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Zusammenfassung

Für den Einsatz von ableitungsbasierten Optimierungsverfahren für die Verbesserung
von Zielgrößen industrieller Produkte, wie z.B. dem Wirkungsgrad einer Turbine,
werden exakte Ableitungen benötigt, um die letzten Prozent an möglicher Effizienz-
steigerung zu erhalten. Dafür ist es notwendig, dass die Ableitungen immer konsis-
tent zu den Lösungsverfahren in der eingesetzten Lösersoftware sind. Problematisch
ist dabei die fortlaufende Weiterentwicklung an der Lösersoftware, die meist dazu
führt, dass approximative Ableitungsverfahren eingesetzt werden oder die Ableitungs-
berechnung in der Software nicht erneuert wird und somit veraltet und inkonsistent
ist.
In dieser Arbeit wird ein universeller Ansatz vorgeschlagen, der zum einen die

gesamte Software mittels Algorithmischen Differenzierens (AD) ableitet und zum an-
derem eine korrekte und konsistente Ableitung nach jeder Änderung sicherstellt. Um
die Korrektheit und Konsistenz zu garantieren, wird die Technik des Variable Tagging
entwickelt. Diese überprüft zur Laufzeit ob alle Abhängigkeiten von den eingesetzten
Ableitungsmethoden korrekt berücksichtigt werden. Für die generelle Überprüfung,
ob eine Ableitungsmethode korrekt implementiert ist, wird ein Theorem für die Ver-
gleichbarkeit von AD Ableitungen entwickelt. Aus diesem Theorem ergeben sich
Techniken, wie eine Implementierung getestet werden kann. Durch Analyse von vor-
liegenden industriellen Fällen wird die praktische Anwendbarkeit der entwickelten
Techniken erfolgreich bestätigt.
Die so erzeugten Ableitungen sind damit bereits konsistent und korrekt, jedoch

kann die Effizienz des Verfahrens noch gesteigert werden. Dazu werden neue Ablei-
tungsalgorithmen entwickelt. Eine konsistente Herleitung mit einem Fix-Punkt-
Iterator beinhaltet alle dem Stand der Technik entsprechenden Algorithmen und
ergibt zwei neue Algorithmen, die alle implementationstechnischen Details mitberück-
sichtigen und damit die Konsistenz der Ableitungsergebnisse nicht verletzen.
Des Weiteren werden bekannte Techniken für das automatische Auffinden der

größ-ten Ressourcenverbraucher vorgestellt und erweitert. Das Datenlayout für die
Berechnung der Kenngrößen für die Ressourcenverbraucher, wie z.B. die Anzahl der
Eingabe- und Ausgabewerte oder der Speicherverbrauch, wurde so erweitert, dass die
Geschwindigkeit der Anwendung nur geringfügig verändert wird. Die Ressourcenver-
braucher können mit Techniken wie Checkpointing und Preaccumulation behandelt
werden. Die bisher in der Literatur fehlende Analyse, wie diese Techniken den Zeit-
und Speicherverbrauch verändern, wird durchgeführt und Besonderheiten bezüglich
verschiedener AD-Werkzeuge werden betrachtet.
Als letzten Schritt werden die benutzten AD Werkzeuge genauer analysiert. Basie-

rend auf den existierenden Implementierungen wird eine generelle Übersicht von
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allen möglichen Implementationstechniken durch Operatorüberladen gezeigt. Das
Hauptaugenmerk liegt auf dem minimalen Speicherverbrauch eines AD-Werkzeuges
und stellt implementationstechnische Verbesserungen vor. Es resultiert die erstmals
mögliche Vergleichbarkeit von AD-Werkzeugen auf einer theoretischen Ebene. Dies
dient als Basis zur Entwicklung eines optimalen Werkzeugs. Das neue Software-
Werkzeug CoDiPack geht aus diesen Überlegungen hervor und wird in seinem Design
und Konzepten vorgestellt.

Die in dieser Arbeit vorgestellten Verbesserungen und Analysen ermöglichen es,
eine automatisierte, konsistente und korrekte Ableitung für industrielle Zwecke ef-
fizient zur Verfügung zu stellen.
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Abstract

If gradient based derivative algorithms are used to improve industrial products by
reducing their target functions, the derivatives need to be exact. The last percent
of possible improvement, like the efficiency of a turbine, can only be gained if the
derivatives are consistent with the solution process that is used in the simulation
software. It is problematic that the development of the simulation software is an
ongoing process which leads to the use of approximated derivatives. If a derivative
computation is implemented manually, it will be inconsistent after some time if it is
not updated.
This thesis presents a generalized approach which differentiates the whole simula-

tion software with Algorithmic Differentiation (AD), and guarantees a correct and
consistent derivative computation after each change to the software. For this pur-
pose, the variable tagging technique is developed. The technique checks at run-time
if all dependencies, which are used by the derivative algorithms, are correct. Since
it is also necessary to check the correctness of the implementation, a theorem is de-
veloped which describes how AD derivatives can be compared. This theorem is used
to develop further methods that can detect and correct errors. All methods are de-
signed such that they can be applied in real world applications and are used within
industrial configurations.

The process described above yields consistent and correct derivatives but the effi-
ciency can still be improved. This is done by deriving new derivative algorithms. A
fixed-point iterator approach, with a consistent derivation, yields all state of the art
algorithms and produces two new algorithms. These two new algorithms include all
implementation details and therefore they produce consistent derivative results.
For detecting hot spots in the application, the state of the art techniques are

presented and extended. The data management is changed such that the performance
of the software is affected only marginally when quantities, like the number of input
and output variables or the memory consumption, are computed for the detection.
The hot spots can be treated with techniques like checkpointing or preaccumulation.
How these techniques change the time and memory consumption is analyzed and it
is shown how they need to be used in selected AD tools.
As a last step, the used AD tools are analyzed in more detail. The major im-

plementation strategies for operator overloading AD tools are presented and imple-
mentation improvements for existing AD tools are discussed. The discussion focuses
on a minimal memory consumption and makes it possible to compare AD tools on
a theoretical level. The new AD tool CoDiPack is based on these findings and its
design and concepts are presented.
The improvements and findings in this thesis make it possible, that an automatic,
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consistent and correct derivative is generated in an efficient way for industrial appli-
cations.
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1. Introduction and outline

1.1. Motivation
The topic of the thesis is about the transition of simulation software to design soft-
ware, which is done in such a way, that the transformation is automated. This raises
several questions:

• What is simulation software?

• What is design software?

• Why does the former need to be transformed into the latter?

• Why should the process be automated?

• How is the automation done?

• Why is a thesis required about this topic?

An in depth introduction to all these different research fields is not possible, but each
question will be motivated such that the general point of the thesis can be made.

What is simulation software? Simulation software can be described by the effort
to model the real world in a computer, which is a reproduction of the physical laws.
Such things can be the behavior of a bridge under strain in order to know if the bridge
will break. It can also be the question how heat is propagated in the oceans such that
natural phenomena as El Nino can be understood and forecast, how the melting of
ice sheets is affected by the global climate change, how the fluid flow around an airfoil
affects the drag and lift or what will be the thrust of a newly developed jet engine?
The simulation of phenomena like these, helps to make our lives easier while also
preventing the occurrence of catastrophic events. It is therefore necessary to develop
computer software that can simulate the real world, but the task is quite involved and
requires several steps until a problem can be simulated with a reasonable accuracy.
First, a deep understanding of the physical laws and their formulation as mathe-

matical equations is necessary. The modeling can be done in several different ways
and with different abstraction mechanisms. The Boltzmann equations [Har04] can be
used as a starting point and can for example be modeled as the Lattice-Boltzmann
method [HL97] or as the DNS (direct numerical simulation) method [Spa88]. There
are many other methods available but in this introduction partial differential equa-
tions are chosen as an example. The Navier-Stokes partial differential equations
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[Tem84] can be derived from the Boltzmann equations and describe how a viscous
flow behaves. They can be used to simulate such phenomena as mentioned above. A
direct implementation of these equations is not possible as they are formulated in a
continuum domain, that can not be represented on a computer. The domain of the
problem needs to be broken down into discrete units. This discretisation can be done
in many ways and one choice is to use small blocks each representing a small volume
of the domain. If the blocks are small enough, then we can assume that all fluid
properties (like temperature) are constant inside of each block. The combination of
millions of blocks will give a discrete representation of the problem domain in finite
volumes, and is called the finite volume method [VM07]. Several other choices, how
the discretization can be achieved exist e.g. the finite difference method [LeV07], the
finite element method [ZTZ13] or the discontinuous Galerkin method [CKS00].

In order to enable the computations to be executed on the available hardware,
several different approximations have been invented over the past few decades. A
large range of methods is available that differ in their computational complexity.
These range from simple panel methods [AJ10] to the Reynolds averaged Navier-
Stokes (RANS) equations [Alf09]. The RANS equations are established under the
assumption that the motions in the fluid can be decomposed into two components:
one that describes the time averaged motion of the fluid, and one that models the
small fluctuations [Ran06].
On current computer clusters it is possible to simulate the unsteady RANS equa-

tions for full aircrafts [ND17], but the implementation of such numerical schemes is
a major effort. In order to be accurate the software needs to be validated against
several experiments such that it is clear that the physical laws are correctly simulated
[RJL+15]. Each experiment, like a wind-tunnel experiment [SG03], can cost several
thousands of euros and accumulate into millions of euro over the development time of
a simulation code. Next to the simulation, the code needs to be written such that it
performs well on super computers, which requires an entire team of software experts
[WGNP07] and can not be accomplished by a single person. Until a simulation code
has reached a state where it can be used reliably to investigate new problems of large
size, several hundreds of people have to work for several years. It is then an ongoing
effort to improve the accuracy, performance and capabilities of the code which easily
leads to software, where thousands people-years of work and millions of euro have
been investigated. Each line of such a software can have easily an estimated worth
of 100 euro.

What is design software? We now have a software that can be used to simulate
the flow around an airplane, or the stresses acting upon a bridge. It is now natural
to want to use the software to design an airplane that requires less fuel or carry a
larger cargo with the same amount of fuel. Usually an engineer tries to maximize
or minimize a certain target value. If the drag of an airfoil can be decreased, the
efficiency gain will decrease the airplanes overall fuel consumption leading to reduced
ticked prices for our next holiday. An optimization can also avoid a bridge from
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breaking when it is hit by a storm and therefore save lives [LMHF13].
Most designs developed over the last few decades [Irv93] could either be optimized

by an engineers intuition, from experience gained by previous designs or by small
model tests. Experience however, goes both ways. It is gained through successful
designs, but is also gained through design failures and the casualties they may cause.
A sharp edge of a top window design lead to unusual amounts of high pressure and
caused the cabin of the BOAC Flight 781 to explode, killing everybody on board
[Ste88].
Intuition and experience can only lead to designs that are close to a certain optimal

solution. Current industrial designs are already quite optimal but in order to gain the
last few percents of improvement a manual trial and error approach is not feasible.
Recent designs can have several millions of parameters and it is impossible for a
human to gain an intuition for each of these parameters. It is therefore necessary to
develop a process that will find the optimal solution in an automated fashion.
The mathematical notion for this is the derivative of a function. The derivative

describes how a change in the design parameters (e.g. the thickness of a beam in a
bridge) will change the target value used for optimization (e.g. the maximum load
of the bridge). The derivative, with respect to all design parameters, is called the
gradient and points in the direction of the steepest ascent [NW99]. It can be used
by an engineer or by an automated algorithm to generate a new design. Gradient
based optimization methods like the steepest descent algorithm [NW99] provide an
automated way to find an optimal design.

Why simulation software needs to be transformed into design software and why
the process should be automated? In order to manage the complexity of a design
process with millions of design parameters and gain the last percent of efficiency the
simulation software needs to calculate the derivatives required for optimization, in
doing so it becomes a design software. Derivatives can be integrated into a simulation
software in different ways. The simplest method is the finite difference approximation
[Mic91]. One design parameter can be modified by a small amount and the difference
in the solutions can be used to estimate the derivatives for this parameter. If this
process is repeated for all design parameters the full gradient can be approximated.
The finite difference method has two drawbacks. It is not clear by how much a
parameter should be modified, such that the truncation and cancellation errors are
minimized. For some parameters the modifications can be in the order of 10−3 and
for others in the order of 10−6. The second drawback is the feasibility for a large set
of design parameters. If one simulation takes one day and there are 10,000 design
parameters, one approximation of the gradient will take 27 years.
The second option is to provide a manual implementation of the derivative com-

putation. This can either be achieved by looking at physical laws like the Navier-
Stokes equations and deriving an equation from them for the sensitivity computation
[JMP98], which is then discretised, implemented and validated, or by visiting each
code line and implementing the respective derivative. The equation centered ap-
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proach is called “first optimize and then discretize” while the code centered approach
is called “first discretize and then optimize” [BC05]. Both approaches lead to new
code that is added to the simulation software and if done properly will provide the
fastest way to compute the derivatives with the optimal amount of resources. The
new code however, needs to be validated and tested in the same way as the simulation
code. The development of the simulation code already requires several people-years
and now a second code base has to be developed, tested, maintained as well as up-
dated. This would require the same amount of people as previously, which is usually
not feasible. Also each code change in the simulation code needs to be reflected in the
derivative code, otherwise the results will be inconsistent representing yet another
complication to overcome.

Further inconsistencies can arise due to the development procedure for both codes.
Usually a new feature is first introduced in the simulation code and tested there until
it is determined fit for productive use. Only afterwards the development of the deriva-
tive code for this feature starts. This yields the discrepancy, that the simulation code
is capable of computing something that is not available in the corresponding deriva-
tive computation. Until the same feature is available in the derivative code, several
month or years can pass. During this time the simulation code will have evolved
further and a difference in the capabilities of the simulation code and the derivative
code will almost always be present. In order to avoid this gap, the transformation
for the simulation code into the design code needs to be done automatically.

How to automatize? Both presented options are not feasible for highly complex
simulation codes. It would be most appropriate if the differentiation of the software
could be automated. As a first step the insecurity about the step size of the finite
difference approach can be eliminated. Instead of perturbing the design variables, the
directional derivative with respect to the design variables can be computed. For this
purpose each design parameter is given a direction in which it is differentiated and the
program is viewed as a chain of intrinsic functions like the addition, multiplication,
sine or cosine, that are sent to the cpu. As the first intrinsic function is handled by
the cpu, the directional derivative needs to be computed. The derivative for each
of the intrinsic functions is quite simple and therefore the gradient can be evaluated
and multiplied with the derivative direction that is set for the input variables. The
directional derivative for the computed intrinsic function is therefore also available
and computed alongside the intrinsic function. For the second intrinsic function
the process is repeated and so on. After millions of statements, the simulation will
finish and for every computation the directional derivative and the original primal
value will have been computed. The target values will have a directional derivative
associated with them. This gives us the information how sensitive the target value
is with respect to the initial direction. The nice thing about this procedure is, that
only a direction needs to be chosen and no step size for the perturbation. The
resulting derivatives will also be accurate to machine precision. This process is called
nowadays the forward mode of Algorithmic Differentiation (AD) [GW08]. It has been
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rediscovered several times in the past decades [Wer82] and it still is.
The forward mode interprets the problem of the derivative calculation from the

viewpoint of the design parameters. For each parameter the question “How will a
change in the design parameter change my target quantities?” is answered. A more
natural way of formulating the question would be “How will a change in the target
quantity change my design parameters?”, as the engineers goal is to improve the
target quantities. The answer to this question can be directly computed with the
reverse AD mode [GW08].
The forward mode interprets the program as a chain of intrinsic functions and

applies the chain rule to these intrinsic functions. The result is a concatenation of
millions of simple Jacobi matrices. By applying the directional derivative to this chain
of Jacobi matrices, a vector is multiplied from the right. If now a vector is multiplied
from the left instead, the propagation of the derivative information is performed from
the target quantities to the design parameters. The vector that is multiplied from the
left is called the adjoint direction. If the sensitivities for a change in the first target
quantity is computed, then the adjoint vector will be set to the first unit vector. The
result then describes, how the design parameters will need to be changed in order
to gain the desired change in the target quantity. This describes the process for the
reverse AD mode. It has also been rediscovered several times over the past decades
[Lin76] and is know by the machine learning community as back propagation [Wer94].
With this technique the derivatives to all design parameters can be computed with
one evaluation of the simulation code and one reverse interpretation.
The advantage of the reverse AD mode in contrast to the hand implementation is,

that it can be fully automated. With this method every change to the simulation
software is automatically available in the reverse AD mode, eliminating the draw-
backs of the hand coded derivatives. Nevertheless, the application of the reverse AD
mode to a large software includes several challenges. The reverse mode changes the
information flow in the program. For each input, the adjoint value is now an output
and for each output the adjoint value is now an input value. Due to this reversal
of the information flow, the computation for the reverse mode can not be computed
directly alongside the primal computation. For each function or statement a certain
set of data needs to be stored, such that the reverse interpretation can be done.
Proper management of the data as well as the correct reversal of the program are the
major challenges in the application of the reverse AD mode, which makes the task
none trivial.
An alternative to the reverse mode of AD would be the symbolic differentiation

of the mathematical formulation for the program. This approach is not considered
here since several problems arise. The mathematical equations are not directly im-
plemented and therefore a discrepancy exist. The symbolic differentiation yields new
formulations, that need to be implemented or generated. Also the symbolic differen-
tiation may yield large formulations that increase the complexity of the software.
Since, an important aspect for the automation is the consistency of the derivatives

with respect to the actual software implementation, the reverse mode of AD is selected
for the automation.
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Why is a thesis required on this topic? Since the original development of the
AD theory started in the late 1970s, there should be sufficient knowhow and tools
available such that the efficient transformation from simulation software to design
software should already be possible. If a developer wants to start with such a task,
then the decision as to which AD tool is appropriate needs to be decided first.
Several tools are available: ADOL-C [WG09], AD model builder [FSA+12], CppAD

[BB08], etc., but the user has usually no means to compare the tools on a theoretical
level. Nearly every tool has a different advantage or disadvantage. The AD model
builder can be used to handle higher order structures in an efficient way. ADOL-C
provides various drivers, that enable a user to easily perform different differentiation
tasks like the forward mode, the reverse mode, the computations of Hessians etc..
Often the different tools are compared only upon very small problems. These tests e.g.
by the Stan Math library [CHB+15] do not exhibit the performance characteristics of
large scale software that is evaluated on a cluster node. Here the memory bandwidth
limitation is most critical and small tests do not show problems resulting from the
management of large memory chunks. Due to the small test size the tools cannot
be compared for the memory consumption and there is nearly no literature about
how much memory an AD tool will use per operation or statement. The Stan Math
library is the only major tool where the memory per operation is shown.
Other decision criteria for the appropriate AD tool would be the properties of

the calculation type provided by the tool. There is currently no literature available
that explains the properties of the tools and no tool developer states this in their
development examples. The most important property as to whether or not the type
is safe to use in C-like memory operations is scarcely documented. For example,
ADOL-C is a tool where it is strictly forbidden to use such operations, on the other
hand dco/C++ [LLN16] can be used in such operations without any problems.
AD tools that apply AD to a code base via operator overloading are also always

classified as one big category lacking any distinctions. Juedes [Jue91] provides six
different categories for AD tools but operator overloading tools are only classified as
operational tools. Bischof et al. [BHN08] provides also an overview of AD tools, but
uses only one category for operator overloading tools. That there are different taping,
data management and various implementation approaches is nowhere reflected. The
resulting properties of the tools often go unexplained in the literature. Especially for
libraries like operator overloading AD tools, that change how each operation in the
code is performed, it should be well documented which properties the implementation
has. For HPC applications, the data storing, the access patterns and the kind of
computations are very important.
The final decision criteria could be which improvements have been applied to the

AD tool in order to reduce memory consumption or computing time. Only recently
papers about the efficient implementation of expression templates have been pub-
lished by Hogan [Hog14] and Phipps [PP12]. Phipps gives a good demonstration on
the implementation of this approach and discusses different improvements that were
made to the implementation, a topic seldom covered in literature. Hogan provides
also a good insight into the implementation process, but his comparisons to other
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tools only occur on small scale examples. Small tricks are found in several different
AD tools but there are no papers about these implementation optimizations.
The decision for the most appropriate AD tool can also be made by reports of

the successful application of AD to large scale HPC codes. For programs written in
Fortran some results are available. In [BBL+01, BBL+03] the AD tool ADIFOR is
applied on the finite element package SEPRAN. ADIFOR is also applied in [FE02]
on the CFD solvers mheuler and in [CGBN94, GNH96] it is applied on the CFD
solver TLNS3D. R. Giering et al. present in [GKE+09] the application of the AD
tool TAF on the CFD solver FLOWer and the grid generator MUGRIDO. Most of
these reports only apply the forward AD mode, which does not exhibit the memory
management challenges of the reverse AD mode. If the reverse AD mode is applied
in large scale software, then it is usually only done for small parts of the application.
For C/C++ there are no results for large scale software available so far. In

[SGN+13] a first approach for the semi automatic transition of a simulation to a
design software has been achieved. Further research in that direction is also done by
the chair for Scientific Computing from the University of Kaiserslautern in coopera-
tion with the group of Naumann [LNSS13].
Most other approaches on large scale software in C/C++ apply AD only on a

small part of the application. F. Zaoui presents in [Zao08] the application of the
AD tool ADOL-C to a large code base but the solution process is dominated by the
solution of a linear system and only the setup of the matrix and the right hand side
is differentiated with AD.
It is therefore quite hard to decide which tools are appropriate for the use in an

HPC context, if the tool uses the optimal memory layout and how to apply the AD
tool to large scale software. The necessary information is only available after a careful
study of the AD tools and by experimenting how these tools are best introduced into
the software. In this area Hück et. al [HBU15] first analyzed how common problems
in the introduction of an operator overloading AD tool to a software can be detected
automatically. In a further work [HUB16], they provide a tool for the automatic
correction of the detected problems.
The choice of the AD tool is not the only challenge that needs to be tackled, when

the software is differentiated. The validation of the derivative results is another im-
portant aspect, but usual techniques only employ the validation with finite differences
and the comparison with the forward mode of AD. How problems are covered, when
the validation fails, is mostly not described in detail or only mentioned. A detailed
analysis on how to find errors in the computation of the AD derivatives or how to
validate special techniques is not available. But these techniques are necessary in
order to automate the maintenance of the primal and adjoint code.
Further aspects in the differentiation of large code bases involves the handling of

code locations that use the most resources, the so called hot spots. An automated
analysis for the hot spots is introduced by J. Lotz [Lot16, LNM16]. The work con-
centrates on the correct measurements of the required resources for AD and collects
the number of input variables for each function call in the program. The hot spots
can then be handled with the general known techniques of function checkpoints and
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preaccumulation [Utk05]. These techniques are generally known but details on their
implementation for specific taping strategies are not available.

1.2. Content and general approach

The aim of the thesis is to provide a general approach for the transformation of large
scale simulation software to design software. The two most important aspects are
the efficiency and maintainability of the approach.

The efficiency is defined in terms of execution speed, memory consumption and
development time for the application of an AD tool onto the software. The main-
tainability covers the long term development aspects of large scale software. That
is, the derivative code should always be up to date with the simulation software and
every change should be automatically transferred to the derivative code.
The approach of this thesis is therefore to treat the simulation software as a black

box. This means that the software is differentiated completely with AD and no part
of the software is skipped. This approach by itself is not new but in general avoided.
The initial workload can be quite high and the result is not guaranteed to satisfy
the performance requirements. Nevertheless, it has the advantage that the derivative
code is always consistent with the implementation and computes exact derivatives.
Through the use of AD it is guaranteed, that the derivative code will always be up
to date and the maintenance aspect is mostly covered.
The initial workload and further work on maintenance can be reduced with proper

validation techniques for the derivatives. Since there are no general techniques avail-
able in the literature, new techniques are developed in this thesis. The developed
tagging technique is an online validation technique that traces the dependencies of
variables in the application. It is a novel technique that is used to validate all kinds
of interfaces and dependencies required by AD. A second validation technique is de-
scribed for the AD tapes. It is based on a theorem derived in this thesis for the
comparability of two tapes. In the resulting algorithm one tape is considered a cor-
rect master tape and a second tape is considered to be a wrong secondary tape.
The algorithm finds all differences in the tapes and provides an indication for wrong
implementations, bugs in the AD tools, or other errors in the dependencies.
Since the whole application is differentiated with AD the analysis for the discrete

adjoint method needs to be done in this framework. In contrast to the usual math-
ematical formulation, where an abstract model of the application is considered that
does not fit to the implementation, a consistent modeling is considered here. The
modeling in the thesis is based on a fixed-point solution process, which is used by
nearly all state of the art solvers. For the fixed-point solver, an initial guess for the
solution is made. The guessed solution is then updated by the numerical scheme in
an iterative process until no further changes occur. The reached fixed-point is then
the solution of the problem. By using the fixed-point iterator in the mathematical
modeling, a direct link to the software implementation exists. The fixed-point iter-
ator approach will contain all techniques like flux limiting or turbulence modeling
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which do not need to be considered separately in the differentiation process.
Two modeling theories are applied to generate derivative algorithms. The deriva-

tion in the standard optimization framework (Lagrange function with fulfilled KKT
conditions [KT51]) yields the Reverse Accumulation algorithm. The theory requires
the solution to be good enough in order to yield appropriate convergence behavior
and therefore meaningful derivative results. But theses conditions are weaker than
the conditions that are required by state of the art algorithms for the derivative
computation.
The second modeling theory comes from AD itself. Here, on the whole computation

algorithm AD is applied, yielding the Black Box derivative algorithm that always
provides consistent derivative information. For both algorithms it is shown that they
are generalizations of the current state of the art algorithms. Thus they provide
improved consistency over the currently used algorithms.
After the code is differentiated and the new derivative algorithms are implemented,

the analysis of the code for resource hot spots needs to be done. The current theory
in this area is extended such that also the number of output variables can be tracked
for all regions of the code. In addition, the algorithms and data layouts are changed
such that unnecessary overheads are eliminated. Only then the analysis of large scale
applications can be performed.
For the treatment of hot spots, checkpointing and preaccumulation techniques are

presented. Since they are usually not applied in a framework where the whole applica-
tion is differentiated and no special code is written for the hot spots, both techniques
are adapted to these constraints. The implications of these constraints are analyzed
with respect to the available AD implementation techniques. Possible problems are
highlighted and their solutions presented. In addition the memory and time changes
for the application of checkpointing and preaccumulation are investigated in great
detail, consequently the most appropriate technique can be chosen for each hot spot.
A minimal invasive hot spot treatment technique is presented for an example soft-

ware. It is based on the global structure of the software and applied such that the
required memory can be reduced without changing time requirements.
The selection of an appropriate AD tool is discussed after a general presentation

of AD implementation strategies. All known AD implementation techniques for op-
erator overloading are presented in a generalized framework and for each technique
the minimal required memory is derived. Known improvements to all techniques are
presented, too. These improvements are again analyzed for their minimal required
memory.
New ideas for further improvements are presented and analyzed for minimal mem-

ory as well. The linear subexpression improvement tries to reduce the required mem-
ory for code statements that are linear and therefore require less information for the
derivative computation. The removal of duplicated arguments is a second new tech-
nique that tries to optimize the graph of each statement. The graph is modified so
each duplicated argument is only stored once. This removes unnecessary information
from the storage.
The resulting memory efficient AD implementation strategies are compared to
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currently available AD tools. The comparison shows that some tools already provide
a memory efficient implementation but in an strategy that is not too optimal. This
leads to the design of a new AD tool, CoDiPack (Code Differentiation Package).
The main goal of this tool is to provide the memory efficient AD implementations
presented in the thesis and to provide a framework for further AD based research.

1.3. Outline
The first chapter of the thesis will introduce the basic theory of AD and provides a
first approach for the implementation of an AD tool. This also covers the introduc-
tion of basic naming conventions in an AD tool. The following chapter introduces
the analysis of the available derivative algorithms for the outer derivative, that is
the global structure of the program. Here, the new framework is introduced and
specialized such that the state of the art algorithms are recovered. This sets all the
available algorithms in context to each other. Chapter 4 will cover the Black-Box
differentiation approach. It is exemplary performed in an exemplary fashion upon
the TRACE code and then the techniques for the automated validation and main-
tenance of the differentiated software are discussed. After that, the optimization
techniques for whole functions are presented. First the hot spot analysis is shown
and then the checkpointing and preaccumulation techniques are analyzed. Chapter 6
handles the selection and improvements of the AD tools. The chapter builds on the
implementation approach from Chapter 2 and introduces several different implemen-
tation strategies for the reverse AD mode. Improvements for the different strategies
are presented that provide a large variety of options. Current AD tools are put in
relation to the presented strategies and analyzed if they can be applied to large scale
software. The chapter is concluded with the presentation of the new AD tool CoDi-
Pack, a tool specifically designed for large scale software which implements all of the
presented implementation strategies. The final chapter presents performance results
of the different AD tools, function optimization techniques and derivative algorithms.
For the derivative algorithms an analysis of their robustness under various conditions
is provided.
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Several mathematical algorithms require derivatives in order to work properly. Some
are partial differential equations, gradient based optimization, Newton’s method and
parameter fitting. In order to provide these derivatives a common choice is to im-
plement them by hand. For small functions or software packages this is still possible
but the derivation and implementation quickly become a tedious task for large scale
software.
The theory of Algorithmic Differentiation (AD) tries to provide the basis for the

automation of derivative generation in a computer program. For this purpose the
program is viewed as a sequence of simple elemental (or intrinsic) functions that
include the sine, cosine, multiplication and addition. By applying the chain rule to
this sequence, a representation of the derivative for the computer program is created.
If the directional derivative is required for this representation, then the computation
can be evaluated quite efficiently. Let

w = (a+ b) ∗ (c− d) (2.1)

be the computer program. This program can now be split into the elemental function
which yields the intermediate steps:

t1 =a+ b

t2 =c− d
w =t1 ∗ t2 .

(2.2)

For each of these steps the Jacobi matrix can be computed quite easily, for a+ b the
matrix is (1, 1). In order to compute the directional derivative, the Jacobi matrix
is multiplied with direction (ȧ, ḃ)T , where the dot notation is used to describe the
corresponding derivative direction of a variable. If this process is applied to the full
procedure, the result is

ṫ1 =ȧ+ ḃ

ṫ2 =ċ− ḋ
ẇ =t2 ∗ ṫ1 + t1 ∗ ṫ2 .

(2.3)

By computing the corresponding directional derivative statement in procedure (2.3)
alongside the original statement in procedure (2.2), the directional derivative is com-
puted for the whole computer program (2.1). If the same process is done for each
operation in a computer program, then the directional derivative can be computed
for arbitrarily complex software.
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In summary, the directional derivative of a software can be computed by intro-
ducing a derivative variable for each variable, splitting the software into elemental
functions, computing the Jacobi matrix for every elemental function and multiplying
it with the directional derivative of the respective variables. This procedure is called
the forward mode of AD. From a mathematical viewpoint it consists of applying
the chain rule to the whole computer program and then computing the directional
derivative. A rigorous derivation will be done in this chapter.
The second operation mode of AD is called the reverse AD mode. It can be

introduced in a very crude way by multiplying an adjoint direction from the left side
instead of multiplying a derivative direction from the right. The adjoint for a variable
a is denoted with the bar notation ā. For the statement t1 = a + b, the Jacobian is
(1, 1) and multiplied with the adjoint direction t̄1 from the left. This yields the two
updates ā = t̄1 and b̄ = t̄1. The reverse AD procedure for procedure (2.2) is then

t̄1 =t2 ∗ w̄
t̄2 =t1 ∗ w̄
c̄ =t̄2
d̄ =− t̄2
ā =t̄1
b̄ =t̄1 .

(2.4)

Because of the multiplication from the left, the order of the adjoint statements is
reversed, which is also the advantage of the reverse AD mode. The full gradient
of a real valued function (e.g. a computer program with one output value) can be
computed with one reverse AD evaluation. If the program has one million input
variables, then the full gradient can be computed in one reverse sweep.
The first two sections will provide a very strict way of deriving the forward and

reverse AD mode. How both methods work will be shown in a more sophisticated
example. Afterwards, a first naive implementation of the forward and reverse AD
mode is provided. This implementation will introduce a user defined type that uses
operator overloading to perform the additional AD operations alongside the primal
computations. This section will also introduce basic notations and definitions for the
AD implementations, that are used throughout the thesis. The naive implementation
will be refined in Chapter 6 and possible avenues for improvements are explored there.

Remark 2.1 (Notations)
The notation for AD in this thesis is taken from the book of Griewank et al.
[GW00], and is used by Griewank only to introduce the reverse mode. It is used
here to introduce the forward mode as well, which yields a consistent notation
and derivation for both modes. The only difference is that no negative indices
are used for the input variables, this is also the notation that Naumann uses
in [Nau12]. The basic calculus definitions are taken from the book of Apostol
[Apo69] and are repeated in Appendix A.
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2.1. The forward mode

Remark 2.2 (AD on algorithms)
The theory of AD is often seen just as an intermediate step for the implementa-
tion of some tools that apply AD to a computer program. But, the theory of AD
can also be used to generate a differentiated version of mathematical algorithms
which could be used to describe the global structure of a numerical process. By
applying AD to the mathematical algorithm, it is easy to see how the derivative
of this algorithm will look and this insight can be used to program the derivative
of such an algorithm in a more efficient way.

2.1. The forward mode

In order to differentiate a computer program or (in short) a code, a mathematical
representation for the same computer program is required. The assumption is that
the program computes the function F : X ⊂ Rn → Y ⊂ Rm. The program consist
of the input values x from the set X, the output values y in the set Y and all
intermediate results u in the set U . The intermediate results are created during the
computation of the output values y from the input values x. The theory is based on
the assumption that the intermediate values u and the output values y are computed
by simple functions for which the derivatives are known. First the evaluation space
of the program is defined.

Definition 2.3 (Program space)
X, Y and U are defined by:

• X ⊂ Rn is the vector space of the input values.

• Y ⊂ Rm is the vector space of the output values.

• U ⊂ Rl is the vector space of the intermediate values.

Then
V := X × U × Y ⊂ Rn × Rl × Rm = Rn+l+m

is the vector space of the program evaluation. The vector v ∈ V can also be
written in component form v = (x, u, y)T .

The program space views the computer program as a large state where all interme-
diate variables are always available. The operations in the program create a new
state, where only one element is modified. These transitions are defined by elemental
operators and mappings.

Definition 2.4 (Elemental operator)
An elemental operator is a function φi : V → R with i ∈ {1, ..., l +m}, that
computes the i-th operation in the program space V . The operator depends
only on the first n+ i− 1 entries of the vector v ∈ V .

13



2. Algorithmic Differentiation

Remark 2.5
If the i-th operation in the program is

c = sin(a) ,

then the corresponding elemental operator is

φi(v) = sin(vj)

where j ∈ N is the corresponding index for a ∈ R in the program space.

Definition 2.6 (Elemental mapping)
An elemental mapping is a function Φi : V → V with i ∈ {1, ..., l +m}, that sets
the n+ i entry in the program space V . The elemental mappings are defined by

Φi(v) = (v1, . . . , vn+i−1, φi(v), 0, ..., 0︸ ︷︷ ︸
l+m−i

) (2.5)

where the n+ i-th entry is set by the elemental operator φi and the first n+ i−1
entries stay the same.

In order to handle the input and output values the mapping from X to V is defined
by

IX,V : X → V

x 7→ (x, 0, 0)T

and the projection from V to Y is defined by

IV,Y : V → Y

(x, u, y)T 7→ y .

These definitions will be used to describe the relation between the mathematical
function F and the evaluation of the computer program.

Definition 2.7 (Program function)
Let x ∈ X be the input values of the program and y ∈ Y be the output values.
The program consists of k ∈ N elemental mappings, which calculate the function
F : X → Y .
F is called the program function if and only if the equation

F (x) = IV,Y ◦ Φk ◦ Φk−1 ◦ ... ◦ Φ2 ◦ Φ1 ◦ IX,V (x) (2.6)

holds and l = k −m is the size of the intermediate values.

Remark 2.8 (Output variables)
Through the definition of the program space V and the program function F it
is always implicitly assumed, that the last m elemental mappings compute the
output y of the function.
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2.1. The forward mode

The program function represents the link between mathematical theory and the com-
puter program. The computer program is represented in this definition as a single
assignment code (SAC) [Nau12]. Each operation performs only one assignment and
only one variable is changed per operation. But, how does the derivative of the
function F (x) apply itself to the elemental mappings and how do the resulting equa-
tions describe an algorithm for the derivative calculation? In order to show this an
assumption about the elemental operations φ is established.

Assumption 2.9 (Differentiability)
The elemental operations φ : V → R are differentiable up to the order d ∈ N.

Elemental mappings are a combination of the identity and the elemental operations,
and are also d times differentiable. The concatenation of the mappings Φi for all
i = 1 . . . k is then d times differentiable by the chain rule. This yields the differen-
tiability of the program function F , which is represented by the elemental mappings.
The derivative of F exists and the derivative F ′ can be represented with the deriva-
tives of IX,V , IV,Y and Φi.

The derivative of IX,V (x) =

x0
0

 is:

dIX,V
dx

=

I0
0

 .

The derivative of IV,Y (x, u, y) = y is:

dIV,Y
dv

=
(
0 0 I

)
.

The derivative of an elemental mapping Φi defined in eq. (2.5) is presented for each
component separately. The notation Φij (v) := (Φi(v))j is used as an abbreviation in
the following statements.

• Let j < i+ n, then Φij (v) = vj and it follows

dΦij

dv
= (0, ..., 0, 1︸︷︷︸

j-th

, 0, ..., 0) .

• Let j > i+ n, then Φij (v) = 0 and it follows

dΦij

dv
= (0, ..., 0) .

• Let j = i+ n , then Φij (v) = φi(v) and it follows

dΦij

dv
= dφi

dv
=

∂φi
∂v1

, ...,
∂φi
∂vj−1

, 0︸︷︷︸
j-th

, 0, ..., 0

 .
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2. Algorithmic Differentiation

The full Jacobi matrix of Φi can now be written as:

dΦi

dv
=

 I 0 0
dφi
dv 0 0
0 0 0

 .

The first step for the derivation of F is the analysis of two concatenated elemental
mappings. Let Φ1 : V → V and Φ2 : V → V be two elemental mappings, which are
evaluated at the point v ∈ V and let v̇ ∈ Rn+l+m be a direction for the directional
derivative. The concatenation is defined as g(v) := (Φ2 ◦ Φ1)(v). The chain rule
yields

v̇(1) :=dΦ1
dv

(v)v̇

v̇(2) :=dΦ2
dv

(Φi(v))v̇(1)

dg

dv
(v)v̇ =Φ2 ◦ Φ1

dv
(v)v̇ = dΦ2

dv
(Φi(v)) · Φ1

dv
(v)v̇

The last term in the derivative of g(v) shows that the factor Φ1
dv (v)v̇ could be sub-

stituted by v̇(1). The result of the substitution is dΦ2
Φi(v)(dv)v̇(1) which is equivalent

to the definition of v̇(2) and therefore equivalent to the derivative of Φ2(Φi(v)). The
important notion of this example is that it does not matter if the whole Jacobi matrix
is computed directly and then multiplied by v̇ or if the Jacobi matrices are computed
step by step and each time multiplied with the derivative direction.
This yields the basic idea on which Algorithmic Differentiation is based and it is

used later to formulate the forward mode of Algorithmic Differentiation. Neverthe-
less, the program function F needs to be differentiated first. The Jacobian of F is
computed by applying the chain rule to each term:

dF

dx
(x) = dIV,Y ◦ Φk ◦ Φk−1 ◦ · · · ◦ Φ2 ◦ Φ1 ◦ IX,V

dx
(x)

= dIV,Y ◦ Φk ◦ Φk−1 ◦ · · · ◦ Φ2 ◦ Φ1
dv

(IX,V (x))dIX,V
dx

(x)

= dIV,Y ◦ Φk ◦ Φk−1 ◦ · · · ◦ Φ2
dv

(Φ1 ◦ IX,V (x))dΦ1
dv

(IX,V (x))dIX,V
dx

(x)

...

= dIV,Y
dv

dΦk

dv
(Φk−1 ◦ · · · ◦ Φ1 ◦ IX,V (x)) · . . . · dΦ1

dv
(IX,V (x))dIX,V

dx
(x) .

(2.7)

Let ẋ ∈ Rn be a directional vector. As it is shown in the example with the two
elemental mappings, the directional derivative of the program function F can now
also be written in an iterative form. The intermediate results after each step will be
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2.1. The forward mode

denoted with v(i) ∈ V and the intermediate derivative directions as v̇(i) ∈ Rn+m+l.
With these abbreviations the iterative form is described as

v(0) = IX,V (x) v̇(0) = dIX,V
dx

(x)ẋ

v(1) = Φ1(v(0)) v̇(1) = dΦ1
dv

(v(0))v̇(0)

v(2) = Φ2(v(1)) v̇(2) = dΦ2
dv

(v(1))v̇(1)
...

...

v(i) = Φi(v(i−1)) v̇(i) = dΦi

dv
(v(i−1))v̇(i−1)

...
...

v(k) = Φl(v(k−1)) v̇(k) = dΦk

dv
(v(k−1))v̇(k−1)

y = IV,Y (v(k)) ẏ = dIV,Y
dv

v̇(k) .

(2.8)

The only difference between equation (2.7) and iteration (2.8) is that the latter
only computes the directional derivative. Otherwise both state the same evaluation
process. The iterative form of the process is much clearer to read and nearer to
the evaluation in a computer. The iteration also states very clearly that it is not
necessary to build the full Jacobi matrix F ′(x). It is sufficient to apply the directional
derivatives to the Jacobi matrices of the intermediate steps.
The abstraction in Definition 2.7 is also valid on a computer, but the evaluation

is done differently. If the whole state of the program will be copied it would be the
same as creating the new vector v(i) from the vector v(i−1). In order to avoid this,
procedure 2.8 needs to be simplified such that only one state vector v is used for the
algorithm. Each elemental operator φi changes only the component i+n of the vector.
This component has never been written before because i is always increasing and the
component has never been used before because each elemental operator φj with j ≤ i
depends only upon the first n+ j− 1 elements of the state vector. It is therefore safe
to just use one state vector v instead of copying the whole state vector each time.
The same argument as for the primal computation can be made for the derivatives
in iteration (2.8). There is no need to copy the derivative vector v̇(i−1) to v̇(i) only to
change one component. The algorithm has to only update the derivative value of the
corresponding variable. This final analysis yields the evaluation procedure in Figure
2.1 and the definition of the forward mode of Algorithmic Differentiation.

Theorem 2.10 (AD forward mode)
Let a program be given by k ∈ N elemental operations φi : V → R with i = 1, ..., k.
x ∈ X are the input variables, y ∈ Y are the output variables and ẋ ∈ Rn is
a direction. Then the algorithm defined in Figure 2.1 computes the directional
derivative of the program at the point x in the direction ẋ.
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2. Algorithmic Differentiation

Function Primal statement Forward AD statement
Input: IX,V (x) vi = xi, ∀i = 1...n v̇i = ẋi, ∀i = 1...n

Φ1(v) vn+1 = φ1(v) v̇n+1 = ∂φ1
∂v1

v̇1 + ...+ ∂φ1
∂vn

v̇n

Φ2(v) vn+2 = φ2(v) v̇n+2 = ∂φ2
∂v1

v̇1 + ...+ ∂φ2
∂vn+1

v̇n+1

...

Φi(v) vn+i = φi(v) v̇n+i = ∂φi
∂v1

v̇1 + ...+ ∂φi
∂vn+i−1

v̇n+i−1

...

Φk(v) vn+k = φk(v) v̇n+k = ∂φk
∂v1

v̇1 + ...+ ∂φk
∂vn+k−1

v̇n+k−1

Output: IV,Y (v) yi = vl−m+i,∀i = 1...m ẏi = v̇l−m+i,∀i = 1...m

Figure 2.1.: Evaluation procedure for the AD forward mode.

If the program corresponds to the function F : X ⊂ Rn → Rm, that can be rep-
resented by equation (2.6), then the algorithm in Figure 2.1 computes the equation

ẏ = dF

dx
(x)ẋ (2.9)

which is the directional derivative of F in the direction ẋ.

Proof. The proof is just a recapitulation of the argumentation from the beginning of
the section. Equation (2.6) is the starting point. Each component of this equation
is differentiated. The Jacobi matrix of the equation is written and transformed into
the iterative formulation in equation (2.8). For each elemental mapping Φi the first
n+i−1 components are the identity operation and the n+i-th component is computed
by the elemental operation φi. It is sufficient to have one vector v and update each
component by the elemental operation φi. The same is true for the Jacobies of the
elemental mappings. The Jacobies perform the identity operation in the first n+i−1
components and they update the n + i-th component with the derivative dφi

dv v̇(i). It
is sufficient to update v̇i with dφi

v̇ v̇. The mappings IX,V and IV,Y perform identity
operations and these operations can be handled by copying the values from x to v,
ẋ to v̇, v to y and v̇ to ẏ.

In Figure 2.2 the forward derivatives for selected functions are shown.

Remark 2.11 (ẋ (The dot and the x))
As each variable now has a corresponding derivative value, a meaningful name
has to be found for the derivative variable. Since all possible notations of the
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2.2. The reverse mode

Elemental operation AD forward mode
c = a+ b ċ = ȧ+ ḃ

c = a ∗ b ċ = b · ȧ+ a · ḃ
c = 1

a
ċ = − 1

a2 · ȧ
c = sin(a) ċ = cos(a) · ȧ
c = ea ċ = ea · ȧ
c = ln(a) ċ = 1

a
· ȧ

c = ap ċ = pvp−1 · ȧ

Figure 2.2.: AD forward mode for selected elemental operators.

letter d are already used and associated with different meanings, another nota-
tion of d would not be helpful to anybody. Therefore it is established in the AD
community that the forward derivative of a variable is always denoted with a
dot above that specific variable.

2.2. The reverse mode
Let F : X ⊂ Rn → Rm be the same function as in the derivation of the AD forward
mode. This means that F is described by F (x) = IV,Y ◦ Φk ◦ ... ◦ Φ1 ◦ IX,V (x).

In order to derive the AD reverse mode, the adjoint operator [DS58, Apo69] is
derived for the forward AD equation ẏ = dF

dx (x)ẋ from Theorem 2.10. The vector
ȳ ∈ Rm as well as the standard scalar products 〈·, ·〉Y and 〈·, ·〉X in Rm and Rn
respectively are needed for the derivation. The adjoint operator is computed for the
forward AD equation

〈ȳ, ẏ〉Y = 〈ȳ, dF
dx

ẋ〉Y = 〈dF
dx

T

ȳ, ẋ〉X for all ȳ ∈ Rm .

The shift of dFdx to the left hand side changes the scalar product from Rm to the scalar
product in Rn. The equation holds for all ẋ ∈ Rn without any constraints. Therefore
the equation

〈dF
dx

T

ȳ, ẋ〉X = 〈x̄, ẋ〉X

holds for all ẋ ∈ Rn. x̄ ∈ Rn can then be defined as

x̄ := dF

dx

T

ȳ . (2.10)

Remark 2.12 (ȳ (The bar and the y))
The forward mode of AD introduces a new variable for each variable in the
program. The same problem arises again for the reverse mode of AD. In solving
this issue another symbol has had to be found in order to distinguish the reverse
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2. Algorithmic Differentiation

mode variables from the forward mode variables and the original variables. The
choice of ȳ is arbitrary but well established in the AD community.

The Jacobi matrix of F in (2.10) is analyzed. In (2.7) the Jacobi matrix for the
program function is derived and is

dF

dx
= dIV,Y

dv
· dΦk

dv
· ... · dΦ1

dv
· dIX,V

dx
.

The transposed matrix is

dF

dx

T

= dIX,V
dx

T

· dΦ1
dv

T

· ... · dΦk

dv

T

· dIV,Y
dv

T

. (2.11)

The Jacobi matrices are now applied in the reverse order, therefore the derivatives of
the elemental operations are also evaluated in the reverse order. The question is now
what happens with the elemental operators Φi, the mapping IX,V and the projection
IV,Y when they are transposed.

For IX,V (x) =

x0
0

 the Jacobi matrix is:

dIX,V
dx

=

I0
0

 it follows dIX,V
dx

T

=
(
I 0 0

)
.

For IV,Y (x, u, y) = y the Jacobi matrix is:

dIV,Y
dv

=
(
0 0 I

)
it follows dIV,Y

dv

T

=

0
0
I

 .

The transposed Jacobi matrix changes the original meaning of the operators. dIV,Y
dv

T

behaves as an identity projection of Y into V and dIX,V
dx

T
behaves as a projection

from V onto X.
The Jacobi of the elemental operation Φi is derived in the section for the forward

mode:

dΦi

dv
=

 I 0 0
dφi
dv 0 0
0 0 0


and the transposed matrix is

dΦi

dv

T

=

I dφi
dv

T 0
0 0 0
0 0 0

 .
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2.2. The reverse mode

The important notion in the transposed matrix is that the i+ n entry of the vector
is set to zero. Exactly the same value is set in the forward mode. The product
v̄ = dΦTi

dv z̄ can be written as the update

v̄j = z̄j + ∂φi
∂vj

z̄i+n

for j < i+ n.
Now it is clear what each Jacobi matrix from equation (2.11) means in the adjoint

operator. The evaluation procedure can again be rewritten in its iterative form. The
difference with respect to the forward iteration is that the the reverse statements can
not be evaluated directly next to primal statements. They can only be evaluated
after the primal statements. The iteration has the form

v(0) = IX,V (x)
v(1) = Φ1(v(0))
v(2) = Φ2(v(1))

...
v(i) = Φi(v(i−1))

...
v(k) = Φk(v(k−1))
y = IV,Y (v(k))

v̄(k) = dIV,Y
dv

T

ȳ

v̄(k−1) = dΦk

dv

T

(v(k−1))v̄(k)

...

v̄(i−1) = dΦi

dv

T

(v(i−1))v̄(i)

...

v̄(1) = dΦ2
dv

T

(v(1))v̄(2)

v̄(0) = dΦ1
dv

T

(v(0))v̄(1)

x̄ = dIX,V
dx

T

v̄(0) .

(2.12)

In a computer the evaluation is never done in such a way. The transfer from multiple
states v(0), v(1), etc. to just one state v is done with the same reasoning as for
the evaluation procedure in Figure 2.1. The argumentation for the vectors v̄(i) is
more involved. The information flow is reversed by the transposed gradient of the
elemental operations φi. This has the consequence, that an input variable is now an
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2. Algorithmic Differentiation

output variable. Each input variable is used multiple times and therefore, the reverse
iteration over the vectors v̄(i), can update a component several times. One step in
the iteration (2.12) can be denoted as the product v̄ = dΦi

dv

T (v)z̄. The step then has
the form

v̄j = z̄j + ∂φi
∂vj

z̄i+n

with j < i+ n. The value of z̄i+n is updated during previous steps for all elemental
mappings with an index that is larger than i. For the elemental mapping with the
index i, the value z̄i+n is used in the multiplication with the gradient of φi. For all
elemental mappings, that have a smaller index than i, the value z̄i+n is never used
again. If only one vector v̄ is used to represent the adjoint state of the program, the
update remains correct when all elemental mappings are performed in the correct
order from k to 0. Then each component of the state is assembled before being used.
The update changes to

v̄′j = v̄j + ∂φi
∂vj

v̄i+n .

where v̄′j is the updated state of the vector v̄. The update can be written with the
short notation +=, denoting for a += b the update a′ = a + b. The final equation
for the update is

v̄j += ∂φi
∂vj

v̄i+n .

This final equation concludes all definitions necessary to define the evaluation proce-
dure in Figure 2.3 and to define the reverse mode of AD.

Theorem 2.13 (AD reverse mode)
Let a program be given by k ∈ N elemental operations φi : V → R with i = 1 . . . k.
x ∈ X are the input variables, y ∈ Y are the output variables and ȳ ∈ Rm is a
direction. Then the algorithm defined in Figure 2.3 computes the discrete adjoint
of the directional derivative of the program at the point x in the adjoint direction
ȳ.
If the program corresponds to the function F : X ⊂ Rn → Rm, that can be

represented by equation (2.6), then the algorithm in Figure 2.3 computes

x̄ = dF

dx

T

(x)ȳ .

Proof. The proof is just a recapitulation of the argumentation from the beginning
of the section. Theorem 2.10 for the AD forward mode is the starting point. The
discrete adjoint for this equation is derived and each of the transposed components are
analyzed. The Jacobi evaluation in equation (2.11) is transformed into an iterative
formulation. For each elemental mapping Φi the first n + i − 1 components are
the identity operation and the n + i-th component is computed by the elemental
operation φi. It is sufficient to have just one vector v and update each component by
the elemental operation φi. For the transposed Jacobi of Φi an update is performed
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2.2. The reverse mode

Function Primal statement Reverse AD statement
Input: IX,V (x) vi = xi ∀i = 1...n

Φ1(v) vn+1 = φ1(v)
Φ2(v) vn+2 = φ2(v)
...

Φi(v) vn+i = φi(v)
...

Φk(v) vn+k = φk(v)
Output: IV,Y (v) yi = vl−m+i ∀i = 1...m
Input: IV,Y (v) v̄l−m+i = ȳi ∀i = 1...m

Φk(v) v̄j += ∂φk
∂vj

v̄n+k ∀j = 1...(n+ k − 1)

v̄n+k = 0
...

Φi(v) v̄j += ∂φi
∂vj

v̄n+i ∀j = 1...(n+ i− 1)

v̄n+i = 0
...

Φ1(v) v̄j += ∂φ1
∂vj

v̄n+1 ∀j = 1...n

v̄n+1 = 0
Output: IX,V (x) x̄i = v̄i ∀i = 1...n

Figure 2.3.: Evaluation procedure for the AD reverse mode.
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2. Algorithmic Differentiation

Elemental operation AD reverse mode
c = a+ b ā += c̄, b̄ += c̄, c̄ = 0
c = a · b ā += b · c̄, b̄ += a · c̄, c̄ = 0
c = 1

a
ā += − 1

a2 · c̄, c̄ = 0
c = sin(a) ā += cos(a) · c̄, c̄ = 0
c = ea ā += ea · c̄, c̄ = 0
c = ln(a) ā += 1

a
· c̄, c̄ = 0

c = ap ā += pvp−1 · c̄, c̄ = 0

Figure 2.4.: AD reverse mode for selected elemental operators.

on the first n+ i− 1 components where the value of the n+ i-th component is used
for that update. The n+ i-th component is set to zero afterwards. The set of written
variables is strictly decreasing and the variable for the update is never contained in
this set. This makes it possible to perform the update on just one vector v̄. The
mappings IX,V and IV,Y perform the identity operation and these operations can be
handled by copying values from x to v, v̄ to x̄, v to y and ȳ to v̄.

Reverse evaluations are shown in Figure 2.4 for a selection of elemental operations.

Remark 2.14 (Gradient evaluation with the forward and the reverse mode)
The benefits of the forward and reverse mode are best explained with small
examples. Let F : Rn → Rm be an arbitrary function, with y = F (x). The
gradient of F is computed with the forward mode and with the reverse mode.
F has n inputs, so the forward mode needs to be evaluated n times in order to
get the full gradient. For each evaluation the derivative direction ẋ is set to a
different unit vector. If ẋ is set to (1, 0, . . . , 0), then the evaluation of ẏ = dF

dx ẋ

computes ∂F
∂x1

. The same can be done for the reverse mode, here the adjoint
direction ȳ is set m-times to all unit vectors in order to build the full Jacobi
matrix.
Assume that n = 1, m = 1, 000, 000 and that the evaluation of F takes one

second are our initial assumptions. If the forward mode is used for the evaluation
of the gradient then ẋ is set to 1.0 and with one evaluation the whole gradient is
computed. But if the reverse mode is used then 1, 000, 000 evaluations of F and
the reverse mode are needed. ȳ is set to the first unit vector (1, 0, . . . , 0) then to
the second (0, 1, 0, . . . , 0) and so on. If the additional time for the forward and
reverse mode is neglected, then the computation of the gradient takes one second
with the forward mode and approximately 12 days with the reverse mode.
Assume that n = 1, 000, 000 andm = 1. When ȳ is set to 1.0, the reverse mode

can compute the gradient of F in one sweep. On the other hand the forward
mode needs to set ẋ to all unit vectors and evaluate F for each. The forward
mode needs 12 days for the evaluation and the reverse mode one second.
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It is clear that the gradient computation can be done with both modes of
Algorithmic Differentiation. The efficiency depends on the relationship between
the number of input and output variables. In design optimization the relation is
most of the timem << n and therefore the reverse mode is the more appropriate
choice for such cases.

Remark 2.15 (Comparison of evaluation procedures and the AD functions)
The mathematical theory makes a distinction between the elemental mapping
Φ and the elemental operation φ. In the result of the forward mode only the
elemental operation is used. The elemental mapping Φ is a helper function, and
is needed to create a consistent theory. The forward mode Theorem 2.10 states
the equation

ẏ = dF

dx
(x)ẋ .

A look into Figure 2.1 for the theorem reveals that the update for all v̇i perform
the same operation. The difference is in the function and the variables on which
the function is evaluated. Otherwise the same update is defined. The only
equation necessary to remember for the forward mode is

ẏ = dF

dx
(x)ẋ .

The same differentiation procedure is used on all levels.
The equation in the reverse mode Theorem 2.13 has nearly the same layout

x̄ = dF

dx

T

(x)ȳ .

The equation in Figure 2.3 is slightly different. For each elemental operation φi
the update += is performed instead of the assignment =. The formulation is

v̄j +=∂φi
∂vj

v̄n+i ∀j = 1...(n+ i− 1)

v̄n+i = 0 .

This can be written in the context of F in the following way

x̄ +=dF

dx
ȳ (2.13)

ȳ = 0 . (2.14)

If x̄ is assumed to be zero and if it is unimportant that ȳ is set to zero, then
the equation can be simplified to the one of the theorem. Equation (2.13) can
therefore be used on all levels.

Remark 2.16 (Input and output dependencies in the reverse mode)
The access mode of each variable changes in the reverse evaluation. x is the
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y1

y2

Quay wall

y2 = γy1

v

ωt

Figure 2.5.: The geometry for the lighthouse example.

input for the function F and y is the output. The reverse mode changes this so
that ȳ is the input and x̄ is the output.

In a computer program it is often the case that the same operations are per-
formed on each cell of a grid. The grid point (i, j) needs the surrounding grid
points (i ± 1, j ± 1) in order to be updated. In a parallel environment, the cell
updates can be computed simultaneously because each grid cell is written once.
The reverse mode of that algorithm can not apply the same parallel strategy
because the point (i, j) is read and the points (i± 1, j ± 1) are written.

2.3. Examples
The theory behind the forward and reverse mode has now been introduced. To better
understand how AD modifies an algorithm, AD is applied on the lighthouse example
found in Griewanks book [GW08]. The function F : R4 → R2 computes the light
point of a light house along a quay wall. The definition is

y1 =v ∗ tan(ω ∗ t)
γ − tanω ∗ t

y2 =γ ∗ v ∗ tan(ω ∗ t)
γ − tanω ∗ t

(2.15)

where v is the distance of the lighthouse from the quay wall, ω the rotation speed
of the lighthouse, γ the angle of the quay wall with respect to the lighthouse and t
the time. The geometry is pictured in the Figure 2.5. The computational algorithm
for (2.15) is shown in Figure 2.6. Common expressions are evaluated first and the
code is written such that it directly represents the theory developed in the sections
about the forward and reverse mode. Every line represents one elemental operator
and can be handled according to the rules of Theorem 2.10 for the forward mode and
Theorem 2.13 for the reverse mode.
The forward AD mode of the lighthouse example is shown in Figure 2.7. For each

input and output variable an additional variable for the forward mode is added. The
“_d” comes from the dot notation of the forward mode and is spoken e.g. “v dot” for
the variable v. The same is done for every intermediate variable t1 to t6. The name
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void lighthouse(double v, double w, double gamma, double t, double& y1,
double& y2) {

double t1 = w * t;
double t2 = tan(t1);
double t3 = v * t2;
double t4 = gamma - t2;
double t5 = t3 / t4;
double t6 = t5 * gamma;

y1 = t5;
y2 = t6;

}

Figure 2.6.: Computational algorithm for the light house example.

of the function is extended by “_d” in order to be consistent in naming conventions.
For every statement the forward AD statements is added in front of the original one.
The derivation of the forward AD statement comes from the forward AD Theorem
2.10. The steps for every statement are identical. The partial derivatives with respect
to every input variable are built and they are multiplied with the direction of the
variables. The final step sums all the products. The resulting algorithm computes the
primal value of the lighthouse example and the directional derivative. If the function
is called at the point (v, ω, γ, t) = (20.0, 0.1, 2.0, 1.0) with the derivative direction
(v̇, ω̇, γ̇, ṫ) = (1.0, 0.0, 0.0, 0.0), the result for the derivative of the lighthouse example
with respect to v is (0.05282, 0.10563).

The reverse AD mode of the lighthouse example is shown in Figure 2.8. Here the
variables have been added, too. The naming convention adds “_b” to the variables.
This comes from the bar notation of the reverse mode and is spoken e.g. “v bar”
for the variable v. It is important to note, that the bar version of the input and
output variables change there meaning. v is an input variable and v_b is an output
variable. For y1 the opposite is true. y1 is an output variable and y1_b is an
input variable. This is according to the flow reversal of the reverse AD mode. See
also Remark 2.16. The next difference occurs in the reverse statements, which are
added after the primal evaluation in reverse order. The steps for each statement
are nearly the same as for the forward mode. First the partial derivatives with
respect to every input variable are built and they are multiplied against the adjoint
direction of the left hand side variable. The final step updates the adjoint directions
of the input variables. The resulting algorithm computes the primal value of the
lighthouse example and the adjoint direction. If the function is called at the point
(v, ω, γ, t) = (20.0, 0.1, 2.0, 1.0) with the adjoint direction (ȳ1, ȳ2) = (1.0, 0.0), the
result for the sensitivities in the lighthouse example with respect to the first output
parameter y1 are (0.05282, 11.19582,−0.55607, 1.11958).
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2. Algorithmic Differentiation

void lighthouse_d(double v, double v_d, double w, double w_d,
double gamma, double gamma_d, double t, double t_d,
double& y1, double& y1_d, double& y2, double& y2_d) {

double t1_d = w * t_d + t * w_d;
double t1 = w * t;
double t2_d = t1_d / (cos(t1) * cos(t1));
double t2 = tan(t1);
double t3_d = v * t2_d + t2 * v_d;
double t3 = v * t2;
double t4_d = gamma_d - t2_d;
double t4 = gamma - t2;
double t5_d = t3_d / t4 - t3 * t4_d / (t4 * t4);
double t5 = t3 / t4;
double t6_d = t5 * gamma_d + gamma * t5_d;
double t6 = t5 * gamma;

y1_d = t5_d;
y1 = t5;
y2_d = t6_d;
y2 = t6;

}

Figure 2.7.: Computational algorithm for the forward AD mode of the light house
example. v_d stands for v̇.

void lighthouse_b(double v, double& v_b, double w, double& w_b,
double gamma, double& gamma_b, double t, double& t_b,
double& y1, double y1_b, double& y2, double y2_b) {

double t1 = w * t;
double t2 = tan(t1);
double t3 = v * t2;
double t4 = gamma - t2;
double t5 = t3 / t4;
double t6 = t5 * gamma;
y1 = t5;
y2 = t6;

double t1_b = 0.0, t2_b = 0.0, t3_b = 0.0;
double t4_b = 0.0, t5_b = 0.0, t6_b = 0.0;

t6_b += y2_b; y2_b = 0.0;
t5_b += y1_b; y1_b = 0.0;

gamma_b += t5 * t6_b; t5_b += gamma * t6_b; t6_b = 0.0;
t3_b += t5_b / t4; t4_b += -t3 * t5_b / (t4 * t4); t5_b = 0.0;

gamma_b += t4_b; t2_b += -t4_b; t4_b = 0.0;
t2_b += v * t3_b; v_b += t2 * t3_b; t3_b = 0.0;
t1_b += t2_b / (cos(t1) * cos(t1)); t2_b = 0.0;
t_b += w * t1_b; w_b += t * t1_b; t1_b = 0.0;

}

Figure 2.8.: Computational algorithm for the reverse AD mode of the light house
example. v_b stands for v̄.
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2.4. Generalization of the theory

The theory in Sections 2.1 and 2.2 restricts elemental operations to one output ar-
gument. This restriction can be lifted by generalizing the theory.

Definition 2.17 (Function operator)
A function operator is a function φi...j : V → Rκ with i, j ∈ {1, ..., l +m} and
i <= j. Where κ = j− i+ 1 is the number of output values of this function and
the operator computes the i-th to j-th operations in the program space V . The
operator depends upon the first n+ i− 1 entries of the vector v ∈ V .

Definition 2.18 (Function mapping)
A function mapping is a function Φi...j : V → V with i, j ∈ {1, ..., l +m} and
i <= j, that sets the n + i-th to n + j-th entries in the program space V . The
function mapping is defined by

Φi...j(v) = (v1, . . . , vn+i−1, φi...j(v)︸ ︷︷ ︸
κ

, 0, . . . , 0︸ ︷︷ ︸
l+m−j

)

where the n+ i-th to n+ j-th entries are set by the function operator φi...j and
the first n+ i− 1 entries stay the same.

The extension to the elemental mapping allows these operators to modify multiple
elements in the vector v. The derivative of an arbitrary Φi...j is now

dΦi...j

dv
=

 I 0 0
dφi...j
dv 0 0
0︸︷︷︸

n+i−1

0︸︷︷︸
κ

0



and its transpose is

dΦi...j

dv

T

=

 I
dφi...j
dv

T
0

0 0 0
0︸︷︷︸

n+i−1

0︸︷︷︸
κ

0

 .

The changes to the derivatives are very small and the derivative of a function mapping
can be interpreted as κ elemental mappings with special dependencies. Because of
this, the extension of the theory to elemental operators with an arbitrary amount of
output values is straight forward and does not need to be developed in full detail.
From Chapter 3 on the definitions of elemental mappings and function mappings will
be used interchangeably and will be referred to as elemental mappings.
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2.5. Contracted formulation
The contracted forms of the elemental operators and function operators will be used
to work with functions that have a direct representation. This is the case when
implementations in software are discussed. The contracted formulations avoid the
overhead to define everything in terms of the program space V and program functions.
This is done by removing unnecessary dependencies.

Definition 2.19 (Contracted form of an elemental operator)
Let φi : V → R be an elemental operator. Then φi depends only on o ∈ N of the
first n + i − 1 entries of the vector v, with o ≤ n + i − 1. The contracted form
of φi is written as h : Ro → R with q1, . . . , qo ∈ N such that

φi(v) = h(vq1 , . . . , vqo)

holds for all v ∈ V .

Definition 2.20 (Contracted form of a function operator)
Let φi...j : V → R be a function operator. Then φi...j depends only on o ∈ N of
the first n + i − 1 entries of the vector v, with o ≤ n + i − 1. The contracted
form of φi...j is h : Ro → Rκ with κ = j − i+ 1 and q1, . . . , qo ∈ N such that

φi...j(v) = h(vq1 , . . . , vqκ)

holds for all v ∈ V .

2.6. Example implementation and software notations
The theory for AD is established, but a clear understanding on how AD can actu-
ally be applied to a program is missing. From the theoretical derivation and the
mathematical representation of AD comes a very natural method of implementation.
Every statement is directly associated with a forward or reverse statement. A com-
puter program can be modified in such a way that before each operation the forward
AD expression is evaluated. For a reverse mode implementation all reverse state-
ments are added to the end of the function. The examples in Section 2.3 applied this
technique to the lighthouse example. The source code of the lighthouse example is
transferred to a new source code that computes either the forward AD mode or the
reverse AD mode. This approach is called source transformation.
A second approach is called operator overloading and is mostly applied to languages

like C++, which support this technique. A new type is implemented that overloads
all mathematical operators operator +, operator *, etc. and mathematical functions
sin, exp, etc. such that the additional forward or reverse AD statements are computed
in the background. This type is implemented in such a way, that it can be used like
a normal floating point type. The only change required by the user is the exchange
of the current floating point type like double with the new type that performs AD
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in the background. This section will give a naive implementation of the forward and
reverse AD mode and apply them to the lighthouse example.
This section gives a basic overview of the concepts and terminology that are used

in AD implementations for operator overloading. The presented concepts will be
referenced throughout the thesis as they require special consideration in some cases.

2.6.1. Forward mode

In Section 2.1 the forward mode is derived and Figure 2.1 shows the evaluation
procedure. The procedure states two things clearly. First, for each primal variable a
forward variable is introduced and second, the evaluation of the forward derivative
can be computed next to the primal statements. The first is implemented directly in
the type FReal (forward real). The structure definition is:

struct FReal {
double p; \\ primal
double d; \\ dot for dot value

}; .

The member p represents the original primal variable and d represents the corre-
sponding dot variable.
The derivative statement is seen in the operator implementations. It will be shown

for the multiplication and the sinus of a value, all other operators and functions can
be implemented in the same way. Let the elemental function φi : V → R be defined
as φ(v) = vo · vp with o, p ∈ N and o < n+ i and p < n+ i. Then v̇i+n is defined as

v̇i+n =
i+n−1∑
j=1

∂φi
∂vj

v̇j = vo · v̇p + vp · v̇o . (2.16)

Most partial derivatives are zero. Only the indices o and p give a nonzero value. Let
h1 : R2 → R be the contracted form of φ with c = h1(a, b) = a · b then the gradient
of the function is h′1(a, b) = (b, a). Therefore the forward AD equation (2.9) can be
applied on h1 and the result is

ċ = ∂h1
∂(a, b)

(
ȧ

ḃ

)
= (b, a)

(
ȧ

ḃ

)
= b · ȧ+ a · b (2.17)

and is identical to equation (2.16) (See also Remark 2.15.). Equation (2.17) is now
implemented in the overloading of operator * :

FReal operator * (const FReal& a, const FReal& b) {
FReal c;
c.d = b.p * a.d + a.p * b.d;
c.p = a.p * b.p;
return c;

}
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Now the elemental mapping for the sinus is analyzed. Let h2 : R → R be the
contracted form and defined as c = h2(a) = sin(a). The forward derivative is then

ċ = ∂h2
∂a

ȧ = cos(a)ȧ .

The implementation of the sinus is:

FReal sin(const FReal& a) {
FReal c;
c.d = cos(a.p) * a.d;
c.p = sin(a.p);
return c;

}

For each other method the implementation is done in the same way and would yield
a simple but complete forward AD tool.

The FReal type is used on the lighthouse example from Section 2.3. With the
operator overloading approach, it is enough to extend the function with a template
parameter. The function can then be used with the regular double type or the FReal
type. The template implementation and how it is used with the FReal type is shown
in Figure 2.9. In line 15 the derivative value of v is set and the derivative values of
y1 and y2 contain the derivative of the lighthouse function with respect to v. The
solution is then:

Position (1.05634, 2.11268)
Derivative with respect to v (0.05282, 0.10563)

And is identical to the solution in Section 2.3.

2.6.2. Reverse mode

In Section 2.2 the reverse AD mode is derived and Figure 2.3 shows its evaluation
procedure. The difference with respect to the forward procedure is that the reverse
statements can not be evaluated directly next to the primal statements. They must be
evaluated in reverse order after the last primal statement. The required information
for each reverse statement is the state of the primal values. The state changes during
the evaluation of a computer program and it is not guaranteed that the required
information will still be available when the reverse statement is reached. The problem
is seen in the following code:

1 void func(const double& a, double& b) {
2 double t1 = a*a;
3 t1 = sin(t1);
4 b = t1 / a;
5 }

In line 3 the value of t1 is overwritten. If the reverse AD statements are evaluated
at the end of the function, then the first value from t1 needs to be restored. Because
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1 template<typename Number>
2 void lighthouse(const Number& v, const Number& gamma, const Number& t,

const Number& omega, Number& y1, Number& y2) {
3 Number direction = tan(omega * t);
4 y1 = v * direction / (gamma - direction);
5 y2 = gamma * y1;
6 }
7
8 int main(int nargs, char** args) {
9 FReal v = 20.0;

10 FReal w = 0.1;
11 FReal t = 1.0;
12 FReal gamma = 2.0;
13 FReal y1, y2;
14
15 v.d = 1.0; // derivative with respect to time
16 lighthouse(v, gamma, t, w, y1, y2);
17
18 printf("Position (%.5f, %.5f)\n", y1.p, y2.p);
19 printf("Derivative with respect to t (%.5f, %.5f)\n", y1.d, y2.d);
20 }

Figure 2.9.: The application of the FReal forward mode AD type to the lighthouse
example. It computes the derivative with respect to t.

variables are constantly overwritten, the state for each statement needs to be recorded
and restored.
This structure is called a tape in the AD community. The tape provides functions

that store and retrieve information for the reverse evaluation process. Access to the
information is strictly linear and always occurs in a stack like (aka. last in, first out
(LiFo)) fashion. Each statement in the program puts some data onto the stack and
when the last statement is reached the data is read in reverse order. In this thesis it
is always assumed that an appropriate Tape implementation is available.

The second difference between the forward and reverse mode is the creation of the
adjoint variables (e.g. ā, v̄, etc.). They can not be stored in the structure for the
reverse type, because the variables will run out of scope and are not accessible in the
reverse evaluation procedure. The scope problem can be seen in the following code:

1 void(const double& a, double& b) {
2 double t1;
3 {
4 double t2 = a * a;
5 t1 = sin(t2);
6 }
7 b = t1 / a;
8 }

After variable t2 runs out of scope in line 6 it will be deleted and all information
that is stored inside the new AD type will be lost. The solution is already shown
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in the reverse mode of Procedure 2.3. Each statement has a unique index which is
used to access the state vectors v and v̄. The introduction of the index to the reverse
type structure will allow for the identification of each variable and can be used in the
reverse process to access a vector containing the adjoint variables. The structure for
the reverse type RReal (reverse real) is defined as:
struct RReal {
double p; // primal
int i; // index

}

The implementation for the elemental operations will be shown for the multiplication
and the sinus of a value, all other operators and functions can be implemented in the
same way. Let the elemental operator φi : V → R be defined as φi(v) = vo ∗ vp with
o, p ∈ N, o < i+ n and p < i+ n. The adjoint equation for φi is defined as

v̄j +=∂φi
∂vi

v̄i+n ∀j = 1 . . . i+ n− 1

v̄i+n =0

which yields

v̄o +=vo · v̄i+n
v̄p +=vp · v̄i+n
v̄i+n =0 .

Let h1 be the contracted form of φi(v) and be defined as h1 : R2 → R with
c = h1(a, b) = a · b. Then the gradient of the function is h′1(a, b) = (b, a) and if
the reverse equation (2.13) is applied to h1, the result is(

ā

b̄

)
+= ∂h1

∂(a, b)

T

c̄ =
(
b
a

)
c̄

c̄ =0 .

Therefore the results are the same for both approaches. (See also Remark 2.15.)
The information required in the reverse mode are the values of a, b and the indices
of ā, b̄ and c̄. The overloaded operator in Figure 2.10 stores this information on
the tape and generates a new index for c. The MUL identifier is required by the
implementation in order to know which function needs to be called in the reverse
evaluation procedure, and is additionally stored on the tape. Figure 2.11 shows how
this is handled in the case of a lookup table or in the case of a function pointer.
It is important that the information about the operation type be stored last such
that in the reverse sweep this information is the first available. The lookup table
variant is more convenient if a fixed set of operations exists. The function pointer
implementation is more appropriate if lots of functions exist which are not known in
advance. The actual implementation of the reverse evaluation of the multiplication
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RReal operator * (const RReal& a, const RReal& b) {
tape.push(a.p);
tape.push(b.p);
tape.push(a.i);
tape.push(b.i);

RReal c;
c.p = a.p * b.p;
c.i = ++tape.globalStatementCounter;

tape.push(c.i);
tape.push(MUL);

return c;
}

Figure 2.10.: Basic implementation of the overload multiplication operator for the
reverse AD mode. It stores the required primal values, the indices for
the adjoint variables and the indicator for the operation.

//Lookup table:
...
ID id = tape.pop<ID>();
if(MUL == id) {operator_mul_b(adjoints);}
...

//Function pointer:
...
FUNC func = tape.pop<FUNC>();
func(adjoints);
...

Figure 2.11.: Example code for calling the reverse evaluation functions either via a
lookup table or a function pointer.

is shown in Figure 2.12. As the MUL identifier is already popped to identify the
operator and call the function, it does not need to be popped inside of the function.
The other information is retrieved in the reverse order and the values are stored in
the global adjoint vector which is equivalent to v̄ in the Algorithm 2.3.
The implementation for the sinus function is done in a similar fashion. If the

function h2 : R→ R is defined as c = h2(a) = sin(a), then the reverse equation is

ā +=cos(a)c̄
c̄ =0 .

The implementation in the Figures 2.13 and 2.14 is analog to the implementation of
the multiplication.
For every other method the implementation is analog and yields a simple but

complete reverse AD tool.
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void operator_mul_b(double* adjoint) {
int c_i = tape.pop<int>();
int b_i = tape.pop<int>();
int a_i = tape.pop<int>();
double b_p = tape.pop<double>();
double a_p = tape.pop<double>();

adjoint[a_i] += b_p * adjoint[c_i];
adjoint[b_i] += a_p * adjoint[c_i];
adjoint[c_i] = 0.0;

}

Figure 2.12.: Basic implementation for the reverse evaluation of the multiplication for
the reverse AD mode. All the data is retrieved from the tape and the
reverse equation is then evaluated. The operation indicator is already
accessed in the calling function (see Figure 2.11).

1 RReal sin(const RReal& a) {
2 tape.push(a.p);
3 tape.push(a.i);
4
5 RReal c;
6 c.p = sin(a.p);
7 c.i = ++tape.globalStatementCounter;
8
9 tape.push(c.i);

10 tape.push(SIN);
11
12 return c;
13 }

Figure 2.13.: Basic implementation of the overload sinus function for the reverse AD
mode. It stores the required primal value, the indices for the adjoint
variables and the indicator for the operation.

void operator_sinl_b(double* adjoint) {
int c_i = tape.pop<int>();
int a_i = tape.pop<int>();
double a_p = tape.pop<double>();

adjoint[a_i] += cos(a_p) * adjoint[c_i];
adjoint[c_i] = 0.0;

}

Figure 2.14.: Basic implementation of the reverse evaluation of the sinus for the re-
verse AD mode. All data is retrieved from the tape and the reverse
equation is then evaluated. The operation indicator is already accessed
in the calling function (see Figure 2.11).
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The use of the RReal implementation is shown with the lighthouse example (2.15).
Figure 2.15 shows its implementation. The changes with respect to the forward mode
are obvious. All inputs v, ω, t and γ are registered on the tape such that they have
indices. The function would look like:
void registerInput(RReal& a) {
a.i = ++globalStatementCounter;

}

The global statement counter is increased and the value retrieves the new index.
Now that all input variables are marked, the function call to lighthouse records the
operations on the tape. Because the values y1 and y2 are outputs, they will have
indices after the function finishes. The adjoint direction of y1 is set to one and the
reverse procedure is evaluated.
The evaluation method is usually only a loop over all the statements. A simple

implementation would look like:
void evaluate() {
for(int curStmt = globalStatementCounter; curStmt > 0; --curStmt) {

ID id = this->pop<ID>();
switch(id) {
case MUL: operator_mul_b(this->adjoints); break;
case SIN: operator_sin_b(this->adjoints); break;
...

}
}

}

All statements are evaluated in the reverse order as it is required by the reverse AD
mode. This will populate the adjoint vector with the sensitivities for the first output
value. These sensitivities can be accessed through the indices of the input values.
The functions for the setting and getting of the adjoint values would look like:
void setAdjoint(RReal& a, const double& value) {
adjointVec[a.i] = value;

}

double getAdjoint(RReal& a) {
return adjointVec[a.i];

}

The solution is then:
Position (1.05634, 2.11268)
Gradient with respect to y_1 (0.05282, 11.19582, 1.11958, -0.55607)

Which is the same as the solution in Section 2.3
The naive implementation of the RReal gives an understanding of what an operator

overloading tool has to implement. All functions in the implementation are simple
and straight to the point. A real reverse mode AD tool needs to implement a lot
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2. Algorithmic Differentiation

1 template<typename Number>
2 void lighthouse(const Number& v, const Number& gamma, const Number& t,

const Number& omega, Number& y1, Number& y2) {
3 Number direction = tan(omega * t);
4 y1 = v * direction / (gamma - direction);
5 y2 = gamma * y1;
6 }
7
8 int main(int nargs, char** args) {
9 RReal v = 20.0;

10 RReal w = 0.1;
11 RReal t = 1.0;
12 RReal gamma = 2.0;
13 RReal y1, y2;
14
15 tape.registerInput(v, w, t, gamma); // generate indices for the input
16 lighthouse(v, gamma, t, w, y1, y2);
17 tape.setAdjoint(y1, 1.0);
18 tape.evaluate();
19
20 printf("Position (%.5f, %.5f)\n", y1.p, y2.p);
21 printf("Gradient with respect to y_1 (%.5f, %.5f, %.5f, %.5f)\n",

tape.getAdjoint(v), tape.getAdjoint(w), tape.getAdjoint(t),
tape.getAdjoint(gamma));

22 }

Figure 2.15.: The application of the RReal reverse mode AD type to the lighthouse
example. Computing the gradient with respect to the output y1.
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2.6. Example implementation and software notations

of additional functionality, increasing the ease of its use. Nevertheless, the general
notions stay the same. Input variables of the process need to be made available to the
AD tool, a function registerInput is used for this purpose. The output variables do
not need to be treated in a special way for the naive implementation but in general
they also need to be marked with a function, called registerOutput. It is also common
to have multiple tapes indicating, that only portions of the program are recorded, as
opposed to the complete program as a whole. The sections are marked with methods
like setActive and setPassive.

The major difference between the naive implementation with respect to other AD
tools is in the management of data. The naive implementation stores everything and
does not care if the information is stored more than once. The index also increases
every new statement. The variable could be used e.g. in a loop:
RReal c = 0.0;
for(int i = 0; i < 100; ++i) {
RReal t = a[i]*a[i] + b[i]*b[i]
c += sqrt(t);

}

Each time t is assigned, a new index is generated and the adjoint vector grows by
one entry. This entry will only be used once in the reverse interpretation. It would
be better if indices from the deleted variables were reused. This technique is called
“index reuse”. The other indexing scheme is called “linear indexing”.
The naive implementation will be extended and improved in Chapter 6. Until

then the basic theory and notion of AD, that is described in this chapter is enough
to apply AD tools to large scale software and produce derivative results.
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3. Derivative algorithms for fixed-point
iterators

This chapter takes a look at the derivation of different procedures for the computation
of sensitivities. The general framework builds onto the minimization problem

min
x∈X

f(y, x)

s.t. 0 = R(y, x) (⇔ y = G(y, x))
(P)

where x ∈ X ⊂ Rn is the control vector for the minimization. The minimization is
described by the objective function f : Rm×Rn → R which defines the set of optimal
values for the problem. In addition, the problem is solved under the constraint
0 = R(y, x), which defines the state y ∈ Y ⊂ Rm as an implicit function of the
control x with the residual operator R : Y × X → Rm. The residual operator is
usually generated by the discretisation of a partial differential equation (PDE). The
PDE is solved when the residual operator equals to zero, that is R(y∗, x) = 0 where
y∗ describes the solution. The solution to the PDE can also be described as a fixed-
point iterator G : Y × X → Y . Here, the solution is reached when the fixed-point
iterator has reached its fixed-point, y∗ = G(y∗, x). Both formulations, the residual
formulation and the fixed-point formulation, are equivalent and can be rewritten into
each other.
A procedure for the solution of (P) can be obtained via the discrete adjoint system,

well known in the literature [AB99, EP97, NA99, PD10], and is given by(
∂R(y∗, x)

∂y

)T
ψ =

(
∂f(y∗, x)

∂y

)T
, (3.1)

where ψ ∈ Rm describes the adjoint state. With the solution ψ∗ the sensitivity of
the objective function with respect to the control x can then be computed by

df(y∗, x)
dx

= ∂f(y∗, x)
∂x

− ψT∗
∂R(y∗, x)

∂x
. (3.2)

The gradient vector df
dx can be used to solve the minimization problem (P) by applying

for example the steepest descent method [NW99].
The general adjoint method is mostly used when people talk of the adjoint for-

mulation or the adjoint method. Unfortunately the method explicitly requires that
0 != R(y∗, x) is fulfilled, that is the solution process for y is converged to machine
precision. In most industrial applications a residual of 10−3 is considered to be accu-
rate enough and the solution process is stopped at this point or it is not possible to
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3. Derivative algorithms for fixed-point iterators

obtain a solution where the residual is smaller. If such a disturbed solution ŷ∗ were
to be used in equations (3.1) and (3.2), the adjoint solution ψ∗ will also be disturbed
and it can no longer be guaranteed that the gradient df

dx(ŷ∗, x) will be close to the
correct gradient df

dx(y∗, x).
This chapter introduces new methods for the computation of df

dx(y∗, x) that do not
require a solution y∗ to be solved to machine precision. The Black Box (BB) method
is derived with the help of AD techniques and can be used to provide the gradients
for arbitrarily good solutions. The other method is the Reverse Accumulation (RA)
method, derived from the Lagrange formulation. It is not as general as the Black
Box method but still represents a very general approach. The Reverse Accumulation
method is specialized under various assumptions, such that the current state of the
art methods are recovered and finally even the most specialized method will yield
the formulation from equation (3.1).

3.1. Algorithmic Differentiation based algorithms

The first adjoint procedure is derived with AD. In a numerical program the objective
function is computed by performing j steps of the fixed-point solver G and afterwards
f is evaluated. The procedure which performs this computation is given in Algorithm
1. Each statement in the procedure can be interpreted as an elemental operation
and can be differentiated with the help of AD techniques. The result is shown in
Algorithm 2. In order to compute the full gradient df

dx the adjoint of the output z̄ is
set to 1.0. The total derivative of f with respect to the control x is then described
by the adjoint control x̄0. This method is called the Black Box (BB) method, and is
summarized in Figure 3.1.
The Black Box method has no requirements with respect to convergence. It re-

verses the evaluation of the primal solver and computes the derivatives with respect
to the control. Therefore it has no robustness issues nor any prerequisite on the pri-
mal computation. Nevertheless, if the primal computation is not robust enough or
contains computational errors then the sensitivities with respect to the control will
be numerically correct but their relevance is questionable.
Beside its robustness and exactness the Black Box approach has one drawback.

The reverse sweep needs all vectors yi in order to evaluate the Jacobi vector product.
This can be handled by storing every vector yi during the forward evaluation or with
more advanced techniques like loop checkpointing from Chapter 5.

3.2. Lagrange based algorithms

Another approach is to setup the Lagrangian function

L(y, x, λ) = f(y, x) + (G(y, x)− y)>λ (3.3)
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3.2. Lagrange based algorithms

Algorithm 1 Procedure for evaluating the objective function f for a given fixed-
point iterator G.
Input: y0, x
Output: z, yj+1
for i = 0, . . . , j do
yi+1 = G(yi, x)

end for
z = f(yj+1, x)

Algorithm 2 Procedure for evaluating the gradient of the objective function f for
a given fixed-point iterator G.
Input: y0, x
Output: z, yj+1, x̄0
for i = 0, . . . , j do
yi+1 = G(yi, x)

end for
z = f(yj+1, x)

z̄ = 1
ȳj+1 = ∂f

∂y (yj+1, x))T z̄
x̄j+1 = ∂f

∂x (yj+1, x))T z̄
for i = j, . . . , 0 do
ȳi = ∂G

∂y (yi, x)T ȳi+1

x̄i = ∂G
∂x (yi, x)T ȳi+1 + x̄i+1

end for

y0 y1 y2 yj yj+1 z

(
ȳ0
x̄0

) (
ȳ1
x̄1

) (
ȳ2
x̄2

) (
ȳj
x̄j

) (
ȳj+1
x̄j+1

)
1

G(y0, x) G(y1, x) ... G(yj , x) f(yj+1, x)

∂G
∂y

(y0, x)T ȳ1 ∂G
∂y

(y1, x)T ȳ2 ... ∂G
∂y

(yj , x)T ȳj+1
∂f
∂y

(yj+1, x)T z̄

∂G
∂x

(y0,x)T ȳ1
+x̄1

∂G
∂x

(y1,x)T ȳ2
+x̄2

...
∂G
∂x

(yj ,x)T ȳj+1
+x̄j+1

∂f
∂x

(yj+1, x)T z̄

Figure 3.1.: Black Box (BB): Procedure for calculating the gradient of the objective
function.
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3. Derivative algorithms for fixed-point iterators

for problem (P). The equations for the optimality (KKT) [KT51] conditions can be
derived. They are

0 !=∂L

∂λ
(y∗, x)T = G(y∗, x)− y∗ (3.4)

0 !=∂L

∂y
(y∗, x)T = ∂f

∂y
(y∗, x)T + ∂G

∂y
(y∗, x)Tλ∗ − λ∗ (3.5)

0 !=∂L

∂x
(y∗, x)T = ∂f

∂x
(y∗, x)T + ∂G

∂x
(y∗, x)Tλ∗ . (3.6)

The first equation reduces to the solution of the primal fixed-point equation

G(y∗, x) = y∗ . (3.7)

The fixed-point formulation is solved by performing the update

yi+1 = G(yi, x) (3.8)

until the fixed-point yN = y∗ is reached. The second equation can also be transformed
such that it resembles the solution of a fixed-point equation

λ∗ = ∂f

∂y
(y∗, x)T + ∂G

∂y
(y∗, x)Tλ∗ (3.9)

for the adjoint parameter λ. If both equations are solved for y∗ and λ∗, then the
sensitivities can be evaluated with

df

dx
(y∗, x)T = ∂f

∂x
(y∗, x)T + ∂G

∂x
(y∗, x)Tλ∗ . (3.10)

The form of equation (3.9) suggests that it can be iteratively solved by a fixed-point
iteration of the form

λj+1 = ∂f

∂y
(y∗, x)T + ∂G

∂y
(y∗, x)Tλj . (3.11)

Equation (3.11) can be written in a shortened notation, by utilizing the definition of
the shifted Lagrangian N(y, x, λ) := f(y, x) +G(y, x)Tλ, as

λj+1 = ∂N

∂y
(y∗, x, λj) . (3.12)

The convergence property of the equation can be derived after [Gil87] by ensuring
that the spectral radius of the Jacobi matrix with respect to the iteration parameter
is less than one. As G is assumed to be a strictly contracting fixed-point iterator, it
holds

∥∥∥∂G∂y (y, x)
∥∥∥ = σ < 1 for all y ∈ Rm, where σ < 1 is the contraction rate. The

norm of the Jacobi matrix of (3.12) with respect to the iteration parameter λ is∥∥∥∥∥ ∂2N

∂y∂λ
(y∗, x, λj)

∥∥∥∥∥ =
∥∥∥∥∂G∂y (y∗, x)T

∥∥∥∥ =
∥∥∥∥∂G∂y (y∗, x)

∥∥∥∥ = σ < 1 . (3.13)
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3.2. Lagrange based algorithms

y0 y1 y2 yj yj+1 = y∗

λJ+1 λJ λJ−1 λ1 λ0

G(y0, x) G(y1, x) ... G(yj , x)

∂N
∂y

(y∗, x, λJ) ∂N
∂y

(y∗, x, λJ−1) ...
∂N
∂y

(y∗, x, λ0)

Figure 3.2.: Reverse Accumulation (RA): Procedure for calculating the discrete ad-
joint with a Lagrangian approach.

Equation (3.12) is a strictly contracting fixed-point iteration if and only if G is a
strictly contracting fixed-point iteration. Because of the initial assumption that is
always the case.
The difference between the very first adjoint formulation in equation (3.1) and the

formulation given in equation (3.9), is that equation (3.1) is derived on the residual
R(y, x). Equation (3.9) depends more strongly upon the solution method used in
the simulation and also covers the implementation details of the simulation software.
Giles [Gil01] and Nielson et al. [NLPD04] state that everything that is good for the
solution of the primal equation is also good for the solution of the adjoint equation.
The ansatz with G in combination with AD drives this statement to the limit and
yields a formulation that is always consistent with respect to the primal solution.

From the primal iteration (3.8) and the adjoint iteration (3.12), the second ap-
proach is derived for the computation of the control derivatives. It is given in
Figure 3.2 and is usually referred to as the Reverse Accumulation (RA) procedure
[Chr92, Chr94].
The advantage of this approach is that it does not need to save every yi in order

to compute the adjoint λ. The Reverse Accumulation approach on the other hand,
requires that the PDE solver reaches its fixed-point y∗ = G(y∗, x) which is usually
not the case. In practice the residual can not be reduced under a certain level e.g.
10−3 and never fully converges to zero or to machine precision 10−16. Under this
perturbation it is no longer guaranteed that the Reverse Accumulation procedure
will yield a correct result. The result from this observation is, that the Reverse
Accumulation procedure is less robust and exact than the Black Box procedure.
This will also be seen by the numerical analysis in Chapter 7.
The fixed-point solver G is now specialized in order to reflect common solution

strategies in the implementation of PDE solvers. It is defined as a quasi Newton step

yi+1 = GQN (yi, x) := yi − P (yi, x)R(yi, x) . (3.14)

The preconditioner P (y, x) can be chosen in several ways. For example P can repre-
sent the Newton method:

PNewton(y, x) =
(
∂R(y, x)
∂y

)−1
(3.15)
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3. Derivative algorithms for fixed-point iterators

or the backward Euler method:

PEuler(y, x) =
[ Ω

∆tI +
(
∂R(y, x)
∂y

)]−1
, (3.16)

where Ω
∆t describes the space time discretisation. In order to insert equation (3.14)

into equation (3.11) the derivative of GQN with respect to y is required. The full
derivative of equation (3.14) in an arbitrarily chosen point y is then

∂GQN
∂y

(y, x) = I − ∂P

∂y
(y, x)R(y, x)− P (y, x)∂R

∂y
(y, x) . (3.17)

The only method to eliminate the derivative ∂P
∂y (y, x), requires the assumption that

y and y∗ are equal which yields R(y∗, x) = 0. But as stated above this method
introduces an error to the adjoint computation as the condition R(y∗, x) = 0 is never
reached in most real world applications. Nevertheless, if this assumption is made,
then equation (3.17) will reduce to

∂G

∂y
(y∗, x) = I − P (y∗, x)∂R

∂y
(y∗, x) . (3.18)

Transposing ∂G
∂y (y∗, x) and multiplying by λj yields:

∂GQN
∂y

T

(y∗, x)λj = λj −
∂R

∂y

T

(y∗, x)P T (y∗, x)λj . (3.19)

This term is then inserted into equation (3.11)

λj+1 = ∂f

∂y

T

(y∗, x) + λj −
∂R

∂y

T

(y∗, x)P T (y∗, x)λj . (3.20)

The same procedure is performed for the derivative with respect to x. It is assumed
that R(y∗, x) = 0 holds, which gives

∂G

∂x
(y∗, x) = −P (y∗, x)∂R

∂x
(y∗, x) . (3.21)

This term can then be applied to equation (3.10), yielding

df

dx

T

(y∗, x) = ∂f

∂x

T

(y∗, x)− ∂R

∂x

T

(y∗, x)P T (y∗, x)λ∗ . (3.22)

In order to use the result from equation (3.20) in equation (3.22) it needs to be
multiplied by P T (y∗, x). After some reordering, the new formulation can be written
as

P T (y∗, x)λj+1 = P T (y∗, x)λj + P T (y∗, x)
(
∂f

∂y

T

(y∗, x)− ∂R

∂y

T

(y∗, x)P T (y∗, x)λj

)
.

(3.23)
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y0 y1 y2 yj yj+1 = y∗

λJ+1 λJ λJ−1 λ1 λ0

G(y0, x) G(y1, x) ... G(yj , x)

G̃(y∗, x, λJ) G̃(y∗, x, λJ−1) ... G̃(y∗, x, λ0)

Figure 3.3.: Giles’ Exact Dual (GED): Procedure for calculating the discrete adjoint
via the Lagrangian approach and using the special structure of G defined
in (3.14). The assumption R(y∗, x) = 0 has to hold for this iteration to
be correct. G̃ is defined in (3.24).

The term P T (y∗, x)λ is now used throughout the equations (3.23) and (3.22). Both
equations can be simplified by defining a new parameter λ̃ := P T (y∗, x)λ. The two
equations then become

λ̃j+1 = G̃(y∗, x, λ̃) :=λ̃j + P T (y∗, x)
[
∂f

∂y

T

(y∗, x)− ∂R

∂y

T

(y∗, x)λ̃j

]
(3.24)

df

dx

T

(y∗, x) =∂f

∂x

T

(y∗, x)− ∂R

∂x

T

(y∗, x)λ̃∗ . (3.25)

The equations (3.24) and (3.25) now represent a simplified form of the Reverse Ac-
cumulation approach, and were obtained by exploiting the structure of the iterator
G with the assumption that R(y∗, x) = 0 holds. Figure 3.3 shows this simplified
version of the approach. It is usually referred to as the Giles’ Exact Dual approach.
This approach has several requirements that need to be met in order to qualify for
an exact adjoint method. The first requirement is the special structure of equation
(3.14) for G. Usually each fixed-point solver has this structure, so the requirement
is not very restrictive. The other requirement involves the residual R. It has to hold
that R(yj ≡ y∗, x) != 0, this is used to eliminate the derivative of P with respect to
y. Therefore, the exact adjoint can only be calculated if the residual can be driven
to zero.
If the Newton update P (y∗, x) = PNewton(y∗, x) = ∂R

∂y

−1(y∗, x) is chosen as the
preconditioner, the iteration can be further simplified. It is important to emphasize
that P has to be the exact Newton step and no errors or inconsistencies in the
calculation of ∂R∂y (y, x) can be made, otherwise the simplification will be wrong. If P
is equal to PNewton, then (3.24) further simplifies to

∂R

∂y

T

(y∗, x)λ̃ = ∂f

∂y

T

(y∗, x) . (3.26)

It is easy to see that equation (3.26) is exactly the same adjoint equation as (3.1).
In this thesis it will be refereed to as the General Adjoint approach for evaluating
the discrete adjoint. Figure 3.4 summarizes this approach.
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3. Derivative algorithms for fixed-point iterators

y0 y1 y2 yj yj+1 = y∗
G(y0, x) G(y1, x) ... G(yj , x)

∂R
∂y

T (y∗, x)λ̃ = fTy (y∗, x)

Figure 3.4.: General Adjoint (GA): Procedure for calculating the discrete adjoint
from the Lagrangian approach and using the special structure of G de-
fined in (3.14). The assumption R(y∗, x) = 0 has to hold such that this
iteration is correct. P (y, x) has to be ∂R

∂y (y, x)−1 which is equivalent to
the exact Newton method.

Four different methods for calculating the discrete adjoint have been derived. Each
method is a valid adjoint calculation and can produce the exact adjoint but some
require special conditions. The Black Box method has no special conditions on the
primal convergence and is exact for every combination of input values, making it
the most robust method with respect to the required conditions. The Reverse Ac-
cumulation and Giles’ Exact Dual methods explicitly require that the fixed point
iteration be at its fixed point. This means for Giles’ Exact Dual that R(y∗, x) = 0
is fulfilled. This requirement makes these methods less robust. Most of the time it
is not guaranteed that the steady state of the fixed-point iteration can be reached or
that the residual R is close to zero. The General Adjoint method is only meaningful
if the primal iteration uses a Newton step and R(y∗, x) = 0 holds, otherwise the error
of the adjoint computation will be substantial. Table 3.1 shows a summary of the 4
different methods and their requirements.
This chapter can be concluded with the fact that several approaches for the adjoint

computation are available. Nielson uses in [NA99] a similar method to the General
Adjoint method in order to solve the adjoint system for turbulent flows using rel-
atively coarse grids and simple geometries. His work successfully demonstrates the
accuracy of the method. However, the scheme failed to converge for many problems,
which points out the robustness issues of such algorithms. By employing a more ex-
tensive preconditioner for the Krylov algorithm in [NA02], Nielson demonstrates im-
proved performance. However, this preconditioning strategy requires approximately
five times the memory of the baseline analysis scheme. This approach is unfeasible
for large-scale applications requiring grids that contain several million mesh points.
As a solution to these problems, Nielsen et al. present an algorithm that preserves
discrete duality in [NLPD04], following Giles’ Exact Dual approach. In this algo-
rithm the adjoint solution is solved in a similar manner to the nonlinear solver using
pseudo time-stepping. From the presented papers the common agreement is that the
solution method chosen for the adjoint equation is of extreme importance concerning
the convergence behavior and the robustness. This emphasizes that the Reverse Ac-
cumulation procedure or Black Box procedure from this chapter are the most robust
methods presented as there are no inconsistencies in either the implementation nor
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3.2. Lagrange based algorithms

the modeling.
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3. Derivative algorithms for fixed-point iterators
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4. Differentiation of large scale software

The design and requirements of each software are different. For large scale software,
special care has to be taken in the design of the data layout, structure, communication
patterns etc.. This wide range of possibilities makes a set general scheme aimed at
generating an optimal derivative code not possible. The approach in this thesis
proposes to treat the application initially in a black box fashion, which requires
no analysis on the dependency structure of the code. Hence, the application is
differentiated, in its entirety, with no exceptions. This yields a differentiated code
that is consistent with respect to the primal code.

After the first derivative version of the code becomes available, priority is put into
obtaining a maintainable solution. This includes for every further change to the code
base, an automatic generation of the derivative code ensuring that the differentiated
version is always up to date.

These two steps yield a powerful foundation. Improvements to the derivative com-
putation can be achieved by either improving the primal computation, making con-
sistent changes to the derivative computation, and/or making inconsistent changes
to the derivative computation.

The improvement of the primal in order to improve the derivative computation is
not intuitive, but AD generates the derivative computation from the primal compu-
tation, any improvements to the latter will improve the former. Consistent changes
to the derivative computation, like an improved storing of the tape, are covered in the
next chapter. Inconsistent changes, e.g. disabling specific code areas, are application
dependent and are not covered in this thesis. The selection of the adjoint algorithm
can also lead to inconsistent changes. Most people start with e.g. the Giles’ Exact
Dual or the General Adjoint approach from Chapter 3 and if the necessary conditions
for these approaches are not fulfilled, then there will be also inconsistencies in the
derivative results. It is then hard to check by how much the inconsistent derivatives
deviate from the correct ones. With the black box approach, there is always a con-
sistent derivative that can be used to cross check the derivative results. With most
other approaches this is not the case.

The chapter will introduce the TRACE CFD suite as an example for the features
of a large scale software. It will address common problems that can occur during the
differentiation process and their respective solutions. The validation of the derivatives
is very important, and several techniques, that can be used to analyze inconsistencies
in the derivative computation, will be presented.
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4.1. Presentation of a software package
The TRACE CFD suite is being developed by the DLR Cologne (German Aerospace
Center) for more than 20 years [FRKA10]. The numerical methods group under the
direction of E. Kügeler is the main developer of the code and several universities and
companies contribute to the development.

The main focus of the TRACE CFD suite is the simulation of the flow regime
in three-dimensional compressor and turbine components. The suite consists of the
main simulation code TRACE and other tools. PREP provides the preprocessing,
POST the postprocessing, and INTERSEC extracts computational planes for POST.
This section will give an overview of the recent developments in the TRACE code

based upon the papers [BA14, BHK10, FRKA10, YNK06]. The basic modeling ap-
proach is explained and how the discretisation of the equations is implemented. Then
selected advanced topics in the simulation of a compressor or turbine are presented.
The flow regime in a turbo machine is described by the Navier Stokes equations.

They formulate the conservation laws for the mass, the momentum and the energy.
The equations can be written as

∂

∂t

 ρ
ρv
ρE

+∇ ·

 ρv
ρv · vT + pI − τ

ρvH − τ · v−∇(kT )

 =

 0
ρfe

Wf + qH

 . (4.1)

The conservative variable vector W = (ρ, ρv, ρE)T = (ρ, ρv1, ρv2, ρv3, ρE)T describes
the state of the system. The symbols in the equations and the conservative variables
are

ρ ∈ R Density (4.2)
v ∈ R3 Velocity (4.3)

E = e+ v2

2 ∈ R Total energy (4.4)

I ∈ R3×3 Identity matrix (4.5)

τ = µ

[
∇v + (∇v)T − 2

3div(v)I
]
∈ R3×3 Stress tensor (4.6)

H = h+ v2

2 ∈ R Stagnation enthalpy (4.7)

p = (γ − 1)ρe ∈ R Pressure (4.8)
T ∈ R Temperature (4.9)

k = µcp
Pr
∈ R Coefficient of termal conductivity

(4.10)
fe ∈ R3 External force (4.11)
We ∈ R Work of external force (4.12)
qH ∈ R External heat source (4.13)
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e = 1
γ − 1

p

ρ
∈ R Internal energy (4.14)

h = γ

γ − 1
p

ρ
∈ R Enthalpy (4.15)

µ ∈ R Coefficient of dynamic viscosity (4.16)

γ = cp
cv
∈ R Specific heat ratio (4.17)

Pr ∈ R Prandtl number (4.18)

In order to be fully defined, appropriate boundary conditions need to be set at the
boundary of the domain Ω ⊂ R3. From the Navier Stokes equations, the Reynolds
averaged Navier Stokes (RANS) equations can be derived by defining an averaged
quantity A = Ā+A′ with

Ā(a, t) = 1
tframe

∫ tframe/2

−tframe/2
A(a, t+ ε)dε (4.19)

and a Favre-averaged quantity Ã = ρA/ρ̄ with A = Ã + A′′. The RANS equations
can then be written as

∂

∂t

 ρ̄
ρ̄ṽ

ρ̄Ẽ

+∇ ·

 ρ̄ṽ
ρ̄ṽ · ṽT + p̄I − τ̃V − τR

ρ̄ṽH̃ − (τ̃V + τR) · ṽ−∇(kT̃ )

 =

 0
ρfe

Wf + qH

 . (4.20)

The stress tensor is separated into the Reynolds stress τR and the averaged viscous
shear stress τ̃V . The Reynolds stresses are defined as

τRij = −ρv′′i v′′j . (4.21)

Because of the unknown relations between the Reynolds stresses and the mean flow
quantities the RANS equations are not closed and require a modeling of these rela-
tions.
The TRACE code implements the RANS equations with a cell centered finite

volume discretisation. The integral form of a conservation law:

∂

∂t

∫
Ω
WdΩ +

∮
S
F · dS =

∫
Ω
QdΩ (4.22)

can be used to formulate the discretised integral for each control volume Ωj

∂

∂t

∫
ΩJ
WdΩ +

∮
SJ

F · dS =
∫

Ωj
QdΩ . (4.23)

The equation becomes fully discretised by replacing the integrals with the averaged
values over the control volume

∂

∂t
(WJΩJ) +

∑
faces
F∗ ·∆S = QJΩJ . (4.24)
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For each control volume the averaged quantities are updated by the numerical flux F∗
over the cell boundaries. TRACE handles the control volumes in a block structured
fashion. Each block contains a part of the domain Ω and the blocks are linked
by specific boundary conditions. The blocks can contain either a structured mesh
or an unstructured mesh. In order to support both meshing approaches, without
to much overhead, the data layout of the blocks is arranged such that both meshing
approaches are supported and most of the code can be used for both cases. This yields
a consistent implementation for both meshing approaches. Both use ghost layers for
the boundary definitions and the structured approach, in order to be second order
accurate, uses two layers of boundary cells.
Coupling between structured and unstructured meshes is done through block in-

terfaces. Figure 4.1 shows a schematic display of such an interface. The fluxes at the
boundary can be calculated with a conservative rezoning calculation from the known
fluxes of the upstream side of the boundary. The formulation is

(Fd)i =
∑
j

(Fu)j
(∆S̄)ij
(∆Su)i

(4.25)

where Fd is the flux at the downstream side of the interface and Fu the flux at
the upstream side. (∆S̄)ij describes the overlapped area between the face Sdi on the
downstream side and the face Suj on the upstream side. (∆Su)i describes the total
area of zone u that overlaps the face Sdi . The overlapped area can be computed
by a modified Sutherland-Hodgman clipping algorithm [NS79]. This hybrid grid
interface has the advantage that no 1-to-1 connection is required between the different
blocks and can handle structured-unstructured, unstructured-structured, structured-
structured and unstructured-unstructured interfaces. The results from Yang et al. in
[YNK06] show that the conservative implementation yields a second order accurate
interface.
The gradient reconstruction for the finite volume update is implemented in TRACE

through the Green-Gauss method. The results from Becker and Heitkamp [BA14]
show that this technique performs well for simple structured meshes but on un-
structured and complex meshes the accuracy decreases. Therefore, the least squares
approach by Barth [Bar91] is introduced to improve the reconstruction. For the quan-
tity ϕi(r) ∈ R with r ∈ R3 in the cell i a Taylor-series expansion for each neighboring
cell j = 1 . . . p is performed

ϕj = ϕi + (∇ϕi) · (rj − ri) +O(∆r2
ij) . (4.26)

This yields an over determined system for the minimization of the error E = Ax− b
with 

Ei,1
Ei,2
Ei,3
...

Ei,p

 =


ωi,1(r1 − ri)T
ωi,2(r2 − ri)T
ωi,3(r3 − ri)T

...
ωi,p(rp − ri)T



∂ϕ
∂x
∂ϕ
∂y
∂ϕ
∂z

−

ωi,1(ϕ1 − ϕi)
ωi,2(ϕ2 − ϕi)
ωi,3(ϕ3 − ϕi)

...
ωi,p(ϕp − ϕi)

 . (4.27)
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Interface

Flow direction

Zone u Zone d

(a) Side view (b) Front view

Figure 4.1.: Schematic of hybrid grid interface. (Reproduction of the graphic in
[YNK06])

(a) Face neighboring cells (b) Vertex neighboring cells

Figure 4.2.: Nearest neighbor (a) and all neighbor selection (b) for a 2D finite volume
cell. (Reproduction of the graphic in [BA14])

Here ωi,j describes the distance between the cell centers of the i-th and j-th element.
The system is solved for the minimal error with a standard least squares method.
The selection of neighbors is an important design point in reconstruction. Figure 4.2
shows the two options. The first option selects only the nearest neighbors i.e. all
cells that share a face with the i-th cell. The second selects all neighbors that share a
vertex with the i-th cell. Becker and Ashcroft show in [BA14] that the vertex selection
yields an improvement with respect to the Green-Gauss reconstruction. The nearest
neighbor selection yields mixed results depending on mesh quality. The quality of the
solution, in terms of the residual, is also greatly improved for the vertex selection.
For the convective numerical flux computation Roe’s TVD upwind scheme is used.

The implementation is extended by Van Leer’s MUSCLE [VL79] extrapolation to
obtain second order accuracy in space.
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The time derivative in equation (4.24) needs to be handled next. Several choices
are available in the TRACE code. The first order Euler backward time integration
is one example, that is implemented. Equation (4.24) can be written as

ΩJ
∆Ŵ i

J

∆t = R̂i+1
J (4.28)

where Ŵ describes the discretised flow variables and R̂ the flow residual. The differ-
ence between the current and next state is described by ∆Ŵ i

J := Ŵ i+1
J − Ŵ i

J . The
right hand side of equation (4.28) can be linearized to create a system of linear equa-
tions. The linearized fluxes are simplified such that only the first-order dependencies
are taken into account. This yields a sparse matrix where only the direct neighbors
of each cell have non-zero entries. It is possible to write the linearized equation after
Nuernberger et al. [NES99] as

(L+O +D)∆Ŵ i = R̂i (4.29)

where L describes the strictly lower triangular part of the matrix, O the strictly upper
triangular part, and D the diagonal part. The system can then be solved iteratively
with a symmetric Gauss-Seidel (SGS) relaxation. The forward and reverse sweeps
are defined as

(D + L)∆Ŵ i
k+ 1

2
= R̂−O∆Ŵ i

k (4.30)

(D +O)∆Ŵ i
k+1 = R̂− L∆Ŵ i

k+ k
2

(4.31)

where k is a subiteration index. If only one step is evaluated, then the SGS method
becomes the lower-upper symmetric Gauss-Seidel (LU-SGS).
This method can also be used to introduce a pseudo time stepping scheme for the

pseudo time τ . Equation (4.24) becomes

∂Ŵ

∂τ
= −∂Ŵ

∂t
− F̂(Ŵ ) = R̂∗(Ŵ ) . (4.32)

Therefore the SGS and LU-SGS schemes can be used for steady state problems and for
the inner iteration loop in unsteady problems. The solution of the systems is further
simplified in TRACE, such that a block implicit formulation is solved in place of a
fully implicit scheme. For higher order time discretisation, multistage Runge-Kutta
explicit schemes are also implemented in TRACE.
The limiting of the fluxes can be performed by the ideas of Barth. For this purpose

the piecewise linear reconstruction in equation (4.26) is written with a limiter L as

ϕL =ϕi + Li∇ϕi · rL
ϕR =ϕj + Lj∇ϕj · rR ,

(4.33)

where i is the current cell and j a neighboring cell. ϕL and ϕR define the values on
the left and right hand side of the cell face, and rL as well as rR describe the distance
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from the respective cell center to the center of the face. The limiter of Barth enforces
monotonicity but produces the largest possible value and is defined as

Li(ϕ) =


min(1, ∆i,min

∆2
) if ∆2 < 0

max(1, ∆i,max
∆2

) if ∆2 > 0
1 if ∆2 = 0

(4.34)

with

∆i,min = min(ϕi, min
j=1...p

(ϕj))− ϕi (4.35)

∆i,max = max(ϕi, max
j=1...p

(ϕj))− ϕi (4.36)

∆2 = ∇ϕi · rL . (4.37)

Venkatarishnan proposes in [Ven93] a similar approach that does not enforce strict
monotonicity but gives an improved convergence behavior for the solver. The limiter
allows for a small over- or undershooting in the solution, which can be defined via
the parameter

ε2 = (K∆h)3 (4.38)

where K is constant and ∆h describes the cube-root of the cell volume in the TRACE
solver. The Venkatarishnan limiter can be written as

Li(ϕ) =


1

∆2

[
(∆2

i,min+ε2)∆2+2∆2
2∆i,min

∆2
i,min+2∆2

2+∆i,min∆2+ε2

]
if ∆2 < 0

1
∆2

[
(∆2

i,max+ε2)∆2+2∆2
2∆i,max

∆2
i,max+2∆2

2+∆i,max∆2+ε2

]
if ∆2 > 0

1 if ∆2 = 0

. (4.39)

K can be used to describe the effect of the limiter on the gradient. For K equal
to zero the limiter is fully applied and for very large K the gradients are unlimited.
Becker and Ashcroft [BA14] show that the Venkatarishnan limiter yields improved
results with respect to accuracy and convergence.
Because of the Reynolds averaging, a modeling for the relation of the mean flow

quantities and the Reynolds stresses are required. TRACE implements several turbu-
lence modeling techniques, simpler techniques like the Spalert-Allmaras one equation
model or more detailed techniques like the Wilcox k-ω model. Furthermore, the
implementation and validation of the Hellsten EARSM (explicit algebraic Reynolds
stress model) k-ω model is described by Franke et al. in [FRKA10], where it is
shown that the Hellsten model provides an improved prediction with respect to the
Wilcox k-ω model. In addition to the turbulence modeling a transition modeling can
be enabled. The γ-Reθ model introduced by Menter et. al [LML+06, MLL+06] is
described for TRACE in [BHK10] by Becker et al.
This is a incomplete overview of the features that the TRACE code has imple-

mented. There are further topics like the boundary conditions e.g. non reflecting
boundary conditions described by Acton and Cargill [AC88], the parallelization with
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1: // Start of TRACE
2: initialize()
3: w = calculateMeshMetrics(x)
4:
5: for i = 1 . . . j do
6: // Start of G
7: for b = 0 . . . nBlocks do
8: (ab, bb) = updateBlockb(yb, x, w)
9: end for

10: o = doCommunication(b1, . . . , bnBlocks, y, x, w)
11: yi+1 = updateSol(a1, . . . , anBlocks, o)
12: // End of G
13: end for
14:
15: z = f(y, x, w) // POST

Figure 4.3.: The conceptual structure of TRACE. The state vector y is split into the
parts y = (y1, y2, . . . , ynBlocks), where nBlocks is the number of blocks.

MPI and PVM as well as the extensions of the RANS equations to a rotating frame of
reference and additional corrections for streamline curvature. The TRACE code has
also extensions for real gas computations and can be coupled with other disciplines
like aerodynamics, aeroelasticity, aeroacoustics and aerothermics.
The number of features and the ongoing effort to improve and extend the TRACE

code make the implementation of a consistent adjoint formulation very challenging.
The ansatz that is recommended in this thesis is tailored to these challenges. One
fixed-point iteration step in TRACE (G from Chapter 3) is treated as a black box.
The differentiation of TRACE with AD ensures that for all features the correct and
consistent derivatives are computed. This ensures that all the adjoint formulations
from Chapter 3 will work with the correct derivative information and are therefore
consistent with the solution of the primal problem. The global structure of TRACE
is the most important information that is required in order to apply AD on the
fixed-point solver. The structure of TRACE is shown in Figure 4.3. The control x
describes the coordinates of the mesh that are used for the computation. The state
vector y describes the flow state of the simulation. At the start of TRACE the metric
terms for the mesh are precomputed and described by the metrics w. The pseudo
time steps i run until the convergence criteria are fulfilled. In each pseudo time step
the update for all blocks is performed and separated into the local values ab and
communication values bb. The communication values bb consist of data on the panels
as well as other boundary structures and are communicated to the other processes.
Everything inside the pseudo time loop is considered as the fixed-point iterator G.
The functional f for the optimization is evaluated at the end by the post processing
tool POST.
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The next sections describe in detail how G and f are differentiated and how x, y
and w are defined. Then the derivatives for G and f will be available and the adjoint
algorithms from Chapter 3 can be implemented.

4.2. Choice of Algorithmic Differentiation tools

Chapter 2 introduces a naive implementation of the operator overloading approach
for AD. If this naive implementation would be used in any software package, the
result would be very slow and show a large memory consumption. It is therefore
very important that the AD tools chosen, are well established and can handle the
differentiation of large scale software.
Two AD tools are selected for the differentiation of the TRACE code. ADOL-C

version 2.5.2 (developed by the group of Andrea Walter [WG09]), is the AD tool that
has been developed for the longest time and is therefore the most tested and reliable
tool available. It is published in an open source format, allowing it to be used by
everybody who wants to use the differentiated version of TRACE. ADOL-C follows
the advanced primal value taping from Section 6.3. It also applies an index reuse
technique which enforces that the adouble type - provided by ADOL-C - is copied in a
regular way and not by C-like memory operations. The statement level optimization
from Section 6.5 is not used by ADOL-C making the memory consumption higher
than it otherwise should be. However, the implementation of the adouble type is
optimized such that its structure does not contain the floating point value. Only the
member for the global index is kept in the structure and this index is used to access
a global vector for the primal variables. This reduces the memory footprint of the
primal computation.
dco/C++ version 3.1.4 (developed by the group of Uwe Naumann [LLN16]) is the

second AD tool. It employs the Jacobi taping method and uses statement level opti-
mizations. The indexing scheme in dco/C++ is linear and makes the dco::a1s::type
(short a1s) - provided by dco/C++ - compatible with C-like memory operations.
The a1s type implements the assign optimization and therefore uses all means to
reduce the memory of the tape. The dco/C++ tool is chosen at the project start
because it was the fastest AD tool available and has a very optimal memory footprint
for the tape. dco/C++ however, is not open source and requires a special license. It
can therefore not be used by everybody using the TRACE code.

Both tools were chosen in order to provide an optimized version and a version that
can be used by everybody. A second aspect is the cross checking of the tools. Both
tools should give the same results in the differentiation process. If the results differ,
then one of the tools contains a bug.

4.2.1. Common interface design

Both tools require a slightly different approach for the tape evaluation process. A
minimal example for both tools can be seen in the Figures 4.4 and 4.5. The a1s type
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gives the user a very direct access to the adjoint values and the interface of the a1s
type does not require any changes to the layout of the application.
The situation is different for ADOL-C. The user needs to create arrays that hold

the required information to seed the output of ȳ and the result of the tape evaluation
x̄. This forces an order upon the input and output variables, that the user has to keep
in mind when creating the array for the seeding. The first variable that is registered
as an input must correspond to the first entry in the array, the second to the second
etc. A common interface has to store this information and the user is required to
access the variables always in the same order. The interface is shown in Figure 4.6
and the implementation example for the general interface is shown in Figure 4.7.

4.3. Differentiation of a software package
The implementation of the adjoint procedures from Chapter 3 requires the derivatives
of G and f . These correspond to the numerical kernel of TRACE and the post
processing tool POST. The two options available to apply AD to a code are source
transformation and operator overloading.
Source transformation applies AD by parsing the source code and generating a

new code that is capable of computing the derivatives. Current source transforma-
tion tools like Tapenade [HP13] perform a dependency analysis on the entire code
base. With input from the user, the source transformation tool decides which func-
tions need to be differentiated and they generate the appropriate transformed source
code. This requires a code that can be parsed by the source transformation tool.
Additionally, the numerical kernel needs to be separated from the bookkeeping func-
tions like file IO. TRACE is a legacy C code that was never designed for the case
that a source transformation AD tool is applied to the code base. The monolithic
design structure makes it hard for the source transformation tool to analyze depen-
dencies. A lot of annotations and extra work would be required to help the source
transformation tool get the correct dependency relations. The tight interaction of
the numerical kernel and the bookkeeping functions is another problem and requires
special handling in several places. Other not so obvious problems like handling the
special MPI communication (see Sec. 4.3.5) are manageable with operator overload-
ing but are more complex to handle with source transformation. The majority of
source transformation tools are mostly used with Fortran. This yields a good test
base and a lot of experience for Fortran, that is still missing for C.
Therefore the choice is made that the TRACE code is differentiated with operator

overloading AD tools. The strategy for this approach is based on two main principles:

1. All functionalities in the code are differentiated and no functionality is excluded.

2. New functionality that is added to the code is automatically differentiated and
the developer does not need to know the principles of AD.

Other influences for the strategy arise from the DLR. They do not want and sim-
ply can not do major layout changes to the code. Therefore, the changes that are
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#include <dco.hpp>

void func(const dco::a1s::type* x, const int n, dco::a1s::type* y, const
int m){...}

int main() {
int n = 10;
int m = 5;

dco::a1s::type::tape_t* tape = dco::a1s::type::tape_t::create(1000);
dco::a1s::global_tape = tape;

dco::a1s::type* x = new dco::a1s::type[n];
dco::a1s::type* y = new dco::a1s::type[m];

for(i=0; i < n; i++) {x[i] = 1.0;} // initialization of inputs

tape->switch_to_active(); // start of recording
// register inputs
for(int i=0; i < n; ++i) {tape->register_input(x[i])}

func(x, n, y, m);

// register outputs
for(int i=0; i < m; ++i) {tape->register_output(y[i]);}
tape->switch_to_passive();

// set seeding on \bar y
for(int i=0; i < m; ++i) {dco::gradient(y[i]) = 1.0;}

// evaluate the recorded tape
tape->interpret_adjoint();

std::cout << "df/dx^T*(1,..., 1)^T = (";
for(int i=0; i<n; ++i) {
if(i != 0) {std::cout << ", ";}
std::cout << dco::gradient(x[i]); // read derivatives from \bar x

}
std::cout << ")^T" << std::endl;

// cleanup ...
}

Figure 4.4.: Example for the use of dco.
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#include <adouble.h>
#include <drivers/drivers.h>
#include <taping.h>

void func(const adouble* x, const int n, adouble* y, const int m){...}

int main() {
int n = 10;
int m = 5;

adouble* x = new adouble[n];
adouble* y = new adouble[m];

for(i=0; i<n; i++) {x[i] = 1.0;} // initialization of inputs

trace_on(1, 1); // start of recording, keep=1 => store primal values
for(int i=0; i < n; ++i) {x[i] <<= x[i].value();} // register inputs

func(x, n, y, m);

for(int i=0; i < m; ++i) {
double temp;
y[i] >>= temp; // register the outputs

}
trace_off(); // end of recoding

double* gradient = new double[n];
double* adjoint = new double[m];

for(int i=0; i < m; ++i) {adjoint[i] = 1.0;} // set seeding on \bar y

// evaluate first order reverse for tape 1
fos_reverse((short)1, m, n, adjoint, gradient);

std::cout << "df/dx^T*(1,..., 1)^T = (";
for(int i=0; i < n; ++i) {
if(i != 0) {std::cout << ", ";}
std::cout << gradient[i]; // read derivatives from \bar x

}
std::cout << ")^T" << std::endl;

// cleanup ...
}

Figure 4.5.: Example for the use of ADOL-C.
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template<typename ADType>
class ADInterface {
public:

typedef ADType type;

virtual void setValue(ADType& value, const double& x) = 0;
virtual double getValue(const ADType& value) = 0;

virtual ~ADInterface() {};
};

template<typename ADType>
class ADInterfaceReverse : public ADInterface<ADType> {
public:

virtual void setAdjoint(ADType& value, double seed) = 0;
virtual void updateAdjoint(ADType& value, double seed) = 0;
virtual double getAdjoint(const ADType& value) = 0;

virtual void registerInput(ADType& value) = 0;
virtual void registerOutput(ADType& value) = 0;

virtual void createTape() = 0;
virtual void zeroTape() = 0;
virtual void evaluateAdjoint() = 0;

virtual void activateTape() = 0;
virtual void deactivateTape() = 0;

virtual bool isTapeActive() = 0;

virtual ~ADInterfaceReverse() {};
};

Figure 4.6.: Definition of the common interface for the AD tools.
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#include <ADInterfaceDco.hpp>
//#include <ADInterfaceAdolc.hpp>
//#include <ADInterfacePrimal.hpp> // empty, implementation for double

typedef ADInterfaceDco ADInterface;
typedef ADInterface::ADType Real;

void func(const Real* x, const int n, Real* y, const int m){...}

int main() {
int n = 10;
int m = 5;

ADInterface* adCntl = new ADInterface();
adCntl->createTape();

Real* x = new Real[n];
Real* y = new Real[m];

for(i=0; i < n; i++) {x[i] = 1.0;} // initialization of inputs

adCntl->activateTape(); // start of recording
// register inputs
for(int i=0; i < n; ++i) {adCntl->registerInput(x[i])}

func(x, n, y, m);

// register outputs
for(int i=0; i < m; ++i) {adCntl->registerOutput(y[i]);}
adCntl->deactivateTape();

// set seeding on \bar y
for(int i=0; i < m; ++i) {adCntl->setAdjoint(y[i], 1.0)}

adCntl->evaluateAdjoint();

std::cout << "df/dx^T*(1,..., 1)^T = (";
for(int i=0; i < n; ++i) {
if(i != 0) {std::cout << ", ";}
std::cout << adCntl->getAdjoint(x[i]); // read derivatives from \bar x

}
std::cout << ")^T" << std::endl;

// cleanup ...
}

Figure 4.7.: Example for the use of the common interface.
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introduced by the differentiation of AD should be as minimal as possible.
The approach for the differentiation is to exchange the Ffloat type that is defined

in TRACE on a global level. This is the best approach for legacy C codes, otherwise
all functions and structures that need to be differentiated would be copied and then
the type needs to be replaced. This procedure conflicts with the principle that all new
functionality should be automatically differentiated. The global replacement of the
Ffloat has the drawback that side computations are also performed with the AD type
(e.g. the setup and initialization). That means these parts are slower but the ratio
between the side computations and the numerical computations is more important.
For highly optimized codes like the TRACE code, 99% of the calculations during
the taping process are relevant for the derivative. This would make it very costly to
eliminate the last percent of the side computations.
The Ffloat type in TRACE can already be switched between single precision and

double precision. Because of that the facilities are already in place such that the AD
type can be introduced on a global level. Most of the changes for the differentiation
of the code are required by the switch from C to C++ compilation and by using fully
defined classes instead of primitive types.

It is also beneficial that for most common tasks, preprocessor macros are defined
in the TRACE code. If a problem occurs in the logic that is defined by a macro, only
the macro has to be modified as opposed to every place where the logic is used.
Usually, a lot of structures are used, that contain floating point values. A common

scenario requires that a certain action be performed for every floating point value
in such a structure. Keeping these iterators up to date is very tedious and if not
all values are reached, then errors can quite easily occur. Therefore the process for
the generation of these structures is automated. A parser reads all the header files
and generates iterators for all structures in these files. The iterators can be used to
perform common tasks like the gathering of all the indices for the AD values. For
example the function gatherFfloatLocations will add all Ffloats that are contained in
the structure to a list.
Several problems can occur when a code is augmented with AD. The next sections

list these problems and show solutions.

4.3.1. Memory allocation

Operator overloading tools like ADOL-C require a constructor to be called when a
variable is allocated. C codes have to use malloc and free in order to acquire and
release memory. If that is the case they can be replaced by new and delete. If realloc
is used in the source code, then there is no C++ equivalent that ensures the correct
calls of the constructors and destructors. The first step in solving this problem is
the introduction of a global memory manager that stores the size of every created
array. For realloc it creates a new vector and copies the old values. This approach
encounters a flaw when the size of a vector is increased by one several million times.
In such a situation the whole vector needs to be copied for every increase. ADOL-C
stores every one of these copy operations and releases the old indices afterwards. The
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class StorageManager {
...

template<typename TYPE>
TYPE* reallocMem(TYPE* oldPtr, const size_t newSize, const char *file,

const int line, const char func[]) {
DeleteInfo oldInfo;
oldInfo.size = 0;
if(oldPtr != NULL && !deleteInfo(oldPtr, oldInfo)) {

SERIOUS_MEM(file, func, line, "ERROR: ...");}

if(newSize < oldInfo.size) {
/* delete the freed values */
for(size_t i = newSize; i < oldInfo.size; ++i) {

oldPtr[i].~TYPE();
}

}

TYPE* newPtr = (TYPE*)realloc(oldPtr, sizeof(TYPE) * newSize);
if(oldInfo.size < newSize) {

/* init the new elements */
for(size_t i = oldInfo.size; i < newSize; ++i) {

new (&newPtr[i]) TYPE();
}

}

setInfo(newPtr, newSize, deleteMemImp<TYPE>);
return newPtr;

}
};

Figure 4.8.: Implementation of realloc for C++ classes. It uses the placement new
operator and explicit calls to the destructors. The presented version is
abbreviated for simplicity.

second step in reconciling the problem is the use of the placement new operator and
explicit calls to the destructor. This eliminates the overhead of explicitly copying the
whole vector every time a reallocation is performed.
The final implementation of the realloc replacement is shown in Figure 4.8. The

replacements for malloc and free are written with the same techniques. The place-
ment new operator is not used often in regular software. The operator can be used
to initialize a class at a specific memory location without allocating heap or stack
memory. Therefore it is a very handy tool when C and C++ memory structures are
used together.

4.3.2. Unions
Since C++11 custom constructors and destructors are allowed for unions that con-
tain non plain old data structures. Only this extension to the standard allows the

66



4.3. Differentiation of a software package

/**
* Additional constructor, destructor and copy operator code for unions.

*
* @param unionType The typename of the union.

* @param valueName The name of the member that holds the values. Needs
to be a struct.

* @param valueType The type name of the member that holds the values.

* @param arrayName The name of the array that represents the values.

*/
#define UNION_INJECT(unionType, valueName, valueType, arrayName) \

unionType() : valueName() {}; \
unionType(const unionType& value) : valueName(value.valueName) {}; \
\
~unionType(){ valueName.~valueType();}; \
\
template <typename T> \
unionType(std::initializer_list<T> values) { \
std::copy(values.begin(), values.end(), arrayName); \

} \
\
unionType(std::initializer_list<valueType> value) :

valueName(*value.begin()) {}; \
\
unionType& operator=(const unionType& other) { \
this->valueName = other.valueName; \
return *this; \

}

Figure 4.9.: Macro for unions that contain non plain old data types. The union needs
to have the same data in all members.

proper treatment of AD types in unions. TRACE uses several unions in order to
access data in an array fashion or like structures. A general macro can be used to
add the additional functionality to unions that contain AD types. The macro uses
the member representation of the unions to perform the constructions, destructions
and assignments. The array representation is used for initializer lists. The other
arguments for the macro define the member representation type and the name of the
union. Figure 4.9 shows the macro and a detailed description of the arguments.

4.3.3. Variadic functions

Variadic functions like printf can not be used with non plain old data types. The
AD types will either produce a compiler error when used in variadic functions or the
output will be wrong. For C functions like printf this will be the case. Therefore,
the AD types need to be converted to double.
If variadic functions are used throughout the source code, then the identification

of every position where a special treatment for AD is necessary can become quite
cumbersome. A general C++ solution would be to generate 50 functions with 1
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to 50 template arguments and perform a special treatment for the AD types. The
function getValue is called on every argument and will either return the argument
or will perform a special treatment for the AD types. In C++11 variadic template
functions can be used to do the same in a more general fashion. The implementation
of the special treatment for the AD types can become quite involved and is discussed
now.

The base implementation is

template<typename T>
T & getValue(T& t ) {return t;}

and will return the argument itself. The function is then specialized for the AD tool
e.g.:

template<>
double getValue(const dco::a1s::type& t ) {

return dco::value(t);
}

If the AD tool uses special memory reduction techniques, then the return type of
an operation can become a structure. If this structure is a template class, then
the specialization of getValue can become arbitrarily complex. If computations are
performed in a printf e.g.:

printf("%d", a * a);

then the result of a ∗ a is no longer a dco::a1s::type but rather a template structure.
A specialization for getValue is then required for all structures which can be gener-
ated by the expressions yielding millions of possible cases. Therefore, the functions
need to be partly specialized, leading to the use of partly specialized classes. The
implementation of getValue needs to be changed to

template<typename T>
T & getValue(T& t ) {return GetValue_Impl::getValue(t);}

template<typename T>
struct GetValue_Impl {
static T getValue(T& t) {return t};

};

GetValue_Impl can now be partly specialized. dco/C++ has 4 special classes for
the handling of the operators and new operators are automatically handled. Other
AD tools have a different structure for each operator and need over 50 separate
specializations with this approach. For every new operator a new specialization needs
to be created. Even if all these structures extend from a base class, no specialization
for the base class is possible. The reason behind that is that a function or class can
not be specialized for sub classes. The specialization

template<typename Klass> struct GetValue_Impl<Expression<Klass> >{...};

68



4.3. Differentiation of a software package

// undefined base class
template< typename IN, bool SW > struct Impl_getValue_switch {};

// specialization for every other class, SW = false
template< typename IN> struct Impl_getValue_switch<IN, false> {
typedef typename Impl_getValue<IN>::OUT OUT;

static inline OUT& getValue(IN &value) {
return Impl_getValue<IN>::getValue(value);

}
};

// specialization for the Expression interface, SW = true
template< typename IN> struct Impl_getValue_switch<IN, true> {
typedef typename Impl_getValue<Expression<IN> >::OUT OUT;

static inline OUT& getValue(IN &value) {
return Impl_getValue<Expression<IN> >::getValue(value);

}
};

// selection which case of the specialization is choosen
template <typename IN>
static inline
/* return type */ typename Impl_getValue_switch<IN,

std::is_base_of<Expression<IN>, IN >::value
>::OUT

getValue(IN& a) {
return Impl_getValue_switch<IN,

std::is_base_of<Expression<IN>, IN >::value
>::getValue(a);

}

Figure 4.10.: getValue implementation for classes that extend from a common expres-
sion class. Specializations for const arguments have been removed for
brevity.

is not recognized by the compiler if the class Add extends from the class Expres-
sion<Add>. The solution to this uses the is_base_of trait from the C++11 standard
and is shown in Figure 4.10. The getValue implementation is extended such that it
checks at compile time if the template class extends Expression. The result is given
to the class GetValue_Switch which is defined for the cases when the type extends
from the Expression interface or not. If multiple AD tools are used, a hierarchy of
such checks can be introduced to handle different interfaces.

4.3.4. Unstable formulations
The simple statement
if(vecNorm(a) > 0.0) {...}
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can have large consequences for the tape evaluation, but the statement does not
change the result of the derivative computation. If the Euclidean norm of the vector
is zero, then the square root is differentiated at zero which is not defined. Usually
this yields a NaN and in the reverse procedure the update v̄i += jaci ∗ z̄ would
perform the operation NaN ∗ 0.0 which is still a NaN. This NaN is now propagated
through the whole tape and can lead to results that only contain NaN values. A
problem that has the same character is

a = 1.1;
...
c = asin(a);
z = ... * c;
if(!isfinte(z)) {
r = 1000.0;

}

For a programmer, it is more convenient to check the result of an algorithm and set a
default value. Checking the argument of every operation and setting a default value
each time is both time consuming and less beneficial.

Legacy codes can have a lot of these pitfalls and therefore a solution in the AD tool
is more appropriate. If the tool checks during the reverse evaluation that z̄ is zero and
skips the update, then the propagation of the NaN values, in most cases, is already
stopped. A more robust solution would be to directly skip the writing of NaN values
to the tape. This can lead to situations, where dependencies are ignored. Therefore,
AD tools should contain a mode where the user is warned about arguments that are
outside of the differentiable area of the operator.

4.3.5. MPI communication

The MPI communication can be handled nicely with the libraries AdjointMPI [SNHU10]
or AdjoinableMPI [UHH+09]. These libraries however, can only handle vectors that
contain just AD data types. If structures or other types are sent together with AD
types, the libraries will be unable to handle this.

These general cases can be handled in many different ways. One possible method
is discussed for the TRACE communication structure which is built around general
purpose data buffers that are sent between the processes. The procedure for the
buffer handling is:

Buffer buf;
initializeBuffer(buf);

fillBuffer(buf);
MPI_Send(buf.data, buf.size, MPI_BYTE, ...);

//other process
MPI_Recv(buf.data, buf.size, MPI_BYTE, ...);
readBuffer(buf);
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#if ADJOINT_COM
# define ACCESS_BUFFER(buffer, type, length, content, mode, func)

adAccessBufferMpi<type>(buffer, (size_t)(length),
content, mode, func)

#else
# define ACCESS_BUFFER(buffer, type, length, content, mode, func)

accessBuffer(buffer, sizeof(type) * (size_t)(length),
content, mode, func)

#endif
/** @} */

#define BUFFER_WRITE_FFLOAT(buffer, content) ACCESS_BUFFER(
&buffer, Ffloat, 1, &content, BUFFER_MODE_WRITE, __func__)

#define BUFFER_READ_FFLOAT(buffer, content) ACCESS_BUFFER(
&buffer, Ffloat, 1, &content, BUFFER_MODE_READ, __func__)

...

Figure 4.11.: Interface for buffer access in TRACE and switch for the AD specific
handling.

The routines fillBuffer and readBuffer have no restriction on the data they write
into the buffer and how they do this (e.g. memcpy). In such a case it is impossible for
AD to track the information and create the proper adjoint statements on the tape.
The first step in such a case is to define an interface that is used to access the

buffers. For the TRACE buffers the methods in Figure 4.11 are now used to access
them. Because TRACE is written in C99 macros are used to convey the type infor-
mation. The introduction of the interface and the modification of all the fillBuffer
and readBuffer routines took most of the time for the adjoint handling of the MPI
communication.
After the introduction of the buffer access interface, the generation of the adjoint

MPI request becomes straight forward. The five steps are:

1. Gather information about the location of the AD values in the buffers.

2. Modify the buffers such that the correct information is sent to the other process.

3. Send the buffer and create the corresponding adjoint statement.

4. Receive the buffer and create the corresponding adjoint statement.

5. Modify the buffer such that the AD values can be used in the new process.

The first step is implemented by changing the buffer access macros and storing
the offset of each AD value in a list. In order to do this a function, getValueOffset,
is generated by the parser, ensuring all structures can be handled. For ADOL-C a
special routine is called that copies the structures ordinarily and not with thememcpy
function.
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inline void adolcBufferCopy(Ffloat* curIn, Ffloat* curOut,
Ffloat* temp) {

/* reset the copied value with the temporary one.*/
memcpy(curOut, temp, sizeof(Ffloat));

/* reassign the Ffloats here such that they copy the value */

*curOut = *curIn;
curIn->~Ffloat(); /* delete the old value */

/* move the new value to the position of the old one */
memcpy(curIn, curOut, sizeof(Ffloat));

/* overwrite the structure with the double value */
double* curOutAsDouble = reinterpret_cast<double*>(curOut);
curOutAsDouble[0] = curIn->value();

}

Figure 4.12.: Logic for creating a correct buffer layout for ADOL-C. curIn describes
the value in the regular buffer, curOut the value in the modified buffer,
and temp the value with the linear increasing index. curIn needs to be
copied to temp, temp placed in curIn and curOut needs to be set to the
double value.

The second step is handled right before the buffer is sent. It uses the list from
the first step to access all AD values in the buffer. In the case of dco/C++ no
modifications to the values are required as the a1s type contains the primal value.
The index in the structure can be used by the other process to activate values that
have been active on the sending machine (e.g. index 6= 0). The situation is different
for ADOL-C. The adouble type from ADOL-C contains only the index for the value.
If the buffer is sent as it is, the other process has no means to access the primal value
of the AD type. It is therefore necessary to overwrite the index in the buffer with
the double value. This is done for every value, even if the recording of the tape is not
active. Furthermore, for ADOL-C the requirement has to be met that the indices
linearly increase in the buffer. This causes an additional copy operation to be done
for every floating point value. The full logic of this process is shown in Figure 4.12.

For both tools the buffer is appended with the locations of the AD values inside
the buffer. This is necessary because the receiving side needs to create all of the AD
values directly when the buffer is received.
The third and fourth step are handled by regular MPI calls but the modified buffers

are sent.
The fifth step is performed after the buffer is received. The extended buffer contains

the positions of all AD values and uses them to modify the buffer such that the AD
values can be used on the new processor. For ADOL-C the value has to be read and
an index needs to be created at the position. For both tools the values need to be
registered on the tape. The indices of the a1s types from the other process can be
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used to check if the variable needs to be activated on the receiving processor. But the
old index has to be renewed on the receiving side, otherwise it would be like using a
pointer that is generated on another process.

4.3.6. Libraries

The use of libraries is quite common and a basic principle of software engineering.
When AD is applied on a code the libraries need to be handled, too. Depending on
the purpose of the library, the strategies differ.
A library that is not involved in the numerical computation does not need to be

differentiated, but it is usually the case that floating point variables are given to
functions of the library. In these cases the AD variables are not accepted by the
interface and errors are generated. The usual solution is to convert the AD variables
to regular floating point values. If the library is only used at a few distinct places,
then the changes are quite easy. If the library is used throughout the whole software,
then it can become a tedious task. A good design principle, to make such a transition
as easy as possible, is to encapsulate the library access into a single translation unit.
This contains library specific changes in a well defined region.
This is the work flow when the library has a well defined, type safe interface. After

all compiler errors are handled the program will run correctly. If the interface is not
type safe, then the errors can not be detected by the compiler. A good example is the
CGNS library that is used in TRACE. It is used to write CGNS files, that contain
the mesh and the flow solution. The data arrays are given directly to the library and
an enumerator defines what kind of data is contained in the array. If an AD floating
point array is used instead of a double array, then the CGNS library will access the
wrong data. The array needs to be converted, as described above, to eliminate the
error, but it can not be detected by the compiler.
In order to create a maintainable solution, a type safe wrapper should be written

for the library, such that errors are detected automatically in future developments.
Another aspect for the maintainability are the types that the library defines. If the

types have special meaning for the library, but are defined as common data types,
then a typedef should be introduced that makes the special meaning visible to the
developers. A good example are the MPI_Request objects, in some implementations
they are just an int. A bad example would be the node indices in the CGNS library.
These node indices are plain double types but have a totally different meaning than
a floating point type. The use of double is even more particular in the context of
AD. AD developers are used to change every double into an AD type which would
lead to further errors.
In conclusion it can be said that libraries should be used in a type safe way and in

a single translation unit.
Libraries, that are used in the numerical computations, can be handled with check-

points (see Section 5.4) or differentiated with AD as well. The next section gives an
example of such a case.

73



4. Differentiation of large scale software

4.3.7. Differenziation of VTK

Because INTERSEC is a wrapper for VTK (the visualization toolkit) the most im-
portant point is to differentiate VTK in order to differentiate INTERSEC. VTK
[ABB+10] is a general purpose library for handling CAD (computer aided design),
grid and other scientific data. It contains a large library of algorithms that can e.g.
modifiy the data sets or extract sub plains from the data. VTK also provides a large
set of routines for displaying all the data and the results from the algorithms. The
total library consists of 20 libraries that contain 2 million lines of code in 8000 files.
INTERSEC uses only the libraries that are required for cutting out a plane from a
mesh. These are utilities/kwsys, utilities/verdict, common, filtering and graphics and
are differentiated with dco/C++ and ADOL-C. They still contain 400,000 lines of
code in 2000 files.
VTK does not define typedef definitions for the floating point types. Float and

dobule are directly used. Therefore, every occurrence in the libraries is changed to
BT_Float and BT_Double. After that, these definitions can be used to change the
floating point types to an AD type.
It is not possible to declare the single and double precision typedef definitions with

the same type. The compiler will generate errors for all functions that are defined
for both types. The other option would be to use the generalized type of dco/C++
with double and float. That would produce the types dco::ga1s<double>::type and
dco::ga1s<float>::type. The problem with this approach is, that both types can not
be converted into each other and each type has a separate tape. If the types could
be converted into each other, then there would still be the problem about how the
information of one tape is transferred to the information of another tape. It is also
uncommon for AD tools to provide two different precision types using the same tape
structure in the background. It is not available in dco/C++ or ADOL-C.
The solution is to extend from the given types and therefore create a “new” type.

The principle is explained on a little example:
struct A {double a;}
struct B : public A {}

void func(A& a) {printf("A used");}
void func(B& b) {printf("B used");}

The structure A represents our AD type. B inherits from A but does not add any
logic or data to A. From a user perspective A and B are the same. But the compiler
handles both as distinct types and therefore does allow the function func to be
overloaded.
If this technique is used, it is possible to use the member functions of the base class

directly, but operators like the constructor or the assignment need to be redefined and
the conversion between the new type and the base type has to be carefully defined.
The compiler must not use an intermediate type like int for the conversion from A
to B. If the compiler would perform such an conversion, the dependency information
from AD would be lost. Because of that, the static_cast is changed to the method
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// definition of the second AD type
class adolcExt : public adouble {
public:
adolcExt() : adouble() {};
adolcExt(const double &value) : adouble(value) {}
adolcExt(const adouble &value) : adouble(value) {}

};

template<typename OT, typename IT> struct Impl_performCast {
static inline OT performCast(IT &a) {

return static_cast<OT>(Impl_getValue<IT>::getValue(a));
}

};

// implementation of the conversion between the AD types
template<> class Impl_performCast<adouble, adolcExt> {
static inline adouble performCast(const adolcExt &a) {
return a;}};

template<> struct Impl_performCast<adolcExt, adouble> {
static inline adolcExt performCast(const adouble &a) {
return adolcExt(a);}};

template<typename OT, typename IT> static inline OT performCast(IT &a) {
return Impl_performCast<OT, IT>::performCast(a);

}

Figure 4.13.: Implementation of a second AD type that extends from the base type.
static_cast is changed to performCast in order to handle the conversion
between the AD types.

performCast and this method is specialized for the conversion between the AD types.
In Figure 4.13 the implementation of a second type for ADOL-C is presented. This
second type is then used as the float replacement in VTK. Because both types use
the same tape in the background, AD will produce the correct derivative results.

4.3.8. Differentiation and communication with external tools

External programs can become involved in two ways. Either they are called directly
from the main program or the main program is part of a process chain, that consists
of multiple tools. The usual process for involving external programs is a file written
by the main program and read by the external program. This can be modeled by the
simple assignment:

aext = amain (4.40)

where amain describes the variables in the main program that are written to the file
and aext are the variables in the external program that are read from the file. The
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forward and reverse mode of (4.40) are then

ȧext =ȧmain (4.41)
āmain +=āext . (4.42)

The forward equation can be handled by writing a second file that contains the
dot values or by extending the original file format such that it contains the primal
and dot values. The reverse equation can be implemented in a similar fashion. The
external program writes a file that has the same layout as the file written by the
main program but this seeding file contains the bar values. The seeding file can then
be read by the main program in order to get the update for the bar values.
A security mechanism can be included in the seeding file by adding the primal

values. The main program can then check if the current state and the state when
the file was written are the same. In an inconsistent state the derivatives can not be
guaranteed to be correct. Checking the state can also help to detect errors that are
introduced by the functions that write the files. A good example is the averaging
of boundary values that are performed after the AD values are converted to floating
point types. The additional computations are no longer tracked by AD, which leads
to an inconsistent state. If an inconsistent state is detected, then the information
flow of the application needs to be changed such that all states at the communication
boundaries are correct.
This technique is used to couple the post processing tool POST to TRACE. The

differentiation of POST is otherwise analog to the differentiation of TRACE.

4.4. Implementing adjoint algorithms
With a software that is differentiated, the algorithms from Chapter 3 can be imple-
mented. They require the evaluation of the gradients ∂G

∂y ,
∂G
∂x ,

∂f
∂y and ∂f

∂x , therefore
G and f need to be defined as drivers in the software and called with the appropriate
settings of the AD tool. For the TRACE code, G corresponds to one iteration of
the loop in Figure 4.3 and f to the call of POST. The correct implementation of
the derivative algorithms is then only the correct assembly of the drivers with the
correct settings. Nevertheless, there are a few things that require design decisions in
the implementation in order to guarantee the correct behavior of the algorithms.
One important aspect is the definition of the state y and the control x. The

mathematical modeling always assumes that they are well defined and available. If
that is not the case and the state y is incomplete, then the correct behavior of the
derivative algorithms can not be guaranteed. Techniques for the validation of y and
x are discussed in the following sections. The complete definition of y for TRACE is
shown in Table 4.1 with a short description on the variable names. y contains some
surprising values including the conservative and primitive representation of the flow
state. Usually only one set is added to the state and the other set is computed on
need. The panel boundaries and integrals are values that are usually not required
in the state. They need to be included in the state space because of the special
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structure of TRACE. Figure 4.3 shows that the computation of the blocks and the
communication is strictly separated. All values, that are communicated, are used in
the next iteration for the update of the blocks. If the values are not added to the
state, the AD tool can not see the derivative dependencies of these values. A restore
of the state y will leave these values untouched and therefore the restored iteration
will use old values. This needs to be emphasized quite strongly.
The facilities of a simulation software, that restore the state, are called restarts,

and are most of the time not implemented in an exact and consistent fashion. Small
errors or inconsistencies are accepted because the primal solve will correct these
after a few steps and the overall convergence progress will not change much. Usual
suspects are the ghost layers where values are interpolated from the field. For AD
and the derivative algorithms from Chapter 3 this can have dramatic consequences.
The perturbation of the input variables can be to strong and cause the algorithms
not to converge. AD requires consistent values, otherwise the execution path in
the software can differ and lead to different derivative dependencies. This can be
a major drawback for Reverse Accumulation, because the same tape is evaluated
multiple times. Therefore the full definition of the state y should always be used to
restore the state of the software in order to be fully consistent.
The handling of precomputed variables is another aspect in the implementation of

the adjoint algorithms. Usually there exist some mesh metrics w, like the volume of a
cell, that can be computed in advance. This increases the speed of the solver because
less computations are performed during the evaluation of the fixed-point iterator G.
For the derivative computation, the values are quite critical. The usual dependencies
are that the control x defines the mesh metrics w and the state y is then defined by x
and w. The derivative computations need to handle these dependencies correctly in
order to guarantee correct results. The critical aspect for the correct handling of these
values depends greatly upon how they are computed. If there exists a single function
that computes all such values, then the integration with the derivative algorithms
is straight forward. The function can be called in the correct places and thus the
tape size will be minimal. If such a function does not exist, then the solution is more
involved. A tape needs to be recorded when the mesh metrics w are computed and
this tape needs to be stored during all other derivative evaluations. Figure 4.3 shows
that TRACE uses precomputed mesh metrics in the computation. In the primal
run they are only computed once and do not change afterwards. Therefore they have
been intertwined with the initialization process and no separate function exists for the
recomputation. Figure 4.14 shows the required tapes for the Reverse Accumulation
process, once where the recording needs to be done at the start, and once where the
mesh metrics w can be recomputed.

In the first setting the computation of the mesh metrics w are stored on the tape
during the initialization. The tape for ∂G

∂y is then stored in order to perform the
adjoint fixed-point iteration. When the iteration has converged, the tape for ∂G

∂y can
be removed and the tape for ∂G

∂(x,w) can be stored and evaluated. The final step in
the process is the propagation of the adjoint mesh metrics to the control x with the
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4.5. Derivative validation

Reverse Accumulation, were mesh metrics can only be taped in the initialization:
Memory ∂x

∂w

Initialization of TRACE:
Memory ∂G

∂y

Iteration for λ:
Memory ∂G

∂(x,w)

Sensitivites for x and w:

Sensitivites for x:

Reverse Accumulation, were mesh metrics can be calculated separatly:
Memory ∂G

∂y

Iteration for λ:
Memory ∂x

∂w
and ∂G

∂(x,w)

Sensitivites for x and w:

Figure 4.14.: Memory layout for Reverse Accumulation, where the precomputation
of the mesh metrics is taped at the beginning or when needed.

initial tape ∂w
∂x .

The second setting is a more optimized version and omits the taping of ∂x
∂w at the

start. Less memory is required and no explicit definition of the mesh metrics w is
necessary. This is the case because the tapes for ∂x

∂w and ∂G
∂(x,w) can be combined by

calling the function that recomputes the mesh metrics before calling G. The recorded
tape stores all of the dependencies and no special handling for w is required.
Table 4.2 gives an overview of the algorithms and the possible configurations for

them. The figure also lists some additional algorithms that are used to support the
adjoint algorithms and testing.
In order to have the most optimized version for the required task, the TRACE make

system can produce 5 different binaries: C99, C++, dco::t1s::type, dco::a1s::type and
ADOL-C. The C99 version does not include any functionality from the AD module.
The C++ version contains only the logic for the primal algorithms like writing the
checkpoints. The other 3 versions contain the drivers for the adjoint algorithms.

4.5. Derivative validation

After a software is differentiated in the reverse mode of AD, the derivatives of the
reverse AD mode need to be validated. The two techniques available for this are the
forward AD mode and the finite difference method.
In the forward AD mode all derivative computations are directly performed next to

the primal computations. This process is simple and the resulting implementations
are plain old datatypes, that are compatible with almost all programming techniques.

79



4. Differentiation of large scale software

Table 4.2.: Table of all the algorithms that are implemented in TRACE. The algo-
rithms range from the adjoint algorithms defined in Chapter 3 to some
support and test algorithms.

Black Box: The Black Box algorithm defined in Figure 3.1. No opti-
mizations are used in this implementation. It is used for the
validation of derivative results.

Black Box with check-
points:

The Black Box algorithm defined in Figure 3.1. This version
can use checkpoints of the state y such that only one itera-
tion of G needs to be taped. If necessary the algorithm will
generate the checkpoints or can use checkpoints that have
been written in a previous run.
The computation of ∂G∂x can be disabled.

Reverse Accumulation: The Reverse Accumulation algorithm defined in Figure 3.2.
The computation of ∂G∂x can be disabled or performed every
i-th step.

Write checkpoints: A simple algorithm that writes the state of y as a checkpoint
every i-th step during a primal computation of TRACE.
There is also a checkpoint written when the solver is finished.

Tangent mode: Allows the computation of derivatives with the forward AD
mode. Several values in y and x can be configured that are
seeded with 1.0. For each point the derivative with respect
to f is calculated.
The algorithm is currently only used for the validation of
the adjoint algorithms.

Finite differences: Allows the computation of derivatives with a finite difference
approximation. Several values in y and x can be configured
and several step sizes ε. For each point and each step size
the finite difference approximation of f is calculated.
The algorithm is only used for the validation of the adjoint
algorithms.

Checkpoint test: A simple algorithm that tests if the checkpoints can restore
the full state of TRACE. In the first run it writes a check-
point after each i-th step and the state of TRACE in each
step. The second run loads the checkpoints and compares
the state of TRACE with the first run.
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4.5. Derivative validation

Therefore, no dependencies should be missed when the forward AD mode is used.
The results produced should be the same as the results produced by the reverse AD
mode up to machine precision.
Finite differences can be evaluated with any program and the program needs

no modifications. The definition comes from Taylor’s theorem [Apo69] and with
F : R→ R, x0 ∈ R and ε ∈ R the Taylor expansion of F is:

F (x0 + ε) = F (x0) + F ′(x0)ε+R(x0 + ε)ε (4.43)

whereR(x0+ε) is the remainder term. For the remainder term holdsR(x0+ε) = o(|ε|)
for ε → 0. This means that R is asymptotic negligible with respect to ε. Equation
(4.43) can be written as

F ′(x0) = F (x0 + ε)− F (x0)
ε

+R(x0 + ε) . (4.44)

The remainder term R(x0 + ε) gets small for small values ε and therefore the simpli-
fication

F ′(x0) ≈ F ′FD := F (x0 + ε)− F (x0)
ε

(4.45)

holds for small ε. Formulation (4.45) can be used to approximate the derivative of
a program by disturbing the parameter x. The major problem with this approach is
how large the step size ε should be chosen. If ε is too large, then the term R(x0 +ε) is
still too large and the derivative approximation is of low quality. If ε is too small, then
the floating point precision of the processor will produce rounding and cancellation
errors. This leads to numerical noise for very small values of ε. Usually, there exists
an optimal ε∗ that minimizes the error in R and the numerical noise. The example in
Figure 4.15 shows the comparison of finite differences approximations with analytical
derivatives for the function F (x) = xd with x ∈ R and d = 1, 2, 5. For the nonlinear
functions, the typical V-shaped curve is visible. The right branch shows the error of
the remainder term R and the left branch the numerical noise. The kink of the V
defines the optimal step size ε∗ for the finite difference. This simple example shows
that the optimal step size ε∗ is different for every function. If a step size ε is fixed in a
numerical program, then the resulting derivative can not be guaranteed to be correct.
Only if multiple step sizes are evaluated for every point, an analysis can be made
that will show if the derivative is correct. If this is not done, then the approximated
derivatives may even have the wrong sign, which gives an optimizer a totally different
intuition for the correct direction. Therefore, finite differences are only a good tool
for validation and not for productive use.
The derivative validation for TRACE is performed with the feature minimal test

case. It is a model of one quasi stage (stator – rotor) cut out of a high-pressure
compressor.
The model of the stator is an approximation of a variable stator vane (vane pitch

adjustable). The necessary gap on hub and tip is modelled as a half-gap configuration.
The rotor is modelled with a fillet at the hub and a radial gap at the tip. The leakage
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Figure 4.15.: Error of the finite differences and the analytical derivative for the func-
tion F (x) = xd with d = 1, 2, 5.

flow, from downstream to upstream of the stator through a so called cavity is only
approximated via a downstream bleed and a corresponding leak-inlet upstream.
The quasi stage leads to a stagnation pressure ratio of roughly 1.5. While the

inflow to the stator is subsonical, the inflow to the following rotor is transonic in the
rotational frame of reference leading to a maximum mach number of 1.22. The inflow
Reynolds number is around half a million.
The setup is chosen to contain several features that are required by the current

processes at MTU Aero Engines. Figure 4.16 shows the grid of the test case. It
contains only 29,000 grid points. This coarse geometry is chosen to make fast testing
and evaluations possible.
The primal solution converges after 600 steps and the steps 550 to 600 are chosen

for validation with finite differences. For each point in Table 4.3 the finite differences
for 500 step sizes in the range from 10−8 to 10−2 are computed. The results are
compared with the derivatives from the forward and the reverse mode of AD. It can
be seen that both AD modes are in very good agreement. For each point the finite
differences show an error that is below one percent and each of these points shows a
typical V-shaped curve, as expected.

4.6. Automated testing
The process of calculating target functionals like the drag can be seen as a function
call z = h(x) and on this function AD is used to calculate the derivatives without
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4.6. Automated testing

Table 4.3.: Comparison of finite differences(FD), AD forward and AD reverse deriva-
tives for 12 grid points in each space direction (x, y, z) of the Feature
Minimal test case over the steps 550 to 600.

Block x Index FD AD forward AD reverse step size FD rel. error
0 12741 -9.93827e-04 -9.840295342424283e-04 -9.840295342424068e-04 1.6293e-04 < 1%
0 12742 -1.94559e-03 -1.926923009111530e-03 -1.926923009111562e-03 5.2000e-04 < 1%
0 12743 +6.10472e-05 +6.057367886269012e-05 +6.057367886269113e-05 3.4674e-03 < 1%
0 9906 -1.09503e-03 -1.084217532959289e-03 -1.084217532959235e-03 1.3932e-05 < 1%
0 9907 -1.13301e-03 -1.121879194225534e-03 -1.121879194225533e-03 6.4863e-06 < 1%
0 9908 +5.60042e-05 +5.656459769228783e-05 +5.656459769228634e-05 8.7902e-05 < 1%
1 2514 +8.20504e-04 +8.241730026912932e-04 +8.241730026912700e-04 7.9433e-07 < 1%
1 2515 +3.77915e-03 +3.784372969565374e-03 +3.784372969565362e-03 3.4041e-03 < 1%
1 2516 -3.78383e-04 -3.746682593523982e-04 -3.746682593524004e-04 2.2909e-05 < 1%
2 2514 -2.17008e-03 -2.188174301876196e-03 -2.188174301876189e-03 2.7040e-03 < 1%
2 2515 -5.53146e-03 -5.482691123449521e-03 -5.482691123449522e-03 3.0761e-03 < 1%
2 2516 +1.76672e-04 +1.784532039010828e-04 +1.784532039010839e-04 5.3951e-04 < 1%
3 15441 -1.77607e-03 -1.758521048880018e-03 -1.758521048880045e-03 3.5318e-06 < 1%
3 15442 +1.59102e-02 +1.607043377910989e-02 +1.607043377910983e-02 3.1915e-06 < 1%
3 15443 +7.84922e-05 +7.928449550463615e-05 +7.928449550463516e-05 4.8306e-05 < 1%
3 13146 +8.69935e-02 +8.704547303425419e-02 +8.704547303425446e-02 1.6904e-03 < 1%
3 13147 +6.37233e-02 +6.362224649023705e-02 +6.362224649023807e-02 1.7061e-03 < 1%
3 13148 -1.93677e-03 -1.956245453012186e-03 -1.956245453012188e-03 1.1912e-03 < 1%
11 3651 -9.13391e-04 -9.044226218009399e-04 -9.044226218009224e-04 5.2966e-05 < 1%
11 3652 +1.29016e-03 +1.300759010443960e-03 +1.300759010443999e-03 1.6444e-04 < 1%
11 3653 +7.09788e-05 +7.110983560164373e-05 +7.110983560164517e-05 9.2897e-04 < 1%
12 15567 +7.28853e-02 +7.362090304300935e-02 +7.362090304301001e-02 8.7902e-06 < 1%
12 15568 -1.31505e-02 -1.302096850748543e-02 -1.302096850748543e-02 3.4041e-04 < 1%
12 15569 -1.92571e-02 -1.906854778583585e-02 -1.906854778583594e-02 8.5507e-05 < 1%
12 15060 -1.97093e-02 -1.951499719409957e-02 -1.951499719409970e-02 5.2966e-05 < 1%
12 15061 +1.72878e-02 +1.746159950328999e-02 +1.746159950329003e-02 5.8076e-06 < 1%
12 15062 +6.49588e-03 +6.561126741571357e-03 +6.561126741571351e-03 6.3096e-05 < 1%
13 16074 -1.54926e-02 -1.564819627303708e-02 -1.564819627303704e-02 1.5849e-04 < 1%
13 16075 +1.69630e-02 +1.679649406374312e-02 +1.679649406374306e-02 9.6383e-05 < 1%
13 16076 +4.23409e-04 +4.192273542316657e-04 +4.192273542316629e-04 1.0471e-03 < 1%
13 15567 -9.14126e-02 -9.233223191906242e-02 -9.233223191906310e-02 3.1915e-06 < 1%
13 15568 +1.70553e-01 +1.688779827523305e-01 +1.688779827523305e-01 1.0471e-05 < 1%
13 15569 -4.08541e-02 -4.126453830305685e-02 -4.126453830305681e-02 2.3335e-05 < 1%
14 3057 +2.01789e-02 +2.038131593167954e-02 +2.038131593167954e-02 1.5136e-05 < 1%
14 3058 -1.05988e-01 -1.049393389412271e-01 -1.049393389412267e-01 5.2481e-06 < 1%
14 3059 +2.80998e-02 +2.838122929631948e-02 +2.838122929631952e-02 3.0761e-05 < 1%
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Y

X

Z

Figure 4.16.: Grid of the feature minimal test case.

exploiting any structural information or using any checkpointing technique. This
process should always yield the correct results. If h is then split into its algorithmic
components and problem (P) from Chapter 3 is used as the general framework, then
the schedule from the Black Box method (Alg. 2) can be used to compute the same
derivatives. Before each call to ∂G

∂y and ∂G
∂x the state y has to be loaded and G is

reevaluated in order to record the tape. If after this process the result from the Black
Box method and the application of AD on h do not yield the same results, then this
can have three reasons:

• The first reason can occur when the primal state is not restored properly and
therefore a different calculation is performed.

• The second reason can occur when the adjoint state ȳi is wrong and therefore
the update to the previous state ȳi−1 is also wrong.

• The third reason can come into effect when using the control x in the process.
If e.g. there is a function M : X → X ′ ⊂ Rp with p ∈ N that computes some
precomputed mesh metrics and this function is not properly handled, not all
the dependencies on x will be seen in a checkpointing scheme.

The three items are discussed in the following sections.

4.6.1. Validation of the state
The theory always assumes that the state vector y is well defined and known by
the developers. If for example the regular fixed-point iterator G(y, x) is changed to
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Gs(p, q, x) with y = (p, q)T and if then a checkpointing scheme is applied to p and
not to q, the full state of y is not restored and the reevaluation of Gs will yield wrong
results. Why y is not fully known can have several reasons. In legacy codes not
everything is documented, monolithic design structures or globally defined variables
make it hard to track which variables are inputs and which are recomputed. It is
possible that at the end of G some values (e.g. boundary averages) are computed
that are then used in the next step of G (e.g. convergence criteria). These values
come not to mind if one thinks about the state but are still necessary for a valid state
vector.
The assumption in this section is that the control vector is known and an initial

guess for the state vector is made.
The initial guess in this case is p and every variable in the program that corresponds

to p is tagged. If 1 is used as the tag, when Gs is called, every computation that makes
use of a tagged variable will tag the resulting value with 1. When the iteration of Gs
finishes, the variables of p and all variables that were computed from these variables
will have been tagged with 1. For the next iteration, p is tagged with 2 and Gs is
called again. New variables from computations will receive the tag 2. But it can now
happen, that in a computation a variable with the tag 1 will be used. Such a variable
can occur when it is part of the computation and used before it is recomputed. These
variables are from the unknown state q.
The process is explained again in a small example, that is:

void iter(double a, double b, double& a_new, double& b_new) {
double t = a * b;
a_new = b + t;
b_new = a + t;

}

If a is tagged with 1 and iter is called, then t is also tagged with 1 and so are the
outputs a_new and b_new. Afterwards a is tagged with 2 and iter is called again
with the updated variables. The computation for t will now encounter the variable
b, that has been tagged by the previous iteration with 1. In order to have the full
state of iter, b needs to be added to the state. It is now possible to restore the full
state of iter. If for example, after the 1000-th step of iter, the 500-th step needs to
be restored, it is necessary to restore a and b. If only a is restored, then the results
of the 500-th step will be wrong.
This concept is a simple technique to validate the state y of a fixed-point solver,

when it is unclear if the full state y is captured. The question now is how will the
variables be tagged. The solution can be quite easily implemented with the techniques
of AD. Each variable in the program is replaced with an AD variable like the RReal
and this type contains already an extra value. Additional members can be added to
represent the tag and the AD operations can be adapted to update the tag.
It is now possible to tag each variable in the application and this capability can

be used to identify the correct state, but it also necessary to discuss the problem
of a wrong state from an AD perspective. The indices of AD are used to perform
the tagging. So the application can encounter old indices from the last iteration. If
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a new tape is generated and starts with the index 1, the next operation will have
the index 2 and so on. Eventually one of the computations will encounter an old
index. Lets assume it is the last index that was used in the previous iteration and
has the value 1, 000, 000. The reverse interpretation of this tape will then write to the
adjoint vector at the position 1, 000, 000 which is clearly wrong. Yet, as the adjoint
value at this position is not used again, nothing would change. In another case it
could be that the old index is smaller than the currently used index. The reverse
interpretation will then write to a position in the adjoint vector, which will in turn
be used in an update and definitively change the result. It is very harmful if an AD
tool uses indices from old iterations. The selection of the tags and the process of
identifying the missing state q are now discussed.

How each index is tagged is not important and it can be done by either reserving
the first or last j bits in each integer or by using a structure as the index which
contains the regular index and an extra field for the tag. The assumption is that
there are j bits available for the tagging.

The first option is to tag each index with the current id i from the iteration. The
function

tag = (i mod 2j − 1) + 1 (4.46)

assigns all values from 1 to 2j − 1 to the tag without the zero value. If the tape
encounters an old tag in a right hand side expression it can throw an error. The user
is then able to identify the missing value in the state of p and extend it to p̂. If the
process is repeated, all errors are eliminated step by step and p converges to the state
y. This method can also be used to automatically test for incorrect states in a test
suite for the application.
The next source of errors could originate from the communication of processes.

The indices of each process can be interpreted as pointers in the memory and possess
no meaning in any other process. The same tagging technique from above can be
used to identify errors that originate from such sources. If the tagging

tag = (processId mod 2j − 1) + 1 (4.47)

is used, then all values from 1 to 2j − 1 are used and the AD tool can detect values
from other processes. It should be ensured that processId < 2j holds. If not, then
two processors next to each other can have the same tag.
An index that is not properly initialized, will contain a random value. If this

uninitialized index is used as it is, then the correct behavior of the tape can no
longer be guaranteed. If the indices are tagged, then it is very unlikely that the
random value contains the correct tag. Therefore, the tagging technique can also be
used to detect uninitialized values in the computation.
With tagging, nearly all problems with the state vector can be analyzed or detected.

If a total Black Box taping still yields different results as a Black Box scheme with
reloaded states, further tests must to be developed.
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1 # Comments start with a # at the beginning of the line
2
3 # for each statement that is recorded on the tape
4 <number of arguments> <Jacobians of all arguments> [<index of lhs>

<indices of all arguments>] [<code position of the statement>]
5
6 # number of arguments:
7 # The number of arguments on the right hand side of the statement.
8 # May be already optimized such that zero Jacobies etc.
9 # are not counted.

10 # Jacobies of all arguments:
11 # For each argument on the right hand side of the statement the computed
12 # Jacobie value by the tape. Have to be the same count
13 # as <number of arguments>.
14 # index of lhs:
15 # The index of the assigned value on the left hand side of the

statement.
16 # indices of all arguments:
17 # For each argument on the right hand side of the statement the

associated
18 # index with this variable. They should have the same order as
19 # the Jacobies. Have to be the same count as <number of arguments>
20 # code position of the statemnt:
21 # The line and file where the statement is defined.

Figure 4.17.: Output format for Jacobi tapes.

4.6.2. Validation of the adjoint state

If the results from the AD application on h and the Black Box method differ, then
the recorded tapes from both algorithms have to be different. The tape from the
Black Box method contains the evaluation of G at the point yi for i ∈ N. The tape
for the AD application on h will contain all evaluations from G for all points y0 to
yj+1. This tape can be split such that each part contains just one G iteration. The
tape of f should be separated, too. After this procedure there should be the files
tape_bb_full_##.txt and tape_bb_check_##.txt for the AD application on h, and
the Black Box method respectively with ## ranging from 0 to j + 1 where j + 1
contains the tape for f .
A good format for Jacobi tapes is shown in Listing 4.17. It stores the minimal

information and can also be used with binary data. The Jacobians can be compared
in order to check if the tapes are identical. The information for the indices is not
really required but can be used to traverse the file and analyze the dependencies of
the statements. The code line of the statement can be used to see where the tape
entry is recorded.
After the files have been written the comparison can start. The order in which

the files are compared depends upon the problem. If it is important to find the first
difference in the variable dependencies, then the comparison should start with the
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first primal iteration. On the other hand, if it is important to find the first differences
in the adjoint output, then the comparison should be started with f .
The comparison process is the same for both approaches. One tape has to be

declared the “master” tape. For the master the derivatives are validated and the
user knows that the tape is correct. This is usually the tape from the Black Box
process without any checkpointing techniques. The other tape is the “secondary”
tape which is considered to contain the errors.
In order to yield the same results every statement that is on the master tape has

to be on the secondary tape. This statement is proven in the following theorem, but
first a definition is required for the correctness of a tape interface. In Section 4.6.1
procedures for the validation of the state were shown and a correct state was defined
in the sense, that all output values need to depend upon at least one input value.

Definition 4.1
For a tape that is created by the function y = F (x) with x ∈ Rn and y ∈ Rm,
the interfaces defined by the input variables x and the output variables y are
correct if and only if for all i ∈ [1,m] ⊂ N there exists an index j ∈ [1, n] ⊂ N
such that ∂Fi

dxj
6= 0.

With this definition the theorem for the inclusion of the tapes can now be stated.

Theorem 4.2
Let p = F (a) be the definition of the master tape (M) with a ∈ RnM as the input
interface and p ∈ RmM as the output interface. Let y = F (x) be the definition of
the secondary tape (S) with x ∈ RnS as the input interface and y ∈ RmS as the
output interface. Let F be in both cases the same function that is used with different
sets of parameters. Without loss of generality let x = (a, b) with b ∈ RnS−nM and
y = (p, q) with q ∈ RmS−mM . Let the interfaces p and a of the master tape be
correct.
Then q̄ 6= 0 has no influence on ā.

Proof. The adjoint update of F is after Theorem 2.13(
ā

b̄

)
= ∂F

∂(a, b)

T

(a, b)
(
p̄
q̄

)
=̂ x̄ = ∂F

∂x

T

ȳ . (4.48)

The Jacobi matrix of F can be identified as

∂F

∂(a, b)

T

(a, b)
(
p̄
q̄

)
=
(
A B
C D

)(
p̄
q̄

)
(4.49)

with A ∈ RnM×mM , B ∈ RnM×(mS−mM ), C ∈ R(nS−nM )×mM and
D ∈ R(nS−nM )×(mS−mM ). It is only possible that q̄ has no influence on ā if B is
the zero matrix, which is proven with the assumption of its contraposition.
Let the assumption hold that q̄ has an influence on ā which implies B 6= 0. There-

fore there exist two indices i ∈ ]mM ,mS ] ⊂ N and j ∈ [1, nM ] ⊂ N such that
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Bj,(i−mM ) is not equal to zero. Because B is a submatrix of ∂F
∂(a,b) it holds ∂Fi

∂xj
6= 0.

The parameter xj is an input parameter of the master because j is in the range
[1, nM ] and can therefore be identified as the parameter aj . It is now obvious, that
the parameter aj has an influence on the output value yi because the derivative ∂Fi

∂xj
is nonzero. This makes the output yi a member of the output interface of the master
tape and needs to be included in the output interface p. The interfaces of the master
tape are assumed to be correct and therefore the index i must be smaller or equal to
mM . This is a contradiction against the original assumption i ∈ ]mM ,mS ].

Therefore it holds, that if the interfaces of the master tape are correct, then B is
equal to zero. This reduces the update (4.48) to(

ā

b̄

)
+=

(
Ap̄

Cp̄+Dq̄

)
(4.50)

and shows that q̄ 6= 0 has no influence on ā.

Remark 4.3
It is very important that in both tapes the same function F is used. Otherwise
the proof is not possible.

The conditions of the theorem apply in our case. The master tape (M) and the
secondary tape (S) are based upon the same function (F ), which corresponds to the
fact, that both are evaluated by the same code. The master tape can be assumed to
be correct. The result of the theorem is then, that the reverse interpretation of both
tapes yield only the same results for ā if the sub matrix A is recorded in both tapes.
This is identical to stating that every statement of the master tape has to be on the
secondary tape. In addition, the theorem guarantees that every additional statement
on the secondary tape will not influence the result of the reverse evaluation.
Therefore, the tape comparison process needs to ignore all statements that are not

in the master tape but are in the secondary tape. The same is true for the Jacobians
in the statements. All additional Jacobians that are on the secondary tape and not
on the master tape need to be ignored.

Remark 4.4
In order to be able to see the dependencies in the tape files directly, it has been
shown to be more efficient to disable the assign optimizations in the AD tool
(see Sec. 6.9). Errors are then generated the first time a variable is copied and
not the first time it is used in a statement.

4.6.3. Validation of interfaces
In this context the assumption is, that there are some additional control values w
which are precomputed by the functionM : X → X ′ ⊂ Rp with p ∈ N. The extended
algorithm from (Alg. 2) with the functionM would look like the listing of Algorithm
3. The tagging technique from Section 4.6.1 of this chapter can be generalized to
identify interfaces and therefore the one for w.
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The tag for all variables in x is set to one and then M is called. Now all values
that depend on x will have the tag one. The global tag is then set to two and is set
on x as well as the known parts of w. The computation is continued and when a
value with tag one is used it is an indication that it belongs to the interface w. The
process is also shown in Algorithm 4.

Algorithm 3 Procedure for evaluating the gradient of the object function f for a
given fixed-point iterator G with some precomputed variables w.
Input: y0, x
Output: z, yj+1, x̄0
w = M(x)
for i = 0, i ≤ j do
yi+1 = G(yi, x, w)

end for
z = f(yj+1, x, w)

z̄ = 1
ȳj+1 = ∂f

∂y (yj+1, x, w)T z̄
x̄j+1 = ∂f

∂x (yj+1, x, w)T z̄
w̄j+1 = ∂f

∂w (yj+1, x, w)T z̄
for i = j, i ≥ 0 do
ȳi = ∂G

∂y (yi, x, w)T ȳi+1

x̄i = ∂G
∂x (yi, x, w)T ȳi+1 + x̄i+1

w̄i = ∂G
∂x (yi, x, w)T ȳi+1 + w̄i+1

end for
x̄ = ∂M

∂x (x)T x̄′0 + x̄0

4.7. Test case description

4.7.1. CRESENDO turbine

The CRESENDO low pressure turbine was created in the EU project CRESENDO
(collaborative and robust engineering using simulation capability enabling next design
optimization) in 2009. The 3-year research project was lead by Airbus and established
a collaboration of 59 organizations from 13 countries. The aim of the project was to
improve the collaboration of the companies in order to improve the efficiency of new
turbine designs and to reduce the cost of the design and its construction processes.

MTU Aero Engines constructed during the project a 5 stage low pressure turbine,
now called CRESENDO. The turbine contains a turning mid turbine frame (TMTF)
that performs the transition of the flow from the height pressure turbine to the low
pressure turbine. The vane also contains the service line, which is the support for
the turbine shaft and the oil supply. In order to reduce the weight of the turbine, the
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Algorithm 4 Procedure for detecting an interface with the help of variable tagging.
Input: x, func PreInterface, func PostInterface
Output: Interface w
for i = 1, .... do
Set global tag to (2 ∗ i− 1)
Set tag (2 ∗ i− 1) on x
call PreInterface
Set global tag to (2 ∗ i)
Set tag (2 ∗ i) on x
Set tag (2 ∗ i) on w
call PostInterface
if Tag (2 ∗ i− 1) used then
Add variable to w

else
return w

end if
end for

TMTF performs a small redirection of the flow of about 40 degrees. A usual stator
redirects the flow of about 90 degrees but requires an additional row and therefore
extra weight. The resulting flow regime is very complex and contains strong secondary
flows. This makes the case very interesting for design optimization, because several
constraints need to be satisfied in order to meet the spacial requirements for the
service line and to produce a stable flow. The CRESENDO test case in the thesis
consists only of the first stage of the full 5-stage design. The first stage contains the
TMTF and the following rotor B3 (short for blade 3). The mesh of the TMTF is very
fine in order to resolve the secondary flows, this allows for a low-Reynolds modeling
[WJ00] of the walls. The B3 rotor is meshed quite coarse and therefore wall functions
[Röb13] are used for the wall modeling. The turbulence model is the Wilcox k-ω 1998
model [Wil88] and the multi-mode transition modeling scheme [BHK10] is used at
the pressure and suction side of the TMTF. The total grid consists of 1.7 million cells
(1.6 million TMTF, 0.1 million B3), the mach number of the inflow is Ma0 = 0.4
and the Reynolds number is Re = 800, 000. The case runs with 4650 rotations per
minute and a total pressure ratio of ρin

ρout
= 1.27.

4.7.2. THD turbine

A single compressor stage is chosen as a second test. The setup originated from an
experimental investigation performed at the Technical University of Darmstadt and
is referred to as THD Rotor 1. It is characterized by a maximum pre-shock Mach
number of 1.4 at a design speed of 20000 rpm corresponding to a blade tip velocity
of approximately 400 m/s. At design speed the blade tip operates supersonic, while
the hub runs at subsonic conditions. The blades are highly cambered at the hub
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Table 4.4.: Time and memory measurements for the THD turbine. First unoptimized
results from the black box differentiation of TRACE.

primal TRACE Black Box Reverse Accumulation
Time in seconds 1.0

dco/C++ 28.71 6.39
ADOL-C 121.13 41.10

Memory in GB (Factor) 2.51
dco/C++ 184.86 (74) 184.86 (74)
ADOL-C 226.87 (90) 226.87 (90)

and show thin airfoils at the blade tip. The mean aspect ratio of the rotor blades
measures 0.94 with a hub-to-tip ratio of 0.51 [BDK08]. The computational domain
used in the study is partitioned into a total of 24 blocks and 516, 432 cells are used in
the computational grid (303, 772 cells for the rotor and 212, 660 cells for the stator).

4.8. Memory and time requirement discussion
Since TRACE is now differentiated and the derivative algorithms are implemented,
the memory and time performance data can be measured. The results presented here
are the first results that were obtained without any optimization on the AD tools or
upon the differentiated TRACE code.
The results in Table 4.4 show that the process works but the time and memory

consumption costs are quite high. The column “primal TRACE” shows the data for
the unmodified TRACE version. The other two columns show the data for the Black
Box algorithm (Figure 3.1) and the Reverse Accumulation algorithm (Figure 3.2).
The Black Box algorithm has to create a new tape for every G iteration, therefore the
displayed time is the sum of the recording and the evaluation time of the tape. For
the Reverse Accumulation algorithm the tape is recorded once and evaluated several
times.
The required time for the taping of dco/C++ is already high, the full recording

and evaluation of the tape is 28 times the factor of a primal simulation. If only the
recording time is taken in consideration, then the Reverse Accumulation algorithm
has a factor of 6.5 which is not sufficient. If the primal simulation takes 1 day, then
the adjoint computation will take one week. The same is true for the memory. The
factor with respect to the primal simulation is 74 which is, in this case unacceptable.
The time and memory measurements for ADOL-C are still higher than for dco/C++,

which indicates that ADOL-C’s development focus is geared towards academic ap-
plications and not large scale applications.
These first results do not look very promising, but that is not unusual when the

software is differentiated in a black box fashion. Therefore, the following chapters will
discuss how the time and memory requirements of the application can be improved.
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The previous chapter shows how an application can be differentiated with AD. Until
now no assumptions about the structure of the software have been made or exploited.
The black box approach from chapter 3 yields derivatives that have two properties.
They are consistent and nearly maintenance free. The consistency property is derived
from the differentiation of the entire code base with AD while performing no sim-
plification. The maintenance free property can not be guaranteed but the proposed
framework from chapter 3 minimizes the effort.
The drawback of the black box approach is that the requirements for memory and

computation time are not optimal. This chapter will introduce techniques that can
be used to reduce the memory and/or computation time.
In order to know where most of the memory and computation time are used the

program needs to be analyzed. The analysis is done with the techniques of AD in
order to gather memory and time metrics for AD in an automated fashion. The
method for the analysis is built on the ideas of Lotz [LNM16, Lot16], modified such
that it works with arbitrarily large cases. The analysis will show regions in the code
that consume the greatest amount of resources, these hot spots need to be treated
to reduce the recourse requirements. How this is done depends strongly on the code
producing the hot spots. It is therefore hard to give general guidelines.
Two general approaches can be identified. The first is called checkpointing and

defines an intrusive approach, where a special function is written for the reverse
evaluation of the hot spot. This function can make several assumptions about the
dependencies and apply simplifications in the derivative computations. Because this
approach changes the derivative computations, the derivative results will change.
If the assumptions are correct, then the error will be small. If not, the derivative
information will be wrong. An example for such a case is an iterative solution process.
If the process is treated as a black box then all steps in the iteration are recorded
by AD. A first improvement could be the treatment of the iteration process with
the Black Box method from Chapter 3. Only the state of the iteration needs to
be recorded, or certain steps can be recomputed. This approach still yields exact
derivative results. A second improvement could be implemented using the Reverse
Accumulation method from Chapter 3, where only the last state needs to be recorded
and the derivatives are computed based on the solution of the iterative process. This
approach simplifies the derivative computation and if the assumptions for the Reverse
Accumulation method are not fulfilled for this iteration then the derivatives can be
inconsistent. It is always possible to judge these assumptions, because the black box
solution is still available, yielding correct results. A drawback is, that an intrusive
approach requires a special implementation which needs to be adapted each time the
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primal code changes. The intrusive approach breaks therefore the consistency and
maintenance free properties.

The second approach is called preaccumulation and is non intrusive. Here the
storage of the information for the derivative information is optimized to minimize
the required memory. The consistency property of the solution is not broken as
this method does not change derivative information, however a certain degree of
maintenance might be required. This are most of the time variable lists describing
the input and output of a code section.
The two described techniques are presented, and analyzed for their time consump-

tion and how the change affects the memory usage. How both techniques are imple-
mented is shown in small examples and the important aspects for different taping
strategies are discussed. A special variant of the checkpointing techniques presented
for TRACE, called “block checkpointing”, uses the structure of TRACE in order to
reduce the memory requirements in a consistent way.

5.1. Call graphs
In order to be able to define for which parts of the program time and memory are
measured, some basic notions about the program structure are required. Usually
every numerical program consists of several functions. These functions can be sep-
arated into those that perform operations on data structures and those that drive
the algorithms and steer the control flow. The second set of functions generally calls
the first set, yielding a natural dependency that is represented as a call graph. The
smallest unit in such a graph is a simple function call. This is defined as an evaluation
node:

Definition 5.1 (Evaluation Node)
An evaluation node consists of the triplet (x, y, F ) were x ∈ Rn are the in-
put variables of the node, y ∈ Rm are the output variables of the node and
F : Rn → Rm is a function that transforms input x into output y. This can be
written as

y = F (x) .

The definition of the evaluation node is the definition of a mathematical function
with a focused view on input and output variables.
If the function from the lighthouse example in Section 2.3 is called, then the eval-

uation node L = ((v, w, γ, t), (y1, y2), lighthouse) would look like:

v w γ t

lighthouse
y1 y2

The first row displays the input variables, the second row the function name and the
third row the output variables. A call graph is a collection of multiple evaluation
nodes connected to one another. The output variables of one node can be the input
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∗
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Figure 5.1.: Call graph for the lighthouse example.

variables of a different node. For the definition of a call graph a small example is
introduced first. Algorithm 2.6 for the lighthouse example on page 27 is interpreted
as a call graph in Figure 5.1. Each statement is interpreted as a function call and
displayed as an evaluation node. The input variables are represented as rectangles
and the output variables as circles. The dependencies between the nodes are marked
with arrows. The definition of a call graph is now:

Definition 5.2 (Call graph)
A call graph consists of a1, . . . , ap input vectors with ai ∈ Rni , ni ∈ N for all
i = 1 . . . p and a set of evaluation nodes N = {N1, . . . Nl} with l ∈ N. The input
xi ∈ Rni of the evaluation node Ni for i = 1 . . . l is a set which can consist of
the input vectors a1, . . . , ap and parts of the output vectors yj ∈ Rmj from the
nodes Nj with j = 1 . . . i− 1.
The output vectors c1, . . . , cq are defined as a subset of the output vectors

from the evaluation nodes, i.e. ∀i = 1 . . . q ∃ j ∈ N s.t. ci = yj holds.

Remark 5.3 (Directed Acyclic Graph (DAG))
The definition of a call graph is a specialization of a directed acyclic graph [TS92].
Each function represents a node in the graph. The inputs and outputs define the
edges of the graph. Each output is the start of an edge and each input defines
the end of an edge which yields the directed graph. Because each evaluation
node Ni depends only upon the outputs of nodes with smaller indices, no edge
can create a cycle in the graph.

One important aspect is that circular dependencies are not allowed in the call
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graph definition. When a program is viewed from an AD perspective all loops are
considered to terminate after a finite number of steps. The loops are unrolled in the
graph representation.

The connection between the evaluation nodes and the call graph is such that a call
graph is a collection of multiple evaluation nodes. The reverse is also true. Each
call graph can be interpreted as an evaluation node. The inputs and outputs of
the call graph are the inputs and outputs of the evaluation node, respectively. The
algorithm that the evaluation nodes in the call graph represent is the function of the
evaluation node. This view on a call graph is a very important point. It enables an
AD developer to look at different levels of granularity. The whole software can be
seen as one global evaluation node corresponding to the black box approach proposed
in Chapter 4. This global evaluation node can be refined into a call graph comprised
of top level calls in the software. Figure 4.3 offers an example of this for the TRACE
code. This refinement can be repeated until the statement level of the software is
reached. If this is done for the whole software the call graph becomes too huge and
it is hard to extract meaningful information from the graph. Usually only single
evaluation nodes are extracted from a call graph and then only the extracted node
is refined.
The lighthouse evaluation node and the call graph for the lighthouse node show

this principle quite clearly. A second insight that can be gained from this example, is
that each algorithm is also a call graph. The algorithm lacks the nice visual features
that are usually associated with a graph, but the representation of the input and
output variables are most often much more intuitive. Algorithms and call graphs are
used interchangeably in the rest of the thesis.

5.2. Definitions for time and memory measurements
The next sections will examine how these nodes can be handled with special tech-
niques. In order to examine and compare these techniques, the performance pa-
rameters of the evaluation nodes need to be identified and defined. The parameters
that describe the memory and time consumption of an evaluation node are implic-
itly defined in Chapter 2 and consist of the total number of statements ηs, the total
number of active arguments ηa (from all statements), the total number of constant
arguments ηc and the total number of passive arguments ηp. The relations between
these variables depends upon the evaluation node but

ηa > ηs � ηc ≥ ηp

should hold. Each recorded statement has one or more arguments hence the total
number of active arguments ηa is greater that the number of statements ηs. Only
a few statements contain constant values like 4.0 and therefore ηc is much smaller.
In numerical applications the number of passive variables ηp should be low. The
memory for the taping process can be expressed as an action that is performed on
an evaluation node (x, y, F ).
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Definition 5.4 (MEM{act})
The memory required by the action act that is performed on an object ζ, is
defined by the symbol

MEM{act(ζ)}

and expressed in bytes.

Remark 5.5 (Object ζ)
The term “object” in the above definition is intentionally not specified in detail.
Each action can define on which objects it can be evaluated. In the context of
the thesis the “objects” will be usually functions or structures.

The action of recording a tape is simply denoted as the verb tape and with the
variables from above the memory can be expressed in general terms as

MEM{tape(F )} =byte{statement} ∗ ηs + byte{argument} ∗ ηa
+ byte{constant} ∗ ηc + byte{passive} ∗ ηp .

(5.1)

The amount of memory required for each statement, argument, constant and passive
entry is dependent on the AD tool and the implementation chosen for the AD tool.
Memory requirements can vary quite strongly and can be seen in the implementations
developed in Chapter 6. The four presented techniques, are summarized in Table 6.2
on page 173. The byte values in the table lead to four different memory requirements:

Jacobi: MEM{tapeJac(F )} =ηs + 12 ∗ ηa
Jacobi index reuse: MEM{tapeJacInd(F )} =5 ∗ ηs + 12 ∗ ηa

Primal value: MEM{tapePrim(F )} =16 ∗ ηs + 4 ∗ ηa + 8 ∗ ηc + 16 ∗ ηp
Primal value
index reuse: MEM{tapePrimInd(F )} =20 ∗ ηs + 4 ∗ ηa + 8 ∗ ηc + 20 ∗ ηp .

The memory denoted by the tape action is accessed in a sequential manner and can
be stored in sequential access memory (SAM).
The time for the taping process is the next critical quantity and is expressed with

the same symbol as in [GW00].

Definition 5.6 (TIME{act})
The time required by the action act that is performed on an object ζ, is defined
by the symbol

TIME{act(ζ)}

and expressed in seconds.

It is difficult to express the required time, that is taken by the action tape and is
not investigated here. Griewank’s book [GW00] and the papers [Gri93, Gri09] make a
first approach on the topic. The author of this thesis made also a first step [SAG16] to
further refine the time approximation of Griewank by performing measurements for

97



5. Memory and time reduction techniques

the parameters that Griewank used in his analysis. In this thesis only a simple model
for the required time is assumed. The time of the taping is only correlated to the
memory bandwidth memspeed of the machine and therefore the general assumption

TIME{tape(F )} ≥ MEM{tape(F )}
memspeed

(5.2)

should always be true and gives a lower bound for the time of the taping process.
The action for the reverse evaluation process is reverse and the memory that is

required by this action can be expressed in general terms as

MEM{reverse(F )} = byte{double} ∗ ηi +MEM{tape(F )} . (5.3)

The total number of indices ηi depends on the indexing scheme used. For tapes that
reuse indices the number is usually quite small and it holds ηs � ηi. For all other
tapes the total number of indices is equal to the number of total statements: ηs ≡ ηi.
For the four techniques the specific numbers are:

MEM{reverseJac(F )} =8 ∗ ηs +MEM{tapeJac(F )}
MEM{reverseJacInd(F )} =8 ∗ ηi +MEM{tapeJacInd(F )}
MEM{reversePrim(F )} =8 ∗ ηs +MEM{tapePrim(F )}

MEM{reversePrimInd(F )} =16 ∗ ηi +MEM{tapePrimInd(F )} .

The additional memory for the reversal action is accessed randomly and can be
denoted as random access memory (RAM). The advantage of tapes that reuse indices
can now be seen. They require more memory during the tape action but require less
during the reverse action. Because the random access memory is smaller, the chance
for cache misses is reduced and the overall process should be faster. The time for the
reversal action is written in the same fashion as the record action. That is

TIME{reverse(F )} ≥ MEM{reverse(F )}
memspeed

.

From the stated relations one could deduce that the time for the reverse interpretation
is higher than the time for the recording, but usually the exact opposite is the case.
The reason is, that in (5.2) the memory movements and computations of the primal
application have been neglected.
The important result from the discussion is, that the time for the tape and reverse

action are directly connected to the amount of memory that both actions generate
and use. Everything that reduces the required amount of memory reduces the time
required for both actions.

5.3. Hotspot analysis for Algorithmic Differentiation
Parameters defining the memory and time for an evaluation node need to be available
for every function. If this is done by hand, the process is time consuming and prone to
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errors. This makes it necessary to automate the process of locating resource intensive
hot spots.
A direct analysis of the source code is difficult and requires sophisticated software

to perform the analysis. This software would need to be extended to incorporate
the overhead and data for AD. As such software is not available, the implementation
techniques of AD are used to gather data for the analysis.
The original idea of an analysis tape is implemented in dco/C++ [LLN16]. In

order to apply it to large cases the data layout and file layout need to be changed to
give reasonable runtimes. The presented implementation has only a slight overhead
in memory and runtime. It can therefore be used to analyze arbitrary large cases.
The proper tracking of output variables, which is not implemented in the dco/C++
version, is developed in this chapter and a novel addition to this technique.
For the analysis type the operator overloading technique is used. Section 2.6 con-

tains a short introduction to that approach. A new type AReal (Analysis Real) is
created with the signature:
structure AReal { // Analysis Real
double p;
Data data;

};

The member Data will contain additional items used for the analysis. The type AReal
requires an implementation for the mathematical functions sin, cos, etc. and the
binary operators ∗, +, etc. Before these functions can be implemented, a definition
is needed for the required data.

For an evaluation node F this is the number of input variables, the number of
output variables and the required memory of the tape. The memory of the tape can
be described with the counts ηs, ηa, ηc and ηp from the previous section. The base
implementation will address the gathering of these variables. How the number of in-
put and output variables are detected will be discussed after the base implementation
is finished.
This leaves two requirements for the online analysis

• For each function the data must be gathered

• The counts for ηs, ηa, ηc and ηp are needed

The first requirement is handled such that each function calls a function funcEnter
immediately after the function is entered and calls a function funcLeave directly
before it leaves the function. This can be done by using the technique function
instrumentation which can be enabled in the gcc compiler with the flag -finstrument-
functions. This will create the calls to funcEnter and funcLeave automatically. The
implementation for the online analysis is shown in Figure 5.2. The algorithm creates
an entry on the stack for each function used while the AReal type is active and
gathers the information. When the function is finished the stack entry is removed
and the data can be processed. The analysis will be done in a separate tool, therefore
the data is written to a file.
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void funcEnter() {
tape.funcStack.push(new FuncData());

}
void funcLeave() {
FuncData data = tape.funcStack.top();
writeFuncData(funcName, data);

tape.funcStack.pop();
if(!tape.funcStack.empty()) {
tape.funcStack.top().add(data);

}
}

Figure 5.2.: Handling of the function scope for the analysis tape.

The add call on the parent function is currently not very intuitive but will become
clear after the implementation of the overloaded functions.

The overloaded function implementations for the AReal type will access the top
element of the stack and increase the counts for the appropriate variables. Therefore
the definition of FuncData contains an entry for all four counters. The implemen-
tation for the overloaded functions is done exemplary for the multiplication and the
sinus function in Figure 5.3. This will ensure that the correct counts for all counters
are available and the execution of the program is still the same. This implementation
adds an “active” member to the AReal structure. The member is used to track which
variables are considered input variables. Inactive variables increase the statement’s
passive variable count. It is also used to skip the update for statements that have no
active variables.
The implementation will only record the counts for the current function that is

at the top of the stack. Because the parent function needs the same updates in or-
der to have the full counts available and not only the counts that are local to the
parent, a loop over all stack elements is be required. Since, each element receives
the same update the overhead from this approach can be substantial. A more effi-
cient implementation can be reached if the counts for the variables are added to the
parent function when the child function is finished. The add function in Figure 5.2
demonstrates this.
These definitions yield a good overview of the involved functions and the basic

setup of the analysis type. Information on the call graph, input and output variables
are still missing. These additions are discussed in the following sections.

5.3.1. Efficient data layout

The data structure for the call graph needs to be designed in such a way that it
represents the function hierarchy nicely and is efficient for reading and writing the
data. Call graphs are represented in the dot [GKN06] format or other formats like
GML [Him97], GXL [WKR02], etc.. These formats are quite verbose so the focus is
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struct FuncData {
size_t statements;
size_t arguments;
size_t constants;
size_t passives;

};

AReal operator* (const AReal& a, const AReal& b) {
AReal c;
c.p = a.p * b.p;
c.setActive(a.isActive() || b.isActive());

if(c.isActive()) {
tape.functionStack.top().statements += 1;
tape.functionStack.top().arguments += 2;
if(!a.isActive()) {tape.functionStack.top().passives += 1;}
if(!b.isActive()) {tape.functionStack.top().passives += 1;}

}
}

AReal operator* (const AReal& a, const double& b) {
AReal c;
c.p = a.p * b;
c.setActive(a.isActive());

if(c.isActive()) {
tape.functionStack.top().statements += 1;
tape.functionStack.top().arguments += 2;
if(!a.isActive()) {tape.functionStack.top().passives += 1;}
tape.functionStack.top().constants += 1;

}
}

AReal sin(const AReal& a) {
AReal c;
c.p = sin(c.p);
c.setActive(a.isActive());

if(c.isActive()) {
tape.functionStack.top().statements += 1;
tape.functionStack.top().arguments += 1;
if(!a.isActive()) {tape.functionStack.top().passives += 1;}

}
}

Figure 5.3.: Implementation of the overloaded functions for the AReal type.
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on the trivial graph format (TGF) [RT15, Wik16] for the base of the data layout.
(See the definition and example in Appendix B). File size is one important aspect
when dealing with call graphs from fully featured simulation software. They can lead
to graphs that contain millions of nodes, this makes verbose formats inappropriate.
It is also problematic, when the graph data is stored in the RAM of the computer.
All the information should be written to the disk as soon as possible.

The two required data items for each function are the FuncData objects and the
edge information for the call graph. FuncData objects can be written after the
function is finished. The edge information is available when a function is called. The
usual TGF format requires that the edge information be written after all nodes are
written to the file. This requires the storage of all edges until the end of the program.
In order to avoid this overhead, the edge information is written directly to a separate
file.

The handling of node data is more involved. The id for each node will be an
integer, that is generated for each FuncData object. The data for each node is ready
when the funcLeave method is called, which means that the data of all the nested
functions are ready before the parent’s function data. The TGF format does not
enforce any order upon the nodes, but the human preference is an ordered set. In
order to achieve this, all FuncData objects would need to be stored in a vector. The
file of the node data could then be written at the end of the program. The nodes
would then be ordered by their id. This would counteract the axiom that the memory
consumption should be as minimal as possible.

If the node data is written directly after the FuncLeave method, then this overhead
is eliminated. Another important property of this approach can be used when a node
data file is read again. Each time a node is read the program can assume that all
child nodes have also been read. This property can be used to directly compute
additional information on the graph.

One additional file is added to the data layout. It contains information about the
number of nodes that have been written and the data layout for each node. This file
can be used by the reading program to speed up parsing of the files. The layout of
the files is shown in Figure 5.4. The extension for the node name file is optional but
the file size can be greatly reduced by this mechanism. It is also faster to generate
the function names just once and to store them in a lookup table. The prefix in the
specification should be the same for all files but it is not necessary. If the prefix is
the same, the analysis program only needs the property file and can determine the
other files by the name of the property file.

The data layout in Figure 5.4 can be written in binary form. This speeds up the
reading and writing of files and reduces the required amount of memory. A further
step for the data size reduction is a direct compression of the data. The lz4 algorithm
[Col16] is used here.
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1 <prefix>_nodes.tgf
2
3 # Comment lines start with #
4 <node_id> <name_id> <children> <data1> <data2> ... <dataN>
5 ...
6
7 # - node_id indices are created on function enter events
8 # - nodes are written on function leave events
9 # - Each child node is written before its parent

10 # - node_id starts with the 0 index => node_id \in [0, \infinity)
11 # - name_id is a name_id from names.tgf
12 # - ’children’ gives the number of child functions in the graph
13 # - The number of data items is the same for each node
14 # - The number of data items has to correspond with the entry
15 # ’dataItems’ in info.prop
16 # - Each line contains the information for one node
17
18 <prefix>_edges.tgf
19
20 # Comment lines start with #
21 <parent_id> <child_id>
22 ...
23
24 # - parent_id and child_id are node_id indices from nodes.tgf
25 # - Each line contains the information for one edge
26
27 <prefix>_names.tgf
28
29 # Comment lines start with #
30 <name_id> <name>
31 ...
32
33 # - name_id starts with the 0 index => name_id \in [0, \infinity)
34 # - name_id are ordered in ascending order
35 # - Each line contains the information for one name
36
37 <prefix>.prop
38
39 # Default Java property format
40 nodes=<number of nodes>
41 dataItems=<number of data items per node>
42 dataNames=<list of data names>
43 # e.g. dataNames=Input, Output, Statements, Arguments
44
45 # - The properties "nodes", "dataItems" and "dataNames" are mandatory
46 # - The number of items in "dataNames" and the number in "dataItems"

have to be the same

Figure 5.4.: Data layout for the AReal output containing the call graph of the pro-
gram with additional AD specific information.
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5.3.2. Variable tracking

The tracking of input and output variables is not required for the computation of the
tape size. The tape size requires only the counts ηs, ηa, ηc and ηp. The correct input
and output counts however, need to be known when a special handling for the node
is applied. If for example the input values need to be stored for the special handling,
then the number of input variables matter.
The tracking of input variables is simple and has already been implemented in the

instrumentation tape of dco/C++. If linear increasing indices are assumed for the
AReal type (see Section 2.6), then each function can store the current global index.
This index is called the function boundary index. All variables with a smaller index
have been created before the function call and are considered inputs of the function.
This is illustrated here:
AReal func(const AReal& a) {
AReal c = a * a; // Index of c is 1001, a is an input
return c * c + a; // a is still an input, c is no input

}

...
AReal a = ...; // Index of a is 1000
AReal b = func(a); // Function boundary index is 1000
...

The variable a can be distinguished as an input because the index is smaller or equal
to the function boundary index. Variable c is no input variable because the index
is larger than the function boundary index. If a variable is used twice it would be
counted as two input variables. The dco/C++ implementation adds the information
to the AReal type which function used the variable last. This is the node index from
the data layout definition generated for FuncData objects, calling it function index in
order to avoid confusion with the index of the AReal variables. If the function index
in the AReal data object is bigger or equal to the current function index, the variable
has already been counted as an input. This approach yields correct results but has
the drawback that arguments of the functions have to be modified. The mutable
keyword for the corresponding member of the AReal can solve this. It prevents the
compiler from putting any AReal in the constant memory section of the program
and the member can always be modified even if the parent structure is marked as
constant. The counting of the input variables can then be handled like:
void countInput(const AReal& a, FuncData& data) {
if(a.index <= data.functionBoundaryIndex) { // a was created before the

function call
if(a.funcId < data.id) { // a was not counted already as an input
a.funcId = data.id; // mutable member
data.inputs += 1;

}
}

}
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struct FuncData {
...
int functionBoundaryIndex;
int inputCount;
int outputCount;
...

void indexCreated(const int index) {
outputCount += 1;

}

void indexReleased(const int index) {
if(index >= functionBoundaryIndex) {
outputCount -= 1;

}
}

};

Figure 5.5.: Output handling for the analysis tape. The count is updated each time
an AReal is created or deleted.

This function needs to be called for every entry on the function stack as the input
count is not additive.
The count of the output variables follows the same principle. Each statement cre-

ates a new index and variable. These variables are potential outputs. The distinction
between temporary variables and output variables can be made by the deleted vari-
ables. Every deleted variable is a temporary variable. The destructor for the AReal
needs to inform the tape that the variable is freed. The FuncData structure is ex-
tended by an int that counts the number of created variables in the function. When
a variable is created, the count is increased by one and each time a variable is deleted
decreased by one. When the function finishes, the count will contain the number of
output variables of the function.
The functions for the output handling are described in Figure 5.5. The logic in

these functions is very easy to understand and will generate the correct number of
outputs. It is now mandatory to call the counting functions for all possibilities where
an index can be generated, deleted or overwritten. For a structure in C++ this can
be the constructor, the destructor and the assignment operators =, +=, etc..
If the methods in Figure 5.5 are called for every function on the stack the number

of outputs is correct but the overhead will be quite large. Instead the count of
output variables can be used to update the parent function after the child function is
finished. All variables generated in the child function will be handled the same way
in the parent function. This is the case, because the function boundary of the parent
is always smaller than the child’s. The output count of both functions receive the
same changes, they can can be gathered in the child and added to the parent after
the child has been finished. The implementation in Figure 5.5 is adapted to reflect
this reasoning in Figure 5.6.
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struct FuncData {
...
FuncData* parent;
...

void indexReleased(const int index) {
if(index >= functionBoundaryIndex) {
outputCount -= 1;

} else if(null != parent) {
parent->indexReleased(index);

}
}

void add(const FuncData& childData) {
this->outputCount += childData.outputCount;

}
};

Figure 5.6.: Output handling for the analysis tape, which improves the speed by
taking advantage of the child parent connection. All variables which are
handled in the child do not need to be handled in the parent, they are
added to the parent after the child finishes.

The AReal type can track now the performance parameters for each function and
counts the number of input and output variables. Every data set for all functions
can be written directly after each function finishes. This allows for minimal memory
consumption, which is reflected in the designed data layout. It contains only the
necessary information and can be written in binary form.

5.4. Checkpointing

Let N be an evaluation node and F : Rn → Rm the associated function. The graph
containing N is differentiated with AD and the function F is assumed to need to be
treated in a special way. This can have several reasons. F may represent a call to
a library function and the AD type can not be used in the library. It can also be
a function for which the analytic derivative is known and the direct computation of
the analytic derivative is more efficient than the computation with AD (e.g. linear
system solvers). It is also possible that F is identified as a hot spot and requires a
large amount of memory when a tape is recorded. One possible treatment in such a
case is that F is not recorded directly but reevaluated during the reverse sweep when
memory from the tape has already been released.

First, it will be analyzed how much memory is required by cutting out F from
the tape and the possible run time drawbacks. Then a closer look on the pure AD
implementation is taken.
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The reverse procedure for F after Theorem 2.13 is

x̄ +=dF

dx

T

ȳ

ȳ =0 .

The update formulation is chosen here because F can be considered an elemental
operation after Section 2.4. In order to evaluate the equation by hand the primal x is
needed and the means to access the adjoints of x and y which are respectively x̄ and
ȳ. The default reverse implementations use integers for this. The memory footprint
for a function checkpoint consists of n double values, n + m integers, the function
that is required for the reverse evaluation and the overhead for the external function
denoted by byte{extFunc}. The full memory is then

MEM{check(F )} =byte{double} · n+ byte{int} · (n+m) + byte{pointer}
+ byte{extFunc} .

This memory is the maximum amount of memory that AD needs for a function
checkpoint.
Therefore, it is not free to store an external function on the tape and the required

memory needs to be taken into account when the benefits of external functions are
evaluated. The memory can increase when, for the evaluation of F , additional data
is required. It is possible to leave data in place that is generated by F in order to
use the data in the reverse model of F . These are details of implementation that can
not be considered in a general framework.
The memory of the external function can be reduced if certain conditions apply.

If the output vector y is not overwritten after F is evaluated then the indices of y do
not need to be stored. This yields

MEM{checkno_y(F )} =byte{double} · n+ byte{index} · n+ byte{pointer}
+ byte{extFunc} .

The same considerations can be made for the input vector x, this yields

MEM{checkno_x(F )} = byte{index} ·m+ byte{pointer}+ byte{extFunc}
MEM{checkno_x_y(F )} = byte{pointer}+ byte{extFunc} .

As the primal values are also still available they do not need to be stored either.
With a good knowledge of the data flow in the program, these optimizations can be
done easily. Another point to consider is the index layout in the vectors x and y like
it is done in ADOL-C [WG09]. If the indices are linearly increasing then only the
indices of x1 and y1 need to be stored and all other indices can be computed. The
memory for the external function is then

MEM{checklin_ind(F )} =byte{double} · n+ byte{int}+ byte{int}
+ byte{pointer}+ byte{extFunc} .
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This is especially easy if the tape reuses the indices. In such a case, the indices are
not changed when a value is assigned. On the other hand, it is improper if a vector
does not have linear increasing indices. If the values are reassigned and become
linearly increasing, additional statements need to be created on the tape. For each
assignment at least 13 bytes are required. This is much more than the usual 4 bytes
for an integer.

5.4.1. General checkpoints

A general procedure for creating an external function is shown in Figure 5.7. The
implementation F_check assumes that there is a general implementation of F_prim
and F_adj available. F_prim evaluates the function F and F_adj implements the
reverse model. F_b_ext is called by the tape in the reverse sweep, extracts the data
from the data structure and calls F_adj. The other lines in the implementation are
straight forward. First a data structure is created and the data for x is stored. Then
the primal values of x are extracted into the vector x_p for the call to F_prim. After
that, y is made active and the generated indices are stored on the tape.
This algorithm covers the case when F has a more efficient adjoint implementation

or when F is a library function.

Remark 5.7 (Registration order of external functions and output arguments)
If the tape uses linear indexing and uses the optimization that the statements
do not store the index of the left hand side, then the registration of the external
function has to come after the creation of the indices for the vector y. These
tapes need to register a statement for each crated index and these statements
reset the adjoint values of y to zero when evaluated. Since the order in the reverse
AD mode is reversed, the activation has to be done before the registration of
the external function. If not, ȳ is set to zero directly before its use in the
reverse interpretation. Additionally these statements increase the memory of
the external function by at least 13 ∗ m bytes. This can be included in the
implementation of the external function such that this overhead is eliminated.

5.4.2. AD based checkpoints

The case when there is no specialized implementation for F is defined in Figure 5.8.
The algorithm is nearly the same as the one in Figure 5.7 but with two differences.
No longer the values from x are extracted into x_p and no special implementation
of F is called. The AD version of F is called instead with the tape set to passive.
This requires a tape implementation able to be set to passive. The advantage of this
approach is that no adjoint implementation of F is required. The evaluation of F
with the AD types however, takes longer. The reverse implementation of F_b_self
is shown in Figure 5.9. This algorithm seems quite involved but is actually quite
simple. Lines 5-8 perform a regular recording for F on the tape. The vector of x is
restored and a vector y for the output is created in lines 2 and 3. After F is recorded
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void F_prim(const double* x, const int n, double* y, const int m);
void F_adj(const double* x_p, const int* x_i, const int n,

const int& y_i, const int m);
void F_b_ext(const Data& data);

void F_check(const RReal* x, const int n, RReal* y, const int m) {
Data data;

data.store(x, n);
double* x_p = new double[n]; // primal values for x
getPrimal(x, x_p, n);

double* y_p = new double[m]; // primal values for y

F_prim(x_p, n, y_p, m);

setPrimal(y, y_p, m);
tape.makeActive(y, m);
data.storeIndices(y, m);

tape.createExternalFunction(data, F_b_ext);
}

Figure 5.7.: Algorithm for an external function creation when a primal and adjoint
implementation is available. No optimization for the memory consump-
tion are used in this algorithm because no assumptions about F and the
use of the data x and y can be done.
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void F_b_self(const Data& data);

void F_passive(const RReal* x, const int n, RReal* y, const int m) {
Data data;

data.store(x, n);

tape.setPassive();
F(x, n, y, m);
tape.setActive();

tape.makeActive(y, m);
data.storeIndices(y, m);

tape.createExternalFunction(data, F_b_self);
}

Figure 5.8.: Algorithm for an external function creation when no primal and adjoint
implementations are available. The algorithm disables the recording of
the tape in this case.

on the tape, the adjoint values of ȳ are set in the for loop on lines 12 to 15. During
the primal call of F , the output vector has been made active and the adjoint values
from this vector are set to the adjoints of the current y. The evaluation call on the
tape in line 17 interprets the recorded statements for F . The position argument
needs to be provided so the tape knows where the recording of F started. At the
end of the function the memory for the vectors and the tape is released. No special
handling for x is necessary. The restored vector x has the same indices as the vector
x which has been used in the primal evaluation. The tape uses these “old” indices
directly in the new recording and updates the corresponding adjoint values directly.
This optimization is quite advanced, but works for all index management strategies.
It is also possible to register x as an input and generate new indices. If so, an update
to the adjoints of x is required.

5.4.3. Checkpoints and managed index tapes

With linearly increasing indices the checkpoints will work without any issues. The
situation is more complicated if indices can be reused. Two cases have to be consid-
ered, namely, the old indices from x and the new indices used during the recording of
F . The indices of x might have been released after the function F was called. During
the reverse evaluation of the tape the use of the indices is also reversed. Without
loss of generality Figure 5.10 explains how the life cycle of x affects the index ix that
is associated with the value. At the point were x is released, the associated index ix
is also released and can be reused. At the same point during the reverse sweep the
same index ix is used for the representation of x̄. At the point were x is created the
value of x̄ is set to zero and the index ix is no longer associated with x̄. Thus, stored
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1 void F_b_self(const Data& data) {
2 RReal* x = data.restore<RReal>(n);
3 RReal* y = new RReal[m];
4
5 tape.setActive();
6 Position startPos = tape.getPosition();
7 F(x,n,y,m);
8 tape.setPassive();
9

10 int* adjIndices = data.restore<int>(m);
11
12 for(int i = 0; i < m ; ++i) {
13 y[i].setAdjoint(tape.getAdjoint(adjIndices[i]));
14 tape.setAdjoint(adjIndices[i], 0.0);
15 }
16
17 tape.evaluate(startPos);
18 tape.reset(startPos);
19
20 delete[] adjIndices;
21 delete[] y;
22 delete[] x;
23 }

Figure 5.9.: Algorithm for the reverse evaluation of an external function when no
primal and adjoint implementations are available. The implementation
assumes that linearly increasing indices are used. If indices are reused
then the index manager needs to be reset, too. See Figure 5.11 for details.
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forward eval. index ix of x
can be reused

ix bound to x
x created F called x released

reverse eval. index ix is used
for other variables

x̄ = 0
ix is no longer
used for x̄

Fb called ix is used for x̄

Figure 5.10.: Life cycle of an input variable for a function checkpoint and how the
associated index is used.

indices for x can be used without any modifications.

The indices that are used during the recording of F in the reverse sweep are
depicted in figure 5.11, which gives an exemplary life cycle for an index o ∈ N. The
important point is that o is free at the end of the recording and is in use while the
checkpoint for F is written. Then o can be assigned to an other value during the
recording of F . If this is the case, then o is associated to b̄ and c̄ during the reverse
evaluation of F . The correct result of the adjoint can no longer be guaranteed. There
are several solutions in order to avoid these cases.

The first solution involves storing the state of the index manager in the checkpoint.
This can increase the memory of the checkpoint by several megabytes. The second
solution is to create a temporary adjoint vector for the reverse evaluation of F . The
index o then has a different meaning in both adjoint vectors and resolves the clash
between the two variables. The second adjoint vector can also require additional
memory resources but it is only required during the reverse evaluation where some
memory might already be freed. It also requires the user to update the value x̄ from
the regular adjoint vector with the value from the temporary adjoint vector. The
third solution can store the maximum index imax that is used when the checkpoint
for F is created. During the reverse run the index manger can be configured to only
use indices greater than imax. The problem with this approach is the size of the
adjoint vector. It could be increased by a large amount.

The last two solutions are easy to implement and have only a minimal impact on
the memory for the external function.
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forward eval.
end of recoding
o is free and
available for use

o is assigned
to the variable b

checkpoint for
F is written

b is released and
o is also released

reverse eval.

b̄ = 0
o is no longer
used for b̄

checkpoint for F

o is used for b̄

forward eval. of F

o is assigned
to the variable c

c is released and
o is also released

reverse eval. of F

c̄ = 0 ≡ b̄ = 0
o is only

used for b̄ again

o is used
for c̄ and b̄

state of the index
manager at the end of the recording

is used here

Figure 5.11.: Life cycle of an index o in a function checkpoint. The index o is available
at the end of the recording and can be used when the tape is recorded
for F in the function checkpoint. This can lead to a state where o is
used for two adjoint variables.
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5.4.4. Global memory and time analysis of checkpoints
The memory layout for the process of external functions is pictured in Figure 5.12.
The recorded tape for F is cut out and added to the end. The question is now why
should this save memory? If multiple calls of F or other functions are checkpointed,
then the accumulated memory is not used but the maximum from all these functions.
This is the case, because the memory for each external function is deleted after the
function is evaluated in the reverse sweep. If the tape is evaluated only once, then
an additional optimization is possible. When the checkpoint for F is reached, the
tape can be reset to the point of the checkpoint. The freed memory can then be used
for the tape that is recorded for F . The memory layout for this is shown in Figure
5.13. If functions F1, . . . , Fj are in the tape at the positions p1, . . . , pj and F denotes
the complete process, then tape(F )|pi denotes the tape action only up to position pi.
The memory requirement without and with the global tape reset is

MEM{tapechecked(F )} =MEM{tape(F )}

−
j∑
i=1

MEM{tape(Fi)}+
j∑
i=1

MEM{check(Fi)}

+ max(MEM{tape(F1)}, . . . ,MEM{tape(Fj)})

and

MEM{tapechecked_reset(F )} =
max(

MEM{tape(F )} −
j∑
i=1

MEM{tape(Fi)}+
j∑
i=1

MEM{check(Fi)},

MEM{tape(F )|pj} −
j−1∑
i=1

MEM{tape(Fi)}+
j∑
i=1

MEM{check(Fi)}

+MEM{tape(Fj)},
. . . ,

MEM{tape(F )|p1}+MEM{check(F1)}+MEM{tape(F1)}
) .

The second formulation gives a good idea for the amount of memory that can be
saved. If just one function is checkpointed at the end of the tape, the reduction in
memory can be quite minimal or even increase due to the overhead for the checkpoint.
If the function is at the start of the tape, then the reduction in memory will be fully
seen. The evaluation time for this technique is another critical factor. The time for
the checkpoint is

TIME{check(F )} = TIME{passive(F )}+TIME{tape(F )}+2∗MEM{check(F )}
memspeed

.
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Step 1 (Before CP eval):
Memory program

Memory F

external function
for F

Step 2 (F recorded):

Step 3 (After CP eval):

Figure 5.12.: Memory layout for function checkpoints with no global tape reset. Step
1 shows the memory before the external function is called. Step 2 shows
the memory after F is recorded in the external function. Step 3 Shows
the memory after the external function is evaluated.

Step 1 (Before CP eval):
Memory program

Memory F

external function
for F

Step 2 (Release of tape):

Step 3 (F recorded):

Step 4 (After CP eval):

Figure 5.13.: Memory layout for function checkpoints with a global tape reset. Step
1 shows the memory before the external function is called. In step 2 the
memory is reset to the function checkpoint. Step 3 shows the memory
after F is recorded in the external function. Step 4 Shows the memory
after the external function is evaluated.

If F is not checkpointed then TIME{tape(F )} would be the only term that is seen.
Checkpointing introduces the time for the store and restore of the data and the
time for the passive evaluation of F . Because there is nothing written to the tape,
TIME{passive(F )} < TIME{tape(F )} holds. But if F represents a large portion
of the program then the run time is increased by two.

5.4.5. Loop checkpointing

Loop checkpointing is a special kind of checkpointing. It assumes that the body of
the loop is a function F , that performs an update on some variables. The algorithm
looks like:
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while(!converged) {
yNext = F(yCur);
yCur = yNext;

}

If the loop is taped, then F is recorded several times and can lead to a huge use of
memory. Instead the state yCur can be stored in every iteration and used to reevalu-
ate the function F when required. It is then no longer necessary to store the tape for
the loop, instead the memory for the checkpoints is required. The algorithm could
then look like:
for(int i = 0; i < N; ++i) {
tape.storeState(yCur);
yNext = F(yCur);
yCur = yNext;

}

for(int i = N - 1; i >= 0; --i) {
tape.restoreState(yCur);

// record tape for F and calculate the derivative
}

If the memory consumption of a checkpoint is large or N is big, then the memory of
the system (RAM and disk space) might not be sufficient. In this case memory can
be traded with time when a checkpoint is not used in every iteration. A checkpoint
can be created e.g. every tenth iteration and the nine steps in between where the
checkpoints are missing, can be recomputed on the fly. The optimal positions for a
given maximum number of checkpoints can be computed with the revolve algorithm
that Griewank and Walther present in [GW00]. It minimizes the required number of
recomputations for a fixed number of checkpoints.

5.5. Preaccumulation
Like checkpointing, the preaccumulation technique tries to reduce the memory of an
evaluation node. While the checkpointing technique cuts the evaluation node out of
the tape, the preaccumulation technique tries to reduce the memory representation
of the node. This is done by reducing the number of statements which are written
to the tape. Let (x, y, F ) be the triple from the evaluation node with F : Rn → Rm.
Then the reverse AD mode needs to compute

x̄ += dF

dx

T

ȳ .

The memory for the taping of F is defined in equation (5.1) and looks like

MEM{tape(F )} =byte{statement} ∗ ηs + byte{argument} ∗ ηa
+ byte{constant} ∗ ηc + byte{passive} ∗ ηp .
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1 ...
2
3 Position startPosition = tape.getPosition();
4 F(x, n, y, m);
5
6 double* jacobi = new double[m*n];
7 for(int j = 0; j < m; ++j) {
8 y[j].setAdjoint(1.0);
9 tape.evaluate(startPosition);

10
11 for(int i = 0; i < n; ++i) {
12 jacobi[i * m + j] = x[i].getAdjoint();
13 x[i].setAdjoint(0.0);
14 }
15 }
16
17 tape.reset(startPosition);
18 tape.makeActive(y,m);
19
20 Data data;
21 data.storeIndices(x, n);
22 data.storeIndices(y, n);
23 data.store(jacobi, m*n);
24
25 tape.createExternalFunction(data, preAccRev);
26
27 delete[] jacobi;
28
29 ...

Figure 5.14.: Accumulation of the Jacobi matrix for F .

If dF
dx is computed and stored m ∗ n ∗ byte{double} bytes of memory will be

used. In addition, the indices of x and y need to be stored requiring the use of
byte{index} ∗ (n + m) bytes of memory. (Remark: The introduced optimizations
for index storing from the function checkpointing section apply here, too.) The final
amount of memory for the Jacobi matrix will be

MEM{jac(F )} = m ∗ n ∗ byte{double}+ byte{index} ∗ (n+m) + byte{extFunc} .

There will be a gain in memory if MEM{jac(F )} < MEM{tape(F )}. This
equation holds if m ∗ n � ηs + ηa + ηp + ηc which means that F has few input and
output variables but is difficult to calculate and needs a lot of statements.
Before further memory optimizations are developed a general algorithm for the

accumulation of F is presented in Figure 5.14. The algorithm looks like the reverse
evaluation for function checkpoints in Figure 5.9. It has the distinction that the
algorithm does not know the seeding for ȳ. The accumulation happens in the forward
evaluation and not in the reverse interpretation. ȳ is seeded with the unit vectors
and the results are stored in the Jacobi matrix. The values of x̄ are reset to zero
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void preAccRev(const Data& data) {

int* x_i = data.restore<int>(n);
int* y_i = data.restore<int>(m);
double* jacobi = data.restore<double>(m*n);
double* y_bar = new double[m];

for(int j = 0; j < m; ++j) {
y_bar[j] = tape.getAdjoint(y_i[j]);
tape.setAdjoint(y_i[j], 0.0);

}

for(int i = 0; i < n; ++i) {
double& x_bar = tape.getAdjointRef(x_i[i]);

for(int j = 0; j < m; ++j) {
x_bar += jacobi[i*m+j] * y_bar[j];

}
}

delete[] y_bar;
delete[] jacobi;
delete[] y_i;
delete[] x_i;

}

Figure 5.15.: Reverse evaluation of a preaccumulated Jacobi matrix.

since the update += . . . is performed on these values. If this is not done, the
result would be the sum of all columns of the Jacobi matrix. ȳ is not set to zero
because this is performed by the tape in the reverse evaluation. After the full Jacobi
matrix is assembled, the recorded data for F is freed and the checkpoint for the
preaccumulation is stored. The activation of y after the reset of the tape is at first
not very intuitive. y should already be active as it is the output of F , but the tape is
reset to the state before F has been evaluated and therefore the output to y has never
occurred for the tape. This invalidates the indices and they have to be renewed.

The function preAccRev in Figure 5.15 performs the reverse interpretation of the
preaccumulated section. It consists of data unpacking and matrix vector multipli-
cations. Please note that ȳ is set to zero and x̄ is updated as required by the AD
theory. The weird access pattern of the Jacobi matrix in Figure 5.14 now makes
sense because the data layout is optimized for the reverse evaluation.

Creation time for the preaccumulation of the evaluation node is quite high. The
section of the tape for F is evaluated m times. Otherwise this section would be
evaluated just once. The time for the recording increases by m∗TIME{reverse(F )}

118



5.6. Block checkpoints

but the time for the reverse evaluation has probably decreased. The equations are

TIME{jac(F )} = TIME{record(F )}+m ∗ TIME{reverse(F )}

TIME{reverse_jac(F )} ≥ MEM{jac(F )}
memspeed

.

In the preAccRev method there are m ∗ n multiply-accumulate operations where the
reverse evaluation of the tape performs ηa multiply-accumulate operations. If the
assumption holds where it is memory efficient to perform a preaccumulation, then it
is faster to evaluate the checkpoint in the reverse sweep of the tape.
Further optimizations can be done for the Jacobi matrix. If dFdx is sparse, then this

sparsity pattern can be exploited. When this pattern is fixed and known beforehand,
the sparsity pattern can be stored once globally and reused several times. But if the
sparsity pattern is not known or can change because of branching statements, then
the sparsity pattern needs to be stored for every Jacobi separately. This can be a
coordinate list (COO) [BG08] which would require two indices for each entry or if
the matrix is stored in compressed sparse row (CSR) or in compressed sparse column
(CSC) [DGL89] order one index is required for each entry and one index is required
for the row or column. If one index is used this results in a value index pair. Such
a pair is used by the Jacobi tape to store the arguments of the statements. The
column index is known for each statement. This means that a sparse Jacobi matrix
in a compressed sparse row format can be stored directly on the Jacobi tape. The
procedure for this is shown in Figure 5.16. The non-zero elements of one row are
stored with the corresponding indices from x and the number of arguments is then
written. This eliminates the memory and the time overhead for the external function
call and is a very elegant way to include a sparse matrix in the reverse evaluation.

Remark 5.8 (Number of arguments for Jacobi tapes)
For Jacobi tapes the assumption can be made that there are no more than 256 or
128 arguments. This is to save memory. This assumption can be easily broken
by the preaccumulation technique.

Remark 5.9 (Preaccumulation on primal value tapes)
Primal value tapes store only one index per argument and need a handle function
to evaluate each statement. This prevents the preaccumulation technique from
being used here. The constant value storage of these tapes can be used to
store the Jacobi entries and special handle functions can be programmed for the
evaluation.
The memory reduction is not as good as for the Jacobi tape but is still signif-

icant.

5.6. Block checkpoints
Checkpointing can be applied to all functions and is described as a general technique.
For special structures the checkpointing can be used to optimize the memory con-
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void pushJacobiMatrix(const int* x_i, const int n, const int* y_i, const
int m, const double* jacobi) {

for(int j = 0; j < m; ++j) {
int nonzeros = 0;

for(int i = 0; i < n; ++i) {
if(jacobi[i*m+j] != 0.0 && x_i[i] != 0) {
tape.push(jacobi[i*m+j]);
tape.push(x_i[i]);
nonzeros += 1;

}
}

if(0 != nonzeros) {
tape.push(y_i[j]); // only needed for index reuse
tape.push(nonzeros);

}
}

}

Figure 5.16.: Push a Jacobi matrix on the tape that is preaccumulated.

sumption of the tape without increasing it’s run time. The structure of TRACE from
Figure 4.3 on page 58 shows that during the block evaluation no data is exchanged
between blocks. This can be used to optimize the memory required by the taping
and reverse evaluation of G. The regular AD algorithm for lines 6 to 12 in Figure 4.3
is shown in Figure 5.17. The _b methods represent the reverse drivers of the routines
and indicate which methods have to be taped. In order to perform this procedure,
the inputs y, x and w are registered on the tape and G is evaluated. Afterwards ynew
is registered as an output and the tape is evaluated. The resulting tape size is

MEM{tape(GFull)} =MEM{tape(updateSol)}+MEM{tape(doCommunication)}

+
nBlocks∑
i=1

MEM{tape(updateBlocki)} .

The memory of the communication and the solution update can be neglected in
contrast to the memory of the blocks. The procedure in Figure 5.17 can be optimized
to the one in Figure 5.18.

Remark 5.10 (Availability of ai and bi)
One could argue that the only change is that the block update is moved into
the adjoint loop and that this is not possible because the local values ai and the
communication values bi are not available in the communication and solution
update. These issues are valid and will be addressed later.

After the shift, the primal and reverse methods are directly next to each other.
The tape does not need to store the full procedure anymore. It can evaluate each
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primal and adjoint pair separately. The process for the evaluation of the algorithm
in Figure 5.18 is:

1. Register b1, . . . , bnBlocks, a1, . . . , anBlocks, y, x, w as inputs.

2. Tape doCommunication and updateSol.

3. Register ynew as an output and set the seeding on ȳnew.

4. Evaluate the tape and store the adjoints of b̄1, . . . , b̄nBlocks, ā1, . . . , ānBlocks, ȳ, x̄, w̄.

5. For each block i = 1 . . . nBlocks:
a) Register yi, x, w as inputs.
b) Tape updateBlocki.
c) Register ai and bi as outputs and set the seeding on āi and b̄i.
d) Evaluate the tape.
e) Store and update the adjoints of ȳ, x̄ and w̄

The complexity and management has increased a lot but the benefit is obvious when
the required memory is analyzed. The maximum memory is now

MEM{tape(GBlockCP )} =
max(MEM{tape(updateSol)}+MEM{tape(doCommunication)},

MEM{tape(updateBlock1)}, . . . ,MEM{tape(updateBlocknBlocks)}) .

The biggest block defines the memory requirement for G instead of the sum of all
blocks. This is an advantage if many blocks are being handled by the process. It
requires more knowledge of the data structure and new interface definitions are re-
quired. The full algorithm in Figure 5.17 requires the interfaces of y, x and w. In
the block algorithm in Figure 5.18 the additional interfaces of a1, . . . , anBlocks and
b1, . . . , bnBlocks have to be defined.

Due to the structural change in the algorithm, the values of a1, . . . , anBlocks and
b1, . . . , bnBlocks are not available. The values can be made available by computing
the block updates before the method Blocked_G is called. Since the block updates
are the most time consuming part, this will double the evaluation time.

A second option is to integrate the missing values in the checkpointing scheme.
If the values of a1, . . . , anBlocks and b1, . . . , bnBlocks are stored in intermediate check-
points, then these values can be restored and no extra computation is required.
If the intermediate checkpoint is used, then the computation time for Full_G and
Blocked_G are equivalent. Due to the advanced memory management the memory
for the tape is reduced by a significant amount. The technique is referred to as block
checkpoints in the TRACE code. It can be used for the Black Box and Reverse Accu-
mulation method but it is more appropriate for the Black Box algorithm, because the
tape needs to be recorded for every G. The Reverse Accumulation process records
the tape once and evaluates it multiple times.
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for i = 1 . . . nBlocks do
(ai, bi) = updateBlocki(yi, x, w)

end for
o = doCommunication(b1, . . . , bnBlocks, y, x, w)
ynew = updateSol(a1, . . . , anBlocks, o)

ȳnew = . . .
(ā1, . . . , ānBlocks, ō) += updateSol_b(a1, . . . , anBlocks, o) ∗ ȳnew
(b̄1, . . . , b̄nBlocks, ȳ, x̄, w̄) += doCommunication_b(b1, . . . , bnBlocks, y, x, w) ∗ ō
for i = nBlocks . . . 1 do

(ȳi, x̄, w̄) += updateBlock_bi(yi, x, w) ∗ (āi, b̄i)
end for

Figure 5.17.: AD differentiation of the conceptual structure of G in TRACE from
Figure 4.3. The _b methods represent the reverse drivers of the corre-
sponding methods. They represent the methods that need to be taped.

o = doCommunication(b1, . . . , bnBlocks, y, x, w)
ynew = updateSol(a1, . . . , anBlocks, o)
ȳnew = . . .
(ā1, . . . , ānBlocks, ō) += updateSol_b(a1, . . . , anBlocks, o) ∗ ȳnew
(b̄1, . . . , b̄nBlocks, ȳ, x̄, w̄) += doCommunication_b(b1, . . . , bnBlocks, y, x, w) ∗ ō

for i = 1 . . . nBlocks do
(ai, bi) = updateBlocki(yi, x, w)
(ȳi, x̄, w̄) += updateBlock_bi(yi, x, w) ∗ (āi, b̄i)

end for

Figure 5.18.: Optimized AD differentiation of the conceptual structure of G in
TRACE from Figure 4.3.
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5.7. Optimized memory and time requirement discussion

This chapter described techniques how a differentiated code can be analyzed for hot
spots and how these hot spots can be handled. An analysis of the TRACE code
yields 4 functions that benefit from function checkpoints:

• calcEulerFluxSides: Computation of the Euler fluxes for the finite volume
scheme.

• impmatrix: Setup of the matrix for the implicit solver.

• ilu_decomp: Incomplete LU factorization of the matrix from the implicit solver.

• subforward_backward: Forward and backward substitution of the incomplete
LU factorization.

For preaccumulation a total of 16 methods have been identified that benefit from
the technique. The most important are calcEulerFluxSides, impmatrix and phi. The
preaccumulation for calcEulerFluxSides and impmatrix is done for each step in the
loops over the elements.
The results from Table 4.4 in Chapter 4 on page 92 are extended by the preliminary

results for function checkpoints. The column “primal TRACE” shows the data for
the unmodified TRACE version. The other two columns show the data for the Black
Box algorithm and the Reverse Accumulation algorithm. The Black Box algorithm
creates a new tape for every G iteration, therefore the displayed time is the sum of the
recording and evaluation time of the tape. For the Reverse Accumulation algorithm
the tape is recorded once and evaluated several times, therefore only the evaluation
time is displayed.
Table 5.1 shows the preliminary results for function checkpoints (FC in the table).

If all 4 function checkpoints are enabled then the memory factor can be reduced from
74 to 35. While far from optimal, the technique demonstrates how the memory can
be reduced. The time increases drastically for function checkpoints. Since, the code
parts have to be evaluated with a passive tape and recorded in the reverse run. The
time for the Black Box algorithm is therefore nearly doubled from a time factor of 29
to 52. The Reverse Accumulation algorithm is influenced even more by the function
checkpoints. It contains now the recording of the function checkpoints and the time
factor increases from 7 to 38. This is unacceptable.
Function checkpoints with a passive tape are a good technique to reduce the re-

quired memory but the impact on the time is too vast in particular for Reverse
Accumulation.
Table 5.2 shows the preliminary results for preaccumulation (PA in the table). The

values have been taken on a different machine with a different version of the code,
therefore the baseline has changed. The memory for both methods is decreased by
a large factor if all functions are enabled for preaccumulation. It reduces from 60 to
35, a gain similar to that attained through function checkpoints.
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Table 5.1.: Time and memory measurements for the THD turbine. First unoptimized
results from the black box differentiation of TRACE, with dco/C++ for
function checkpoints.

primal TRACE Black Box Reverse Accumulation
Time in seconds 1.0
no FC 28.71 6.39
calcEulerFluxSides FC 31.19 12.20
impmatrix FC 35.13 17.92
ilu_decomp FC 35.27 14.68
subforward_backward FC
all FC 51.48 37.34
Memory in GB (Factor) 2.51
no FC 184.86 (74) 184.86 (74)
calcEulerFluxSides FC 136.22 (55) 150.89 (61)
impmatrix FC 134.37 (54) 163.28 (65)
ilu_decomp FC 167.88 (67) 180.20 (72)
subforward_backward FC 182.95 (73) 184.70 (74)
all FC 86.57 (35) 87.11 (35)

The time for the Black Box method increases by a large factor. This is expected
because the tape is evaluated for the preaccumulated parts several times. The time
for the Reverse Accumulation method decreases and goes from a factor of 9.4 to 5.5.
Preaccumulation is a good technique to reduce the memory and time consumption
of the Reverse Accumulation method.
The preaccumulation method looks promising because it can reduce the required

memory of the Reverse Accumulation method without increasing the required time,
but the memory factor is still too high for a productive use of the algorithm. The
AD tools need to be further analyzed as to whether the required memory is necessary
and if the time for the recording and evaluation can be improved. Further analysis
and times for the final implementation are shown in Chapter 7.
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Table 5.2.: Time and memory measurements for the THD turbine. First unoptimized
results from the black box differentiation of TRACE, with dco/C++ for
preaccumulation.

primal TRACE Black Box Reverse Accumulation
Time in seconds (Factor) 0.8 (1.0)
no PA 21.98 (27.5) 7.54 (9.4)
calcEulerFluxSides PA 26.52 (33.2) 5.88 (7.4)
impmatrix PA 59.96 (75.0) 6.48 (8.1)
phi PA 29.02 (36.3) 7.25 (9.1)
all 3 PA 70.18 (87.7) 4.72 (5.9)
all 16 PA 73.51 (91.8) 4.41 (5.5)
Memory in GB (Factor) 3.12 (1)
no PA 186.83 (59.9) 186.83 (59.9)
calcEulerFluxSides PA 142.03 (45.5) 142.03 (45.5)
impmatrix PA 159.31 (51.1) 159.31 (51.1)
phi PA 178.31 (57.2) 178.31 (57.2)
all 3 PA 113.02 (36.2) 113.02 (36.2)
all 16 PA 110.33 (35.4) 110.33 (35.4)
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Algorithmic Differentiation software

This chapter will focus on the analysis of different options for memory and time
optimization at the lowest level, namely the AD tools. For further optimizations
the global structure of the application would have to be altered, inconsistencies in
derivatives would have to be allowed, or AD tools would have to be enhanced. The
first two options however, do not fit with the framework of this thesis. Therefore, in
order to optimize further, the AD tools used will be analyzed.
This chapter will improve on the naive implementation from Chapter 2. The result-

ing implementation will be the primal value taping approach, known from ADOL-C.
A different approach is presented afterwards called Jacobi taping. Instead of record-
ing the primal values this approach records the Jacobi values. The indices associated
with the reverse type of both approaches will be examined and reuse strategies for
these indices are discussed. A further enhancement of the primal value taping and
Jacobi taping approach is provided by shifting the implementation view from an
operator level to a statement level. The efficient handling of constant and passive
values will also be analyzed, as well as the optimal handling of linear subexpressions.
The discussion of possible improvements will finish with the handling of reoccurring
terms in one statement.
These different optimizations and choices yield different ways how an AD tool

can be implemented. The possible options and their results will be compared to
those of currently available AD tools for C/C++. The new AD tool CoDiPack will
be introduced to allow for the implementation of all approaches discussed in this
chapter. The focus lies on a framework that can be used in an optimal way for large
scale industrial codes and HPC applications.

6.1. Analysis of basic software implementations
The naive implementation of the reverse AD mode is shown in Section 2.6.2. The
type RReal is introduced there with the structure:
struct RReal {
double p; // primal
int i; // index

}

The index i is used to access the corresponding bar value of each variable in the
program. The implementation overloads operators like operator * and mathematical
functions like sin. The naive implementation from Section 2.6.2 is
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RReal operator * (const RReal& a, const RReal& b) {
tape.push(a.p);
tape.push(b.p);
tape.push(a.i);
tape.push(b.i);

RReal c;
c.p = a.p * b.p;
c.i = ++tape.globalStatementCounter;

tape.push(c.i);
tape.push(MUL);

return c;
}

for the multiplication and
RReal sin(const RReal& a) {
tape.push(a.p);
tape.push(a.i);

RReal c;
c.p = sin(a.p);
c.i = ++tape.globalStatementCounter;

tape.push(c.i);
tape.push(SIN);

return c;
}

for the sinus. The identifiers MUL and SIN can either be function pointers or keys
for a lookup table. The reverse interpretation is then performed as:
void operator_mul_b(double* adjoint) {
int c_i = tape.pop<int>();
int b_i = tape.pop<int>();
int a_i = tape.pop<int>();
double b_p = tape.pop<double>();
double a_p = tape.pop<double>();

adjoint[a_i] += b_p * adjoint[c_i];
adjoint[i_b] += a_p * adjoint[c_i];
adjoint[c_i] = 0.0;

}

for the multiplication. The identifier is not popped in this function as it is used to
call the implementation and has already been popped.

The naive primal value taping needs to store two indices and two values for the
arguments of each binary operation, a pointer or lookup-table index, and the gen-
erated index for the left hand side (lhs). Indices are assumed to be 32-bit integers
and floating point values are assumed to be 64-bit long. The index for the lookup
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template<typename Number>
Number l2norm_I1(const Number* v1, const Number* v2, const size_t n) {
Number res = 0.0;
for(size_t i = 0; i < n; ++i) {
Number p1 = v1[i] * v1[i];
Number p2 = v2[i] * v2[i];
Number sum = p1 + p2;
res = res + sum;

}
res = sqrt(res);
res = res / (Number)n;

return res;
}

Figure 6.1.: Implementation of the L2-norm for AD tool comparison.

table is considered an 8-bit value based upon the assumption that there are no more
than 256 distinct operators. A unary operation requires one index and one value
less than a binary operation. The storage required for a binary operator is then
1 + 4 + 2 ∗ (4 + 8) = 29 bytes and for a unary operator 1 + 4 + (4 + 8) = 17 bytes.
To compare the results of this chapter an example function providing a very sim-

plistic algorithm that is easily differentiated will be introduced where all memory
and operation counts can be evaluated. The function calculates the L2-norm of a
two component vector. The implementation in Figure 6.1 resembles the theory in
Section 2.2 and has 4 binary operations inside of the loop as well as one binary and
one unary operation after the loop. For each call 4 ∗ 29 ∗ n+ 29 + 17 = 116 ∗ n+ 46
bytes of information are recorded on the tape for the naive primal value taping. The
implementation creates a new index for each assignment. These are 4 ∗ n + 2 in-
dices. Each new index increases the size of the adjoint vector by one and the method
requires additional memory of 4 ∗ 8 ∗ n+ 2 ∗ 8 bytes for the adjoint vector.

Without any comparison the memory and index creations are difficult to under-
stand. All values will be compared with those of the improved implementations.

6.2. Linear index management

An improvement can be done to the naive implementation. It can be observed that
the generated index for the left hand side is always increased by one before being
stored directly on the tape. Lines 7 and 9 in Figure 2.13 on page 36 show this con-
nection. In the reverse evaluation the last global index is used as the starting point
and decreased by one after each statement evaluation. This yields the same value
as the stored index for the left hand side and thereby the left hand side index does
not need to be stored any longer. This reduces the memory of a binary operator to
1 + 2 ∗ (4 + 8) = 25 bytes and of an unary operation to 1 + (4 + 8) = 13 bytes. This
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optimization will be used in the next improvements and is called linear index man-
agement or linear indexing. The technique has one drawback, in that the statements
and adjoint variables are now tightly coupled. Each statement corresponds to an
adjoint variable and therefore a statement needs to be recorded if a variable is reg-
istered as an input variable. This increases the memory slightly but for applications
that write millions of statements, the gain is significant.

6.3. Primal value recording

The naive version of primal value taping stores every input of each operation. If
a value is used in multiple statements, it is stored several times. If the value were
not to be stored upon it’s first usage, but rather at the point when it is originally
assigned, then the index of the left hand side value becomes the unique identifier
for each value. Therefore, the values can be stored in a vector under this unique
identifier, yielding a global vector where each primal value is recorded. This vector
can be used to access the primal values in the reverse evaluation of the operators.

The updated primal value scheme is called “primal value taping”. The implementa-
tions for the overloaded multiplication operator and the reverse evaluation are shown
in Figure 6.2. Fewer push operations lead to less memory. Nevertheless, the memory
access changes from a continuous access pattern to a random access pattern for the
primal values in the reverse implementation. This can have a performance impact if
the reverse evaluation is not memory bound.

A binary operation now requires 17 bytes of memory. 16 bytes less than it did
before, because the primal values for the input arguments are no longer stored, and
8 bytes more are necessary for the output value. The number of bytes for the unary
operation does not change and still requires 13 bytes of memory. This saves 4 bytes of
memory over the naive implementation as the linear index management is now used.
The memory now totals 4 ∗ 17 ∗ n + 17 + 13 = 68 ∗ n + 30 bytes for the l2norm_I1
example reducing the memory by 50 % with respect to the basic implementation.

Remark 6.1 (Computation optimizations)
Since the result of the operation is now stored, the implementation can use these
values to improve the computations in the reverse evaluation methods. E.g. the
squared root function needs for the computation of the Jacobi one over the square
root. Because the primal result is stored under the index c_i it can be used in
the computation, therefore the square root does not need to be computed again.
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RReal operator * (const RReal& a, const RReal& b) {
tape.push(a.i);
tape.push(b.i);

RReal c;
c.p = a.p * b.p;
c.i = ++tape.globalStatementCounter;

tape.primvalValues[c.i] = c.p; // store primal in global vector
tape.push(MUL);

return c;
}

void operator_mul_b(const double* primal, double* adjoint, const int c_i)
{

int b_i = tape.pop<int>();
int a_i = tape.pop<int>();

adjoint[a_i] += primal[b_i] * adjoint[c_i];
adjoint[b_i] += primal[a_i] * adjoint[c_i];
adjoint[c_i] = 0.0;

}

Figure 6.2.: Implementation of the primal value taping for the multiplication. The
primal values of the inputs are no longer stored. Instead the output value
is stored.
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6.4. Jacobi recording
Figure 2.3 on page 23 shows the reverse AD procedure and the equation for all
elemental operators, which is

v̄j +=∂φi
∂vj

(v0, . . . , vn+i−1)v̄n+i ∀j = 1 . . . (n+ i− 1)

v̄n+i =0 .

This equation needs to be evaluated for every statement that is called in the pro-
gram. The primal value taping stores the primal values, making the argument for
the equation available. The gradient ∂φ

∂v is computed during the reverse evaluation
and used to update the bar values.
The Jacobi taping takes a different approach. Instead of storing the primal values,

it directly computes the gradient ∂φ
∂v and stores it onto the tape, since all primal

values are available. Therefore, no primal values need to be restored during the
reverse evaluation, simplifying the management.
The reverse evaluation of the tape is simplified with this method. The stored

information consists of the Jacobi values for each argument, the corresponding index,
and one bit which indicates a binary or unary operation. Normal overloading does
not allow for more than two arguments, one bit is enough. The overloaded operators
for the multiplication and the overloaded function for the sinus are implemented in
Figure 6.3. The implementation for the tape evaluation covers all operators and
functions +, −, ∗, /, cos, sin, sqrt, . . . evaluating the full tape as opposed to one
operation. Figure 6.4 shows the implementation which uses the start and end index of
linear indexing as evaluation range. Since, the evaluation of the statements is done
in the reverse order, the end index is decremented until the start index has been
reached, as it is required by the reverse AD mode from Figure 2.3. The statements
in the loop retrieve the information from the tape and perform the adjoint update.
The layout of the pushes changes so that both kinds of operations can be handled
identically. The memory for a binary operation is now 2 ∗ (8 + 4) + 1

8 = 24 + 1
8 byte

and for an unary operation it is (8 + 4) + 1
8 = 12 + 1

8 byte.
Therefore the memory consumption is nearly the same as it is for the naive pri-

mal value taping. Only a small gain is achieved due to the lower amount of op-
tions for each operation, hence the Jacobi taping needs only two states. For the
naive primal value taping the assumption is made that no more than 256 distinct
elemental operations exist. The memory consumption for the l2norm_I1 is then
4∗ (24+ 1

8)∗n+24+ 1
8 +12+ 1

8 = 96∗n+36+ 1
2n+ 1

4 byte. The number of generated
indices stays the same.

Remark 6.2 (Number of operations in the Jacobi taping)
If the number of addition, multiplication and nonlinear operations are compared
for the primal value taping and the Jacobi taping, then the result is that the
Jacobi taping evaluates the same amount of operations except for the number of
multiplications. The multiplication count will be equal or higher for the Jacobi
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RReal operator * (const RReal& a, const RReal& b) {
tape.push(b.p); // dh/da = b
tape.push(a.i);
tape.push(a.p); // dh/db = a
tape.push(b.i);

RReal c;
c.p = a.p * b.p;
c.i = ++tape.globalStatementCounter;

tape.push(true);

return c;
}

RReal sin(const RReal& a) {
tape.push(cos(a.p)); // dh/da = cos(a)
tape.push(a.i);

RReal c;
c.p = sin(a.p);
c.i = ++tape.globalStatementCounter;

tape.push(false);

return c;
}

Figure 6.3.: Implementation of Jacobi taping for the multiplication and the sinus.
First the information for each argument is stored and then the informa-
tion for the return value is updated.

void Tape::eval(const int end, const int start) {
int cur = end;
while(cur > start) {
int c_i = cur;
--cur;
bool binary = pop<bool>();
int arg_i = pop<int>();
double arg_jac = pop<double>();
adjoint[arg_i] += arg_jac * adjonit[c_i];
if(binary) {

arg_i = pop<int>();
arg_jac = pop<double>();
adjoint[arg_i] += arg_jac * adjonit[c_i];

}
adjoint[c_i] = 0;

}
}

Figure 6.4.: Implementation of reverse evaluation for the Jacobi taping.

133



6. Implementation and analysis of Algorithmic Differentiation software

taping. The Jacobi taping loses all information about the kind of operation. For
linear operations the Jacobi 1.0 has to be stored on the tape and in the reverse
mode this 1.0 is multiplied by the adjoint of the left hand side. The primal value
taping can optimize the functions for the reverse evaluation by omitting these
operations. If only the operations in the reverse sweep are counted, than the
Jacobi taping has clearly less operations. All the computations are evaluated
during the recording of the tape, which increases the performance if the tape is
evaluated multiple times.

6.5. Statement level evaluation
The theory for the forward and reverse mode of AD in Section 2.1 and 2.2 is based on
the assumption that each computer program can be broken down into simple unary
and binary operations. This restriction is never introduced into the theory. AD can
handle operations with more than two arguments, but programming languages like
C++ allow only the overloading of operators with one and two arguments. All math-
ematical functions in the standard library have one argument with few exceptions
that have two. This viewpoint can be changed such that each statement is seen as a
contracted elemental operation φ. Then the line
z = a + b * pow(c + d, 2.0);

resembles the mathematical function

z = h(a, b, c, d) = a+ b ∗ (c+ d)2 .

The Jacobi matrix of h can still be computed easily by hand. Algorithmic Differ-
entiation is often also called Automatic Differentiation and this is the point were
the “automatic” comes from. With the current implementations of the primal value
taping and the Jacobi taping, the Jacobi matrix of h can be computed, but each
operation is handled separately. The idea is to adapt both implementations allow-
ing h to be handled as one single elemental operation φ by using expression tem-
plates [Vel95, ADP01]. The general theory for expression templates is explained and
adapted for primal value taping and Jacobi taping.
Currently the definition for the overloaded functions are

RReal ◦ RReal 7→ RReal and F (RReal) 7→ RReal .

The type RReal is now exchanged with a new Expr type based on the type that is
used inside of the expression. This relation is indicated by a subscript of the used
type. The new definitions for the overloaded functions are then

ExprA ◦ ExprB 7→ ExprA◦B and F (ExprA) 7→ ExprF (A) .

The type RReal will be an Expr and the return type of each binary and unary
operator will be an Expr that depends on the types of its arguments. With this
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technique an arbitrary amount of expressions can be linked together to form one big
expression that contains all information about each operation and argument in that
expression. The operator overloading tool sees now the whole statement and does
not need to create intermediate values. If h is captured by an expression template,
the resulting structure looks like:

ADD< RReal, MUL< RReal, POW< ADD< RReal, RReal>, RReal > > >

Each expression is templated with other expressions or the RReal type.

There are two major implications for using expression templates. The first one
is the change of the return type. Because typeof(Input) 6= typeof(Output) simple
template functions or the ternary operator ?: might no longer work. This has to
be considered when using this technique. The second implication is, that in the
overloaded operators no operations are performed. The type which is returned stores
the arguments and knows which operations it needs to apply on these arguments.
Not directly computing a value is also known as lazy evaluation [Wad71, HM76].
The interesting notion about this is, that not only the value can be computed, but
other more advanced operations can be performed.

The implementation of the Expr (Expression) type will give a general concept
for the unary and binary operations. Let c = h1(a) be the unary operator and
c = h2(a, b) be the binary operator, then d_a_h1, d_a_h2 and d_b_h2 are the
functions that calculate the derivatives of h1 and h2 with respect to the input vari-
ables a and b. All arguments of h1 and h2 are considered to be instances of a general
interface that is called Expr. This interface has the functions getValue and calcDerv,
where getValue returns the primal value of that expression. The other method ca-
clDerv is specified later, but will be used to compute the reverse AD mode for that
expression. Figure 6.5 shows the full implementation and will be discussed now step
by step.

The implementation of getValue for h1 and h2 is straight forward. The function
gets the values of the arguments and calls the primal function to evaluate the value
of the expression.

The calcDerv method will be the reverse AD equivalent of the getValue method.
It can be used to evaluate the gradient of the whole expression multiplied with a
given adjoint directional derivative. The implementation and logic of the calcDerv
method is quite involved and is explained best with an example. h2 is still the binary
operator. The arguments are declared as A : Ri → R, B : Rj → R with i, j ∈ N.
The getValue method resembles c = h2(A(p), B(q)) with p ∈ Ri and q ∈ Rj . The
evaluation schedule for the getValue method is then after the reverse AD Theorem
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2.13:

a =A(p)
b =B(q)
c =h2(a, b)

ā +=∂h2
∂a

(a, b)T c̄

b̄ +=∂h2
∂b

(a, b)T c̄

c̄ =0

q̄ +=∂B

∂q

T

b̄;

b̄ =0

p̄ +=∂A

∂p

T

ā

ā =0

The implementation of calcDerv is driven by this schedule. The first three equations
are directly handled by lines 28 - 30 in Figure 6.5. Lines 31 and 32 implement the
computation of ∂h2

∂a

T
c̄ and ∂h2

∂b

T
c̄. The two recursive calls of calcDerv implement the

last four lines of the schedule. A and B are also Expr implementations and propagate
the derivative values through the complete expression of the statement. The termi-
nation point in the recursion are the arguments to the elemental operator φ. These
arguments will be of the type RReal and the call of calcDerv will contain the Jacobi
matrix of the statement with respect to this argument. If e.g. the first argument for
h2 is of the type RReal, the seed is computed by the equation ∂h2

∂b (a, b)T c̄ which is
the derivative of the operation with respect to the first argument. Because of the re-
cursive implementation, the above argument holds for arbitrarily nested expressions.
With this implementation all RReal arguments get the derivative value of φ with
respect to the input variable they represent. This implementation allows operator
overloading AD to compute the derivatives for arbitrarily long statements without
recording intermediate values onto the tape. Figure 6.6 shows the implementation
of the overloaded operators for the multiplication and the sinus. This technique can
now be adapted to the primal value taping and the Jacobi taping.
The code example of the l2_norm_I1 is now changed such that it requires less

intermediate variables. The new implementation l2_norm_I2 is shown in Figure 6.7.
There are only two statements left, one takes 5 arguments (including res) and the
other one takes two but is more complex than a simple binary operation. One could
argue that the statement on line 5 has only 3 arguments. The default expression
template implementation has no means to detect if two arguments are equal and
therefore it is currently not possible to use this information. Ideas how this can be
handled are discussed later in this chapter.
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1 template<typename ExprA>
2 struct H_1_OP : public Expr {
3 const ExprA& a;
4
5 H_1_OP(const ExprA& a) : a(a) {}
6
7 double getValue() const {return h1(a.getValue());}
8
9 void calcDerv(double seed) const {

10 double a_v = a.getValue();
11 double c = h1(a_v);
12 double a_d = d_a_h1(a_v, c) * seed;
13
14 a.calcDerv(a_d);
15 }
16 };
17
18 template<typename ExprA, typename ExprB>
19 struct H_2_OP : public Expr {
20 const ExprA& a;
21 const ExprB& b;
22
23 H_2_OP(const ExprA& a, const ExprB& b) : a(a), b(b) {}
24
25 double getValue() const {return h2(a.getValue(), b.getValue());}
26
27 void calcDerv(double seed) const {
28 double a_v = a.getValue();
29 double b_v = b.getValue();
30 double c = h2(a_v, b_v);
31 double a_d = d_a_h2(a_v, b_v, c) * seed;
32 double b_d = d_b_h2(a_v, b_v, c) * seed;
33
34 a.calcDerv(a_d);
35 b.calcDerv(b_d);
36 }
37 };
38
39 struct RReal: public Expr {
40 ...
41 double getValue() const {return this->p;}
42
43 // Jacobi taping
44 void calcDerv(double seed) const {
45 tape.push(seed);
46 tape.push(this->i);
47 }
48
49 // primal value taping
50 void calcDerv(double /*seed*/) const {
51 tape.push(this->i);
52 }
53 };

Figure 6.5.: Implementation of the expression creation for binary and unary func-
tions. Also the RReal implementation of the Expr interface is shown.
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double d_a_sin(double a, double res) {
return cos(a);

}
template<typename ExprA>
H_1_Sin<ExprA> sin(const ExprA& a) {
return H_1_Sin<ExprA>(a);

}

double d_a_mul(double a, double b, double res) {
return b;

}
double d_b_mul(double a, double b, double res) {
return a;

}
template<typename ExprA, typename ExprB>
H_2_Mul<ExprA, ExprB> operator *(const ExprA& a, const ExprB& b) {
return H_2_Mul<ExprA, ExprB>(a, b);

}

Figure 6.6.: Specialization of the multiplication and sinus for expression templates
and the implementation of the derivative functions.

1 template<typename Number>
2 Number l2norm_I1(const Number* v1, const Number* v2, const size_t n) {
3 Number res = 0.0;
4 for(size_t i = 0; i < n; ++i) {
5 res += v1[i] * v1[i] + v2[i] * v2[i];
6 }
7 res = sqrt(res) / (Number)n;
8
9 return res;

10 }

Figure 6.7.: Improved implementation of the L2-norm for AD tool comparison.
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The Jacobi approach can use the calcDerv method to compute the full gradient
of the statement. In order to do that the adjoint direction c̄ is set to one. This is
the seed argument of the function calcDerv. The call will propagate the derivative
values to the RReal arguments. Each RReal sees the partial derivative of the full
statement with respect to itself. The derivative is stored together with the index
of the RReal. This can be seen in Figure 6.5 line 45f. For each argument this will
require 12 bytes of memory, 8 for the partial derivative and 4 for the index. In
addition each statement needs to know the number of arguments requiring 1 byte.
The memory per statement totals (4 + 8) ∗ n + 1 byte, which is only true if the
maximum number of arguments is capped at 255. The memory for the function
l2_norm_I2 is (5 ∗ 12 + 1) ∗ n + 12 + 1 = 61n + 13 byte and n + 1 indices will
be generated. It is clear that this implementation technique reduces the memory
amount for the tape drastically. The memory requirement is reduced by a factor of
two and is accompanied by a big reduction in the memory that is required for the
adjoint vector.
The primal value taping approach can set the seed c̄, too. When the reverse

evaluation comes to the point where it wants to evaluate equation (2.13) for φ the
value of c̄ is known. calcDerv is called on the full statement and the arguments of
the calls to calcDerv for the RReals contain the values of ∂φ

∂vi
c̄. They can directly

be used to update the adjoint values of the arguments of the statement. For each
argument one index of 4 bytes needs to be stored. This can be seen in Figure 6.5 line
51. The computed seed is ignored. An improved implementation can add a method
storeIndices which would only store the indices and skip the gradient computation.
For each statement the value of the left hand side is stored which are 8 bytes and the
function that performs the reverse evaluation of the statement. This function can be
stored in a lookup table with 4 byte keys or directly as a function pointer with 8 bytes.
The lookup table for the functions can no longer be programmed in a static or fixed
way. Either a map needs to be used or a script needs to extract all the statements
from the object files and generate a static lookup table from this list. Because the
map introduces a runtime overhead and the other approach complicates the build
process drastically, the function pointer approach is chosen here. Each statement
needs 4∗n+8+8 bytes of memory. This results in (5∗4+16)∗n+4+16 = 36n+20
bytes of stored memory for the l2_norm_I2 implementation and the use of n + 1
indices. The same conclusion as for the Jacobi taping can be drawn here. It is
interesting to note, that the constant memory for each statement is higher than that
for the Jacobi taping approach but the memory for each argument is less.

6.6. Reuse index management

The generated indices have been constantly growing and have not been reused. As
an example the l2_norm_I1 can be examined. The three indices inside of the loop
are only used once. If these indices are reused in every loop iteration, memory could
be saved since the adjoint vector is reduced in size. The general theory for the reuse
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of indices will be developed first and afterwards the important changes to the primal
value taping and Jacobi taping will be discussed after.

The struct RReal can be extended with a destructor to release the indices of tem-
porary values. The implementation would be
~RReal() {
tape.releaseIndex(this.i);

}

The tape can store the released index and use it elsewhere. When an old index is
overwritten, it needs to be released, too. Depending on the implementation the old
index can be released before or after the statement is evaluated. The tape can return
this index in the evaluation of the statement, resulting in a state where the index
has not changed. This has to be considered in the implementation. Furthermore,
the variable on the left hand side can be used as an argument on the right hand side
(rhs). This favors the release of the index after the statement has been evaluated
such that the index of the left hand side always changes.

Without loss of generality a binary function h : R × R → R is defined. The
evaluation is coded as c = h(a, b) and c, a and b are RReal variables. c, a and b have
an associated index ic, ia and ib ∈ N. It can be possible that ic ≡ ia ≡ ib. If ic ≡ ia
is assumed, the formulation in the code is c = h(c, b). This can be written as

t =c
c =h(t, b) .

The forward AD mode for the procedure is after Theorem 2.10

ṫ =ċ

ċ =∂h

∂a
ṫ+ ∂h

∂b
ḃ .

and therefore the reverse mode is after Theorem 2.13

b̄ +=∂h

∂b
c̄

t̄ +=∂h

∂a
c̄

c̄ =0
c̄ +=t̄
t̄ =0 .

(6.1)

t is used as a temporary variable and only used once. t̄ is 0 at the beginning of the
evaluation and the update t̄ += ∂h

∂a c̄ becomes t̄ = ∂h
∂a c̄. Because c̄ is set to 0 in the

algorithm, the update of c̄ becomes an assignment, too. Therefore the temporary
value of t̄ can be removed from the procedure in (6.1). After the removal of t̄ it
becomes
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b̄ +=∂h

∂b
c̄old

c̄new =∂h

∂a
c̄old

(6.2)

for the adjoint version of c = h(c, b). A general implementation does not know if
the left hand side is also used on the right hand side. Hence, when the indices are
reused, the implementation needs to assume that the left hand side is always used
on the right hand side. But the general notation requires the update ( +=) instead
of the assignment (=). During the reverse evaluation there will be no distinction
between c̄new and c̄old since they have the same index. In order to handle this an
implementation can copy the old value of c̄, set c̄ to zero and use the copied value in
the update. The algorithm for the example is

τ = c̄

c̄ = 0

b̄ +=∂h

∂b
τ

c̄ +=∂h

∂a
τ .

(6.3)

The evaluation procedure can use the adjoints of the arguments without caring if the
index of the left hand side is used on the right hand side. It is now clear, that the index
can be released before the statement is evaluated but an optimized implementation
will avoid the release and reacquisition of the index.
The consequences for the Jacobi taping are minimal. Nearly everything can stay

the same in the recording of each statement. The only change necessary is the
index of the left hand side needing to be stored because it is no longer increasing
monotonically. Therefore an additional 4 bytes are needed for each statement. The
implementation of the reverse evaluation in Figure 6.4 needs to be slightly adapted.
Figure 6.8 shows the new implementation which copies the adjoint of c and sets the
value in the vector to zero.
The changes for the primal value taping are more involved. The primal value taping

approach with linear indexing uses the global vector of all primal values directly, this
is possible because each index is used only once in an assignment. Afterwards the
index is only used on the right hand side. In the example:
for(int i = 0; i < n; ++i) {
c *= a[i];

}

c is overwritten in each iteration of the loop. If the indices are reused, the index of c
will not change after each assignment and the value in the global primal value vector
is overwritten several times. This has two implications. The first being a change in
the meaning of the global primal value vector. It represents now the current state of
all primal values, that are currently used in the program. Beforehand it represented
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void Tape::eval(const int end, const int start) {
int cur = end;
while(cur > start) {
--cur;
bool binary = pop<bool>();

int c_i = pop<int>();
double c_b = adjoint[c_i];
adjoint[c_i] = 0.0;

int arg_i = pop<int>();
double arg_jac = pop<double>();
adjoint[arg_i] += arg_jac * c_b;
if(binary) {

arg_i = pop<int>();
arg_jac = pop<double>();
adjoint[arg_i] += arg_jac * c_b;

}
}

}

Figure 6.8.: Implementation of reverse evaluation for the Jacobi taping with reused
indices.

all primal values during the lifetime of the program. The second implication is, that
the state of the global primal value vector needs to be reversed during the reverse
sweep, too. This can only be done if the overwritten value in the global primal value
vector is stored on the tape before it is overwritten. The stored value can be used to
restore the old state of the global primal value vector. The implementation in Figure
6.9 reflects this with the storing of the old primal value in line 10 and the restoring
of the old value in line 23. The primal vector and the adjoint vector are reduced in
size because they only grow as large as the maximum number of variables that are
used simultaneously in the program.
It is important to know how many indices are acquired and released in all methods.

For the l2_norm_I1 implementation 3 indices are used and released in each iteration
of the for loop and one index is acquired for the return variable. Only 4 indices are
used in place of the 4n + 2 indices without reuse that were previously needed. For
the l2_norm_I2 implementation there is only one index used with the reuse of the
indices, in place of the previous n+ 1.

The memory for each statement is increased and the size of the adjoint vector
is decreased. Although it is not guaranteed, it is very likely that there will be a
significant gain. An other advantage of the index reuse is the evaluation speed of the
reverse evaluation. The recording will take more time because the indices need to be
managed. However, the reduced size of the adjoint vector makes it more likely that
the indices are closer together and therefore the cpu can use the cached data more
efficiently. If the maximum number of indices is low, it is possible that the whole
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1 RReal operator * (const RReal& a, const RReal& b) {
2 tape.push(a.i);
3 tape.push(b.i);
4
5 RReal c;
6 c.p = a.p * b.p;
7 c.i = tape.getIndex();
8
9 tape.push(c.i);

10 tape.push(tape.primalValues[c.i]);
11 tape.primvalValues[c.i] = c.p;
12 tape.push(MUL);
13
14 return c;
15 }
16
17 void operator_mul_b(const double* primal, double* adjoint) {
18 double c_p_old = tape.pop<double>();
19 int c_i = tape.pop<int>();
20 int b_i = tape.pop<int>();
21 int a_i = tape.pop<int>();
22
23 primal[c_i] = c_p_old;
24 double c_b = adjoint[c_i];
25 adjoint[c_i] = 0.0;
26 adjoint[a_i] += primal[b_i] * c_b;
27 adjoint[b_i] += primal[a_i] * c_b;
28 }

Figure 6.9.: Implementation of the primal value taping for the multiplication with
reused indices.
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vector will fit into the cache. With linear increasing indices this is only possible for
very small programs.

Remark 6.3 (Indices in the example)
The example of the L2 norm favors the index reuse very strongly. The loop is
kind of unrolled on the AD tape without the index reuse.

Remark 6.4 (Destructor and C-like memory operations)
The index reuse introduces a destructor call to the type implementation. If this
destructor call is missed, the index can not be reused. Especially if arrays are
created with malloc and released with free the indices will not be released.

The next problematic function is memcpy. The result of a call to memcpy
will be that two variables hold the same index and if on both variables the
destructor is called, the index will be freed twice. The behavior of the program
is undefined in such cases. It is therefore important to ensure that no C-like
memory operations are used on the RReal type when the indices are reused.

Remark 6.5 (Index handling)
The handling of the indices is very critical with respect to the performance of the
implementation. The acquisition and release functions for the indices are called
in each constructor, destructor and statement. No time consuming sorting or
insertion of the indices should be done.

Remark 6.6 (Multiple tape evaluations)
In many applications of reverse AD the tape is recorded once and evaluated
multiple times. The primal value taping with index reuse can still do this but
needs additional memory. Since the global primal value vector is modified in
the reverse sweep, a second reverse sweep would use the modified vector and the
evaluation will yield wrong results. Therefore the vector needs to be copied and
the reverse sweep needs to act on the copied vector.

6.7. Constant value treatment
Lets assume that a program contains the statement

c = 4.0 ∗ a

where c and a are RReal types or the statement

c = p ∗ a

where c and a are RReal types and p is a double. From the viewpoint of the im-
plementation both equations are identical. The current implementations handle this
situation by converting the constant values to RReal types. The derivative informa-
tion with respect to the constant value would be stored and in the reverse evaluation
the derivative information with respect to this value is computed. The aim is to
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eliminate this overhead and discuss possible drawbacks on the Jacobi taping or the
primal value taping.
The Jacobi taping approach has a very simple solution. The Jacobi with respect to

the constant or constant variable is not stored. E.g. the operator * can be overloaded
for RReal operator *(const double& a, const RReal& b) and then be treated as an
unary operation.
The situation is more involved for the primal value taping scheme. In the reverse

evaluation the value of 4.0 or p is needed, and needs to be stored on the tape. The
memory for the unary operation which is actually a binary operation changes such
that it needs to store the value of the constant. Therefore 8 bytes of additional mem-
ory is needed but is still better than the required memory for the implicit conversion
of the variable. Here 12 bytes would be used in addition to the memory for the binary
operation.
For the primal value taping it can be more memory efficient to declare a constant

value as a global variable with the type RReal. The same is true if a constant value
is used in a loop. Then it is more efficient to declare the variable before the loop as
a RReal value.

6.8. Recording activation and deactivation

Tape activation and deactivation might be necessary in two scenarios. If parts of the
program use the RReal type but do not need to be differentiated then the calculations
in these parts of the program should not be recorded on the tape. The second scenario
arises if the developer knows that some parts of the computation do not influence
the derivative result but the developer is unable to perform the computation with
double variables. Figure 5.8 on page 110 showcases an example of this for function
checkpoints. The tape deactivation has several implications for the primal value
taping, the Jacobi taping and the index management schemes. Changes for all four
approaches will be shown.
The tape can use the index 0 in the current implementation to indicate values that

have no dependency to input variables. The tape is called to be passive if it is not
recording and values with an index of 0 are called passive values. Lets assume, that
for the function c = h(a, b) = a ∗ b the variables a and b are of the type RReal and a
has the index 0 to indicate that the variable is passive. The derivative with respect
to the passive variable a does not need to be calculated.
The implementation for the Jacobi taping is straight forward . It can check for

the zero index and in such a case it does not store the Jacobi matrix and the index.
If all of the arguments have a zero index then the whole statement can be ignored.
Therefore memory can be saved while the Jacobi taping is used.
Primal value taping encounters problems when the tape contains 0 indices. Since

the zero index is shared for all passive values it can not be used to store primal
values. How the implementation solves this problem is highly dependent on the
other optimizations used. If no indices are reused the tape can generate temporal
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values easily. If the indices are reused then the indices of the temporal variables need
to be cleared correctly.

The first option is to create an additional assign statement for each temporal
variable, which takes care of the storage of the primal values. If e.g. the following
implementation of the multiplication is used:
RReal operator *(const RReal& a, const RReal& b) {
...
if(a.i == 0) {
RReal aTemp = a;
tape.makeActive(aTemp);
returns aTemp*b;

}
...

}

Everything is correct because the index is released after the operation is evaluated.
But if expression templates are used then the code would be:
template<typename A, teypename B>
Mul<A,B> operator *(const A& a, const B& b) {
...
if(a.i == 0) {
RReal aTemp = a;
tape.makeActive(aTemp);
returns Mul<A,B>(aTemp, b);

}
...

}

The problem with this code is, that the operation is not yet evaluated and the index
is already freed. If the statement c = (((a1 ∗ a2) ∗ a3) ∗ a4) ∗ a5 is considered and
a2, . . ., a5 have zero indices. It can happen, that the temporary variables for a2, . . .,
a5 have all the same index. The expression templates can cover this case when the
expression is stored:

1 template<typename Rhs>
2 void store(RReal& lhs, const Rhs& rhs) {
3 RReal tempValues[Rhs::maxNumberOfValues];
4 int nTempValues = rhs.createTempValues(0, tempValues);
5
6 rhs.storeIndices(0, tempValues);
7
8 ...
9 for(int i = nTempValues - 1; i >= 0; --i) {

10 freeTemporary(tempValues[i]);
11 }
12 }

There is an additional call generating the temporal values in line four. The store of
the indices uses this vector to replace the passive variables. At the end of the method
the indices are released in line 11. This eliminates the problem, that all the temporal
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values may have the same index. Every temporal variable requires an additional
storage of 20 bytes.
The difference between the Jacobi taping and the primal value taping have become

clear. The Jacobi taping will definitely save memory. For the primal value taping, it
is not clear if memory can be saved and the implementation is not trivial.
Another drawback of the primal value taping and the index reuse is that the tape

can not be set to passive as easily as the Jacobi taping for parts of the code. If the
indices are released during the passive code portion, then the following code parts
need more memory because of the higher amount of passive values. If the indices
are left in place the value vector needs to be updated and a statement restoring the
overwritten value in the reverse sweep needs to be recorded. Especially that there are
still statements recorded in code parts that the developer has deactivated is counter
intuitive.

6.9. Inputs, outputs, constructors and assignment operators

The previous sections omitted the constructors of the RReal objects. This is done
on purpose as the code examples would have been unclear and the implementation
now is only possible because of other optimizations. The implementational details
depend greatly on the chosen approach and differ for primal value taping and Jacobi
taping. The index management influences the implementation, too.
With linear increasing indices every statement gets a new index. This means that

every adjoint variable has a corresponding statement. If a user wants to define an
input variable, then the adjoint of this variable needs an index. These two reasons
lead to the conclusion that each input variable needs to create a statement upon the
tape.
This can be implemented in a function registerInput which is analogue to the

implementation of an unary or binary operator with the exception that no argument
needs to be stored. The implementation is done in Figure 6.10 with the assumption
that the statement level evaluation is used. From this code, the implementation of
the RReal constructor can be derived. If passive values are allowed on the tape the
index can be equal to zero the constructor simply initializes i with 0. If zero indices
are not allowed, then the constructor must call registerInput on the constructed value.
This would require for every statement like RReal a; that some data is written to
the tape.
The statement RReal a; is for example used in Figure 2.13 on page 36. If the

constructor would already have been defined and no passive values allowed, then the
index for a would be automatically created. A second constructor could have been
implemented and used in the example. For the overloaded sinus this would look like
RReal c(sin(a.p), ++tape.globalStatementCounter);. This would have destroyed
the clear coding and would have raised unnecessary issues during the discussion.
The situation changes if the indices are reused. The coupling between the indices

and statements is eliminated and therefore the implementation of registerInput is
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simple. It acquires a new index from the tape and is shown in Figure 6.10.
The assignment operator requires a different handling. It can be seen as an unary

function that has a Jacobi value of 1.0. The adjoint for the statement b = a is

ā +=b̄
b̄ =0 .

The adjoint states that every update of b̄ is added to ā. If linear increasing indices
are used ā corresponds to a fixed index and all updates to b̄ could be directly done
to ā. This can be achieved if the RReal variables of a and b share the same index.
Consequently the assignment operator implemented in Figure 6.11 can copy the val-
ues from the argument. This optimization is not possible if the indices are reused.
If one index is released twice, correct derivative results can no longer be guaranteed.
The assignment operator for the index reuse implementation in Figure 6.11 needs to
create a statement for each assignment.
Caused by this difference, it can be that an index reuse approach might need more

memory than a linear increasing approach. Depending on the number of assignments
the memory advantage from the reduced size of the adjoint vector is used up by the
additional statements.
The outputs do not need to be handled for any combination of primal value taping,

Jacobi taping, linear indexing and index reuse. No handling is required for index reuse
because each variable has a unique index.
The situation is different if the assign optimization is used for the linear indexing.

In the example

void h(const RReal& in, RReal& out1, RReal& out2) {
out1 = in;
out2 = in;

}

func copies the input to both output variables. out1 and out2 will have the same
index. If the user sets the adjoint of only out1 or out2 by calling tape.setAdjoint(out1,
1.0), the derivative of h will be correct. But if the user sets both adjoints to a specific
value, the derivative of h will be wrong. That is due to the second call to setAdjoint
which will overwrite the adjoint that is already set.
The origin of the problem can be found in Figure 2.3. Here the adjoints are

updated as described by the += sign. By setting the adjoints explicitly the update
from the theory is not performed and the result of h in the example is wrong. But
this can only happen if two output variables have the same index and for both an
adjoint value is set. Since, the theory assumes implicitly that each output variable
has a unique index, the problem can not occur. It can be solved by introducing a
new function updateAdjoint performing the operation +=. A second solution to
the problem requires each output to be registered with registerOutput this function
ensures that each output has a unique index.
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void registerInput(RReal& value) { // linear inxreasing indices
value.i = ++tape.globalStatementCounter;

// primal value taping
tape.primalValues[c.i] = value.p; // primal value vector
tape.push(NO_OPT); // function pointer

// jacobi taping
tape.push(0); // zero agruments

}

void registerInput(RReal& value) { // index reuse
value.i = tape.getIndex();

}

Figure 6.10.: Register an input variable on the tape once for linear increasing in-
dices and once for reused indices. This implementation assumes that
statement level evaluation is used.

struct RReal {
...
// Linear indexing implementation
void operator = (const RReal& a) {
this->p = a.p;
this->i = a.i;

}

// Index reuse implementation
void operator = (const RReal& a) {
this->p = a.p;

// primal value taping
tape.push(a.i);
tape.primalValues[c.i] = value.p; // primal value vector
tape.push(ASSIGN_OPT); // function pointer

// jacobi taping
tape.push(1.0);
tape.push(a.i);
tape.push(this->i); // index left hand side
tape.push(1); // one agrument

}
...

};

Figure 6.11.: Implementations of the assignment operator for linear indexing or index
reuse.
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6.10. Optimizations for linear equations
In the Jacobi taping approach a Jacobi matrix is stored for each argument. If the
equation is linear in every argument, then the Jacobi values are constant values. The
computation of the adjoint does not need any primal values or the stored Jacobi
values. As an example consider the equation

z = a+ b+ c+ d .

All Jacobi values are just one in this statement. If the tape knows about this, then it
does not need to store the Jacobi matrix and can directly update the adjoints after
equation (2.13). However, if the equation is changed to

z = a− b+ c+ d ,

three Jacobi values are one and the other one is negative. Here, the tape can not
update the adjoints since one element needs to be decremented. The tape would
need to store every Jacobi value of the equation again. The primal value tape could
evaluate the same equation and with a specialized implementation would not need to
access the primal values. As no Jacobi values need to be stored, the required memory
could be reduced, and therefore the evaluation process for the Jaocbi taping can be
improved. For the linear optimizations a specialized function is required that must
be able to evaluate the expression by using only the right hand side indices. It is
assumed that such an function exists.
Changes to the Jacobi taping include the storing of a function pointer which uses

8 bytes. It is also necessary to mark the statement for the reverse accumulation that
no Jacobi values have been written to the tape. One bit of the argument count is
used to indicate if the statement is purely linear. (n − 1) ∗ 8 bytes can be saved if
the right hand side of the statement is purely linear, where n is the number of input
values.
The next equation to consider is

z = a ∗ (b+ c+ d) .

If this equation is written in two statements

z1 = b+ c+ d

z2 = a ∗ z1 ,

then the linear optimization can be applied to z1 but not to z. The aim is to analyze
every statement for linear subgraphs and to add a temporary value at the roots of
the linear subgraphs.
The evaluation graph of a statement is known at compile time and the information

if a subgraph is linear, is a compile time constant. Possible checks for linear subgraphs
can be optimized by the compiler during the compilation and no checks are necessary
to be performed during runtime. The storing process of statements can be changed in
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such a way that no overhead for nonlinear functions with no linear part is introduced.
The process is divided into two steps. The first step creates the temporary variables
and stores the linear subgraphs. The second step replaces the subgraphs with the
temporary values. The implementation is shown in Figures 6.12 and 6.13. The store
method in Figure 6.12 has 3 branches. The first branch handles a statement which
is purely linear. It stores the indices of the arguments with the call to pushIndices.
This recursive function is called through all expressions and terminates in the RReal
arguments. They will push their indices on the tape. After that the function for the
reverse evaluation is stored and the argument count is flagged, such that the reverse
sweep knows that this is a linear expression. On line 11 the second branch starts. The
implementation is quite involved and requires a very good understanding of C++.
The branch creates a number of temporary variables for the subexpressions and calls
the method that stores all of the linear subexpressions. The zero in the template
argument describes the number of linear subgraphs that have already been stored
on the tape. The number is a template parameter, since only then the compiler can
optimize it out. It is needed to access the corresponding temporary value that is used
to replace the subgraph. The implementation of the pushLinearSubgraphs function is
only provided for a binary expression in Figure 6.13 in line 11. This function checks
for each argument if it is linear. If it is, then the store method on the global tape is
called and the first branch of the store method is evaluated. If the expression is not
linear, then the method is called recursively on the arguments. It is important to
note that for the second argument of the binary expression the index in the variable
vector is increased by the number of linear subexpressions of the first argument. This
ensures that no temporary value is used twice.
After all linear subexpressions are stored on the tape, the Jacobi entries can be

computed. The call calcDervWithSubgraphs in Figure 6.12 on line 15 uses the same
indexing technique as the function pushLinearSubgraphs. The implementation in
Figure 6.13 on line 25 uses the same recursion as described in Section 6.5 for the
calculation of the derivatives, but it excludes the linear subsections and uses the
temporary values instead. It is important to note, that all decisions and index calcu-
lations in the methods can be evaluated at compile time and therefore the compiler
can optimize them. This should yield a code were no if statements are left and no
index calculations are performed.
For a statement that is already linear, the reduction of the memory is (n− 1) ∗ 8

bytes. If the statement has n arguments and a linear subgraph with i arguments,
with n > i, then the original memory requirement would be

mem = 4 + 1 + (8 + 4) ∗ n .

The memory requirement for the linear subgraph is

memsub = 4 + 1 + 8 + 4 ∗ i .

The number of arguments for the optimized statement is now (n − i + 1), because
the linear subgraph removes i arguments from the graph and it is replaced by a

151



6. Implementation and analysis of Algorithmic Differentiation software

1 template<typename Rhs>
2 void store(RReal lhs, const Rhs& rhs) {
3 if(Rhs::isLinear) {
4 lhs.i = ++tape.globalStatementCounter;
5
6 rhs.pushIndices();
7
8 tape.push(Rhs::linearReverseEvaluation);
9 tape.push(Rhs::numberOfArguments | IS_LINEAR);

10 } else if(RhS::hasLinearSubgraphs) {
11 RReal tempVars[Rhs::NumberOfLinearSubgraphs];
12
13 rhs.pushLinearSubgraphs<0>(tempVars);
14
15 rhs.calcDervWithSubgraphs<0>(1.0, tempVars);
16 lhs.i = ++tape.globalStatementCounter;
17
18 tape.push(Rhs::numberOfArgumentsWithoutSubgraphs);
19 } else {
20 < default store>
21 }
22 }

Figure 6.12.: The store method implementation for the linear subexpression opti-
mization in a Jacobi taping setting.

new argument which holds the result of the subgraph. The total memory for the
optimized equation is then

memopt = memsub + 4 + 1 + (8 + 4) ∗ (n− i+ 1) .

The memory of the optimized statement should be smaller than the memory of the
original statement. This yields

memopt < mem

⇔ (4 + 1 + 8 + 4 ∗ i) + 4 + 1 + (8 + 4) ∗ (n− i+ 1) < 4 + 1 + (8 + 4) ∗ n
⇔ 4 + 1 + 8 + 4 ∗ (n+ 1) + 8 ∗ (n− i+ 1) < 8 ∗ n+ 4 ∗ n
⇔ 25 < 8 ∗ i
⇔ 3.125 < i .

The subgraph elimination yields a memory improvement only if the subgraph has 4
or more arguments. This constant factor can be added to the checks in the functions
to ensure that memory will be saved. Because the factor is constant, the compiler
can still optimize all if statements such that no checks are performed during runtime.

Remark 6.7 (Linear subgraphs and passive values)
The Jacobi taping can implement passive values such that they are not stored
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1 template<typename ExprA, typename ExprB>
2 struct H_2_OP : public Expr {
3 ...
4
5 void pushIndices() const{
6 a.pushIndices();
7 b.pushIndices();
8 }
9

10 template<int tempIndex>
11 void pushLinearSubgraphs(RReal* tempVars) const {
12 if(ExprA::isLinear) {
13 globalTape.store(tempVars[tempIndex], a);
14 } else (ExprA::hasLinearSubgraphs) {
15 pushLinearSubgraphs<tempIndex>(tempVars);
16 }
17 if(ExprB::isLinear) {
18 globalTape.store(tempVars[tempIndex +

ExprA::numberOfLinearSubgraphs], a);
19 } else {
20 pushLinearSubgraphs<tempIndex +

ExprA::numberOfLinearSubgraphs>(tempVars);
21 }
22 }
23
24 template<int tempIndex>
25 void calcDervWithSubgraphs(double seed, RReal* tempVars) const {
26 double a_v = a.getValue();
27 double b_v = b.getValue();
28 double c = h2(a.getValue(), b.getValue());
29 double a_d = d_a_h_2(a_v, b_v, c) * seed;
30 double b_d = d_b_h_2(a_v, b_v, c) * seed;
31
32 if(ExprA::isLinear) {
33 tempVars[tempIndex].calcDerv(seed);
34 } else {
35 a.calcDervWithSubgraphs<tempIndex>(a_d, tempVars);
36 }
37 if(ExprB::isLinear) {
38 tempVars[tempIndex + ExprA::numberOfLinearSubgraphs]].calcDerv(seed);
39 } else {
40 b.calcDervWithSubgraphs<tempIndex +

ExprA::numberOfLinearSubgraphs]>(b_d, tempVars);
41 }
42 }
43 }

Figure 6.13.: Expression implementation for the linear subexpression optimization
in a Jacobi taping setting. a and b are the arguments of the binary
expression. Their definition is shown in Figure 6.5 on page 137.
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on the tape. This is not possible when a linear statement is stored. It can not be
determined at compile time which variable has a passive index and no optimized
function can be used. That means that all indices need to be stored on the tape.
The function for the reverse evaluation will check in the reverse sweep which
index is zero and skip that index.

6.11. Argument optimizations
The example implementation of the l2_norm_I1 in Figure 6.1 on page 129 contains
the statement

c = a · a .

It is mentioned that AD can not optimize this statement. Possible avenues for han-
dling this situation will now be discussed.
The reverse AD formulation for this statement is

ā += a · c̄
ā += a · c̄
c̄ = 0

and could be improved to

ā += 2 · a · c̄
c̄ = 0 .

The original statement will generate two argument entries for the Jacoby taping
approach since the expression templates can not detect if the arguments to the bi-
nary expression have the same index. Even if there is a special case for this in the
multiplication operation, then the simple equation

c = sin(a) · cos(a)

would break this improvement.
The idea is to optimize the recording of the statements in such a way, that for

each variable only one entry is crated as opposed to multiple ones. Let φi : V → R
be an elemental operator which represents a statement in the code. φi has j ∈ N
arguments. Let h : Rj → R be the contracted form of the elemental operator. Then
h can be called as

c = h(a1, . . . , aj)

with a1, . . . , aj ∈ R or as
c = h(a, . . . , a︸ ︷︷ ︸

j-times

)
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struct RRealRef : public Expression {
const RReal& ref;
mutable double jacobi;

RRealRef(const RReal& ref) :
ref(ref),
jacobi(0.0) {}

void calcDerv(double seed) {
jacobi += seed;

}

void pushLazyJacobies() {
if(jacobi != 0.0) {
ref.calcDerv(jacobi);
jacobi = 0.0;

}
}

};

Figure 6.14.: Helper structure for the combination of multiple arguments. The struc-
ture delays the call to calcDerv in order to reduce the number of stored
arguments, when a variable is used multiple times in the same state-
ment.

with a ∈ R. The first variant needs to store j arguments on the tape, the second
only 1. The compiler could generate a specialized version for both cases but without
the compile time knowledge about the indices, such optimizations are not possible.
Because of this, the compiler will only generate the general version and there are no
compile time means to detect if multiple arguments have the same index.
The brute force approach would be to search for the variables that have the same

index. The search for all variables will have a complexity of j log(j) + j if the argu-
ments are first sorted and then combined. The problem is that for each statement
this overhead is introduced and would slowdown the recording. But this is the only
option if the differentiated code is not modified.
If the code can be modified the solution is very efficient. The RReal objects have

been the termination points in the expression templates until now. The structure
RRealRef (reverse real reference) in Figure 6.14 is a new termination point. It stores
a reference to a RReal object and has a mutable member for the Jacobi. The regular
call to calcDerv in RReal (see Figure 6.5) stores the index and the seed on the
tape. The RRealRef implementation updates the internal Jacobi instead. The call
to pushLazyJacobies will forward the accumulated Jacobi to the RReal reference,
which can then push this Jacobi. It will be pushed only once because it is reset
after it is pushed. The storeLazyJacboies method needs to be implemented in all
expression templates and the method needs to be called from the procedure that
stores the statement information on the tape.
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An example for the use of the RRealRef is
c_1 = 3*a*a*a-4*a*a+3*a-8 + sin(a);

RRealRef aR = a;
c_2 = 3*aR*aR*aR-4*aR*aR+3*aR-8 + sin(aR);

The statement for c_1 will store 7 arguments on the tape whereas statement c_2
will only store one.
The optimization can not be done for the primal value taping because no specialized

function can be generated or the function would require additional data to identify
which arguments in the primal call have been the same. This would increase the
required memory and would defeat the purpose of reducing the required memory.

6.12. Overview on existing operator operator overloading
Algorithmic Differentiation tools

The web page www.autodiff.org is most often the first source of information if some-
body is looking for an AD tool implementation. The page contains a database of
nearly all papers published on AD, and probably the most complete list of available
AD tools. For C/C++, the list contains 24 entries. From these 24 items, 11 are pure
forward AD tools, one is a pure reverse mode tool and 12 tools can handle the for-
ward and reverse mode. Unfortunately, 8 tools from the 24 seem to be discontinued
or abandoned. From the 9 possible reverse tools, the two source transformation tools
OpenAD [Utk04] and Tapenade [HP13] are not considered. This leaves 7 reverse
mode AD tools, that are to be considered by this thesis for a deeper analysis.
The AD model builder [FSA+12] is a special tool for the solution of non-linear

statistical modeling and optimization problems. The user has to describe the problem
in a special modeling language. The AD model builder provides a preprocessor
that generates the appropriate source code for the solution of the problem and the
generated code uses the AD tool from the AD model builder suite for the computation
of the derivatives. The AD tool is the most general in the field. It implements AD
for higher order structures like vectors and matrices. The taping approach is a naive
primal one. The arguments of the operators are stored in 8 byte values. Each vector
argument uses 16 bytes for information about the vector size and the location of the
data. 16 bytes are also used for the output argument. The tool performs an operator
taping approach and uses 32 bytes per operation. All memory allocations are made
in sequence, so the memory is not scattered. The memory per operation is

8 ∗ inputValues + 16 ∗ nArgs + 1 + 16 + 32 . (6.4)

If the vectors are large enough, then the overhead from the references, function
pointers and sizes are negligible. But, if the vector size is one, then the overhead is
quite large. The tool implements no assign optimization and the references resemble
a linear index scheme.
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FADBAD [BS96] is a traditional operator overloading tool. The user uses the
FADBAD reverse type B<double> in the program for the derivative computation.
FADBAD takes an operator taping approach with primal value taping, but does
not use indices for the dependency management. A global graph structure is built
and carried by each B<double> type. An operation adds to the graph structure
and everything is allocated with new so the memory is scattered. Since, everything
is stored, it is equivalent to an linear indexing scheme. The memory footprint for
an operation is 16 bytes and additional 24 bytes for the storing of the left hand side
value. This memory contains references to the adjoint vector but not yet the memory
for the adjoint vector. For each argument 8 bytes are required for the reference. The
memory per operation is then

16 + 24 + 8 ∗ nArgs , (6.5)

38 bytes for an unary operation and 46 bytes for a binary operation. This is 25 or
29 bytes more than the minimal implementation for a primal value taping without
index reuse.
Sacado [PBGH08] provides the reverse type Sacado::Rad::ADvar<double>. It

performs a Jacobi taping approach for operators. An assign optimization is not
implemented. The memory management of Sacado is tailored for AD. The tool
overloads the new operator to avoid the scattering of memory in the global address
space. Chunks of memory are allocated and the ADvar<double> types are placed
in this memory. This has the advantage, that intermediate operators are kept in
memory because the delete operation is empty. The types can store references to
intermediate operators without caring about dangling pointers. The required memory
for an argument is 32 bytes, the reference to the next Jacobi, the reference to the
current Jacobi, the reference to the argument and the reference to the result. Each
operator needs 16 bytes of memory but this includes the memory for the adjoint
value, so only 8 bytes are counted. The memory for one operation is then

8 + 32 ∗ nArgs , (6.6)

40 bytes for an unary operation and 72 bytes for a binary operation. Because every-
thing is stored, the approach is equal to a linear indexing scheme. Therefore, Sacado
needs more than three times the memory for an operation, than a Jacobi taping
approach with linear indexing.
The Stan Math Library [CHB+15] is a traditional operator overloading tool.

The type stan::math::var needs to be used for the derivative computation. The
approach is primal value taping, that tapes the operators. The memory management
is nearly the same as the one of Sacado, which means that memory is not scattered
in the global address space. The arguments for each operator are stored as references
taking 8 bytes. Each operator stores the primal value, the adjoint value (which is
not counted) and a vtable that is used for the call to the adjoint function. Because
everything is stored, the tool resembles a linear index management scheme. The
memory for one operation is then

16 + 8 ∗ nArgs , (6.7)
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32 bytes for a unary operation and 40 bytes for a binary operation. For a tool
that does primal value taping with a linear index scheme, it uses 19 bytes more
per unary operation and 23 bytes per more binary operation. These high memory
counts per operation are tried to be amended by specializing operators that use the
stan::mat::var type as a template argument. There are several specializations for the
linear algebra library Eigen [GJ+10] available, that e.g. reduce the operator count
for a matrix-matrix multiplication from O(N3) to O(N2).
ADOL-C [WG09] is probably the most known AD tool and the most mature. It

has been under development for over 20 years. The adouble type implements a primal
value taping approach for operators. The indices are reused and the tape is organized
to store data on stacks. This yields no scattering of data and no dead memory due to
padding. How much memory an operator in ADOL-C uses, is hard to judge. Every
operator is implemented in a separate function, which enables optimal memory use
for each operation, but e.g. the implementation of the sinus evaluates and stores the
data for the cosine, too. The memory for each operation can be given as

1 + 4 + 8 + 4 ∗ nArgs + {extra} , (6.8)

1 byte for the operator, 4 bytes for the left hand side index, 8 bytes for the left hand
side value and 4 bytes for each right hand side argument. If the extra term would not
be there, then ADOL-C would have the optimal memory implementation, developed
in this thesis. ADOL-C reduces the memory footprint of the primal application.
This is done by just storing the index in the adouble types. The primal value is
accessed through the global primal value vector. Because this vector is required
for the reverse interpretation, this introduces no memory overhead, but each primal
value access requires one array lookup. The recording time is probably increased by
this optimization.
CppAD [BB08] is similar to ADOL-C. The only difference is the index manage-

ment. CppAD uses a linear index management scheme allowing for the optimization,
that the left hand side index does not need to be stored. It also does not separate
the indices form the primal values. The memory for one operation is then

1 + 8 + 4 ∗ nArgs , (6.9)

1 byte for the operator, 8 bytes for the left hand side value and 4 bytes for each right
hand side argument. The memory for an unary opration is 13 bytes and 17 bytes for
a binary operation, which is the same as the optimal values for a primal value taping
approach with linear indexing.
Adept [Hog14] is the only tool, that implements expression templates from the

list on www.autodiff.org. The aReal type implements a Jacobi taping scheme, that
reuses indices. For each argument the Jacobi and the index are stored, which are 12
bytes. The number of arguments for each statement is stored in an unsigned int of
4 bytes. Each statement can have 4 · 109 arguments. The memory for a statement is
then

4 + 4 + 12 ∗ nArgs . (6.10)
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With a more restrictive assumption for the maximum number of arguments up to 3
bytes per statement could be saved.
dco/C++ [LLN16] is not on the list of www.autodiff.org, but it is used in this

thesis to differentiate TRACE. The dco::a1s::type implements a Jacobi taping on a
statement level with a linear index management. The implementation also uses the
assign optimization. The memory per statement used in this thesis has not been
optimal. The Jacobi and index value are stored in 8 bytes and 4 bytes respectively
which is optimal. Yet, these two values are stored together in one structure and due
to the padding 16 bytes are used for the storing instead of 12 bytes. The number of
arguments are stored in the same structure which are 16 bytes per statement. The
memory per statement is then

16 + 16 ∗ nArgs . (6.11)

dco uses 4 bytes more per argument and 15 bytes more per statement.
From the total of 24 tools found at www.autodiff.org 7 tools plus a closed source tool

have been analyzed. The focus of this analysis is on the memory, because the memory
consumption is one of the main issues and defines also the lower bound for the time.
A summary of the analysis can be found in Table 6.1. Only CppAD is implemented in
an optimal way for its category. All other analyzed AD tools are not implemented in
the most optimal way for memory efficiency. Since there is no tool, that implements
expression templates in an optimal way, no one is a good choice for HPC specific
applications. According to the developers, dco/C++ will be modified in the next
release to provide nearly optimal values. The same modifications are presented in
the next section. It is notable that no tool implements expression templates for a
primal value taping approach. It is by far the most complex implementation, but
should be in terms of memory better than any other technique. It should also be
comparable in time requirements.
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6.12.1. AD tool improvement

The memory overhead is introduced by the padding of the structure:
struct Data {
int index;
double jacobi;

};

The structure requires 16 bytes instead of the 12 bytes of the members. Without
a rewrite of dco/C++, the only option is to set the attribute packed on the data
structure. The elimination of the padding reduces the memory consumption by 25%.
The next memory overhead is generated by using the Data structure to store the
number of arguments. No additional chunk could be easily added to dco/C++. A
new global vector of the type uint8_t is introduced. It has the same size as the adjoint
vector and needs to be grown during the taping process. In the reverse interpretation,
the index of the left hand side can be used to access the number of arguments for
each statement. This reduces the memory again by approximately 12%. The total
memory reduction is 34%

Only now dco/C++ provides an optimal memory implementation and is usable for
HPC applications.

6.13. CoDiPack

Nearly no AD tool from the previous section provides a minimal memory implemen-
tation that is required in order to use AD on HPC machines. Instead of creating
yet another new AD tool, one of the existing tools could be modified in order to
provide a minimal memory implementation and to implement new taping strategies.
For most of the existing AD tools however, this would require a total rewrite. Most
tools are designed for one specific taping strategy, but as we have seen, there exist
several taping strategies with different properties. It is therefore more appropriate
to create a new tool that can be specifically designed for the required purpose.
The Code Differentiation Package (CoDiPack) is a new operator overloading AD

tool, that is specifically designed for HPC and industrial applications. The main
goal of the tool is to implement the gained knowledge presented in this chapter and
to provide a foundation for further AD based research. The basic goals for the
development are

• memory efficiency

• minimal computation time

For both goals it is necessary to have a data layout optimized for HPC applications.
The data structure commonly associated with this are structures of arrays [JR15].
A structure of arrays allows a good prefetching, good cacheline use and improved
alignment. It avoids padding issues identified in some AD tools.
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In order to achieve the minimal computation time, for the recording of the tape,
it is important to keep in mind that operator overloading AD adds a large amount
of logic to every statement. A simple mathematical statement as c = a + b, can
introduce several hundreds of commands. If AD needs 1 ms for every statement that
is evaluated, then a program with 1000 statements will take 1 second. It is therefore
necessary, that the introduced logic of operator overloading AD will be simple and
as efficient as possible.
The next goals consider the usability of CoDiPack. They describe two directions:
• simple software integration

• easy to use/debug
Integration into the software is a major issue when the software for the differen-

tiation is already in place. If the software needs to be heavily modified for the AD
tool then AD will not be used. If the AD tool can be adapted to the software and
because of that, can be easily integrated, then AD becomes a valid option.
The ease of use is mostly a very imprecise statement. For a library it is very

important that a specification for the API exist and that the API is narrow and well
documented. There should be tutorials that explain in which order the API functions
need to be called.
The final goals describe the long term support of the AD tool:
• easy to understand

• easy to extend
Mathematical software is usually written with a special mathematical model in

mind. The outcome consists of variable names that are short and not descriptive. In
an user friendly library each function and variable name should be self explanatory.
After a user has understood how the whole or parts of the software work, he or she
should be able to extend the software quite easily. It should be possible to make easy
adjustments without the danger of breaking all other parts of the library.
These six design principles are the basic guidelines used for the development of

CoDiPack. The following sections will highlight the most important design decisions
in CoDiPack.

6.13.1. General Structure
The global structure of CoDiPack is defined in the diagram of Figure 6.15. The
expression templates are self contained and provide static data and functionality for
other classes. The ActiveReal defines a termination point for the expression templates
and the interface for the user. The ActiveReal objects were designed to contain no
logic. If they contained logic, then the logic would be tape specific and for each tape
a different user type would need to be implemented. The ActiveReal is a pure data
container that forwards nearly all calls to the tape implementation. The tapes are
the classes that contain all logic and data for a specific AD approach. There is e.g.
a Jacobi tape, a Jacobi tape with index management and primal value tapes.
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Expression

ActiveReal TapeInterface

Figure 6.15.: The global structure of CoDiPack.

6.13.2. Expression implementation

The common approach for expression template implementations is the use of macros
like:

#define CREATE_UNARY_OP(NAME, opName, primalFunc, derivFunc) \
struct NAME { \
... // 200 lines of code \

}; \
\
template<typename ExprA> \
NAME<ExprA> opName(const ExprA& a) { \
return NAME<ExprA>(a); \

}

CREATE_UNARY_OP(SIN, sin, sin(a), cos(a))

The user has to define the name of the structure, the name of the overloaded function,
and how the primal and derivative is evaluated. The macro defines then a structure
with hundreds of code lines. The problem with these macros is, that they cannot be
stepped through with a debugger. Either the debugger will stop on the same line
several times or will go directly to the next line. A good solution to this problem
is the use of super macros [Bea04]. The idea behind a super macro is to move the
generated code definition into a separate file and include the file. The problem with
this technique is that an include macro does not take arguments.
The above example as a super macro would look like:
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1 #ifndef NAME
2 # error Please define the name of the operator.
3 #endif
4 // other checks for opName, primalFunc and derivFunc
5
6 struct NAME {
7 ... // 200 lines of code
8 };
9

10 template<typename ExprA>
11 NAME<ExprA> opName(const ExprA& a) {
12 return NAME<ExprA>(a);
13 }
14
15 #undef NAME
16 #undef opName
17 #undef primalFunc
18 #undef deriv

The arguments of the define are emulated in the super macro by explicitly checking
for defines with the names of the arguments. Otherwise the super macro generates
an error, as in line 2. These checks ensure that arguments to the super macros are
not missed.

In order to be able to use the super macro multiple times, the required defines are
undefined at the end of the super macro. The super macro is used by providing all
necessary arguments as preprocessor defines and including the super macro file. The
example for sinus implementation would look like:

#define NAME SIN
#define opName sin
#define primalFunc sin(a)
#define derivFunc cos(a)
#include "unaryTemplate.tpp"

This requires more lines than the call of the preprocessor macro in the multi line
example but has the advantage, that the user can step through the macro in a well
defined manner and can see all separate steps. This is a big advantage for the usability
and for users that try to understand how CoDiPack works.

6.13.3. Tape interfaces

C++ provides interfaces via pure virtual classes. If, in the context of AD, the pure
virtual class is used, the performance of the AD tool will be quite bad. Multiple
virtual function calls would be evaluated per statement and the arguments of template
functions would also need to be implemented as virtual classes, adding more virtual
function calls per statement. AD tools like Adept and dco/C++ provide only the
direct implementations of the tapes. The user is then confronted with implementation
details of the tapes and can not see, which functions need to be implemented for a
new tape and which functions are tape specific.
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template <typename Real, typename GradientDataType, typename
GradientValueType>

struct TapeInterface {

typedef GradientDataType GradData;
typedef GradientValueType GradValue;

template<typename Rhs>
void store(Real& lhsValue, GradData& lhsGradData, const Rhs& rhs);

template<typename Data>
void pushJacobi(Data& data, const Real& value, const GradData&

gradientData);

template<typename Data>
void pushJacobi(Data& data, const Real& jacobi, const Real& value, const

GradData& gradientData);

virtual void initGradData(Real& value, GradData& gradientData) = 0;
virtual void destroyGradData(Real& value, GradData& gradientData) = 0;

virtual bool isGradientTotalZero(const GradData& gradientData) = 0;
virtual void setGradient(GradData& value, const GradValue& grad) = 0;
virtual GradValue getGradient(const GradData& value) const = 0;
virtual GradValue& gradient(GradData& value) = 0;

virtual bool isActive(const GradData& value) const = 0;

};

Figure 6.16.: The interface for a CoDiPack tape. Documentation is removed for
brevity. The interface defines all functions, that are required for a new
tape implementation.

CoDiPack provides a virtual class for the tape interface defining virtual functions
as well as template functions. The definition can be seen in Figure 6.16. All tape
implementations extend from this class. The user is able to see which functions are
tape specific and which functions are part of the interface. For all definitions inside
of CoDiPack, the tape interface is never used. This is a development overhead, but
gives the user a distinct point where all information for a new tape is available.
For a new tape implementation the user must copy the interface file and implement

all functions. In combination with the ActiveReal the new tape can be used without
any other implementations.

6.13.4. Tape memory efficiency

The most common problems with memory are padding related or that the wrong
data structures are used. Both problems can be avoided by using structs of arrays
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for the data. That is, the structure
struct Data {
int index;
double jacobi;

};

requires padding. The size of the data is 16 bytes where the size of the members is
12 bytes. The structure
struct DataArray {
int* index;
double* jacobi;

}

requires no padding.
The use case for AD tapes requires multiple data streams with different access

frequencies. For a Jacobi tape this would be the data streams Jacobi (double), index
(int) and numberOfArguments (uint_8). The streams Jacobi and index would have
the same access frequency since one entry is stored for each argument of a statement.
The numberOfArguments stream is accessed less often because only one value per
statement is stored. The simplest option to store these streams is the allocation
of data chunks. Every time a chunk is full a new one is allocated. Because of the
different access frequencies, the chunks for different data streams will run out of sync.
It is crucial for the reverse interpretation to access the chunks in the correct order
with the correct interpretation bounds.
The implementation in CoDiPack uses two structures for the management. The

data is managed in the Chunks structure. The basic interface from Figure 6.17 allows
for re-sizing the data and check how much space is left. Specialized implementations
define chunks with one, two, three, etc. data entries. For the streams of the Jacobi
tape, the chunks would be Chunk2<double, int> and Chunk1<uint_8> for the ar-
guments and the number of arguments respectively. Because the Jacobi and index
streams are accessed always at the same time, they can be stored in one chunk.
The management of the chunks is done by the ChunkVector structure. Figure

6.18 shows the interface and consists of the functions for storing and retrieving data,
defined in lines 22 to 28. This structure is a wrapper for a standard vector of chunks.
The important difference is its recursive nature. Each ChunkVector has a child
vector, that is integrated into the behaviour of the parent vector. If a position is
required, then the position of the parent and the child is returned. This can be seen
in the definition of the position structure in Figure 6.18 lines 6 to 11. Every time the
position of the parent vector is modified the position of the child vector is modified
accordingly. This has two advantages for the user. If he or she wants to execute an
operation, like a reset on all vectors, then the operation only needs to be called on
the root vector. The second advantage comes into play, when the user wants to add
a new data stream. The user only needs to add the new stream to the hierarchy and
everything else is handled by the library.
Figure 6.19 shows how the different access frequencies are handled by the nested
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1 struct ChunkInterface {
2
3 size_t size;
4 size_t usedSize;
5
6 ChunkInterface(const size_t& size);
7
8 size_t getSize() const;
9 size_t getUsedSize() const;

10 size_t getUnusedSize() const;
11 void setUsedSize(const size_t& usage);
12
13 void reset();
14
15 template<typename ... Data>
16 void setDataAndMove(const Data&... values);
17
18 template<typename ... Data>
19 void dataPointer(const size_t& index, Data*... &pointer);
20 };

Figure 6.17.: The interface for data chunks in CoDiPack. Each chunk can have mul-
tiple data arrays.

structures. Each lane shows one data stream, that is stored in a ChunkVector. The
lowest lane is the root vector and the highest lane is the terminating vector. The blue
bars on the lanes show the boundaries between chunks of one data stream. If the AD
tool needs now to interpret over all the data items from position pa to pb, then there
are 4 chunk boundaries in between. At these positions the interpretation needs to be
stopped, the next chunk loaded and then the interpretation can be continued.

6.13.5. Tape modularization
The goal for CoDiPack is to implement all possible combinations of AD taping strate-
gies. Primal vs. Jacobi taping and linear indexing vs. index reuse. It is required,
that the implementations provide a fast mode for advanced users without any bound
checking and with preallocation of the memory. The default mode should perform
the bound checks and have an on the fly memory allocation. This gives eight different
tape implementations, that differ in certain areas and are the same in other areas.
Usually the common logic can be extracted in a base class and all other classes can
extend from this base class. The recursive structure of the data management and
the use of many templates in CoDiPack, makes this approach very complex from an
implementation standpoint.
The chosen implementation uses super macros like the expression template imple-

mentation, to define each module in a separate file. The tape implementations can
then include different modules. This makes the tape implementations less readable
but simplifies the definition of template types.
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1 template<typename ChunkData, typename NestedVector = EmptyChunkVector>
2 struct ChunkVectorInterface {
3 typedef typename NestedVector::Position NestedPosition;
4 typedef ChunkData ChunkType;
5
6 struct Position {
7 size_t chunk;
8 size_t data;
9

10 NestedPosition inner;
11 };
12
13 ChunkVectorInterface(const size_t& chunkSize, NestedVector& nested);
14
15 void resize(const size_t& totalSize);
16
17 void reset(const Position& pos);
18 void reset();
19
20 Position getPosition() const;
21
22 void reserveItems(const size_t items) const;
23
24 template<typename ... Data>
25 void setDataAndMove(const Data& ... data);
26
27 template<typename ... Pointers>
28 void getDataAtPosition(const size_t& chunkIndex, const size_t&

dataPos, Pointers* &... pointers);
29
30 template<typename FunctionObject, typename ... Pointers>
31 void forEach(const Position& start, const Position& end,

FunctionObject& function, Pointers* &... pointers);
32 };

Figure 6.18.: The interface for the chunk vectors in CoDiPack. They manage the
chunks and build a recursive structure.

Statements:
Jacobi values:

pb pa

Figure 6.19.: Example for the data stream of a Jacobi tape implementation. The blue
bars show the chunk boundaries and the marks pa and pb a possible
region for the interpretation.
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6.13.6. Customization of CoDiPack

It is quite common to enable and disable some logic in a library by preprocessor
macros. A good example is the check in CoDiPack for a zero Jacobi entry. If the
Jacobi is zero, then the Jacobi should not be pushed on the tape. If this functionality
needs to be disabled the usual implementation would look:

#if CODI_ENABLE_JACOBI_ZERO_CHECK
if(jacobi != 0.0) {

#endif
tape.pushJacobi(jacobi);

#if CODI_ENABLE_JACOBI_ZERO_CHECK
}

#endif

The preprocessor macros make the code very hard to understand and the indention
of the code between the two macros is not clear. The same effect can be achieved if
a constant boolean is added to the if statement. The new code is then:

static const bool CODI_EnableJacobiZeroCheck = true;
...
if(!CODI_EnableJacobiZeroCheck || jacobi != 0.0) {
tape.pushJacobi(jacobi);

}

The variable CODI_EnableJacobiZeroCheck can force the if to be true. If CODI_
EnableJacobiZeroCheck is true, then the first element of the if is false and the second
element is checked. If CODI_EnableJacobiZeroCheck is false, then the first element
of the if is always true and the second element does not need to be checked. The
compiler can optimize this code such that the if is completely eliminated or the
constant true is never evaluated.
The readability of the code has improved but the if statement is now quite hard

to understand. With the introduction of a macro, the readability can be further
improved:

static const bool CODI_EnableJacobiZeroCheck = true;
#define ENABLE_CHECK(option, condition) if(!(option) || (condition))
...
ENABLE_CHECK(CODI_EnableJacobiZeroCheck, jacobi != 0.0) {
tape.pushJacobi(jacobi);

}

It is now clear that the check is only enabled if the option is true. The advantage of
the approach is, that it reads like a normal if and the code structure is still intact.
If several of these checks are required in a code block, then the macro approach with
#if and #endif becomes in most cases unreadable.

This is a short overview of the main design decisions in CoDiPack. The implemen-
tational details will be covered in additional papers.
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6.14. Conclusions on AD implementations
Table 6.2 shows the summary of the different implementations while Figure 6.20
shows the memory for the different implementations and optimizations for the l2_
norm. The figure displays the combined memory for the tape, the adjoint vector and,
if necessary, the primal vector. It can be seen that there is a jump from the operator
taping to statement level taping. Reuse of the indices yields only small improvements
with respect to the memory. In bigger applications where several different functions
are called, the effect is more substantial since the size of the adjoint vector is greatly
reduced. The figure states that the improved primal value taping approach uses less
memory than the Jacobi taping approach. This can change if advanced optimization
techniques are used. The primal value taping needs more memory if it is to handle
constant or passive values. This can diminish the memory advantage. The Jacobi
taping has the advantage of an easy implementation and most of the computations
are performed when the tape is recorded. The interpretation of the tape consists
only of a multiplication and update operation that makes the implementation very
general and thereby easy to maintain. Advanced techniques like index reuse and
passive values are also implemented in an easy way, yielding a definite reduction in
memory.
The Jacobi taping is best applied to legacy codes that have not been designed

for AD. The user can use AD in such a setting without knowing the details of the
implementation and without any restrictions on the functions that can be used e.g.
memcpy. If a code is specifically designed for AD then the use of the primal value
taping is more favorable. Implementation guidelines for the functions can be written
in such a way that the required memory will be optimal.

Here some general guidelines are presented minimizing the memory used by differ-
ent implementations.

• General guidelines for AD:
• Make statements as large as possible
• Reduce the number of intermediate variables

• Guidelines for the primal value taping:
• Define constant values as global variables
• Do not use passive values

• The guidelines for the index reuse are:
• Do not use C-like memory operations like malloc, free, memcopy, etc.
• Avoid assignments of variables e.g. c = a;

Remark 6.8 (Code optimizations in operator overloading AD tools)
For operator overloading tools it is very hard to break out of the limitations of the
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Figure 6.20.: Comparisons of different AD implementations and optimizations for the
l2_norm example. The top graph shows the memory consumption for
large vectors. The lower graph shows the same for small vectors and
illustrates the crossovers between the different implementations.
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language. Every technique presented in this chapter can only “see” one statement
at a time and therefore all optimizations occur at the statement level. Some
techniques require each statement to contain as much information as possible.
If the code is written so that one operation is performed per statement, then
the operator overloading tool will require much more memory. The operator
overloading approach has no means to break this restriction with pure language
tools. It would need to gain access to the abstract syntax tree (AST) and
modify this tree in order to optimize the tape. An other option would be that
the compiler knows about the operator overloading tool and will optimize the
code so the required memory for the tape is minimized.
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7. Numerical results
Global memory reduction techniques are introduced were successfully applied to the
differentiated TRACE code. This can reduce memory and time requirements but the
results have been mediocre. Additional improvements can be reached through the
analysis of available AD tools and a comparison for memory efficiency. These steps
are now combined and the performance of the solution analyzed.
The results are presented for the CRESENDO test case. On this case the two

derivative methods Black Box and Reverse Accumulation are compared on a perfor-
mance level and how the optimizations affect their respective performance. The two
AD tools dco/C++ and ADOL-C are compared on the CRESENDO test case, too.
For the THD test case, the convergence properties of the two derivative algorithms

are analyzed more closely.

7.1. CRESENDO test case
The timing and memory results for the CRESENDO case are presented in Table
7.1. The table shows the time factors for the Black Box and Reverse Accumulation
algorithms. For the Black Box algorithm the time is dominated by the recording and
evaluation of the tape. The time for the Reverse Accumulation algorithm mainly
determined by the time for the evaluation of the tape. All time and memory con-
sumption is measured for one iteration of the fixed point solver G. The measurements
for the CRESENDO case are done with dco/C++. A comparison between dco/C++
and ADOL-C is discussed separately.
The values in Table 7.1 show that the memory and time requirements for G without

optimizations are quite high. The introduction of function checkpoints reduces the
required memory by 50%. Especially the computation of the Euler flux and the setup
of the implicit matrix produces the greatest reduction in memory, but the time for the
evaluation increases for both methods. The impact on the Black Box method is less
severe because the recording of the function checkpoints is shifted to the evaluation
of the tape. The impact on the Reverse Accumulation procedure is more severe.
Here, during the evaluation of the tape, the function checkpoints must be recorded,
slowing the process down.
The picture is reversed for the preaccumulation. Here the full Jacobi matrix is

evaluated for the augmented code parts. The time for the recording of the tape
increases, but through the reduction of the number of statements and Jacobi entries
a faster reverse evaluation of the tape is achieved. The time factor for the Reverse
Accumulation process is reduced by two counts and is 33% faster than the algorithm
without any memory reduction.
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7. Numerical results

Table 7.1.: Time and memory results for the CRESENDO test case. The values
correspond to one evaluation of G and show the computation of ∂G

∂y

T
d

with an arbitrary d ∈ Y .‘x=yes’ states that additionally the sensitivities
with respect to x are calculated. ‘FC’ is the short notation for function
checkpoint and ‘PreAcc’ stands for preaccumulation.

Black Box Rev. Acc. Memory Memory-
(time factor) (time factor) in GB factor

primal – – 12.85 1.00
dco x=yes start version (estim.) – – 617.77 48.07
dco x=yes 24.18 7.88 417.00 32.45
dco x=yes FC calcEulerFluxSides 25.58 11.45 316.00 24.59
dco x=yes FC impMatrix 26.55 11.98 301.00 23.42
dco x=yes FC ilu_decomp 25.63 9.93 379.00 29.49
dco x=yes FC subforward_backward 24.68 8.59 415.58 32.34
dco x=yes FC all 4 32.17 18.68 201.45 15.68
dco x=yes PreAcc calcEulerFluxSides 31.77 6.65 331.73 25.82
dco x=yes PreAcc impMatrix 63.44 7.03 359.78 28.00
dco x=yes PreAcc phi 29.66 7.85 413.36 32.17
dco x=yes PreAcc all 3 76.98 5.76 272.21 21.18
dco x=yes PreAcc all full 81.99 5.37 263.16 20.48
dco x=no 19.64 6.10 349.31 27.18
dco x=no FC calcEulerFluxSides 20.89 9.39 263.43 20.50
dco x=no FC impMatrix 21.97 9.93 246.58 19.19
dco x=no FC ilu_decomp 21.12 8.11 311.43 24.24
dco x=no FC subforward_backward 20.15 6.80 348.02 27.08
dco x=no FC all 4 27.62 16.45 164.62 12.81
dco x=no PreAcc calcEulerFluxSides 24.36 5.04 274.34 21.35
dco x=no PreAcc impMatrix 47.47 5.24 290.48 22.61
dco x=no PreAcc phi 22.48 6.08 345.51 26.89
dco x=no PreAcc all 3 54.93 4.15 213.37 16.60
dco x=no PreAcc all full 56.41 4.11 209.75 16.32

The typical configuration for the Reverse Accumulation process is that the control
x is not taped and preaccumulation is enabled for all possible functions.

The first line in the figure is an estimation on how much memory is required if
the original version of dco/C++ would still be used. Due to a careful study of
the memory structures in Chapter 6 and the data layout change for dco/C++ from
Section 6.12.1, the required memory is reduced by 36%.
The Black Box algorithm has no favored configuration that would result from

Figure 7.1. The activation of the function checkpoints reduces the memory but
increases the run time. Here, the results in Table 7.2 for the block checkpointing
from Section 5.6 are promising. Table 7.2 puts the default options into relation with
the results from the block checkpoints.
Because the block checkpoints perform the differentiation for each block separately,

the total required memory depends on how the blocks are distributed on the processes.
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7.1. CRESENDO test case

Table 7.2.: Block checkpointing memory results for the CRESENDO test case. The
values correspond to one evaluation of G and show the computation of
∂G
∂y

T
d with an arbitrary d ∈ Y .‘x=yes’ states that additionally the sensi-

tivities with respect to x are calculated.

32 Processes 16 Processes
dco x=yes 417.00 Gb 417.00 Gb
dco x=no 349.31 Gb 349.31 Gb
dco x=yes Block CP 201.84 Gb 120.19 Gb
dco x=no Block CP 178.93 Gb 107.37 Gb

If each process has only one block, there would be no memory reduction. The more
blocks a process computes, the greater the memory reduction will be. This can be
seen very nicely with the jump from 32 process to 16 processes. Each process has to
handle more blocks and therefore an additional 40% of memory can be saved. The
run with the 16 processes would take twice the time but illustrates the dependence
of the total memory with respect to the block distribution on the processors.
The time for the block checkpoints on the 32 processes is nearly the same as for the

default configuration of the Black Box algorithm because intermediate checkpoints
are used. The time increases slightly since the intermediate checkpoint has to be
loaded.
The comparison of ADOL-C and dco/C++ needed to be done on a different ma-

chine of the Elwetritsch cluster. The times differ from the results in Table 7.1. The
big memory node has a slower processor and the memory bandwidth is shared by
more cores so the overall performance of memory limited applications is reduced. In
Table 7.3 it can be seen that the memory requirement of ADOL-C is larger than the
one of dco/C++. This arises from the different taping strategies. ADOL-C uses a
primal value taping strategy based on operator taping and reuses indices. In contrast,
dco/C++ uses a Jacobi taping approach that is based on expression templates and
a linear indexing scheme. The example of the l2 norm in Figure 6.20 on page 171
shows that the primal value taping should have a slight advantage over the Jacobi
taping approach. This is just an example to gain intuition as to how the different ap-
proaches behave. The real world comparison on TRACE shows that expressions can
get larger and can save additional memory under the expression template approach.
An additional advantage of dco/C++ is the treatment of passive values. They can be
ignored for Jacobi tapes. ADOL-C has no implementation for passive values because
all variables have an index.
The large time factor of the ADOL-C Black Box algorithms and Reverse Accumu-

lation algorithms can not only be explained by the larger memory. If the memory
bandwidth were the restraining factor, then the time of ADOL-C should only be two
times the one of dco/C++. The other advanced techniques, function checkpoints
and preaccumulation, can not be implemented for ADOL-C and are therefore not
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7. Numerical results

Table 7.3.: Time and memory results for the CRESENDO test case for AD tools
dco/C++ and ADOL-C. The values correspond to one evaluation of G
and show the computation of ∂G∂y

T
d with an arbitrary d ∈ Y .‘x=yes’ states

that additionally the sensitivities with respect to x are calculated. Com-
putation on the big memory node of the Elwetrisch cluster.

Black Box Rev. Acc. Memory Memory-
(time factor) (time factor) in GB factor

primal – – 12.85 1.00
dco x=yes 38.55 8.83 415.03 32.34
ADOL-C x=yes 166.31 54.16 754.90 58.83
dco x=no 24.23 6.83 346.87 27.03
ADOL-C x=no 143.75 46.36 487.32 37.98

compared. The function checkpoints in TRACE require an AD tool that can switch
off the recording for parts of the code. Preaccumulation requires that parts of the
tape be evaluated and that the tape be partly reset, both cases are not supported by
ADOL-C.

The convergence history for the Reverse Accumulation and Black Box procedures
are shown in Figures 7.1 and 7.2 respectively. The Reverse Accumulation residuals
show the property from Section 3.2, that the Reverse Accumulation process inherits
the convergence rate of the primal fixed-point iteration. The residuals for the Black
Box algorithm are plotted “reversed” because the algorithm starts at iteration 2000
and goes back in pseudo time until it reaches time step 0. It is interesting to note
that for both residuals the convergence rate is the same as for the primal after a
small initial plateau of 300 steps (2000 - 17000). This property can not be derived
directly, as for the Reverse Accumulation procedure, but a similar argument would
give the same intuition.
It is also interesting to see the jump in the adjoint residual in step 300. At this

point the primal changes from a robust initial period to the regular formulation.

7.2. THD test case
On the THD test case the properties of the Black Box (BB) and Reverse Accumula-
tion (RA) algorithms as well as a comparison between the two is discussed.
The convergence history of the BB method is shown in Figure 7.3. After an initial

build up phase, the convergence rate from the primal is also seen for the BB method.
The rise in the residuals at step 2500 and 1500 do not change any significant properties
of the solution either. The high rise from step 500 to 0 changes no major properties
of the solution. The BB solution at step 0 is shown in Figure 7.4. It is the base line
solution and considered to be the exact solution for all further comparisons. The
difference for the solution at 0 and 500 can be seen in Figure 7.5. The top picture
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Figure 7.1.: CRESENDO Reverse Accumulation convergence history.
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Figure 7.2.: CRESENDO Black Box convergence history.
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in the figure displays the angle between the two solutions. It is calculated with the
equation

ωi = arccos( 〈x̄
0
i , x̄

500
i 〉∥∥x̄0

i

∥∥ ∥∥x̄500
i

∥∥
where x̄j indicates the solution at the j-th pseudo time step and i runs over all

nodes of the mesh. At the base of the rotor and at a few points of the stator do the
directions of the solution vary strongly. The lower picture shows the length of the
difference between the two solutions in relation to the base solution. The formulation
that is used is

ri =
∥∥x̄0

i − x̄500
i

∥∥∥∥x̄0
i

∥∥ .

It shows that there is a difference in the length not only where the directions differ
in the two solutions. There are additional areas which have a different length scale of
the direction. Especially on the suction side of the stator greater developments are
still seen. But these changes are not so important since the angles of the directions
are already well defined.
If the same analysis is performed for the combinations (0, 1500), (0, 2500) and

(0, 3500) the result is that from iteration 2500 on the gradient is well defined and
only in some regions do larger discrepancies exist. The data for the comparison of
iteration 0 and iteration 2500 is shown in Figure 7.6.
Now it is analyzed how well does the BB method behave if the solution process is

stopped earlier. Figure 7.7 shows the convergence behavior of the BB method for all
possible starting points from 100 to 4200 with a step size of 100. The BB process
is executed as if the primal iteration would have stopped after e.g. step 3400. The
figure shows only the L1 residual for the the control x but all other residuals look the
same. It is interesting to note that the convergence behavior for all starts look nearly
the same. If the results from all the different start locations are compared, then the
results converge to the BB solution that is started at the convergence point of the
primal solution. From a starting point of 3000 on, the direction is for most parts well
defined. The scaling of the solution is still developing. The data is shown in Figure
7.8. Even with a starting point at iteration 4000 there are still some differences
especially at the edge of the rotor.
The RA method shows the same convergence behavior as the primal solution as

it is seen in Figure 7.3. The comparison of the RA solution with the BB method in
Figure 7.9 shows that the direction of the RA solution is established but even with
a fully converged RA method there are still some discrepancies. The scaling on the
pressure side of the stator is for example off by a factor of 5.
The direction of the solution, if the RA process is terminated after 1500 iterations,

is quite good. The scaling of the solution is not yet established, as it is shown in
Figure 7.10. After 2500 steps everything can be considered as converged.
In the next step the same analysis for the RA method as for the BB method is

performed. It is started as if the primal would have converged after e.g. 3500 steps.
The results of all runs are shown in Figure 7.11. Only the runs with starting points at
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Figure 7.3.: THD Black Box and Reverse Accumulation convergence histories.
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Figure 7.4.: THD Black Box solution for the control sensitivities.

1100, “2500”, 3400 and 4200 are converged. They are shown in Figure 7.12. It shows,
that the RA method is only stable if the residual of the primal is small enough as it
is developed in the theory of Section 3.2. The few points where the RA algorithms
converge, can happen, when the state of the fixed-point solver G has no eigenvectors
that disturb the result. The solutions for the 3400 and 4200 starting point look good.
The solution differences for the 3400 start point is shown in Figure 7.13
From the analysis of the data it can be said that the Black Box method always

yields a numerically correct result. The quality of the result depends on the quality of
the primal solution. It is possible to terminate the BB process before it has reversed
the entire trajectory, but as always, this would introduce an error in the derivative
data.
The results for the RA process show that the primal solution needs to be converged

sufficient enough. Otherwise, the convergence of the RA method can not be guar-
anteed. If the primal solution converges sufficiently then the RA method provides
results that are comparable to the BB method.

182



7.2. THD test case

Figure 7.5.: THD difference of the Black Box solution at point 0 and 500.
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Figure 7.6.: THD difference of the Black Box solution at point 0 and 2500.
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Figure 7.7.: THD Black Box convergence histories for different starting points. The
L1 residuals with respect to x is shown.
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Figure 7.8.: THD difference of the base Black Box solution and the Black Box solution
that is started at the primal iteration 3000.
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Figure 7.9.: THD difference of the base Black Box solution and the Reverse Accumu-
lation solution.
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Figure 7.10.: THD difference of the base Reverse Accumulation solution and the so-
lution after 1500 steps.
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Figure 7.11.: THD Reverse Accumulation convergence evaluation
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Figure 7.12.: THD Reverse Accumulation convergence evaluation (Converged start-
ing points)
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Figure 7.13.: THD difference of the base Reverse Accumulation solution and the Re-
verse Accumulation solution that is started at iteration 3400 of the
primal.
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8. Conclusion and outlook

The topic of the thesis covers the semiautomatic transition of simulation software
to design software. The essential part of this process is described in Chapter 4, by
postulating that the software should be treated as a black-box. With this approach
every floating point value is replaced by the computation type of the AD tool. This
guarantees a derivative computation, that is always consistent with the primal com-
putation. After a successful compilation of the so modified code, the first step in the
transformation of the simulation software is complete. The next important step is
the verification and validation of the correct derivative results. The most important
aspect is the verification of interfaces like the state. The state of the program is used
to reset the program to a certain point in order to recompute some values. With-
out the correct definition of the state, every advanced technique similar to Reverse
Accumulation or checkpointing will miss dependency information and yield wrong
results. A big step forward in the automated analysis of such interfaces is made in
this thesis. The tagging technique described in earlier chapters is a novel approach,
that gives the AD community a new tool for the verification and analysis of AD
based derivative software. The tagging allows for an automated testing and online
verification of the correct states and their interfaces, yielding a correct derivative for
the simulation software.
For small and medium cases the black-box approach is sufficient and will yield good

enough run-time and memory requirements. For large scale applications that require
high performance clusters, further optimizations need to be performed insuring fea-
sible run-time and memory requirements are reached. It is shown in this thesis, that
on all levels of detail, beginning with the derivative algorithms on the highest level
and ending with the AD tool implementation on the lowest level, improvements have
to be made.
The theory for the derivative algorithms is built along the assumption that for

correct derivative results the iteration for the primal and adjoint should be as consis-
tent as possible. It is the first theory that provides a completely consistent approach
by using a fixed point iterator scheme that includes all implementation details of
the application. For the analysis, the fixed point iterator is simplified and refined
through several steps, such that all previous approaches like Reverse Accumulation,
Giles’ Exact Dual and the General Adjoint are covered. This shows that simplified
algorithms could be employed, but only if all necessary conditions apply, that is the
solution is converged “sufficient” enough. With the help of AD it is quite simple
to generate all required derivatives for all of the different schemes and to employ
them, even the most general Reverse Accumulation method. A further step forward
is the introduction of the Black Box algorithm. The full differentiation and reversal
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8. Conclusion and outlook

of the full primal trajectory requires the most resources, yet always yields the correct
derivative results. The method has no restrictions and should therefore always be
used if the resources are available. It is also very good for verification or as a reference
solution.

Improving the memory and time requirements for one step of the fixed point itera-
tor is the next step. Existing analysis for the hot spots in a differentiated software is
extended such that it is now feasible for use in large scale applications. This includes
the new data layout and the correct tracking of output variables. The developer can
directly focus on the improvement of the hot spots and does not need to perform a
time intensive search for them. Each hot spot can either be handled by the func-
tion checkpoint or preaccumulation technique. The detailed analysis in the thesis
provides for each technique how much memory is required and how the time require-
ments change. With this information the analysis can automatically detect which
technique is the most appropriate. Both techniques are already known to the AD
community, but there is no detailed analysis on the memory consumption, the time
requirement, possible optimizations and implementation details for either of the dif-
ferent taping strategies. Other structural optimizations depend on the specific code
and can not be established in a general framework. Nevertheless, for the TRACE
code it is shown, how a shift in the computation algorithm can reduce the required
resources dramatically.
All of the above improvements will only yield subordinate results, if the lowest level,

namely the AD tool, is not optimal for the required task. The groundwork for the
comparison of the AD tools is provided by a general analysis of the four major taping
approaches: primal value taping, primal value taping with index reuse, Jacobi taping
and Jacobi taping with index reuse. It is the most complete analysis on how an AD
tool can be implemented and improved. Some of these techniques are already used in
several AD tools, but the knowledge about the implementations and which properties
the implementations have, is most of the time not published. Therefore, it is a big
step forward, to have all of the implementation methods analyzed in a common
framework and their properties compared. Also the presentation of the argument
optimization provides a new possibility for low level memory optimizations. A further
novel implementation technique for AD tools is the linear argument optimization. It
introduces the implementation techniques of the primal value taping into the Jacobi
taping approach to further reduce the memory consumption of the tapes.
The overview of the AD tools and the comparison with the presented taping ap-

proaches yields a mixed picture, some tools for use in HPC environments exist, but
there is no tool that is specifically designed for HPC and implemented in an opti-
mal way. For the Jacobi taping approach there are promising tools available and
one could be modified such that a minimal memory consumption is achieved. The
analysis also shows that there is a taping approach, namely primal value taping with
statement level evaluation, that is currently completely unexplored and needs to be
evaluated for HPC applications.
Because of this, the new AD tool CoDiPack is created. The fundamental design

and layout of the tool is based on the knowledge gained by the analysis of the different
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taping strategies. It is therefore possible to implement all of the available strategies in
one common framework and have the minimal memory consumption. The presented
design patterns for CoDiPack provide, that new ideas can be implemented quite
easily. This enables CoDiPack to be used in large scale software, to provide a base
for a comparison of the four different taping strategies and to allow for further AD
based research.

The next step for further research is the comparison of the primal value taping
and Jacobi taping approach on real world applications and not only on small test
problems. Here the Jacobi approach has a clear advantage during the tape evaluation.
It needs less operations per statement and should therefore be faster. On the other
hand, the primal value taping approach requires less memory per statement and can
therefore also be competitive if the application is memory bound. Theoretically, the
tape recording for the primal value tapes should be faster because the gradient for
each statement does not need to be computed. Only tests with various applications
will yield insights into the performance of both approaches.
These tests will raise the general question about the lower bound for the time factor

of an operator overloading AD tool. This factor highly depends on the hardware
architecture, the simulation software, the AD tool and the specific taping approach.
It is therefore nearly impossible to give a general answer. If the simulation code is
fixed, if it is not too involved and if the hardware is fixed, then it should be possible
to derive a lower bound for the time factor. This lower bound can then be used to
improve the AD tool implementation and function as a benchmark test for already
existing AD tools and further ideas.
The availability of several different tools is important and gives the user the flexi-

bility to choose the most appropriate. But if the user cannot easily see how the tools
differ and which tool is the most appropriate for the task at hand, the choice becomes
quite difficult and can even discourage the use of an AD tool. It is also obvious that
over the years several different implementation optimizations have been rediscovered
several times by different tool developers. These implementation aspects are mostly
not published which raises three problems. First, new tool developers have no lit-
erature base for their new ideas. Second, users have no means to compare tools on
a theoretical level. Third, and most importantly, the code optimization of AD tool
implementations is stuck at a certain level, because a single person can not evaluate
all possible avenues for such optimizations. It is therefore very important that the
development of new operator overloading AD tools and existing ones be shifted to
a more generalized framework, where different modules are available (e.g for index
management or data management of the tapes). Only then can a more focused im-
provement of different aspects or modules be made possible, enhancing all tools that
use these modules. The development of new tools should then be faster due to the
reuse of exiting ideas.
Such a framework also allows for more experimental research with respect to ac-

celerator cards for AD. The recording time of the tape is still the biggest bottleneck
for an efficient use of the Black Box algorithm. By using the PCI Express bus, the
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8. Conclusion and outlook

additional memory bandwidth constraints for writing the tape data can be reduced.
A next step could be the direct evaluation of the tape on the accelerator card. Espe-
cially, the Jacobi taping approach lends itself to this solution because of the simple
interpretation loop. A final advantage of the accelerator cards could be the use of
another level of parallelization. During the tape evaluation the processor can perform
other tasks like the recomputation from a checkpoint.

All of these studies will be limited by the general operator overloading approach,
namely creating a new user defined calculation type. The compilers are more con-
servative for the code optimization of user defined types and also the structure of
a double and an int prevents the compiler from several code optimizations such as
vectorization. It is therefore necessary to study the integration of AD tools into the
code optimizations of a compiler. This avenue could also explore specialized code
optimizations for AD tools or expression templates in general. One possible option
could be the compression of several statements into one so the expressions become
larger and less tape memory is required.
A step further would be to reevaluate the question if source transformation for

large C++ codes is possible. The compiler landscape has changed in the last years
and especially the LLVM [LA04] compiler suite makes the transformation of source
code more accessible than before. At least a mixed approach where smaller code
parts are transformed and directly integrated as expressions sounds very promising
for primal value taping approaches.
It is safe to conclude that large scale simulation software can already be handled

by AD. But, the research field of AD also offers a wide range of open questions that
need to be tackled over the next years to further improve AD for HPC computers.
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A. Calculus definitions

Definition A.1 (Directional derivative)
Let F = (F1, F2, ..., Fm) : X ⊂ Rn → Rm be a differentiable function. Then the
directional derivative of F in the direction d ∈ Rn at the point x ∈ X is defined
by

∂F

∂d
(x) := lim

h→0

F (x+ h · d)− F (x)
h

.

Definition A.2 (Partial derivative)
Let F = (F1, F2, ..., Fm) : X ⊂ Rn → Rm be a differentiable function. Then the
partial derivative at the point x ∈ X is defined by the directional derivative in
the directions ei ∈ Rn. ei for all i = 1...n is defined by [ei]j = δij , j = 1...n. This
yields the directional derivative as

∂F

∂xi
(x) := ∂F

∂ei
(x) = lim

h→0

F (x+ h · ei)− F (x)
h

i = 1...n .

Definition A.3 (Gradient)
Let F : X ⊂ Rn → R be a differentiable function. The gradient of F at the
point x ∈ X is the vector of all partial derivatives of F .

∇F (x) := grad F (x) =


∂F
∂x1

(x)
...

∂F
∂xn

(x)


Definition A.4 (Jacobi matrix)

Let F = (F1, F2, ..., Fn) : X ⊂ Rn → Rm be a differentiable function. The Jacobi
matrix of F at the point x ∈ X is defined by the partial derivatives of F .

F ′(x) := df

dx
=



∂F1
∂x1

(x) ∂F1
∂x2

(x) · · · ∂F1
∂xn

(x)
∂F2
∂x1

(x) ∂F2
∂x2

(x) · · · ∂F2
∂xn

(x)
...

...
. . .

...

∂Fm
∂x1

(x) ∂Fm
∂x2

(x) · · · ∂Fm
∂xn

(x)


For a real valued function F : X ⊂ Rn → R there is the following relation between
the Jacobi matrix and the gradient

∇F (x) = dF

dx

T

(x) .
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A. Calculus definitions

Definition A.5 (Chain rule)
Let X ⊂ Rn, Y ⊂ Rm, Z ⊂ Rk be an open set. Let f : X → Y and g : Y → Z
be real differentiable functions, then the derivative of the function F := g ◦ f at
the point x ∈ X is defined by the chain rule

F ′(x) = (g ◦ f)(x) = g′(f(x)) · f ′(x) .

This covers the basic terms of the derivative calculus, that are required for AD.
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B. Trivial graph format definition

The definition for the trivial graph format (TGF) is taken from Wikipedia [Wik16].
The file has to start with a definition of all nodes. Each line defines one node where
the first “word” in the line define the identifier. The reminder of the line defines the
label for the node. The # character separates the node list from the edge list. It
indicates that all nodes are written and that the following lines define the edges. Each
line defines an edge and the first two “words” have to be identifiers that are defined
in the node list. The direction of the edge is from the first identifier to the second
identifier. The definition of the format is also explained in the following listing:
0 The label for a node
1 Node one
2 Node two
3 Node three
...
N Node N last node
#
0 1 The label for an edge
1 2 Edge from node one to node two
1 N Edge from node one to node N
2 N Edges can also have empty labels
3 N

An example graph from the following listing is represented by the figure in B.1.
1 Start thesis
2 Add content
3 Validate content
4 Show supervisor
5 Finish thesis
#
1 2
2 3
3 4
4 5 Supervisor satisfied
4 2 Supervisor not satisfied
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B. Trivial graph format definition

Figure B.1.: Rendering of the sample TGF graph.
Start thesis

Add content

Validate content

Show supervisor

Finish thesis

Supervisor satisfied

Supervisor not satisfied
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