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Abstract

Cell migration is essential for embryogenesis, wound healing, immune surveillance, and
progression of diseases, such as cancer metastasis. For the migration to occur, cellular
structures such as actomyosin cables and cell-substrate adhesion clusters must interact.
As cell trajectories exhibit a random character, so must such interactions. Furthermore,
migration often occurs in a crowded environment, where the collision outcome is deter-
mined by altered regulation of the aforementioned structures. In this work, guided by a
few fundamental attributes of cell motility, we construct a minimal stochastic cell migration
model from ground-up. The resulting model couples a deterministic actomyosin contrac-
tility mechanism with stochastic cell-substrate adhesion kinetics, and yields a well-defined
piecewise deterministic process. The signaling pathways regulating the contractility and
adhesion are considered as well. The model is extended to include cell collectives. Numer-
ical simulations of single cell migration reproduce several experimentally observed results,
including anomalous diffusion, tactic migration, and contact guidance. The simulations
of colliding cells explain the observed outcomes in terms of contact induced modification
of contractility and adhesion dynamics. These explained outcomes include modulation
of collision response and group behavior in the presence of an external signal, as well as
invasive and dispersive migration. Moreover, from the single cell model we deduce a pop-
ulation scale formulation for the migration of non-interacting cells. In this formulation,
the relationships concerning actomyosin contractility and adhesion clusters are maintained.
Thus, we construct a multiscale description of cell migration, whereby single, collective,
and population scale formulations are deduced from the relationships on the subcellular
level in a mathematically consistent way.



Zusammenfassung

Zellmigration spielt eine fundamentale Rolle für Embryogenese, Wundheilung, Immunü-
berwachung und Kranheitsverläufe, wie zum Beispiel bei Krebsmetastase. Damit die Mi-
gration stattfinden kann, müssen Zellstrukturen, wie z.B. Aktin-Myosin Stränge, mit Zell-
Substrat-Adhäsionsclustern interagieren. Da Zelltrajektorien von stochastischer Natur sind,
gilt dies ebenso für die Interaktionen. Zudem findet Zellmigration oft in dichtgedrängten
Umgebungen statt, was das Ergebnis der Zellkollision durch die geänderte Regulation der
oben genannten Strukturen beeinflusst.

Ausgehend von einigen fundamentalen Eigenschaften der Zellmotilität wird in dieser
Arbeit ein minimales stochastisches Zellmigrationsmodell von Grund auf konstruiert. Das
entwickelte Modell verbindet einen deterministischen Aktin-Myosin Kontraktionsmecha-
nismus mit einer stochastischen Adhäsionskinematik von Zellsubstraten. Dies liefert einen
wohldefinierten, stückweise stetigen, deterministischen Prozess. Die Signalpfade, welche
die Kontraktion und Adhäsion regulieren, werden dabei ebenfalls beachtet. Das Modell
wird dann erweitert, um auch Zellkollektiven Rechnung zu tragen. Numerische Simula-
tionen der Migration einzelner Zellen sind in der Lage, mehrere experimentell beobachte-
te Sachverhalte zu repoduzieren, einschließlich anormaler Diffusion, taktischer Migration
und

”
contact guidance“. Die Simulationsergebnisse für kollidierende Zellen entsprechen

dem experimentell beobachteten Verhalten hinsichtlich kontaktinduzierter Veränderungen
der Kontraktilität und Adhäsionsdynamik. Modulation der kollisionsinduzierten Reakti-
on der Zellen, kollektives Verhalten in Gegenwart externer Signale, sowie invasive und
dispersive Migration können durch diesen Modellierungsansatz ebenfalls erklärt werden.
Darüberhinaus wird aus dem Einzelzellmodell eine Formulierung auf der Populationsskala
für die Migration nichtinteragierender Zellen hergeleitet, in der die Beziehung zwischen
Aktin-Myosin Kontraktilitäts- und Adhäsionsclustern erhalten bleibt. Insgesamt wird ei-
ne mehrskalige Beschreibung der Zellmigration entwickelt, wobei Formulierungen für die
Einzel-, Kollektiv- und Populationsskalen aus den Zusammenhängen auf der subzellulären
Ebene mathematisch konsistent hergeleitet werden.



Acronyms

CIL Contact inhibtion of locomotion

ECM Extracellular matrix

FA Focal adhesion

GTP Guanosine triphosphate

MSD Mean squared displacement

PDMP Piecewise deterministic Markov process

PIP Phosphoinositides

SF Stress fiber
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Chapter 1

Introduction

Cell migration is a fundamental biological process that is required for normal development
and maintenance of an organism, but which can also contribute to its demise. In embryoge-
nesis, coordinated migration of neural crest cells is required for formation of many organs
and tissues in the body [116]. Migration of epithelial sheets and leukocytes is required
for wound healing and immune response. During metastasis, which is the leading cause
of death among cancer patients [18], tumor cells are able to become motile which enables
them to migrate to distal organs.

Along with a variety of functions, there is also a multitude of cell migration modes. For
example, spermatozoa and E.coli rely on flagellar activity to swim, leukocytes rely on rolling
in the bloodstream, and epithelial sheets rely on tight coordination through intercellular
junctions. The focus of this work, however, is on the crawling type of motion. Such
motion, termed mesenchymal, is often described as a cyclical process, where morphological
changes to the cell body are accompanied by coordinated interaction of adhesive contacts
with the substrate to produce a crawling kind of movement [64]. The migration cycle
comprise the following steps: protrusion of the membrane at the leading edge, assembly of
adhesions at the front, and their release at the rear [1]. Following the last step, the cell body
contracts, allowing the cell to move forward. Here, transmission of internally generated
contractile forces onto an underlying substrate through strong adhesions is necessary to
produce locomotion. In contrast, the amoeboid mode relies on more numerous, but weaker
adhesions, and a more contractile cell body [90]. A cell, however, can transition from
mesenchymal to amoeboid mode and vice versa, depending on external conditions [70].

Cell migration is a highly complex process involving interactions of different cellular
structures, each contributing to a certain aspect of motility. This is reflected in numerous
mathematical models, which highlight how a particular set of interactions translate into
the observed migration patterns (see [49], [132] for reviews on cell motility models and [79]
for a review on modeling of its critical components). For example, the contribution of,
among other things, actin polymerization and myosin induced contractility on cell shape
has been investigated in free boundary and phase-field models of steadily migrating cells
in [16], [72], [86], [99], [106]. Models of cell migration in [24], [131] explored emergence
of various motility modes due to mechanical coupling of intracellular components and the
substrate. An essential role in mediating leading edge protrusions, adhesion formation and
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CHAPTER 1. INTRODUCTION

contraction of the cell body is played by RhoGTPases - a family of signaling molecules [94],
[97]. The dynamic interaction of its members (RhoA, Rac1, and Cdc42) and their effects
on mechanical aspects of actin polymerization have been investigated in hybrid models by
Marée et al. [73], [74], where agent-based modeling was utilized. A common feature of
these models is that the resulting migration paths are not stochastic, while experimental
observations suggest otherwise. To investigate random motility, stochastic models in [7],
[31], [46], [101], [119] were proposed. There cell-substrate interaction has also been included
and the underlying stochastic process is a Gaussian. However, there is evidence that the
migration paths do not follow a Gaussian process [32], [67], [105]. To replicate the run-
and-tumble behavior, a velocity jump process has been proposed in [87]. While stochastic
models are able to generate random migration paths, their major drawback is that they
do not account for interaction between cellular structures, which is, however, essential for
locomotion. Furthermore, it is not clear how these interactions during the migration cycle
give rise to random or biased motility.

In this work, we propose a minimal representation of a motile cell, based on which we
construct a model of stochastic cell migration. We postulate that only (un)binding events
of an adhesion in the migration cycle are random. Between the events, a cell performs
a deterministic motion (e.g. locomotion if an adhesion is released). Based on this, we
derive the forms of distributions, followed by the events and their interarrival times. We
stress that we do not assume any prior knowledge about the distributions. Rather, we only
consider major factors in adhesion dynamics, such as coupling with the contractile machin-
ery and the surrounding environment. Thereby, we will obtain a piecewise deterministic
Markov process [28], describing our cell migration model. In order to perform numerical
simulations, we will also propose an efficient method to generate the trajectories. Assess-
ment of the simulation results shows that our model is able to explain, among other things,
the superdiffusive time scaling of the mean-squared displacement [32], [67], [70], biased mi-
gration in the presence of an external cue, contact guidance [95], and directed movement
due to asymmetric contractility (and in the absence of guidance cues) [123], [129].

Motile cells often migrate in a crowded environment, wherein they collide and interact
with other cells. Following a collision, a cell may continue its motion, crawling on top of
another. Another collision outcome leads to cessation of movement, repolarization, and
migration away from the collision site - a process termed contact inhibition of locomotion
(CIL), first coined by Abercrombie and Heaysman [2]. Since then, its role in embryogenesis,
cell dispersion and collective motion has been established [112]. It has also been shown
to be implicated in aiding dissemination and invasion of cancer cells. Retaining such
repulsive response between themselves allows cancerous cells to disperse, while its loss
towards normal ones facilitates invasion. Thus, CIL response is divided into two different
types: homotypic and heterotypic, occurring between cells of the same and different types,
respectively. The heterotypic response also induces directed movement of otherwise non-
responsive cells by chemotaxing ones [117] and can result in a “chase-and-run” kind of
behavior [118]. Regardless of the CIL type that cells undergo, the outcome of a collision
can vary: after cessation of movement, the cells may move in the same or opposite directions
[30], [68], [102]. These experimental results also suggest that the outcome is determined
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CHAPTER 1. INTRODUCTION

stochastically, and could be altered in the presence of a chemoattractant [68].
As CIL alters migratory behavior of colliding cells, its key mechanisms invariably in-

volve those of freely migrating ones. In particular, RhoA is activated near the contact
sites [17] and Rac1 away from it [103], [117]. The former leads to increased contractility
of prospective rear; the latter to formation of protrusions and cell-substrate adhesions in
the free edge [98]. Consequently, cell-cell and cell-substrate contacts in the rear are rup-
tured and the cell moves in the direction of the free edge. Thus, colliding cells follow the
stereotypical steps of the migration cycle of freely migrating cells, while the CIL response
is integrated therein.

As is the case with freely migrating cells, phase-field and particle based mathemati-
cal models have been developed to address CIL specifically, and more broadly, collective
motion. For example, the phase-field model in [59] is able to reproduce the statistical
outcomes of collisions reported in [102]. In another phase-field model [71], where alter-
ation of actomyosin dynamics due to collisions was taken into account, collective migration
emerges as a result of inelastic collisions. A vertex-based model in [78], explicitly including
the Rac1/RhoA interplay, investigated the emergence of collective migration resulting from
co-attraction and contact inhibition. Particle- and agent-based models in [26], [30], [133],
were also able to simulate outcomes in agreement with their experimental observations.
However, these studies highlight cell-cell interactions and model CIL as a stand-alone
phenomenon, not integrated in the general migration mechanism of mesenchymal cells
described above.

Encouraged by the ability of our single cell motility model to explain a variety of
experimental observations, we sought to extend it in order to include the CIL response.
In our extended model, the cells undergoing CIL cease movement upon contact, followed
by increased actomyosin contractility around the collision site and elevated affinity for
adhesion formation away from it. The extended model of a collection of cells is also
described by a piecewise deterministic Markov model (PDMP). Unlike the case of non-
interacting cells, here we have an “active” boundary, such that a jump occurs when the
process hits it. This way we incorporate collisions into our model. Our simulation results
are able to explain several experimental observations, such as modulation of CIL response
in the presence of a chemotactic gradient [68], inducement of directed migration of non-
chemotaxing cells due to CIL [117], and invasive migration in the presence and absence of
heterotypic CIL, respectively. We also extend our numerical method to include the more
general, but computationally expensive case of interacting cells.

One of the major findings of this work is that the motility of freely migrating and
interacting cells can be explained in terms of mechanical coupling of cell cytoskeleton
with cell-substrate adhesions in a mathematically consistent manner. Furthermore, the
randomness of migration paths, which is a hallmark of cell motility, is explained by a
constructed, rather than postulated, non-Gaussian stochastic process. To the best of our
knowledge, this is also the first time that the migration cycle is (at least partially) explicitly
taken into account as well.

The migration of cells is a multifaceted, multiscale phenomenon. This is especially
prominent in the case of cancer spread. Its onset is defined by accumulation of catastrophic
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CHAPTER 1. INTRODUCTION

mutations, ultimately followed by the invasion of cancer population into nearby tissue. To
study this issue, models of migrating cell populations have been developed and analyzed
in [77], [109], [110],[111], where the interactions between the different scales haven been
described directly in a rather heuristic way. In these models, the migrating population
is described by a reaction-diffusion-advection equation, coupled to a set of PDEs and
ODEs reflecting the lower scale dynamics of transmembrane receptors, contractility, or
acidity. Another approach to account for cell-ECM adhesions in migrating populations
was presented in [33]. There, following and extending the approaches in [48], [56], the
authors obtained an advection-diffusion equation via parabolic scaling of the velocity jump
process. The forms of the corresponding advection field and diffusion tensor follow from the
underlying model at the mesoscopic scale, rendering this approach more precise. However,
the mesoscopic scale model itself stems from the underlying microscopic jumps process,
as was first shown in [87] in the context of cell motility. Therefore, the population scale
model in [33] is derived, rather than postulated, from the cell scale model of the velocity
jump process.

Inspired by this approach, we also sought to derive a population scale model from our
single cell motility description. Our formulation of the motility process as a PDMP allows
us to derive the mesoscopic model. Observing the disparity of time scales at which the
underlying processes of cell migration occur, aided by our detailed account of adhesion
dynamics, and proceeding similarly as in [33], [48], [88], [89], we are able to obtain the
population scale model. At this scale, unlike the studies in [33], [56], the coupling between
cell-substrate adhesions and the internal contractile machinery is included, and unlike the
studies in [77], [110] the coupling follows from the underlying motility model at the cell
scale. Altogether, our work offers a more complete picture of cell migration as a multiscale
phenomena. Because our cell motility model is able to explain a variety of experimental
observations, our model at the population scale provides a more realistic way to assess
invasion of cancer population.

This dissertation is organized as follows. In Chapter 2 we provide an overview of the
migration cycle, the involved cellular structures, and how they relate to each other. We
then introduce the minimal representation of a motile cell and describe the deterministic
motion of a cell between the events of the migration cycle. Thereafter we construct a
stochastic model of adhesion events, which signify transitions of the cycle stages. Combin-
ing the deterministic and the stochastic components, we formulate the motility process as
a PDMP. In Chapter 3 we discuss in greater detail the dynamics of adhesion clusters and
the contractile apparatus, and how the regulatory role of RhoGTPases signaling pathways
can be integrated into our model. In Chapter 4 we present a numerical method for simu-
lating the cell motility process, and the simulation results as well. We extend our single
cell migration model to account for CIL in Chapter 5. Here we investigate the mechanism
of CIL by considering a special case of binary collisions and simulations thereof. A general
treatment of CIL involving cell collectives is presented in Chapter 6. Here we generalize
the single cell PDMP to encompass colliding cells and present an appropriate numerical
method. The simulation results are presented as well. In Chapter 7 we deduce a population
migration model of non-interacting cells from the single cell model. We also reduce the
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CHAPTER 1. INTRODUCTION

order of the population scale model by introducing a few simplifying assumptions. Finally,
we present our conclusions and suggestions for future work in Chapter 8.

Most of the contents in this dissertation are based on the author’s works in [120], [121].
In particular, Chapters 2, Section 3.1, Chapter 4, and Appendix B are based on [120];
Chapters 5 and 6 are based on [121].
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Chapter 2

The Cell Migration Model

Figure 2.1: Schematic diagram of the cell migration cycle and the implicated cellular
structures. Actin polymerization at the front pushes the membrane allowing protrusions
to form. Then, adhesions assemble at the front and disassemble at the rear. Finally,
deadhesion and cell contraction produce locomotion, pulling the body forward. The black
arrows overlaying the stress fibers show the inwardly directed contractile forces. Modified
from [69].

The cell migration cycle begins with protrusion of the leading edge as a result of actin
polymerization (Figure 2.1). The polymerization process in lamellipodia is mediated by
the Arp2/3 complex, which acts downstream of signaling pathways responsible for cell
polarization [97]. Next, the protrusions are stabilized due to formation of focal adhesions
(FAs) in the lamellae (region behind the lamellipodia), which link the actin cytoskeleton to
the extracellular matrix (ECM). An FA is a multiprotein integrin-based adhesion cluster,

11



2.1. OVERVIEW CHAPTER 2. THE CELL MIGRATION MODEL

which matures in a RhoGTPase dependent manner [94]. Furthermore, FA maturation de-
pends on the applied tension, and occurs concomitantly with actomyosin bundle formation
[41], [130], and hence colocalizes with the bundle ends [108]. These bundles, called stress
fibers (SFs), generate contractile forces due to non-muscle myosin II motors. A more de-
tailed description of FAs and SFs is postponed until Sections 3.1 and 3.3. Due to increased
tension at cell rear, FAs rupture. Finally, deadhesion leads to cell body translocation due
to cytoskeletal contraction.

In order to construct the mathematical model, we make the following observations.
First, FA unbinding leads to remodeling of the SF configuration (and of the entire cy-
toskeleton) and to cell movement, whereas assembly of new FAs leads to restructuring
only. Second, FA events need not occur in the order described above. Several adhesions
might be assembled (disassembled) before deadhesion (adhesion) occurs. Note also that
while the contractile machinery is important, the dynamic instability of adhesions is what
drives the migratory process, for stable FAs prevent retraction. Thus, we consider only in-
teractions of SFs and FAs. Moreover, we do not consider the actin polymerization process
and simplify the migration cycle down to two steps: after FA assembly occurs, a cell does
not move, but reconfigures SFs; after disassembly, a cell does both. Neglecting the poly-
merization process and the reduction to binding/unbinding events can be justified by the
fact that one of the major consequences of the leading edge protrusions is promotion of FA
assembly. Because the repolarization of migrating cells occurs frequently as an outcome
of intricate biochemical activity, then, in order to keep the model tractable, we do not
explicitly model cell polarity. Instead, (de)adhesion frequency is indicative of (rear)front.

This chapter is based on the work [120] by the author.

2.1 Overview

Consider the situation in Figure 2.2. The disk represents a cell. Let the radius be Rcell and
let the position of the center at time t be x(t) ∈ R2. Suppose there are M equally spaced
adhesion sites xi(t) ∈ RcellS1, i = 1, . . .M on a cell circumference with constant relative
distance. Let Y(t) ∈ {0, 1}M be a vector of focal adhesion states at time t, i.e. Yi(t) = 0, 1
correspond to unbound and bound FA at node i, respectively.

Since the traction stresses are oriented inward, transmitted to ECM by FAs, and gen-
erated by contractile SFs, then the FAs on the circumference must be one of the ends of
SFs [80], [84], [108], [104]. Suppose the other end of all SFs at time t is at the position
xn(t) ∈ Ωcell := {(x, y) ∈ R2 | x2 + y2 ≤ R2

cell} (in a cell’s reference frame with origin at
x), i.e. all SFs are connected at xn. Since stress fibers behave like Hookean springs on
extension, but readily buckle under compression [83], then, inspired by Guthardt Torres et

12
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x
F1

F2

F3

F4

F5

F6

F7

F8

xn

F

Figure 2.2: Schematic representation of a cell with M = 8 focal adhesions. Solid black
lines represent stress fibers while red bullets represent focal adhesions. Red arrows indicate
the direction and magnitude of applied traction force Fi, i = 1, . . . , 8. The dashed line and
the corresponding red bullet represent an absent stress fiber and unbound focal adhesion,
respectively. The central red arrow indicates the net force F on xn.

al. [47], the force Fi at focal adhesion i is given by:

Fi =



(
Ti + EALi−L0

L0

)
ei, L0 < Li

Tiei, Lc ≤ Li ≤ L0

Li−Lc+δ
δ

Tiei, Lc − δ ≤ Li < Lc

0 Li < Lc − δ,

(2.1.1)

where Ti is the magnitude of the contractile force due to myosin motors, EA is the one-
dimensional Young’s modulus, L0 and Lc are, respectively, rest and critical lengths, Li =
‖xn−xi‖, ei = xn−xi

Li
is the unit vector along the ith SF, and δ is a small positive constant.

The first case in (2.1.1) is due to the Hookean behavior of SFs upon extension and myosin
tension generation. Furthermore, stress fiber laser ablation experiments [54], [61], [100]
revealed that the initial instantaneous response (elastic behavior due to the SF length
dependence in the first case) is followed by slower contraction due to myosin activity (force
dependence on Ti) in the remaining portion of the fiber (Figure 2.3). Combined with stress
fiber buckling, we obtain the second case in (2.1.1). Deguchi et al. [29] also found that SF
contraction ceased after reaching a certain critical length. This implies that Fi = 0 when
Li < Lc − δ. For technical reasons we assume Fi is piecewise continuous - hence the last
cases in (2.1.1). We also assumed for simplicity that the myosin generated force Ti may
vary between SFs, but is otherwise constant.
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Li

‖Fi‖

L0Lc

Ti

(a) (b)

Figure 2.3: (a) Magnitude of Fi in red. The blue dashed line corresponds to the profile
of Fi along ei if we were to treat the fiber as a Hookean spring with the spring constant
EA/L0. (b) Schematic representation of stress fiber contraction. As the fiber contracts
below the rest length L0, buckling occurs. As myosin mediated contraction causes the
fiber to contract below the rest length L0, buckling occurs due to lack of resistance to
compression. Below the critical length Lc, the fiber ceases to contract due to vanishing
interfilament distance. Modified from [83].

Since xi(t) ∈ RcellS1 and FA sites are equally spaced, then in polar coordinates we have:

xi(t) = Rcell(cos(θi), sin(θi))
T , θi(t) := θ(t) + (i− 1)

2π

M
,

where θi, θ are the polar positions of the ith and the first FAs, respectively. Note that it is
sufficient to keep track of θ, due to equidistant FAs. Thus, Fi = Fi(xn, θ).

Since the total force at xn is

F(xn, θ,Y) := −
M∑
i=1

YiFi(xn, θ), (2.1.2)

then, assuming negligible inertial effects (due to the viscous nature of cytoplasm) and
constant Y:

βcellẋn = F(xn, θ,Y), (2.1.3)

where βcell is the drag coefficient in the cytoplasm.
The representation of a cell in such a way is justified, for the following reasons:

• The traction stresses are largely applied on the cell periphery and their magnitude
decays rapidly towards the center [80], [104] (see Figures 2.4, 2.6). Thus, the cell
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body SF ends are at or near mechanical equilibrium. Since contractile forces are
generated by SFs, then a cell body SF end must be balanced by all other SFs (due to
the equilibrium). Hence, it is reasonable to have a single connecting node of radial
SFs which is either at mechanical equilibrium (for stationary cells) or tends to it.

Figure 2.4: Fluorescence (left and center) and traction force (right) microscopy images of
a fibroblast [104]. In the left image the actin cytoskeleton is shown, while in the center FA-
associated paxillin. Note the correspondence between stress fibers, adhesions, and traction
applied on the substrate.

• Since motile cells assume a wide variety of cell shapes and continuously remodel their
actin cytoskeleton, one can view this representation as a cell shape normalization (it is
implicitly assumed that a cell volume remains constant). That is, Figure 2.2 depicts
a cell and forces applied on FAs normalized to a circle. Möhl et al. [80] applied
shape normalization technique to a timelapse series data of migrating keratinocytes
and demonstrated that this allows consistent analysis of FA dynamics, actin flow and
traction forces (Figure 2.6). In view of their results, a particular cell traction force
map and FA configuration normalized to a circle can be effectively captured by our
representation.

• Paul et al. [91] demonstrated in their active cable network model, that combined with
force application originating from nuclear region on FAs by star-like SF arrangement,
results in cells acquiring morphologies typical for motile cells (Figure 2.5). Since the
distribution of forces applied on FAs affects their rupturing, then it also influences
the motion of a cell (due to retraction). Since we are primarily interested in cell mi-
gration it is justified to assume that this architecture represents a realistic situation.
Furthermore, Oakes et al. [85] found that modeling SFs embedded in contractile
networks, where only SFs actively contract, yields a behavior mimicking the experi-
mental results - the cytoskeletal flow was directed along the stress fibers. In the same
study, the authors concluded that it is appropriate to treat an SF as a 1D viscoelastic
contractile element, which also justifies neglecting inertia in (2.1.2).

Note that xn(t) ∈ Ωcell for t > 0, as proved below.

15
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Figure 2.5: Experimental and simulation results of a non-motile cell in [91]. (Top and
middle) Experimental and simulated images of a prestressed cell. Focal adhesions are
represented in white. (Bottom) Simulation of internally generated contractile force from
perinuclear region.

Proposition 2.1.1. Let xn ∈ ∂Ωcell, θ ∈ [0, 2π), and Y ∈ {0, 1}M be arbitrary. Let n be
the outward unit normal at xn. Then F(xn, θ,Y) · n ≤ 0 with equality sign if and only if
F(xn, θ,Y) = 0.

Proof. Suppose ∃xn ∈ ∂Ωcell, ∃θ ∈ [0, 2π), and ∃Y ∈ {0, 1}M such that

F(xn, θ,Y) · n =
M∑
i=1

Yi(−Fi(xn, θ)) · n > 0. (2.1.4)

Since xn ∈ ∂Ωcell, then in polar coordinates we have xn = Rcell(cos(θ̂), sin(θ̂))T for some
θ̂ ∈ [0, 2π). Note that ∀i such that θi /∈ [θ̂ − π/2, θ̂ + π/2] we have:

Yi(−Fi(xn, θ)) · n = Yi‖Fi(xn, θ))‖(−ei · n) =
Yi‖Fi(xn, θ))‖

Li
(xi − xn) · n ≤ 0,

since xi · n < 0 and xn · n > 0. Thus ∃i ∈ {1, . . . ,M} such that θi ∈ [θ̂ − π/2, θ̂ + π/2],
Yi = 1 and (−Fi(xn, θ)) ·n > 0. Otherwise the inequality (2.1.4) does not hold and we are
done. But then,

(xi − xn) · n > 0⇒ (cos(θi), sin(θi))
T · n > 1,
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Figure 2.6: Shape normalization applied to migrating keratinocytes. Note that vinculin
is an adapter protein that is recruited to FAs. Heat map on the right figure indicates FA
activity; black arrows show magnitude and direction of traction forces. Source: [80]

which is false, since both are unit vectors. Therefore, F(xn, θ,Y) · n ≤ 0 for arbitrary
xn ∈ ∂Ωcell and Y ∈ {0, 1}M .

Suppose F(xn, θ,Y) · n = 0. Then, we have (by the above considerations):

∑
i′

Yi′Fi′(xn, θ) · n =
∑
i

Yi(−Fi(xn, θ)) · n ≥ 0,

where i′ is such that θi′ /∈ [θ̂ − π/2, θ̂ + π/2] and i is such that θi ∈ [θ̂ − π/2, θ̂ + π/2]. If
we have equality, then obviously F(xn, θ,Y) = 0. If there is inequality, then ∃i such that
θi ∈ [θ̂ − π/2, θ̂ + π/2], Yi = 1 and (−Fi(xn, θ)) · n > 0, which is also false (see above).

Therefore, F(xn, θ,Y) = 0. �

Corollary 2.1.2. Let xn(0) ∈ Ωcell be arbitrary and let θ(t) be given. Suppose xn ∈
C1([0,∞)) is a solution of (2.1.3). Then, xn(t) ∈ Ωcell ∀t > 0 and ∀Y(t) ∈ {0, 1}M .

Proof. Due to (2.1.3) it suffices to show that ∀xn ∈ ∂Ωcell we have F(xn, θ,Y) · n ≤ 0,
which follows from Proposition 2.1.1. �

2.2 The migration cycle

Recall that during the migration cycle, deadhesion leads to cell body translocation, while
adhesion binding does not. In both cases actomyosin contractility leads to reconfiguration
of the cytoskeleton. Here we show how our cell representation can describe the reconfigu-
ration and cell body motion following binding and unbinding events.

Without loss of generality assume that an event occurred at t = 0. Let τ > 0 be
the time of the next adhesion event, be it binding or unbinding. Let Y(0) ∈ {0, 1}M ,
x(0) ∈ R2, and xn(0) ∈ Ωcell be arbitrary. Then, Y(t) = const. for t ∈ [0, τ). We assume
θ(t = 0) = 0.
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2.2.1 Focal adhesion binding

Following an FA binding, we suppose that a cell becomes stationary (i.e. the cell centroid
remains constant). However, a newly formed FA and the associated SF lead to cytoskeletal
reshaping. Thus, we have the following system of ODEs for t ∈ [0, τ):

ẋ = 0

ẋn = β−1
cellF(xn, θ,Y)

θ̇ = 0. (2.2.1)

2.2.2 Focal adhesion unbinding

Following an unbinding event, the cytoskeletal contraction leads to cell body movement.
Due to the circular geometry, the contractile forces induce both rotational and translational
motion.

θ̇ Fϕϕ̂

r̂ϕ̂

xnF

x

Rcell

θ

Frr̂

Figure 2.7: Force diagram showing
transmission of internally gener-
ated contractile forces into trans-
lational and rotational motion. r̂
and ϕ̂ are radial and angular unit
vectors, respectively. θ̇ is the an-
gular velocity, F is a net contrac-
tile force, Fr and Fϕ are radial and
tangential components of F, x and
Rcell are the cell center and radius,
respectively.

Note that the bound focal adhesions are able to
slide for short distances [80]. Oakes et al. [85] found
that the cytoskeleton behaves like an elastic solid on
timescales up to one hour. Provided the time τ be-
tween adhesion events is small enough, the following
is justified.

The force F along the radial vector r̂(xn) is act-
ing on the cell center, thereby inducing translational
motion (see Figure 2.7). On the other hand, the rota-
tional motion is produced due to F acting along the
tangential vector ϕ̂(xn). The radial and tangential
components of the force F are given by:

Fr := F(xn, θ,Y) · r̂(xn)

Fϕ := F(xn, θ,Y) · ϕ̂(xn),

where xn = (xn,1, xn,2) and

r̂(xn) =
xn
‖xn‖

, ϕ̂(xn) =

(
− xn,2
‖xn‖

,
xn,1
‖xn‖

)T
. (2.2.2)

The characteristic Reynolds number Re is given by

Re =
ρ · s · L
ν

∼ 10−6 − 10−4,

where we assumed the surrounding fluid is water (with corresponding values for density
ρ and viscosity ν, and that characteristic cell speed s and size L are 0.1 − 1µm/s, L =
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10− 50µm, respectively. Since Re is small, we neglect inertia and obtain (see Appendix A
for details):

ẋ = β−1
ECMF(xn, θ,Y) · r̂(xn)r̂(xn)

ẋn = β−1
cellF(xn, θ,Y)

θ̇ = β−1
rot‖xn‖F(xn, θ,Y) · ϕ̂(xn) (2.2.3)

where βECM and βrot are, respectively, translational and rotational drag coefficients in the
ECM.

2.2.3 Specifications

It is convenient to transform the system above into nondimensional form. In order to do
so, we define the following scales:

• The spatial and cell length scales are defined by the cell radius Rcell.

• The time scale is defined by some constant te, which is of the same order as the FA
lifetime (see Section 3.1 for details).

• The force scale is defined by the characteristic force Fb.

The constants are to be specified later. Whence we define the new variables:

x̃ :=
x

Rcell

, x̃n :=
xn
Rcell

, t̃ :=
t

te

and transform Fi from (2.1.1):

F̃i :=
Fi

Fb
=



(
T̃i + ẼA L̃i−L̃0

L̃0

)
ẽi, L̃0 < L̃i

T̃iẽi, L̃c ≤ L̃i ≤ L̃0

L̃i−L̃c+δ̃
δ̃

T̃iẽi, L̃c − δ̃ ≤ L̃i < L̃c

0, L̃i < L̃c − δ̃,

(2.2.4)

where

L̃i =
Li
Rcell

, L̃0 =
L0

Rcell

, L̃c =
L0

Rcell

, δ̃ =
δ

Rcell

,

T̃i =
Ti
Fb
, ẼA =

EA

Fb
ẽi =

x̃n − x̃i

L̃i
, x̃i =

xi
Rcell

.

Note that we have x̃n ∈ Ω̃cell := {(x, y) ∈ R2 | x2 + y2 ≤ 1} and x̃i ∈ S1.
Let

F̃ := F/Fb, β̃cell :=
Rcell

teFb
βcell, β̃ECM :=

Rcell

teFb
βECM , β̃rot :=

1

teRcellFb
βrot.
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Figure 2.8: (a) Schematic representation of the migration cycle between adhesion events.
Suppose that just before an event occurs at time t = 0, the cell is in state I. If at time
t = 0 (de)adhesion occurs, the cell jumps into state the (II ′)II and the system evolves
according to (2.2.5) until the next event occurs at time t = τ , after which the cycle begins
anew. The scenarios can be characterized as “run” and “tumble” phases in the bottom
and top panels, respectively. (b) Schematic representation of the FA positions projected
on cell’s circumference at t = 0− and t = τ− in the top and bottom panels, respectively.
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To complete the specification of cell kinematics between adhesion events, we introduce
another discrete variable µ(t) ∈ {0, 1}, which reflects asymmetry of the cell response to
binding/unbinding:

µ =

{
1, if the last event was unbinding

0, if the last event was binding.

Then, plugging in (2.2.1), (2.2.3) the rescaled quantities and dropping tildes, it follows
that between the FA events the following ODE system holds for t ∈ [0, τ):

ẋ = µβ−1
ECMF(xn, θ,Y) · r̂(xn)r̂(xn)

ẋn = β−1
cellF(xn, θ,Y)

θ̇ = µβ−1
rot‖xn‖F(xn, θ,Y) · ϕ̂(xn). (2.2.5)

The migration cycle can be described as follows (see Figure 2.8). Suppose that just
before an event occurs, the cell is in state I with arbitrary µ ∈ {0, 1} at time t→ 0−. If at
time t = 0 (de)adhesion occurs, the cell jumps into the state (II ′)II with a corresponding
value of µ, and the system evolves according to (2.2.5) until the next event occurs at time
t = τ , after which the cycle begins anew. The scenarios can be characterized as “run”
and “tumble” phases in the bottom and top panels of Figure 2.8, respectively. However,
as mentioned in the introduction, we postulate that FA events occur randomly. It follows
that the time of the next event τ is also random. In the following we elaborate on how to
determine the corresponding distributions.

Remark. Our assumption on constant relative distance between FA sites stems from
two slightly weaker assumptions: 1) total number of adhesion sites (occupied and unoccu-
pied) is constant; 2) there is a neighborhood around each adhesion site, in which no other
site is present, and the size of this neighborhood is the same (and constant) for each site.
Figure 2.8 how it reflects on their peripheral motion. This assumption implies that in each
line segment of size 2π/M (with M = 8) there is only one FA site present, which may
correspond to bound (in red) or unbound FA (in gray).

2.3 Focal adhesion events

In the previous section we constructed a model of cell motion between FA events. Following
[44], here we construct a stochastic model describing the random adhesion/deadhesion
events and the their arrival times. The discussion here differs from the standard approach
of the Gillespie algorithm in [44], as we do not assume that the propensity functions vary
inappreciably between the reactions. Moreover, it provides a connection to the theory of
PDMPs, as the forms of the objects, necessary to define a piecewise deterministic process,
follow from the derivations here.
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2.3.1 Event times and probabilities

Since there are M FAs and since each FA can participate in only two reactions (binding and
unbinding), then there are 2M total possible reactions. We adopt the following convention
for enumerating reactions: reaction j corresponds to a binding reaction of the FA site
i = (j + 1)/2 if j is odd; otherwise reaction j corresponds to an unbinding reaction of the
FA site i = j/2. Let Y(t) be defined as before.

Let aj(y, t)dt be the probability, given Y(t) = y ∈ {0, 1}M , µ(t), (x(t),xn(t), θ(t)) and
time t, that reaction j will occur in the time interval [t, t + dt). For clarity, we suppress
here the dependence of the rate aj(y, ·) on (x(·),xn(·), θ(·)) and µ(·). We assume that the
rate aj satisfies the following:

aj(y, t) =


0, if j is odd and y(j+1)/2 = 1

0, if j is even and yj/2 = 0

6= 0, else.

(2.3.1)

That is, if the FA is (un)bound, the probability of the (un)binding reaction is zero; if the
FA is (un)bound, the probability of (binding) unbinding is nonzero. This implies that
aj(y, t) 6= 0 for at least one j ∈ {1, . . . , 2M}, since for each FA site i ∈ {1, . . . ,M}, either
a2i−1 or a2i is nonzero.

Lemma 2.3.1. Let Y(t) = y. Then the probability that no FA event occurs in the time
interval [t, t+ dt) is 1−

∑2M
j=1 aj(y, t)dt+ o(dt).

Proof. Using the definition of aj, the probability that reaction j does not happen is 1 −
aj(y, t)dt. Then, the probability that no FA reaction occurs is:

2M∏
j=1

(1− aj(y, t)dt) = 1−
2M∑
j=1

aj(y, t)dt+ o(dt).

�

Let K(τ, j|t,y)dτ be the probability, given Y(t) = y and (x(t),xn(t), θ(t)) at time t,
that the next reaction will occur in the time interval [t+ τ, t+ τ + dτ) and will be reaction
j. Here, again, we suppress for clarity the dependence on x, xn, θ.

Proposition 2.3.2. Let τ > 0 and Y(t) = y. Then,

K(τ, j|t,y) = aj(y, t+ τ) exp

(
−
∫ t+τ

t

2M∑
j′=1

aj′(y, τ
′)dτ ′

)
.

Proof. Let P (τ |t,y) denote the probability that no reaction occurs in the time interval
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[t, t+ τ), given y (and x, xn, θ) at time t. Then, by Lemma 2.3.1:

P (τ + dτ |t,y) = P (τ |t,y)

(
1−

2M∑
j=1

aj(y, t+ τ)dτ + o(dτ)

)
⇒

P (τ + dτ |t,y)− P (τ |t,y)

dτ
= −P (τ |t,y)

2M∑
j=1

aj(y, t+ τ) + P (τ |t,y)
o(dτ)

dτ
.

Letting dτ → 0 we obtain the following ODE:

d

dτ
P (τ |t,y) = −P (τ |t,y)

2M∑
j=1

aj(y, t+ τ).

Since P (0|t,y) = 1, the solution P (τ |t,y) is given by:

P (τ |t,y) = exp

(
−
∫ t+τ

t

2M∑
j=1

aj(y, τ
′)dτ ′

)
.

We have then:

K(τ, j|t,y) = P (τ |t,y)aj(y, t+ τ) = aj(y, t+ τ) exp

(
−
∫ t+τ

t

2M∑
j′=1

aj′(y, τ
′)dτ ′

)
. (2.3.2)

�

Let Ktime(τ |t,y)dτ be the probability that the next reaction will occur in the time
interval [t+ τ, t+ τ + dτ), given Y(t) = y and (x(t),xn(t), θ(t)) at time t.

Let Kindex(j|τ, t,y) be the probability that the index of the next reaction is j given
Y(t) = y, (x(t),xn(t), θ(t)) at time t and given that the reaction will occur at time t+ τ .

By elementary probability theory (using the definition of conditional probability), we
know that

K(τ, j|t,y)dτ = Kindex(j|τ, t,y)Ktime(τ |t,y)dτ.

Due to equation (2.3.2), we see that:

Kindex(j|τ, t,y) =
aj(y, t+ τ)

a0(y, t+ τ)

Ktime(τ |t,y) = a0(y, t+ τ) exp

(
−
∫ t+τ

t

a0(y, τ ′)dτ ′
)
, (2.3.3)

where

a0(y, t) =
2M∑
j=1

aj(y, t),
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and a0 6= 0 due to (2.3.1).
Obviously,

2M∑
j=1

Kindex(j|τ, t,y) = 1∫ ∞
0

Ktime(τ |t,y)dτ = 1.

Thus, if T is (random) time until the next reaction, then its probability density function
given by Ktime, its survival function S(s) is given by (without loss of generality, suppose
that t = 0):

P(T > s) = S(s) = exp

(
−
∫ s

0

a0(y, τ ′)dτ ′
)
, (2.3.4)

and its (cumulative) distribution function is given by 1−S(s).1 Note that the distribution
of a random variable is uniquely determined by its distribution function.

Using the proof of Proposition 2.3.2 one has the following:

Proposition 2.3.3. Let τ > 0 and let K̂(τ |t,y) be the probability of more than one FA
event occurring in the time interval [t+ τ, t+ τ + dτ), given the state of the system at time
t. Then K̂(τ |t,y) = o(dτ) as dτ → 0.

Proof. By the proof of Proposition 2.3.2:

K̂(τ |t,y) = P (τ |t,y)o(dτ),

since, following the definition of aj, the probability of more than one reaction occurring in
time interval [t, t+ dτ) is o(dτ). �

Proposition 2.3.3 implies that we can neglect the case when more than one FA event
occurs at the event time. Thus, an FA event (binding or unbinding) unambiguously cor-
respond to a switch in motility state. If this were not the case and the probability of
two FA events at the same time were not negligible, then binding and unbinding of dis-
tinct FAs could occur simultaneously. Since the cell becomes motile after unbinding only,
simultaneous events could lead to ambiguity in determining the motile state of the cell.

2.3.2 Cell motility and adhesion events

With the results of the previous section we can now formally state the cyclical mesenchymal
cell motility model as a stochastic process (see Figure 2.8).

Let t = 0, x(0), xn(0), θ(0), µ(0) be given and Y(0) = y0.

• The time T1 of the FA event is chosen such that P(T1 > s) = S(s).

1One can check this by differentiating the distribution function, given by 1− S(s), with respect to s.
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• The system evolves according to (2.2.5) for t ∈ [0, T1).

• At time t = τ , the index j of the FA event is chosen with probabilityKindex(j|T1, 0,y
0)

Y and µ jump to new values:

Y(t = τ) =

{
y0 + êi, i = (j + 1)/2, if j is odd

y0 − êi, i = j/2, else
,

µ(t = τ) =

{
0, if j is odd

1, else
,

where êi ∈ RM is the standard basis vector. Note that due to (2.3.1), we always have
Y(t = τ) ∈ {0, 1}M , since the probability of (un)binding of (un)bound FA is zero.

• The cycle starts anew with initial time t = T1 and initial values of other variables at
this time: starting at t = T1 we choose the time T2 of the FA event such that

P(T2 > s|T1) = exp

(
−
∫ T1+s

T1
a0(y, τ ′)dτ ′

)
.

• The system evolves according to (2.2.5) for t ∈ [T1, T1 + T2) and so on.

One sees that the cyclical process described above is a Markov process, since the evo-
lution of the system depends only on the current state. This completes the formal spec-
ification of the model. In the following we will show that this process is a well-defined
piecewise deterministic Markov process.

2.4 Motility process

In this section we briefly overview a class of piecewise deterministic processes, first intro-
duced by Davis [27]. We then show how the deterministic equations, describing motion
between stochastic focal adhesion events, can be combined to yield a well-defined piecewise
deterministic Markov process (PDMP).

2.4.1 Overview of PDMP

Let A be countable and let Γ ⊂ Rd be open. Let Xt ∈ Γ and let Hν : Γ→ Rd for ν ∈ A.
Let (Ω,F , (Ft)t≥0,P) be a filtered probability space, where Ω is a sample space, F is

a σ-algebra on Ω, (Ft)t≥0 is a (natural) filtration, and P is a probability measure. Let
E := {(ν, ξ) : ν ∈ A, ξ ∈ Γ} and let (E, E) be a Borel space. For details see [Chapter 2 in
[28]].

We can define the piecewise deterministic process on the state space (E, E) (for a more
detailed general treatment see Davis [28]) by the following objects1:

1Here we first provide a constructive definition. The verification of the conditions and their explicit
representation corresponding to our case of cell motility are postponed for the sake of clearer exposition.
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I Some vector fields (Hν , ν ∈ A) such that for all ν ∈ A there exists a unique global
solution Xt ∈ Γ to the following equation:

d

dt
Xt = Hν(Xt)

X0 ∈ Γ. (2.4.1)

Let φν : [0,∞)× Γ→ Γ denote the flow corresponding to Equation (2.4.1), i.e.

φν(t,X0) = Xt.

II A measurable function a0 : E → R+ such that the function s 7→ a0(ν, φν(s,X0)) is
integrable.

III A transition measure Q : E × E → [0, 1], such that for fixed C ∈ E , (ν, ξ) 7→
Q(C; (ν, ξ)) is measurable for (ν, ξ) ∈ E, and Q(·; (ν, ξ)) is a probability measure
for all (ν, ξ) on (E, E).

Let (ν0,X0) ∈ E at time t = 0 be given. Let a survival function S be defined similarly
as in equation (2.3.4):

S(t, (ν,X)) := exp

(
−
∫ t

0

a0(ν, φν(s,X))ds

)
. (2.4.2)

Let T1 be the first jump time such that

P(T1 > t | (ν0,X0)) = S(t, (ν0,X0)),

and let (ν1,X1) be distributed according to the probability law Q(·, φν0(T1,X
0)). Then,

the motion of (νt,Xt) for t ≤ T1 is given by:

(νt,Xt) =

{
(ν0, φν0(t,X0)), t < T1,

(ν1,X1), t = T1.

At time t = T1 the next jump time T2 is distributed such that

P(T2 − T1 > s | (νT1 ,XT1)) = S(s, (νT1 ,XT1)).

The value of the process at the jump time T2 is determined by the measureQ(·, φνT1 (T2,XT1))
and the process continues in a similar way. Thus, we have a well-defined piecewise deter-
ministic process [28].

Remark. We assume that the jumps occur only at the random times determined by
the survival function (2.4.2), i.e. only at the FA event times. In a general PDMP, one
could consider the case when a jump also occurs if Xt hits the boundary of its domain (see
[28]). We include this feature in our treatment of colliding cells.
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Theorem 2.4.1 ([27]). The process (νt,Xt)t≥0 is a homogeneous Markov process.

Proof. Let Tk be the kth jump time. Let Tk ≤ t < Tk+1. Then, by construction of the
process, we have:

P(Tk+1 − Tk > s) = S(s, (νTk ,XTk)).

In particular, for s > 0, we have:

P(Tk+1 − Tk > s | Ft) = P(Tk+1 − Tk > s | (νTk ,XTk)) = S(s, (νTk ,XTk)), (2.4.3)

since, given that the jump occurred at time t = Tk, the next jump time is distributed
according to the information given at t = Tk by construction, i.e. the state of the process
(νTk ,XTk).

We then have the following:

P(Tk+1 > t+ s | Ft) = P(Tk+1 > t+ s | Ft, Tk+1 > t)

= P(Tk+1 − Tk > t+ s− Tk | Ft, Tk+1 − Tk > t− Tk)

=
P(Tk+1 − Tk > t+ s− Tk | Ft)
P(Tk+1 − Tk > t− Tk | Ft)

=
P(Tk+1 − Tk > t+ s− Tk | (νTk ,XTk))
P(Tk+1 − Tk > t− Tk | (νTk ,XTk))

= exp

(
−
∫ s

0

a0(νTk , φνTk (u+ t− Tk,XTk))du
)
.

The first equality is due to Tk ≤ t < Tk+1 and so P({Tk+1 > t}) = 1. The third equality
is due to {Tk+1 − Tk > t+ s− Tk} ∩ {Tk+1 − Tk > t− Tk} = {Tk+1 − Tk > t+ s− Tk} and
the definition of conditional probability. The fourth is due to equations (2.4.2), (2.4.3).

Since νt = νTk , then it follows from the semigroup property of the flow φ:

φνTk (u+ t− Tk,XTk) = φνt(u, φνt(t− Tk,XTk)) = φνt(u,Xt).

Therefore, we have:

P(Tk+1 > t+ s | Ft) = exp

(
−
∫ s

0

a0(νTk , φνTk (u+ t− Tk,XTk))du
)

= exp

(
−
∫ s

0

a0(νt, φνt(u,Xt))du

)
= P (Tk+1 > t+ s | (νt,Xt)) . (2.4.4)

Moreover, by construction of the process (and due to νt = νTk) we have for C ∈ E :

P
(
(νTk+1

,XTk+1
) ∈ C | Ft, Tk+1

)
= Q(C, φνt(Tk+1 − t,Xt))

= P
(
(νTk+1

,XTk+1
) ∈ C | (νt,Xt), Tk+1

)
, (2.4.5)
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since the new state is determined by the information given at the jump time. Thus, due to
equations (2.4.4), (2.4.5) and by the definition of conditional probability we have for s > 0
and C ∈ E

P
(
Tk+1 > t+ s, (νTk+1

,XTk+1
) ∈ C | Ft

)
= P

(
(νTk+1

,XTk+1
) ∈ C | Ft, Tk+1

)
P(Tk+1 > t+ s | Ft)

= P
(
(νTk+1

,XTk+1
) ∈ C | (νt,Xt), Tk+1

)
P (Tk+1 > t+ s | (νt,Xt))

= P
(
Tk+1 > t+ s, (νTk+1

,XTk+1
) ∈ C | (νt,Xt)

)
, (2.4.6)

i.e. the future value of the process depends only on the current value and not on the history
of the process. Therefore, (νt,Xt)t≥0 is a homogeneous Markov process. �

Remark. The process is in fact a strong Markov process, i.e. the Markov property
holds for all stopping times, and not only for fixed ones. See [Theorem 25.5, Chapter 2 in
[28]].

2.4.2 Cell motility and PDMP

In this section we show that the cyclical cell motility model described in Section 2.3.2 is a
well-defined PDMP.

One can show that Fi(xn, θ) satisfies the Lipschitz condition for (xn, θ) ∈ Ωcell ∪
[0, 2π) := Dcell

1. Furthermore, one can show that β−1
cellF(xn, θ,Y) and µβ−1

rot‖xn‖F(xn, θ,Y)·
ϕ̂(xn), given by

β−1
cellF(xn, θ,Y) = −β−1

cell

M∑
i=1

YiFi(xn, θ)

µβ−1
rot‖xn‖F(xn, θ,Y) · ϕ̂(xn) = −µβ−1

rot‖xn‖
M∑
i=1

YiFi(xn, θ) · ϕ̂(xn)

also satisfy the Lipschitz condition for (xn, θ) ∈ Dcell and arbitrary µ ∈ {0, 1}, Y ∈ {0, 1}M .

Proposition 2.4.2. Let x(0) = x0, (xn(0), θ(0)) ∈ Dcell. Let µ ∈ {0, 1}, Y ∈ {0, 1}M .
Then there exists a unique solution of the system

ẋ = µβ−1
ECMF(xn, θ,Y) · r̂(xn)r̂(xn)

ẋn = β−1
cellF(xn, θ,Y)

θ̇ = µβ−1
rot‖xn‖F(xn, θ,Y) · ϕ̂(xn),

(2.4.7)

for t > 0.

1The restriction to the interval [0, 2π) is due to the periodic dependence on θ in the definition of xi.
See Section 2.1
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Proof. Note that since the evolution of x is decoupled from the other two equations, it is
sufficient to prove the claim for the following subsystem:

ẋn = β−1
cellF(xn, θ,Y)

θ̇ = µβ−1
rot‖xn‖F(xn, θ,Y) · ϕ̂(xn) (2.4.8)

Since the right hand side of this system is Lipschitz on Dcell and (xn(0), θ(0)) ∈ Dcell,
then there exists a unique solution of the subsystem (2.4.8) for time t ≤ tDcell , where
tDcell = inf {t∗ > 0 | xn(t∗) /∈ Ωcell} is the exit time from Dcell. By Corollary 2.1.2, we see
that tDcell =∞.

�

Let A :=
{

1, 2, . . . , 2M+1
}

and let α : A → {0, 1} × {0, 1}M be a bijection. This is

simply a mapping such that α(ν) = (µ,Y) ∈ {0, 1} × {0, 1}M corresponds to a particular
cell motion and FA states (recall that the former can either be moving or stationary).

Let (x(0),xn(0), θ(0)) ∈ Γ := R2 × Ωcell × [0, 2π) and denote Xt = (x(t),xn(t), θ(t)).
Moreover, let Hν : Γ→ R5 be such that

Hν(X) :=

αµ(ν)β−1
ECMF(xn, θ,αY(ν)) · r̂(xn)r̂(xn)

β−1
cellF(xn, θ,αY(ν))

αµ(ν)β−1
rot‖xn‖F(xn, θ,αY(ν)) · ϕ̂(xn)

 , (2.4.9)

where α(ν) = (αµ(ν),αY(ν)) = (µ,Y) ∈ {0, 1} × {0, 1}M .
Let the probability (Ω,F , (Ft)t≥0,P) and state space (E, E) be defined as in the previous

section.
We now specify the objects (I,II,III) described in Section 2.4.1.

I By Proposition 2.4.2 we see that for all ν ∈ A, there exists a unique global solution
to (2.4.1).

II Note that in our case the rate function a0 is given by (recalling Section 2.3.1)1:

a0(ν,Xt) = a0(αY(ν),Xt) =
2M∑
j=1

aj(αY(ν),Xt). (2.4.10)

Thus, for the integrability condition to be satisfied, we assume that each probability
rate function aj is integrable along the solution of equation (2.4.1). An exact form
of the rates aj satisfying this condition will be given in the subsequent section. Note
that a0 is nonzero, which follows from (2.3.1).

1We abuse the notation introduced in Section 2.3.1: aj(αY(ν), t) = aj(αY(ν),Xt) = aj(ν,Xt) for
j = 0, . . . , 2M .
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III In our case, the transition measure Q(·; (ν, ξ)) is given by (recalling Section 2.3):

Q({η} × dξ′; (ν, ξ)) = δξ(dξ
′)

M∑
j=1

δαµ(η),0

a+
j (αY(ν), ξ)

a0(αY(ν), ξ)
δαY(η)j ,1

M∏
i 6=j

δαY(η)i,αY(ν)i

+δαµ(η),1

a−j (αY(ν), ξ)

a0(αY(ν), ξ)
δαY(η)j ,0

M∏
i 6=j

δαY(η)i,αY(ν)i ,

(2.4.11)

where δ is the Kronecker delta function, δξ(·) is the Dirac measure at ξ, a+
j = a2j−1

and a−j = a2j correspond to, respectively, the binding and unbinding probability rates

at FA site j, and αY(·)i is the ith component of the vector αY(·).

The justification for choosing the functions above stems from our deductions in Section
2.3.1. In particular, the rate function a0 in (II) is due to (2.3.3): the probability density
function of the jump time Tk+1, given that Tk ≤ t < Tk+1, is given by:

Ktime(·|t,αY(νt)) = a0(αY(νt),Xt) exp

(
−
∫ ·

0

a0(νt, φνt(s,Xt))ds

)
= a0(αY(νTk),Xt) exp

(
−
∫ ·

0

a0(νTk , φνTk (s,Xt))ds

)
,

which corresponds to the survival function given by (2.4.2).
We now turn our attention to the measure Q in (2.4.11). The components of Xt do

not jump, and vary continuously in time, i.e. if Tk is the jump time, then XT−k
= XTk (see

Section 2.3.2), hence the Dirac measure δξ(·) at ξ in (2.4.11). Clearly, such transition of the
continuous component Xt of the PDMP at a jump time is probabilistically independent of
the transition of the discrete component ν. Hence we have the product of the Dirac measure
with the sum, which is a discrete measure for the transition of the discrete component.

By Proposition 2.3.3, there is only one FA event at a jump time. Hence, for the
probability of transition ν → η to be nonzero, the vectors of FA states αY(ν) and αY(η)
must differ only by one component. Consider the following example to illustrate the jump
mechanism.

Example. Let M = 4, Tk ≤ t < Tk+1 and suppose Tk+1, Xt are given. Let ν, η ∈ A be
such that α(ν) = (µν ,Yν) and α(η) = (µη,Yη), where

Yν =


0
0
0
1

 ,Yη =


0
1
0
1

 .
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Then, by equation (2.3.3), the probability of the transition ν → η is given by:

δµη ,0Kindex(3|Tk+1 − t, t,Yν) = δµη ,0
a3(αY(ν), φν(Tk+1 − t,Xt))

a0(αY(ν), φν(Tk+1 − t,Xt))

= δαµ(η),0

a3(αY(ν),XTk+1
)

a0(αY(ν),XTk+1
)

= δαµ(η),0

a+
2 (αY(ν),XTk+1

)

a0(αY(ν),XTk+1
)
.

Clearly, the transition Yν → Yη corresponds to the binding event at FA site 2, explaining
the Kronecker delta term (see Sections 2.2.3, 2.3.2). Now, consider the sum in (2.4.11) for
this example. We see that

M∏
i 6=j

δαY(η)i,αY(ν)i 6= 0, for j = 2 only.

We therefore obtain

Q({η} × dξ′; (ν,XTk+1
)) = δXTk+1

(dξ′)δαµ(η),0

a+
2 (αY(ν),XTk+1

)

a0(αY(ν),XTk+1
)
δαY(η)2,1.

Note that if at time t the vector of FA states is given by Yν , then there are M possible
FA state vectors into which a transition can occur with nonzero probability:


0
0
0
0

 ,


1
0
0
1

 ,


0
1
0
1

 ,


0
0
1
1


 .

Note that the new state η 6= ν and the probability that the discrete component of the
process jumps to an identical state is null.

Similarly as with the rate function a0, we can derive equation (2.4.11) from the princi-
ples we established before.

Proposition 2.4.3. The transition probability measure Q(·, (ν, ξ)) is given by equation
(2.4.11) for each (ν, ξ) ∈ E.

Proof. Let (ν, ξ) ∈ E, {η} × dξ′ ∈ E . Let (N,Ξ) and (N−,Ξ−) be E-valued random
variables before and after the jumps. Then,

Q({η} × dξ′; (ν, ξ)) = P ((N,Ξ) ∈ {η} × dξ′|(N−,Ξ−) = (ν, ξ))

= P ({η} × dξ′|(ν, ξ)) ,

where we omitted the random variables for notational convenience. Then we have:

P ({η} × dξ′|(ν, ξ)) = P(dξ′| {η} , (ν, ξ))P({η} |(ν, ξ)) = δξ(dξ
′)P(η|(ν, ξ)),
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since Ξ = Ξ− a.s., by construction of the process. Since α is a bijection, we have1

P(η|(ν, ξ)) = P ((αµ(η),αY(η))|(αµ(ν),αY(ν)), ξ)

= P (αµ(η),αY(η)|αY(ν), ξ) ,

since, by construction of the cell motility process, the new FA state αY(η) is determined
independently of whether a cell was moving or not (represented by αµ(ν) ∈ {0, 1}) and
the new motility state αµ(η) is determined only by which FA event took place (binding or
unbinding), regardless of whether a cell was previously moving or not.

Note that when a jump occurs, then, by Proposition 2.3.3, one and only one of j =
1, . . . , 2M possible (binding and unbinding) FA events occurs. Thus, for j, j′ ∈ {1, . . . , 2M}
and j 6= j′ the events “reaction j occurs” and “reaction j′ occurs” are mutually exclusive.
We then have, by using the definition of conditional probability:

P (αµ(η),αY(η)|αY(ν), ξ) =
2M∑
j=1

P (αµ(η),αY(η)|j,αY(ν), ξ)P (j|αY(ν), ξ) ,

where

• P (j|αY(ν), ξ) is the probability that the FA event j occurs, given αY(ν) and ξ.

• P (αµ(η),αY(η)|j,αY(ν), ξ) is the probability of a jump into cell state (αµ(η),αY(η)),
given αY(ν) and ξ, and that the FA event j occurred.

Let j ∈ {1, . . . ,M} and j+ = 2j − 1 and j− = 2j. Due to (2.3.3) we have:

P
(
j±|αY(ν), ξ

)
=
a±j (αY(ν), ξ)

a0(αY(ν), ξ)
. (2.4.12)

Furthermore,

P
(
αµ(η),αY(η)|j+,αY(ν), ξ

)
= δαµ(η),0δαY(η)j ,1

M∏
i 6=j

δαY(η)i,αY(ν)i

P
(
αµ(η),αY(η)|j−,αY(ν), ξ

)
= δαµ(η),1δαY(η)j ,0

M∏
i 6=j

δαY(η)i,αY(ν)i .

1If (H,Z) ∈ E is a random variable, then, due to α being a bijection:

{ω ∈ Ω|H(ω) = η(ω)} = {H = η} =
{
α−1(H) = α−1(η)

}
= {α(H) = α(η)} .
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Therefore,

2M∑
j=1

P (αµ(η),αY(η)|j,αY(ν), ξ)P (j|αY(ν), ξ)

=
M∑
j=1

P
(
αµ(η),αY(η)|j+,αY(ν), ξ

)
P
(
j+|αY(ν), ξ

)
+ P

(
αµ(η),αY(η)|j−,αY(ν), ξ

)
P
(
j−|αY(ν), ξ

)
=

M∑
j=1

δαµ(η),0

a+
j (αY(ν), ξ)

a0(αY(ν), ξ)
δαY(η)j ,1

M∏
i 6=j

δαY(η)i,αY(ν)i

+ δαµ(η),1

a−j (αY(ν), ξ)

a0(αY(ν), ξ)
δαY(η)j ,0

M∏
i 6=j

δαY(η)i,αY(ν)i .

�
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Chapter 3

Adhesion, Contraction, and Signaling

In this chapter we discuss the cellular structures (FAs and SFs) involved in the cell motil-
ity model. We also describe how the signaling feedback of RhoGTPases plays a role in
regulating FA and SF dynamics, and elaborate on myosin motor dynamics.

3.1 Focal adhesions

1

2

3

4

5

6

7

8

ECM

Cytoplasm

F2

Figure 3.1: Schematic representation of an FA. SF is represented in red, adapter complexes
linking integrins with the SF in green. The middle and the rightmost bonds are open, the
rest are closed. Soluble cues are represented in blue.

A simplified schematic of an FA is shown in Figure 3.1. As mentioned in the introduc-
tion, FA is a multiprotein cluster consisting of transmembrane receptors (integrins), and
numerous other regulatory and adapter protein complexes, which link the receptors with
the cytoskeleton [15], [43]. An FA provides mechanical and chemical feedback between a
cell and its surrounding environment, which gives rise to various types of tactic migration.
For example, durotaxis and haptotaxis occurs in response to a perceived gradient in the
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ECM stiffness and density, while chemotaxis in response to a chemical one. Regardless
of the kind of (un)biased motility, in the migration cycle FA disassociates from the ECM
due to mechanical causes (applied tension by contractile fibers), while association is both
mechanically and chemically regulated.

While we introduced the probability rates of binding and unbinding events, we have
not yet fully specified them. Here, we provide functional forms of propensity functions a+

j

and a−j , and also provide the associated parameter estimates.
This section is based on the work by the author in [120].

3.1.1 Unbinding rate

Consider the unbinding rate a−j of FA adhesion site j ∈ {1, . . . ,M} and let y ∈ {0, 1}M ,
ξ = (x,xn, θ) ∈ Γ. Following Bell [12], the bond disassociation rate under applied force is
given by:

a−j (y, ξ) = k0
offe

‖Fj(xn,θ)‖/Fbyj, (3.1.1)

where k0
off is the FA disassociation rate under no load, Fi is the force applied at the FA,

given by equation (2.1.1), and Fb = 5.5nN is a characteristic force scale. The last factor
yj simply indicates that only bound FAs can unbind (thus satisfying equation (2.3.1)).
Clearly, the function in (3.1.1) is integrable. Here we neglect the fact that the force may
be applied at the FA (and consequently at the transmembrane receptors) at an angle and
assume for tractability of the model that it is applied normally to the FA (hence consider
only magnitude).

Remark. In the context of cell migration and within the framework of our model, we
only consider FA disassembly on the cell periphery (including the lamellae). The primary
cause of such FA unbinding has mechanical, rather than biochemical nature due to the cell
contractile mechanism applying load to the adhesions. Although it is known that the Rho
family of GTPases (in particular its member RhoA) mediates disassembly of FAs, their
effect is indirect. For example the activity of myosin motors, which generate contractile
forces in SFs, is regulated by RhoA [96], hence the force dependence of the unbinding
rate a−j . Recalling the definition of Fi in equation (2.1.1), we can include such indirect
biochemical mediation by considering mediators of the force Ti. In order to keep the model
tractable, here we omit the interaction between RhoA and myosin motors (see Section 3.3
for details on SF contractility).

Note that force is required for formation of FAs and in its absence they disassociate
[41], [114], [130]. It is thought that this is due to the adapter complexes undergoing con-
formational changes, which exposes cryptic binding sites and promotes assembly through
activation of protein recruiting signaling pathways. Thus, disassociation of adapter com-
plexes under no force implies that the cluster becomes a collection of independent integrin
bonds. The average lifetime Tlife of such a cluster is given by [34]:

Tlife =
1

k1
0 + k1

on

[
HN +

N∑
n=1

(
k1
on

k1
0

)n
1

n

(
N

n

)]
,
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where N is the number of bonds in a cluster, HN is the Nth harmonic number, k1
0 and

k1
on are, respectively, unbinding and binding rates of integrins under no load. Note that in

the absence of a load, (re-)binding of individual integrins is an independent event, which
bears no relation to the FA, since tension is required for an FA to form and sustain itself.
We then estimate:

k0
off = 1/Tlife | k1

on=0= k1
0/HN .

Li et al. [66] found that k1
0 = 0.012s−1 for α5β1-integrin binding to fibronectin. For

N = 103 − 104 we estimate that k0
off = 0.05s−1 − 0.1s−1. Balaban et. al. [9] found that

focal adhesions apply a constant stress of ∼ 5.5nN/µm2 over an area of ∼ 1µm2 on an
elastic substrate. Thus, we take Fb = 5.5nN .

Recall that FA disassociation leads to cell body translocation. It follows that the rate
of FA unbinding determines the time scale of cell migration te (see Section 2.2.3) and hence
te = k0

off .

3.1.2 Binding dynamics

Consider the binding probability rate a+
j of the FA adhesion site j ∈ {1, . . . ,M} and let

y ∈ {0, 1}M , ξ = (x,xn, θ) ∈ Γ. The probability rate a+
j is given by:

a+
j (y, ξ) = kon,j(ξ)(1− yj),

where kon,j : Γ→ R+ is the effective binding rate at FA site j. The last term (1−yj) simply
indicates that only unbound FAs can bind. Whereas unbinding can be viewed effectively
as a bond rupturing under applied tension, a binding reaction, or focal adhesion assembly
and maturation, is a highly regulated process. Due to the complexity of the FA assembly
process, we focus on two major mediators of FA formation: Rac1 activity and contractile
forces.

Rac1 dependence

For simplicity, we assume that the probability of FA formation is directly proportional to
local Rac1 concentration. Consider the case of chemotactic cell migration. Leading edge
protrusions preferentially form in the direction of a chemoattractant. Since Rac1 is required
for formation of lamellipodium and FA formation [96], then local Rac1 activity correlates
with the concentration of the chemical cues. Conversely, local Rac1 activity negatively
correlates with chemorepellent. Moreover, Rac1 itself is activated by integrin-ECM bonds
[93], suggesting that there is a positive feedback loop.

Let Qcue : R2 → R+ denote the concentration of a cue in the spatial domain and let
q : R+ → R+ denote the Qcue dependent concentration of Rac1. Clearly, q is an increasing
function for the case of an attractant and a decreasing function for a repellent. Then,

kon,j(ξ) ∝ q(Qcue(x + xj)), (3.1.2)
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where we recall that xj is the position of jth FA site.
For example, we can take Qcue(x) to be the density of a chemoattractant at x ∈

R2 and take q(x) = x. Then, the probability of binding is simply proportional to the
chemoattractant density 1. If we let Qcue to denote the density of the ECM and take q(x) =
x, then the binding rate is proportional to the local density of the ECM, which corresponds
to the haptotactic migration. Thus, both chemo- and haptotaxis can be taken into account.
The simultaneous effect of chemo- and haptotactic cues on the binding probability can be
considered by modifying the form of q. For example, if we let q(x, y) = wchemox+whaptoy,
where x, y are the densities of a chemoattractant and the ECM, respectively, then, by
varying the weights wchemo, whapto, we can examine the effects of both cues on the cell
migration.

Force dependence

Figure 3.2: Force dependence of un-
binding and binding rates.

Note that the enlargement of nascent adhesions2 is
concurrent with their maturation into focal adhe-
sions. Thus, enlargement and maturation are synony-
mous. While the initial stage of adhesion growth is
force-independent [23], maturation occurs in a force-
dependent manner [41], [114], [130].

However, during such a force-dependent matura-
tion, the positive correlation between the adhesion size
and the applied tension exists only in the initial stages
of maturation. As FAs increase in size, the force de-
pendence plateaus [114].

That is, the study by Stricker et. al. [114] showed
that for mature FAs there is no correlation between
applied force and FA size. One can consider an adhesion
site as mature when its size reaches ∼ 1µm2 (see e.g.
[9], [108]).

Choi et. al. [23] showed that nascent adhesions assemble at a rate of ∼ 1.3min−1 =
0.021s−1 reaching a size of ∼ 0.2µm2. Furthermore, it was shown that the formation
of these adhesions is independent of fibronectin density [23], stiffness [23] and myosin II
activity [4],[23],[125].

Let k0
on be the force-independent FA maturation rate, which we take k0

on = 0.01s−1.
We now want to find a function that could represent force dependence of FA maturation
rate. Denote this function kforce : R+ → R+.

It satisfies the following:

• kforce(0) = k0
on, i.e. if there is no force applied, the rate is k0

on.

1This corresponds to a bi-molecular reaction rate, which depends on the number of one of the reactants
(FA) and on the concentration (chemoattractant) of the other.

2The enlargement of nascent adhesions occurs by clustering of substrate bound integrins and seques-
tering of the adapter proteins.
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• If the applied force is below the characteristic force Fb, then kforce is greater than
the unbinding rate, i.e. it is more likely that an FA increases in size than that it
ruptures.

• If the characteristic force Fb is applied, the rate kforce should equal the unbinding
rate, i.e. we assume that there is a dynamic equilibrium in some sense.

• If the applied force is larger than Fb, then the unbinding rate dominates the binding
rate. Note that as FA increases in size, the force dependence plateaus [114]. Thus,
kforce should plateau around Fb. We also assume that for large applied forces kforce
plateaus at k0

on, since exceeding loads rupture integrin bonds frequently and impede
stable maturation.

The following form of kforce satisfies the conditions above:

kforce(F ) =


k0
off e+k

0
on

1+exp(−γ1(F−F ∗1 )/Fb)
+ k0

on − ε, F ≤ Fb

k0
off e+k

0
on

1+exp(γ2(F−F ∗2 )/Fb)
+ k0

on, else
, (3.1.3)

where F ∗1 = Fb/4 and F ∗2 = 5Fb/4 are the midpoints of the sigmoid functions (see Figure
3.2). The values of γ1, γ2 and ε can be found as follows:

Suppose F ≤ Fb. Then,

γ1 = − Fb
F − F ∗1

log

(
k0
offe+ k0

on

kforce(F )− k0
on + ε

− 1

)
.

Since kforce(0) = k0
on and kforce(Fb) = k0

offe, then:

γ1 =
Fb
F ∗1

log

(
k0
offe+ k0

on

ε
− 1

)
γ1 = − Fb

Fb − F ∗1
log

(
k0
offe+ k0

on

k0
offe− k0

on + ε
− 1

)
.

It follows that ε is given as the solution of the following equation:

Fb
F ∗1

log

(
k0
offe+ k0

on

ε
− 1

)
+

Fb
Fb − F ∗1

log

(
k0
offe+ k0

on

k0
offe− k0

on + ε
− 1

)
= 0.

Similarly, since kforce(Fb) = k0
offe, we find:

γ2 =
Fb

Fb − F ∗2
log

(
k0
offe+ k0

on

k0
offe− k0

on

− 1

)
.

The values of γ1, γ2, and ε are fixed for a value of Fb given in Section 4.2.
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Remark. Chan and Odde [19] showed that adhesion site dynamics depends on sub-
strate stiffness. In particular, they showed that for a stiff substrate the transmembrane
bonds rupture more frequently, compared to the case with softer substrate under the same
load, since the critical load is reached faster. This mechanism provides means for a cell
to assess the surrounding rheology. Within the context of our model, this means that the
force Fb is smaller for the stiffer substrate, thus increasing the disassociation rate for the
same load (see (3.1.1)). Consequently, the force dependent binding rate kforce also changes
for the stiffer ECM. In this case, the curves in Figure 3.2 will shift to the left. There-
fore, our model provides an opportunity to include mechanosensitivity of migrating cells
by considering the relevant dynamics for individual FAs.

Therefore, the binding propensity rate a+
j of an adhesion j ∈ {1, . . . ,M} is given by:

a+
j (y, ξ) = q(Qcue(x + xj))kforce(‖Fj(xn, θ)‖)(1− yj). (3.1.4)

3.2 RhoGTPases

Although the activity of Rac1 and RhoA regulates FA assembly and SF contractility, in this
work we do not consider their effects on cell migration in detail. However, in this section we
briefly describe how the effects of Rac1-RhoA feedback can be incorporated in a simplified
manner into our model. The following is based on the mathematical models of RhoGTPase
signaling feedback in [50]. There, the spatially dependent dynamics and interaction of
RhoGTPase members (Rac1, Cdc42, and RhoA) with membrane lipids (phosphoinositides
PIP1, PIP2, PIP3) were studied. Similar models of RhoGTPases crosstalk were also used
in [59] and [73] to model single cell migration and contact inhibition of locomotion.

Figure 3.3: Schematic diagram of the interactions between RhoGTPases and PIs considered
in [50].

Schematic diagram of the feedback loops between RhoGTPases and phosphoinositides
(PIs) corresponding to Model 4 in [50] is shown in Figure 3.3. It follows from the results
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there that in steady state conditions, and in the absence of diffusion and feedback with
PIs, we have:

R = R̄
α

δR
C + R̄(ÎR +Qcue)

ρ =
ρ̄

δρ

Îρ

1 +
(
R
a2

)n
C =

C̄

δC

ÎC

1 +
(
R
a1

)n , (3.2.1)

where R, ρ, C denote the concentrations of Rac1, RhoA, Cdc42, and the rest are constant
parameters. Here, the notation is the same as in [50], except that we use Qcue to denote
the concentration of a cue. Notice that Rac1 depends linearly on Qcue, which could justify
taking q(x) = x in (3.1.2) and letting the proportionality constant to absorb the other
parameters in the above equation for Rac1. Moreover, we also see that the (local) concen-
tration of Rac1 depends on Qcue. Therefore, in (3.1.2) we can take into account the effect
of an external cue on Rac1 mediated FA association rate, albeit in a simple, linear manner.
From (3.2.1), we can also see how an external cue can affect RhoA concentrations, due to
the inhibition of the latter by Rac1. As the activation of myosin motors is mediated by
RhoA [124], the above considerations provide means by which the RhoGTPase dynamics
can be included in an extended model. In the following sections, we briefly describe the
mechanism of SF contraction by myosin motors and the effects of RhoA thereon.

3.3 Stress fibers

As mentioned in Section 2.1, we treat SFs as “active” contractile elements, whereby their
mechanical properties are influenced by force generating non-muscle myosin IIA molecular
motors. They are organized in minifilaments of 10-30 motors [122], where the group is
able to apply a contractile force only when there is a distance between the filaments (see
[83] and Figure 2.3b). As a motor produces a power stroke (see Figure 3.4), it slides the
filamentous actin (F-actin), contracting the fiber and reducing the separation between the
minifilaments. If the distance between them vanishes, a power stroke cannot slide the F-
actin as the front of the motor is jammed by a crosslinking protein or another minifilament.

The length of a myosin mini-filament is ∼ 0.3µm [115] and the interfilament distance
is ∼ 1µm in an uncontracted fiber [5]. Thus, the proportion of the minifilaments to the
initial, uncontracted SF length is 0.3

1+0.3
= 0.23. Assuming vanishing interfilament distance,

it follows that an SF can contract up to 23%. Interestingly, Deguchi et. al. [29] found that
stress fibers contract, on average, to 20% of their original length. As stress fibers generally
span more than half of a cell, and since it was found that there is a preexisting strain [29]
in them, we estimate L0 = 1.1Rcell and Lc = 0.2Rcell in (2.1.1).

If we take Rcell = 25µm, and assuming an SF has at rest the length of Rcell, we can
estimate the number of myosin minifilaments in a fiber to be 25µm/1.3µm ≈ 20. As
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each motor produces a force of 2 − 10pN [38], [81], [83], and there are 10-30 motors in
minifilament, we then estimate the (constant) tension Ti = 4nN in ith SF due to myosin
motors. As the characteristic force at an FA is Fb = 5.5nN (Section 3.1.1), and assuming a
preexisting strain in an SF was 0.1 when this measurement was taken, and since Ti = 4nN ,
we then estimate the one dimensional Young’s modulus EA = 15nN . We obtain this
estimate from the first case in (2.1.1):

Fb = Ti + EA
Li − L0

L0

.

In the discussion of these macroscopic (in relation to its constituents) mechanical prop-
erties of contractile SFs, we did not take into account their regulators. In particular, how
do RhoGTPases come into play? In the following, we model mediation of myosin activity
by RhoA.

3.4 Myosin motors

A single non-muscle myosin II is a non-processive motor with a low duty ratio (fraction
of time spent on an actin filament). However, organization in mini-filaments increases
the duty ration significantly, generating appreciable contractile forces [3], [57]. In order
to address the cooperative behavior, cross-bridge models were studied in [3], [128] (see
Figure 3.4). In [3] it was also found that organization in an ensemble reduces stochastic
fluctuations in the total amount of force produced, which may explain why contraction of
an SF occurs smoothly.

According to our estimates in the previous section, there are ∼ 103 motors applying
force on an FA. Thus, due to the number and size of the motors, stochastic effects may
be prominent. Here, we are rather interested in aggregate quantities, such as the effective
number of active motors producing tension Ti, and how RhoA mediates it. We reduce
the complexity of the model by Albert et al. [3] and recast it as a chemical, rather than
mechanochemical, stochastic system with a substrate, enzyme complex and a product
(Figure 3.5). Furthermore, we do not take into account the cooperative behavior of small
ensembles considered in [3], which arises, in part, due to dependence of the transition
rates on mechanical factors. In some sense, we are investigating the dynamics on a larger
scale (thousands vs. tens of motors), by considering an individual motor, bypassing the
intermediate scale. The parameter values used here were introduced in [126].

Regulation of the cross-bridge cycle by RhoA occurs indirectly through binding ROCK
(Rho-associated coil kinase) and subsequently activating it [36]. Since RhoA binds ROCK,
then, assuming abundance of ROCK, the numbers of (active) RhoA and ROCK molecules
are equal. Thus, we consider regulation of the cycle by ROCK, and use it as a proxy
to infer the influence of RhoA on motor activity. Active ROCK phosphorylates myosin
light chains both directly and indirectly [124]. Only with phosphorylated light chain, the
myosin head is able to bind to actin, allowing transition into the wb state (Figure 3.4,
3.5). Hence, the transition of ub into the wb state can be treated as binding, thus seeing
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Figure 3.4: Schematic representation of the myosin motor cross-bridge cycle (right panel).
The mechanochemical model of four states in blue is developed by Walcott et al. [128],
while the model with three states in red is developed by Albert et al. [3]. In the unbound
(primed) state ub, the myosin head is loaded with ADP and Pi. The head binds to actin
and transitions into the weakly bound state wb. With release of Pi the motor produces a
power stroke and transitions into the post power stroke state pps. After releasing ADP,
the motor is in the unloaded state ul. Binding ATP terminates the actin bond and motor
transitions into pre-primed state pp. ATP hydrolysis causes conformational change and
returns the head to the unbound (primed) state ub. Modified from images in [60] and [83].

it as enzyme complex forming reaction with forward rate kMf = 40s−1 and reverse rate
kMub = 2s−1. For simplicity, we take kMf constant. However, effects of ROCK levels can
be included later. Although the forward and reverse rates in the wb to pps transition are
equal in the three state cross-bridge model by Albert et al. [3], the reaction is driven
towards the pps state with a free energy difference 4E ' −60pN nm. Thus, the ratio
of the probability of this subsystem to be in the wb state to probability to be in the pps
state is e4E/kBT = 3 ·10−7, where kB is the Boltzmann constant and T represents the room
temperature. Hence, we treat the wb to pps transition as a product forming irreversible
reaction with rate kMcat = 103s−1, where the product is the motor activation. Finally, the
active motor in the state pps reverts back to the inactive state ub with the irreversible
rate kMr = 80s−1 (as the recovery stroke and the return to the primed state require ATP
hydrolysis).

Let NT be the (constant) total number of the motors in an SF. Let N and N0 := NT−N
be the numbers of active (i.e. in the pps state) and the inactive (i.e. in the ub state) motors,
respectively. Let E be the number of free ROCK molecules. Since in our model (see Figure
3.5) the ub to wb transition is a bimolecular reaction, then kMf := k̂Mf E/V , where k̂Mf is a
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ub

wbpps

ROCK

RhoA

kMr

kMf

kMub

kMcat

Figure 3.5: Reduced chemical model with enzymatic activity. The substrate ub
binds ROCK with the forward rate kMf and the reverse rate kMub , and forms the
complex wb. The complex wb forms the product pps with rate kMcat and reverts
back with rate kMr .

constant and V is the volume of the system (see Gillespie [44] for details on the forms of
reaction rates). Then, the motor activation reaction chain is the following:

N0 + E
k̂Mf−−⇀↽−−
kMub

[N0E]
kMcat−−⇀ N + E,

where [N0E] is an enzyme complex. We then have the following:

• k̂Mf N0E/V and kMub [N0E] are the rates of complex formation and disassociation, re-
spectively.

• kMcat[N0E] and kMr N are the rates of product formation (i.e. myosin activation) and
disassociation (i.e. deactivation), respectively.

Since the rate constant of the product formation is significantly larger than other rates
considered here, the complex [N0E] is short-lived. Note that, as expected the analysis of
the original three state model [3] also, revealed that the weakly bound state is a short-lived
transient state. Therefore, in a quasi-steady-state approximation we have the following:

k̂Mf N0E/V = kMub [N0E] + kMcat[N0E].

This is reminiscent of classical, deterministic Michaelis-Menten kinetics approximation of
enzyme dynamics. One could view the equation above as a conservation law: the number
of molecules “flowing into” the wb state equals the number of molecules “flowing out”.

Let E0 := E + [N0E] be the total number of (active) ROCK molecules. Using the
equation above, we have:

[N0E] =
k̂Mf E0

V
· N0

kMub + kMcat +
k̂Mf
V
N0

.

Remark. Assuming the value of the rate constant kMf was deduced with E = E0, and
since the Michaelis-Menten kinetics approximation assumes that substrate concentration
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is significantly larger than enzyme concentration, then we estimate (with E0 ∼ 10− 100):

k̂Mf /V = kMf /E0 ' 40 · 10−2s−1 − 40 · 10−1s−1,

as the number of myosin motors is on the order of ∼ 103 (see above).
Let b+, b− : {0, . . . , NT} → R+ be the rates of myosin activation and deactivation,

respectively. Then, we have:

b+(N) = kMcat
k̂Mf E0

V
· NT −N

kMub + kMcat +
k̂Mf
V

(NT −N)

b−(N) = kMr N. (3.4.1)

Note that the total ROCK concentration is E0/V . Since it is proportional to the RhoA
concentration ρ, we can use (3.2.1) to relate b+ to ρ. These two rates specify our reduced
two-state chemical model.

Steady state approximation

Let p(t, N) be the probability that there are N active motors at time t. Then, p satisfies
the following master equation:

∂

∂t
p(t, N) = b+(N − 1)p(t, N − 1) + b−(N + 1)p(t, N + 1)

−
[
b+(N) + b−(N)

]
p(t, N), (3.4.2)

where we set

b+(−1) ≡ 0, p(t,−1) ≡ 0,

b−(N + 1) ≡ 0, p(t, N + 1) ≡ 0,

so that

∂

∂t
p(t, 0) = b−(1)p(t, 1)− b+(0)p(t, 0)

∂

∂t
p(t, NT ) = b+(NT − 1)p(t, NT − 1)− b−(NT )p(t, NT ), (3.4.3)

which simply corresponds to the reflecting boundary conditions, as we assumed that the
total number of motors in an SF is constant.

Following [Chapter VI in [53]], we introduce for convenience a “step operator” denoted
by the symbol W, which we define by its action on p(t, N):

Wp(t, N) = p(t, N + 1), W−1p(t, N) = p(t, N − 1).
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It has the following useful properties:

WW−1 = W−1W = I (3.4.4)

NT−1∑
N=0

g(t, N)Wf(t, N) =

NT∑
N=1

f(t, N)W−1g(t, N), (3.4.5)

where I is identity operator and f, g are arbitrary.
Remark. Multiplying (3.4.2) by N , summing over the range of N values, and using

(3.4.4), we obtain:

d

dt
< N > =

NT∑
N=0

N
(
W−1 − I

)
b+(N)p(t, N) +

NT∑
N=0

N (W− I) b−(N)p(t, N)

=

NT∑
N=0

b+(N)p(t, N) (W− I)N +

NT∑
N=0

b−(N)p(t, N)
(
W−1 − I

)
N

=< b+(N) > − < b−(N) >,

where < · > denotes the average. Using Taylor’s expansion around < N > we have:

b±(N) =b±(< N >) + (b±)′(< N >)(N− < N >)

+
1

2
(b±)′′(< N >) (N− < N >)2 + . . . ,

from which it follows:

< b±(N) >= b±(< N >) +
1

2
(b±)′′(< N >)

(
< N2 > − < N >2

)
+ . . . .

Neglecting fluctuations around the mean < N >, we obtain a more familiar ODE:

d

dt
< N > = b+(< N >)− b−(< N >).

From this, we can obtain the usual ODE governing Michaelis-Menten enzyme reactions
for concentration, rather than number of reactants. Using (3.4.1) and dividing by V the
equation above, we have:

d

dt
[N ] = kMcat[E0]

[NT ]− [N ]
kMub+k

M
cat

k̂Mf
+ [NT ]− [N ]

− kMr [N ],

where [·] = <·>
V

denotes the reactant concentration. This shows that our treatment of
the two-state chemical model of myosin activation yields the expected macroscopic law for
Michaelis-Menten kinetics (under suitable conditions).
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From (3.4.2) it follows that the stationary distribution ps(N) is given by:

0 = (W− I) b−(N)ps(N) +
(
W−1 − I

)
b+(N)ps(N)

= (W− I)
[
b−(N)ps(N)−W−1b+(N)ps(N)

]
.

Thus, the term in the square brackets is independent of N :

b−(N)ps(N)−W−1b+(N)ps(N) = Const., ∀N ∈ {1, . . . , NT} .

In particular, the equation above holds for N = 1. Using (3.4.3) and the definition of W:

0 = b−(1)ps(1)− b+(0)ps(0) = Const.

Thus, the following holds ∀N ∈ {0, . . . , NT}:

b−(N)ps(N) = b+(N − 1)ps(N − 1),

which is a statement of detailed balance. Applying the relation recursively:

ps(N) =
b+(N − 1)b+(N − 2) · · · b+(0)

b−(N)b−(N − 1) · · · b−(1)
ps(0), (3.4.6)

where ps(0) can be obtained by noting that ps is a probability distribution:

1 =

NT∑
N=0

ps(N) = ps(0) +

NT∑
N=1

b+(N − 1)b+(N − 2) · · · b+(0)

b−(N)b−(N − 1) · · · b−(1)
ps(0)

⇒ 1

ps(0)
= 1 +

NT∑
N=1

b+(N − 1)b+(N − 2) · · · b+(0)

b−(N)b−(N − 1) · · · b−(1)
.

Figure 3.6: Stationary distribution ps with NT = 103 and varying values of kMf . The values
of < N > and ps(< N >) are marked by a black cross.
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The distribution ps is plotted in Figure 3.6, where an increasing value of kMf corresponds
to elevated concentration of active RhoA. We also see that the distribution is peaked around
the average < N >, given by:

< N >=

NT∑
N=0

Nps(N).

Therefore, given the concentration of RhoA, we can estimate the contractile force exerted
by myosin motors Ti in ith SF as Ti =< N > Fmyo, where Fmyo is force applied by a single
motor.

We have thus devised means by which the signaling feedback between RhoGTPases can
be incorporated in our model, namely, regulation of FA dynamics by Rac, and mediation
of SF contractility by RhoA, where the activity of the GTPases are related by (3.2.1).
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Chapter 4

Numerical Simulations

In this chapter we present the numerical method used to simulate the model presented in
Chapter 2, asses its parameters, and discuss the results of the simulations. Recall that the
model contains interdependent stochastic and deterministic components. However, it is not
immediately clear how to sample from the corresponding probability distributions, since
they depend on the solution of the ODE system describing the deterministic components.

A crucial measure of model validity is its ability to explain a variety of experimental
observations. In order to compare them with our simulation results, we must also evolve
our system for comparable time scales. For example, to asses such quantities as velocity or
average displacement, the time scale of such observations is typically around many hours
to allow for significant displacements to occur. However, recall that the time scale of
our model is set by the frequency of FA unbinding events, which is typically expressed
in minutes. Thus, we must evolve our system for relatively long times, during which its
form will change many times, as each FA event modifies the ODE system governing the
deterministic components. Moreover, we must also simulate the trajectories of many cells
independently in order to obtain a good measure of averaged quantities. Therefore, the
implemented method must be efficient. Hence, we opt for C++ implementation of the
method. We also utilize the parallelization functionality of the deal.II environment [10] to
generate multiple independent cell trajectories concurrently. The method presented here
will also serve as a basis to simulate a population of colliding cells. It is also applicable
to a general piecewise deterministic process without an “active” boundary1, and where
the deterministic component varies continuously (otherwise, only a slight modification is
necessary). Furthermore, a user is free to choose specific subroutine methods, such as ODE
time stepping, quadrature, or root finding schemes.

This chapter is based on the work by the author in [120].

1Jumps occur only at the random event times, and not when the deterministic part attains a certain
value in a set.
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4.1 Methods

We employ the Algorithm 1 to simulate the trajectories. In order to generate the interar-
rival time ∆k, we need to solve for τ in the following equation:

1− exp

(
−
∫ t+τ

t

a0(νt, φν(s,Xt))ds

)
= u,

where u ∼ U(0, 1) is uniformly distributed on the interval (0, 1). This is equivalent to
finding the root of the following:

f(τ) :=

∫ t+τ

t

a0(νt, φνt(s,Xt))ds+ ln(1− u) = 0, (4.1.1)

Notice that the evaluation of the integral by a quadrature rule requires computing the
solution Xt+s = φνt(s,Xt) up to time s, where s is a quadrature point. Moreover, using
an iterative method to solve (4.1.1) requires computing the integral at each iteration.
Therefore, it is imperative to devise an efficient method to sample from the distribution,
given by (4.1.2).

Algorithm 1 Simulation of the PDMP

1. Set the initial conditions (ν0,X0) ∈ A× Γ and t = T0 = 0

2. For k = 0, 1, . . .
Generate interarrival time ∆k = Tk+1 − Tk, whose distribution function is given by:

P (∆k ≤ τ) = 1− exp

(
−
∫ t+τ

t

a0(νt, φν(s,Xt))ds

)
(4.1.2)

Compute Xt+s− := φν(s,Xt)
Set t = Tk+1 = Tk + ∆k

Generate (νt,Xt) ∼ Q(·; (νt− ,Xt−))

In the following, we propose a general method to generate the next event time.

4.1.1 Interarrival time generation

Let Tk ≤ t < Tk+1 and let G(·;h) : Γ→ Γ represent a numerical method to solve the ODE
system

d

dt
Xt = Hνt(Xt)

for a single time step of size h. That is, Xt+h = G(Xt;h) is the numerical solution of the
above ODE system at time t+ h.

49



4.1. METHODS CHAPTER 4. NUMERICAL SIMULATIONS

Let [Tk, Tk+1)2 3 (s′, t′) 7→ A0(t′, s′) :=
∫ t′
s′
a0(νt, φνt(u,Xt))du denote the integrated

rate function.
The method to find the root τ of equation (4.1.1) is given in Algorithm 2. First, in

steps (1-22), we find the upper bound τmax by solving the ODE system for n steps with
step size h and store the solution, the computed rate a0, and the integrated rate A0 at these
time steps (see also Figure 4.1 for illustration). Then, for any τ ≤ τmax we can compute
A0(t+ τ, t) upon using the stored value of A0 at time t+ τi:

A0(t+ τ, t) =

∫ t+τ

t

a0(νt, φνt(s,Xt))ds

=

∫ t+τi

t

a0(νt,Xt+s)ds+

∫ t+τi+τ−τi

t+τi

a0(νt, φνt(s,Xt))ds

= A0(t+ τi, t) +

∫ t+τi+hi

t+τi

a0(νt, φνt(s,Xt))ds,

where i =
⌊
τ
h

⌋
, τi = ih is the time point at which the solution is computed, and hi = τ−τi.

Note that an equidistant mesh is not required and any mesh can be used. To compute the
last integral in the expression above, we interpolate the integrand using the stored values
a0(νt,Xt+τi) and a0(νt,Xt+τi+1

). Let

I
(
a0(νt,Xt+τi), a0(νt,Xt+τi+1

);hi, h
)

:=

∫ t+τi+hi

t+τi

a0(νt, φνt(s,Xt))

denote the approximation of the integral using the interpolated integrand. We can use the
following interpolation methods for t+ τi < s < t+ τi+1:

1. Piecewise constant
Forward: a0(νt, φνt(s,Xt)) = a0(νt, φνt(τi,Xt)) = a0(νt,Xt+τi).

I
(
a0(νt,Xt+τi), a0(νt,Xt+τi+1

);hi, h
)

= hia0(νt,Xt+τi). (4.1.3)

Backward: a0(νt, φνt(s,Xt)) = a0(νt, φνt(τi+1,Xt)) = a0(νt,Xt+τi+1
)

I
(
a0(νt,Xt+τi), a0(νt,Xt+τi+1

);hi, h
)

= hia0(νt,Xt+τi+1
). (4.1.4)

2. Average: a0(νt, φνt(s,Xt)) = 1
2

(
a0(νt,Xt+τi) + a0(νt,Xt+τi+1

)
)
.

I
(
a0(νt,Xt+τi), a0(νt,Xt+τi+1

);hi, h
)

=
1

2
hi
(
a0(νt,Xt+τi) + a0(νt,Xt+τi+1

)
)
. (4.1.5)

3. Piecewise linear:

a0(νt, φνt(s,Xt)) = (s− t− τi)
a0(νt,Xt+τi+1

)− a0(νt,Xt+τi)

h
+ a0(νt,Xt+τi).

I
(
a0(νt,Xt+τi), a0(νt,Xt+τi+1

);hi, h
)
.

= hia0(νt,Xt+τi)

(
1− hi

h

)
+
h2
i

2h
a0(νt,Xt+τi+1

). (4.1.6)

50



CHAPTER 4. NUMERICAL SIMULATIONS 4.1. METHODS

Thus, f(τ) can be evaluated using equations (4.1.3)-(4.1.6):

f(τ) = A0(t+ τi, t) + I
(
a0(νt,Xt+τi), a0(νt,Xt+τi+1

);hi, h
)

+ ln(1− u). (4.1.7)

Using the interpolations above, we can now employ any root finding method with bracket-

Figure 4.1: Illustration of the interrarival time computation. Subscripts i indicate the time
points at which the solution of the ODE system, a0 and A0 are stored. Subscripts l indicate
iterates of a root finding method, where the value of f in (4.1.1) is computed using the
stored values. See text for details.

ing to solve (4.1.1), such as bisection or Brent’s method. Once the root is found, we simply
advance the ODE system for one time step as described in Steps (28-33) of the Algorithm
2.

Note that we solve the ODE system for n+ 1 = τmax/h+ 1 steps. We also solve for the
interarrival time τ primarily by using a look-up table, since the evaluation of f in (4.1.7)
requires the stored values of a0 and A0. Moreover, obtaining a relatively sharp upper
bound τmax does not yield a large computational overhead, since one simply can start the
Algorithm 2 with a small n,m. Consequently, choosing an initial guess close to the sharp
upper bound for a root finding method results in a faster convergence. In case of thinning
methods (see [14] or [65] for adaptive methods), after each rejection one needs to solve the
ODE system for time period that is, on average, approximately the same as τmax (in the
best case scenarios for both methods, i.e. when the bound τmax and the bound for the
rate function in thinning methods are sharp). Of course, these arguments apply when the
computational cost of solving the ODE system is relatively large.

4.1.2 Sampling from the transition measure

Given the time t of the next event and Xt we need to sample from the transition distribution
Q(·, (νt− ,Xt−)). Recalling Section 2.3.2 and the proof of Proposition 2.4.3, in order to
sample from the transition measure it is sufficient to simulate the index j ∈ {1, . . . , 2M}
of the next reaction, since the continuous component of the process does not jump. The
discrete distribution of the next reaction index is given by equation (2.4.12):

P(j|αY(νt−),Xt−) =
aj(αY(νt−),Xt−)

a0(αY(νt−),Xt−)
.
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To simulate from the discrete distribution one can use the fairly efficient Vose Alias Method
[127].

Algorithm 2 Event time computation

1: procedure Initialization
2: Input: Time t = Tk; (νt,Xt); time step h and ODE method G; n,m ∈ N.
3: Set s0 := 0, n0 := 0, create Lista0 , ListA0 , and ListX.
4: Append Lista0 ← a0(νt,Xt), ListA0 ← 0, ListX ← Xt.
5: Set τmax := nh, s0 := n0h.
6: Set initial condition Xs ← ListX[last].
7: Set A0

0 := ListA0 [last].
8: for i = 1 to n do
9: si := t+ s0 + ih.

10: Compute Xsi := G(Xs;h) and a0(νt,Xsi).
11: Compute A0(si; t+ s0) with quadrature points sj, j = 0, . . . , i.
12: A0(si; t) := A0

0 + A0(si; t+ s0).
13: Append Lista0 ← a0(νt,Xsi), ListA0 ← A0(si; t), ListX ← Xsi .
14: end for
15: Generate u ∼ U(0, 1).
16: if ListA0 [last] < −ln(1− u) then
17: n := n+m.
18: n0 = n0 +m.
19: go to 5.
20: end if
21: Output: τmax, Lista0 , ListA0 , and ListX.
22: end procedure
23: procedure Evalution of f
24: Input: τ ; time step h; Lista0 , ListA0 ; Integrated interpolation method I.
25: Set i :=

⌊
τ
h

⌋
and hi = τ − ih.

26: Output: f(τ) = ListA0 [i] + I(Lista0 [i], Lista0 [i+ 1];hi, h) + ln(1− u)
27: end procedure
28: procedure Event time
29: Find the root τ of f(τ) = 0 using 23 and a root finding method.
30: i :=

⌊
τ
h

⌋
.

31: Compute Xt+τ := G(ListX[i]; τ − ih).
32: Output: τ , Xt+τ

33: end procedure

4.2 Parameters

Here we present our estimates of the remaining model parameters - the drag coefficients.
The values of other parameters are estimated in Sections 3.1, 3.3.
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Using Stokes’ Law for drag in the low Reynolds number regime, the drag coefficient
βECM can be estimated as:

βECM = 6πηECMRcell,

where ηECM is the dynamic viscosity of the environment. Assuming that the viscosity ηECM
is higher than that of water, and taking into account that the contact between cell surface
and the substrate increases the effective friction, we estimate βECM ≈ 10− 103N ·s

m2 ×Rcell.
Similarly, due to the low Reynolds number, the rotational drag coefficient βrot is given by
[63]:

βrot = 8πηECMR
3
cell ≈ 10− 103N · s

m2
×R3

cell.

In order to obtain estimates for the drag coefficient βcell one needs to have an estimate
of the cytoplasm viscosity. Assessing the effective cytoplasmic viscosity of migrating cells
is a challenging task, since the viscoelastic properties of the cytoskeleton (which, among
other things, consists of polymer networks) are highly dynamic due to constant remodeling
and spatiotemporal mediation of the rheology by various signaling pathways. Particularly,
the actin network bundle size and cross-linkers influence the viscoelastic properties [42].
Furthermore, the effective viscosity experienced by an experimental probe (or a protein)
in polymer solutions depends not only on the type of material properties of the fluid, but
also on the size of a probe 1 [52]. Inferring that the body being displaced in the cell due
to contractile fibers is the nucleus with radius Rnucleus, we estimate:

βcell = 6πηcellRnucleus ≈ 10− 102N · s
m2
×Rnucleus,

where ηcell is the cytoplasm viscosity.

4.3 Results

Here we show the results of simulating cell trajectories under different scenarios, which
represent various experimental settings, namely:

1. Uniform environment with no cues.

2. Non-uniform environment with external cue gradient and uneven myosin motor ac-
tivity within a cell.

3. Striped ECM architecture.

1Using a small molecule as a probe, the cytoplasm viscosity was found to be ' 2− 3× 10−4Pa · s [75].
With larger probes, the viscosity was found to be ' 2− 4× 10−2Pa · s [52] and ' 5× 10−2Pa · s[6]
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Parameter Value Value Parameter Value Value

Ti 4nN 0.72 Rcell 25µm 1

EA 15nN 2.72 L0 27.5µm 1.1

Fb 5.5nN 1 Lc 5µm 0.2

k0
off 0.05s−1 1 βrot 1.56×10−11N ·s ·m 5.68

k0
on 0.01s−1 0.2 βECM 5× 10−4N ·s

m
0.11

Rnucleus 5µm 0.2 βcell 5× 10−3N ·s
m

1.14

Table 4.1: Parameters used for simulation and their relative size with respect to spatial,
temporal, and force scales. See Section 2.2.3 for details.

Note that the total number of adhesion sites M is a free parameter, which differs
from cell to cell. Nevertheless, it is a crucial parameter, determining whether the motility
type is amoeboid or mesenchymal. Amoeboid motility is characterized by a large number
of weak adhesions, high turnover, and more contractile cell body. On the other hand,
mesenchymal migration relies on fewer, but stronger focal adhesions with slower turnover
and lower overall contractility. The cells with the former motility type are faster and
have more diffusive motion [70], [90]. Note that if a±j ∼ O(1), then the rate function is
a0 ∼ O(M). Therefore, adhesion events occur more frequently for increasing M , implying
higher adhesion turnover. Thus, by varying M , our model is capable of explaining this
particular aspect of the difference between the two migration types.

The rationale for simulating M = 8, 16, 32 FAs is the following. Note that the num-
ber of cell-substrate adhesions is higher than the number of focal adhesions we chose for
our simulations. However, not all adhesions are directly involved in translocating the cell
body, during which large traction forces are applied to the substrate through focal adhe-
sions (which are fewer in number than immature, less stable focal complexes/points and
nascent adhesions). Moreover, detachment of focal adhesions that leads to translocation,
is primarily the result of contractile tension applied by ventral stress fibers, as opposed to
transverse arcs and dorsal stress fibers [55]. The latter two have primarily structural role,
while the former is fundamental to rear retraction [22], [55]. Thus, the number of focal
adhesions that are directly involved in cell body translocation is controlled by the number
of the associated ventral stress fibers, which are also the most significant source of traction
force applied to the substrate due to large tension within them [55], [108]. Although reports
of ventral stress fiber numbers are elusive, visual inspection of the fluorescence images in,
for example, [51], [62], [108] (or any other appropriate study) suggests that simulations
with the chosen number of (ventral) fibers (and focal adhesions) is realistic. Moreover,
diameter of focal adhesions d ∼ 1− 5µm [41]. Assuming that the separation between focal
adhesions is comparable to their size, and taking the cell radius to be Rcell = 25µm (as
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in our simulations), we see that the upper range of possible number of adhesions on the
cell circumference is 2πRcell/2d ≈ 16 − 80. We reiterate that this number is an estimate
of focal adhesions attached to ventral stress fibers, and it underestimates the total number
of focal adhesions that a cell employs, since significant number of them are attached to
other types of stress fibers and may also be present within the cell body and not on its
periphery. We performed simulations with M = 64 focal adhesions and did not find any
added insight.

For all scenarios we employ the same initial conditions for all cells. Namely, at t = 0
the conditions are:

• x is at the origin, xn is uniformly distributed on a circle with radius Rcell, and θ = 0.

• Each FA is in (un)bound state and each cell is in moving state with probability 1/2.

We simulate trajectories of ncell := 56 cells for time tend := 600min. We divided the time
interval into ntime := 5000 intervals, at the end of which we recorded the cell centroid
positions x. For details on the data analysis, see Appendix B.

4.3.1 Uniform environment

The results of the simulation with uniform spatial cue Qcue are presented in Figure 4.2.
Due to the absence of spatial variation of Qcue, we take q = 1 in equation (3.1.4).

The cell trajectories with varying number of adhesion sites, depicted in Figure 4.2 (a-c),
show no clear trend and resemble those of a Brownian motion. Indeed, fitting the mean-
squared displacement msd(t) to the curve m̂sd(t) = β0t

β̄ (see Appendix B for details), we
see that the exponent is β̄ ≈ 1 for the three cases (see Figure 4.2 (d-f)). This suggests
that the cell motion has diffusive characteristics in this scenario. In Figure 4.2 (g-i) we see
the simulated distribution of speeds. The average speeds sav and the parameters β0, β̄ are
shown in Table 4.2. We see that as M increases, the cell motion becomes progressively
faster and more diffusive1, which is expected for a dominantly amoeboid type of motility.
Because β̄ ∼ 1, we can estimate the diffusion coefficient D = β0/4. The obtained values
are lower, but within an order of magnitude estimated by Liu et. al. [70], who found
that D ≈ 2.7µm2/min. Interestingly, the gamma distribution gives a very good fit to the
simulated data for various values of M , suggesting that cell speeds are gamma distributed.
Moreover, the obtained values of the average speed sav fall in the range reported by Liu
et. al. [70], who found the speeds to be in the range from 0.2µm/min to 7µm/min.
Although there are very high speeds observed in Figure 4.2 (i), which seem to be outliers,
speeds as high as 25µm/min have been observed [40]. As expected, angle histogram plots
of normalized velocities show no bias in any particular direction in Figure 4.2 (j-l). Along
with time scaling of the squared displacement, persistence of motion can be measured by
directionality ratio (distance between cell centroids divided by path length) and velocity
autocorrelation [45]. Expectedly, Figure 4.3 illustrates that the cells strongly deviate from

1Since β̄ ∼ 1, the slope β0 is a measure of diffusivity. See Appendix B.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.2: Simulation results with M = 8, 16, 32 adhesions in the first, second, and third
columns respectively. (a-c) Trajectories of 13 cell centroids x(t). (d-f) Mean-squared

displacements msd(t) (red, dash) and fitted m̂sd(t) (black, solid) with parameters β0 and
β̄ (see text for details). The unit of β0 is µm2/minβ̄. (g-i) Histograms of speed probability
density functions and fitted density function of gamma distribution (red) with parameters
k and θ. (j-l) Relative frequency histogram of normalized velocities.
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straight-path migration (Figure 4.3 (left); see also time average of the directionality ratio r̄
in Table 4.2) and the deviation directions are uncorrelated in time (Figure 4.3 (right)). The
rapid decay in Figure 4.3 (right) also suggests that correlations in time become stationary
very fast. The increased oscillations in Figure 4.3 (right) towards the end of the observation
window are due to decreased number of observations (see Appendix B).

Figure 4.3: Directionality ratio (left) and velocity autocorrelation (right) forM = 8 (green),
16 (red), 32 (blue).

M 8 16 32

sav, µm/min 1.7595 2.4845 3.6047

β̄, 1 1.0683 1.0035 1.0552

β0, µm2/minβ̄ 2.1493 3.3971 4.6308

r̄, 1 0.0483 0.0408 0.0497

Table 4.2: Parameters obtained from the simulations.

Although our results show in Figure 4.2 (d-f) the mean-squared displacement scales
diffusively (i.e. linearly) with time, this is not consistent with the reported results. For
example, Dietrich et. al. [32], Liang et. al. [67], and Liu et. al. [70] showed that the
displacement scales superdiffusively. In these studies it was experimentally found that the
time scaling went as∼ tβ̄, where β̄ ≈ 1.2−1.5. The primary reason why, in our case, we have
diffusive behavior is that, given a certain state of adhesion sites, there is a complete circular
symmetry of the probability rates a±j with respect to xn variable. Due to this symmetry,
then, the probability of moving in one direction is exactly the same as the probability of
moving in the opposite direction if we rotate xn by π radians. Hence, somewhat reminiscent
of a random walk, we obtain a diffusive time scaling of the squared displacement. Moreover,
this symmetry of the probability rates is somewhat idealistic, since it implies that the

57



4.3. RESULTS CHAPTER 4. NUMERICAL SIMULATIONS

signaling activity relevant for adhesion dynamics is homogeneous within a cell. One of the
ways to break this symmetry, is to multiply each binding probability rate a+

j by 1 + u,
where u ∼ U(−δ, δ) is uniformly distributed on the interval (−δ, δ) with δ ∈ (0, 1). Then,
on average, the rates are unmodified1. This way, we not only simulate a non-homogeneous
binding rate (and hence, for example, non-homogeneous Rac1 activity) within a cell, but
also simulate otherwise completely identical copies of cells. Such a modification, where we
do not explicitly apply a directed, predefined bias can be referred to as chemokinesis [92].

M 8 16 32

δ 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

β̄, 1 0.9859 1.3184 1.4084 1.0086 1.3505 1.5581 1.1014 1.4299 1.5639

sav,

µm/min
1.7656 1.7768 1.7557 2.4918 2.5009 2.5021 3.5818 3.5735 3.6104

β0,

µm2/minβ̄
3.0846 0.6934 0.5534 3.4517 0.7103 0.3543 4.1257 0.9536 0.5716

r̄, 1 0.0452 0.0519 0.0597 0.0440 0.0513 0.0587 0.0522 0.05 0.0623

Table 4.3: Parameters obtained from the simulations with varying δ.

The effect of modifying the rates a+
j with δ = 0.05, 0.1, 0.15 can be seen in Figure 4.4.

The cell trajectories, depicted in Figure 4.4 (a-c), show that the motion consists of periods
with relatively regular path intermingled with highly irregular and random movement. In
Figure 4.4 (d-f) we see that the rate modification leads to a superdiffusive time scaling of the
mean-squared displacement, as the exponent β̄ becomes larger than one and falls within
the experimentally observed range of values [32], [67], [70]. Moreover, we see that as δ
increases, so does β̄, and the increase of the latter is more pronounced for a larger number
of adhesion sites M (see also Table 4.3). This is due to the fact that as each adhesion
site is modified independently, the variance of the modified rates of a cell grows with the
number of FAs, which corresponds to increased cell polarization, and hence more prominent
persistent motion resulting in higher values of β̄. However, the distribution of speeds for the
corresponding values of M is virtually identical to the case with the unmodified probability
rates (Figure 4.4 (g-i) and Table 4.3). The uniform distribution of normalized velocities
also remained unchanged (Figure 4.4 (j-l)). These results suggest that in the absence of
spatial cues, the distribution of speeds for a given adhesiveness (represented by the total
number of adhesions M) remains invariant under symmetry breaking of adhesion binding,
while the diffusion type (normal vs. anomalous) does not. Thus, the adhesion number and
its turnover is a major determinant of the cell speed, which is consistent with [90].

1The multiplication factor 1 + u for each j = 1, . . . ,M of every cell is computed at the beginning of
simulations and is held fixed thereafter.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.4: Simulation results with M = 8, 16, 32 adhesions in the first, second, and third
columns respectively, and with various values of δ. (a-c) Trajectories of 27 cell centroids x(t)

with δ = 0.1. (d-f) Mean-squared displacements msd(t) (solid) and fitted m̂sd(t) (dash)
with δ = 0.05 (black), 0.1 (red), 0.15 (blue). (g-i) Superimposed histograms of speed
probability density functions and fitted density function of gamma distribution (solid red)
with average parameters k and θ (see text for details). (j-l) Superimposed histogram of
relative frequency of normalized velocities.

59



4.3. RESULTS CHAPTER 4. NUMERICAL SIMULATIONS

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Persistence of motion for cells with M = 8, 16, 32 adhesions in the first, second,
and third columns, respectively, and with δ = 0.05 (green), 0.1 (blue), 0.15 (red). (a-c)
Directionality ratio. (d-f) Velocity autocorrelation.

Note that the increased values of β̄ indicate that the cells explore a larger surface area
[45]. However, other indicators of motion persistence are not affected significantly (Figure
4.5), although migration paths become slightly straighter, as indicated by increased values
of r̄ (Table 4.3). These results suggest that symmetry breaking of adhesion binding may
allow cells to explore larger area without introducing velocity correlations (Figure 4.5(d-f)).

As cell polarization is required for migration even in the absence of external signals,
it is not surprising that our results show that an imbalance of adhesion formation within
a cell leads to experimentally observed superdiffusive scaling of the squared displacement
[32],[67], [70]. Nevertheless, this highlights a potential mechanism of anomalous diffusion.
In the following, we examine whether our model gives biologically consistent results in the
case of externally induced polarization.

4.3.2 External cue gradient

We first investigate how cell trajectories are varied in the presence of an external cue
gradient. If a cue, for example, is a chemoattractant, then it is well known that adhesion
formation in a cell is biased in the direction of the attractant. Thus, to simulate such
biased migration, we let the functions Qcue and q to have the following form (recall equation
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(3.1.4)):

Qcue(x) =

{
1 + δEx2, if x2 ≥ 0

1, else

q(Qcue(x)) = Qcue(x),

where δE represents the gradient magnitude and x2 is the second component of x. Here, for
simplicity we took the identity function for q and a linear cue gradient in the y coordinate.
This cue can represent, for example, density of ECM or concentration of a chemoattractant.
Thus, we simulate, respectively, hapto- or chemotactic migration.

M 8 16 32

δE 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

β̄, 1 1.2551 1.5051 1.52 1.3405 1.6963 1.7545 1.5427 1.7722 1.8569

sav,

µm/min
1.8136 1.9133 2.0365 2.5235 2.5972 2.6089 3.5819 3.4218 3.3074

β0,

µm2/minβ̄
1.0697 0.4625 0.6845 1.0312 0.3496 0.3654 0.8319 0.3412 0.2242

r̄, 1 0.0523 0.0607 0.0693 0.053 0.08 0.097 0.0726 0.1 0.1223

Table 4.4: Parameters obtained from the simulations with varying δE.

In the presence of a cue gradient, we see that the cell trajectories, shown in Figure 4.6 (a-
c), exhibit a clear trend in the direction of an increasing concentration. The corresponding
plots of the mean-squared displacements show the superdiffusive time scaling in Figure 4.6
(d-f), with the exponent β̄ > 1 for all cases. Notice that as the number of adhesion sites
M increases, so does β̄ for the same δE (see Table 4.4). Together with the trajectory plots
in Figure 4.6, our results suggest that in the presence of an external gradient, the taxis
becomes more prominent and a cell more sensitive to a cue for increasing number of FAs.
Moreover, comparing with the case of a uniform environment, we see that although the
amoeboid motility is more diffusive in the absence of external cues, it is also more regular
and directed when a cue gradient is present (see Tables 4.2, 4.3 vs. Table 4.4 and Figures
4.2, 4.4(a-c) vs. 4.6(a-c)). In Figure 4.6 (g-i) we see that the evolution of time-averaged
exponents βav(t) (see Appendix B) have three phases. Following the rapid increase in the
first phase, there is a gradual decrease in the rate of change in the second phase, followed
by stabilization of βav(t) at β̄. Curiously, a similar behavior has also been observed by
Dieterich et al. [32].

The distribution of speeds again remained invariant and the average speeds are very
close to the cases with no external cues (see Table 4.4). However, the frequency of normal-
ized velocities (see Figure 4.7 (d-f)) show, as expected, that the cell velocities are aligned
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6: Simulation results with M = 8, 16, 32 adhesions in the first, second, and third
columns respectively, and with various values of δE. (a-c) Trajectories of 27 cell centroids

x(t) with δE = 0.1. (d-f) Mean-squared displacements msd(t) (solid) and fitted m̂sd(t)
(dash). (g-i) Time-averaged exponents βav(t)

with the cue gradient. Accordingly, we see that persistent motion emerges: directional-
ity ratio increases compared to unbiased migration (Table 4.4) and the velocities become
correlated (Figure 4.8(d-f)). We also observe that an external signal has a stronger im-
pact on motion persistence for higher number of adhesions due to relative increases of r̄
and the degree of velocity autocorrelation. Recall that in the presence of, for example, a
chemotactic cue, a cell polarizes so that its adhesion dynamics is aligned with the gradient.
In particular, adhesions are preferentially formed at the front (where the chemoattractant
concentration is larger), and preferentially ruptured at the back. We can see in Figure 4.7
(g-i), that our simulation results reproduce such polarized dynamics: the ratio of binding
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.7: Superimposed histograms of speeds, velocities and adhesion events with M =
8, 16, 32 adhesions in the first, second, and third columns respectively, and with various
values of δE. (a-c) Speed probability density functions and fitted density function of gamma
distribution (solid red) with average parameters k and θ (see text for details). (d-f) Relative
frequency of normalized velocities. (g-i) Ratio of the number of binding to unbinding events
in each sector, such that any given time, only one adhesion site is in each sector

to unbinding events is larger (smaller) than unity in the northern (southern) part of the
cells, where the cue is stronger (weaker) relative to the cell centroid. Also, for a smaller
number of adhesion sites, the effects of increasing the cue gradient have more noticeable
effect on the ratios of events (see 4.7 (g-i)). This is simply due to the reduced density
of adhesion sites, which leads to larger relative difference in the concentration of the cue
between them. From Figure 4.9 we can asses the effect of an external cue Qcue on the the
binding rate a+

i (omitting the force dependence for clarity), since the rate is proportional
to Qcue.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Persistence of motion for cells with M = 8, 16, 32 adhesions in the first, second,
and third columns, respectively, and with δE = 0.05 (green), 0.1 (blue), 0.15 (red). (a-c)
Directionality ratio. (d-f) Velocity autocorrelation.

Together with Figure 4.9, the simulations illustrate that directed tactic migration,
resulting from biased adhesion formation, follows from the local information about the
external cue. That is, the spatial dependence of the FA binding rate is solely due to the
local concentration of an external cue (see (3.1.4)) and no central mechanism for gradient
determination was utilized to bias adhesion formation. Consequently, migration along the
gradient of an external cue is achieved without its explicit “computation” by the cell.
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Figure 4.9: Concentration of an external cue projected on the cell’s circumference. Gray
bullets represent FA sites.
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Along with external cue, force dependence of the binding rate is also important for
directed migration and without it, the cells do not exhibit biased migration (data not
shown). Figure 4.10 illustrates how the dependence fits into the migration cycle (recall
Figure 2.1). For the directed migration to occur, at the time of FA disassociation xn must
be preferentially in the rear (Figure 4.10 step 2). After FA unbinding the increased force
at the rear FAs due to extended SFs promotes binding there (Figure 4.10 step 3). Note
that since cell body translocation occurs only after an unbinding event, formation of new
FA in the prospective rear of the cell does not lead to backwards movement. Also, due to
the external signal more FAs tend to be at the front than at the rear.

Thus, the pulling force exerted by the front on the rear tends to be larger than the
opposite and hence the cell moves preferentially in the direction of the gradient. Without
the signal, of course, movement becomes unbiased, as shown in the previous section. This
suggests that the SF length dependence of the forces (see (2.1.1)) and the force dependence
of the FA binding rate (see (3.1.3)) are necessary for directed migration resulting from
biased adhesion formation in the presence of an external signal.

Figure 4.10: The force dependence of the binding rate and the biased adhesion formation
during the migration cycle. Side view schematic of the cell is illustrated, where (un)bound
FAs are shown as (white)black circles. 1) Initial configuration. 2) Unbinding leads to cell
translocation and motion of xn within the cell. 3) Increased force on the cell rear (due to
its dependence on SF extension) promotes FA association due to force dependence kforce
of the binding rate (see Section 3.1.2), after which the cycle begins anew.

4.3.3 Fibrillar architecture of ECM

The ECM topography is another important determinant of directed cell migration. In par-
ticular, the spatial distribution of the ECM fibers guides the motility by inducing cell shape
alignment along the adhesive cues, resulting in characteristic directed movement along the
fiber tracts [92]. Such guided migration is called contact guidance [92], [95]. Ramirez-San
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Juan et. al. [95] showed that contact guidance can be modulated by micrometer scale
variations of interfiber spacing (see Figure 4.11). Inspired by this study, we simulate how
subcellular scale fiber spacing influences cell motility, and whether such ECM architecture
yields migration patterns characteristic of contact guidance.

Figure 4.11: A result of the study in [95]. The interfiber distance is indicated at the
top of each column. Each stripe is 2µm wide. (A,B) Fluorescence images of fibronectin
(indicating the ECM), paxillin (indicating cell-substrate adhesions), and actin. (C) Cell
trajectories corresponding to each setting. Scale bar 30µm.

Similar to the case with an external cue gradient, the functions Qcue and q have the
following form:

Qcue(x) =

{
1, if x ∈ ΩδG

0.01, else

q(Qcue(x)) = Qcue(x),

where ΩδG represents the stripe pattern, δG = 0.15, 0.25, 0.35 represents the spacing be-
tween stripes such that the distances between them is δGRcell (Figure 4.12). The stripe
width is taken to be 0.25Rcell. Similarly as in [95], these dimensions are chosen so that a
cell is spread on multiple stripes.

The simulation results, shown in Figure 4.13, indicate that the cell motility has char-
acteristics of contact guidance. Namely, the trajectories show preferential horizontal cell
movement (Figure 4.13 (a-c)), and the displacements are aligned with the fiber pattern
(Figure 4.13 (d-f)). However, increasing the spacing does not simply lead to a greater
adhesion alignment along the horizontal direction, as can be observed in Figure 4.13 (g-i).
Rather, it is the combination of the ECM pattern and the radial position of FAs that gives
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Figure 4.12: Stripe pattern with δG = 0.15, 0.25, 0.35 on, respectively, left, middle, and
right plots. A cell is illustrated such that each FA on a stripe is bound and cell center x
coincides with xn at the origin.

rise to, for example, definite x-shaped adhesion binding patterns (Figure 4.13 (h)). Such
binding (and unbinding) pattern leads to fluctuating movement along northwest-southeast
and northeast-southwest axis, with the resulting net migration pattern shown in Figure
4.13 (b). Similarly, the binding pattern shown in Figure 4.13 (i) with more frequent events
along the equator corresponds to a mixture of diagonal and horizontal movements (Figure
4.13 (c)), as larger interfiber spacing precludes FA binding at the poles and facilitates ad-
hesion along, as well as across the stripes in x-shaped pattern (see also Figure 4.12 (right)
for illustration of a characteristic FA configuration). On the other hand, smaller spacing
also leads to horizontal movement, but with more frequent vertical displacement across the
stripes (Figure 4.13). These results are also in line with conclusions made in [58], where
it was found that adhesion alignment determines contact guidance We also found that
the average speeds were lower than in previous scenarios (Tables 4.3, 4.4): 1.52µm/min,
0.94µm/min, and 0.87µm/min corresponding to, respectively, δG = 0.15, 0.25, 0.35. Inter-
estingly, the average speeds reported in [95] were ∼ 0.6µm/min, although in that study
the speeds were nearly constant for varying fiber pattern.

In Figure 4.14 we illustrate the characteristic adhesions pattern and the profiles of the
FA binding rate corresponding to ECM architecture in Figure 4.12 (right). Assuming that
there is a mechanical equilibrium for simplicity, we see that the adhesion pattern on the
cell’s periphery reflect the structure of the environment, since low values of Qcue translate
into low probability of focal adhesion binding. Alternatively, if the cell is positioned as
in Figure 4.14 (bottom, left), then the adhesion pattern is modified accordingly. Thus,
we see that our assumption about constant relative distance of FAs does not preclude
the characteristic cell adhesion patterns to reflect environmental inhomogeneities (see also
Figure 4.9).

Altogether, our simulations of contact guidance are, for the most part, consistent with
the observations reported in the literature. In particular, we obtain the expected guidance
of cell movement (Figure 4.13 (a-f)) and the geometric constraint of adhesion sites (Figure
4.13 (g-i)) by the fibrillar ECM pattern, in agreement with [92], [95].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.13: Simulation results with M = 16, and δG = 0.15, 0.25, 0.35 in first, second,
and third columns, respectively. (a-c) Trajectories of 7 cells and the striped ECM pattern.
(d-f) Relative frequencies of normalized velocities. (g-i) Relative frequencies of binding
events in each of the 16 cell sectors.

Nevertheless, since our model does not explicitly take into account morphological
changes in cell shape (recall that in our model cell shape is normalized to a circle; see
Section 2.1) and since cell shape control is essential to contact guidance [92], [95], increas-
ing the interfiber distance does not necessarily lead to greater alignment of cell migration
along the ECM fibers in our simulations1. Moreover, in the case when the total number
of adhesion sites is very low, the stripes are too narrow, and the separation between them
is large, then it might occur that all adhesion sites “miss” the stripes, although the cell is
spread over multiple stripes. In this case, the probability that any adhesion binds to the

1The values of the guidance parameter G, defined as in [95] (See Appendix B for details), were found
to be 0.64, 0.70, 0.64, corresponding to, respectively, δG = 0.15, 0.25, 0.35.
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substrate is low, which is not biologically consistent. To remedy these shortcomings, the
model needs to be extended in order to accommodate strong changes to cell morphology.

1
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Qcue
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Figure 4.14: Profiles of an adhesion pattern and an external cue, projected on cell’s cir-
cumference. Bound and unbound focal adhesions are depicted as red and gray circles,
respectively. Stress fibers are also colored in red.

4.3.4 Asymmetric contractility

We now investigate how cell motility is influenced by asymmetrical contractile forces in
a cell. Along with preferential adhesion formation, due to, for example, a chemotactic
gradient, the formation of cell rear by increased actomyosin contractile activity serves as
an alternative mechanism by which a directed migration can be induced in the absence
of such gradient [25]. In particular, local stimulation of contractility leads to directed
motility in the direction opposite to the stimulated area, even in the absence of response
to chemotactic stimuli [129]. Here we show that our model is also capable of capturing
such directed movement, triggered by breaking myosin mediated contractile symmetry.

Recall that Ti in equation (2.1.1) denotes the force generated by myosin motors at an
adhesion site i. Instead of taking it constant, we let it vary with the radial position of an
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FA. Namely, let Ti : [0, 2π)→ R+ be defined as:

Ti(θ) =

{
(1 + δmyo)Ti0 , if π < θ + (i− 1)2π

M
< 2π

Ti0 , else
,

where δmyo = 0.35, 0.40, 0.45, Ti0 is the constant value used in previous simulations, and
θ+(i−1)2π

M
is the radial position of the ith FA. Thus, contractile forces south of cell equator

are larger by 35%, 40%, 45% for corresponding values of δmyo. We should, therefore, expect
in our simulations that the northern part of a cell becomes the front due to the imposed
contractile symmetry breaking, and that cells will move accordingly (see Figure 4.15 for
illustration).

Figure 4.15: A schematic representation of asymmetric contractility. (Bottom row) In-
creased contractility causes xn (blue circle) to shift south of the otherwise equilibrium
point in the center. (Top row) Preferential unbinding of FAs south of equator leads to
directed movement indicated by blue arrows. See also Figure 2.8 (II’) for a schematic
representation of cell motility in case of an unbinding event.

Indeed, Figure 4.16 (a-c) shows, as expected, the trajectories of cells maintaining north-
south polarity corresponding to, respectively, front and rear. Since the asymmetry of
myosin forces remained during the simulations, the cell’s north-south polarity also per-
sisted, resulting in the cell movement that was highly directed along this axis, consistent
with [129]. Consequently, we obtain higher values of βav(t), as shown in Figure 4.16 (d-f).
In particular, for δmyo = 0.45, we see that the time scaling of the mean squared displace-
ment is close to ballistic (see Table 4.5 for values of β̄). Moreover, increasing the number of
FAs leads to more polarized, directed migration. As in the previous cases, neither speed av-
erages (Table 4.5) nor their distribution (data not shown) changed significantly for a given
number of focal adhesions. Interestingly, for δmyo = 0.35, the binding is relatively more
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frequent in the rear (i.e. south of equator) than in the front, and unbinding is relatively
more frequent in the front (i.e. north of equator) than in the back (Figure 4.16) (g-i). This
suggests, then, that cells were preferentially moving in the southern direction. However, as
can be seen in Figure 4.17, this is not the case. Although movements southwards are more
frequent in this situation (due to the above-mentioned event frequencies), the speeds are
lower than northward movements: the ratios of the average speeds directed north to the
average speeds directed south were found to be 1.0165, 1.0181, and 1.0858 corresponding
to, respectively, M = 8, 16, 32. The net effect is northward movement. For higher values
of δmyo, we see that the unbinding is, expectedly, more frequent in the rear, while binding
is preferentially in the front.

M 8 16 32

δmyo 0.35 0.40 0.45 0.35 0.40 0.45 0.35 0.4 0.45

β̄, 1 1.3072 1.6325 1.7759 1.1311 1.7905 1.8524 1.4650 1.8892 1.9353

sav,

µm/min
1.6230 1.5639 1.5103 2.3742 2.3798 2.3516 3.5861 3.7414 3.7701

β0,

µm2/minβ̄
0.7767 0.3659 0.2493 2.3088 0.2893 0.3037 1.0713 0.9894 1.2787

Table 4.5: Parameters obtained from the simulations with varying δmyo.

Figure 4.17: Simulated trajectories with M = 8, 16, 32 adhesions with δmyo = 0.35 on left,
middle, and right plots, respectively.

These adhesion frequency patterns also illustrate the significance of the force depen-
dence of the FA binding rate. Recalling Figure 3.2, we see that, for δmyo = 0.4, 0.45
(corresponding to Ti = 1.018Fb, 1.054Fb), the binding rate dominates unbinding north of
equator due to greater SF extension (see Figure 4.15 for an illustration) leading to in-
creased contractile force. Since the expected adhesion pattern is reversed for δmyo = 0.35
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.16: Simulation results with M = 8, 16, 32 adhesions in the first, second, and third
columns respectively, and with various values of δmyo. (a-c) Trajectories of 13 cells with
δmyo = 0.4. (d-f) Time-average exponents βav. (g-i) Ratio of the number of binding to
unbinding events in each sector.

(corresponding to Ti = 0.981Fb) and yet the cells migrate northwards, it may suggest
that there is a threshold value of δmyo, above which cells can migrate in a certain direc-
tion solely by asymmetric contractility, and/or below which cells must additionally bias
adhesion formation to do so.

This prompted us to investigate whether varying mechanical properties of SFs can yield
the expected adhesion pattern for lower degree of asymmetry, corresponding to δmyo = 0.35.
Specifically, we varied the buckling length L0 and the stiffness EA such that x = (1+δx)x

0

corresponds to the modified value of the parameter x ∈ {L0, EA}, where x0 correspond to
the default values given in Section 3.3. In Figure 4.18(a) we see that reducing the buckling
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(a) δEA = 0 (b) δL0 = −0.18 (c) δL0 = −0.27

Figure 4.18: Ratios of the number of binding to unbinding events in each sector with
varying buckling length and stiffness of SFs. (a) The effect of reducing the buckling length
L0 with fixed and stiffness value EA. (b-c) The effects of varying stiffness EA for reduced
buckling length.

length L0 by 27% leads to the expected adhesion pattern, while reducing it by 18% leaves it
largely unchanged. However, decreasing and increasing stiffness when δL0 = −0.18,−0.27,
respectively, leads to the opposite results (Figure 4.18(b,c)). This suggests that if SFs are
less prone to buckling and less stiff, lower degree of myosin induced contractile asymmetry
may be required to drive directed migration.

Remark. Another way to induce contractile asymmetry is, for example, to decrease the
myosin force Ti north of the cell’s equator. Then, again, the south of the cell equator is more
contractile. However, the simulated trajectories show southward directed movement (data
not shown), contrary to what we should expect. Therefore, merely inducing contractile
asymmetry is not sufficient. For the expected directed migration to occur, there must be
a local increase of contractile forces above some critical level in the prospective cell rear,
rather than a local decrease of contractility in the prospective front. Interestingly, Yam et
al. [129] were able to initiate directed movement by increasing local actomyosin contraction,
while locally decreasing the contractile activity did not lead to migration initiation. More
recently, Shellard et al. [107] showed that directed collective cell migration of neural crest
cells requires greater contractility at the rear of the clump.
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Chapter 5

Contact Inhibition of Locomotion

We now turn our attention to collections of colliding cells. As discussed in the introduction,
the collision may lead to contact inhibition of locomotion (CIL), whereby the colliding cells
undergo repulsive interaction.

CIL can be divided into the following sequence of stages (Figure 5.1). First, after
collision, the movement ceases and cadherin mediated cell-cell contacts are formed. Second,
in the vicinity of the contact protrusions collapse and actomyosin contractility is enhanced,
as a result of Rac1 inhibition and RhoA activation [98]. Their activity away from the
collision site is altered in the opposite manner (Figure 5.2). Finally, the cells move away
from each other.

High RhoA

High Rac1

Figure 5.1: Schematic representation of CIL stages. (Left) Cells moving towards each
other collide. Blue circles indicate regions of higher protrusion and FA binding activity,
characteristic of cell front. Red circles indicate regions of increased contractility, charac-
teristic for the cell rear. A diametric dashed line indicates a cell half from the point of
contact, which is shown by the radial dashed line. (Middle) After the collision, both cells
cease to move and repolarize, such that polarity is reflected along the former diametric
dashed line. (Right) The migration cycle restarts with modified affinities for adhesion
formation/rupturing. The dashed line indicates a ruptured FA. The cell on the left starts
moving (ruptured FA), while that on the right remains stationary (newly formed FA).

Within the context of our cell motility model, CIL has the following consequences:
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first, cessation of movement after the collision causes the cells to jump into the non-motile
state. Second, activation of Rac1 leads to increased FA binding affinity away from cell-cell
contacts [103] and activation of RhoA enhances myosin generated contractile forces in SFs
around the collision site [98] (recall our discussion on mediation of RhoGTPases on FAs
and SFs in Chapter 3).

Remark. In Chapter 3 we discussed how an external cue, like a chemoattractant, can
influence FA dynamics through mediation of Rac1 (see in particular Section 3.2). Thus,
the effects of CIL and an external signal can overlap. Motivated by the study in [68], we
will explore this scenario in our simulations (see also Figure 5.4).

Figure 5.2: RhoGTPase switch following cell-cell contact during CIL. Intercellular bonds
represent adhesion complexes like cahderins, EphA, or Frizzled transmembrane receptors.
They recruit and activate intermediary agents, represented by diamonds and hexagons,
which subsequently activate RhoA near the contacts. Repolarization of RhoGTPase activ-
ity occurs, in part due to antagonism between Rac1 and RhoA. See [98] for a review.

In the following sections we will integrate the CIL mechanism into our previously de-
veloped model. In this chapter we will consider binary collisions to illustrate our model of
the CIL mechanism. Such binary collisions, confined to one-dimensional lanes, correspond
to the experimental setup in [30], [68], [102], which we also consider in the numerical sim-
ulations here. Treatment of CIL in a general, two-dimensional setting is postponed to the
subsequent Chapter 6.

This chapter is based on the work by the author in [121].

5.1 Binary collisions

Let C̄i(t) ∈ {0, 1} denote the collision state1 at time t and Φ̄i(t) ∈ [0, 2π) be the polar
angle where the last contact of cell i occurred2, i ∈ {1, 2}. Let the variables µi,Yi,Xi,

1By collision state we mean that a cell is in contact with some other cell: C̄(t)i = 1 if it is in contact,
and C̄(t)i = 0 if it is not.

2Φ̄i is constant until the next collision occurs.
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corresponding to cell i ∈ {1, 2} be defined as before. Let uj : [0, 2π) × [0, 2π) × {0, 1} →
{0, 1}, j = 1, . . . ,M , be given by:

uj(θ
i, Φ̄i, C̄i) =

{
1, Φ̄i − π

2
≤ θi + (j − 1)2π

M
≤ Φ̄i + π

2
and C̄i = 1

0, else.
(5.1.1)

This function indicates whether jth FA is in the vicinity1 of the cell-cell contact site,
provided there is one.

As mentioned above, collisions lead to increased actomyosin contractility around the
collision site. Thus, recalling equation (2.1.1), the tension due to myosin motors Tj is
modified as follows:

Tj → Tj(1 + δmyouj(θ
i, Φ̄i, C̄i)), j = 1, . . . ,M, i = 1, 2, (5.1.2)

where δmyo > 0 is a parameter that signifies the increase in myosin generated force due to
increased RhoA activity. We then have Fj → Fj(X

i, Φ̄i, C̄i) and F → F(Yi,Xi, Φ̄i, C̄i)
(see (2.1.1) and (2.1.2)). The propensity function a+

j is modified as follows:

a+
j (Yi,Xi)→ a+

j (Yi,Xi, Φ̄i, C̄i)(1 + δ+(1− uj(θi, Φ̄i, C̄i))), (5.1.3)

where δ+ > 0 is a parameter that signifies the increase in FA association rate due to
increased Rac1 activity away from a contact site. Similarly, we also modify a−j :

a−j (Yi,Xi)→ a−j (Yi,Xi, Φ̄i, C̄i)(1− δ−(1− uj(θi, Φ̄i, C̄i))),

where δ− ∈ [0, 1]. Note that the dependence of a±j on C̄i, Φ̄i is due to its dependence on Fj

(see Section 3.1 for the form of a±j ). If δ− = 1, this implies that FAs away from a contact
site do not disassociate. Thus, if a cell moves, it does so necessarily away from a collision
site. That is, for δ− = 1 cells do not crawl on top of one another.

For clarity, we introduce the following shorthand notation:

a±,ij (·) = a±j (Yi(·),Xi(·), Φ̄i(·), C̄i(·))

a2
0(·) =

2∑
i=1

a0(Yi(·),Xi(·), Φ̄i(·), C̄i(·)).

Then, if Tk is the time of kth event, we have (see Section 6.1 for the derivation):

P
(
Tk+1 − Tk > τ |{Yi (Tk) ,Xi (Tk) , Φ̄i (Tk) , C̄i (Tk)}i=1,2

)
= exp

(
−
∫ τ

0

a2
0 (Tk + s) ds

)
,

(5.1.4)

1By vicinity we simply mean within π
2 angle from the contact angle Φ̄i. Here we assumed that

RhoGTPases activity is modified in half of a cell.
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and

P
(
j±,i|Tk+1

)
=
a±,ij

(
T −k+1

)
a2

0

(
T −k+1

) , (5.1.5)

where P (j±,i|Tk+1) is the probability of binding/unbinding of jth FA of cell i, given the
FA event time Tk+1. Note that between two events, Xi evolves according to (2.2.5). Also,
the event time Tk needs not be the time when an FA reaction occurred. It is possible
that at time Tk a collision occurred. In this case Yi is unchanged, but µi, C̄i, Φ̄i jump to
new values. Figure 5.3 illustrates how cell collisions are incorporated into the cell motility
model.

• (I) Suppose an FA event occurred at time t = Tk−1 and cell 1 is stationary (µ1 = 0),
while cell 2 is moving (µ2 = 1). Suppose T ∗k is given according to (5.1.4). The
evolution of Xi is given by (2.2.5) until a collision occurs at time t = t∗ < T ∗k . Then
Tk = t∗.

• (II) Due to the collision, both cells become stationary (µi = 0), the collision states
and the contact angles jump to new values: C̄1 = C̄2 = 1 and Φ̄1 = 0, Φ̄2 = π for cell
1 and 2, respectively. Then, Xi follows (2.2.5) until time t = Tk+1, given by (5.1.4).

• (III) At time t = Tk+1 an FA event, determined by (5.1.5), occurs. If an adhesion
event occurs in cell i, Yi changes accordingly, a new FA event time is found, the ODE
system proceeds until this time and we are back at the same stage (III). Suppose
a deadhesion event occurs. If it was in cell 1(2), then µ1(µ2) jumps to a new value
and cell 1(2) moves until time t = Tk+2 of the next event.

• (IV, IV ′) Following FA rupturing in cell 2, µ2 = 1 and C̄2 = 0, corresponding to
scenario (IV ). Likewise, for an FA rupturing in cell 2, µ2 = 1 and C̄2 = 0, corre-
sponding to scenario (IV ′). The collision state switches since the cells are no longer
in contact. In both cases, the other cell is unaffected and continues its motion.

• (V, V ′) Suppose the next FA event at time t = Tk+3 occurred in the previously
unaffected cell. Then, its collision state C̄i jumps to a new value, which is zero in
this case.

There are two implicit assumptions we made. First, a cell state changes only when a
collision or an FA event occurs. Second, an FA event in a cell only changes the state of a
cell in which it occurred. Thus, cell 1 and 2 continue their motion away from the collision
site in (IV ) and (IV ′), respectively, unaffected by what happened in the other cell. In
particular C̄1 and C̄2 in (IV ) and (IV ′), respectively, remain the same, since at the onset
of post-collision motion in (III) the cells are still in contact. When an event occurs in (V )
and (V ′), the corresponding collision states are switched as cells are no longer in contact,
while the other cells continue their motion. Note that whether cells move in the same or
opposite directions after collisions is determined stochastically in our model, which is in
line with [30], [68], [102].
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Figure 5.3: Schematic representation of binary collisions. (I) Cell 2 moves in the direction
of cell 1. The centroids xi are indicated by blue and red dots, respectively. (II) Collided
cells become stationary. (III) An event occurs at time t = Tk+1. Vertical bars indicate
centroid positions at the collision time. An FA unbinding event in cell 1 or 2 leads to
outcome (IV ) or (IV ′), respectively. An adhesion event leads back to (III). (IV, IV ′)
Another event occurs at time t = Tk+2. FA rupturing in cell 2 or 1 leads to movement in
the opposite (V ) or the same directions (V ′), respectively, until the next FA event occurs
at time t = Tk+3.

Remark. We assume, more generally, that cell interactions occur solely by collisions
and that there is no coupling of cells before or after they interact. That is, neither the
equations of motion (2.2.5) between the events, nor the probabilities (5.1.5) of FA events
in a cell depend on the state of another cell. This can be justified by the results in [30],
where it was found that CIL response in cells is statistically independent.
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Figure 5.4: A result of the study in [68], showing modulation of CIL response in the
presence of an external signal (EGF in this case), and motivating a similar scenario in
our simulations. (a) Schematic showing how the repulsive response may conflict with
chemotaxis. (b,g) Examples of post collision response in head-to-head and head-to-tail
collisions, respectively. Collisions occur at time t = 0. (c-e) and (h-j) Probabilities for
each outcome in head-to-head and head-to-tail collisions, respectively. In each figure, the
corresponding probabilities in the case of uniform and increasing EGF concentrations are
shown. (f) Example of head-to-head collisions, where protrusions of the trailing cell are
not affected by the cell-cell contact. Collision occurs at time t = 0. (k) A group of cells,
streaming up the EGF gradient. Time is in minutes and the scale bar is 10µm.
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5.2 Simulations

The illustration in Figure 5.3 depicts binary collisions in one-dimensional tracks. As noted
in [30], [68], [102], this setup allows for a more efficient study of the CIL mechanism. In
particular, it allows for unambiguous quantification of collision outcomes for measuring the
CIL response. As in [30], [68], we classify the outcomes into two categories. Namely, out-
come 1 and 2 leading to cells moving in the opposite and the same directions, respectively,
as illustrated in Figure 5.3 (V, V ′). In order to investigate these outcomes, we introduce
the following quantities:

• The distance between the cell centroids d(t) := |x1
1(t+ t∗)−x2

1(t+ t∗)| at time t after
the first cell collision, where xi1 is the x-component of xi, i = 1, 2 and t∗ is the time
of the collision.

• Define di(t) := xi1(t+ t∗)− xi1(t∗), illustrated in Figure 5.3 as the difference between
the red (blue) dot and red (blue) vertical bar.

Note that restriction to movement in lanes implies that the first equation in (2.2.5) is
modified as follows:

ẋ = µβ−1
ECM ê1 · (F · r̂r̂) ,

where ê1 = (1, 0)T , i.e. the cells move in horizontal direction only.
Consider Figure 5.3 (V, V ′). If the cells are moving in opposite directions (Figure 5.3

(V )), then d1(t) and d2(t) have opposite signs - negative and positive, respectively. If the
two cells are moving in the positive (negative) x-direction, then di(t) > 0 (di(t) < 0), for
i = 1, 2. Note that while d(t) is used as a readout of CIL in [102]1, where its increase
with time was used as an indication that cells are moving in opposite directions and hence
undergoing CIL, di(t) allows to distinguish between outcome 1 and 2. Moreover, increasing
d(t) might simply indicate that one cell is faster than the other, while both are moving in
the same direction.

Note that we introduced three new parameters in addition to the single cell motility
model, namely, δmyo, δ+, and δ−. Their magnitude indicates the strength of CIL repolar-
ization signal upon collision. Below we perform numerical simulations with varying values
of δmyo, δ+ in the absence of an external cue, and in the presence of a chemotactic gradient
with varying strength (mimicking the experimental setup in [68], see Figure 5.4) and fixed
δmyo, δ+. For each scenario we simulate 64 pairs of cells for 20 hours of simulation time.
Initially, the distance between the cell centroids is 2.4Rcell, and the initial values for the
x-components of the centroids are x1

1(0) = 1 and x2
1(0) = 3.4 for cell 1 and 2, respectively.

Here, we also set δ− = 0, as we would like to explore hallmarks of CIL (contraction of
the leading edge and FA activation away from it) specifically in the absence of volume
exclusion. The initial conditions for other variables and parameter values are taken as in
Section 4.3. We also set the number of adhesion sites M = 16.

1In [102] the distance between cell nuclei, rather than cell centroids, was measured.
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Remark. Among other factors, the collision outcome depends on whether it was a
head-to-tail or a head-to-head collision [30], [68] (see Figure 5.4). Here, we analyze the
outcomes in terms of effects CIL has on FA dynamics and SF contractility.

Absence of an external cue

Here we investigate three scenarios corresponding to three pairs of values for δmyo and δ+.
Similar values were used in Section 4.3 to simulate directed movement.

Parameters S1 S2 S3
δmyo 0.3 0.4 0.5
δ+ 0.1 0.2 0.3

Table 5.1: Parameter values corresponding to three scenarios S1-S3.

(a) (b) (c)

Figure 5.5: The opaque horizontal line indicates the distance of 2Rcell, i.e. the cells in
contact. (a) Cell centroid distance d of 14 cell pairs corresponding to scenario S2. (b)
Ensemble averages d̄ for each scenario. The corresponding error bars indicate ensemble
minimum and maximum. (c) Relative frequency of binding events of cells with C̄i = 1 and
colliding at 0°. Each sector corresponds to a single FA counting counterclockwise. Cell 2
is accounted for by reflection about south-north axis.

Since in our model the cells are not treated as hard spheres, it is possible that some
overlaps may occur (Figure 5.5a,b). However, the slight overlap is followed by an increase
in d and separation (Figure 5.5a). Although the average distances d̄ are similar (Figure
5.5b), increasing δmyo and δ+ leads to a stronger response: the minimum of d is consistently
lower for S1 compared to S3 (Figure 5.5b) and FA formation away from the collision site
is more frequent for S3 (Figure 5.5c). Notice that the cells need not obey the volume
exclusion principle for eventual separation to occur and the stronger response in S3 implies
that the separation can be modulated by modifying contractility and FA formation.

Since increasing d only suggests that the cells are separating, we examined their relative
direction of motion after collision (Figure 5.6). Ensemble averages of di in Figure 5.6d show
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: (a-c) The differences di corresponding to scenario S2. Thick lines represent the
corresponding ensemble averages. (a) A sample of 14 pairs. (b) and (c) The differences
di, whose averages over time are positive and negative, respectively. Samples of 8 and 6
pairs are shown, respectively. (d-f) Ensemble averages of di for each scenario. Blue and
red colored plots correspond to cells 1 and 2, respectively. (e) and (f) di with positive and
negative times averages.

that following collisions, the movement in the opposite directions is prevalent, which is in
line with results in [30], [68]. It may also occur that cells follow one another after collision,
as indicated by positive and negative time averages of d1 and d2 (Figure 5.6b,c). The
ensemble averages in Figure 5.6(d-f) do not show a strong difference between the scenarios
S1-S3. This suggests that varying the strength of cell response to collision does not have a
significant effect on the relative direction of migration after the collision. In our simulations,
56% of collided pairs moved in the opposite directions, compared to ∼ 65% in [68].

Remark. The collision times t∗ for each simulated pair are different. Thus, the number
of cells at time t after the collision time t∗ varies, and reduces towards the terminal time.
This skews the values for ensemble averages and causes the abrupt changes in Figure 5.6.

Note that a freely migrating cell before collision is equally likely to move in either
direction, as indicated by a rapid decay of normalized velocities to zero in Figure 5.7a.
How fast does a cell become freely migrating after a collision? Figure 5.7b shows a much
slower decay of the normalized velocities for the three scenarios. This suggests that either
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there are frequent follow up collisions after the first one, resulting in cell 1(2) moving
left(right), or collisions lead to persistent movement in the opposite direction. It must be
the latter, since in light of our results, cells separate (Figure 5.5b) and move away from
each other (Figure 5.6d). Thus, in our model transient perturbations in cell motility lead
to persistent, but decaying, alterations in migration dynamics. This is unexpected, since
the collision state C̄i of a cell is switched off after separation, i.e. the cell migrates freely.
However, studies in [68] and [102] indicate that cells continue to move in opposite directions
even after separation occurs.

(a) (b)

Figure 5.7: (a) and (b) Ensemble averages of normalized velocities before and after colli-
sions, respectively. Plots in red and blue correspond to cells 1 and 2, respectively. In (a)
non-colliding pairs have also been accounted for.

Presence of a chemotactic gradient

We now explore how collision outcomes are affected in the presence of a chemotactic gra-
dient, as experimental evidence in [68] suggest that CIL response is modulated by the
strength of the external signal. As before, we suppose that a+

j ∝ Qcue, i.e. the binding

probability of the jth FA is proportional to the (local) concentration of chemoattractant
Qcue at the position of the FA. We assume that Qcue has the following form:

Qcue(x) =

{
1 + δEx1, if x1 > 0

1, else
,

where x is the position of an FA (in units of Rcell) in the lab reference frame, and δE > 0
indicates strength of the signal, i.e. there is a chemotactic gradient in the positive x-
direction. We also take δmyo = 0.4, δ+ = 0.2.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: The effect of varying chemotactic signal strength δE. (a) Ensemble averages of
cell-cell distances. (b) Ensemble averages of d1 (red) and d2 (blue). (c) and (d) Ensemble
averages of normalized velocities before and after collisions. (e) and (f) Relative frequency
of binding events after collision of cells 1 and 2. Dashed lines correspond to δE = 0.
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The influence of a chemotactic signal on CIL can be seen in Figure 5.8. We see that
increasing the signal strength reduces average cell-cell separation (Figure 5.8a). Although
the difference between the averages is slight (relative to cell size), the variance (as indicated
by the error bars) of cell-cell distances is noticeably smaller for the case of the strongest
signal. Moreover, after the collision, cells tend to move in the same direction following
the signal, as shown in Figure 5.8b. This, together with what appears to be a plateauing
of cell-cell distance (Figure 5.8a), suggests emergence of collective movement. Observe
that reducing the signal strength leads to reduced propensity of cells to move in the same
direction, in line with the results reported in [68]. Note that in [68] three scenarios with
different EGF concentrations were explored. There, the gradients of EGF concentration
were kept constant at 3.3nM per length of the lane. However, the relative changes in
EGF concentrations were 5.5nM−2.2nM

2.2nM
= 1.6, 9.9nM−6.6nM

6.6nM
= 0.5, 14.1nM−10.8nM

10.8nM
= 0.3 and

reduced relative changes led to diminished alteration of a typical CIL response, which our
simulations show as well.

Motion alignment is not immediate, as the amount of time during which cells move in
the opposite directions after collision depends on the gradient magnitude (Figure 5.8e),
compared to a rapid velocity alignment of uncollided pairs (Figure 5.8b).

We also see that the effect on adhesion dynamics of cells to the left and to the right of
a collision point is different (Figure 5.8e,f). If the CIL signal in a cell and the chemotactic
gradient are in the opposite directions, the affinity of FA association away from the contact
reduces with increasing gradient strength (Figure 5.8e). However, if the signals are aligned,
the FA binding dynamics does not appear to be significantly modified (Figure 5.8f). This
suggests that in relation to adhesion dynamics, the chemotactic cue either reduces CIL
response or has little to no effect. Interestingly, in [117] it was shown that elevated Rac1
activity (and hence enhanced adhesion to a substrate) away from the contact site (and in
a free edge) is primarily due to cell-cell contacts, rather than to a chemoattractant.
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Chapter 6

CIL in Collectives

Here we construct a general motility model with N colliding cells. To do so, we proceed
as in Sections 2.3-2.4. In particular, we first provide a formal derivation of the survival
function for the next event time and the distribution of the next event index for N cells (the
special case of which is given in (5.1.4)-(5.1.5)). Then we formulate our motility model as a
piecewise deterministic Markov process (see [28] for a comprehensive treatment) including
collisions. Finally, we present the numerical method used to simulate the collisions in an
unconfined setting, and the results thereof.

This chapter is based on the work by the author in [121].

6.1 Preliminaries

Let N be the number of cells and let µi,Yi, i = 1, . . . , N , be defined as in the previous
section, and let µ = (µ1, . . . , µN). Let Ci(t) ∈ {0, 1}N denote the collision state of cell i
at time t with other cells:

Ci
k =

{
1, if cell i is in collision state with cell k

0, else,

where k = 1, . . . , N and we assume that Ci
i = 0. Let Φi(t) ∈ [0, 2π)N denote the vector

of collision angles of cell i with other cells, such that Φi
i(t) = 0. For N = 2 in Section

5.1, for example, we have C1(Tk) = (0, 1) and Φ2(Tk) = (π, 0). For ease of notation,
let Xi = (xi,xin, θ

i,Φi,di), where di is defined in (6.2.3), and A = (A1, . . . ,AN) for
A ∈ {Y,C,X}.

Since there are N cells and 2M possible reactions for each cell (binding and unbinding
of an FA), then there are 2MN possible reactions among all cells. Let aj′(µ̄,y, c,X(t))dt
be the probability, given X(t) and A(t) = a, for A ∈ {µ,Y,C} and a ∈ {µ̄,y, c}, that a
reaction j′ = 1, . . . , 2MN will occur in the time interval [t, t+ dt).

Finally, let Ktime(τ |t, µ̄,y, c,X(t))dτ be the probability that a reaction occurs in the
time interval [t + τ, t + τ + dτ) and let Kindex(j

′|t, τ, µ̄,y, c,X(t)) be the probability of
reaction j′, given that it occurs at time t+τ . Applying Lemma 2.3.1 and Proposition 2.3.2
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we have the following (as in (2.3.3)):

Ktime(τ |t, µ̄,y, c,X(t))

= aN0 (µ̄,y, c,X(t+ τ)) exp

(
−
∫ t+τ

t

aN0 (µ̄,y, c,X(t+ τ ′))τ ′
)

(6.1.1)

and

Kindex(j
′|t, τ, µ̄,y, c,X(t)) =

aj′(µ̄,y, c,X(t+ τ))

aN0 (µ̄,y, c,X(t+ τ))
, (6.1.2)

where aN0 =
∑2MN

j′=1 aj′ . Here, we adopt the following convention:

• A reaction j′ occurs in cell i if i = b j′−1
2M
c+ 1.

• A reaction j′ corresponds to a binding reaction of jth FA if 2j− 1 = j′modN , and to
an unbinding reaction of jth FA if 2j = j′modN .

Thus, a+,i
j = a2j−1+2M(i−1) and a−,ij = a2j+2M(i−1) correspond, respectively, to binding and

unbinding probability rates of the jth FA of cell i. For an example utilizing the above, see
the special case with N = 2 in Section 5.1.

6.2 CIL and PDMP

Let A := {1, . . . , 2N+MN+N2} and let α : A→ {0, 1}N×{0, 1}MN×{0, 1}N2
be a bijection.

This is a mapping such that α(ν) = (µ,Y,C) corresponds to motility, FA, and collision
states of N cells.

Let ν ∈ A and α(ν) = (µ,Y,C). Let Di,k
ν ⊂ R, Di

ν ⊂ RN , Dν ⊂ RN2
be defined as:

Di,k
ν :=

{
(−∞, 1], if Ci

k = 0 and i, k ∈ I
(−∞,∞), else

, (6.2.1)

Di
ν :=

N∏
k=1

Di,k
ν , Dν :=

N∏
i=1

Di
ν , (6.2.2)

where I ⊂ {1, . . . , N} is the index set of cells exhibiting CIL. Let di : [0,∞) → Di
ν ,

i = 1, . . . , N be defined as:

dik(t) := exp

(
2R2

cell −
1

2
‖xi(t)− xk(t)‖2

)
, k = 1, . . . , N, (6.2.3)

and let d :=
(
d1, . . . ,dN

)
∈ Dν . This particular form of dik is chosen since it satisfies the

following requirements, which we impose on dik:
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• dik must be a measure of distance between cells i and k, such that it attains a unique
value when the cells are in contact (in our case the value is one), and such that a
certain range of values correspond to the case when the cells overlap.

• dik must be bounded and continuously differentiable.

Depending on the form of dik, D
i
k must be modified accordingly.

Let Xi := (xi,xin, θ
i,Φi,di) ∈ R2×Ωcell×[0, 2π)×Di

ν×[0, 2π)N := Ei
ν . For convenience

of notation, we define αiA(ν) := Ai, where A ∈ {µ,Y,C}. We also extend the definition
of uj in (5.1.1):

uj(X
i,αiC(ν)) :=

{
1, Φi

k − π
2
≤ θi + (j − 1)2π

M
≤ Φi

k + π
2

and Ci
k = 1,

0, else,

for some k = 1, . . . , N and where j = 1, . . . ,M . Then, we have:

Tj → Tj(1 + δmyouj(X
i,αiC(ν)))

Fj → Fj(X
i,αiC(ν))

F→ F(αiY(ν),Xi,αiC(ν)).

Let Eν :=
∏N

i=1E
i
ν and define Hi

ν : Eν → R5+2N as:

d

dt
Xi =



αiµ(ν)β−1
ECMF(αiY(ν),Xi,αiC(ν)) · r̂(xin)r̂(xin)
β−1
cellF(αiY(ν),Xi,αiC(ν))

αiµ(ν)β−1
rot‖xin‖F(αiY(ν),Xi,αiC(ν)) · ϕ̂(xn)

0
−(xi − x1) · (ẋi − ẋ1)di1

...
−(xi − xN) · (ẋi − ẋN)diN


:= Hi

ν(X). (6.2.4)

This is simply an ODE system that governs the evolution of Xi between events (see Section
2.4.2 for the case with single cell migration). Note that Φi changes only when collisions
occur, and is constant at all other times. For a collection of N cells, we then have:

d

dt
Xt = Hν(Xt)

X0 = Z ∈ Eν (6.2.5)

where Hν : Eν → R5N+2N2
and Hν := (H1

ν , . . . ,H
N
ν ). One can also show that there exists

a unique solution to (6.2.5) for fixed ν ∈ A, by using Proposition 2.4.2 and noting that Hi
ν

is Lipschitz continuous.
Let φν : R+ ×Eν → Eν be the flow corresponding to (6.2.5). Note that a cell i collides

with a cell k, if dik ∈ ∂Di,k
ν = {1} for some ν ∈ A such that Ck

i = 0. Thus, the boundary
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of Eν plays an important role in addressing the collisions. Let ∂Eν denote the boundary
of Eν , and define ∂∗Eν , Γ∗ as:

∂∗Eν := {X ∈ ∂Eν : φν(t,Z) = X, (t,Z) ∈ R+ × Eν}
Γ∗ := {(ν,X) : ν ∈ A, X ∈ ∂∗Eν}.

Let E := {(ν,X) : ν ∈ A,X ∈ Eν} and define t∗ : E → R+ as:

t∗(ν,X) = inf{t > 0 : φν(t,X) ∈ ∂∗Eν}.

Here, t∗ is simply the next collision time, given the state of the system (ν,X) ∈ E. Let
aN0 : E → R+ be defined as above:

aN0 (ν,X) =
2MN∑
j=1

aj(ν,X),

where for ease of notation we write aN0 (ν,X) = aN0 (α(ν),X) and aj(ν,X) = aj(α(ν),X)
for (ν,X) ∈ E, j = 1, . . . , NM . We define

E = {B : B = {(ν,X) : ν ∈ A, X ∈ Ẽν}, Ẽν ∈ Eν},

where Eν denotes the Borel sets of Eν . As in Section 2.4.1, let (Ω,F , (Ft)t≥0,P) be a
filtered probability space and let (E, E) be the state space of the stochastic process. Define
a transition measure Q : E × E ∪ Γ∗ → [0, 1].

We now have all the ingredients to specify and construct a piecewise deterministic
process of cell motility including collisions. These objects satisfy the following standard
conditions given in (24.8), Section 24 in [28]:

1. The vector fields (Hν , ν ∈ A), given by (6.2.4), governing the system’s evolution
between events are such that there exists a unique global solution to (6.2.5).

2. An intensity function aN0 , determining the arrival times of FA events, such that
s 7→ aN0 (ν, φν(s,X)) is integrable for (ν,X) ∈ E.

3. A transition measure Q (to be specified below), determining the system’s state after
an event, such that (ν,X) 7→ Q(B, (ν,X)) is measurable for fixed B ∈ E ; Q(·, (ν,X))
is a probability measure for (ν,X) ∈ E; Q({(ν,X)}, (ν,X)) = 0 for (ν,X) ∈ E.

4. E [Nt] <∞, where Nt denotes the number of jumps in [0, t]:

Nt(ω) =
∑
k

1{t≥Tk}(ω), ω ∈ Ω,

where Tk is the kth event time.
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We have already seen above that the conditions 1 and 2 are satisfied (each summand in
the definition of aN0 is integrable - see Section 3.1). Below, we elaborate on the conditions
3 and 4.

Let (ν,X) ∈ E ∪ Γ∗. Then, we have:

Q({η} × dX′, (ν,X)) = P({η} × dX′ | (ν,X) ∈ Γ∗) + P({η} × dX′ | (ν,X) /∈ Γ∗).

The first and the second terms on the right are, respectively, transition probabilities given
that a collision or an FA event occurred. Using Proposition 2.4.3, we have:

P({η}×dX′ | (ν,X) /∈ Γ∗)

= δX(dX′)×
N∑
i=1

[
M∑
j=1

δαiµ(η),0

a+,i
j (ν,X)

aN0 (ν,X)
δαiY(η)j ,1

M∏
j′ 6=j

δαiY(η)j′ ,α
i
Y(ν)j′

+δαiµ(η),1

a−,ij (ν,X)

aN0 (ν,X)
δαiY(η)j ,0

M∏
k 6=j

δαiY(η)k,α
i
Y(ν)k

]

×
N∏
k 6=i

δαkµ(η),αkµ(ν)

M∏
j′=1

δαkY(η)j′ ,α
k
Y(ν)j′

N∏
l=1

δαkC(η)l,α
k
C(ν)l

×
N∏
k 6=i

[
δαiC(η)k,1

1R+\{0}(d
i
k − 1) + δαiC(η)k,0

1R−∪{0}(d
i
k − 1)

]
.

The first line indicates that components of X do not jump at an FA event time. The next
two lines reflect the fact that an FA event changes the motility state and the state of one
adhesion site. The fourth line corresponds to the fact that an FA event in a cell does not
affect other cells. The last line indicates that the collision state of a cell is determined
according to cell-cell distances at the time of an FA event.

Define the following for (ν,X):

B(ν,X) := {(m, l) ∈ {1, . . . , N}2 : dml = dlm = 1,αmC(ν)l = αlC(ν)m = 0}
Bc

(ν,X) := {1, . . . , N}2\B(ν,X),

i.e. tuples of cell indices that have collided, and the remaining pairs, respectively. Let
b : Γ∗ → R5N+2N2

and Φ̂ : E → [0, 2π)N be given by:

bi(ν,X) := (xi,xin, θ
i, Φ̂i(ν,X),di)

Φ̂i
k(ν,X) :=

{
Φi
k, if (i, k) ∈ Bc(ν,X)

ϕ̂(xi,xk), else,

where ϕ̂(xi,xk) is the polar angle at which a contact between cells i and k occurred. Then,
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we have:

P({η} × dX′|(ν,X) ∈ Γ∗) = δb(ν,X)(dX
′)

∏
(m,l)∈B(ν,X)

δαmC (η)l,1δαmµ (η),0

×
NM∏
k=1

δαY (η)l,αY (ν)l

∏
(m,l)∈Bc

(ν,X)

δαmC (η)l,α
m
C (ν)lδαmµ (η),αmµ (ν).

The first line on the right reflects that at the time of collision, the contact angles, collision,
and motility states jump to new values. The second line indicates that the FA, collision,
and motility states of other cells are unaffected.

Regardless of the event type (FA binding/unbinding vs. collision), the post-jump and
pre-jump states are never the same. Thus, Q({(ν,X)}, (ν,X)) = 0 and the condition 3
above is satisfied.

Suppose the process hits the boundary, i.e. there is a collision between cells i and k for
some i, k ∈ {1, . . . , N}, and the transition Γ∗ 3 (ν,X)→ (η,X′) occurred. Then, the new
collision state is Ci

k = 1 and hence ∂Di,k
η = ∅ (see Section 6.1). Therefore, (η,X′) ∈ E. It

follows by Proposition (24.6) in [28] that the above condition 4 is satisfied.
The motion of the extended process with collisions is constructed in the same manner

as described in Section 2.4, except that the survival function S and the transition measure
Q are now given by (6.2.6) - (6.2.7):

S(t) =

exp
(
−
∫ t

0
aN0 (ν0, φν0(s,X0))ds

)
, t < t∗(ν0,X0)

0, t ≥ t∗(ν0,X0).
(6.2.6)

Q({η}×dX′, (ν,X))

= δX(dX′)×
N∑
i=1

[
M∑
j=1

δαiµ(η),0

a+,i
j (ν,X)

aN0 (ν,X)
δαiY(η)j ,1

M∏
j′ 6=j

δαiY(η)j′ ,α
i
Y(ν)j′

+δαiµ(η),1

a−,ij (ν,X)

aN0 (ν,X)
δαiY(η)j ,0

M∏
k 6=j

δαiY(η)k,α
i
Y(ν)k

]

×
N∏
k 6=i

δαkµ(η),αkµ(ν)

M∏
j′=1

δαkY(η)j′ ,α
k
Y(ν)j′

N∏
l=1

δαkC(η)l,α
k
C(ν)l

×
N∏
k 6=i

[
δαiC(η)k,1

1R+\{0}(d
i
k − 1) + δαiC(η)k,0

1R−∪{0}(d
i
k − 1)

]
.

+ δb(ν,X)(dX
′)

∏
(m,l)∈B(ν,X)

δαmC (η)l,1δαmµ (η),0

×
NM∏
k=1

δαY (η)l,αY (ν)l

∏
(m,l)∈Bc

(ν,X)

δαmC (η)l,α
m
C (ν)lδαmµ (η),αmµ (ν). (6.2.7)
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Homotypic and heterotypic CIL

In order to take into account mixed populations with different CIL response, we only need
to slightly modify the definition of Di

k in (6.2.1). Let I1 ⊂ {1, . . . , N}, I2 ⊂ {1, . . . , N}, be
index sets of cells with and without CIL, respectively, such that I1 ∩ I2 = ∅. Then:

Di,k
ν :=

{
(−∞, 1], if Ci

k = 0, i, k ∈ I1 or i, k ∈ I2

(−∞,∞), else,

Di
ν :=

N∏
k=1

Di,k
ν , Dν :=

N∏
i=1

Di
ν .

Thus, only members of the same group undergo CIL. Here, in the absence of heterotypic
CIL we effectively rule out collisions between members of different groups.

6.3 Simulations

6.3.1 Methods

To simulate the constructed process we employ Algorithm 3 presented below.

Algorithm 3 Simulation of the PDMP

1. Set (ν0,X0) ∈ E and t = T0 = 0, k = 0.

2. Generate interarrival time ∆̂k using Algorithm 2 applied to the ODE system (6.2.5)
and the survival function (6.2.6).

3. Find XTk+∆̂k
= φνTk (∆̂k,XTk) and B̂(

νTk ,XTk+∆̂k

). Set ∆k = ∆̂k.

4. If B̂(
νTk ,XTk+∆̂k

) 6= ∅ (Collision)

∆k = min

{
s > 0 : dml (Tk + s) = dlm(Tk + s) = 1, (m, l) ∈ B̂(

νTk ,XTk+∆̂k

)}
5. Set Tk+1 := Tk + ∆k

(νTk+1
,XTk+1

) ∼ Q(·, (νTk ,XTk+∆k
))

k := k + 1

Here, we use our previously developed method in Section 4.1 to simulate a general
piecewise deterministic process. However, we now need to take into account collisions as
well. To do so, we define

B̂(ν,X) := {(m, l) ∈ {1, . . . , N}2 : dml = dlm ≥ 1, αmC(ν)l = αlC(ν)m = 0}. (6.3.1)
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Note that if (m, l) /∈ B̂(νt,Xt) and (m, l) ∈ B̂(νt,Xt+s), then this implies that a collision
between cells m and l occurred in the time interval [t, t+ s].

After initialization in Step 1 of the algorithm below, we find the interarrival time ∆̂k of
the next FA event in Step 2 using Algorithm 2. Then, in Step 3 we evolve the ODE system
(6.2.5) and identify the cells, which collided in this time period. For each colliding pair,
we find their collision time s, and their minimum in Step 4. The collision time s ∈ (0, ∆̂k]
for (m, l) ∈ B̂(

νTk ,XTk+∆̂k

) is the root of

f(s) = f(XTk+s) = dml (Tk + s)− 1 = 0. (6.3.2)

Note that after Step 3, the solution Xt of the ODE system (6.2.5) is available at the time
points t = Tk + si, where i = 0, . . . , n and sn = ∆̂k. Thus,

f(s) = f(XTk+s) = f(φνTk (s− si,XTk+si)).

Therefore, evaluation of (6.3.2) needed for a root finding method1 amounts to advancing
the ODE system for a single time step of size s − si. This way, the amount of extra
computations needed to find the collision time is minimized, which yields increasing com-
putational savings as the number of cells N increases. Finally, in Step 5 we set the time
of the next event Tk+1 and update the system according to the event occurred.

This method can be used to efficiently simulate an arbitrary PDMP, where solving an
ODE system is expensive and the boundary hitting time is finite. In our case, one can im-
prove the numerical performance by observing that solving the N -cell ODE system (6.2.5)
can be parallelized by solving N ODE subsystems governing the evolution of (xi,xin, θ

i) in-
dependently, and then computing dik given by (6.2.3). Thus, the computation time needed
to generate the interarrival time ∆̂k can be reduced drastically. Each simulation scenario
below required roughly 60 hours of the computation time with parallelization on four cores.

Finally, to sample from the transition measure in Step 5, one can use Vose’s method as
in the case for single cell migration (see Section 4.1.2).

6.3.2 Results

We now simulate our model in an unconfined 2D setting and investigate the effect of CIL
on chemotaxing and non-chemotaxing cells. As was shown in Section 5.2, taking δ− = 0
may lead to overlapping cells. Since in a general 2D setting a cell might have a contact with
multiple cells at the same time (see Figure 6.1), it is possible (for arbitrary values of δmyo, δ+,
and δ−) that multiple cells overlap each other. Note that cells undergoing CIL do not crawl
on top of each other. Thus, for cells undergoing CIL we take δmyo = 0.4, δ+ = 0.2, δ− = 1,
and for cells not exhibiting it we take δmyo = δ+ = δ− = 0.

We also explore the interplay between CIL and chemotaxis in a heterogeneous popu-
lation of cells. Namely, we investigate the effect of CIL on a mix of cells responsive and
non-responsive to an external cue. For chemotaxing cells we take δE = 0.05.

1Any root finding method with bracketing could be employed.
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High RhoA

High Rac1

Figure 6.1: Schematic representation of CIL for non-binary collisions.

In the following, we simulate 36 cells and evolve them for 20 hours, such that initially the
cells are positioned as in Figure 6.2, and the distance between the centroids of neighboring
cells is 2.4Rcell. All other parameter values are the same as in Section 5.2.

(a) (b) (c)

Figure 6.2: Initial configuration of cells. (a) Homogeneous population. (b,c) Heterogeneous
populations of chemotaxing (blue, solid) and non-chemotaxing (red, dotted) cells.

Homogeneous population

Simulation results for a homogeneous population of chemotaxing and non-chemotaxing
cells are shown in Figure 6.3. We see that the biased migration of chemotaxing cells occurs
in a cluster-like manner. In contrast, we see that the non-chemotaxing cells disperse
randomly, such that the center of mass deviates very little as compared to cell dimensions
(Rcell = 25µm). Note that the motion of randomly migrating cells exhibits a superdiffusive
character (Figure 6.3h), as indicated by fitting the mean-squared displacement to the curve

m̂sd(t) = β0t
β̄ (see Appendix B for details). In Section 4.3.1, it was shown that non-

interacting cells1 exhibit normal diffusive behavior (β̄ ∼ 1) in the absence of any source

1But otherwise identical, as the parameter values are the same.
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of asymmetry affecting FA dynamics. Here, since the exponent β̄ corresponding to non-
chemotaxing cells is larger than one, we see that cell-cell collisions also lead to anomalous
diffusion as β̄ > 1. Comparing chemotaxing cells, we also see that β̄ increases if cells collide
with one another (in Section 4.3.2 for the same value of δE). Thus, we see that the average
displacement increases due to CIL, despite the fact that motion ceases upon contact.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.3: Simulation results for a homogeneous population of non-chemotaxing (top
row) and chemotaxing cells (middle row). (a,d) Centered trajectories. (b,e) and (c,f) Cell
positions at t = 600min, 1200min, respectively. (g) Centered trajectories of the cluster
centers of mass. (h) Mean-squared displacement (dashed) of chemotaxing (blue) and non-

chemotaxing (red) cells, and the fit m̂sd(t).

It has been hypothesized that superdiffusive motion is optimal for searching a target
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source, that itself diffuses [11], [35]. Thus, cancer cells that acquire ability to undergo
homotypic CIL can find a diffusing source (e.g. VEGF) more efficiently and hence facili-
tate tumor progression. Interestingly, it has also been hypothesized that homotypic CIL
facilitates dispersion of cancer cells [76], [112].

Inhomogeneous population

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.4: Simulation results for the mixed population with (top row) and without (mid-
dle row) heterogeneous CIL. Initially, cells are positioned as in Figure 6.2b. (a,d) Centered
trajectories of 9 chemotaxing (blue) and non-chemotaxing (red) cells. (b,e) and (c,f) Posi-
tions of chemotaxing (blue, solid) and non-chemotaxing (red, dotted) cells at t = 600min
in (b,e) and at t = 1200min in (c,f). (g,h) Mean squared displacements of chemotaxing
(blue) and non-chemotaxing (red) cells with (g) and without heterotypic CIL (h).
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We now explore the effects of heterotypic CIL between populations of chemotaxing and
non-chemotaxing cells (Figure 6.2b,c). Here, cells always exhibit CIL when they collide
with the members of the same group.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 6.5: Simulation results for the separated population with (top row) and without
(middle row) heterogeneous CIL. Initially, cells are position as in Figure 6.2c. (a,d) Cen-
tered trajectories of 9 chemotaxing (blue) and non-chemotaxing (red) cells. (b,e) and
(c,f) Positions of chemotaxing (blue, solid) and non-chemotaxing (red, dotted) cells at
t = 600min in (b,e) and at t = 1200min in (c,f). (g,h) x components of non-chemotaxing
(g) and chemotaxing (h) cells’ centers of mass with (colored) and without (black) het-
erotypic CIL. (i,j) Mean squared displacements of chemotaxing (blue) and non-chemotaxing
(red) cells with (i) and without (j) heterotypic CIL.

When evenly mixed (Figure 6.2b), we see that heterotypic CIL does not have a sig-
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nificant impact on chemotaxing or non-chemotaxing cells (Figure 6.4), as the behavior of
each subgroup resembles the case with the corresponding homogeneous populations. This
suggests that in a disordered population of cells, homotypic, but not heterotypic CIL facili-
tates directed migration of cells (as β̄ ≈ 1.34 in freely chemotaxing cells, see Section 4.3.2).
Nevertheless, notice that in this unclustered configuration, the chemotaxing cells are able
to push their way out, leading to dispersion of the surrounding cells akin to billiard balls
(Figure 6.4a,d): centered trajectories of the non-responsive cells show higher dispersion
due to the repulsive interaction with the chemotaxing cells, who must push out the non-
responsive cells to achieve the observed directed migration when such interaction is present.
Clustering cells according to their responsiveness to an external cue, however, lead to a
qualitatively different outcome. If responsive and non-responsive cells are separated as in
Figure 6.2c, we see a cluster-like interaction when heterotypic CIL is present (Figure 6.5):
the dividing line between the groups remains discernible for a long time (Figure 6.5b,c),
which is not the case when the heterotypic CIL is absent (Figure 6.5e,f). This indicates
that the initial clustering (Figure 6.2c) is conserved due to heterotypic interaction. Unlike
the case of evenly mixed cells, we see that the dispersion of the non-chemotaxing cells is not
as prominent (Figure 6.4a vs. Figure 6.5a), and the chemotaxing cells do not push out the
non-responsive ones. In fact, we observe that the latter are being displaced in a sheet-like
manner by the responsive cells. A similar behavior was observed in [118], although in that
study the non-chemotaxing cells were themselves the source of a chemoattractant. Such
displacement induces the non-chemotaxing cells to align their motion with the direction
of an external cue (Figure 6.5g), although the effect of heterotypic CIL is slight. On the
other hand, we see that directed migration of the chemotaxing cells is impeded (Figure
6.5h), which is also reflected in the reduced average displacement (Figure 6.5i). Altogether,
these results suggest that the role of heterotypic CIL varies with the distribution of the
cell population: it may either facilitate dispersion (Figure 6.4) or induce directed motion
in otherwise randomly migrating cells (Figure 6.5). Its loss, however, is beneficial for tactic
migration irrespective of spatial configuration.
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Chapter 7

Cell Populations

In this chapter we deduce the population scale description from the single cell migration
described in Chapter 2. Our deductions largely follow the procedure used to derive the
Fokker-Planck equation describing the evolution of the probability density of particle’s
position and velocity, which follow the Langevin equation. However, unlike the case of a
Brownian particle following a diffusion process, our cell motility model is a non-diffusion
process with piecewise deterministic paths. Nevertheless, we can also describe the cell’s
internal state and its position in terms of a probability density function and its governing
equation. Assuming that cells are not interacting with one-another, we thus obtain a
population scale description of cell migration. We also demonstrate how the resulting
equation can characterize migration on a spatial scale, much larger than a cell.

The content of this chapter directly follows from Chapter 2, and so do all the objects
described there as well as the notation.

7.1 Probability law of a PDMP

In this section we formally show how a connection between an arbitrary PDMP and a
deterministic description of the process can be established. Except the newly introduced
ones, all notation used here follows from Section 2.4. We also follow Sections 14, 24-26 in
[28].

We slightly abuse the notation by adopting the following convention. Let Xt denote
the state of the PDMP with the state space (E, E). That is, Xt = (νt,Xt) ∈ E.

Let p : R+ × E × R+ × E be the transition function, defined by

p(s, x, t, C) := P (xt ∈ C | xs = x) ,

and satisfying the following properties:

1. For fixed s, t, x, the mapping C 7→ p(s, x, t, C) is a probability measure on (E, E).

2. For fixed s, t, C, the mapping x 7→ p(s, x, t, C) is E-measurable.

3. For all s, x, C, p(s, x, s, C) = 1C(x).
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4. For s ≤ t, x ∈ E and C ∈ E we have

E [1B(Xt) | Fs] = p(s,Xs, t, B) a.s.

Note that since the process is Markovian, we have:

E [f(Xt) | Fs] = E [f(Xt) | Xs] , (7.1.1)

for all f ∈ B(E), where B(E) is the set of bounded measurable functions f : E → R. For
example, property 4 above becomes:

E [1C(Xt) | Fs] = E [1C(Xt) | Xs] = p(s,Xs, t, C) a.s., (7.1.2)

which is just another way of saying that the future of the process depends on its current
value only, and is independent of its past history. Due to property 1 above, we have:

E [f(Xt) | Xs] =

∫
E

f(y)p(s,Xs, t, dy) a.s. (7.1.3)

Let r ≤ s ≤ t. Since Fr ⊂ Fs, we have the “tower property” of conditional expectation:

E [f(Xt) | Fr] = E [E [f(Xt) | Fs] | Fr] a.s. (7.1.4)

Thus we have:

p(r, x, t, C) =E [1C(Xt) | Xr = x] = E [1C(Xt) | Fr]
=E [E [1C(Xt) | Fs] | Fr]

=

∫
E

∫
E

1C(y)p(s, z, t, dy)p(r, x, s, dz)

=

∫
E

p(s, z, t, C)p(r, x, s, dz),

where the first line is due to (7.1.2), the second is due to (7.1.4), and the third line is due
to (7.1.2) and (7.1.3). The relation above is called Chapman-Kolmogorov equation.

Suppose that the process is time-homogeneous, i.e.:

p(s, x, t, C) = p(0, x, t− s, C),

for s ≤ t. That is, only the time difference is relevant. No generality is lost, since a process
with time-inhomogeneous transition function can be transformed into a homogeneous one
by restarting the process appropriately. In particular, one could consider the case with
time-dependent external environment (e.g. a diffusing signal). Abusing the notation, the
transition function p becomes:

p(t, x, C) = p(0, x, t, C).
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Thus, the Chapman-Kolmogorov equation becomes:

p(t+ s, x, C) =

∫
E

p(t, z, C)p(s, x, dz). (7.1.5)

For t ≥ 0, let an operator Pt : B(E)→ B(E) be defined as

(Ptf)(x) = E [f(Xt) | X0 = x] .

Clearly, (P0f)(x) = f(x), i.e. P0 = I, where I is an identity operator. We also have the
following relation:

(Pt+sf)(x) = E [f(Xt+s) | X0 = x] =

∫
E

f(y)p(s+ t, x, dy)

=

∫
E

∫
E

f(y)p(s, z, dy)p(t, x, dz) =

∫
E

(Psf)(z)p(t, x, dz)

= (Pt ◦ Psf)(x),

where the second and third equalities are due to (7.1.3) and (7.1.5), respectively. Therefore,
the family Pt defines a semigroup, provided B(E) is a Banach space equipped with a
supremum norm.

Associated with the semigroup Pt is infinitesimal generator L : D(L)→ B(E), defined
by

Lf = lim
t↓0

Ptf − f
t

,

where D(L) ⊂ B(E) is the set of functions such that the above limit exists. Let x̂ ∈ E.
Then, using the definition of Pt and the Chapman-Kolmogorov equation (7.1.5), we have
the following:∫

E

((Pτf)(x)− f(x)) p(t, x̂, dx) =

∫
E

∫
E

f(y)p(τ, x, dy)p(t, x̂, dx)−
∫
E

f(x)p(t, x̂, dx)

=

∫
E

f(x) [p(t+ τ, x̂, dx)− p(t, x̂, dx)] .

Dividing both sides by τ , and taking the limit, we obtain:∫
E

f(x)
∂

∂t
p(t, x̂, dx) =

∫
E

Lf(x)p(t, x̂, dx), (7.1.6)

for f ∈ D(L). Considering, formally, the adjoint L∗ of L acting on probability measures:∫
E

f(x)
∂

∂t
p(t, x̂, dx) =

∫
E

f(x)L∗p(t, x̂, dx)

⇒
∫
E

f(x)

[
∂

∂t
p(t, x̂, dx)− L∗p(t, x̂, dx)

]
= 0,
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or equivalently

∂

∂t
p = L∗p, p(0, x̂, ·) = δx̂(·). (7.1.7)

We are now interested in the following quantity:

µ(t, ·) := P(Xt ∈ ·) =

∫
E

p(t, x̂, ·)µ(0, dx̂),

i.e. the law of the process Xt, given the initial distribution µ(0, ·). Instead of relying on
(7.1.7), we can directly find how µ(t, ·) evolves with time. Multiplying (7.1.6) with µ0(dx̂)
and integrating, we obtain:∫

E

∫
E

f(x)
∂

∂t
p(t, x̂, dx)µ(0, dx̂) =

∫
E

∫
E

Lf(x)p(t, x̂, dx)µ(0, dx̂)

⇐⇒
∫
E

f(x)
∂

∂t
µ(t, dx) =

∫
E

Lf(x)µ(t, dx),

or equivalently (as above)

∂

∂t
µ = L∗µ. (7.1.8)

Now that we have an abstract relation describing how the law of the Markov process Xt

evolves, in the following section we will see how it applies to the cell motility process.

7.2 The law of cell motility

Recalling Section 2.4.2 and the definitions I, II, III of the objects necessary to specify
a PDMP, we see that the conditions (24.8), Section 24 in [28] are satisfied. Namely, for
x = (ν,X) ∈ E, we have the following:

I The vector fields X 7→ Hν(X), given by (2.4.9), are Lipschitz continuous and there
exists a unique solution to (2.4.1) due to Proposition 2.4.2.

II a0 : E → R+ is a measurable function such that t 7→ a(ν, φν(t,X)) is integrable for all
t ≥ 0, where a0 is given by (2.4.10) and φν is the flow corresponding to (2.4.1).

III The transition measure Q : E × E → [0, 1], given by (2.4.11), is such that for a
fixed C ∈ E , (ν, ξ) 7→ Q(C; (ν, ξ)) is measurable for (ν, ξ) ∈ E, and Q(·; (ν, ξ)) is a
probability measure for all (ν, ξ) on (E, E). Moreover, it holds that Q({x};x) = 0.

IV E [Nt] <∞ for every starting point x ∈ E of the process, where

Nt(ω) =
∑
k

1{t≥Tk}(ω), ω ∈ Ω,

is the number of occurred FA events at time t.
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The last condition above is satisfied by Proposition 24.6 in [28], since for the case of single
cell migration, we do not have an “active” boundary. That is, events do not occur when
the process attains a certain value, as is the case with cell-cell collisions (see Chapter 6).
For details on a general PDMP, see Chapter 2 in [28].

Then, by Theorem 26.14 in [28] the generator L is given by:

Lg(x) = Hν(X) · ∇Xg(ν,X) + a0(x)

∫
E

(g(y)− g(x))Q(dy;x), (7.2.1)

for x = (ν,X) ∈ E, g ∈ D(L). Informally, the first term on the right hand side of the
equation above corresponds to the “generator” of the deterministic process in the absence
of FA jumps. Correspondingly, the second term is the generator of the FA jump process
in the absence of any deterministic motion between the jumps.

We now turn our attention to the adjoint L acting on the measure µ(t, ·), which are
related by (7.1.8). For g ∈ D(L) we have:∫

E

Lg(x)µ(t, dx) =

∫
E

H(x) · ∇g(x)µ(t, dx)

+

∫
E

∫
E

a0(x) (g(y)− g(x))Q(dy;x)µ(t, dx), (7.2.2)

where, for clarity, we denoted H(x) = Hν(X), ∇g(x) = ∇Xg(ν,X) for x = (ν,X) ∈ E.
Suppose that the measure µ(t, ·) has density f(t) : E → [0,∞) with respect to measure λ,
where f(t) is measurable ∀t > 0, and λ is a product of Lebesgue and counting measures.
That is, for x ∈ E:

µ(t, dx) = f(t, x)λ(dx),

where λ(dx) = dXdI(ν), and I is a counting measure. Consider the first term on the right
hand side in (7.2.2):∫

E

H(x) · ∇g(x)f(t, x)λ(dx) =

∫
E

Hν(X) · ∇Xg(ν,X)f(t, ν,X)dXdI(ν)

= −
∫
E

g(ν,X)∇X · (Hν(X)f(t, ν,X)) dXdI(ν), (7.2.3)

where we used integration by parts and assumed that the density f(t, ·) decays sufficiently
fast at the boundary.

Recalling the form of the transition measure Q in (2.4.11), let q : A × E → [0, 1] be
such that

Q({η} × dX′; (ν,X)) = δX(dX′)q(η; ν,X),

i.e. q(η; ν,X) is the probability that the transition ν → η occurs, given the state of the
system (ν,X) ∈ E before the jump. Due to (2.4.11), q is given by:

q(η; ν,X) =
M∑
j=1

δαµ(η),0

a+
j (αY(ν),X)

a0(αY(ν),X)
δαY(η)j ,1

M∏
i 6=j

δαY(η)i,αY(ν)i
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+ δαµ(η),1

a−j (αY(ν),X)

a0(αY(ν),X)
δαY(η)j ,0

M∏
i 6=j

δαY(η)i,αY(ν)i . (7.2.4)

We then have the following:∫
E

∫
E

a0(x)g(y)Q(dy;x)µ(t, dx)

=

∫
E

∫
E

a0(y)g(x)Q(dx; y)µ(t, dy)

=

∫
E

∫
E

g(ν,X)a0(η,X′)δX′(dX)q(ν; η,X′)f(t, η,X′)dX′dI(η)dI(ν)

=

∫
E

g(ν,X)
∑
η

a0(η,X)q(ν; η,X)f(t, η,X)dXdI(ν),

where x = (ν,X) and y = (η,X′). Similarly, the following holds:∫
E

∫
E

a0(x)g(x)Q(dy;x)µ(t, dx)

=

∫
E

∫
E

g(ν,X)a0(ν,X)δX(dX′)q(η; ν,X)f(t, ν,X)dX′dI(η)dI(ν)

=

∫
E

g(ν,X)
∑
η

a0(ν,X)q(η; ν,X)f(t, ν,X)dXdI(ν).

Together with (7.2.3), (7.2.2) becomes:∫
E

Lg(x)µ(t, dx)

=

∫
E

Lg(x)f(t, x)λ(dx)

=

∫
E

g(ν,X) [−∇X · (Hν(X)f(t, ν,X))]

+

[∑
η

a0(η,X)q(ν; η,X)f(t, η,X)− a0(ν,X)q(η; ν,X)f(t, ν,X)

]
dXdI(ν)

=

∫
E

g(x)L∗f(t, x)λ(dx) =

∫
E

g(x)L∗µ(t, dx).

Finally, due to (7.1.8), we have:

∂

∂t
f(t, ν,X) +∇X · (Hν(X)f(t, ν,X))

= −a0(ν,X)f(t, ν,X) +
∑
η

a0(η,X)q(ν; η,X)f(t, η,X) (7.2.5)
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Remark. For a slightly more general case, suppose the transition measure Q(dx; y) has
density q(x; y) with respect to the measure λ(dx). Then, we would obtain:

∂

∂t
f(t, x) +∇ · (H(x)f(t, x)) = −a0(x)f(t, x) +

∫
E

a0(y)q(x; y)f(t, y)dy

Although (7.2.5) is intuitive and could be obtained heuristically, here we showed that
it is deducible from the piecewise deterministic model of cell motility we constructed in
Chapter 2.

Assuming we have a population of non-interacting cells, then (7.2.5) also describes the
evolution of cell population density. That is,

∫
C
f(t, ν,x,xn, θ)dx is the number density of

cells in region C of space having state ν,xn, θ at time t (recalling that X = (x,xn, θ), see
Subsection 2.4.2).

Remark. In this interpretation, (7.2.5) is often said to describe the population on
a mesoscopic scale, while our model in Chapter 2 describes it on microscopic scale (for
more examples, see [33], [56] and references therein). However, interpretations may vary in
literature. For example, in [13] the mesoscopic scale refers to a collection of tens of cells.

We are primarily interested in the total number of cells in a particular region of space,
regardless of their internal state. Computing such quantity directly from (7.2.5) is unfeasi-
ble due to the dimensionality of the problem (recall that ν ∈ {1, . . . , 2M+1}, where M is the
number of FAs - see Section 2.4.2). In the following section we introduce a few simplifying
assumptions, yielding a more tractable problem.

7.3 Order reduction

We assume the following:

• (A1) Separation of time scales: FA binding/unbinding occur on the fast time scale,
cell movement and contractility on the same, intermediate scale, and appreciable
changes to the density function occur on the slowest time scale.

• (A2) The probabilities of finding a cell in motile or non-motile states are equal due
to (A1).

• (A3) Cell rotations are negligible, or equivalently βrot � 1. Thus, for simplicity, we
take θ = 0 (recall 2.1 for details).

Since a cell body translocation requires appropriate contraction of SFs, it is justified to
assume that the movement and contractility occur on the same time scale. Note that
mesenchymal cells migrate at a speed of several micrometers per minute [70], [90] (see also
the simulation results in Section 4.3). Thus, a cell covers an appreciable distance (relative
to its size) on a scale of hours1. Recalling our discussions in Sections 3.1, 4.2-4.3.1, we
also see that the FA events occur on a time scale of seconds. This justifies the assumption

1Characteristic cell size is ∼ 10− 100µm.
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(A1). Recall that in our model FA disassociation leads to cell body translocation, while
after an FA binding event the cell becomes non-motile. Since both types of events occur
on the fast time scale (due to (A1)), it is reasonable to assume that a cell can be found in
either state with equal likelihood, which justifies assumption (A2). The third assumption
above is a simplification, which can easily be relaxed without affecting what follows next.

Due to (A3) and (2.1.2), F is independent of θ, and θ̇ = 0 regardless of the motility
state. In view of (A2), we are now interested in how the density of the moving cells
evolves. Abusing the notation, we let α : {1, . . . , 2M} → {0, 1}M be a bijection, such that
α(ν) = Y corresponds to a particular FA state (recall Section 2.4.2), and let X = (x,xn).
Thus, the density of the (moving) cells f(t, ν,X) follows (7.2.5), where we again abuse the
notation:

Hν(X) =

(
β−1
ECMF(xn,α(ν)) · r̂(xn)r̂(xn)

β−1
cellF(xn,α(ν))

)
, (7.3.1)

q(η; ν,X) =
M∑
j=1

a+
j (α(ν),X)

a0(α(ν),X)
δα(η)j ,1

M∏
i 6=j

δα(η)i,α(ν)i

+
a−j (α(ν),X)

a0(α(ν),X)
δα(η)j ,0

M∏
i 6=j

δα(η)i,α(ν)i , (7.3.2)

and ν ∈ {1, . . . , 2M}. Note that due to (A2), the terms involving the cell motility state
are omitted in (7.3.1)-(7.3.2) (compare with (2.4.9) and (7.2.4), respectively). Before pro-
ceeding, we take a closer look at the FA dynamics.

7.3.1 Probabilities of FA states

Let π̂(t,y | X) be the probability that at time t the vector of FA states is y ∈ {0, 1}M , given
X. Following our discussion on FA dynamics in Section 3.1, we see that, given X = (x,xn),
binding and unbinding of a single FA are independent of time and of the state of other
FAs (see also (3.1.1), (3.1.4)). This implies that

π̂(t,y | X) =
M∏
i=1

π̂i(t, y | X),

where π̂i(t, y | X) is the conditional probability that the state of the ith FA is y ∈ {0, 1}.
It is governed by the following master equation:

∂

∂t
π̂i(t, y = 1 | X) = a+

i (X)π̂i(t, y = 0 | X)− a−i (X)π̂i(t, y = 1 | X),

where π̂i(t, y | X) is the probability that the ith FA is bound for y = 1, or unbound for y = 0,
a+
i and a−i are the corresponding binding and unbinding probability rates, respectively (see

(3.1.1), (3.1.4) for their forms). Obviously it holds that

π̂i(t, y = 1 | X) + π̂i(t, y = 0 | X) = 1.
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Using the constraint above, the steady state distribution of a single FA is given by:

π̂i(y = 1 | X) =
a+
i (X)

a−i (X)

(
1 +

a+
i (X)

a−i (X)

)−1

π̂i(y = 0 | X) =

(
1 +

a+
i (X)

a−i (X)

)−1

, (7.3.3)

and hence

π̂(y | X) =
M∏
i=1

π̂i(y | X) (7.3.4)

is the steady state distribution of M FAs.
Given X, consider now a jump process, which a collection of M FAs follow. Define

π(t, ν | X) := π̂(t,α(ν) | X), where π is the conditional probability that at time t the
process has state ν corresponding to the state of FAs given by α(ν). This is well defined,
since α is a bijection. This jump process is described by the following master equation:

∂

∂t
π(t, ν | X) = −a0(ν,X)π(t, ν | X) +

∑
η

a0(η,X)q(ν; η,X)π(t, η | X),

where q(ν; η,X) is given by (7.3.2). Consequently, the steady state distribution of such
process is simply π(ν | X) = π̂(α(ν) | X), i.e.

0 = −a0(ν,X)π(ν | X) +
∑
η

a0(η,X)q(ν; η,X)π(η | X). (7.3.5)

7.3.2 Scaling and perturbation expansion

We rescale the time as t̂ = εt. Dropping the hat, (7.2.5) becomes:

ε
∂

∂t
f(t, ν,X) +∇X · (Hν(X)f(t, ν,X))

=
1

ε

[
−a0(ν,X)f(t, ν,X) +

∑
η

a0(η,X)q(ν; η,X)f(t, η,X)

]
. (7.3.6)

The factor e−1 on the right hand side of the equation above stems from our assumption
(A1) about the separation of time scales (see also its justification): FA events occur on
a time scale (seconds) that is much faster than changes represented by the left hand side
(hours and minutes).

Using a Hilbert expansion f = f0 + εf1 + ε2f2 + . . ., plugging it in the equation above,
and collecting the terms of equal order in ε:

ε−1 :

0 = −a0(ν,X)f0(t, ν,X) +
∑
η

a0(η,X)q(ν; η,X)f0(t, η,X). (7.3.7)
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ε0 :

∇X· (Hν(X)f0(t, ν,X))

= −a0(ν,X)f1(t, ν,X) +
∑
η

a0(η,X)q(ν; η,X)f1(t, η,X). (7.3.8)

ε1 :

∂

∂t
f0(t, ν,X) +∇X · (Hν(X)f1(t, ν,X))

= −a0(ν,X)f2(t, ν,X) +
∑
η

a0(η,X)q(ν; η,X)f2(t, η,X). (7.3.9)

Note that by the definition of conditional density, we have:

f(t, ν,X) = π(t, ν | X)ρ(t,X),

where ρ(t,X) is the marginal probability density, i.e.:

ρ(t,X) =
∑
ν

f(t, ν,X) =
∑
ν

f0(t, ν,X) + ε
∑
ν

f1(t, ν,X) + ε2
∑
ν

f2(t, ν,X) + . . .

= ρ0(t,X) + ερ1(t,X) + ε2ρ2(t,X) + . . . .

Recalling (7.3.5), we see that

f0(t, ν,X) = π(ν | X)ρ0(t,X) (7.3.10)

satisfies (7.3.7).
Let Q : R2×Ωcell → R2M×2M , X 7→ Q(X) be the matrix-valued function1, whose entries

Qνη(X) are given by:

Qνη(X) =

{
a0(η,X)q(ν; η,X), if ν 6= η

−a0(ν,X), if ν = η.

Assuming ρ0 6= 0, it follows from (7.3.7) that

Qπ = 0, (7.3.11)

where the elements of the vector π = π(X) ∈ R2M are given by

πν(X) = π(ν | X).

Note that π is the nonzero unique solution of (7.3.11) due to (7.3.3)-(7.3.4).

1Recalling Section 2.2.3, Ωcell is a unit disk.
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Remark. From (7.3.11) we see that, for fixed X, π(X) is a nonzero eigenvector
corresponding to a zero eigenvalue of the matrix Q(X). Since the spectrum of QT is
identical to that of Q, and QT is given by

QTνη(X) =

{
a0(ν,X)q(η; ν,X), if ν 6= η

−a0(ν,X), if ν = η,

then by the Gershgorin’s Theorem we see that the eigenvalues are, for fixed X, in the set

{z ∈ C : |z − (−a0(ν,X))| ≤ a0(ν,X), 1 ≤ ν ≤ 2M},

because ∑
η

a0(ν,X)q(η; ν,X) = a0(ν,X).

Thus, all of 2M − 1 nonzero eigenvalues have negative real part.
Consider now (7.3.8). We can rewrite it in the following form:

ĝ0 = Qf̂1,

where the entries ĝ0,ν and f̂1,ν(X) of the vectors ĝ0(X), f̂1(X) ∈ R2M , respectively, are
given by:

ĝ0,ν(X) = ∇X · (Hν(X)f0(t, ν,X))

f̂1,ν(X) = f1(t, ν,X).

Although Q is not invertible due to (7.3.11), the restriction Q|ker(Q)⊥ : ker(Q)⊥ → ran(Q)

has an inverse
(
Q|ker(Q)⊥

)−1
=: F : ran(Q) → ker(Q)⊥, where ker(Q)⊥ is an orthogonal

complement of the kernel ker(Q) = span({π}). We then have:

f̂1 = F ĝ0 ⇐⇒ f1(t, ν,X) =
∑
η

Fνη(X)∇X · (Hη(X)f0(t, η,X)) ,

where Fνη is an entry of the matrix F . Plugging the expression for f1 in (7.3.9), we obtain:

∂

∂t
f0(t, ν,X) +∇X ·

(
Hν(X)

∑
η

Fνη(X)∇X · (Hη(X)f0(t, η,X))

)
= −a0(ν,X)f2(t, ν,X) +

∑
η

a0(η,X)q(ν; η,X)f2(t, η,X).

Plugging in the expression for f0, given by (7.3.10), and summing over ν, yields:

∂

∂t
ρ0(t,X) +∇X ·

(∑
ν

Hν(X)
∑
η

Fνη(X)∇X · (Hη(X)π(η | X)ρ0(t,X))

)
= 0.
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Expanding and rearranging the terms in the parenthesis gives:

∂

∂t
ρ0(t,X) +∇X · (D(X)∇Xρ0(t,X)) +∇X · (u(X)ρ0(t,X)) = 0, (7.3.12)

where

D(X) =
∑
ν

∑
η

Hν(X)⊗Hη(X)Fνη(X)π(η | X)

u(X) =
∑
ν

∑
η

Hν(X)∇X · (Hη(X)π(η | X))Fνη(X). (7.3.13)

Although it is possible to compute F in general (e.g. by using singular value decom-
position), if either or both of the below specified conditions (C1), (C2) are satisfied, then
we can obtain explicit solution f1 in (7.3.8). Given ν ′, t,X, these conditions are:

• (C1)
∑

η a0(η,X)q(ν ′; η,X)f1(t, η,X) = 0.

• (C2)
∑

ν a0(ν,X)q(ν ′; ν,X)f1(t, ν,X) =
∑

ν q(ν
′; ν,X)

∑
η a0(η,X)q(ν; η,X)f1(t, η,X).

Obviously, (C1) implies (C2).
Remark. The right hand side in (C2) can be rewritten as

∑
η

a0(η,X)

[∑
ν

q(ν ′; ν,X)q(ν; η,X)

]
f1(t, η,X).

If it were true that ∑
ν

q(ν ′; ν,X)q(ν; η,X) = q(ν ′; η,X),

then (C2) would be satisfied. Unfortunately, in our case the transitivity property does
not hold. For example, if M = 2, then the transitions 1 ↔ 2, 1 ↔ 3, 2 ↔ 4, 3 ↔ 4
corresponding to the transitions of FA states

α(1) =

[
0
0

]
↔
[
1
0

]
= α(2), α(1) =

[
0
0

]
↔
[
0
1

]
= α(3)

α(2) =

[
1
0

]
↔
[
1
1

]
= α(4), α(3) =

[
0
1

]
↔
[
1
1

]
= α(4)

occur with nonzero probability. However, the probability of 1↔ 4 transition is zero, since
only one FA event (binding or unbinding) occurs at the time of transition (see Section 2.3.1
and (7.3.2)). Thus,

0 <
4∑

ν=1

q(4; ν,X)q(ν; 1,X) 6= q(4; 1,X) = 0.
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Nevertheless, for problems where the transitivity property is satisfied, the procedure de-
scribed here can be applied, as we do not extensively rely on the specifics of our cell motility
model. Of course, the transitivity property need not hold for (C2) to be true.

If (C1) holds, then from (7.3.8) we have:

f1(t, ν,X) = − 1

a0(ν,X)
∇X · (Hν(X)f0(t, ν,X)). (7.3.14)

Suppose (C2) is true. Multiplying (7.3.8) by q(ν ′; ν,X) and summing over ν, we obtain:∑
ν

q(ν ′; ν)g(ν) = −
∑
ν

a0(ν)q(ν ′; ν)f1(ν) +
∑
ν

q(ν ′; ν)
∑
η

a0(η)q(ν; η)f1(η)

= 0, (7.3.15)

where g(ν) = ∇ · (Hνf0(ν)) and for clarity we omit the dependence on t and X. From
(7.3.8), we obtain:

f1(ν) = − 1

a0(ν)
g(ν) +

∑
η

a0(η)

a0(ν)
q(ν; η)f1(η), (7.3.16)

with g(ν) as above.
It follows from (7.3.15) that f1(ν) = − 1

a0(ν)
g(ν) solves (7.3.16), i.e. f1 is given by

(7.3.14). Therefore, D and u are simplified to

D(X) = −
∑
ν

1

a0(ν,X)
Hν(X)⊗Hν(X)π(ν | X)

u(X) = −
∑
ν

1

a0(ν,X)
Hν(X)∇X · (Hν(X)π(ν | X)) . (7.3.17)

The employed procedure to obtain (7.3.12) from (7.2.5) is analogous to the one used in
[33], [48], [88], [89]. Moreover, the form of our drift-diffusion equation (7.3.12) is similar
to the one obtained in [33]. This is, in part, due to the fact that multiplying (7.3.6) by
ε effectively introduces “diffusion”-like scaling with respect to time and “space” variable
X, while the gain and the loss terms on the right hand side remain zeroth order in ε.
Also, in both cases the unscaled equations originate from jump processes that are special
cases of piecewise deterministic Markov processes. Whereas the turning operator in [33],
[48], [88], [89] directly acts on the velocity variable, here, informally, it acts on the subcell
level determinants of the cell velocity (see (7.2.5)), thereby inducing the changes in the
cell velocity. Specifically, the (de)adhesion events lead to velocity alteration, i.e. turning.
Consequently, the turning rate, represented by a0, depends on X and the state of cell-
substrate adhesions α(ν). The dependence of the turning rate on the receptor state is
also taken into account in [33], [56]. In contrast to [33], [56], however, the turning rate a0

reflects the individual state of adhesions (bound and unbound), along with the effects of
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contractile mechanism driving cell locomotion (dependence on X = (x,xn)). Thus, a closer
look at the subcellular effects on adhesion dynamics allows us to deduce a more precise
description of such feature of cell motility as the turning rate.

There are also stark differences in the underlying physical model. In [33] the au-
thors consider fast moving, amoeboid type of migration with constant speeds on the order
∼ 2µm/s (the speeds in our case are on the scale of several µm/h). In their multi-
scale model, the directional changes are modulated by the local fiber orientation and cell-
substrate interaction through integrin-ECM bonds. In contrast, the underlying model in
our case describes mesenchymal type of migration. In our model, we explicitly include
the mechanical coupling between the prominent cellular structures and how this interac-
tion results in cell locomotion. Here we see that the details of interactions occurring on
cell and subcell levels are included in population scale description: the diffusion tensor D
and the advection field u incorporate the information about the low level interactions (see
(7.3.13)). In particular, the dynamic changes in the cell’s contractile machinery (Hν(X)),
and its effects on FA kinetics (π(ν | X)) are reflected in D and u. Note that the dependence
of D and u on the probability rates a±i (see e.g. (7.3.3)) correspond to a rather localized
sensing mechanism in our model (see e.g. (3.1.4)): the FAs respond to the local cue rather
than the local cue gradient. Therefore, (7.3.12) contains only the myopic diffusion terms
D and u, unlike the macroscopic scale equation in [33] where “genuine” taxis terms are
also present. This is not surprising, because the simulations of the cell scale model in
Subsection 4.3.2 show that the tactic migration emerges from taking into account the local
information about an external cue and without a centralized gradient sensing mechanism.
Moreover, the simulations in Subsection 4.3.3 show that such “myopic sensing” can resolve
the fine details of the underlying ECM architecture, which is, consequently, incorporated
in D and u.

In Section 4.3 we saw that the surrounding environment affects cell motility by modify-
ing FA dynamics. Recalling our discussion in Section 3.2 on coupling RhoGTPase signaling
pathways with FA dynamics, we see that the procedure above is capable of connecting var-
ious processes on distinct spatiotemporal scales that are involved in cell locomotion. For
example, since RhoA mediates myosin forces (see Section 3.3) and hence contractile force
in an SF (see (2.1.1)), then the effects of RhoA manifest themselves on the population level
by its influence on Hν (see (7.3.1)). Analogously, since Rac1 mediates FA dynamics (see
Section 3.2), then its effects on the population level are reflected in the distribution π (see
(7.3.3)-(7.3.4)).

7.3.3 The diffusion tensor and the advection field

In the following we assume that either of the conditions (C1) and (C2) hold. Thus, the
focus of the discussion here is to compute the diffusion tensor D and the advection field u,
whose formulas are given by (7.3.17).

Making the transformation {1, . . . , 2M} 3 ν → α(ν) = y ∈ {0, 1}M , we have the
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following:

Hν(X)→ Hy(X) =

[
β−1
ECMR(xn)B(xn) 0

0 β−1
cellB(xn)

]
︸ ︷︷ ︸

:=C(xn)

[
y
y

]
, (7.3.18)

where

B(xn) =
[
−F1(xn) | − F2(xn) | · · · | − FM(xn)

]
R(xn) =

[
r̂2

1(xn) r̂1(xn)r̂2(xn)
r̂1(xn)r̂2(xn) r̂2

2(xn)

]
,

since Hν(X) is given by (7.3.1), F(xn,α(ν) = y) =
∑M

i=1(−Fi(xn))yi due to (2.1.2)1 and
θ = 0, and r̂(xn) is given by (2.2.2). Then,

D(X) = −
∑

y∈{0,1}M

1

a0(y,X)
C(xn)

[
y
y

]
⊗C(xn)

[
y
y

]
π̂(y | X)

= −C(xn)

 ∑
y∈{0,1}M

1

a0(y,X)

[
y
y

] [
y
y

]T
π̂(y | X)

CT (xn), (7.3.19)

where, as in Section 2.4.2, we abuse the notation and set a0(y,X) = a0(ν,X). The square
matrix in the brackets has a block structure, where each block consists of the matrix
K ∈ RM×M , defined as (omitting the dependence on X for clarity)

K :=
∑

y∈{0,1}M

1

a0(y)
yyT π̂(y),

with off-diagonal entries Kij given by

Kij =
∑

y∈{0,1}M

1

a0(y)
yiyjπ̂(y) =

∑
y∈{0,1}M

1

a0(y)
yiyjπ̂i(yi)π̂j(yj)

M∏
k 6=i,j

π̂k(yk)

= π̂i(yi = 1)π̂j(yj = 1)
∑

y∈{0,1}M
yi,yj=1

1

a0(y)

M∏
k 6=i,j

π̂k(yk),

where the second equality follows from (7.3.4), and the diagonal entries are given by

Kii = π̂i(yi = 1)
∑

y∈{0,1}M
yi=1

1

a0(y)

M∏
k 6=i

π̂k(yk).

1It is straightforward to extend the discussion below for the case when Fi depends on x, i.e. when, for
example, myosin force generation depends on an external cue. In this case, C = C(X)
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We can either compute the sums directly, or approximate them in the following way.
Recalling our discussion in Section 2.4.2 (in particular (2.4.10)), we can rewrite a0(y,X)

as:

a0(y,X) =
M∑
m=1

a+
m(X)(1− ym) + a−m(X)ym = a+(X) · e + (a−(X)− a+(X)) · y,

where a±m(X) is defined as in Section 7.3.1, a±(X) ∈ RM is a vector with entries a±m(X), and
e = [1, . . . , 1]T ∈ RM . Note that if Y ∈ {0, 1}M is a random variable with (conditional)
distribution function π̂, then

µ̄ : = E [a0(Y)] = a+ · e + (a− − a+) · E [Y] = a+ · e + (a− − a+) · ḡ

= a+ · e +
M∑
m=1

(a−m − a+
m)
a+
m

a−m

(
1 +

a+
m

a−m

)−1

,

σ2 : = V ar[a0(Y)] = E
[
(a0(Y)− E [a0(Y)])2] = V ar

[
(a− − a+) ·Y

]
=

M∑
m=1

(a−m − a+
m)2a

+
m

a−m

(
1 +

a+
m

a−m

)−2

,

where

ḡ =


π̂1(y1 = 1)
π̂2(y2 = 1)

...
π̂M(yM = 1)

 .
Noting that a0 > 0 (and hence µ̄ > 0), expanding 1/a0(Y) in Taylor series around µ̄, and
taking expectation, we get:

E
[

1

a0(Y)

]
=

1

µ̄
+
∞∑
n=1

(−1)n
n

n!
µ̄−(n+1)E [(a0(Y)− µ̄)n]

=
1

µ̄
+

1

µ̄3
σ2 + o(σ2).

The second equality follows from the fact that for n ≥ 1 we have

E [|a0(Y)− µ|n] = E

[
|
M∑
m=1

(a−m − a+
m)(Ym − ḡm)|n

]

≤ E

[(
M∑
m=1

|a−m − a+
m|

)n]
= ‖a− − a+‖n1

due to the triangle inequality, and |Ym − ḡm| ≤ 1 a.s., since Ym ∈ {0, 1} and ḡm ≤ 1.
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Similarly as above, we have:

µ̄ij : = E [a0(Y) | Yi, Yj = 1]

= a+ · e +
M∑
m=1
m 6=i,j

(a−m − a+
m)
a+
m

a−m

(
1 +

a+
m

a−m

)−1

+
∑
m=i,j

(a−m − a+
m)

σ2
ij : = V ar[a0(Y) | Yi, Yj = 1]

=
M∑
m=1
m 6=i,j

(a−m − a+
m)2a

+
m

a−m

(
1 +

a+
m

a−m

)−2

, (7.3.20)

and ∑
y∈{0,1}M
yi,yj=1

1

a0(y)

M∏
k 6=i,j

π̂k(yk) = E
[
a−1

0 (Y) | Yi, Yj = 1
]

=
1

µ̄ij
+

1

µ̄3
ij

σ2
ij + o(σ2

ij).

Therefore, we can approximate the entries Kij as

Kij =

{
ḡiḡj

(
µ̄−1
ij + µ̄−3

ij σ
2
ij

)
, if i 6= j

ḡi
(
µ̄−1
ii + µ̄−3

ii σ
2
ii

)
, if i = j.

(7.3.21)

Consequently, D is given by

D = −C

[
K K
K K

]
CT . (7.3.22)

We now turn our attention to the advection field u(X), which is given by (7.3.17).
Under the transformation ν → α(ν), u becomes:

u = −
∑

y∈{0,1}M

1

a0(y)
Hy∇ · (Hyπ̂(y)) =−

∑
y∈{0,1}M

1

a0(y)
Hy ⊗Hy∇π̂(y)

−
∑

y∈{0,1}M

1

a0(y)
Hy∇ ·Hyπ̂(y).

Due to (7.3.4), we have:

∇π̂(y) =
M∑
k=1

∇π̂k(yk)
M∏
m=1
m6=k

π̂m(ym),

and thus∑
y∈{0,1}M

1

a0(y)
Hy ⊗Hy∇π̂(y) =

∑
y∈{0,1}M

M∑
k=1

1

a0(y)
C

[
y
y

] [
y
y

]T
CT∇π̂k(yk)

M∏
m=1
m6=k

π̂m(ym)
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=
M∑
k=1

∑
y∈{0,1}M
yk=0

1

a0(y)
C

[
y
y

] [
y
y

]T
CT∇π̂k(yk = 0)

M∏
m=1
m6=k

π̂m(ym)

+
M∑
k=1

∑
y∈{0,1}M
yk=1

1

a0(y)
C

[
y
y

] [
y
y

]T
CT∇π̂k(yk = 1)

M∏
m=1
m6=k

π̂m(ym)

= C
M∑
k=1

 ∑
y∈{0,1}M
yk=0

1

a0(y)

[
y
y

] [
y
y

]T M∏
m=1
m6=k

π̂m(ym)

CT∇π̂k(yk = 0)

+ C
M∑
k=1

 ∑
y∈{0,1}M
yk=1

1

a0(y)

[
y
y

] [
y
y

]T M∏
m=1
m6=k

π̂m(ym)

CT∇π̂k(yk = 1).

The terms in the brackets above are similar to those in the brackets of (7.3.19). Here we
also have block matrices, where each block consists of matrices Kk,0 or Kk,1 corresponding
to the terms with yk = 0 and yk = 1, respectively, and which are given by

Kk,ỹ :=
∑

y∈{0,1}M
yk=ỹ

1

a0(y)
yyT

M∏
m=1
m6=k

π̂m(ym),

where ỹ ∈ {0, 1}. The computation of the entries Kk,ỹ proceeds in the same manner as
above, except that the expectations in (7.3.20) are also conditioned on Yk = ỹ. Therefore,
the entries of Kk,ỹ can be approximated as follows:

Kk,0
ij =


ḡiḡj

(
(µ̄k,0ij )−1 + (µ̄k,0ij )−3(σkij)

2
)
, if i 6= j and k 6= i, j

ḡi

(
(µ̄k,0ii )−1 + (µ̄k,0ii )−3(σkii)

2
)
, if i = j and k 6= i, j

0, if k = i or k = j,

(7.3.23)

where

µ̄k,0ij = a+ · e +
M∑
m=1

m6=i,j,k

(a−m − a+
m)
a+
m

a−m

(
1 +

a+
m

a−m

)−1

+
∑
m=i,j

(a−m − a+
m)

(σkij)
2 =

M∑
m=1

m 6=i,j,k

(a−m − a+
m)2a

+
m

a−m

(
1 +

a+
m

a−m

)−2

,
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and

Kk,1
ij =



ḡiḡj

(
(µ̄k,1ij )−1 + (µ̄k,1ij )−3(σkij)

2
)
, if i 6= j and k 6= i, j

ḡi

(
(µ̄k,1ii )−1 + (µ̄k,1ii )−3(σkii)

2
)
, if i = j and k 6= i, j

ḡj

(
(µ̄k,1kj )−1 + (µ̄k,1kj )−3(σkkj)

2
)
, if k = i

ḡi

(
(µ̄k,1ik )−1 + (µ̄k,1ik )−3(σkik)

2
)
, if k = j,

(7.3.24)

where

µ̄k,1ij = a+ · e +
M∑
m=1

m 6=i,j,k

(a−m − a+
m)
a+
m

a−m

(
1 +

a+
m

a−m

)−1

+
∑

m=i,j,k

(a−m − a+
m).

Thus,

∑
y∈{0,1}M

1

a0(y)
Hy ⊗Hy∇π̂(y) = C

M∑
k=1

1∑
ỹ=0

Kk,ỹCT∇π̂k(ỹ).

Finally, ∑
y∈{0,1}M

1

a0(y)
Hy∇ ·Hyπ̂(y) =

∑
y∈{0,1}M

1

a0(y)
C

[
y
y

]
∇ ·
(

C

[
y
y

])
π̂(y)

= C
∑

y∈{0,1}M

1

a0(y)

[
y
y

]
⊗
[
y
y

]
π̂(y)∇ ·C

= C

[
K K
K K

]
∇ ·C

Therefore,

u = −C
M∑
k=1

1∑
ỹ=0

[
Kk,ỹ Kk,ỹ

Kk,ỹ Kk,ỹ

]
CT∇π̂k(ỹ)−C

[
K K
K K

]
∇ ·C

= −C
M∑
k=1

[
Kk,0 −Kk,1 Kk,0 −Kk,1

Kk,0 −Kk,1 Kk,0 −Kk,1

]
CT∇π̂k(0)−C

[
K K
K K

]
∇ ·C

since, using the formula for π̂ in (7.3.3), we compute

∇π̂(0) = −a
−
k∇a

+
k − a

+
k∇a

−
k

(a−k )2

(
1 +

a+
k

a−k

)−2

∇π̂(1) = −∇π̂(0). (7.3.25)
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7.3.4 Summary of the population scale formulation

To summarize, the population scale formulation of the cell migration model is the following.
Let Ω ⊂ R2 be the spatial domain of interest, and Ωcell = {xn ∈ R2 : ‖xn‖2 ≤ 1} be the
domain, representing the cell (in the nondimensional form, recall Sections 2.1, 2.2.3). Let
ρ(t,X) denote the density of cells at time t, where X = (x,xn) ∈ Ω×Ωcell. Then, ρ satisfies

∂

∂t
ρ(t,X)−∇X · (D(X)∇Xρ(t,X)) +∇X · (u(X)ρ(t,X)) = 0, (7.3.26)

subject to some initial condition

ρ(0,X) = ρ̂0(X), ∀X ∈ Ω× Ωcell

and the no-flux boundary condition

(D(X)∇Xρ(t,X) + u(X)ρ(t,X)) · n̂ = 0, ∀X ∈ ∂ (Ω× Ωcell) ,

where n̂ is an outward unit normal. The no-flux boundary condition has twofold physical
significance. First, cells do not leave the spatial domain Ω. Second, it reflects the fact that
in our cell scale model, the node xn remains in the cell (see Section 2.1 and in particular
Corollary 2.1.2).

The coefficients in (7.3.26) are given by

D(X) = C(xn)

[
K(X) K(X)
K(X) K(X)

]
CT (xn),

where for convenience we flipped the sign in front of the term on the right in (7.3.22), and

u(X) =−C(xn)
M∑
k=1

1∑
ỹ=0

[
Kk,ỹ(X) Kk,ỹ(X)
Kk,ỹ(X) Kk,ỹ(X)

]
CT (xn)∇π̂k(ỹ | X)

−C(xn)

[
K(X) K(X)
K(X) K(X)

]
∇ ·C(xn)

with C given by (7.3.18), K given by (7.3.21), Kk,ỹ given by (7.3.23) and (7.3.24), and
π̂k given by (7.3.3). Note that since K is symmetric and has strictly positive entries (for
a+
i > 0), then D is positive definite.

Note that the population formulation presented here is not truly “macroscale”, as it
still involves the xn variable, which is not macroscopic, as it closely relates to cellular scale
dynamics (e.g. extension of SFs). The variable xn can be seen as a supplementary structure
variable, so that solving the population scale problem (7.3.26) provides the information
about the population density not only with respect to time and space, but also with
respect to cellular configuration of SFs. The latter could inform about the evolution of cell
density with respect to intracellular stress distribution.

118



Chapter 8

Conclusion and Outlook

Cell migration is a multiscale phenomenon, where dynamic interactions of multiple, pos-
sibly heterogeneous, agents on each scale give rise to a dynamic system on a higher level.
Several such systems can themselves interact with each other, yielding yet another organi-
zation on a higher level. For example, interactions of focal adhesions with stress fibers give
rise to cell migration. In turn, multiple migrating cells can interact and develop group be-
havior. Although the whole is more than the sum of its parts, understanding each part and
how they combine is essential to understanding the whole. In this work, we constructed
a multiscale model of migrating cells, where the constituent parts at the subcell, cell, and
cell group levels were combined to obtain a mathematically consistent description of cell
migration at an individual, collective, and population scales (Figure 8.1).

To describe single cell migration, we constructed a stochastic model using a minimal
representation of cellular structures, essential for crawling, such as stress fibers and focal
adhesions (Chapter 2). Using this representation, and observing that FA assembly and
disassembly events of the migration cycle lead to different migratory outcomes, we obtained
the equations describing deterministic cell motion between the random occurrence of FA
events. After introducing the probabilities rates of FA binding and unbinding, we obtained
the remaining necessary objects to define a piecewise deterministic Markov process: the
distribution of interarrival times and of the next FA event. Note that the forms of these
distributions have been derived, rather than simply postulated.

To complete the description of single cell migration, we discussed the interactions of
the subcell level constituents of FAs and SFs (Chapter 3). We showed how their mediation
by RhoGTPases can be taken into account. For example, by simplifying the cross-bridge
model in [3], we found a relation between local RhoA levels and tension applied by myosin
motors. We also demonstrated that one could use the previously developed model of
RhoGTPases signaling pathways by [50] to relate local Rac1 activity with FA associa-
tion rate. Altogether, we provided a model of mechanical (force dependence on adhesion
binding/unbinding) and chemical interaction (through RhoGTPase mediation) of FAs and
SFs.
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Figure 8.1: Multiscale description of cell migration. Synopsis of this thesis.
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Having specified the coupling between SFs and FAs, as well as between the cellular
environment and FAs, we performed numerical simulations (Chapter 4). We showed that
our model is able to reproduce experimental observations, such as: superdiffusive scaling of
the mean-squared displacement [32], [67], [70] (Figure 4.4); biased motility in the presence
of external cue (Figure 4.6); contact guidance [95] (Figure 4.13). In these cases, the
obtained results followed solely due to asymmetric, dynamic instability of FAs in direct
response to environmental stimuli. Specifically, it is only the biased FA assembly rate that
drives biased cell motility along the cue gradient or the fiber tracts (Figures 4.7 and 4.13 (d-
i)). That is, preferred velocities were not imposed or chosen in any way, but simply followed
as a consequence of front-rear polarity, as the cell front is characterized by preferential FA
binding and the rear by unbinding.

Another characteristic of directed migration is the asymmetric contraction of acto-
myosin bundles. By increasing the force generation of myosin motors in the prospective
rear, we obtained directed movement in the opposite direction (Figure 4.17). Here asym-
metric FA dynamics (and so front-rear polarity) was also obtained, but as a consequence
of locally induced contractile activity, consistent with [129].

Our simulation results in various settings suggest that the cell speeds follow a gamma
distribution (Figures 4.2 (g-i), 4.4 (g-i), 4.7 (a-c)). Furthermore, the number of adhesion
sites seems to be a determinant of the gamma distribution, as its parameters are similar
under different settings and given number of FAs. These results suggest that cell speeds
are independent of biased FA formation, i.e. the bias only alters the directionality and not
the speed. It is also interesting to see a correlation between the number of adhesion sites
and diffusivity (Table 4.2), as well as average speed (Tables 4.2-4.5). Note that faster and
diffusive amoeboid movement is characterized by an increased number of weaker adhesions
with high turnover and contractility [90]. Thus, the aforementioned correlation is also
consistent with experimental observations. We note that our model is not fit to take into
account motility strongly relying on cell shape control, which is required, for example, in
highly mobile cells. However, the simulations reproduce migration along fiber tracts, where
cell reshaping takes place [95]. Our results suggest, then, that adhesion along the tracts is
sufficient to produce such migration patterns.

Although the model of the internal contractile machinery driving cell locomotion and
cytoskeletal remodeling is simple, the resulting numerical simulations explain several ex-
perimental observations. Moreover, the cyclical nature of cell motility is captured with
our piecewise deterministic model. Note also that the FA dynamics in our model is in-
dependent of a particular cellwise contractility mechanism: only local mechanochemical
interactions are relevant.

Following our account of cell migration on the individual scale, we considered the scale of
cell collectives (Chapters 5, 6). We extended our model to account for contact inhibition
of locomotion arising as a result of cell-cell collisions. Here, the cells, exhibiting CIL
response, alter cell-substrate adhesions dynamics and SF contractility following contact
with another cell. Mathematically, the model is described by a piecewise deterministic
process, whereby collisions occur when some deterministic components (cell-cell distances)
reach a corresponding value, and cell motility itself emerges due to mechanochemically
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mediated stochastic adhesion dynamics. Consequently, the outcome of a collision is also
determined stochastically, as reported in [30], [68], [102].

Mimicking the experimental setup in [68], we simulated binary collisions between cells
migrating while confined to a 1D lane. In this setting, we did not invoke the volume
exclusion principle, and showed that a CIL response can be explained solely due to increased
cell-substrate adhesion away from the collision site and increased actomyosin contractility
in its vicinity. Although cell overlaps occur, we see that by strengthening the CIL response
we can reduce its occurrence (Figure 5.5b). Our results also show that an external cue can
modulate CIL response, in line with [68]. Specifically, typical CIL response (Figure 5.6) can
be overridden by chemotaxis (Figure 5.8) if post collision velocity is not aligned with the
chemotactic gradient. Regardless of an external signal presence, our simulations suggest
that transient perturbations in cell motility lead to persistent alterations of migration
dynamics (Figure 5.7, 5.8c,d).

In an unconfined setting, we simulated the effects of homo- and heterotypic CIL. We
found that homotypic CIL leads to increased cell displacement of chemotaxing and non-
chemotaxing cells (Figure 6.3h). We also found that the spatial configuration of hetero-
geneous cells can have an impact on how heterotypic CIL affects migration of cells. In a
disordered population it can facilitate the dispersion of randomly migrating cells (Figure
6.4), while letting directed migration be unhindered. When separated into groups, our sim-
ulations suggest that directed movement can be induced in non-chemotaxing cells (Figure
6.5), as reported in [117]. Altogether, simulations in the unconfined setting suggest that
homotypic, but not heterotypic CIL, is advantageous for dispersive and invasive migration
of cells. It has been speculated that such CIL behavior is responsible for the initial spread
of cancer cells [76], [112].

To simulate the models on the cell and the cell collective scales, we developed ap-
propriate numerical methods (Sections 4.1, 6.3.1). These methods reflect an important
distinction between the two PDMPs describing cell migration in the absence and presence
of interactions. In the latter, more general case, jumps can also occur when the determin-
istic component attains a certain value. Consequently, the method in Section 6.3.1 can be
applied to a general PDMP1. However, the special case represents a large enough class of
problems for the method presented in Sections 4.1 to be of practical use.

We were also able to deduce a population scale model of non-interacting migrating cells
from the single cell scale model (Chapter 7). While we employed a well-known procedure
to obtain an equation governing the law of the cell motility process, it was necessary to
utilize an order reduction method to reduce the dimensionality of the problem. Analo-
gous to the approaches in [33], [48], [88], [89], we used perturbation expansion and time
rescaling to obtain a low order approximation of the problem. Such approximation was
possible because our constructive approach to modeling single cell migration allowed us to
exploit the detailed knowledge about the dynamics of FAs. Consequently, the population
scale equation (7.3.26) still contains some details about subcell and cell dynamics. This

1With slight modification of a routine used to determine whether the jump occurs when the process
attains a certain value.
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equation also has a supplementary structure variable, which influences spatiotemporal evo-
lution of the population. Thus, one can view (7.3.26) as a structured population model
(see [8] and references therein for numerous such models). However, it is not often that
such class of models are obtained through derivation from elementary interactions. Thus,
our constructive approach and perturbation expansion provides an example of a derived
structured population model.

There are numerous shortcomings at each scale of our model, which we plan to improve
in the future work. For example, we could include the role of RhoGTPase signaling path-
ways in regulating FA association rate and myosin motor force generation (as discussed in
Sections 3.2, 3.3). Because of its essential role, accounting for the Rac1 signaling would
also enable us to explore an essential feature of the migration cycle - actin polymerization
and protrusion formation. Thus, due to the role of RhoGTPases in regulating adhesion
dynamics, contractility, and actin polymerization [94], [96], [97], the modifications at the
subcell level will allow us to consider a more biologically consistent description at the cell
level. In our future work, we also plan to address probably the most significant short-
coming of our model at the cell scale - disregard of cellular shape changes. One possible
avenue of addressing this issue is through a phase field description of our cell, similar to
the works in [16], [72], [86], [99], [106]. Another possibility is adopting the vertex-based
model of a cell [39], as was done in [78] in the context of cell motility. a more complex
contractility apparatus can be described via active cable network model [47] and a more
detailed account of mechanical forces (e.g. protrusions due to actin polymerization) can
be done as in [24]. Together with models of RhoGTPases signaling pathways [49], [50],
[82], the most significant drawbacks of our approach (including rigid rotation of the SF
structure) can be overcome. The presented framework of piecewise deterministic motility
process can also be extended to three-dimensional setting, as neither the event interarrival
time distribution, nor the transition measure rely on the particular features of migration
in a plane. Overall, our plans for future work at the cell scale involve adding layers of
complexity on top of the minimal model presented here.

Guided by the study in [30], in our model of CIL at the scale of cell collectives we
assumed that the CIL response between colliding cells is transient and mutually indepen-
dent. That is, immediately following the collision, cell dynamics and FA event probabilities
in both cells are decoupled. However, there is evidence that a mechanical coupling is es-
tablished prior to repulsion [113]. Moreover, some cells exhibiting homotypic CIL tend to
disperse and reaggregate into small clusters, which increases their chemotactic efficiency
[117]. Thus, addressing mechanical coupling by including cell-cell adhesions represents one
of the avenues for future work, whereby collective migration could be further investigated.
Including RhoGTPase signaling pathways constitutes another major improvement of our
CIL model, since these are affected in a contact dependent manner during CIL [98]. There-
fore, addressing the above mentioned shortcomings of the model at the subcellular scale
will also help us to refine our model at the higher scales.

We also leave an in-depth investigation of the population scale model for future work.
In particular, performing numerical simulations will allow us to gain an insight on how the
interactions between cell-substrate adhesions and actomyosin contractility translate into
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population migration. Although the numerical solution of (7.3.26) might be challenging
due to its dimensionality, the method in [37] provides a possibility to overcome it. Another
major issue left to be addressed is how to obtain a population scale model of interacting cells
directly from the scale of cell collectives. While we could apply the procedure in Sections
7.1, 7.2 to the PDMP of interacting cells in 6.2, it is not clear how to proceed further in
order to obtain a population scale description. As in our case otherwise independent cells
interact through collisions only, a potential route for investigating the issue is by drawing
analogies with the kinetic theory, similar to the studies in [20], [21].

Despite of its shortcomings, our minimal model can explain various experimental ob-
servations about cell motility at the scales of individuals and groups. Together with our
population scale model, in this work we achieved a genuine multiscale description of cell
migration, where the information about the lower scales is retained and carried over to
higher scales in a mathematically consistent manner.
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Appendix A

Equations of cell motion

In our model, using common, the lab’s reference frame will yield the same governing rela-
tions, because the involved forces are determined by relative position of cellular structures.
Below, we show why this is the case and provide a more detailed explanation regarding
the equation of motions for x,xn, θ presented in Section 2.2.2. The material here is based
on the work [120] by the author.

Let x′n = x + xn and x′i = x + xi, where primes indicate the corresponding variables in
the lab’s reference frame (recall that xi is the position of the ith FA in the cell’s reference
frame). Then, in this frame, the length of the ith SF L′i and the unit vector e′i along it are
given by

L′i = ‖x′n − x′i‖ = ‖xn − xi‖ = Li

e′i =
x′n − x′i
L′i

=
xn − xi
Li

= ei,

respectively. Thus, F′i(x
′
n, θ) = Fi(xn, θ), where F′i is the force applied by the ith SF at the

ith FA. Note that the force at x′n (or xn) due to the ith SF is −F′i(x
′
n, θ) (or −Fi(xn, θ))

by action-reaction principle. Therefore, net force F′ at x′n is F′(x′n, θ,Y) = −
∑M

i=1 YiF
′
i =

−
∑M

i=1 YiFi = F(xn, θ,Y). Neglecting inertia, we have

βcellẋn = F(xn, θ,Y) = F′(x′n, θ,Y).

Now, let us examine the equations of motion after FA unbinding, stated in Section 2.2.2,
but in the lab’s reference frame. In this frame, the radial unit vector r̂′(x′n) from the cell
center x is given by (see Figure 2.7 in the manuscript for illustration)

r̂′(x′n) =
x′n − x

‖x′n − x‖
=

xn
‖xn‖

= r̂(xn).

Analogously, the tangential unit vector ϕ̂′(x′n) is given by

ϕ̂′(x′n) =

(
−
x′n,2 − x2

‖x′n − x‖
,
x′n,1 − x1

‖x′n − x‖

)T
=

(
− xn,2
‖xn‖

,
xn,1
‖xn‖

)T
= ϕ̂(xn).
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Note that the tangential component F ′ϕ of the force F′ at x′n induces rotational motion,
while the radial component F ′r of the force F′ at x′n induces translational motion. These
components are given by:

F ′ϕ = F′(x′n, θ,Y) · ϕ̂′(x′n) = F(xn, θ,Y) · ϕ̂(xn) = Fϕ

F ′r = F′(x′n, θ,Y) · r̂′(x′n) = F(xn, θ,Y) · r̂(xn) = Fr.

Neglecting rotational inertia, we then have

βrotθ̇ = ‖x′n − x‖F ′ϕ(x′n, θ,Y)

= ‖xn‖Fϕ(xn, θ,Y)

where the right hand side in the first (second) line is the torque due to tangential component
of the force F′ (F) at x′n (xn). Because of the low Reynolds number, we also have

βECM ẋ = F ′r(x
′
n, θ,Y)r̂′(x′n)

= Fr(xn, θ,Y)r̂(xn),

due to the translational motion induced by the radial component of the force F′ at x′n.
In the common reference frame, the following system of ODEs holds after unbinding

(using the definition of x′n):

βECM ẋ = F ′r(x
′
n, θ,Y)r̂′(x′n)

βcellẋ
′
n = βcellẋ + F′(x′n, θ,Y)

βrotθ̇ = ‖x′n − x‖F ′ϕ(x′n, θ,Y),

which is equivalent to (2.2.3). Using the common reference frame becomes even less conve-
nient when we formulate and analyze our stochastic process of cell motility. Moreover, our
approach in the main text does not contradict the formulation with the single reference
frame, and is equivalent to it.
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Data Analysis Methods

The material here is based on the work [120] by the author.
Given that the time interval [0, tend] is divided into ntime subintervals of equal length

∆t and given the positions xi(tj) of cell i at the time points tj := j∆t, j = 0, . . . , ntime,
the mean-squared displacement msdi(tj) of cell i ∈ {1, . . . , ncells} over a time interval of
length tj is given by:

msdi(tj) :=
1

ntime − j

ntime−j∑
k=1

‖xi(tj+k)− xi(tk)‖2, (B.0.1)

where j = 1, . . . , ntime − 1 and ncells is the total number of cells. Then, the mean-squared
displacement msd(t) of an ensemble of cells over time interval of length tj is defined by:

msd(t) :=
1

ncells

ncells∑
i=1

msdi(tj). (B.0.2)

Remark. In general, the (time-averaged) mean-squared displacement < d2(t, T ) > of a
particle trajectory x(t) at the time t, time endpoint T is formally defined as:

< d2(t, T ) >=
1

T − t

∫ T−t

0

‖x(s+ t)− x(t)‖2ds. (B.0.3)

For an ergodic process, we have:

lim
T→∞

< d2(t, T ) >=< x2(t) >,

where < x2(t) > is formally defined as:

< x2(t) >=

∫
x2Pt(dx),

and Pt(dx) is the probability measure of the underlying stochastic process at time t. That
is, for an ergodic process, and for sufficiently long times, the time average equals the
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phase space average. However, our cell motility process needs not be ergodic and hence,
using a quadrature to evaluate the integral in equation (B.0.3), we obtain time average
displacement in equation (B.0.1). To smooth out trajectory-to-trajectory fluctuations, we
then average the displacements over all trajectories in equation (B.0.2).

For a diffusive motion we expect that msd(t) ∼ tβ(t) with β(t) ≈ 1, while for a ballistic
motion β(t) ≈ 2. Sincemsd(0) = 0, we can estimate the exponent β(t) for t ∈ [∆t, tend−∆t]
from the simulated data as:

β(t) =
d lnmsd(t)

d ln t
.

Although averaging reduces fluctuations, it does not eliminate them completely. Thus,
computing the derivative above will yield a result that may oscillate wildly, which we want
to avoid. Then, in order to investigate how β varies with time, we define the time average
βav(t) over the interval [∆t, t] as:

βav(t) :=
1

t−∆t

∫ t

∆t

β(s)ds =
1

t−∆t

(
s lnmsd(s)

∣∣∣∣t
∆t

−
∫ t

∆t

lnmsd(s)ds

)
,

where t ∈ [2∆t, tend − ∆t], and we used integration by substitution and by parts. Then,
β̄ := βav(tend−∆t) estimates the time scaling of msd over the whole time interval. To asses

how well β̄ reflects the scaling of msd, we define the following function m̂sd(t) := β0t
β̄,

where β0 is found by minimizing the square error:

min
β0

1

2

ntime−1∑
j=1

(
β0t

β̄
j −msd(tj)

)2

⇒

β0 =

∑ntime−1
j=1 msd(tj)t

β̄
j∑ntime−1

j=1 t2β̄j
.

Letting β̄ = βav(t − ∆t) to asses time scaling of msd ∼ tβ(t) is more accurate than the
standard methods used for Brownian motion, since it also takes into account time depen-
dence of the exponent. Also, our stochastic model has no Gaussian component. We refer
to, Section 4.3 for comparisons between msd and m̂sd, which show that the former well
approximates the latter.

Note that because binding events can occur, a cell needs not have moved between the
two time points tj and tj+1. Thus, the speed between the consecutive time points may be
zero for many time points, which would give an inaccurate statistical assessment of cell
speeds. In order to estimate the speeds of a cell i we use the following procedure:

First, we find li, given by:

li := min
{
l ∈ N : xi(tl+k) 6= xi(tk), 0 ≤ k < ntime, l + k ≤ ntime

}
.

Then we find the set of speeds Si as:

Si :=

{
s ∈ R+ : s =

‖xi(t(k+1)li)− xi(tkli)‖
li∆t

, k ∈ N, (k + 1)li ≤ ntime

}
.
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This simply means that to compute speeds we only use a (minimal) time interval, such
that a cell i is guaranteed to change its position. The total set of speeds for ncells is
S := ∪ncellsi=1 Si. The average speed sav is then defined as an arithmetic average:

sav :=
1

|S|
∑
s∈S

s.

The set of normalized velocities Vi (or, alternatively, displacements) of cell i is given
by:

Vi :=

{
v ∈ R2 : v =

xi(t(k+1)li)− xi(tkli)

‖xi(t(k+1)li)− xi(tkli)‖
, k ∈ N, (k + 1)li ≤ ntime

}
,

and the total set of normalized velocities V is given by V := ∪ncellsi=1 Vi.
The directionality ratio ri(tj) of cell i over a time interval of length tj is given by:

ri(tj) :=

∑j
k=1‖xi(tk)− xi(tk−1)‖
‖xi(tj)− xi(t0)‖

.

The population and the time averages of the directionality ratio are given by, respectively:

r(tj) =
1

ncell

ncell∑
i=1

ri(tj)

r̄ =
1

ntime

ntime∑
j=1

r(tj).

Velocity autocorrelation viac(tj) of cell i over a time interval of length tj is given by:

viac(tj) :=
1

ntime − j

ntime−j∑
k=1

vi(tj+k) · vi(tk)
‖vi(tj+k)‖ ‖vi(tk)‖

,

where j = 1, . . . , ntime− 1 and vi(tk) = (xi(tk)− xi(tk−1)) /∆t. Velocity autocorrelation of
the population vac(t) is simply the arithmetic average of each cell’s velocity autocorrelation.
To compute vac we used the time step of 12min, whereas for all other quantities involving
time dependence (e.g. msd) we used the time step of 0.12min.

We define the guidance parameter G ∈ [0, 1] similarly as in [95]:

G :=
1

|Θ|
∑
θ∈Θ

g(θ),

where Θ := ∪ncellsi=1 Θi. The set Θi of angles between a displacement vector of cell i and the
ECM fibers is defined by

Θi :=

{
θ ∈ [−π

2
,
π

2
] : θ = arcsin

(
xi2(t(k+1)li)− xi2(tkli)

‖xi(t(k+1)li)− xi(tkli)‖

)
, k ∈ N, (k + 1)li ≤ ntime

}
,
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where xi2 is the y-component of xi. The function g : [−π
2
, π

2
]→ {0, 1} is given by

g(θ) =

{
1, if |θ| ≤ π/4

0, else
.

Thus, G increases when the displacements are aligned with the horizontal axis.
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