions on the data in the previous lemma and

allow for more general terms in the equation. This can be done via the much more general

setting in [LS14]. In that reference there is however, no non-linear proliferation term.

Now we use parabolic scaling for the previous equation to end up with

ε2∂tp + ε divx(vp) − divz

((

(k+Q + k−)z + εf ′(Q)v · ∇Q
)

p
)

= L[λ(z)]p + ε2P(p). (2.15)

The parabolic scaling can be seen to be the correct scaling (regarding the space and time

scales of interest) as in [HHW10, HP13]. Therefore we introduce the reference quantities

x̂ and v̂. Our whole approach is data motivated, so we assume the characteristic length x̂

to be around 2 mm (the side length of a voxel). The characteristic speed can be set to

different reasonable values: first, and this is the approach we follow, set v̂ to be the cell

speed (between 10−7 m
s and 10−6 m

s ). Another reasonable quantity would be the measurable

invasion speed of the tumour bulk into the neighbouring tissue. This will be typically much

lower than the average speed of a single cell. So we are conservative and use the speed of a

single cell as reference. Then the unitless parameter ε is defined via [HHW10]

ε =
v̂

λ x̂
,

where λ is here the average turning rate (around 0.8 1
s ). This leads us to an ε of the order of

10−3 (which is very diffusive). This approach (using the reference space and velocity scales)

leads us to the parabolic scaling [HHW10, HP13]. Note that the presented motivation is not

a non-dimensionalization, because the units of the lengths and velocities stay the same. In

[NU16] there was a discussion whether to use parabolic or hyperbolic scaling (or something

in between) in favour of the hyperbolic scaling for the type of kinetic equation we consider.

However, the argumentation cannot be applied to our setting, because our velocity scale is

very small compared to the length scale (represented by x̂), so we cannot apply hyperbolic

scaling and use at the same time the medical data. Note that we scaled also the proliferation

term P with ε2. This comes from the fact that, integrating (2.14) over X × V × Z using

the homogeneous boundary conditions in z, we end up with the ODE

∂tp̄ = P(p),
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which has to be scaled in a compatible way, known to the literature of parabolic scaling,

where this is done exactly in the same manner [BBNS12]. The upper bar in the previous

equation is the short hand notation for the integration over X × V × Z, not to be confused

with the same notation in [EHKS14, EKS16, EHS15, HS16] standing for another average.

One can see this best if applied to the proliferation rate (included in P). Using the parabolic

scaling, the time units change from seconds to days (with ε2). So the proliferation rate has

to be transformed with ε2 in order to act on the correct time scale.

Now we define the moments:

m(t, x, v) =

∫

Z

p(t, x, v, z)dz M(t, x) =

∫

V

m(t, x, v)dv

mz(t, x, v) =

∫

Z

zp(t, x, v, z)dz M z(t, x) =

∫

V

mz(t, x, v)dv

mzz(t, x, v) =

∫

Z

z2p(t, x, v, z)dz M zz(t, x) =

∫

V

mzz(t, x, v)dv.

Then we form moment equations of zeroth and first order: Let us integrate (2.15) with

respect to z and use the homogeneous Dirichlet boundary conditions in z to get

ε2∂tm + ε divx(vm) = λ0 (qM − m) + λ1 (qM z − mz)

+ ε2µ(M)Q

∫

Z

∫

Z

χ(x, z, z′)p(z′)dz′dz. (2.16)

Multiplying (2.15) with z and integrating with respect to z, we have the first order moment

equation

ε2∂tm
z + ε divx(vmz) + (k+Q + k−)mz + εf ′(Q)v · ∇xQm

= λ0 (qM z − mz) + λ1 (qM zz − mzz) + ε2µ(M)Q

∫

Z

∫

Z

zχ(x, z, z′)p(z′)dz′dz.

(2.17)

As already mentioned in the modelling section for the proliferation term, we assume that

χ(x, z, z′) is a probability kernel in z, hence the double integral in equation (2.16) can be

computed using the Tonelli theorem
∫

Z

∫

Z

χ(x, z, z′)p(z′)dz′dz =

∫

Z

p(z′)dz′ = m(t, x, v). (2.18)

In the light of the last equation, we see that the proliferation term, yet unusual, will have

the net effect on the macroscopic scale as a modified logistic growth term. This is due to

the choice (2.13). The pure logistic growth is used in many models for tumour growth (see
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e. g. [VA82, AWLL03, MBFVP94]). We look now at the moment system (2.16) and (2.17).

We neglect the second order moments of p with respect to z, because z is near 0 (confer to

Lemma 2.4.2), and using Hilbert expansions

Ξ =
∞
∑

k=0

Ξkεk

for Ξ ∈ {m, M, mz, M z}. Collecting the corresponding powers of ε, we have:

ε0:

0 = λ0 (qM0 − m0) + λ1 (qM z
0 − mz

0)

(k+Q + k−)mz
0 = λ0 (qM z

0 − mz
0) .

Integrating the last equation with respect to v, we get

(k+Q + k−)M z
0 = 0,

and so

(k+Q + k− + λ0)mz
0 = 0.

Hence we have the identities

M z
0 = 0

mz
0 = 0

m0 = qM0.

This is expected, because it resembles the equilibrium distribution of L[λ]. Now looking at

the first power of ε:

ε1:

divx(vm0) = λ0 (qM1 − m1) + λ1 (qM z
1 − mz

1)

divx(vmz
0) + (k+Q + k−)mz

1 + f ′(Q)v · ∇xQm0 = λ0 (qM z
1 − mz

1)
(2.19)

Integrating the latter equation with respect to v and using the assumption that the tissue

fibre orientation distribution q is symmetric in v, we get

(k+Q + k−)M z
1 = 0.

The mentioned assumption corresponds to having undirected fibres. In the case of diffusion

tensor imaging data used in the sequel, this is valid, however, in general, especially in presence

of constellations like forking or crossing of fibres resolved with higher (angular) resolution

(confer data chapter 3), this assumption has to be revisited. If it fails for too many voxels,
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one needs either to change the model accordingly or use another scaling or another closure

technique.

From (2.19) we compute

mz
1 = −f ′(Q)v · ∇xQqM0

k+Q + k− + λ0
. (2.20)

Inserting this into the first equation in (2.19), we get

m1 = qM1 − 1

λ0
divx(vqM0) +

1

λ0

λ1

λ0 + k+Q + k− f ′(Q)q(v)v · ∇xQM0. (2.21)

ε2:

∂tm0 + divx(vm1) = λ0(qM2 − m2) + λ1(qM z
2 − mz

2) +

∫

Z

P(p) dz

∂tm
z
0 + divx(vmz

1) + (k+Q + k−)mz
2 + f ′(Q)v · ∇xQm1

= λ0(qM z
2 − mz

2) +

∫

Z

zP(p) dz

(2.22)

For the deduction of the macroscopic equation, we integrate the first equation of (2.22) with

respect to v and get

∂tM0 + divx





∫

V

vm1(v)dv



 = µ(M)QM0 = µ(M0)QM0 + O(ε),

where we used (2.18). By using the explicit representation of m1 from (2.21) we compute

∫

V

vm1 dv =

∫

V

vq(v) dvM1 − divx





∫

V

v ⊗ v

λ0
q(v) dv M0





+
λ1

k+Q + k− + λ0
f ′(Q)

∫

V

v ⊗ v

λ0
q(v) dv · ∇xQM0,

and inserting this in the equation obtained above we arrive to the leading order at the

macroscopic equation

∂tM0 − divx divx (DM0) + divx (gD∇xQM0) = µ(M0)QM0, (2.23)

where we introduced the notations

D(x) =

∫

V

v ⊗ v

λ0
q(x, v)dv, g(x) =

λ1

λ0 + k+Q + k− f ′(Q). (2.24)
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The so-called tumour diffusion tensor D describes the mean spread of the tumour cell density

in a position x. It is parametrized with the aid of the medical data, so the diffusion coefficient

will be higher in directions in which the fibres are oriented, and lower elsewhere. The function

g describes the drift velocity of the convection term depending on the volume fraction of

tissue fibres.

Remark 2.4.5. - The equation (2.23) depends strongly on the medical data, as the

(mesoscopic) tissue fibre orientation q influences the diffusion tensor and the drift

velocity.

- The deduction of this equation with parabolic scaling and moment equations is nec-

essary, as for the direct presumption of a convection-diffusion-reaction equation as

in [RAJRS09, HCS+12] there is no natural way to include real data without further

assumptions. However, in our setting the data is automatically scaled (with the cell

speed s, hidden in the definition of V ) and averaged (with the integration with respect

to v) to fit the equation.

- The proliferation term describing the onset of proliferation via cell-tissue interactions

is transferred to the macroscopic scale, where the same interpretation as interaction

is possible.

Theorem 2.4.2. Now let Ω ⊂ Rd be a connected and open set with Lipschitz boundary.

Assume that Q ∈ W 1,∞(Ω) and q ∈ {ϕ ∈ L∞(Ω × V ); ∂xϕ ∈ L∞(Ω × V )}. Let the initial

condition u0 ∈ L2(Ω) be non-negative. Then the equation (2.23) has a non-negative weak

solution.

Proof. See the appendix to this chapter.

Remark 2.4.6 (On the assumed regularity of the data). In the previous theorem we assumed

a lot of regularity for the functions Q and q, both in space and for q also in velocity. This

directly connects to the assumption that Q and the water diffusion tensor DW are at least

in W 1,∞(X).

It is not reasonable to try to include the actual regularity of the data, as the space is not

given, instead we have a discretization of the brain given as a voxel grid. The data consist of

mean value reconstructions of the desired quantities (now in a not discretized sense) over a

voxel. Thus we may assume without contradicting reality that the non-discretized quantities

are quite regular. This means that for the well-posedness we are merely interested in solutions

on a non-discretized space, whereas the numerical solution of the equations will take place

on the discretized space.
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The first model in a nutshell:

Via parabolic scaling and the assumption that the fibre tissue orientation is symmet-

ric, the equation

∂tp + divx(vp) − divz

((

(k+Q + k−)z + f ′(Q)v · ∇xQ
)

p
)

= L[λ(z)]p + P(p)

leads to

∂tρ − divx divx (Dρ) + divx (gD∇xQρ) = µ(ρ)Qρ.

So the macroscopic description of the model with velocity jump process leads to a

convection-diffusion-reaction equation with data based terms in every part of it.

There are some differences between an equation like (2.23) and the prototype of

a reaction-convection-diffusion equation (like (2.1)) as in [HCS+12]. The form of the

diffusion

divx divx (Dρ)

or equivalently

divx (D∇xρ) + divx (divx(D) ρ) (2.25)

is distinct. It is often referred to as myopic diffusion. The difference is an additional

convection term (best seen in (2.25)). While myopic diffusion can also be deduced

from a monoscale model (see e. g. [PH13]), our model (2.23) accounts for a different

phenomenon, namely the interplay of the reorientation term (also existent in [PH13])

and the subcellular bindings (missing in [PH13]) leading to the additional (in comparison

to [PH13]) drift term

divx (g(Q)D · ∇xQρ) . (2.26)

This is a haptotactic-like term describing the guidance of the brain structure. One may

wonder, why the additional drift term guides the cell density in direction D ·∇xQ instead

of ∇xQ. The obvious cause is the deduction of this term, however, in (2.26) happens

more than pure reorientation in the direction of the steepest ascent of Q. This would be

modelled via

divx (γ∇xQρ) ,

where γ is some constant, whereas the term (2.26) also includes the brain structure via

both, the tumour diffusion tensor and the volume fraction of tissue fibres.

Thus the haptotactic sensitivity in the additional drift term 2.26 depends on the

subcellular dynamics via the g(Q) and the ∇xQ and the tumour diffusion tensor D.
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2.4.6 Second Multiscale Model Relying on the Mesoscopic De-

scription (2.11)

Now let us take a closer look at the second model (this time dropping the assumption of

undirected fibres):

∂tp + divx(vp) − ∂z

((

(k+Q + k−)z + f ′(Q)v · ∇xQ
)

p
)

= (λ0 + λ1z)∆V

(

p

q

)

.

We introduced this model class to handle instant cell orientation and irregular shape changes,

both happening in cell movement. Due to reorientations on faster time scales, the cells will

diffuse slower than in the previous model 2.14, so it will predict a different, less aggressive

tumour spread (slower, but also different in shape, see figure 4.2). The advantage is that

we may drop the assumption of the undirected fibres, as it is not necessary for the parabolic

scaling. Instead, we use the assumption of a fast relaxation of the cell orientation to the

fibres, hence we assume instant reorientations for which we introduced this model class.

Including the proliferation term, we get

∂tp + divx(vp) − ∂z

((

(k+Q + k−)z + f ′(Q)v · ∇xQ
)

p
)

= (λ0 + λ1z)∆V

(

p

q

)

+ P(p). (2.27)

As in the previous model, we use parabolic scaling on (2.27) to end up with

ε2∂tp + ε divx(vp) − ∂z

((

(k+Q + k−)z + εf ′(Q)v · ∇xQ
)

p
)

= (λ0 + λ1z)∆V

(

p

q

)

+ ε2P(p). (2.28)

Note that the proliferation term was scaled accordingly to the previous model. Using moment

equations and Hilbert expansions as before along with the same notations, we get

ε2∂tm + ε divx(vm) = ∆V

(

λ0m + λ1mz

q

)

+ ε2µ(M)Q

∫

Z

∫

Z

χ(x, z, z′)p(z′) dz′ dz

ε2∂tm
z + ε divv(vmz) + (k+Q + k−)mz + εf ′(Q)v · ∇xQm

= ∆V

(

λ0mz + λ1mzz

q

)

+ ε2µ(M)Q

∫

Z

∫

Z

zχ(x, z, z′)p(z′) dz′ dz.

(2.29)

Neglecting the second order moments in z we arrive at the zeroth order of the Hilbert

expansions
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ε0 :

0 = ∆V (λ0m0 + λ1mz
0)

(k+Q + k−)mz
0 = ∆V

(

λ0

q
mz

0

)

.

We focus on the biologically relevant case d = 3 and assume without loss of generality s = 1.

For this constant cell speed the operator ∆V is given as the Laplace-Beltrami operator ∆⋆

on the unit sphere. Otherwise (for general s) the operator ∆V is given by ∆⋆

s2 . Hence the

previous equations can be recast on the unit sphere as

0 = ∆⋆

(

λ0m0 + λ1mz
0

q

)

(k+Q + k−)mz
0 = ∆⋆

(

λ0

q
mz

0

)

.

The Laplace-Beltrami operator on the unit sphere has the null-space spanned by constant

functions [FM12], hence the first moment equation is solved easily:

λ0m0 + λ1mz
0 = q(x, v)C (2.30)

with a generic constant C, that may depend on t and x. To compute it, we integrate the

previous identity with respect to v and get

λ0M0 + λ1M z
0 = C. (2.31)

Lemma 2.4.4. Let us consider the equation k+Q+k−

λ0
q(x, v)g(v) = ∆⋆g. It has the only

solution g = 0 and hence mz
0 = 0 and M z

0 = 0.

Proof. That 0 is indeed a solution to this equation is easy to see. Now let us compute

0 ≤
〈

k+Q + k−

λ0
qg, g

〉

= 〈g, ∆⋆g〉 = − 〈∇⋆g, ∇⋆g〉 ≤ 0,

where we used that q is uniformly positive ( i. e. inf
x∈X, v∈V

q(x, v) ≥ α > 0). Due to this

definiteness, we conclude that the previous equation can only be fulfilled by the constant

g = 0 almost everywhere. Hence 0 = g =
mz

0

q
and the assertion follows.

Lemma 2.4.4 gives also the possibility to obtain the relationship m0 = qM0 by applying

it to g =
λ0 mz

0

q
and using (2.30) and (2.31).

Coming now to the first order in ε we get from (2.29):

ε1 :

divx(vm0) = ∆V

(

λ0m1 + λ1mz
1

q

)

divx(vmz
0) + (k+Q + k−)mz

1 + f ′(Q)v · ∇xQm0 = ∆V

(

λ0mz
1

q

)

.

(2.32)
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As before, we consider the Laplace-Beltrami operator (assuming w.l.o.g. s = 1):

divx(vm0) = ∆⋆

(

λ0m1 + λ1mz
1

q

)

divx(vmz
0) + (k+Q + k−)mz

1 + f ′(Q)v · ∇xQm0 = ∆⋆

(

λ0mz
1

q

)

.

Using in this context Green’s formula for the sphere, we get from (2.32) the identity

λ0m1 + λ1mz
1 = q(v)

∫

S2

G(v, v′) divx(v′q(v′)M0) dv′, (2.33)

where G(v, v′) is Green’s function on the 2-sphere, which can be explicitly given [Fre12]:

G(ξ, η) =
1

4π

(

ln

(

1 − ξ · η

2

)

+ 1

)

, (2.34)

and this Green function solves the problem with respect to the average value 0. One can

clearly consider different offset values, but this would introduce a new free parameter, which

is clearly not what we want to do. This offset value would be integrated away. For the

solution of the second equation, we need a further assumption, as this was also the case in

the velocity jump model. Here the assumption is not that the tissue fibre orientation density

q is symmetric, but that mz

1

q
is near constant (in v). This is connected to the convergence

of the semigroup generated by the operator ∆V

(

·
q

)

for t → ∞.

Under this assumption, we have

mz
1 = −f ′(Q)v · ∇xQ

k+Q + k− q(v)M0, (2.35)

which is almost the same as in the previous results for the velocity jump case. The only

change is that the denominator in the previous equation (2.35) is not k+Q + k− + λ0, but

λ0 less.

Now considering the first ε2 equation:

∂tm0 + divx (v m1) = ∆⋆

(

λ0m2 + λ1mz
2

q

)

+

∫

Z

P(p) dz. (2.36)

For the deduction of a macroscopic limit equation, we integrate (2.36) with respect to v and

get

∂tM0 + divx





∫

V

vm1dv



 = µ(M0)QM0 + O(ε).
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What remains is to evaluate the term
∫

V

vm1dv. From (2.33)

∫

S2

vm1dv =

∫

S2

−λ1

λ0
vmz

1dv +
1

λ0

∫

S2

vq(v)

∫

S2

G(v, v′) divx(v′q(v′)M0)dv′dv

= I + II.

(2.37)

The first (and easy) integral to compute is by (2.35)

I =

∫

S2

λ1f ′(Q)

λ0(k+Q + k−)
v ⊗ v · ∇xQq(v)M0dv

= g̃(Q)D∇xQM0,

where we used the notation

g̃ = λ1f ′(Q)(k+Q + k−)−1. (2.38)

The tensor D is the same as in the previous model (see (2.24)). So all in all, the haptotactic-

like drift term is in the model driven by the Wiener process qualitatively the same as in the

velocity jump case. For the second term in (2.37) we compute divx(v′q(x, v′)M0(t, x)) as

v′∇xM0(t, x)q(x, v′) + v′M0(t, x)∇xq(x, v′). Then we have

II = D̃∇xM0 + ŨM0,

where we introduced the notations

D̃(x) =

∫

S2

∫

S2

G(v, v′)q(x, v′)q(x, v)
v ⊗ v′

λ0
dv′ dv

Ũ(x) =

∫

S2

∫

S2

G(v, v′)vq(x, v)v′ · ∇xq(x, v′)
1

λ0
dv′ dv.

(2.39)

So the macroscopic equation is given by

∂tM0 + divx

(

D̃(x)∇xM0

)

+ divx

((

Ũ(x) + g̃(Q)D∇xQ
)

M0

)

= µ(M0)QM0. (2.40)

Note 2.4.3. - We did the scaling procedure for s = 1 in order to clarify the presentation.

It can be done using s 6= 1 leading to an operator s−2∆⋆ and so to many multiplications

by s2 (which we wanted to avoid).

- In comparison to the first model, there is a need to compute the additional quantities
∫

S2

∫

S2

G(ξ, η)q(ξ)q(η)ξ ⊗ η dξ dη

∫

S2

∫

S2

G(ξ, η)q(ξ)ξη · ∇xq(η) dξ dη =
1

2
∇x · D̃.
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The last identity follows from the symmetry of Green’s function with respect to ξ and

η.

- Although the last equation is at first sight surprising, since it looks like an inverse

diffusion equation, it is not, because the diffusion tensor D̃ is negative definite (as

proven below).

- On the numerical level, this equation needs some caution in the implementation due

to the additional quantities (so we really need to compute a complete data set of

the first model and an additional tensor as well as an additional vector per point).

The difficulty, especially in three dimensions, is to hold the required data in memory,

otherwise the computer will be very slow by swapping a lot. Fortunately this issue can

be handled by using compact data structures (mat::fixed〈3,3〉 from armadillo and

C++ standard vectors) and storing only the necessary data for the active voxels in

the implementation. Then the data expands to less than 4 gigabyte in memory when

used with the resolution of about 160000 voxel.

Remark 2.4.7. The diffusion tensor D̃ is negative definite.

Proof. Consider
∫

S2

∫

S2

ξ ⊗ ηG(ξ, η)q(ξ)q(η) dη dξ

and multiply it with a ∈ R3:

aT

∫

S2

∫

S2

ξ ⊗ ηG(ξ, η)q(ξ)q(η) dη dξa =

∫

S2

∫

S2

(a · ξ)(a · η)G(ξ, η)q(ξ)q(η) dη dξ.

This can be reformulated as
∫

S2

(a · ξ)q(ξ)z(ξ) dξ,

where z solves the equation

∆⋆z(ξ) = q(ξ)(a · ξ)

with the normalization
∫

S2

z(ξ) dξ = 0.

Let us consider now
∫

S2

(a · ξ)q(ξ)z(ξ) dξ =

∫

S2

∆⋆zz dξ

= −
∫

S2

|∇⋆z|2 dξ ≤ 0.
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So we see that the diffusion tensor D̃ is negative semidefinite and it remains to show the

definiteness. For this assume the left hand side of the previous equation to be 0. So the

function z has vanishing surface gradient on the sphere, hence it is constant, but subject

to the normalization. The only possible constant is 0 itself and this shows the remaining

definiteness.

Theorem 2.4.3. Let Ω be a connected and open set with Lipschitz boundary and assume

that Q ∈ W 1,∞(Ω) and q ∈ {ξ ∈ L∞(Ω × V ); ∂xξ ∈ L∞(Ω × V )}. Let u0 ∈ L2(Ω).

Then equation (2.40) with respect to no-flux boundary conditions is well-posed in the sense

that there exists a weak solution. This solution is almost everywhere non-negative, given

non-negative initial data.

Proof. See the appendix to this chapter.

The second model in a nutshell:

Via parabolic scaling and the assumption that the equation ∂tg = ∆V

(

g
q

)

is near

steady state, so g(t, x, v) ≈ q(x, v)
∫

V

g(t, x, v) dv, the equation

∂tp + divx(vp) − divz

((

(k+Q + k−)z + f ′(Q)v · ∇xQ
)

p
)

= (λ0 + λ1z)∆V

(

p

q

)

+ P(p)

leads to

∂tρ + divx

(

D̃∇xρ
)

+ divx

((

Ũ + g̃D∇xQ
)

ρ
)

= µ(ρ)Qρ

with the coefficients given by (2.39) and (2.38). So, as in the previous case, the macro-

scopic description of the model with the Wiener process as driving force of the microlevel

dynamics consists of a convection-diffusion-reaction equation with data based terms.

The additional assumption can be interpreted in a way that the cells eventually orient

along the fibre tracts and so the tissue fibre orientation q(x, v) prescribes the orientation

of the cell density p.

Also in this case we see the myopic diffusion (or a myopic-like) diffusion in the term

divx

(

D̃∇ρ
)

+ divx

(

Ũρ
)

,

and an additional drift term

divx (g̃(Q)D∇xQρ)

stemming from the interplay of the subcellular term and the reorientation (this time via

the operator ∆V ). We write myopic-like diffusion, as the drift velocity Ũ is not divx D̃,

but half of it.
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Concluding, in our modelling via parabolic scaling we proposed two different model

classes, connected to each other, leading to comparable equations on the macroscopic scale.

The first scaling was done in [EHKS14] and including the proliferation term in [EHS15],

whereas the scaling with the Wiener process driven model is yet unpublished.

2.5 Appendix: Well-posedness theory

Let T ∈ R>0 be fixed and consider equations of the type

∂tu − divx (A(x, t)∇xu − B(x, t)u) + G(x, t, u) = 0 in Ω × (0, T )

n · ∇A,B := n · (A(x, t)∇u − B(x, t)u) = 0 on ∂Ω × (0, T )

u(0) = u0(x) in Ω × {0}
(2.41)

in a Lipschitz region Ω.

Assumptions:

We require in the following that A and B are continuous in time and essentially bounded

in space. The diffusion tensor A shall be coercive, so ξA(x, t)ξ ≥ c0|ξ|2 for almost every

x ∈ Ω and every t ∈ (0, T ). Here c0 > 0 and independent of space and time.

The growth function G shall be continuous in time, essentially bounded in space and

continuous in the solution variable u. Moreover it has to satisfy G(x, t, 0) = 0 for almost all

x ∈ Ω and t ∈ (0, T ). As we are only interested in cell densities, where we cannot assign any

meaning to negative values u, we assume that G(x, t, u) = 0 for u ≤ 0. In the case of the

equations (2.23) and (2.40), we will assume that the modified logistic growth is only valid for

non-negative values. This means in this special context, that the growth function G satisfies

G(x, t, u) = −Q(x)u(1 − u) for all u > 0. Hence it holds, that |G(x, t, u)| ≤ C(1 + |u|) for

all u ∈ R.

Let us define the Gelfand triple (V, H, V ⋆) with V = H1(Ω) and H = L2(Ω). We look

for a solution u in the space

W :=
{

v ∈ L2(0, T, V ), v′ ∈ L2(0, T, V ⋆)
}

.

Let us define (as in [HS16]) the time-dependent operators A and G by

〈A(t)u, v〉 :=

∫

Ω

(A(x, t)∇u − B(x, t)u) · ∇v dx for u, v ∈ W and

〈G(t)u, v〉 :=

∫

Ω

G(x, t, u)v dx for u, v ∈ W.

The operators A and G are continuous in the time variable.
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Remark 2.5.1. The operator A(t) : V → V ⋆ for all times t satisfy Gardings inequality

〈Au, u〉 ≥ c1|u|2V − c2|u|2H

with time independent constants c1 > 0 and c2 ≥ 0.

Proof. Apply Theorem 5.1 of [Sho11].

From now on assume that c2 = 0. Otherwise we can transform the equation (2.41) with

û = exp(c2t)u into an equivalent problem fulfilling the usual coercivity condition

〈Au, u〉 ≥ c1|u|2V .

Theorem 2.5.1 (Theorem 1 in [HS16]). Let u0 ∈ H be given. Under the previous assump-

tions there exists a solution u in the space W in the sense that

−
T
∫

0

〈v′(t), u(t)〉V ⋆,V dt +

T
∫

0

〈A(t)u, v〉 dt +

T
∫

0

〈G(t)u, v〉 dt = 〈u0, v(0)〉H

for all v ∈ W with v(T ) = 0.

Proof. Confer to the proofs in section 3.3.6 of [Ruz06] of section III.4 of [Sho13]

Lemma 2.5.1. For almost everywhere non-negative initial values u0 ∈ L2(Ω), the solution

u of (2.41) remains non-negative almost everywhere.

Proof. We are adapting the proof in section 4.2 in [Yag09]. So let H be a C1,1 cutoff function

such that H is given by H(u) = 1
2u21u<0. Then we have

d

dt

∫

Ω

H(u) dx =

∫

Ω

H ′(u)ut dx

=

∫

Ω

u (div (A∇u) − div (Bu) + G(u)) 1u<0 dx

= −
∫

Ω

∇uA∇u1u<0 dx +

∫

Ω

Bu21u<0 dx

≤ 2|B|L∞(Ω)

∫

Ω

H(u) dx,

so d
dt

H(u) ≤ CH(u). Hence Gronwall inequality states that H(u) ≤ eCtH(0). As H(0) = 0

due to the non-negative initial data, the assertion follows.



Chapter 3

Data

The main noninvasive imaging techniques for the brain, as well as for other organs, can be

separated into two classes: The computed (or computer) tomography (CT) and the magnetic

resonance imaging (MRI).

During a CT, ionizing radiation is used to measure the so-called radiodensity, the ab-

sorption coefficient of the radiation used. This may have serious implications on the health;

it is estimated that in the United States about 0.4 % of all cancer occurrences are due to

computed tomography examinations in the past [BH07]. The main advantage of CT is the

finer resolution of the images compared to MRI, the lower cost (of both, devices and actual

examination), and the speed.

The magnetic resonance imaging is based on the measurement of spin echoes, which are

caused by the relaxation of hydrogen atoms to the equilibrium state in a strong magnetic

field. These are abundant in all body tissues, as the human body consist of approximately

70% water. While the magnetic field used in MRI has no direct implication on the health,

it must not be used if ferromagnetic implants or other ferromagnetic substances like several

tattoo-inks are present in the body. The main disadvantages of MRI are the cost (both of

machines and actual examination) and the longer time needed to perform a scan.

So CT scans as well as MRI would give information about the brain structure. Both

methods do have advantages for model simulations: The CT method is more flexible, in the

sense that in one image bones as well as soft tissue can be resolved in higher detail than it

is possible with a classical MRI scan. However, the latter method is based on water diffusion

and so it may be better suited for a diffusion model like those presented in the modelling

chapter 2. Moreover, in the last years a new technique, the diffusion-MRI was used to measure

directional information about the underlying diffusion process simultaneously, hence providing

information about directional diffusion. These directions are often referred to as gradients

and provide information about the anisotropy in the brain. Depending on the number of

41
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gradients measured, the method is considered as HARDI, which stands for ’high angular

resolution diffusion imaging’, and of which the Q-Ball imaging technique [Tuc04] is the best

known method. Whereas in classical diffusion-MRI only 10-12 gradient directions are taken,

a typical Q-Ball imaging would consist of about 50 gradient directions. Of course this gives

more angular information, but there is a trade-off between angular and spatial resolution:

The time needed during an examination grows with both resolutions and is typically limited.

Ideally, mathematical models would profit from refinements of both, but usually only one

resolution is refined.

In this work we will concentrate on the use of diffusion-MRI data (this includes diffusion

tensor imaging, where a water diffusion tensor is reconstructed, as well as HARDI techniques)

in mathematical models, because this type of medical data provides the necessary information

about orientations of tissue fibres, which are of tremendous importance to foreshadow the

directions in which cells will move. As data set we use the diffusion MRI data coming along

with Camino [CBG+06] for all visualizations and simulations. This data set consists of one

weighted image and 32 gradient directions, so we have a higher angular resolution. This is

not directly used in the following, but diffusion tensors are estimated and we use them for

the subsequent tasks.

3.1 Information contained in the data

A typical diffusion-MRI data set will provide a diffusion weighted image together with several

gradient ones. For smaller data sets, one can get around 8 or 12 (up to 20) gradients, whereas

for HARDI or Q-Ball imaging the number of gradients is substantially higher (around 50).

Considering simpler pure anisotropic diffusion, the underlying movement can be described via

a diffusion tensor, which clearly has to be symmetric and positive definite. Hence we have to

estimate only 6 independent variables per voxel. So we need at least 7 images (one diffusion

weighted image to adjust the intensity and 6 gradient images) to estimate such a tensor.

Usually, more gradient or even more diffusion weighted images are provided to get a better

fit and to reduce the noise (or equivalently enhance the signal-to-noise ratio). There are

several different algorithms to estimate a diffusion tensor. The linear [BML94] as well as the

non-linear [JB04, AB05] fitting techniques are done locally, whereas the inversion algorithm

RESTORE [CJP05] is based not only on local information, but also includes information on

the machine like the usual noise level. While the non-linear and the RESTORE fit result in

comparable directions of the leading eigenvectors of the diffusion tensor, the linear fit may

fail, if the anisotropy is low.
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For the visualization of this finding, we define the fractional anisotropy as

FA =

√

3

2

√

∑3
i=1(λi − λ̄)2

√

∑3
i=1 λ2

i

, (3.1)

where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of the estimated water diffusion tensor and λ̄ is their

arithmetic mean. We select a slice containing very few voxels and thereof a section where

the difference between the linear and the non-linear fit is obvious (see figure 3.1), especially

in regions where the fractional anisotropy is smaller (depicted with darker colours). The

discrepancy between both fits shrinks if the fractional anisotropy is larger, corresponding to

brighter colours, best seen in figure 3.2. Except for the two figures 3.1 and 3.2 we use the

slice 26 of 51 in z-direction of the data set coming along with Camino for visualization,

although actual computations are carried out in three dimensions.

Figure 3.1: The linear versus non-linear fit on the test data. The difference between

the fits is best visible in the lower part of the island in the centres of the pictures.

3.1.1 Assessment of q

If we are now interested in the expected orientation of the fibres, we are interested in the

quantity [RMU+13, ALJ+11]

q(x, θ)Q(x), (3.2)

where q(x, θ) is the orientation distribution function and by Q we denote the volume fraction

of tissue fibres as in the modelling chapter 2. Thereby, θ stands for an orientation, so θ ∈ S2,

and x is a position in the mathematical domain describing the brain tissue. The quantity Q
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Figure 3.2: The linear versus non-linear fit on a slice containing a fibre bundle. Here the

difference is negligible, especially where the white matter tract is located (the bright

red and green regions).

was proposed to be proportional to FA in [ALJ+11, EHKS14] and in [EKS16]. This will be

discussed in the following, but first we want to enlighten the fibre orientation distribution q.

There are several approaches from different viewpoints. We will concentrate here on an

estimated diffusion tensor D originating from medical data. The quantity q was approximated

by a fixed distribution for a diffusion tensor, like the peanut distribution used in [PH13,

EHKS14, EKS16, EHS15]:

q(x, θ) =
3

4π tr(D(x))
θT D(x)θ.

It is easy to verify that this is indeed a probability distribution on S2. As seen in the structure,

the prefactor is only a normalization; it is the easiest way to convert a diffusion tensor to

an orientation. The main problem is the very smooth shape of this distribution, that cannot

reveal fibre crossings and similar phenomena; this is not only due to the peanut-type of

the distribution, but an inherent restriction of diffusion tensor imaging. This is especially

problematic when lots of different gradient measurements (Q-Ball imaging) are available.

These would be reduced to 6 variables. To enhance the visual anisotropy, a bimodal von-

Mises-Fisher distribution was proposed in [PH13] for the quantity q

q(x, θ) =
k(x)

8π sinh(k(x))
(exp (θ · φk(x)) + exp (−θ · φk(x))) ,

where k(x) = κFA(x). Thereby φ is the principal eigenvector of D(x), but in [JKT13]

it was argued that the leading eigenvector of a diffusion tensor is not necessarily a good

indication of the main fibre orientation in all voxels. This fact may also be underlined with
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the orientation difference of the principal eigenvector between two different, especially linear

and non-linear reconstruction techniques for the diffusion tensor, rendering the choice of the

bimodal von-Mises-Fisher distribution questionable. Moreover (but this is a mathematical

modelling issue) the bimodal von-Mises-Fisher distribution, as presented before, introduces

the new free parameter κ via the function k(x). This gives the flexibility to increase or

decrease the observed anisotropy, but at the cost of estimating a unit-free parameter without

indication of the order, such that the ’real’ parameter may largely vary in the positive real

numbers. So we neglect this approach.

From the medical imaging perspective, there are different concepts of a so-called orien-

tation distribution function [Tuc04, Des08]. These split into the notion of a so-called dODF

introduced by Tuch [Tuc04], which is the one that is presented here, and the fODF introduced

by Descoteaux [Des08]. It may be an interesting task to explore the difference between these

notions in the context of mathematical modelling and its implications on the outcome of nu-

merical experiments. This is not done in the present text, but we look forward to data-based

mathematical modelling addressing this question in the future. Here we will give a summary

presentation of the ODF in order to focus on the ideas and not going into details for which

an extensive background in special spherical functions would be necessary. The details can be

found in [Tuc04, Des08, ALS+10]. We will not present the ’original’ orientation distribution

function, introduced in [Tuc04], since Aganj et al [ALS+10] argued that one has to take into

account a normalization of the solid angle during the reconstruction. Thus, the orientation

distribution function (in our context) is given by

ODF (θ) =

∞
∫

0

P (rθ)r2 dr,

where r2 is exactly the required normalization [ALS+10]. Thereby, P stands for the displace-

ment probability of a water or hydrogen molecule from position 0 (the origin) to the point

rθ (here in spherical coordinates). Note that the point rθ is not meant to be in the spatial

coordinate system given by the MRI data, but affects only the orientation variable θ, hence

the gradients. As mentioned in [ALS+10] this quantity is fully normalized, so in particular

unit-free and
∫

S2

ODF (θ) dθ = 1.

The main problem is to acquire the orientation distribution function, whence the need to

compute the integral. Luckily, in the case of diffusion tensor imaging, which is our focus

here, this can be done analytically [ALS+10]:

ODFDT I(θ) =
1

4π|D| 1

2 (θT D−1θ)
3

2

.
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The symbol | · | denotes the determinant of a rank-2 tensor. Note that unlike the peanut

distribution, where the normalization is tied to tr(D), thus only taking the trace values into

account, the determinant depends also on the off-diagonal values. The different exponents

of 1
2 and 3

2 may be counterintuitive, but the determinant actually is a volume form and

hence the exponents on the units (of the values) will be the same. Our choice for the tissue

fibre orientation q is the above orientation distribution function. As already mentioned, using

diffusion tensor imaging results in a reduction of the orientation information to the 6 degrees

of freedom of a symmetric tensor. Although from a modelling perspective it is clear that it is

better to use more parameters, their number will be reduced anyway, because the macroscopic

equations ((2.23) and (2.40)) need the processed information and only use the orientation

distribution in an averaged manner through the macroscopic diffusion tensors D and D̃. The

evaluation of the effect of including higher order data into the forecast of the tumour shape

by numerical simulations is an interesting question. However, we do not answer it here and

refer to further work, because the reconstruction of the orientation distribution with more

parameters is a non-trivial task and the reconstructed values are currently not available to

us.

3.1.2 Assessment of Q

Hence the first quantity, which can be extracted from diffusion-MRI data, is the orienta-

tion information, while the other quantity, the occupied volume fraction, is still missing. In

[ALJ+11] it was proposed to use the fractional anisotropy as estimator. This aligns with the

choice in [EHKS14, EKS16]. The idea behind this is that especially in brain slices with lots

of white matter tracts (which are known to have the highest density in the brain tissue) the

fractional anisotropy is in correspondence to the expected density distribution in a brain slice.

This consideration is clearly valid considering slices containing white matter tracts; however,

in regions where the tissue is densely packed, but isotropic, resulting in a very low fractional

anisotropy, the estimation of the volume fraction of tissue fibres with the aid of the fractional

anisotropy (and other anisotropy measures) must fail. This case may or may not occur in

reality, because the white matter tracts are the most dense regions of a human brain and

the fractional anisotropy of neuron bundles increases by myelination [LBMP+01]. A core as-

sumption in MRI data acquisition is that the orienting molecules do not pass the membrane

of the neurons, a constraint posing the question whether the diffusion-MRI technique is ca-

pable to resolve the actual density, or only anisotropy. Computed tomography does not yield

a density estimator directly, as in CT scans only absorption coefficients are measured and

these are not connected to the density. So there is a need for a further investigation of the

estimation of brain matter density out of diffusion-MRI or CT measurements. Reisert et al

[RMU+13] introduced a reconstruction technique based on inverse problems. This may be a
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working approach, but in general inverse problems (in this case already a non-linear one) and

their solutions depend strongly on the used regularization technique. In the paper [RMU+13],

the authors used the classical non-linear Tikhonov regularization [Rie03], that might provide

an alternative (although not tailored to the actual problem) but then it remains to solve

ill-conditioned large systems, which we try to avoid during data processing.

So we set up another possibility to estimate the occupied volume fraction of tissue fibres in

[EHS15]. To this aim we consider a cube with side length h, which is a voxel in the MRI data.

From Physics we know that the characteristic (diffusion) length is defined as lc =
√

αtc and

corresponds to the mean free path length. Its derivation is based on the diffusion equation,

which is a further modelling assumption, already implicitly stated, because especially in the

context of diffusion tensor imaging, the complete data reconstruction is based on it. In the

previous formula, α is a diffusion related coefficient, while tc is the characteristic (diffusion)

time. For the former, there are several sensible choices to form a local average of the diffusion

tensor. The first option would be to take the trace of a diffusion tensor, while another one

would be to take the mean diffusivity, defined as MD = tr(D)
3 . When other data sets (like

apparent diffusion imaging) are available, one could also use the apparent diffusion coefficient

reconstructed directly out of measurements. We opt as in [EHS15] to use the diffusion tensor

trace in order to get a normalization with respect to the dimension of the problem.

The characteristic time is more difficult to approximate. Usually the characteristic length

and the diffusion are given and the time can be computed, but here we need to invert

this situation. As mentioned before, the underlying assumption is that we have to do with

a diffusion process, which can be interpreted on the individual particle scale as a Wiener

process. We estimate it with the expected first exit time of a particle from a ball surrounding

the voxel. The radius of such a ball is given as h
√

3
2 . Then the expected exit time is given

as h2

4 [KS12a]. This is valid for standard Wiener processes, i.e. for N (0, t − s) distributed

increments, which we have to rescale according to the diffusion strength. For this scaling we

select the leading eigenvalue of the diffusion tensor. Then the formula of the characteristic

length reads

lc =
h

2

√

tr(D)

λ1
.

As mentioned before, the characteristic length corresponds to the mean free path length, so

the free volume is approximated as l3c . Then the volume fraction of tissue fibres is given as

Q = 1 − 1

8

√

tr(D)

λ1

3

.
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3.1.3 Test cases

Now we want to consider some test cases. Let us define the diffusion tensors

D1 =







1 0 0

0 1 0

0 0 1






D2 =







2 0 0

0 0.5 0

0 0 0.5






.

We get the volume fraction estimated by fractional anisotropy versus the method described

here for D1 as 0 versus 0.35 and for D2 as 0.71 versus 0.77. A volume fraction 0 of tissue

fibres in the brain is not possible, so only the second method generates a sensible output for

this case. In the second case, the difference between the fractional anisotropy and the new

estimator is quite low. This means that the high densities of the white matter tracts (having

a high fractional anisotropy) are recovered, but the more isotropic parts are resolved in a

better way with the new estimator. This can also be seen in figure 3.3.

Figure 3.3: The fractional anisotropy versus the estimated volume fraction. The frac-

tional anisotropy does not generate reasonable values (a volume fraction of less than

0.2). The heuristic estimator does generate reasonable values everywhere and captures

the high density of the white matter tracts (here bright yellow).

3.2 Appendix: Data preprocessing in detail

Here we describe how a data set can be preprocessed in order to have the diffusion tensors

estimated and the data formats converted into some file format which can be easily read.
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3.2.1 Data formats used

There are several data formats commonly used in medical imaging:

- DICOM: The absolute standard in medical imaging. It can consist of different image

formats and a lot of metadata.

- Nifti: A standard format, that can be used easily in combination with Camino [CBG+06].

- nrrd: A more modern format. The header is in plain text, which helps extracting the

information.

In general all mentioned formats may contain 3D or 4D data. The 3D format is either used

for a (scalar valued) quantity (e. g. a segmentation all over the brain) or a vector valued

quantity (e. g. a diffusion MRI data set over one slice of the brain) unlike the 4D formats,

storing a vector valued quantity over the whole brain.

3.2.2 Software

We use Camino [CBG+06] for the reconstruction of diffusion tensors, because it is very

transparent with respect to which algorithm is actually used. The documentation is very

concise and readable, much like a man-page in Unix-like systems. Unfortunately, Camino is

only capable to read diffusion MRI data as Nifti 4D images, so one has to ensure that this

format is actually used. To convert a series of DICOM images to a 4D Nifti format, one can

easily use the mricron [mri16] software. For further investigations and conversions between

the data formats one has to rely either on the base libraries (mostly written in plain C) or

on high level software packages unifying the loading and saving procedures. We have no

experience with the base packages by itself, but it may be helpful to list them shortly, each

with a web-link

- GDCM: A Dicom loader available under [gdc16].

- Niftilib: A library for reading nifti-1 data available via [nif12].

- NRRD: A library capable of reading nrrd files [NRR16]. It is actually part of the library

libteem.

A high-level software package that enables reading and writing all the mentioned data

is ITK: Insight Segmentation and Registration Toolkit (available via [ITK16]). All following

example codes make heavy use of it. With this library it is very easy to convert one data

format into another (see listing 3.2) or to stack up sliced images to a full 3D or 4D image

container. The medical data formats do the job quite well, but for mathematical preprocessing
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we prefer to rely on data formats that are on the one hand easy to load and on the other

hand standardized, hence compatible to other widely used software packages like Matlab.

We decided to use NetCDF [Uni15], as it has high quality C++ bindings and implements

also the hdf5 standard in its latest NetCDF4 format, while it has good compression facilities,

such that the loading of data is reduced to a minimum.

Then a typical processing is done via:

(a) Convert the available data to nifti files using ITK (see listing 3.2)

(b) Estimate the diffusion tensors with Camino

(c) Convert the diffusion tensors to NetCDF using ITK (see listing 3.3).

3.2.3 Known problems

There are two different main problems: the first one occurs when using a Windows PC.

Then almost no software from those mentioned above will work natively. The second larger

problem is that during the preprocessing step a good brain mask or even a segmentation

are required. Often, this segmentation is given on another grid, which cannot be interpreted

as sub-grid of the MRI data. This renders the preprocessing difficult, because one has to

transfer the data between the grids. In the case of structured quadrilateral or cubic grids this

is especially difficult if the grids are not parallel. Then it is better to interpolate the diffusion

tensor data (given as floating point numbers) to the grid of the segmentation avoiding this

way the interpolation of integer data, which is impossible to do in a reliable manner.

3.2.4 Example codes

Here we want to present some very simple example codes to accomplish conversion tasks

on medical data. As mentioned before, we use the software package Camino [CBG+06] for

processing, i.e. estimation of diffusion tensors, as it is easy to use and does the preprocessing

reasonably well.

The first file is the CMakeLists.txt file needed to setup a working source tree for the

conversion:

1 # Write cmake v e r s i o n i n f o r m a t i o n .

2 # 3.0 s h o u l d work f o r eve rybody

3 cmake_minimum_required (VERSION 3 . 0 )

4

5 # name the p r o j e c t

6 p r o j e c t ( P r o j e c t )

7

8 # I f we want to use t h r e a d s .

9 f ind_package ( Threads )
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10

11 # We need ITK f o r c o n v e r s i o n and p r e p r o c e s s i n g .

12 f ind_package ( ITK REQUIRED)

13 # We want to read / w r i t e f i l e s :

14 i n c l u d e ( ${ITK_USE_FILE})

15

16 # Write some n i c e message , t h a t we know , which i n c l u d e d i r e c t o r y

17 # cmake found .

18 message ( " I n c l u d i n g ␣${ITK_INCLUDE_DIR}" )

19

20 # I n c l u d e the i n c l u d e d i r e c t o r y :

21 i n c l u d e _ d i r e c t o r i e s ( ${ITK_INCLUDE_DIR})

22

23 # I n c l u d e our own i n c l u d e d i r e c t o r y , i f needed

24 i n c l u d e _ d i r e c t o r i e s ( i n c l u d e )

25

26 # D e f i n e s o u r c e s i n the d i r e c t o r y ’ source ’

27 f i l e (GLOB PROJECT_SRC

28 " sou r c e / c o n v e r t e r . cpp " )

29

30 # D e f i n e the program :

31 add_executab l e ( c o n v e r t e r ${PROJECT_SRC})

32

33 # And l i n k to the n e c e s s a r y l i b r a r i e s :

34 t a r g e t _ l i n k _ l i b r a r i e s ( c o n v e r t e r ${ITK_LIBRARIES } ; ${CMAKE_THREAD_LIBS_INIT} ;

ne tcd f_c++4)

35

36 # Set the c++ s t a n d a r d . C++11 s h o u l d be suppor ted , g i ven , t h a t

37 # ITK i s comp i l ed wi th the ’− s t d=c++11’ f l a g .

38 s e t_p r op e r t y (TARGET con v e r t e r PROPERTY CXX_STANDARD 11)

Listing 3.1: Raw CMakeLists.txt file for the use of ITK

The next example deals with the conversion of a three dimensional medical data file to

another format:

1 /∗

2 Example code f o r the D i s s e r t a t i o n o f A l exande r Hunt ,

3 Biomathemat ics Group , U n i v e r s i t y o f K a i s e r s l a u t e r n

4 ∗/

5

6 // C++ i n c l u d e s :

7 #i n c l u d e <ios t r eam>

8 #i n c l u d e <s t r i n g >

9

10 // ITK I n c l u d e s , CMake w i l l r e c o v e r the a b s o l u t e paths :

11 #i n c l u d e <i t k Image . h>

12 #i n c l u d e <i t k Imag eF i l eR e a d e r . h>

13 #i n c l u d e <i t k Im a g e F i l eW r i t e r . h>

14

15 // P r i n t usage i n f o rma t i o n :

16 vo i d usage ( )

17 {

18 s td : : cout << "Usage : c o n v e r t e r [ 3D f i l e ] [ output f i l e ] " << s td : : e nd l ;
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19 }

20

21 i n t main ( i n t argc , cha r ∗∗ a rgv )

22 {

23 // Check the number o f i n pu t arguments :

24 i f ( ! ( a rgc == 3) )

25 {

26 // P r i n t usage i n f o rma t i o n

27 usage ( ) ;

28 // Ex i t , but no e r r o r :

29 r e t u r n 0 ;

30 }

31

32 // t y p e d e f s :

33 // The P ixe lType d e s c r i b e s , what we expec t as p i x e l :

34 // Here we use i n t , so t h i s w i l l work f o r a segmenta t i on f i l e

35 t yp ed e f i n t P i xe lType ;

36 // We have a 3D image , w i th p i x e l i n t :

37 t y p ed e f i t k : : Image<Pixe lType ,3> ImageType ;

38

39 // We want to read and w r i t e t h i s type o f image :

40 t yp ed e f i t k : : ImageF i l eReade r<ImageType> ReaderType ;

41 t yp ed e f i t k : : ImageF i l eWr i t e r <ImageType> WriterType ;

42

43 // Get the i n / o u t f i l e names :

44 con s t s t d : : s t r i n g i n f i l eName = argv [ 1 ] ;

45 con s t s t d : : s t r i n g ou t f i l eName = argv [ 2 ] ;

46 // NOTE: This i s NOT the s e c u r e way .

47 // I would recommend boos t : : p rogram_opt ions to do the job i n

48 // a more s e c u r e manner .

49

50 // Make a r e a d e r :

51 ReaderType : : Po i n t e r r e a d e r = ReaderType : : New( ) ;

52 // s e t f i l e n ame :

53 r eade r−>SetFi leName ( i n f i l eName ) ;

54

55 // Make the c o r r e s p ond i n g w r i t e r :

56 Wri terType : : Po i n t e r w r i t e r = WriterType : : New( ) ;

57 // Set f i l e n ame . Formats w i l l be gues sed out o f the f i l e n ame e x t e n s i o n .

58 w r i t e r −>SetFi leName ( ou t f i l eName ) ;

59 // Set the w r i t e r i n pu t :

60 w r i t e r −>Se t I npu t ( r eade r−>GetOutput ( ) ) ;

61 // At t h i s t ime no th i n happened and t h e r e i s on l y a conne c t i on between

62 // the r e a d e r and w r i t e r , so we need to update the w r i t e r .

63 // Then the f i l e i s r ead and w r i t t e n i n the c o r r e s p ond i n g format .

64

65 // NOTE: The Update ( ) method may throw ex c ep t i o n s , which we need to

66 // catch :

67 t r y

68 {

69 // Do the job .

70 w r i t e r −>Update ( ) ;

71

72 // And r e t u r n w i thout e r r o r :
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73 r e t u r n 0 ;

74 }

75 catch ( s td : : e x c e p t i o n & e )

76 {

77 // I ca tch e v e r y known e x c e p t i o n wi th t h i s , so t h i s i n c l u d e s

78 // out o f memory and or f i l e e x c e p t i o n s .

79 // Write i n f o rma t i o n about the problem :

80 s td : : c e r r << " Excep t i on " << e . what ( ) << s td : : e nd l ;

81 // And r e t u r n wi th e r r o r :

82 r e t u r n 1 ;

83 }

84 catch ( . . . )

85 {

86 // Catch the r e s t . These a r e unknown e x c e p t i o n s .

87 // In most case s , t h i s w i l l not happen , p e r s o n a l l y ,

88 // I d i d not have any unkonw ex c e p t i o n from

89 // the s t anda r y c++ l i b r a r y n e i t h e r from the

90 // ITK l i b r a r y .

91 s td : : c e r r << "Unknown e x c e p t i o n thrown " << std : : e nd l ;

92 // Ex i t w i th e r r o r

93 r e t u r n 1 ;

94 }

95 } // end main .

Listing 3.2: Convert between data formats

In the last example, we want to present the conversion of a segmentation and a diffusion

tensor file to a single netCDF file. In this code, the file is in the actual NetCDF4-format,

meaning that every software capable to read HDF5 files should be able to read it.

1 /∗

2 Example code f o r the D i s s e r t a t i o n o f A l exande r Hunt ,

3 Biomathemat ics Group , U n i v e r s i t y o f K a i s e r s l a u t e r n

4 ∗/

5

6 // C++ i n c l u d e s :

7 #i n c l u d e <ios t r eam>

8 #i n c l u d e <s t r i n g >

9

10 // NetCDF i n c l u d e . We r e l y on the C++ Bind ing :

11 #i n c l u d e <netcd f>

12

13 // ITK i n c l u d e s , CMake w i l l r e c o v e r the a b s o l u t e paths :

14 #i n c l u d e <i t k Imag eF i l eR e a d e r . h>

15 #i n c l u d e <i t k Image . h>

16 // We want to read e s t ima t ed d i f f u s i o n t e n s o r s :

17 #i n c l u d e <i t kD i f f u s i o nTen s o r 3D . h>

18

19 // use the n e t c d f namespaces :

20 u s i n g namespace netCDF ;

21

22 // Wrapped i n an anonymous namespace :

23 namespace
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24 {

25 // He lpe r f u n c t i o n to compute i n d i c e s

26 // For one d imens ion :

27 uns i gned i n t indexComputer ( con s t uns i gned i n t i ,

28 con s t uns i gned i n t n )

29 {

30 r e t u r n i ;

31 }

32 // For more d imens ions , we need to s t a c k t h i s up .

33 // The easy way i s to use the v a r i a d i c t emp l a t e s o f C++11:

34 temp la t e <typename . . . ARGS>

35 uns i gned i n t indexComputer ( con s t uns i gned i n t i ,

36 con s t uns i gned i n t n ,

37 ARGS . . . a r g s )

38 {

39 r e t u r n i + n ∗ indexComputer ( a r g s . . . ) ;

40 }

41

42 // He lpe r f u n c t i o n f o r the output o f d i f f u s i o n t e n s o r s :

43 t emp la t e <typename S ,

44 typename D>

45 vo i d writeToNCDF (S s , D d , con s t s t d : : s t r i n g & f i l e n ame )

46 {

47 // s : Segmentat ion

48 // d : D i f f u s i o n t e n s o r

49 // f i l e n ame : Name f o r the output f i l e

50

51 // F i r s t we have to check the s p a c i n g s / s i z e s and so on :

52 auto d_spac ings = d−>GetSpac ing ( ) ;

53 auto s_spac i ng s = s−>GetSpac ing ( ) ;

54 auto d_s i z e s = d−>Ge tLa r g e s tPo s s i b l eR e g i o n ( ) . Ge tS i z e ( ) ;

55 auto s_ s i z e s = s−>Ge tLa r g e s tPo s s i b l eR e g i o n ( ) . Ge tS i z e ( ) ;

56

57 con s t boo l spac ings_ok =

58 ( ( d_spac ings [ 0 ] − s_spac i ng s [ 0 ] )<1e−4 &&

59 ( d_spac ings [ 1 ] − s_spac i ng s [ 1 ] )<1e−4 &&

60 ( d_spac ings [ 2 ] − s_spac i ng s [ 2 ] )<1e−4) ;

61 con s t boo l s i z e s_ok = ( ( d_s i z e s [ 0 ] == s_ s i z e s [ 0 ] ) &&

62 ( d_s i z e s [ 1 ] == s_ s i z e s [ 1 ] ) &&

63 ( d_s i z e s [ 2 ] == s_ s i z e s [ 2 ] ) ) ;

64 // Check s p a c i n g s :

65 i f ( ! spac ings_ok )

66 {

67 // Write i n f o rma t i o n :

68 s td : : cout<<"Spac ing s a r e d i f f e r e n t : "

69 <<d_spac ings << " vs " << s_spac ings<<std : : e nd l ;

70 // And throw an e x c e p t i o n i n the ca se tha t not :

71 throw s td : : r un t ime_e r r o r (" Spac ing s a r e d i f f e r e n t " ) ;

72 }

73 // Check s i z e s :

74 i f ( ! s i z e s_ok )

75 {

76 // Write i n f o rma t i o n :

77 s td : : cout << " S i z e s a r e d i f f e r e n t : "
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78 <<d_s i z e s << " vs "<<s_ s i z e s << s td : : e nd l ;

79 // And throw an e x c e p t i o n i n the ca se o f i n e q u a l i t y

80 throw s td : : r un t ime_e r r o r (" S i z e s a r e d i f f e r e n t " ) ;

81 }

82

83 // Now we have checked a l l p i t f a l l s w i th r e s p e c t to the data .

84 // Now we w r i t e :

85 s td : : cout << "Going to w r i t e "<<f i l e name<<std : : e nd l ;

86

87 // Crea te NCDF f i l e :

88 NcF i l e f i l e ( f i l e name , NcF i l e : : r e p l a c e , NcF i l e : : nc4 ) ;

89 // NcF i l e : : r e p l a c e r e p l a c e s the f i l e i n ca s e i t e x i s t s , o t h e rw i s e

90 // c r e a t e s i t .

91 // NcF i l e : : nc4 i s the new NetCDF4 standard , which i s s imp l e hdf5

92 // i n d i s g u i s e

93 // Add d imens i on s :

94 NcDim x = f i l e . addDim (" x " , d_ s i z e s [ 0 ] ) ;

95 NcDim y = f i l e . addDim (" y " , d_ s i z e s [ 1 ] ) ;

96 NcDim z = f i l e . addDim (" z " , d_ s i z e s [ 2 ] ) ;

97 NcDim dim = f i l e . addDim (" d " , 3 ) ;

98

99 // Spac ing s va r :

100 NcVar s p a c i n g s = f i l e . addVar (" s pa c i n g " , ncDouble , dim ) ;

101 s td : : v e c to r<double> data ({ d_spac ings [ 0 ] , d_spac ings [ 1 ] , d_spac ings [ 2 ] } ) ;

102 s p a c i n g s . s e tCompre s s i on ( f a l s e , t rue , 9 ) ;

103 s p a c i n g s . putVar ( data . data ( ) ) ;

104

105 // Segmentat ion va r :

106 NcVar segmenta t i on = f i l e . addVar ("B" , nc In t , { x , y , z }) ;

107 s td : : v e c to r<in t > s_data ( s_ s i z e s [ 0 ] ∗ s _ s i z e s [ 1 ] ∗ s _ s i z e s [ 2 ] ) ;

108 f o r ( uns i gned i n t i =0; i<s_ s i z e s [0] ;++ i )

109 f o r ( uns i gned i n t j =0; j<s_ s i z e s [1] ;++ j )

110 f o r ( uns i gned i n t k=0;k<s_ s i z e s [2] ;++k )

111 s_data . a t ( indexComputer ( k , s _ s i z e s [ 2 ] ,

112 j , s _ s i z e s [ 1 ] ,

113 i , s _ s i z e s [ 0 ] ) )= s−>Ge tP i x e l ({ i , j , k }) ;

114 segmenta t i on . s e tCompre s s i on ( f a l s e , t rue , 9 ) ;

115 segmenta t i on . putVar ( s_data . data ( ) ) ;

116

117 // D i f f u s i o n t e n s o r :

118 data . c l e a r ( ) ;

119 data . r e s i z e ( d_ s i z e s [ 0 ] ∗ d_s i z e s [ 1 ] ∗ d_s i z e s [ 2 ] ∗ 3 ∗ 3) ;

120 f o r ( uns i gned i n t i =0; i<d_s i z e s [0] ;++ i )

121 f o r ( uns i gned i n t j =0; j<d_s i z e s [1] ;++ j )

122 f o r ( uns i gned i n t k=0;k<d_s i z e s [2] ;++k )

123 {

124 auto p i x = d−>Ge tP i x e l ({ i , j , k }) ;

125 f o r ( uns i gned i n t i i =0; i i <3;++ i i )

126 f o r ( uns i gned i n t j j =0; j j <3;++ j j )

127 {

128 con s t uns i gned i n t i nd =

129 indexComputer ( i i , 3 , j j , 3 , k , d_ s i z e s [ 2 ] ,

130 j , d_ s i z e s [ 1 ] ,

131 i , d_ s i z e s [ 0 ] ) ;
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132 data . a t ( i nd ) = p i x ( i i , j j ) ;

133 }

134 }

135 NcVar d i f f u s i o n_ t e n s o r = f i l e . addVar ("DW" , ncDouble , { x , y , z , dim , dim }) ;

136 d i f f u s i o n_ t e n s o r . s e tCompre s s i on ( f a l s e , t rue , 9 ) ;

137 d i f f u s i o n_ t e n s o r . putVar ( data . data ( ) ) ;

138 }

139 } // end namespace {}

140

141 // Main :

142 i n t main ( i n t argc , cha r ∗∗ a rgv )

143 {

144 // De f i n e P i x e l t y p e s :

145 t yp ed e f i n t P i xe lType ;

146 t yp ed e f i t k : : D i f fu s i onTenso r3D<double> TensorType ;

147 t yp ed e f i t k : : Image<Pixe lType ,3> Segmentat ionImage ;

148 t yp ed e f i t k : : Image<TensorType ,3> DTIImage ;

149

150 t yp ed e f i t k : : ImageF i l eReade r<Segmentat ionImage> SegReader ;

151 t yp ed e f i t k : : ImageF i l eReade r<DTIImage> DTIReader ;

152

153 t r y

154 {

155 // The use i s

156 // program [ segmenta t i on f i l e ] [ d i f f u s i o n t e n s o r f i l e ] [ output ]

157 s td : : s t r i n g s eg_ f i l e name = argv [ 1 ] ;

158 s td : : s t r i n g d t i _ f i l e n ame = argv [ 2 ] ;

159 s td : : s t r i n g o u t f i l e = argv [ 3 ] ;

160 SegReader : : Po i n t e r seg = SegReader : : New( ) ;

161 seg−>SetFi leName ( s eg_ f i l e name ) ;

162 seg−>Update ( ) ;

163 Segmentat ionImage : : Po i n t e r s egmenta t i on = seg−>GetOutput ( ) ;

164

165 DTIReader : : Po i n t e r d t i = DTIReader : : New( ) ;

166 d t i−>SetFi leName ( d t i _ f i l e n ame ) ;

167 d t i−>Update ( ) ;

168 DTIImage : : Po i n t e r d i f f u s i o n _ t e n s o r s = d t i−>GetOutput ( ) ;

169

170 writeToNCDF ( segmentat ion , d i f f u s i o n_ t e n s o r s , o u t f i l e ) ;

171

172 }

173 catch ( s td : : e x c e p t i o n & e )

174 {

175 s td : : c e r r << " Excep t i on "<<e . what ( )<<s td : : e nd l ;

176 r e t u r n 1 ;

177 }

178 catch ( . . . )

179 {

180 s td : : c e r r << "Unknown e x c e p t i o n thrown"<<std : : e nd l ;

181 r e t u r n 1 ;

182 }

183

184 }
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Listing 3.3: Convert medical data to NetCDF file
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Chapter 4

Numerical simulation

4.1 Introduction

In this chapter we will present how the previously introduced models are solved numerically.

We will neither show how the microscopic models (cellular scale including the subcellular

dynamics) can be solved (if one is interested, we would recommend [SS11]), neither how the

mesoscopic models can be discretized. This is due to the lack of reasonable initial conditions

for these - of course one may choose something arbitrary for the velocity variable, but the

aim of personalized medicine requires reliable information, that is only available on the

macroscopic (i. e. spatio-temporal) scale. The main traits of a numerical method are clearly

correctness and ease of implementation. For the accuracy, we will rely as often as possible

on existing and, more important, on well-tested codes. Our choice are the core packages

of the numerical framework of Dune [BBD+08b, BBD+08a, BB07, BB08] for grid handling

and sparse linear algebra, whereas the necessary dense linear algebra is handled by Armadillo

[SC16], which combines fast execution with ease of implementation. All of these libraries are

written in and for C++, a compiled general-purpose programming language. We cannot use

Matlab nor the open source equivalents Gnu Octave and Scilab, because we need to load

plenty of data, which is required for the personalization of the mathematical model. This data

has to reside in memory, so we need a memory efficient language, like C++. For the loading

procedure itself, it is convenient to have access to high quality libraries, that are usually

available for the C-language family (C/C++). Another reason to use a compiled language

is the execution speed. There is no point in having a good model, which could be used in

clinical practice to estimate the tumour growth, but does not fulfil the strict requirements

on performance, originating from the pressing need of therapy in presence of glioblastoma.

It is necessary that three dimensional computations are possible in a reasonable time, as two

dimensional ones neglect the third dimension the tumour can use to spread, and thus can

59
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lead to wrong results (see e.g. figure 4.3).

The simulations must preserve every core property the equation exhibits, and should

handle the problem efficiently. A high-performance code is not a necessity, but we must

not waste time nor memory. The region where the computation takes place is given by the

medical data, which is 167549 voxels in three dimensions in the case of the data set coming

along with Camino [CBG+06]. The estimation of the necessary quantities D and Q of the

modelling chapter 2 takes a few minutes (in our non-representative test 94 seconds) and the

estimation of the quantities D̃ and U substantially longer (around 18 hours). In the case of

model (2.23) there is only the need to compute the diffusion tensor D and the volume fraction

Q, whereas model (2.40) requires computing double integrals for D̃ and U . But luckily, the

computations are only local, so they can be massively parallelized using additional power to

fit the time requirements.

4.2 Discretization of the macroscopic equations

We only consider the prototype of the macroscopic equations belonging to models (2.23)

and (2.40), so we handle the reaction-convection-diffusion equation

∂tu − div (D(x)∇u) + div (M(x)u) = f(u), (4.1)

where D is a positive definite, spatial dependent diffusion tensor and M is a spatial dependent

drift vector, both assumed to be continuous. For the models (2.23) and (2.40) where we

have to do with myopic and myopic-like diffusion, the additional drift term is included in M .

The function f is a nonlinear reaction term. In our case it has the property f(0) = 0, so the

parabolic comparison principle states that the solution stays non-negative, as proven in the

modelling chapter 2. If we only consider the convection-diffusion term

− div (D∇u − Mu)

and integrate it over a test volume Σ with at least Lipschitz boundary, we get by the Gauß

theorem
∫

Σ

− div (D∇u − Mu) dx =

∫

∂Σ

−n · (D∇u − Mu) dσ(x),

where n represents the unit outer normal to ∂Σ. So this part of the equation is locally mass

conservative. This also remains true if we look at the convection term or the diffusion term

alone.

These properties, namely local mass conservation of the diffusive and convective fluxes,

as well as the non-negativity must be conserved by the numerical method used. This hinders
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us from using finite elements, as there is no standard method fulfilling both properties.

Especially the non-negativity is of importance, because we solve the equations for a cell

density, that has to remain non-negative for all times. We cannot assign any meaning to

negative values, except that the numerical method is not tailored to the problem and should

not be used. In the following, we will present the discretization of the equation (4.1) part by

part, starting with the diffusion term.

4.2.1 Discretization of the diffusion term

Let us consider the equation

− div (D∇u) = g in Ω

u = 0 on ∂Ω,
(4.2)

in a Lipschitz-domain Ω with polygonal boundary. As we do not want to inflate the presen-

tation with the inclusion of different boundary conditions, we select homogeneous Dirichlet

conditions, although we solve equations (2.23) and (2.40) to homogeneous Neumann bound-

ary conditions. Homogeneous Neumann conditions can be included via removing the fluxes

over the boundary faces.

It is known [EGH00] that for full tensorial diffusion we are confronted with the classical

two point fluxes not being sufficient if the eigenvectors of D are not aligned with the grid,

which is not satisfied for real medical data (see figure 3.2). So, since two point fluxes are not

sufficient, multipoint flux methods (MPFA) were proposed [Aav02], of which the MPFA O-

method is the most prominent one [Aav02]. We do not want to present this special method,

but implemented it and realized (which is actually known to the literature [Dro14]) that in

general it does not preserve non-negativity of the solution and hence it is not usable for our

purposes.

A very attractive method from the analytical point of view (due to its high order) is

the discontinuous Galerkin approximation (DG) [ESZ09], or even the hybridized one (HDG)

[NPC09], in which a postprocessing strategy can be used to gain one order of convergence

[NPC09, NP12]. The strengths of the HDG method are local approximation of the fluxes,

high approximation orders, and a parallelization friendly layout of the resulting linear systems,

which can be locally inverted due to a cell-wise block structure. However, this method fails

in preserving the positivity in general without flux limiters. So neither the MPFA nor the

(H)DG methods, yet attractive, can be used to solve the equation (4.1).

A viable solution for the discretization of (4.1) is to use mimetic finite differences

[LMS14, dVDM11], although they are not optimal, because they have severe computational

implications like inverting large unsymmetric linear systems. They are based on approxima-

tions of inner products in a way that ensures the integral theorems - especially the Gauß
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theorem in the present context - to remain valid in a discrete form. This can be established

with a correct approximation of the discrete differential operators. The following short sketch

is based on the very comprehensive and readable work [LMS14] to which in order to improve

readability we refer for all results without citing them explicitly in the following. The paper

[LMS14] is a review of the numerical analysis on mimetic discretizations performed during

the last decades.

As a first step for the mimetic discretization of the diffusion equation (4.2) we transform

the equation

− div (D∇p) = g in Ω

p = 0 on ∂Ω

into the equivalent first order system

u = −D∇p in Ω

div(u) = g in Ω

p = 0 on ∂Ω.

(4.3)

We renamed the previous variable u into p to be conformal with the mimetic finite difference

literature, where the variable represents in most cases a pressure.

Now we select a finite volume approximation of the system (4.3). So let Th be a trian-

gulation of Ω to mesh width h. Denote by C(Th) the cells and by F (Th) the faces of the

triangulation. In our case of a voxel grid given by medical data, the cells will be squares (in

two dimensions) or cubes with side length h. We do not want to present the mimetic finite

differences for an arbitrary grid, but for the sake of simplicity prefer to do it only for such a

structured quadrilateral grid.

Define the space

Ch = {p : C(Th) → R : p
∣

∣

∣

c
≡ const for each cell c ∈ Th}.

The variable p is now approximated by ph ∈ Ch such that ph holds the cell averages of p,

hence

ph

∣

∣

∣

c
=

1

|c|

∫

c

p(x)dx

for each computational cell c. For the fluxes we need to define the space

Fh = {u : F (Th) → R : u
∣

∣

∣

f
≡ const for each face f of Th}.

Note that the space Fh cannot hold the vector valued function u in the system (4.3), but only

the normal fluxes. So we approximate the function u by a (scalar valued) function uh ∈ Fh
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such that

uh

∣

∣

∣

f
=

1

|f |

∫

f

nf · u(x)dσ(x)

for all faces f with the notation nf for the normal vector on the face f .

Note 4.2.1.

- The notations |c| and |f | stand for the volume of the cell c and the face f , respectively.

- The normal vector nf is directed in an (arbitrary) fixed orientation, whereas the normal

on the face f directed outwards of a cell c is denoted by nc,f .

- An issue with the implementation is to keep track of the face orientations. A possible

solution is to save them into an array of Boolean variables, but the simpler version,

which is the one we use, is to exploit the cell indices that are given by the implemen-

tation of the grid in Dune. So we selected a face normal orientation to be positive if

it points from a lower indexed cell to a higher indexed one.

The main idea behind mimetic finite differences is the compatible discretization of dif-

ferential operators, so we select to do this for the divergence operator first. As seen from the

system (4.3), it has to map our approximated u to a cell variable, hence DIV : Fh → Ch.

A compatible discretization is

(DIV uh)c =
1

|c|
∑

f∈∂c

αc,f |f | uf ,

where α describes the mutual orientations of the face normal (with fixed orientation) nf and

the face normal on the cell nc,f , so αc,f = nf · nc,f .

Lemma 4.2.1. For the previously defined discrete divergence, the discrete analogue of the

Gauß theorem holds

∑

c∈Vh

|c| (DIV uh)c =
∑

f∈Sh

|f |uf ,

where Vh is a connected union of computational cells with Sh as boundary and the normal

vectors nf are assumed to point outward of Vh.

Proof. Obvious, for the inner faces the orientations αc,f are counted with different signs.
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Another nice property needed is that the discrete divergence DIV is surjective, so

DIV (Fh) = Ch. For a proof we refer to lemma 2.1 in [LMS14]. Now we are able to discretize

the second equation of the system (4.3):

div(u) = g

will be transformed into the discrete counterpart

DIV uh = gh,

where

(gh)c =
1

|c|

∫

c

g(x)dx.

Now the equation

u + D∇p = 0

remains to be discretized. This has to be done in a compatible way. Intuitively, one may be

tempted to use similar defining properties from vector calculus for the discrete gradient, but

this does not succeed. The way to go is better understandable if we test the equation with

some smooth function φ:
〈

D−1u, φ
〉

L2(Ω)
+ 〈∇p, φ〉L2(Ω) = 0.

Inserting the well known identity ∇ = − div⋆, we get
〈

D−1u, φ
〉

L2(Ω)
− 〈div⋆ p, φ〉L2(Ω) = 0.

Thereby div⋆ denotes the L2-adjoint operator of div. For a moment let us assume that we

have compatible mimetic scalar products [·, ·]Fh
and [·, ·]Ch

. Then we would like to have as

in the continuous case a discrete gradient operator GRAD fulfilling GRAD = −DIV ⋆ with

respect to the scalar products, so

[DIV uh, ph]Ch
= − [uh, GRAD ph]Fh

.

We require that the scalar products fit to the equation, and so their cell contributions have

to fulfil

[ph, qh]Ch

∣

∣

∣

∣

c

≈
∫

c

q(x)p(x)dx

[uh, vh]Fh

∣

∣

∣

∣

c

≈
∫

c

u(x) · D−1 · v(x)dx

(4.4)

for each computational cell c.
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Note 4.2.2. - The operator GRAD introduced above is the so-called derived gradient

operator in [LMS14] and is denoted therein by G̃RAD.

- The cell-wise contributions of the scalar products may be written as matrix multipli-

cation, so each of the scalar products [·, ·]Σ is represented by a cell-wise matrix MΣ

for Σ ∈ {Ch, Fh}. In the following, we will drop the ’h’ as second index, because we

only refer to a fixed width h.

The task is now to deduce conditions on MC and MF in order to get an accurate

numerical scheme. In order to fulfil the first equation of (4.4), we may select MC

∣

∣

∣

c
= |c|.

This fits also the dimensions of the space Ch, where we have only one degree of freedom per

cell leading to a globally diagonal matrix MC , which hence may be inverted easily. The face

matrix MF (also cell-wise) is not that easy and we need to impose consistency conditions in

order to arrive at a first order scheme. Let us denote by m the number of faces per cell, which

is in the case of a structured quadrilateral grid fixed. In two dimensions, we have m = 4, in

three m = 6. Then we arrive at a set of algebraic equations

MF

∣

∣

∣

c
Ni = Ri i = 1, ..., m

to be fulfilled for a first order numerical method. It can also be written as a matrix equation

MF

∣

∣

∣

c
Nc = Rc, (4.5)

where the matrices Nc and Rc containing the columns Ni and Ri, respectively, are left to

be defined. They represent the applications of the inner product to an ansatz space. Let us

define the cell centre xc and the face centre xf . Both are well defined in the case of an

axiparallel structured quadrilateral grid, like that on which the medical data is given. Then

the matrices Nc and Rc are given by

Nc =









nT
f1

...

nT
fm









D Rc =









αc,f1
|f1|(xf1

− xc)
T

...

αc,fm
|fm|(xfm

− xc)
T









.

Under the assumption that RT
c Nc is symmetric and positive definite (which is proven to be

fulfilled) we can solve the equation (4.5) with

MF

∣

∣

∣

c
= M0 + M1, where

M0 = Rc

(

RT
c Nc

)−1
RT

c and

M1 = DcUcD
T
c
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upon using a matrix Dc with columns forming a basis of ker(NT
c ). The matrix Uc ∈ Rd×d

has to be symmetric and positive definite and controls the numerical scheme. As mentioned

in [Dro14], the matrix Uc has little influence on the convergence behaviour and the approx-

imation error, but it can be used to arrive at a monotone scheme. For the presentation of

the monotone method, the matrix equation (4.5) can be reformulated as

Nc = WF |cRc. (4.6)

If we split the matrix WF

∣

∣

∣

c
as before for MF

∣

∣

∣

c
we get

WF

∣

∣

∣

c
= W0 + W1,

W0 = Nc

(

NT
c Rc

)−1
NT

c and

W1 = D̃cŨcD̃
T
c .

The columns of the matrix D̃c have to form a basis of ker(RT
c ), the matrix Ũc has to be

symmetric and positive definite as before.

Lemma 4.2.2 (Lemma 3.1 in [LMS14]). For the previously defined matrices the identity

RT
c Nc = D|c|

is valid, so we may use the formulae for M0 and W0 presented before.

Example 4.2.1 (Corollary 2.1 in [LMS14]). A simple possibility to get convergence is now

to take the matrix MF |c as

MF

∣

∣

∣

c
= Rc

(

RT
c Nc

)

RT
c + λc

(

I − Nc

(

NT
c Nc

)

NT
c

)

,

with a stabilization constant, that may be chosen as

λc =
1

2
tr

(

Rc

(

RT
c Nc

)−1
RT

c

)

.

For the mimetic finite difference method we have the desired convergence properties.

Theorem 4.2.1 (Theorem 3.3 and 3.4 in [LMS14]).

Let u ∈ H(div, Ω) =
{

φ ∈ (L2(Ω)
)d

, div(φ) ∈ L2(Ω)
}

and p ∈ H2(Ω) be a solution to

the first order system (4.3). Let the following assumptions (in the paper [LMS14] denoted

by (S1) and (S2)) be fulfilled:

- Let v1 and v2 be vector valued functions on a cell c such that v1 is a constant vector

and div(v2) is constant in c. Moreover let the normal flux v2 · f be constant on each
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face f of cell c. For the constant diffusion tensor D and discretizations v1
h and v2

h, the

mimetic inner product [·, ·]F |c has to be exact, so

[v2
h, v1

h]F |c =

∫

c

v2D−1v1dx.

This assumption is at the origin of the consistency conditions (4.5) and (4.6) and

hence is fulfilled for the presented matrices.

- The matrix MF

∣

∣

∣

c
has to be coercive and bounded, in the sense that there are positive

constants α1 and α2 fulfilling

α1 |c| |x|2 ≤ xT MF |cx ≤ α2 |c| |x|2 for all x ∈ Rm.

Let uI ∈ Fh and pI ∈ Ch be the projected variants of u and p. Let uh ∈ Fh and ph ∈ Ch

be the solution of the discretized system using the mimetic finite difference method. Then

it holds

∣

∣

∣uI − uh

∣

∣

∣

Fh

+
∣

∣

∣pI − ph

∣

∣

∣

Ch

≤ Ch||p||H2 ,

where the discrete norms |·|Σ are defined via the scalar products |φ|Σ = ([φ, φ]Σ)
1

2 . Moreover,

if the domain is convex and the right hand side g is at least H1(Ω), it holds

∣

∣

∣pI − ph

∣

∣

∣

Ch

≤ Ch2 (||p||H2 + ||g||H1) .

In both cases, the constant C is independent of the mesh size h.

The convergence is optimal for a piecewise constant approximation. Of course, one can

introduce additional degrees of freedom for u or p leading to additional constraints in order

to get a higher order mimetic finite difference method. This is sketched in chapter 5.2 of

[LMS14], but we restrain here at using a first order method. The complete discretized system

reads

−DIV T MC ph + MF uh = 0

DIV uh = gh.
(4.7)

The matrix MC is, as noted, diagonal, and represents the application of the scalar product

[·, ·]Ch
, whereas the matrix MF represents [·, ·]Fh

and has to be assembled cell-wise. The

implementation of this method is quite straightforward, with the exception of the matrix

MF . If we want to use a monotone method, we have to assemble the matrix WF |c first and

explicitly invert it. This is time consuming, but as the size is given by m, which is bounded

by 6 (for three dimensions) in our case, this is a viable solution. Otherwise, one would
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compute a matrix WF instead of MF and then perform a sparse matrix-matrix multiplication.

We tested both possible implementations and realized that explicitly inverting small dense

matrices is much faster than the sparse matrix-matrix product. For the monotone mimetic

finite difference method, one may select a compatible stabilization matrix Ũc. In chapter 4.1

in [LMS14] this was done for a hybrid mimetic finite difference method, which is not what

we want to use; however, the idea can be transferred to the sketched one. Using Ũc = D̂,

where the entries of D̂ are given by
(

D̂
)

i,j
= −|Di,j | for i 6= j

(

D̂
)

i,i
= Di,i,

leads to a monotone method.

Remark 4.2.1. The previous formula is only valid for a structured axiparallel quadrilateral

grid, like YaspGrid of Dune and the grids of the given medical data.

To test the implementation of this method, we used Ω = (0, 1)2 and the constant

diffusion tensor

D = H

(

1.1 0

0 0.01

)

H−1

with a rotation matrix

H =

(

cos
(

π
4

)

sin
(

π
4

)

− sin
(

π
4

)

cos
(

π
4

)

)

.

So we test two different properties: first the eigenvectors are not aligned with the grid (as

they are given by the columns of the rotation matrix H) and secondly the eigenvalues of

the diffusion tensor have two orders of magnitude in difference, a property ubiquitous in real

data, but problematic for numerical schemes. As a test function we chose

p(x) =
3
∑

i=1

exp

(

(x − xi)
2

0.01

)

using the points x1 = (0.25, 0.25)T , x2 = (0.75, 0.25)T and x3 = (0.5, 0.75)T . The right

hand side g as well as the boundary values were chosen such that the test function p fulfils

the equation. The results can be seen in the tables 4.1 and 4.2 for the non-monotone and

the monotone method, respectively. In the tables the cycle indicates the refinement cycle

applied on the grid. We used global refinement, so the size h will be halved in one cycle.

The row L2-residual indicates the discrete norm | · |Ch
and the H1-seminorm is given by

the L2-norm on the faces (and so on the variable u). The row convergence contains the
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Cycle 0 1 2 3 4

L2-residual 1.40906 0.370784 0.0963164 0.0246138 0.00642245

H1-seminorm 1.37968 0.719982 0.33475 0.138349 0.0623659

Convergence ∞ 0.26314 0.25976 0.25555 0.26093

Table 4.1: Convergence results for the non-monotone method

Cycle 0 1 2 3 4

L2-residual 2.00824 0.501928 0.125469 0.0313857 0.00793592

H1-seminorm 0.978507 0.32016 0.113042 0.0477333 0.0404773

Convergence ∞ 0.24993 0.24999 0.25015 0.25285

Table 4.2: Convergence results for the monotone method

change of the L2-residual during one step, i. e. ei/ei−1, where ei is the L2-error in cycle i.

As one can easily see, the convergence on the p-variable is around 0.25, as expected. The

error on the u-variable is not as expected, because we are using another norm to measure the

distance; however, a linear convergence can be indicated. So the implementation is correct

and exhibits the expected order of convergence.

4.2.2 Discretization of the convection term

Here the task is to discretize the equation

div (Mu) = g in Ω,

M · nu = 0 on ∂Ω,
(4.8)

where M is a continuous function depending on the spatial variable x. We need to approx-

imate the function u in a manner that has to be compatible to the discretization of the

diffusion term. For the latter we used mimetic finite differences, leading to cell centred finite

volume approximations for the main variable, so we use for this term cell centred finite vol-

umes tailored to the triangulation Th of width h. Then the discretized form of (4.8) reads

for a cell c

div (Mu)
∣

∣

∣

c
≈ 1

|c|
∑

f∈∂c\∂Ω

Mf uf,+,
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where Mf is an approximation of

Mf ≈
∫

f

M(x) · ndσ(x)

and uf,+ is the classical upwind evaluation of u on the face f [dVDM11, Dro10]. This scheme

is locally mass conservative and moreover conserves positivity, at least numerically. Details

can be found in [EGH00]. This discretization is first order exact and compatible with the

mimetic finite difference scheme for the diffusion term [dVDM11, Dro10]. Another possibility

also discussed in [dVDM11, Dro10] is to use mimetic formulations of this term leading to a

method where local mass conservation has to be enforced via additional constraints in the

linear systems to solve. However, the enforced local mass conservation does not hold in the

classical sense, where each of the diffusive and convective fluxes are conserved, but only the

combination of both.

The only question remaining is how to choose the value of M on a face, especially if

this value depends on real data given typically only in the interior of the cells and not on

the faces. An intuitive way would be to use linear interpolation between the cell values, but

sometimes it is better to use harmonic averages

harm(a, b) =
a · b

a + b
.

We used both methods and found little difference in the resulting solution. This stems from

the fact that the dominant term g(x)D∇Q originating from the subcellular scale is in a

form where it is convenient to apply mimetic finite differences to compute D∇Q on a face,

hence leaving g the only term to average. We did not test the implementation of the upwind

method rigorously, because it is quite simple to implement and moreover, we cross-checked it

against the well-tested convection implementation in Dune [BBD+08b, BBD+08a, BHM10].

The discretization of the convection term can be put into a matrix P acting on the cell

variables.

4.2.3 Time stepping

For the time stepping scheme, it is convenient regarding computation time (which is of

particular importance to the clinical application) to employ a semi-implicit method. The

convection-diffusion part, especially the diffusion, needs to be resolved implicitly, while the

reaction part, consisting of the growth, is not a stiff problem due to the small growth constants

(for more details refer to table 4.5) and hence may be resolved explicitly. The overall method

has to be exact of first order - we cannot expect more, because the upwind for the convection

part and the mimetic finite differences on a non-convex domain, like the brain, are only of

first order -, so we use an implicit Euler stepping for the convection-diffusion part and per
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computational cell a fourth order Runge-Kutta method for the reaction part. The overall

scheme for a time step τ reads

(I + τA) uk+1
h = uk

h + τΦ
(

f(uk
h)
)

,

where A = (−DIV M−1
F DIV T MC) + P represents the linear system stemming from the

discretization of the convection-diffusion part, whereas Φ shall stand for the numerical flux

associated with the fourth order Runge-Kutta method.

Note 4.2.3. With the higher order explicit scheme for the reaction part we do not gain any

order of convergence, but the explicit one-step schemes are very easy to implement and very

cheap during execution of the code, so they have at least no negative influence compared to

a corresponding explicit first order scheme: in contrary, the numerical code may profit from

the higher accuracy.

4.3 Processing the data

In this section we want to document how the implementation of the data processing took

place. With processing we mean the inclusion of real medical data into the numerical code.

Recall (confer to the data chapter 3) that we have ideally the quantities q describing the tissue

fibre orientation, Q standing for the volume fraction of tissue fibres as well as a segmentation,

which gives information of the different tissues in the brain, or at least information about

where the brain tissue is located. For the different models, we need to compute the quantities

•

∫

S2

ξ ⊗ ξq(ξ)dξ

•

∫

S2

∫

S2

G(ξ, η)ξ ⊗ ηq(ξ)q(η)dη dξ

•

∫

S2

∫

S2

G(ξ, η)ξ ⊗ ηq(ξ)∇q(η)dη dξ,

a process that cannot be done analytically, due to the selection of the orientation distribution

function as tissue fibre orientation. However, for different choices as the peanut or the bimodal

von-Mises-Fisher distribution, this is possible [PH13]. So we need to employ a numerical

integration method, and we chose Monte-Carlo integration was inspite of the fact that it is

clearly not optimal with a mean convergence rate of 1
2 . However, more elaborate possibilities

for spherical integration, like best approximation formulae, which require to solve additional

linear systems to minimize the discrepancy, are harder to implement. This is clearly possible,

but not necessary, because we are solving the forward problem, so it is not of importance

whether the integration is exact for three or seven digits. For the actual integration it is
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very convenient to use parallelization, because solving the integrals per voxel are tasks that

are independent of each other. To accomplish this task, we rely on the framework OpenMP

[Ope16], which is automatically enabled in the code, if present.

4.3.1 The single integral

The single integral
∫

S2

ξ ⊗ ξq(ξ)dξ

is very straightforward to implement, so we do not discuss this in detail. For testing the code,

we used the water diffusion tensor DW = I leading to the orientation distribution function

q = 1
4π

. Now we have to compute for this test case the integral explicitly, which has been

done in [Hil05]. So we have
∫

S2

ξ ⊗ ξq(ξ)dξ =
1

3
I.

The convergence result is as expected (see table 4.3). The error row contains the error in

a matrix related norm. We use the Frobenius norm, which is equally sensitive for all entries.

The row convergence is the actual error divided by the error corresponding to half of the

points, as in the previous tables 4.1 and 4.2. One expects that by doubling the number of

points, the error should multiply by 1√
2
, which is around 0.7071, and can be verified in table

4.3.

Number of points 500 1000 2000 4000 8000

Error in Fro-norm 0.05746 0.0212005 0.0154376 0.0107685 0.00867506

Convergence ∞ 0.3690 0.7282 0.6976 0.8056

Table 4.3: Convergence of the single integration code for the test case

4.3.2 The double integral

The second double integral involving the gradient of q is just the same to implement as the

first one, if the gradient is precomputed, for which we employ first and second order finite

differences. The domain has a lot of boundary voxels, where a centred second order scheme

is not possible and so we use a first order difference in the outer rim of the domain.
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So to compute the integral
∫

S2

∫

S2

G(ξ, η)ξ ⊗ ηq(ξ)q(η)dη dξ,

we need to employ regularization, because we are confronted with a singular integral. Recall

that Green’s function reads

G(ξ, η) =
1

4π

(

ln

(

1 − ξ · η

2

)

+ 1

)

,

which has a singularity in ξ = η. To avoid the integration over this singularity, we use the

so-called space regularized sphere function

Gρ(ξ, η) =







1
4π

(

ln
(

1−ξ·η
2

)

+ 1
)

ξ · η < 1 − ρ

1−ξ·η
4πρ

+ 1
4π

(ln(ρ) − ln(2)) ξ · η ≥ 1 − ρ
,

which is a linearly extrapolated version of G around ξ · η = 1 − ρ. This function can be

found for example in [FS08] in combination with a proof that the value of the regularized

integral converges to the original one. In the simulations and tests, we use ρ = 0.01, because

the error scales with ρ and so the expected errors of the regularization and the Monte-Carlo

integration are of the same order. Moreover, we tested the independence of the integration

with respect to the parameter ρ for smaller values.

Now we opt for the test case q = 1
4π

as before. Then the double integral simplifies to
∫

S2

∫

S2

G(ξ, η)ξ ⊗ ηq(ξ)q(η)dηdξ =
1

(4π)2

∫

S2

∫

S2

G(ξ, η)ξ ⊗ ηdηdξ

The latter one has to be computed. Therefore, the integral
∫

S2

G(ξ, η)ηdη

is rewritten as the solution to the problem

∆⋆g(ξ) = ξ
∫

S2

g(ξ)dξ = 0,

where both equations are understood component-wise. This PDE on the sphere is solved by

g(ξ) = −1
2ξ fulfilling also the side condition. Then the double integral simplifies to

1

(4π)2

∫

S2

−1

2
ξ ⊗ ξdξ,

for which the value is known as − 1
24π

I [Hil05].

As before, the actual numerical code has the expected convergence rate as seen in table

4.4, where the conventions of the previous table 4.3 apply.
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Number of points 500 1000 2000 4000 8000

Error in Fro-norm 0.00450304 0.00170246 0.00121828 0.0008613 0.000686214

Convergence ∞ 0.3781 0.7156 0.7070 0.7967

Table 4.4: Convergence of the double integration code for the test case

4.4 Assessing the parameters

We included the medical data in the numerical code, but we still need to select the parameters.

This is easy for some of them, because measurements are available. Others, however, cannot

be measured and have to be estimated, while there is also one free parameter, where it is not

yet clear in which region typical values should lie. Nevertheless this free parameter confers

flexibility to the model, enhancing or suppressing anisotropy, which can be easily seen in

the simulations on real data (see figures 4.5 and 4.6). It remains to estimate the following

parameters:

- The cell speed s: This is measurable for different types of cells, at least in vitro, but also

in mouse models, where few cells, which can be tracked, are implanted into a rodent.

In [CS95] the cell speed was measured for glioma cells to be around 2.1 · 10−7 m
s .

- The attachment and detachment rates k+ and k−: These are a bit trickier to assess,

because measurements are available only for the detachment rate [LL93]. We expect

the attachment rate to be of the same order of magnitude, so selecting k+ = k− =

0.11
s is a reasonable choice.

- The mean turning rate λ0: K. Wolf (Radboud Univ. Nijmegen, unpublished data at

the time of writing) measured it to be 0.81
s and is also used in [EHS15] and [HS16].

- The growth rate cg: This can be estimated, which is done in the following.

- The incremental turning rate λ1: This is the free parameter in the model, that enables

to adjust the visible anisotropy on a per patient basis. It cannot be measured, neither

is it clear which sign this constant should have. In previous papers [EHKS14, EKS16,

EHS15] the rate was proposed to be 10001
s , what is very large, especially in the light

that the overall rate λ(z) has to stay positive, so we are more conservative and select

it between −1001
s and 1001

s . We include negative values, because we want to assess

the sensitivity of the result with respect to this parameter (see figures 4.5 and 4.6).

There are two different possibilities to assess the growth rate cg. On the one hand, one

can rely on measurements. This is widely accepted and used, but has the shortcomings that
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Parameter s k+, k− λ0 λ1 cg

Value (in 1
s
) 0.21 · 10−6m 0.1 0.8 −100 – 100 8.44 · 10−7

Table 4.5: Model parameters used in the numerical simulation

a tumour doubling rate is measured, however not from the complete tumour, but only from

the visible part of it consisting of up to 80 % of the tumour cell density. If these volume

doubling rates are present, it is not known how to transform these in a reliable manner

into a cell density growth rate. The other possibility is to rely on the cell cycle, which was

estimated for glioma to be about 57 hours [HWRB75], so the cell density is expected to

double after this time span, if all cells are actively cycling. However, this is not the case, so

there is a need for further measurement of cells that are in cycle. In [UGR99] the authors

estimated the fraction of actively cycling cells to be around 25-30 %. So the rate cg computes

as fraction of actively cycling cells
duration of a cell cycle ln(2) ≈ 8.44 · 10−7 1

s , as in [EHS15].

The table 4.5 summarizes the actual values of the parameters used in the numerical

code. Note that the units in which the constants are given are not used in the numerical

code, but we transformed them with the compile-time ratio implementations of C++ to

the desired ones (days and millimetres). The compile time logic is less error prone than by

doing the conversion manually and yields more accurate results, because floating-point errors

are mostly avoided.

4.5 Numerical Simulations

4.5.1 Implementation

We want to comment on the actual implementation of the reaction-convection-diffusion-

equation. Overall, we use a splitting scheme in order to have only a linear system that is

solved in a sequence, so there is only the need of assembling this linear system once. Starting

the programme, it first reads the configuration and loads the segmentation, because this

data set contains only integer variables, typically in a range of −1 to 8 - in the case of a

pure brain mask, as is the case for the example data set that is used for illustration of the

diffusion tensor reconstruction in Camino [CBG+06], only 0 and 1.

With this segmentation a YaspGrid of Dune [BBD+08b, BBD+08a] is generated for a

bounding box and afterwards all voxels not contained in the brain mask are removed with

the aid of dune-multidomaingrid. Then the actual computation engine is started. It first

loads the needed data (only for the voxels in the brain mask, so we do not waste memory by

loading a lot of matrices containing zeros). The initial values are loaded, applied, and then
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the associated memory is freed. Then the expression
(

−DIV T MC MF

I + ∆t P ∆t DIV

)(

p

u

)

=

(

0

g

)

is assembled, where it is convenient to compute only the matrices MF , DIV and I +

∆t P . Recall that the matrix MC is globally diagonal and the effect is a multiplication by

|c|. During this phase it is necessary to compute D∇xQ for the drift terms. This is done

via mimetic finite differences, so MF and DIV are assembled first, then the matrix P .

During this computation we use the ILU0-preconditioned BiCGSTAB-solver, as implemented

in dune-istl [BB07, BB08] to the reduction 10−14. After the assembly step, there is no

need to hold any data beyond Q in memory, so the rest is released in order not to waste

resources.

During a step in the simulation phase, the right hand side g is computed and the system

is solved with the aid of the Schur-complement:

p =
(

I + ∆t
(

P − DIV M−1
F DIV T MC

))−1
g,

where we do not need to compute u, because we are only interested in the density vari-

able. Here we need two solvers, for the outer inverse and for M−1
F . Both are solved with

ILU0-preconditioned BiCGSTAB-solvers to the different reductions 10−14 for the outer solve,

hence also for the complete system, and 10−8 for the inner solve. This is used because of a

discrepancy in the orders of magnitude of p and u.

After the solve we inserted the (not essential) step of checking non-negativity of the solu-

tion, in the sense that we call a value negative if it is smaller than -std::numeric_limits<double>::epsilon()

so against machine precision. Note that the comparison of a value smaller than 0.0 does not

make sense (and is not fulfilled in general). This restrictive check generates warnings and

should not fail for too many voxels; as we did not smooth the data and use iterative solvers,

we cannot expect the non-negativity to hold true in all voxels. In the following simulations,

this check failed for 4 voxels out of over 167549 meaning less than 0.003%, with values

around −10−14, so with an error expected from the iterative solver. We compensated the

negativity by setting the corresponding solution there to 0, because we really want to preserve

non-negativity. If one is interested in having a very exact monotony of the method, we would

recommend to switch from iterative solvers for the linear systems (allowing an error which is

huge (10−14) compared to machine precision (2.25 · 10−16)), to direct solvers acting much

more accurately. These are much slower and need more memory, but have the positive effect

that due to the smaller error, the non-negativity is preserved in a better way. Unfortunately,

there seems to be a memory barrier implemented in SuiteSparse solvers (UMFPack and

SPQR) that only allows for memory allocation up to 4 gigabytes, at least in the packages
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corresponding to our Linux-platform. So one may have to switch to another direct solver like

Amesos(2), available in the Trilinos package, but we did not try it.

After the solution step, the values are updated and written to the disk, if requested.

We tested the programme with memcheck from valgrind against memory leaks and

found none, apart from one Singleton instance (reported as still reachable) of OpenMPI.

This is clearly desired, when experimenting with real data that expands to around 1 gigabyte

in memory.

In the previous paragraph, we referred to a lot of software packages without citing them.

This is intentional, because we did not use them in the version of the code employed to

generate the simulations for the present text. Moreover, SuiteSparse is a very high qual-

ity numerical package for solving linear systems directly and well-suited for smaller-scale

simulations, like two dimensional ones.

4.5.2 Results

We use the previously described numerical method to simulate the equations (2.23) and

(2.40) deduced in subsections 2.4.5 and 2.4.6 via parabolic scaling of the mesoscopic equa-

tions. The simulations will exclusively take place on the dataset bundled with Camino

[CBG+06]. We have chosen this one, as it has the advantage of the whole work being

under our control: estimation of the water diffusion tensors, a task done by non-linear inver-

sion, and computation of the necessary quantities D, D̃ and U . This gives us confidence,

the possibility to choose the best fitting algorithms, and illustrates the working programme

pipeline from the raw medical data to the numerical simulation. As initial condition we use

ρ0(x) = 1
exp

(

− |x−x0|2

2

)

≥0.3
exp

(

−|x − x0|2
2

)

,

where the point x0 = (46, 51, 26)T measured in slice indices of the data set is chosen such

that the centre x0 is located in a highly anisotropic region of the brain, presumably a white

matter tract (see figure 4.1). The brightness in the second picture of figure 4.1 is scaled

with the fractional anisotropy defined in the data chapter 3. The colours are according to

the standard DTI visualizations, hence the red component describes the left-right, the green

component the antero-posterior and the blue component the superior-inferior orientations.

The initial condition is only used for illustrative purposes, because the data stems from a

healthy subject and not from a real patient with a brain tumour.

In the visualizations we always scale the colour bar at the bottom of each picture to the

actual value range of the visualized quantity. Although the numerical method employed is

monotone, there are very few negative values visible, but they are indistinguishable from 0

in the selected machine precision. The images in this section stem from three dimensional
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calculations, unless stated otherwise. For the sake of visualization, we cut out a single slice

(here the 26th) of the three dimensional simulation.

(a) The initial condition used in

the following

(b) The visualized DTI data

Figure 4.1: The initial condition and the brain data. To see the effect of the white matter

tracts on the artificial tumour, we locate the initial condition in a highly anisotropic

region in the brain.

The main difference between the first model featuring the velocity jump process and

incorporating an integrin-mediated proliferation term leading to equation (2.23) and the

second one based on a Gaussian process and incorporating the integrin-mediated proliferation

term as well, corresponding to equation (2.40) is the diffusion tensor. For identical tissue

fibre orientation distributions, the tensor D̃ (in (2.40)) is about a factor 8π smaller than D

(in (2.23)) (see the test case of isotropic diffusion for the computation of D and D̃). As

the convection term stemming from the subcellular level (g(Q(x)) D∇xQ) stays the same

in both models, the second one is more dominated by convection for the same parameter

choice. This results in higher visible anisotropy of the simulated cell density. This means that

we can reproduce finger like infiltrative tumour spread for both models, but this behaviour

will be visually more dominant for (2.40).

Starting from the same initial condition (see figure 4.1), we simulated equation (2.23)

(see the second column in figure 4.2) and equation (2.40) (see the third column of figure

4.2) up to 600 days. One can easily see that the simulations confirm the expectations that

the equation (2.40) will give rise to more anisotropy and finger-like spread, however, both

models do comply with real diagnosed tumour shapes [SC+12]. Nevertheless, there is a need

for the quantitative assessment of the models in comparison to the tumour spread in vivo;
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this is ongoing work.

As stated, all simulations seen in figure 4.2 are carried out in three dimensions in order

not to neglect the possibility of the tumour to invade the visualized brain slice using the third

dimension. This actually happens, as seen in figure 4.3, where we exemplify the difference

between one slice of the three dimensional simulation and the two dimensional simulation

directly performed on that brain slice and by using the model (2.40) at time 600 days. The

visual difference stems from the difference of dimensions, as the data used in the computation

is exactly the same. All other natural sciences (psychology, physics, biology and others) do

their brain data analysis, not necessarily based on MRI data, also in three dimensions, as the

brain function (and hence also the white matter tracts) cannot be confined into a brain slice.

All the simulations here were done with the semi-implicit scheme described previously.

However, it is known that a splitting scheme as employed here will result in an additional

error compared to a purely implicit calculation. We do need the speed of the semi-implicit

simulation to fulfil the strict time requirements of clinical practice, where the result has to

be available as fast as possible for therapy planning. This is not feasible for the fully implicit

calculation, because it takes substantially longer to terminate (in our case around a day for

a simulation up to t = 600 days). So we checked our semi-implicit scheme by using model

(2.23) (see figure 4.4) to time t = 600 days. The difference is very small, although we are

comparing the semi-implicit scheme using a fourth order Runge-Kutta method for the non-

linear part to an implicit Euler scheme. Hence the error is not prohibitively large and we may

use the faster method. Moreover, assessing the visual difference between figures 4.4 (a) and

(b), the shape of the simulated tumour spread is exactly the same, so it will represent the

prediction to use in the clinical practice.

As we have a free parameter (λ1) in our models, we need to evaluate the impact of it

on the simulation outcome. As mentioned before, this parameter controls the anisotropy,

so it enables or inhibits the finger-like spread, if it is larger or smaller, respectively. So we

simulated both models for different values for λ1, positive as well as negative. The results

can be seen in figure 4.5 for equation (2.23) and in figure 4.6 for equation (2.40) at time

t = 600 days.

For growing absolute values of λ1, the simulations reveal finer structures within the

tumour bulk compared to the simulation with neglected influence of subcellular dynamics,

corresponding to λ1 = 0 (see figure 4.5 (a) and (i) in comparison to (e) and figure 4.6 (a)

and (i) versus (e)). In the case of model (2.23), the image corresponding to the parameter

λ1 = 0 (figure 4.5 (e)) shows a rather regular tumour shape. This means that the tumour

spreads equally in all directions, whereas, and this is remarkable, in the case of the second

model (2.40) the corresponding image (figure 4.6 (e)) is less regular. The shape follows the

central white matter fibre tract (see figure 4.1 (b), the white matter tract on the right in the
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left half of the brain).

In the last decades there were introduced a plethora of brain tumour models (as noted

in the introduction). However, two of them, the model by the group of Swanson [JJHD+15,

RAJRS09, HCS+12, JMD+05] and the model introduced by Painter and Hillen [PH13, HP13]

are natural candidates for comparison to the models introduced in this text, because the type

of the resulting equation is the same.

As equation representing the model of Swanson we will use

∂tρ = div (D∇ρ) + cgQ(x)ρ(1 − ρ), (4.9)

where D is our tumour diffusion tensor. Here we imposed the identical growth term as in

model (2.23) to get the closest results. Everything else would diverge too much in order to

enable a proper comparison. The results for the simulation of both models until time t = 600

days can be seen in figure 4.7

For the comparison we have a look at time t = 400. We visualized the differences

between model (4.9) and model (2.23) with λ1 = 0 and λ1 = 100 in figures 4.8 and 4.9,

respectively. One can see clearly the effect of the myopic diffusion of model (2.23) compared

to the Fickian type of model (4.9) in figure 4.8: model (2.23) predicts a larger spread of

the tumour, especially in the outer regions, which is also visible in figure 4.7. So model

(2.23) predicts a more aggressive cancer as (4.9). Including the subcellular dynamics in the

simulation (see figure 4.9) the mentioned effect will be even more pronounced, but there is a

second effect: the subcellular dynamics leads to a focus of the tumour cells onto the diagonal

white matter tract in the centre of the simulated tumour (so the visualized negative part is

greater than 0, where the white matter tract is located and the positive part will be greater

than 0 at the boundaries of this region of high anisotropy). Hence model (2.23) predicts

there a larger cell density, which will migrate at a higher speed in the white matter tract and

characterizes a more malignant tumour. This is an important issue, since the efficiency of

therapy is tightly related to the difficulty of exhaustively resecting or irradiating the neoplastic

regions. The tumour recidive is actually due to the cancer cells originating from the untreated

margins.

Now we have a look at the model proposed by Painter and Hillen [PH13]. We include an

additional growth term, hence we will use the modified version of their model

∂tρ = div div (Gρ) + cgQ(x)ρ(1 − ρ), (4.10)

where G is the tumour diffusion tensor D, but for a different fibre orientation distribution.

They proposed the bimodal von-Mises-Fisher distribution

q(x, θ) =
k(x)

8π sinh(k(x))
(exp (θ · φk(x)) + exp (−θ · φk(x))) ,
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where k(x) = κ · FA(x) and FA(x) is the fractional anisotropy. The vector φ is selected

to be the leading eigenvector of the water diffusion tensor, which is given by the diffusion

tensor imaging data. As the value of κ cannot be measured, we are using κ ∈ {0.5, 1, 5}.

We did simulations to the model (4.10) to the same initial condition as for our models and

visualized the result on slice 26 (figure 4.10).

Now we turn to compare the simulation outcomes of the model (4.10) with different

values of κ to (2.23) with λ1 = 0. This means we are comparing the impact of different

distributions for the fibre orientation on the simulation outcome what we are doing by con-

sidering the differences (seen in figure 4.11) to time t = 400 days. As the model (2.23) has

a strong focus on the white matter tract, the difference between (4.10) with κ ≤ 1 and

(2.23) with λ1 = 0 is high at the boundary, where the white matter tract is located (yellow

regions in figure 4.11 for κ = 0.5 and κ = 1). However, the difference between both models

at this part of the boundary decreases with increasing κ. The simulation outcome for κ = 5

focuses only on the white matter tract and hence the choice of the bimodal von-Mises-Fisher

distribution as orientation distribution neglects the other anisotropic regions (the peak in

the upper region of the simulated tumour at time t = 400 days in the simulation of (2.23)

with λ1 = 0 compared to the simulation of (4.10) with κ = 5 seen in figure 4.10). So the

bimodal von-Mises-Fisher distribution is good to express high anisotropy (using appropriate

values of κ), but fails to be the cause for anisotropic simulation outcomes, when the fibres

are not aligned. The local difference between both models ((4.10) and (2.23)) is not neg-

ligible (local error of over 60% of the maximal simulated value) and can only be assessed

with the aid of a known tumour spread during the validation of the model. However, as the

orientation distribution function seems to be the correct concept and the leading eigenvector

of the water diffusion tensor is not a good measure for the direction of the fibres in all voxels

[JKT13], we will stick to the orientation distribution function until the difference between

both distributions was assessed during model validation.

For the comparison of the model (2.23) including the subcellular dynamics (λ1 = 100),

we use (4.10) with κ = 1, as the visual difference between (4.10) with κ = 1 and (2.23)

with λ1 = 0 is smallest among the values for κ we used. This can be seen by comparing the

second and fourth row of images in figure 4.10. So we look at the difference D = U1 − U2

between the simulation outcome of (4.10) (U1) and (2.23) with λ1 = 100 (U2) seen in

figure 4.12. The model (2.23) focuses on the white matter tract (and so D is larger than 0

at the boundary of the white matter tract). This can be seen in figure 4.12 (b). However,

the additional drift term originating from the subcellular dynamics leads to a larger tumour

spread and so to a higher simulated malignancy (figure 4.12 (c)).

We do not do any comparison of models (4.9) and (4.10) to the model (2.40), as the

behaviour is visually completely different. This is due to the lower diffusion speed of model

(2.40) and the higher anisotropy when the subcellular dynamics is included (see figure 4.6
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(i)). Moreover, when comparing to (4.10) there is also the different type of diffusion: Myopic

diffusion for (4.10) and something in between myopic and Fickian diffusion for model (2.40).

So we restrain from an in depth comparison between those models.
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Model 1, λ1 = 100 Model 2, λ1 = 100

200 Days

400 Days

600 Days

Figure 4.2: Simulation of model (2.23) (left column) and model (2.40) (right column)

to λ1 = 100. The effect of the data on the simulation of the artificial tumour is obvious,

as the simulation generates highly anisotropic shapes and especially the model (2.40)

leads to a strong focus on the white matter tracts.
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(a) 3D Simulation, visual-

ized on slice 26

(b) 2D Simulation on slice

26

Figure 4.3: Comparing 2D and 3D simulations of the model (2.40) at t = 600 days.

The difference between the two simulations is not negligible, especially in the lower

tip of the tumour bulk, hence for a reliable prognosis we need to rely on the full three

dimensional simulation.

(a) Semi-implicit simula-

tion

(b) Implicit simulation (c) The absolute value of

the difference

Figure 4.4: Comparing semi-implicit and implicit calculation at time 600 days of model

(2.23). The local error is around 7 %, so we may use the semi-implicit simulation to

speed up the runtime.
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(a) λ1 = −100 (b) λ1 = −50 (c) λ1 = −30

(d) λ1 = −10 (e) λ1 = 0, subcellular dy-

namics ignored

(f) λ1 = 10

(g) λ1 = 30 (h) λ1 = 50 (i) λ1 = 100

Figure 4.5: Model (2.23) for different values of λ1 at time t = 600 days. Higher absolute

values of λ1 enhance the visual anisotropy. Negative values of λ1 partly (compare

λ1 = −100 with λ1 = 0) makes the overall shape more symmetric (so the borders

of the artificial tumour are nearer to a circle shape than in the simulation without

subcellular dynamics). Higher values of λ1 (see λ1 = 100) reveal finer structures, so

especially the lower right part of the simulated tumour separates better from the main

cell mass than in the simulation with λ1 = 0.
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(a) λ1 = −100 (b) λ1 = −50 (c) λ1 = −30

(d) λ1 = −10 (e) λ1 = 0, subcellular dy-

namics ignored

(f) λ1 = 10

(g) λ1 = 30 (h) λ1 = 50 (i) λ1 = 100

Figure 4.6: Model (2.40) for different values of λ1 at time t = 600 days. The generated

shapes are different from the ones in the previous figure (4.5) while the overall structure

stays the same: higher values of λ1 (especially λ1 = 100) lead to highly irregular shapes,

so the left part of the simulated tumour is almost separated from the rest. Lower values

of λ1 (see especially λ1 = −100) are visually rounder than the simulation corresponding

to λ1 = 0.
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Model (4.9)
Model (2.23) with

λ1 = 0

Model (2.23) with

λ1 = 100

200 Days

400 Days

600 Days

Figure 4.7: Simulations of model (2.23) and (4.9) visualized on slice 26. The visual

shape of the simulated tumour becomes more irregular from left to right, so the most

regular shape is generated by (4.9) and the most irregular shape by (2.23) including

subcellular dynamics (λ1 = 100). So especially for glioblastoma multiforme, which is

known to generate irregular shapes, the model (2.23) might be more appropriate than

(4.9)
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(a) Absolute value (b) Positive part (c) Negative part

Figure 4.8: Visualized the difference D = U1 −U2 between model (4.9) (U1) and model

(2.23) (U2) to λ1 = 0. The additional drift term of U2 leads to a larger spread of the

tumour in the outer rim. This means that the model (2.23) without influence of the

subcellular level predicts a larger tumour extent than (4.9).

(a) Absolute value (b) Positive part (c) Negative part

Figure 4.9: Visualized difference D = U1 − U2 between model (4.9) (U1) and model

(2.23) (U2) to λ1 = 100. Including the subcellular dynamics enhances the major dif-

ference between model (4.9) and (2.23). So model (2.23) predicts a larger spread of

the tumour at the edge of the tumour bulk, but also finer structures, thus it focuses

the cell density more on the diagonal white matter tract in the centre of the simulated

tumour.
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Model 200 Days 400 Days 600 Days

(4.10), κ = 0.5

(4.10), κ = 1

(4.10), κ = 5

(2.23), λ1 = 0

(2.23), λ1 = 100

Figure 4.10: Three dimensional simulation of model (2.23) and (4.10) visualized on

slice 26. Higher values of κ lead to higher visual anisotropy, but cannot generate the

finer structures seen in the simulation of (2.23) with subcellular dynamics (λ1 = 100).
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κ = 0.5 κ = 1.0 κ = 5.0

Figure 4.11: The absolute values of the differences between the simulations of (4.10)

for different values of κ and (2.23) without subcellular dynamics.

(a) Absolute value (b) Positive part (c) Negative part

Figure 4.12: Difference D = U1 − U2 of model (4.10) with κ = 1 (U1) and (2.23)

with subcellular dynamics λ1 = 100 (U2). The model including subcellular dynamics

accounts for a larger tumour spread (seen in (c)) and finer structures within the tumour

bulk (seen in (a) and (b)).



Chapter 5

Therapy

Another important aspect is therapy. There are plenty of different therapy approaches to treat

brain tumours: chemotherapy targeting at tumour cell death, radiotherapy, resection, and a

combination of two or all of them. Each of these therapies was modelled separately during

the last years: Chemotherapy [SMAC05, dPGR06], radiotherapy [RRM+10] and resection

[SBMA03, SAM03]. However, there is a new class of so-called peptidomimetics aiming at

glioblastoma therapy by targeting e.g cell surface receptor bindings [CCRW12, GBBW03].

While the standard therapy for newly diagnosed glioblastomas consists of surgical resection,

radiotherapy and concurrent chemotherapy with a chemotherapeutic agent aiming at cell

death like temozolomide [FFB+07, SRD+07], the new agents are or were in clinical trials

in combination with radiotherapy [CCRW12]. These new agents are the outcome of newer

studies hinting that the cell-ECM interactions enhance cell survival after radiation exposure

[CSD+06]. Additionally, integrins on the surface of host cells like endothelial cells, perivascular

cells or fibroblasts (to name a few, all of which are inhibited in the same context during

therapy), can boost the malignant potential of a tumour by mediating core hallmarks like

angiogenesis or lymphangiogenesis [DC10].

The type of treatment consisting of radiotherapy and concurrent chemotherapy with such

a new drug was addressed in [HS16]. In the following we present the findings therein, adjusted

to fit the model class described previously. In particular, the change of the variable y to z

will be done already in the presentation, contrary to the deduction of the model in [HS16].

The main difference between the therapy model and the models presented in this text so far

(also being the motivation of this independent chapter) is the different description of the

growth. The therapy model is based on [EKS16], where the proliferation was included via

the go-or-growth dichotonomy. This leads to two coupled equations on the mesoscopic scale

not directly fitting to the description of the microscopic scale presented here. A deduction

of these equations from an underlying microscopic system, is however possible. The only

91
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drawback from the modelling perspective is the utilization of additional free parameters,

which are very difficult to assess, if possible at all. This is because there is yet no data

available about the net effects of the new chemotherapeutic agents on the cellular scale. In

contrast, for single integrins the effectiveness of these chemicals is well-tested, as they are

or were studied in clinical trials [CCRW12]. Unfortunately, we cannot include the data for a

single integrin receptor in our model, as we modelled the subcellular scale as the net effect

of receptors.

5.1 Description

We will use the quantities q(x, v) and Q(x) already employed in the previous chapters. For

the modelling which was done in [EKS16], we start now from the mesoscopic point of view

and include the proliferation with the aid of the go-or-growth dichotomy as already mentioned

in the subsection about the proliferation term 2.4.3. This means that we need two different

subpopulations, a migrating (denoted by pm(t, x, v, z)) and a proliferating (and hence not

moving) one, the latter denoted by pp(t, x, z)). For the description of the migration, we rely

on the mesoscopic equation associated to the velocity jump process

∂tpm + divx (vpm) − divz

(((

k+Q + k−
)

z + f ′(Q)v · ∇xQ
)

pm

)

= L[λ(z)]pm

with the same notation L for the turning operator. In chapter 2, we were interested in the

macroscopic cell density

M =

∫

V

∫

Z

p(t, x, v, z)dz dv,

but now we are interested in the macroscopic cell density

N =

∫

Z





∫

V

pm(t, x, v, z) dv + pp(t, x, z)



 dz,

which is the sum of the macroscopic cell densities for the two subpopulations. Including

natural cell death into both subpopulations with rates lm and lp, both dependent on the

overall cell density N and modelling growth only for the non moving subpopulation with a

rate g that may also depend on N , we arrive at the system

∂tpm + divx (vpm) − divz

(((

k+Q + k−
)

z + f ′(Q)v · ∇xQ
)

pm

)

= L[λ(z)]pm − lm(N)pm

∂tpp = (g(N) − lp(N)) pp.
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Then we need to model the process of proliferating cells switching to the moving phenotype,

hence the transition of a proliferating cell into a migrating one, and the change of a migrating

cell into a proliferating one. The process of starting to move is especially problematic to

include, because we need to choose an orientation to which the cell migrates. This is one

free parameter choice, which is avoided using the mesoscopic proliferation term described in

the modelling section. Nevertheless, we can extract some limit information out of the system

as it stands. Assuming that the proliferating and migrating cells are the same cell type,

but only with different velocities of migration, leads to the applicability of the movement

description of the migrating to the proliferating ones, but only in steady state. The equilibrium

orientation of the cells is, as analyzed before, q(x, v), so it is reasonable to assume that the

starting cells are distributed accordingly. The process of stopping is not problematic, because

there we only lose information about the orientation. Then the system including the stopping

(a) and starting rate (b), both later dependent on the delivered dose of chemotherapeutical

agent, reads

∂tpm + divx (vpm) − divz

(((

k+Q + k−
)

z + f ′(Q)v · ∇xQ
)

pm

)

= L[λ(z)]pm − apm + bqpp − lm(N)pm

∂tpp = a

∫

V

pm(v)dv − bpp + (g(N) − lm(N))pp.

(5.1)

To include radiotherapy, we rely on the findings that different types of cells have different

sensitivity against radiation. To have a local model, we assume that the effect of radiation

can be described with a single loss term in each equation. This does make sense, as we want

to model the net loss on the mesoscopic (cell density) scale and not the effect of radiation on

the subcellular level - here we mean not the integrin bindings, but the cell hits degrading the

DNA chain. We denote these loss terms by Rm and Rp, respectively. Because we are using

the volume fraction of tissue fibres Q in our model, which is also affected by the radiation, if

applied, we have to take the surviving fraction S(αQ, βQ, dr) of these into account. So the

model including radiotherapy reads

∂tpm + divx (vpm)

− divz

(((

k+SQ + k−
)

z + f ′(SQ)v · ∇x (SQ)
)

pm

)

= L[λ(z)]pm − apm + bqpp − (lm(N) + Rm) pm

∂tpp = a

∫

V

pm(v)dv − bpp + (g(N) − lm(N) − Rp)pp.

(5.2)

For the actual choice of the loss terms involving the corresponding surviving fraction, we

adopt the linear-quadratic (LQ) model, which is standard to the clinical practice [RKD11,

SSS02], although there is strong evidence of its failure in some situations [BHH+95, KMM08].
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This was also done in [RRM+10] in order to include radiotherapy. The standard for brain

tumours is to give the overall radiation dose in several fractions, ν in this context, so the

loss terms can be modelled via

Rj =
ν
∑

i=1

(1 − S(αj , βj , dr)) ηδ(t − ti) j ∈ {m, p},

where αj and βj are the sensitivity parameters of the LQ model, S stands for the surviving

fraction, and ηδ is a mollifier with support in [−δ, δ]. These supports are assumed not to

overlap, meaning that the radiotherapy is given in timely distinct slots and not continuously,

an assumption in accordance with clinical practice. With dr we denote a fractional dose

given at times ti, i = 1, ..., ν. The surviving fraction can be computed with the aid of the

LQ model as

S(αj , βj , dr) = exp
(

−
(

αjdr + βjd2
r

))

, j ∈ {m, p, Q}.

In the model we included proliferation and radiotherapy, but we want to model a type of

chemotherapy that aims at inhibiting the cell-ECM interactions. Due to their importance to

every subcellular process, all the rates k+, k−, a and b will depend on the drug delivery.

We expect k+ to be decreasing with growing drug dosis (denoted by dc), whereas k− is

increasing, meaning that the cell is more likely to detach from the fibres, as the modelled

chemotherapeutical substance is supposed to inhibit receptor binding to tissue fibres. The

integrins are needed for migration, so it is natural to assume the stopping rate to increase

with the drug delivery and the starting rate to decrease. We selected in the paper [HS16]

the functions

k+(dc) = 0.1

(

1 +
dc

1 + d2
c

)

k−(dc) = 0.1 (1 + dc)

a(dc) = 0.05 (1 + dc) b(y) = 0.1

(

1 +
dc

1 + d2
c

)

.

In absence of chemotherapy (dc = 0), these rates are exactly those chosen in the table 4.5

(k+ and k−) and in the paper [EKS16] for a and b. The main problem here is that we do not

even have quantitative information about the strength of the chemotherapeutical effect, but

we are looking forward to new data to become available from clinical trials. With these, the

model has to be revised, evaluated and adapted to the real outcomes. Nevertheless, the model

gives insight into the interplay between subcellular processes like binding and unbinding to

the ECM and radiotherapy. In order to allow comparison to the previous proliferation model,

we use

g(N) = cg

lj(N) = cgN, j ∈ {m, p}
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resembling logistic growth. The constant cg is chosen as in table 4.5. Thus we get the system

∂tpm + divx (vpm)

− divz

(((

k+(dc)SQ + k−(dc)
)

z + f ′(SQ)v · ∇x (SQ)
)

pm

)

= L[λ(z)]pm − a(dc)pm + b(dc)qpp − (cgN + Rm) pm

∂tpp = a(dc)

∫

V

pm(v)dv − b(dc)pp + (cg − cgN − Rp)pp.

(5.3)

Note 5.1.1. In [HS16] we made the transition y → z after the modelling of the therapy,

while here, most due to presentation reasons, the transition was already made before. This

proceeding results in a slight change of the drift term in z, additionally to the difference in

the signs of λ1 and z. This has no effect on the macroscopic scale, because the difference

in the drift terms is a time derivative that is scaled afterwards by ε2 in [HS16] and hence

vanishes in the parabolic limit, which is of interest here.

5.2 Extracting the macroscopic behaviour

For the deduction of a macroscopic equation, we use parabolic scaling as in chapter 2

(t → ε2t, x → εx) in order to extract the limit information:

ε2∂tpm + ε divx (vpm)

− divz

(((

k+ (dcSQ + k−(dc)
)

z + εf ′(SQ)v · ∇x (SQ)
)

pm

))

= L[λ(z)]pm − a(dc)pm + b(dc)qpp − ε2 (cgN + Rm) pm

ε2∂tpp = a(dc)

∫

V

pm(v)dv − b(dc)pp + ε2(cg − cgN − Rp)pp.

(5.4)

Let us define the moments

m =

∫

Z

pm(z)dz mz =

∫

Z

zpm(z)dz mzz =

∫

Z

z2pm(z)dz

M =

∫

V

m(v)dv M z =

∫

V

mz(v)dv M zz =

∫

V

mzz(v)dv

W =

∫

Z

pp(z)dz W z =

∫

Z

zpp(z)dz,

where in order to ensure the closure of the resulting system we assume that the second

order moments mzz and M zz vanish. As done in the modelling section, we set up moment

equations by integrating the system (5.4) with respect to z, and by multiplying it with z and



96 CHAPTER 5. THERAPY

integrating afterwards. For the sake of notation convenience, we write Lm = cgN + Rm and

Lp = cgN + Rp. This leads to

ε2∂tm + ε divx (vm) = λ0 (qM − m) + λ1 (qM z − mz) − am + bqW − ε2Lmm

ε2∂tW = aM − bW + ε2(cg − Lp)W

ε2∂tm
z + ε divx (vmz) + (k+SQ + k−)mz + εf ′(SQ)v · ∇x (SQ) m

= λ0 (qM z − mz) − amz + bqW z − ε2Lmmz

ε2∂tW
z = aM z − bW z + ε2 (cg − Lp) W z.

In a way compatible to the previous models we consider Hilbert expansions Ξ =
∞
∑

k=0
Ξkεk for

Ξ ∈ {m, mz, M, M z, W, W z}

and collect the corresponding powers of ε:

ε0:

0 = λ0 (qM0 − m0) + λ1 (qM z
0 − mz

0) − am0 + bqW0

0 = aM0 − bW0

(k+SQ + k−)mz
0 = λ0 (qM z

0 − mz
0) − amz

0 + bqW z
0

0 = aM z
0 − bW z

0 .

Integrating these equations with respect to v, we deduce

M z
0 = 0 W z

0 = 0 mz
0 = 0

m0 = qM0 W0 =
a

b
M0.

ε1:

divx (vmz
0) = λ0 (qM1 − m1) + λ1 (qM z

1 − mz
1) − am1 + bqW1

0 = aM1 − bW1

(k+SQ + k−)mz
1 + f ′(SQ)v · ∇x (SQ) m0 = λ0 (qM z

1 − mz
1) − amz

1 + bqW z
1

0 = aM z
1 − bW z

1 .

Proceeding as before, we deduce

W1 =
a

b
M1 W z

1 =
a

b
M z

1 ,

so integrating the third ε1-equation above with respect to v and using the symmetry of the

tissue fibre orientation (which we assume for the velocity jump case) we arrive at

(k+SQ + k−)M z
1 = 0,
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hence M z
1 = W z

1 = 0. This results in the identity

mz
1 = −f ′(SQ)v · ∇x (SQ) m0

k+SQ + k− + λ0 + a
.

Inserting this into the first ε1-equation, we get

m1 =
1

λ0 + a

(

q (M1 + bW1) − divx (vm0) +
f ′(SQ)v · ∇x (SQ) m0

k+SQ + k− + λ0 + a

)

.

Observing that integrating vq(M1 + bW1) with respect to v results in 0 due to the symmetry

of q and the fact that neither M1 nor W1 depend on v, we can compute

∫

V

vm1dv =
1

λ0 + a

(

− divx





∫

V

v ⊗ vq(v)dvM0





+

λ1f ′(SQ)
∫

V

v ⊗ vq(v)dv · ∇x (SQ) M0

k+SQ + k− + λ0 + a

)

.

Using the convenience notations

Λ =
1

λ0 + a

∫

V

v ⊗ vq(v)dv and γ(Q) =
λ1f ′(SQ)

k+SQ + k− + λ0 + a
,

we have
∫

V

vm1 = − div (ΛM0) + γ(Q)Λ∇x (SQ) M0.

Directly integrating the ε2 equations, we have

∂tM0 + divx





∫

V

vm1dv



 = −aM2 + bW2 − Lm(N0)M0

∂tW0 = aM2 − bW2 + (cg − Lp(N0))W0,

so

∂t (M0 + W0) + divx





∫

V

vm1



 = −Lm(N0)M0 + (cg − Lp(N0))W0.

Using the formula for the term in the divergence operator, we get

∂tN0 − divx

(

divx

(

b(dc)

a(dc) + b(dc)
ΛN0

))

+ divx

(

γ(S(dr)Q, dc)
b(dc)

a(dc) + b(dc)
Λ∇x (S(dr)Q) N0

)

=

(

a(dc)

a(dc) + b(dc)
(cg − Lp(N0)) − b(dc)

a(dc) + b(dc)
Lm(N0)

)

N0. (5.5)
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Theorem 5.2.1. Let Ω be a region with Lipschitz boundary, the chemotherapy dose function

dc : [0, T ] → R be at least continuous and the parameter functions k+, k−, a and b be

continuously dependent on dc. Assume that Q ∈ W 1,∞ and q ∈ {φ ∈ L∞(Ω × V ), ∂xφ ∈
L∞(Ω × V )}. Let the initial condition N0 ∈ L2(Ω) be non-negative. Then the macroscopic

equation (5.5) has a non-negative weak solution.

Proof. Analogous to the proof in the appendix to chapter 2.

For a comment on the high regularity assumed in the previous theorem see remark 2.4.6

in the modelling chapter 2.

Rewriting the equation (5.5), we get

∂tN0 − divx divx

(

b

a + b
ΛN0

)

+ divx

(

γ(Q)
b

a + b
Λ∇x(S(αQ, βQ, dr)Q)N0

)

= cg

(

a

a + b
− N0

)

N0 − aRp(αp, βp, dr) + bRm(αm, βm, dr)

a + b
N0.

The task is now to choose the new parameters introduced. As in [HS16], we use for the

radiation parameters αj and βj (j ∈ {m, p, Q}) measurements from cell lines as described

in the table 5.1. The fractionated radiation dose dr is chosen such that the overall dose

νdr is about 70Gy and a single dose dr is not larger than 2 Gy, both clinically reasonable

parameters.

Therapy model with novel chemotherapy in a nutshell:

With the aid of parabolic scaling and the assumption that the tissue fibre orientation

is symmetric, the system of equations

∂tpm + divx (vpm)

− divz

(((

k+(dcSQ + k−(dc)
)

z + f ′(SQ)v · ∇x (SQ)
)

pm

)

= L[λ(z)]pm − a(dc)pm + b(dc)qpp − (cgN + Rm) pm

∂tpp = a(dc)

∫

V

pm(v)dv − b(dc)pp + (cg − cgN − Rp)pp

leads to the macroscopic description for the overall cell density ρ

∂tρ − divx divx

(

b(dc)

a(dc) + b(dc)
Λρ

)

+ divx

(

γ(S(αQ, βQ, dr)Q, dc)
b(dc)

a(dc) + b(dc)
Λ∇x(S(αQ, βQ, dr)Q)ρ

)

= cg

(

a(dc)

a(dc) + b(dc)
− ρ

)

ρ − a(dc)Rp(αp, βp, dr) + b(dc)Rm(αm, βm, dr)

a(dc) + b(dc)
ρ.
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Parameter Value Source

αm (0.033 − 0.058) 1
Gy

Corresponding to cell line TK1 in

[BS15]

αp (0.311 − 0.401) 1
Gy

Corresponding to cell line A172 in

[BS15]

αQ 0.37 1
Gy

Corresponding to fibroblasts in

[BS15]

βm (0.047 − 0.048) 1
Gy2

Corresponding to cell line TK1 in

[BS15]

βp (0.061 − 0.091) 1
Gy2

Corresponding to cell line A172 in

[BS15]

βQ (0.016 − 0.052) 1
Gy2

Corresponding to fibroblasts in

[BS15]

Table 5.1: The parameters for the LQ model for different cell types

So we have data based terms in every part of the equation, as before with the first

model. The novel chemotherapeutical approach reflects in a change in every term of the

equation, underlining the importance of the integrin bindings.

5.3 Simulation

We simulated the effect of two different types of therapy, namely with radiotherapy alone

starting at time 0 for five weeks daily from Monday to Friday (here with dr = 2.0 Gy and

ν = 25, which is in the range of standard therapy [FCF+07]) and with radiotherapy including

concurrent chemotherapy with dc = 10 every Monday and Wednesday. The former is referred

in this text as strategy 1 and the latter as strategy 2. We augment this with strategy 0

meaning no therapy at all.

The results are shown in figure 5.1. The model associated with equation (2.23) should

not be compared directly to the model (5.5), because even in absence of radiation and

chemotherapy, they are distinct through the different constants a
a+b

in the growth term and
b

a+b
in the macroscopic diffusion tensor. For better comparability, we simulated (5.5) in the
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absence of any therapy, hence providing the basic model for the comparison in figure 5.1.

We used the same initial condition

ρ0(x) = 1
exp

(

− |x−x0|2

2

)

≥0.3
exp

(

−|x − x0|2
2

)

with x0 = (46, 51, 26)T measured in slice indices as in the chapter 4. Comparing model (2.23)

introduced in chapter 2 and the one presented here (without therapy) we see that the former

predicts a more aggressive tumour spread, while the overall characteristic that the tumour cell

density orients along white matter tracts is preserved. There is a need for model validation

to assess and evaluate the difference between both models critically. In figure 5.1 (c), one

can see the effect of radiotherapy. The visible size of the tumour cell density shrinks when

using simulated 2 Gy radiation dose per day (except weekends). It can be clearly seen that

the tumour has not been eradicated, a fact well-known for glioblastoma multiforme, which

can hardly be exhaustively treated with radiotherapy alone. Typically, a resection would have

been applied before starting any further therapy efforts [SBMA03, SAM03].

In [SBMA03, SAM03] a method to model resection was proposed using an eradication of

the tumour mass in a certain region contrary to the proposal in [HS16], where the tumour cell

density was numerically set to 0, if above a predefined threshold. We do not want to include

resection here, because side effects like removing brain matter and foreign oxygen supply

affecting the tumour spread were completely neglected in the mentioned models. Moreover,

introducing resection in the way of [SBMA03, SAM03, HS16] also introduces an additional

non-linear, non-local, and even singular term in the equation. This is very challenging to use

rigorously within a mathematical framework.

In order to assess the effectivity of the therapy, we used another larger initial condition

ρ0(x) = 1
exp

(

− |x−x0|2

2

)

≥0.05
exp

(

−|x − x0|2
2

)

,

where the centre x0 = (45, 50, 37)T is measured in slice indices (see figure 5.2). Note that

strategy 1 consist of radiotherapy from day 0 to day 35 with a daily dose (except weekends)

of 2 Gy. This accumulates to an overall dose of 50 Gy, which is quite low, but realistic for

glioblastoma multiforme [FCF+07]. We did not use a higher dose for the simulation in order

to assess the effect of the chemotherapy, which otherwise would be not perceivable. We now

have a look at figure 5.3, where the simulation outcomes for the strategies 1 and 2 can

be seen along with their difference. The effect of the concurrent chemotherapy is directly

visible in the images corresponding to time t = 100 days. This is 65 days after the end of

all simulated therapy efforts, so a classical follow-up after around 2 months. The concurrent

chemotherapy had the desired effect to hinder the cells to spread. So the image to strategy

2 shows a smaller (both in absolute value and in occupied space) tumour, which is more
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compact then its counterpart treated with strategy 1. The more compact and less diffuse

shape of the tumour in strategy 2 will lead to a better prognosis. This positive effect visible

2 months after the end of the therapy can also be seen at time t = 300 days where the

simulated tumour is still smaller and more compact than its counterpart in strategy 1, albeit

no therapy was applied in between these times (see the last row of figure 5.3).
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(a) Model (2.23) (without therapy),

simulation at day 300

(b) Model (5.5) without therapy simu-

lation at day 300

(c) Model (5.5) with only radiotherapy

at day 300

(d) Model (5.5) with radiotherapy and

concurrent chemotherapy at day 300

Figure 5.1: Simulation results of the model (2.23) described in chapter 2 and the model

(5.5) including therapy described in this chapter. Both simulated therapies (only radio-

therapy and radiotherapy with concurrent chemotherapy) are effective in the simulation,

as the tumour bulk from (b) is reduced drastically. The difference between the simula-

tion outcomes (c) and (d) is more subtle, because we started the therapy immediately

with the begin of the simulation and the initial tumour bulk was very small.



5.3. SIMULATION 103

(a) Initial condition on slice 37 (b) Brain structure on slice 37

Figure 5.2: Different initial condition on slice 37 in order to visualize the simulated

effectivity of the novel chemotherapy. The image in (a) shows the initial condition and

(b) displays the DTI data on this slice.
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Time Strategy 1 Strategy 2 Difference

100 Days

200 Days

300 Days

Figure 5.3: Simulations of the different therapy strategies (strategy 1: only radiotherapy,

strategy 2: radiotherapy with concurrent chemotherapy) and the difference between

both. One can clearly see that the strategy 2 will lead to a smaller and more compact

tumour, although therapy is only applied between day 0 and 35.



Chapter 6

Discussion

6.1 Modelling

Multiscale modelling, here based on the previous works [EHKS14, KS12b], enables the com-

bination of substantially different processes into a single model, thus makes it possible to

understand cancer migration in greater detail than any single scale model could do. We

started from the microscopic cellular scale including sub-cellular dynamics, essential for the

migration and proliferation of cells. Here we did not violate physical principles as we used

Newton’s law of motion. Using averaging procedures, we reached the mesoscopic cell density

level, where we modelled proliferation based on recent biological insights. As we need to have

a flexible model, we proposed two different stochastic processes promoting migration, the

velocity jump process and a Gauß process, both resembling the identical stationary distribu-

tion. As the cell densities on the mesoscopic scale involve a high dimensional phase space

that is not observable in clinical practice, we employed parabolic scaling in order to extract

macroscopic - here spatio-temporal - cell density description, which is well-suited to be used

to simulate the evolution of tumour spread into the tissue. We addressed the existence and

uniqueness of the relevant model equations.

The main strength of the models presented here is the inclusion of real medical data,

not only of high-order detailed data sets, but of generic medical data. So the parameters of

the equations (2.23) and (2.40), especially the diffusion tensors D and D̃ therein contain

information about the brain structure through the tissue fibre orientation q. Using this medical

data, the simulation outcomes resemble existent tumour shapes as seen e. g. in [Hay12],

however, a validation of the models presented here is of tremendous importance. On the

microscopic scale there is a need to assess cell migration in fibrous networks in detail and

to evaluate the behaviour of the cell receptor bindings. This can be used to investigate the

driving process and to decide whether a velocity jump process or a Gauß process fits better.

105
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It is also likely that both types are well-suited, but need to be adjusted accordingly. This is

not possible without reliable data.

On the mesoscopic scale there is a need to review the proposed proliferation in the

light of new biological data. Regarding the growth rate µ, we selected it in a way to find a

slightly modified logistic growth, but there are other choices, like e. g. Gompertzian or even

exponential growth. Which growth rate is to be preferred is an ongoing debate; it should be

assessed from tumour growth data and will surely be specific to different cancer types.

The model validations of the microscopic and mesoscopic scale are of theoretical interest

and importance, whereas the validation of the deduced macroscopic description is an urgent

need for practical considerations. As we lack time series of patient data, we could not do

numerical verification of the results. This is a non-trivial issue, because there is a need for a

complete diffusion MRI data set along with a segmentation at an initial time to assess the

tumour bulk combined with a segmentation at a later time in order to evaluate the progress.

In the best case, there should be no therapy applied in between, a condition seeming quite

unrealistic. However, glioblastoma multiforme is sometimes so aggressive that there are cases

where no therapy is worth being applied. Moreover, if we restrict ourselves to shorter time

intervals (say 1-2 months), data sets without therapy in between do exist and so may be

used in the validation process.

Besides the validation of the model, there are some mathematical problems left. So

the convergence of the microscopic to the mesoscopic scale and the convergence of the

mesoscopic to the macroscopic scale remain for clarification and proof; however, the latter

is a non-trivial issue. For a single scale model and a different, much simpler context Chalub

et al [CMPS04] proved the convergence in a weak sense, but there is a lot left to do.

For a model extension, there are several parts one may want to add. We modelled the

subcellular scale with a single density variable, but due to large variety of cell receptors and

their bindings to soluble and unsoluble components on their surrounding as well as mutual cell

interactions, it may be necessary to introduce the subcellular scale in the model in another

way. Then there are different core features of cell migration left to incorporate: chemotaxis,

angiogenesis, and acidity. Chemotaxis can be introduced on the macroscopic scale as an

additional drift term along a chemical gradient, either stemming from a time-independent

field or from an additional equation in the model, while the introduction of chemotaxis

on the mesoscopic or even microscopic scale would lead to novel descriptions. This is not

of particular difficulty, when using real data with a voxel size of 2mm, but there are two

processes already modelled by other groups, that give rise to problems, when used within a

confined resolution:

• Adhesion: Cell-cell interactions can lead to correlated or even collective movement in

contrary to the single cell movement discussed here. However, the typical incorporation

via non-local terms (using sensing radii of the cells) like in the paper [DTGC14] is



6.2. DATA 107

problematic with the data available, because the essential sensing radius of maximal

100 µm is too small compared to a reasonable resolution of the data (around 2 mm side

length of a voxel), which just transfers to the resolution of the numerical simulation.

So this approach for cell-cell interaction is not possible with existing in-vivo data.

Another possibility would be to include the adhesion effect in a hybrid model as in

[And05], but with the cost that additional parameters are introduced, what is clearly

to avoid, and that the numerical simulations get more involved (and more expensive).

Additionally, due to the hybrid nature, the simulation does not stand for an expected

value, but only for a single trajectory, giving rise to the question of reliability. So

from the viewpoint of data availability none of the approaches known to us can be

directly used to incorporate cell-cell adhesion into the multiscale model. Nevertheless

cell-cell adhesions may have a remarkable effect on the tumour shape, as noted in

[And05, DTGC14].

• Angiogenesis and nutrient supply: The formation of new blood vessels at the tumour

site is one of the key ingredients for malignancy of a tumour and also metastasis, in

brain tumours as well as in all other types of cancer, hence of tremendous importance

to include into a mathematical model. While in vivo it is quite clear where a vessel

is located, it is incredibly hard to extract this information out of available data. For

MRI data there is an algorithm available, that would do this task [KPP+15], but no

algorithm can increase the detail; hence for a voxel grid of 2 mm side length, this

approach will fail for the fine capillaries that are firstly formed at the tumour site.

Nevertheless, one is interested in quantitative information about the nutrients the

tumour is provided with, which can be approximated by the blood flow that can be

quantified at least for a bit finer data [SRF+08]. This approach may reveal necessary

and currently missing information in order to include the effect of angiogenesis and

hence of nutrient supply into our model.

We made the fine distinction between the angiogenesis, namely sprouting and forma-

tion of new blood vessels, for which there are several models available [AC98], [HS00]

and [MWO04] (all incompatible with the data resolution) and the gross effect of the

angiogenesis onto the tumour spread, for which one may not even need to use a vari-

able representing the blood vessels at all. In clinical practice and application only the

latter one is of interest and needed.

6.2 Data

We set up a complete working chain ranging from the raw medical data to the personalized

numerical simulation on the macroscopic level. To this aim, we relied on the frameworks
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Camino and Dune, the missing links were handled with conversion software based on ITK,

and the preprocessing toolkit that was used to compute the quantities Q, D, D̃ and U . Most

frequent problems like negative eigenvalues of the water diffusion tensor or problems with the

segmentation, such as certain voxels containing invalid information, were thereby handled

by removing the corresponding voxels of the segmentation. One problem is still to solve: if

the diffusion MRI data and the segmentation are given on different, in general non-parallel

grids, the code cannot be used, as the transfer of the data between those grids is highly

problematic.

We selected estimators for the relevant quantities (Q and q) needed for the simulations.

For the fibre orientation q we employed the orientation distribution function (ODF) used

in the medical imaging community, which may be estimated from diffusion tensor imaging

as well as from high angular resolution imaging data, hence is flexible enough to serve as

a building block for further modelling. Moreover, the choice is optimal in the sense that q

and ODF are the same quantity, so progress done in estimating ODF directly transfers to a

better estimator of q. Nevertheless in future works, the difference of dODF and fODF has

to be evaluated in a mathematical modelling framework. We solely used dODF here.

The volume fraction of tissue fibres Q is much more difficult to assess. We introduced

a new heuristic estimator, based on diffusion tensor data, but this can be generalized to all

mentioned data sets, thus it is also flexible enough for further mathematical modelling frame-

works. We demonstrated the strength of the new estimator over the fractional anisotropy

proposed in [ALJ+11, EHKS14, EKS16, RMU+13] using a plausibility argument, but a rig-

orous validation (or disproof) is yet missing, partly due to the extreme difficulty to measure

this quantity within the brain.

As all data is inflicted with errors, there may be necessary to use regularization or de-

noising in order to account for the data error. Recently, a method to denoise full tensors

was proposed [BPS16]. Using it has two effects: the data error is minimized and due to the

changes in the eigenvalues of the tensors, the numerical simulation behaves better, hence

the data smoothing can also be used for accelerating the simulations. This is especially

favourable for larger data sets, however, the acceleration is only useful if it does not distort

the outcome too much. This will be addressed in forthcoming work.

6.3 Numerics

For the reaction–convection–diffusion equations on the macroscopic level, we set up a numer-

ical method that is able to handle full tensorial diffusion with large differences in the eigen-

values of the diffusion tensor. Moreover, it is locally mass-conservative, hence the discretized

convection–diffusion part does not generate nor lose tumour mass. It is also monotone, one of

the most crucial, but also most difficult properties to assure. So the numerical method does
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not generate negative values and hence the simulation results can be transferred to reality

without explaining negative values in a cell density. All in all it is tailored to the problem.

The semi–implicit method is fast and thus usable in clinical practice. If one is interested in

using a fully implicit method, there is need for parallelization to speed up the computations,

as the code we use for the numerical simulation, is at the moment completely serial.

The data preprocessing (estimation of the water diffusion tensors out of the medical data)

is very fast and can be done with Camino within half an hour. The processing (estimation

of D, D̃ and U) are embarrassingly parallelizable tasks; using enough computational power,

this can be done within a day. We parallelized the computation using OpenMP, which is

especially well-suited for such tasks. For the data set we used, the estimation of D costs

about one and a half minute, whereas estimation of D̃ and U is more intensive, but can be

done on a recent computer within one day.

6.4 Therapy

The multiscale model including integrin bindings is especially attractive in view of a new

class of chemotherapy targeting the integrin bindings in order to prohibit migration and so

the tumour spread. We modelled the therapy carefully, but at the cost of changing the fixed

parameters k+ and k− to functions depending on the chemotherapy. As foundation, we used

another growth model based on the ’go-or-growth’ dichotonomy presented in [EKS16] that

uses additional, difficult to measure parameters for the starting and stopping of the cells. Of

course, the growth may also be modelled by the mesoscopic growth term presented in chapter

2. We still selected the approach via heterogeneity of tumour cell subpopulations, because it

is favourable for the inclusion of the novel chemotherapy, as the starting and stopping rates

of the cells can be directly modified, which is otherwise not the case. We selected these rates

as functions depending on the chemotherapeutic dose intensity. All in all, the therapy model

has too many free parameters to use it in clinical practice, but we are looking forward to

patient data to evaluate our assumptions and adjust the modelling accordingly.

We did not model resection of the tumour mass (contrary to [HS16]), because the way

presented in [HS16] is a computationally perfectly valid approach, but it is unlikely that

for this method the required information is available in enough detail. In medical imaging

only regions of high cell density are observable, but the complete cell density information is

necessary to the resection modelled in [HS16]. Hence further work has to address this issue.

Another desirable model extension, when looking at therapy, is to consider additional

chemotherapeutical substances (e.g. temozolomide) aiming at cell death or chemical agents

triggering cell sensitization to enhance the overall therapeutic effect of the radiotherapy.

This will be done in further work, but careful mathematical modelling will make it feasible

to investigate different therapeutic approaches in order to personalize and optimize therapy.
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Nevertheless, for this aim, the underlying model has to be validated as previously described

in order to generate reliable information.
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