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Abstract

In computer graphics, realistic rendering of virtual scenes is a computationally com-
plex problem. State-of-the-art rendering technology must become more scalable to
meet the performance requirements for demanding real-time applications.

This dissertation is concerned with core algorithms for rendering, focusing on the
ray tracing method in particular, to support and saturate recent massively paral-
lel computer systems, i.e., to distribute the complex computations very efficiently
among a large number of processing elements. More specifically, the three targeted
main contributions are:

1. Collaboration framework for large-scale distributed memory computers

The purpose of the collaboration framework is to enable scalable rendering
in real-time on a distributed memory computer. As an infrastructure layer it
manages the explicit communication within a network of distributed memory
nodes transparently for the rendering application. The research is focused on
designing a communication protocol resilient against delays and negligible in
overhead, relying exclusively on one-sided and asynchronous data transfers.
The hypothesis is that a loosely coupled system like this is able to scale linearly
with the number of nodes, which is tested by directly measuring all possible
communication-induced delays as well as the overall rendering throughput.

2. Ray tracing algorithms designed for vector processing

Vector processors are to be efficiently utilized for improved ray tracing perfor-
mance. This requires the basic, scalar traversal algorithm to be reformulated
in order to expose a high degree of fine-grained data parallelism. Two approa-
ches are investigated: traversing multiple rays simultaneously, and performing
multiple traversal steps at once. Efficiently establishing coherence in a group
of rays as well as avoiding sorting of the nodes in a multi-traversal step are the
defining research goals.

3. Multi-threaded schedule and memory management for the ray tracing acce-
leration structure

Construction times of high-quality acceleration structures are to be reduced by
improvements to multi-threaded scalability and utilization of vector proces-
sors. Research is directed at eliminating the following scalability bottlenecks:
dynamic memory growth caused by the primitive splits required for high-
quality structures, and top-level hierarchy construction where simple task par-
allelism is not readily available. Additional research addresses how to expose
scatter/gather-free data-parallelism for efficient vector processing.

Together, these contributions form a scalable, high-performance basis for real-time,
ray tracing-based rendering, and a prototype path tracing application implemented
on top of this basis serves as a demonstration.
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The key insight driving this dissertation is that the computational power necessary
for realistic light transport for real-time rendering applications demands massively
parallel computers, which in turn require highly scalable algorithms. Therefore this
dissertation provides important research along the path towards virtual reality.
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Zusammenfassung

Im Bereich der Computergrafik ist die realistische Darstellung einer virtuellen Sze-
ne mit hohem Rechenaufwand verbunden. Neue, skalierbare Ansätze sind nötig,
um den Leistungsbedarf für anspruchsvolle Echtzeit-Anwendungen zu decken.

Das Ziel dieser Arbeit ist die Erforschung und Entwicklung grundlegender Algo-
rithmen für die Bildsynthese, welche die Leistung von großen, parallelen Compu-
tersystemen vollständig ausschöpfen können. Die Voraussetzung dafür ist, dass die
anspruchsvollen Berechnungen sehr effizient auf eine große Anzahl von Rechenein-
heiten verteilt werden können. Die drei Hauptbeiträge dieser Arbeit verteilen sich
auf die folgenden wichtigen Themen der parallelen Bildsynthese:

• Kollaborationsframework für skalierbares, verteiltes Rechnen

Das Kollaborationsframework verwaltet den expliziten Datenaustausch über
ein Hochgeschwindigkeitsnetzwerk, der für die Bildsynthese auf verteilten Re-
chenknoten benötigt wird. Es dient als transparente Infrastrukturschicht für
die Anwendung. Der Fokus liegt auf dem Design eines Kommunikationspro-
tokolls, welches Verögerungen in der Kommunikation ohne Leistungseinbu-
ßen toleriert und einen sehr geringen Rechenaufwand beansprucht. Entspre-
chend kommt ausschließlich einseitiger und asynchroner Datentransfer zum
Einsatz. Die Erwartung an ein solch lose gekoppeltes System ist, dass die Leis-
tung linear mit der Anzahl der Rechenknoten skaliert. Bestätigt wird dies durch
die direkte Messung aller, durch Kommunikation induzierter Verzögerungen
und des Gesamtdurchsatzes.

• Design von Ray Tracing Algorithmen für Vektorprozessoren

Um Vektorprozessoren effizient zur Leistungssteigerung von Ray Tracing ver-
wenden zu können, muss die Möglichkeit zur Ausnutzung von Datenparal-
lelität vorhanden sein. Zwei Ansätze werden zu diesem Zwecke untersucht:
die Traversierung von mehreren Strahlen gleichzeitig, sowie die Durchfüh-
rung mehrerer Traversierungsschritte in einem. Das Ziel ist es, Gruppen von
Strahlen mit hoher Kohärenz zu erzeugen, sowie Sortierung während eines
Multi-Traversierungsschrittes zu vermeiden.

• Koordination von Multi-Threading und Speicherverwaltung für die Ray Tra-
cing Beschleunigungsstruktur

Eine Verkürtzung der Konstruktionszeiten von hierarchischen, hoch-qualitati-
ven Beschleunigungsstrukturen wird durch Verbesserung der Skalierbarkeit
auf Mehrkernrechnern sowie Nutzung von Vektorprozessoren erreicht. Die
folgenden Skalierbarkeitshürden werden dabei beseitigt: Verwaltung von dy-
namisch anwachsendem Speicher, der durch das Zerteilen von Objekten ent-
steht, sowie der Mangel an unabhängigen Aufgaben zu Beginn der Konstrukti-
on. Des Weiteren wird ein Ansatz zur Gather/Scatter-freien Nutzung von Da-
tenparallelität für die effiziente Vektorprozessierung während des Konstrukti-
onsprozesses erarbeitet.
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Die genannten Beiträge bilden zusammengenommen eine skalierbare, hoch-perfor-
mante Grundlage für die Ray Tracing basierte Bildsynthese in Echtzeit. Auf dieser
Basis wird eine prototypische Anwendung implementiert.

Die grundlegende Motivation für diese Arbeit ist die Erkenntnis, dass der immen-
sen Rechenaufwand, der durch den Foto-realistischen Lichttransport bei Echtzeit-
anwendungen entsteht, nur von hochparallelen Computern bewältigt werden kann
und dies nur, wenn auch entsprechend hochparallele Algorithmen zur Verfügung
stehen. Aus diesem Grund leistet diese Arbeit einen wichtigen Beitrag auf dem Weg
zur virtuellen Realität.
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Chapter 1

Introduction

Rendering is central to the field of computer graphics. It concerns the computation
of two-dimensional images from digital three-dimensional scenes that are projected
onto a projection plane using the concept of a virtual camera, analogous to photog-
raphy. Photo-realistic rendering takes a physically-based approach to model and
simulate the flow of light in order to compute the appearance of the objects in the
scene, often with the goal to create an image indistinguishable from a hypothetical
photograph taken of the scene as if it existed in reality. The defining property for
photo-realistic rendering is that global illumination is accounted for, i.e., light inci-
dent at a given point arriving not only from a light source directly but also from
reflection, transmission and scattering by the environment. This indirect light con-
tributes profoundly to the perceived realism of a synthesized image.

A spectrum of algorithms exist that compute global illumination or specific terms
thereof with varying degrees of accuracy and efficiency. In order to establish paths
of light between points most of these algorithms rely on ray tracing, a method to
find intersections between a ray given by origin and direction and any scene object.
While the realism achievable by many of the ray-tracing based global illumination
algorithms on today’s commodity computing devices is astonishing, the immense
amount of computation often required for a single image may result in minutes to
hours of rendering time.

This is sufficient for production rendering of movies and product visualization, even
though faster rendering always increases productivity. However, for interactive ap-
plications such as games, computer-aided design or scientific exploration, where
real-time rendering allows only a few millisecond time budget per image, signif-
icantly more computational power is mandatory. Nevertheless, the demand for
photo-realistic real-time rendering is growing fast, driven especially by virtual and
augmented reality applications aiming to deliver immersive experiences.

Computational complex problems give rise to high-performance computing (HPC)
and supercomputers. Supercomputers are fast because they are specialized in par-
allel computing, i.e, performing many calculations simultaneously. For algorithms
to run efficiently on such a system they must be specifically designed for parallel,
scalable execution.

Since the diminishing of processor frequency scaling in the early years of the century
traits of supercomputers such as vector- and multiprocessing have been absorbed by
and adapted to mainstream computer architecture. Simultaneously, supercomputer
design has pivoted from specialized processors to clusters of mainstream processors
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interconnected by specialized high-performance networks. As this convergence con-
tinues the difference between high-performance and mainstream computing may be
hypothesized to become just one of scale: the supercomputer of today is the main-
stream device of tomorrow.

Hence, designs of scalable rendering algorithms supporting real-time global illumi-
nation on massively parallel high-performance computers today will enable desk-
tops and mobile devices in the future as well, as soon as advances in manufacturing
technology allow to integrate the same amount of parallelism within an appropriate
area footprint and power envelope.

1.1 Research Goals and Results

This dissertation presents research focused on parallel algorithm design for ray trac-
ing and rendering in HPC environments. In order to grow ray tracing performance
with the rapidly expanding capacity for parallel computation in computer systems
the scalability of the algorithms and their implementations is considered key. In par-
ticular, distributed computing, vector processing and multi-threading are applied,
in combination, to ray traversal, generation of acceleration data structures and the
overall rendering process. The respective current state of the art is found to be in-
sufficient to enable optimal utilization of parallel units on the scale of current and
future HPC systems.

Throughout the dissertation it becomes clear that scalability is mandatory to master
the computational complexity associated with real-time photo-realistic rendering,
and that highly specialized techniques are necessary in order to make the best pos-
sible use of the parallel computational resources. The newly introduced algorithms
enable massively parallel ray tracing and the corresponding implementations are
demonstrated by experiment to be the best-in-class. The algorithms act as build-
ing blocks, enabling applications to take advantage of massively parallel systems
for real-time global illumination computation much more efficiently compared to
previous approaches. Specific contributions are made in:

1. Collaboration framework for large-scale distributed memory computers

The purpose of the collaboration framework is to enable scalable rendering
in real-time on a distributed memory computer. As an infrastructure layer it
manages the explicit communication within a network of distributed memory
nodes transparently for the rendering application. The research is focused on
designing a communication protocol resilient against delays and negligible in
overhead, relying exclusively on one-sided and asynchronous data transfers.
The hypothesis is that a loosely coupled system like this is able to scale linearly
with the number of nodes, which is tested by directly measuring all possible
communication-induced delays as well as the overall rendering throughput.

2. Core algorithms designed for vector processing

Vector processors are to be efficiently utilized for improved ray tracing perfor-
mance. This requires the basic, scalar traversal algorithm to be reformulated
in order to expose a high degree of fine -grained data parallelism. Two ap-
proaches are investigated: traversing multiple rays simultaneously, and per-
forming multiple traversal steps at once. Efficiently establishing coherence in
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a group of rays as well as avoiding sorting of the nodes in a multi-traversal
step are the defining research goals.

3. Multi-threaded schedule and memory management for the core acceleration
structure

Construction times of high-quality acceleration structures are to be reduced by
improvements to multi-threaded scalability and utilization of vector proces-
sors. Research is directed at eliminating the following scalability bottlenecks:
dynamic memory growth caused by the primitive splits required for high-
quality structures, and top-level hierarchy construction where simple task par-
allelism is not readily available. Additional research addresses how to expose
scatter/gather-free data-parallelism for efficient vector processing.

Based on these contributions, real-time photo-realistic rendering is realized on a 60
node cluster, even for very large and complex scenes. An exemplary application
developed on top of the building blocks demonstrates interactive and smooth ex-
ploration and editing of such scenes.

Major parts of the research presented in this dissertation has resulted in publica-
tions in peer-reviewed journals and conference proceedings: Efficient ray tracing ker-
nels for modern CPU architectures [39] is concerned with the traversal of ray groups for
efficient vector processing, Accelerated single ray tracing for wide vector units [38, 37]
proposes a scalable multi-branch ray traversal algorithm and Parallel Spatial Splits
in Bounding Volume Hierarchies [40] accelerates high-quality acceleration data struc-
ture generation with many threads and vector processing. A complete overview of
the publications and presentations associated with this dissertation are listed in the
appendix: Publications by Valentin Fütterling.

1.2 Structure of the Dissertation

Chapter 2 covers the prerequisites and related work for later chapters, regarding
photo-realistic rendering, ray-tracing and parallel computing.

The topic of Chapter 3 is the acceleration of ray tracing with vector processing. Sev-
eral new algorithms are proposed for ray traversal, i.e., the most time-consuming
part of ray tracing, targeting multiple sources of data parallelism, respectively, and
supporting increased vector lengths. Measurements confirm that the increased scal-
ability of the introduced techniques translate into significant performance gains,
clearly surpassing previous approaches. The chapter combines the research of two
peer-reviewed publications [39, 38] and a patent application [37].

Chapter 4 proposes a solution to the time-to-image scalability restrictions imposed
by the construction of high-quality bounding volume hierarchies. The new approach
employs multi-threading and vector processing very efficiently to generate this cen-
tral, ubiquitously employed acceleration data structure for ray tracing with the best-
known quality. Experimental results show that the the new algorithm enables in-
creased scalability in the construction process, approaching the parallel efficiency
of the rendering itself, and thus significantly outperforms the fastest previous ap-
proaches of the same high-quality category. The chapter is based on the research
already presented in a peer-reviewed publication [40].
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In Chapter 5 rendering is brought to large, distributed cluster environments. For the
first time, this is achieved by a fully asynchronous communication model between
the cluster nodes, leading to unprecedented scaling efficiency of the rendering pro-
cess. The efficiency is facilitated by a new decentralized, self-balancing algorithm
for work distribution which is aware of data locality and thus improves caching be-
haviour as well. Experimental results demonstrate that the new model is superior
to previous approaches and even exhibits super-linear scalability due to caching ef-
fects.

Chapter 6 presents an application for interactively exploring and editing large data
sets in photo-realistic quality. The application integrates the methods developed
throughout this dissertation as essential building blocks which allow it to run across
a range of devices, from laptop to supercomputer, with high performance.

Finally, Chapter 7 summarizes the contributions of this dissertation again and pro-
vides a final conclusion and outlook.
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Chapter 2

Background

The topics covered in this chapter provide the basic background and state-of-the-art
for the research agenda in the following chapters. The first section starts with ren-
dering fundamentals and definitions, followed by the second section with a basic
introduction to ray tracing, a category of rendering algorithms which simulate light
transport by shooting rays. The book by Pharr et al. [88] is recommended as a sup-
plementary resource. Ray tracing performance is a key factor for fast realistic image
synthesis. Since this dissertation aims at accelerating ray tracing by designing spe-
cialized algorithms for massively parallel computer architectures the third section
deals, in a general way, with the available forms of parallelism and their characteris-
tics relevant to efficient programming. The last section analyzes the state-of-the-art
in scalable ray tracing algorithm design for parallel architectures and outlines the
open challenges addressed by this dissertation’s research.

2.1 Photo-realistic Rendering

In computer graphics, rendering describes the process of projecting a three-dimen-
sional scene through a virtual camera onto a two-dimensional viewport, ready for
presenting on a display device, see Figure 2.1 for an illustration. Position and ori-
entation of the camera define which part of the scene is visible within the viewport
area. Light is emitted from virtual light sources. For every viewport pixel, the object
closest to the camera, i.e., primary visibility, is determined, possibly occluding other
objects further away. The pixel color is derived from the surface properties of the ob-
ject and the corresponding lighting model, a process called shading. Simple shading
takes into account only the local surface properties and assumes an ubiquitous light
source, for example. In order to produce hard shadows or perfect reflections, shading
requires global information about the scene, i.e., if there exists an occluding object
between the shaded sample and a light source or which object is visible in the reflec-
tion, respectively. Hence, the computational complexity of the shading operation
increases as more realistic effects are considered.

Shading which includes all relevant optical phenomena to produce an image that
"looks like a photo" of a real scene is the defining characteristic of photo-realistic
rendering. In particular, soft shadows, glossy reflection and refraction and indirect
lighting from non-emissive surfaces contribute greatly to the perceived realism of a
rendered image.

The light transport equation introduced by Kajiya [64] captures the entirety of geomet-
rical optics, a physically accurate model of electromagnetic radiation in the optical
regime. The geometrical optics model neglects the wave and quantum character of
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A

C

D

B

FIGURE 2.1: Photo-realistic rendering based on ray sampling. The
example shows the virtual camera (A), the viewport area (B), light
sources (point light C and area light D) and scene objects (blue
shapes). Primary visibility of the initial ray, defined by the camera
origin and a pixel location on the viewport, is indicated by the red
dot. Dashed arrows sample the area light, producing soft shadows,
thin arrows sample the point light, producing hard shadows, and
solid arrows sample indirect lighting. Orange dots indicate diffuse
reflections and the two green dots represent perfect reflection and re-

fraction, respectively.

light, since manifestations thereof are rarely visible to the human eye. For a surface
point p the light transport equation states the outgoing radiance Lo in direction ωo:

Lo (p, ωo) = Le (p, ωo) +
∫

S2
f (p, ωo, ωi) Li (p, ωi) | cos θi|dωi. (2.1)

The first term, Le, represents the emission from a light source on the surface at point
p in direction ωo and the second term, an integral over the unit sphere S2, describes
the scattering of incoming light. Li denotes the radiance incident on p from direction
ωi and the bidirectional scattering distribution function (BSDF) f is a proportional-
ity factor between incoming and outgoing radiance, thus defining the reflective and
refractive properties of the surface material. The cosine of the angle θi, between the
surface normal at point p and the incoming direction ωi, scales the radiance Li ac-
cording to projected area on the surface. An illustration is provided in Figure 2.2.

𝜃𝑖

𝜔𝑖

𝜔𝑜

𝑆2 𝐿𝑖(p, 𝜔𝑖)
𝐿𝑜(p, 𝜔𝑜)

𝑝

FIGURE 2.2: Light transport equation. A reflective surface is rep-
resented by the solid horizontal line and its vertical dashed surface
normal; the integration domain is indicated by the dashed semicircle.
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Simplifying Equation 2.1, it is assumed that the scene consists entirely of homo-
geneous media where surfaces define the interfaces between different media. Fur-
ther, all media are considered to be non-participating, which means that light is
not affected by volumetric scattering, absorption or emission. Then, light travels in
straight lines between surfaces, and the incoming radiance Li at surface point p can
be related to the outgoing radiance Lo from surface point p′, where p′ is determined
by the ray tracing function t:

Li (p, ω) = Lo (t (p, ω) ,−ω) . (2.2)

The ray tracing function t finds p′ by tracing a ray from point p along ωi. The first
intersection point between the ray and any scene surface then corresponds to p′.
Hence, the light transport equation can be rewritten in terms of Lo ≡ L:

L (p, ωo) = Le (p, ωo) +
∫

S2
f (p, ωo, ωi) L (t (p, ωi) ,−ωi) | cos θi|dωi. (2.3)

This form of the light transport equation more clearly indicates how to approach a
solution: a surface point p is shaded by adding to the emission term the contribu-
tions of all surface points pν ∈ {t (p, ων) : ων ∈ S2} visible from p. The respective
contributions from each pν are determined by recursive evaluation of Equation 2.3.
A major focus of this dissertation is on efficiently solving the ray tracing function t
which establishes the connections between surface points.

Path Integral

The path integral formulation allows to write the light transport problem in terms of a
simple integral instead of the recursive integral equation shown in Equation 2.3 [101,
73]. This allows the application of general integration techniques and provides an
intuitive understanding of light transport as a summation over light paths. A light
path can be viewed as a polyline, where the first vertex is located on a light source,
the inner vertices are located on the scene surfaces and the last vertex is located on
the lens of the virtual camera. Also, within the path integral framework multiple
techniques for efficiently calculating specific parts of the rendering integral can be
readily combined. The path integral form of light transport is:

Ij =
∫

Ω
f j( p̄)dµ( p̄). (2.4)

Here, Ij is the contribution to the jth pixel, Ω is the set of all possible paths, dµ( p̄)
is the path measure and f j( p̄) is the measurement contribution function. The path
p̄n = p0 . . . pn of length n is composed of n + 1 vertices which are located on the
scene surfaces S, including lights and the camera viewport. Then, the set of all pos-
sible paths can be limited to the sum over all finite path lengths n and the Cartesian
product of S with itself taken n + 1 times, transforming Equation 2.4 into:

Ij =
∞

∑
n=1

∫
Sn+1

f j(p0 . . . pn)dA(p0) . . . dA(pn). (2.5)

The path measure dµ( p̄) is then revealed to be the product of the area measure on
S raised to the power of n + 1. The measurement function f j( p̄) measures the light
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received on the camera lens due to path p̄, see also Figure 2.3:

f j ( p̄) = Le (p0 → p1) T ( p̄)W j
e (pn−1 → pn) . (2.6)

It is a product of the light Le (p0 → p1) emitted at the first vertex p0 into the direction
of the second vertex p1, the path throughput T ( p̄) and the importance W j

e (pn−1 → pn)
assigned to the light arriving on the sensor pixel j at vertex pn from the direction of
vertex pn−1. For rendering an image, the importance can be identified with the filter
function applied to the image samples. The throughput describes the fraction of the
initially emitted light that is not absorbed or scattered at the inner path vertices and
finally arrives at the sensor:

T ( p̄) = G (p0 ↔ p1) ρs(p1) . . . ρs(pn−1)G (pn−1 ↔ pn) . (2.7)

It is a product of the BSDFs ρs(pi) at vertices i and the geometry terms G
(

pi ↔ pj
)

between adjacent path vertices pi and pj:

G
(

pi ↔ pj
)
= V

(
pi ↔ pj

) | cos θi|| cos θj|
||pi − pj||2

. (2.8)

The function V
(

pi ↔ pj
)

represents binary visibility and is equal to one if there is
a clear line of sight between vertices pi and pj or zero otherwise. Comparing to
Equation 2.3, | cos θi| is the same term in both equations even though the meaning
of the index i differs, and V

(
pi ↔ pj

)
can be identified with the ray tracing func-

tion t (p, ω) after the change of integration variables from solid angle dω to area dA.
The remaining | cos θj| term divided by the squared distance between vertices stems
from the Jacobian introduced by the variable change.

𝑝0𝑝5 𝑝4 𝑝3 𝑝2 𝑝1

𝐺 𝑝𝑖 ↔ 𝑝𝑗 𝜌(𝑝𝑘) 𝐿 𝑝0 → 𝑝1𝑊𝑒
𝑗 𝑝4 → 𝑝5

FIGURE 2.3: Path measurement function. The shown example
matches one of the paths in Figure 2.1, with each vertex labeled by

corresponding color and shape.

A general approach for a numerical solution to the path integral in Equation 2.4 is
provided by either Monte Carlo [65] or Markov Chain Monte Carlo [102] integration
techniques. A Monte Carlo estimate of an integral I =

∫
f (x)dx is given by

〈I〉 = 1
N

N

∑
i=1

f (xi)

p(xi)
, (2.9)

where the xi are drawn from a probability distribution with probability density func-
tion (PDF) p(x). The expectation value of the estimate is equal to the accurate so-
lution of the integral: E[〈I〉] = I. Increasing the number of samples N reduces the
variance of the estimate. Regarding the path integral, the estimate of a single sample
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FIGURE 2.4: Two rendered images of a glass sculpture, using four
path samples per pixel (spp) on the left and 1024 spp on the right. A
low number of samples produces high variance in the Monte Carlo

integrand, visible as grainy noise in the left image.

is given by:

〈Ij〉 =
f j(x̄)
p(x̄)

. (2.10)

Averaging the contribution of multiple paths reduces the variance and thus the vis-
ible noise in the rendered image, as demonstrated in Figure 2.4. From the perspec-
tive of the path integral formulation, many light transport algorithms such as path
tracing [65], light tracing [6], bi-directional path tracing [74], vertex connection and
merging [45], etc., differ only in their path sampling strategy and the corresponding
PDFs. Common to all the path sampling strategies is their reliance on ray tracing for
visibility computations.

2.2 Ray Tracing

Given an origin o, a direction d and a parameter t, a ray r is defined by the equation

r = o + td t > 0. (2.11)

In a scene S, representing a set of objects, the following set of intersections ti of the
ray with these objects may exist:

{ti : r(ti) ∩ S ∧ i < j⇔ ti < tj} (2.12)

The task of a ray tracing algorithm is to find either the first intersection t0, any one
intersection, some or all intersections. Ray tracing for rendering was first introduced
as a solution for primary visibility [5]. Rays originating at the camera location are
cast into the scene with a different direction for each viewport pixel and the clos-
est object intersected by the corresponding ray determines the color of the pixel.
More generally, ray tracing allows to point-wise project any function onto a two-
dimensional manifold as long as a ray intersection algorithm for the function exists.
This unique flexibility makes ray tracing highly valuable for rendering since a mul-
titude of scene data such as triangular meshes, parametric surfaces, density fields,
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particles, implicit functions, etc., can be rendered using the same, unified method.
Also, the viewport manifold is flexible in shape, which is useful, for example, in vir-
tual reality applications for correcting lens distortions [90].

A straightforward approach to finding t0, for example, from the set in Equation 2.12
is to calculate the intersection of the ray with every object in the scene and take the
minimum of the results. Quite clearly, for non-trivial scenes this method is not ef-
ficient as most objects are likely to be either occluded by other objects or missed
altogether.

Hence, an acceleration structure is an intrinsic part of nearly every ray tracing al-
gorithm (an exception is divide-and-conquer ray tracing [1]). This reduces the algo-
rithmic complexity of a search query from O(N) to O(log N) where N is the number
of objects in the scene. The acceleration structure partitions the scene objects into
subsets and, given a ray, a traversal algorithm quickly determines all potentially in-
tersecting subsets, thus greatly reducing the number of required intersection calcu-
lations. If the traversal enumerates the subsets in a front-to-back manner, i.e., ordered
with respect to increasing distance from the ray origin, even occluded subsets may
be discarded or culled before an intersection test becomes necessary. While acceler-
ation structures greatly reduce intersection calculations, their construction and up-
date prior to traversal and upon transformations of the scene geometry, respectively,
produce additional work. Hence, the construction efficiency of an acceleration struc-
ture is very important, especially for dynamic scenes.

Generally, acceleration structures either subdivide space or objects into disjoint sets.
In practise, all types of acceleration structures are organized as a hierarchy, i.e., as a
directed acyclic graph, in order to adapt to nonuniform scene geometry. Space sub-
division has the advantage that nodes in the hierarchy reference disjoint volumes.
This enables an exact front-to-back traversal and guarantees that intersections are
found in order along the ray, i.e., t0, t1, t2, etc. Thus, the traversal algorithm can
usually terminate upon the first valid intersection.

In contrast, object subdivision must permit nodes to overlap spatially if the objects
themselves or their bounding volumes overlap spatially as well. Hence, the traversal
algorithm cannot guarantee an exact front-to-back order and must check all nodes
with a ray entry distance smaller than the current intersection for a potentially closer
one. On the positive side, object subdivision stores only one reference per object
whereas space subdivision might need to store multiple references per object, inflat-
ing the depth and/or storage requirements of the hierarchy.

Acceleration structures based on space subdivision include octrees [46], binary space
partitioing (BSP) trees [62], kd-trees [109], and grids [41]. Grids are not intrinsically
hierarchical, but they are usually embedded into a hierarchical structure to better
adapt to nonuniform geometry [86, 72]. Acceleration structures using object parti-
tioning include the bounding interval hierarchy [104] and the bounding volume hi-
erarchy (BVH) [47]. BVHs are the state-of-the-art in ray tracing and integrated into
many ray tracing systems due a favourable mix of flexibility, fast traversal and fast
construction speed. Thus, this dissertation also emplolys BVHs as the acceleration
structure. In the following section, BVHs are discussed in detail.
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2.3 Bounding Volume Hierarchies

A BVH is an acyclic graph or tree where each node is associated with a bounding
volume. The type of bounding volume most commonly used is a box defined by
six axis-aligned planes because it bounds most geometry well and the intersection
calculation with a ray is efficient. The bounding volume of the root node contains all
bounding volumes of the tree’s other nodes. An inner node bounds all nodes which
are part of its sub-tree and a leaf node bounds one or multiple objects, e.g., triangles.

Regarding terminology, if a node A is a descendant from node B, A is part of the
sub-tree of B. Also, if a node A is an immediate descendant from node B, A is a child
node of B and B is the parent node of A. If both nodes A and B share the same parent
node C, A and B are sibling nodes and belong to the same node cluster.

The traversal of a ray starts at the root node of the tree by calculating the intersec-
tion with the corresponding bounding box. Upon hit, the child nodes are intersected:
missed child nodes are discarded and one hit child node is selected to continue the
traversal with as the new parent node. The remaining hit child nodes are saved on a
stack for later retrieval. The current traversal branch stops if no child node is inter-
sected or a leaf node is reached. At a leaf node, an intersection test is performed on
the contained objects. A successful object intersection shortens the ray to the inter-
section distance. After a stop, a new parent node is taken from the top of the stack
and traversal continues. The traversal is completed once the stack is found empty
upon requesting a new node. Alternatives to a stack-based traversal are provided
by restart [75] or back-tracking [14] algorithms, which are useful if stack memory is
scarce or slow. Important for traversal performance is the order in which a ray visits
the hit child nodes in a node cluster. This is discussed further in Section 2.3.

The construction of a BVH can be performed either divisive [47] or agglomerative
[114]. Divisive construction starts with a single set containing all objects and divides
the set into two new disjoint sets, producing one inner node and two leave nodes.
This procedure is repeated, adding inner nodes and leaf nodes to the tree, until a leaf
node is deemed small enough, either in size or in the number of objects it contains,
to stop the recursive division. Agglomerative construction starts with many sets,
e.g., one object per set, and one leaf node per set. The sets are merged recursively
until only a single set remains, generating inner nodes and finally the root node.

The strategy for sub-dividing or agglomerating during the build process has a ma-
jor impact on BVH quality. For example, dividing a set of objects into two equally
large sets with minimal overlap generates a balanced tree which, for a general tree
structure, guarantees the best average query time. However, the varying geometric
properties of bounding boxes and objects within a node’s sub-tree can lead to a sig-
nificant discrepancy in terms of traversal computations between two nodes for the
average ray even if they contain the same amount of objects. Hence, a strategy that
optimizes BVH quality is desired.

The quality of a BVH is synonymous with the average time of a ray query and corre-
lates with the number of nodes visited and the number of objects intersected on av-
erage. The quality can be determined by sampling many rays randomly distributed
over origins and directions relevant to the scene (i.e., not starting within a wall, not
looking away from the scene, etc.). Such a measurement requires a BVH to begin
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with and is impractical as a quantity to guide actual BVH construction. The surface
area heuristic (SAH) provides a model to approximate the traversal cost for a node, a
sub-tree or the complete BVH. It can be used to steer subdivision and agglomeration
during the build process and is detailed in the following section.

Surface Area Heuristic

The surface area heuristic (SAH) is a cost model for the ray traversal of tree struc-
tures. It assigns a cost to a node N based on the following simplifying assumptions:

• Rays are distributed uniformly in origin and direction.

• A ray pierces the bounding box of N unobstructed and its origin is located
outside of N.

• The cost of a single traversal step and the cost of a single primitive intersection
are known as Ct and Ci, respectively.

Then, the cost assigned to node N after being partitioned into a left child node NL
and a right child node NR is estimated as:

Cinner(N → {NL, NR}) = Ct +
SA(NL)

SA(N)
C(NL) +

SA(NR)

SA(N)
C(NR) (2.13)

Here, the C(NL) and C(NR) correspond to the costs of left and right child nodes, re-
spectively. The functions SA() calculate the surface area of the corresponding nodes’
bounding boxes. The surface area fractions represent the geometric probability of a
ray intersecting either of the child nodes NL and NR given the existence of an inter-
section with node N. This formula can be applied recursively to compute C(NL) and
C(NR) until a leaf node is reached. The cost of a leaf node L is estimated as the num-
ber of corresponding primitives |L| times the cost of a single primitive intersection:

Clea f (L) = |L|Ci (2.14)

Expanding Equation 2.13 in conjunction with Equation 2.14 leads to the total esti-
mated cost of a (sub-)tree with root node T:

Ctree(T) = ∑
N∈inner nodes

SA(N)

SA(T)
Ct + ∑

L∈leaf nodes

SA(L)
SA(T)

|L|Ci (2.15)

Unfortunately, finding the minimum Ctree on a global scale is an infeasible problem
for practical scenes. However, the SAH formulation is useful for greedy decisions
at the scope of a single node as well. In order to evaluate cost of a partition of node
N, i.e., Cinner(N → {NL, NR}), it is necessary to know the costs C(NL) and C(NR)
corresponding to Equation 2.15. For agglomerative construction these costs are read-
ily available, but for divisive construction the costs are impossible to determine at
the moment of partitioning because the sub-tree of the child nodes does not yet ex-
ist. Hence, the costs for child nodes are approximated by Clea f (NL) and Clea f (NR),
respectively:

Cinner(N → {NL, NR}) ≈ Ct +
SA(NL)

SA(N)
|NL|Ci +

SA(NR)

SA(N)
|NR|Ci (2.16)
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Equation 2.16 usually overestimates the true cost of node N, revealed only after its
sub-tree is fully constructed, by assuming the child nodes NL and NR are not subdi-
vided further.

Despite the initial simplifying assumptions, local instead of global cost estimation,
and the approximation in Equation 2.16 the SAH is the basis of all high quality BVH
construction algorithms. Methods for approaching the global minimum of the cost
Ctree(T) such as local tree rotations [69] and treelet restructuring [67] are based on
the idea of perturbing an existing hierarchy in order to overcome local minima in
the global cost function. However, while minimizing the SAH these methods do not
always lead to faster ray queries, but often even deteriorate the actual BVH quality.
An analysis [3] has resulted in an extension of the SAH cost model that can account
for the discrepancy between SAH cost and the measured cost of a BVH, even though
an algorithm for optimal partitioning according to the extended model could not be
derived.

Spatial Splits

a) b)

X

Y

FIGURE 2.5: Two BVH nodes bounding the same objects, once with-
out (a) and once with (b) a spatial split. With a spatial split, the over-
lap is removed, the total surface area reduced and the number of ob-

ject references increased.

Object subdivision becomes inefficient for ray tracing if the bounding boxes of prim-
itives overlap significantly even though the actual geometry is disjoint. This occurs
especially for larger-than-average primitives and for primitives extending along a
direction diagonal with respect to the principal axes.

The approaches of [31] and [25] subdivide the bounding boxes of problematic prim-
itives or the primitives themselves, respectively, before proceeding with the BVH
construction. Since the subdivisions are performed speculatively they do not nec-
essarily improve the quality of the final BVH but may even degrade it due to the
increased number of primitives.

A different approach [97] integrates the subdivision of primitive bounding boxes
into the BVH build process and applies a subdivision only if it reduces the SAH cost
Cinner(N → {NL, NR}) during divisive partitioning of a node N, see Figure 2.5. The
corresponding algorithm, referred to as the split BVH (SBVH), is the method known
to produce the highest quality BVHs on average. A drawback of the SBVH is that it
is computationally demanding and difficult to parallelize, issues which are a major
focus of this dissertation and addressed in Chapter 4.
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Traversal Order

X

Y

a) b)

FIGURE 2.6: Traversal order considerations. (a) Two overlapping in-
ner nodes containing non-overlapping geometry and corresponding
sub-trees (not shown). The ray pierces the yellow node first but a
geometry intersection exists only within the blue node, which is not
known at the moment of the traversal order decision. (b) Disjoint
nodes: front-to-back traversal clearly follows the blue node first. The
intersection within the blue node shortens the ray and allows to skip

the yellow node entirely (culling).

A ray that overlaps with multiple child nodes may trace the corresponding sub-trees
in any order and always produce the correct final result. However, for maximum
performance it is crucial to maintain a front-to-back ordering so that a successful
primitive intersection can efficiently cull more distant nodes, see Figure 2.6. If nodes
overlap, a strict front-to-back ordering cannot be determined a priori, but a heuristic
can be employed to make a good guess.

Commonly implemented heuristics are based on the distance of the ray origin to
the node bounding box or on the signs of the ray direction. Both heuristics corre-
sponds to a strict front-to-back ordering only if the ray does not cross a region of
overlapping nodes. For the distance heuristic the ray is intersected with all bounding
boxes and the distance values are sorted to determine the traversal order. The main
drawback of the distance heuristic is the computationally expensive sorting step, es-
pecially for branching factors larger than two. The sign heuristic can be evaluated
more efficiently as it does not depend on the dynamics of the traversal. For a binary
BVH, the traversal order is chosen based on the axis along which the child nodes
overlap the least and on the sign of the corresponding ray direction component. The
axis is stored in the node data structure to quickly index the ray sign during traver-
sal.

Just like first-hit traversal, multi-hit traversal performance profits from a front-to-
back traversal order. Multi-hit traversal [49, 48] attempts to find the first n closest
intersections with primitives, in order, along a ray. This type of ray query is some-
times employed in scientific or technical visualization.

A different case is any-hit traversal, as used for shadow rays for example, which
can terminate as soon as a intersection with any primitive is found. For this type
of query, a front-to-back order is not important and specialized traversal orders are
more efficient [83]. These specialized traversal orders are identical for all rays and
can be encoded into a BVH by arranging the nodes in memory accordingly.
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2.4 Optimization

Acceleration structures such as the BVH decrease ray query times substantially.
However, evaluating the path integral in Equation 2.4 directly can require hundreds
of samples, i.e., thousands of ray queries, per pixel until the inherent noise of the
Monte Carlo technique falls below a perceptible level. For a full resolution image
this translates into Billions of ray queries. Aiming at 60Hz refresh rate for real-time
rendering this number approaches one Trillion ray queries per second. A hypothet-
ical ray tracing processor capable of tracing one ray per cycle would have to run at
an illusive frequency of around one Terahertz to achieve this.

The best approach for accelerating ray tracing is of course to avoid shooting rays as
much as possible. A variety of techniques have been proposed to reduce the num-
ber of samples while improving image quality. These techniques can be broadly
assigned to two categories: (1) cleverly choosing samples, such as (multiple) impor-
tance sampling, quasi Monte Carlo, Markov chain Monte Carlo, adaptive sampling, and (2)
making the most of the available samples, such as filtering and reconstruction.

Importance sampling generates new path segments based on a probability distribu-
tion closely matching the features of the integrand in Equation 2.3. For example,
the contribution of a sample is weighed by the BSDF, so generating a new direction
based on the angular distribution of the BSDF weight has the potential to reduce
noise compared to a uniformly random direction. However, the integrand is a prod-
uct of multiple additional terms hidden inside the Li, so sampling according to a
single term like the BSDF does not always approximate the full integrand very well.
If other terms are known, e.g., the emission profile of a light sampled directly [95],
additional samples can be generated accordingly and combined by multiple impor-
tance sampling [103].

Quasi Monte Carlo integration [68] replaces random numbers by low discrepancy
sequences. A set of low discrepancy numbers is more uniformly distributed within
the desired domain compared to a set of random numbers, which tend to form clus-
ters.

Metropolis light transport [102] employs Markov Chain Monte Carlo integration. New
paths are generated by repeatedly modifying existing ones, leading to sequences of
light-carrying paths with high contributions to the final image. Metropolis light
transport is especially efficient for complex lighting situations.

Samples with spatial and/or temporal coherence on the image plane, in path space
or in texture space can be used for filtering. If applied for reconstruction the filter-
ing operation modifies a sample based on its neighbours in the respective domain.
Reconstruction suppresses noise but introduces bias. In many cases the bias is less
distracting to a human observer, however, and thus preferable to noise. Instead of
or complementary to reconstruction, a filter operation can be applied to determine
the noise level in an area.

Adaptive sampling directs new samples to areas with high noise where they are most
efficient in reducing the overall noise of the rendered image. A comprehensive
overview of adaptive sampling and reconstruction techniques is provided by [117].
More recently, machine learning approaches have been introduced into this field
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with very promising results for real-time rendering [21] and movie production [10].
Also, one sample per pixel global illumination for real-time applications have been
proposed [92, 80].

While all the aforementioned methods help to reduce the number of samples re-
quired to achieve a desired level of image quality, sometimes significantly so, a vast
number of rays remain to be traced regardless. Hence, this dissertation pursues a
different but orthogonal strategy for accelerating rendering with ray tracing: paral-
lelism.

2.5 Parallel Computer Architecture

The speed of computer operations are fundamentally limited by the underlying
physical processes. These fundamental restrictions and architectural design deter-
mine the attainable clock frequency of a processor. Over the last decade frequen-
cies have saturated in a range of 2− 5GHz for mainstream general purpose CPUs.
Hence, the only way to increase compute power, i.e., the throughput of instructions,
(apart from inventing entirely new physical and / or logical approaches for compu-
tation) is to go parallel.

The key issue in parallel computing is scalability: given a computational problem,
by how much does the time required to compute the result decrease if the width of
a parallel computer increases, i.e., if more processing elements are added. A classi-
cal answer to this question is given by Amdahl’s law [4] which separates a program
into a serial and a parallel part. Ideal scalability, i.e., linear scalability, is possible
only for a program with no serial part. This answer is incomplete, however, because
(1) it considers only a specific program, not the actual problem to be solved and (2)
it neglects any interaction between processing elements. Usually a specific problem
may be formulated in different ways, leading to different algorithms, which allow a
variety of implementations, resulting in a multitude of programs which all solve the
original problem. Thus, scalability of a problem solution strongly depends on the
choice of problem formulation, algorithms and implementation. On the hardware
side processing elements often share system resources such as memory access with
limited capacity so that processing elements may interfere with each other, lead-
ing to bottlenecks. Also, parallel programs require communication between pro-
cessing elements: depending on the provided mechanisms, communication may be
performed either in parallel with computation or instead of computation, the first
option allowing better scalability. Importantly, a holistic view is required to map a
problem to a parallel computer architecture with maximum scalability.

Flynn’s taxonomy [34] provides a theoretical analysis of parallel computer orga-
nization and distinguishes between single instruction stream - multiple data stream
(SIMD) and multiple instruction stream - multiple data stream (MIMD). Compared to
the simplex processor single instruction stream - single data stream (SISD) a processor
executes a single instruction on multiple data elements at once or multiple indepen-
dent instructions on multiple data elements, respectively. Modern CPUs (e.g. Intel R©

Xeon
TM

Platinum 8180M) combine different techniques belonging to both SIMD and
MIMD categories to maximize parallel performance:

• Instruction-level parallelism (MIMD) conceptually breaks up the linear instruc-
tion stream of a single program into multiple independent instruction streams
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if possible. The CPU monitors the linear instruction stream within a certain
window during program execution and issues instructions with resolved data
dependencies which can then be processed in parallel by multiple execution
units (superscalar execution). While instruction-level parallelism is automatic,
a programmer may improve performance of a program by reducing data de-
pendencies between instructions and choosing instructions to match the capa-
bilities of the execution units, i.e., a single execution unit may be designed to
process only a subset of all instructions.

• Vector instructions (SIMD) operate on extended registers with multiple data el-
ements, thus exploiting data-level parallelism. For example, the Intel R© AVX
instruction set operates on 256 bit wide registers, either as eight doublewords
or four quadwords. An add instruction with two AVX registers executes in the
same time as with a single-element registers but performs up to eight times the
work. Vector instructions may be either generated automatically by a compiler
from standard source code or inserted explicitly by a programmer as compiler-
intrinsic functions.

• Multi-core (MIMD) execute multiple threads of a program in parallel within a
shared memory space. Physical cores fully replicate all execution units which
may be shared among multiple logical cores with their own set of registers
to optimize utilization. For example, the Intel R© Xeon

TM
Platinum 8180M has

28 physical cores which are shared by two logical cores each, for a total of
56 cores. Each core executes a separate program thread, which may be either
created explicitly by the programmer or automatically by the compiler.

• A cluster is composed of a set of processor nodes which are interconnected by a
network. Like the multi-core processor, the cluster is also a MIMD architecture
but with a distributed memory space. Data is transferred explicitly between
different nodes using a network adapter and the latency and bandwidth of
the network transfers is significantly reduced compared to shared memory.
However, clusters allow to scale to much higher number of nodes compared
to the number of cores in a multi-core processor

The different types of parallel processing listed above are discussed in more detail
in the following sections.

2.5.1 Instruction Level Parallelism

A program is defined by a sequence of instructions stored in memory. During execu-
tion, the instruction pointer identifies the current position within the sequence, i.e.,
the memory address of the instruction to be executed next. Following the execution
of the instruction, the instruction pointer is incremented by the corresponding size
in bytes to point to the next consecutive instruction in the sequence. Consider the
following example:

// Assembler source code for eax = (eax + 3) * (edx + 5)
#address #instruction #destination, source operands
4004b2 add eax, 3
4004b5 add edx, 5
4004b8 imul eax, edx

The instruction pointer moves through the sequence of addresses from top to bottom
and the corresponding instructions get executed one after the other. A superscalar



18 Chapter 2. Background

TABLE 2.1: Overview of vector instruction set extensions available on
Intel R© CPUs, as documented in [59]. In addition to the regular vector

registers AVX-512 includes seven 64-bit mask registers.

Extension name Width Registers

SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2 128 bit 8
AVX, AVX2 256 bit 16
AVX-512 512 bit 32 (+7)

architecture is able to process the two add instructions in parallel since they do not
have data dependencies with respect to each other. This is made possible by moni-
toring the instruction stream ahead of the current instruction pointer within a range
referred to as the out-of-order execution window. As the name suggests instructions
within this window may be executed in any order and in parallel as long as data
dependencies are resolved and sufficient hardware resources are available.

While out-of-order execution is transparent to a program, the implementation of an
algorithm directly affects the amount of instruction level parallelism a superscalar
processor is able to extract and thus the instruction throughput achieved by the pro-
gram. Associated with every instruction is a latency and one or multiple execution
ports. In every clock cycle a single instruction can be issued to each of the processor’s
execution ports. Hence, in order to achieve a throughput greater than one instruc-
tion per cycle a mix of instructions that can be issued to different ports is required.
The latency of an instruction determines how many clock cycles must elapse before
a consecutive dependent instruction can be issued. Hence, for maximum through-
put a sufficient number of independent instructions must be available to keep the
execution ports busy in between dependency chains. A more detailed and compre-
hensive description of the superscalar behaviour of specific processor architectures
can be found in [58]. Also, [35] lists latency and execution ports for instructions of
many different processors.

2.5.2 Vector Instructions

Vector instructions differ from regular instructions in that they operate on dedicated
registers containing multiple data elements. They are commonly defined as exten-
sions to existing scalar instruction sets. Table 2.1 lists a succession of vector instruc-
tion set extensions for the x86 instruction set architecture (ISA) available on many
Intel R© and AMD R© CPUs. The SSE* instruction set extensions offer eight 128-bit reg-
isters (named xmm0-7) and about 300 vector instructions that treat the contents of a
register as either 1,2,4 or 8 byte data elements. For example, the instructions addps
xmm0, xmm1 and paddq xmm0, xmm1 add the two vector registers xmm0 and xmm1
as either four 32-bit IEE754 floating point values or two 64-bit integer values, respec-
tively.

AVX and AVX2 supersede the SSE line of instructions, increasing the number of vec-
tor registers to 16 and the vector width to 256 bit (named ymm0-15). Most original
SSE* instructions are promoted to the new vector width and a few new instructions
are added, most notably cross-lane permutation and fused multiply-add for floating
point data. The lane concept of AVX logically subdivides a ymm register into two
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adjacent xmm registers, each referred to as a lane. Instructions that move data be-
tween lanes are called cross-lane operations and are more expensive in terms of CPU
cycles compared to their in-lane counterparts. This is mostly a technical restriction
affecting some programming choices. AVX also introduces a non-destructive three
operant syntax which reduces register pressure, i.e., the number of registers required
by a piece of code, and saves move instructions. For example, addps xmm0, xmm1
becomes vaddps ymm2, ymm0, ymm1 where the destination operant ymm2 contains
the result while the source operants ymm0-1 remain unaffected by the operation. A
novelty of AVX2 are gather instructions that allow to fetch individual data elements
from disjunct memory addresses into the same vector register with a single opera-
tion.

The latest instruction set extension is AVX-512 with 32 512-bit vector registers (named
zmm0-31), seven 64-bit mask registers (named k1-7) and a multitude of promoted
and new instructions. Instructions are organized in several AVX-512 sub-groups
with varying availability on different CPUs. If not noted otherwise, all references to
AVX-512 are limited to the AVX-512 Foundation group which is available in all im-
plementations. The lane concept prevails, organizing a zmm register into four xmm
blocks, but with new, more flexible cross-lane operations compared to the original
AVX. A mask register combined with a vector instruction allows to select or disable
specific vector elements to alter or void the effect of the operation on the respective
data. AVX-512 further complements the AVX gather instructions with respective
scatter instructions that are able to store data elements from the same vector register
to individual disjoint memory locations.

Programming

Writing a program with vector instructions in assembler is straight forward using the
corresponding vector instruction mnemonics, of which some examples are printed in
the previous paragraphs. However, assembly language is a tedious and error-prone
approach for a complex program and humans tend to perform inferior compared to
compilers in terms of scheduling of instructions and register allocation.

An active field of research is auto-vectorization of regular scalar source code, such
as C/C++. Different approaches exist, using language extensions, preprocessing
directives or code analysis. While many of these methods claim ease-of-use and
portability, they often produce results with non-optimal performance. The success
of auto-vectorization strongly depends on the type and formulation of an algorithm
and usually this means the algorithm must be simple and the formulation tuned for
the particular auto-vectorization method. In particular, current auto-vectorization
methods are not capable of restructuring or inventing new algorithms to optimize
support for vectorized implementations. However, this exactly is an important goal
of this dissertation.

An alternative to assmebler instructions is provided by compiler intrinsic functions,
referred to as intrinsics. Intrinsics look like regular function calls with arguments
and a return value, however the compiler maps these function calls one-to-one to a
single vector instruction. The types of arguments and return value represent vector
registers, for example

// C/C++ source code
__m256 a,b,c;
c = _mm256_add_ps(a, b);
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, is equivalent to the previous mnemonic example vaddps ymm2, ymm0, ymm1. The
compiler remains responsible for instruction scheduling and register allocation at
which it excels, while the programmer is able to precisely pick the instructions in-
tended for a particular algorithm. Intrinsics can be easily mixed and matched with
regular source code and thus only need to be used where necessary, often only in
short sequences.

Data Movement

Movement of data between vector registers and memory as well as within a vec-
tor register is a major performance consideration when designing vectorized algo-
rithms. A basic load instruction moves a continuous block of data from a source
address into the destination register and vice versa for stores. Hence, in order to
assign each vector element the intended datum the data structure must be laid out
in memory accordingly.

A classic example is the element-wise multiplication of two lists of complex num-
bers. If the real and imaginary parts of the complex numbers are stored in separate
arrays, loading from the real or imaginary array results in a vector register filled
with consecutive real or imaginary values as required. However, if real and imagi-
nary part are stored as tuples in the same array, loading from the array results in a
vector register with interleaved real and imaginary values.

The first case corresponds to a structure-of-arrays (SOA) layout, the second to a
array-of-structure (AOS) layout. The AOS layout often requires additional instruc-
tions to rearrange the loaded data to match the desired vector element. In the worst
case each data element needs to be loaded from a separate address and combined
with the already loaded data in the destination vector register. Such serialization
of memory access can diminish performance gains from vectorized code, leading to
poor scalability. SOA layouts are ideal in this respect because a single load places
each datum where it is required in the vector register. A problem that can arise with
SOA layout is poor data locality if multiple, large arrays, i.e., many objects with
multiple components, are required for a computation. In this case a AOSOA lay-
out, combining AOS and SOA where the array size of the SOA part corresponds to
a small multiple of the vector size, helps by packing data in chunks that are cache
friendly and conveniently accessible by vectorized code.

Branching

Conditional branches in the instruction stream can lead to divergence in vectorized
code. The outcome of a vector comparison may be either identical for all elements,
i.e., all true or all false, or mixed, i.e., some true and some false. If all vector elements
agree the case is identical to scalar code and there is no divergence. However, if there
is disagreement the many results must be mapped to a single binary decision, i.e.,
take the branch or not. Such a mapping could be, for example: take the branch if at
least one vector element does, do not take the branch if at least one vector element
does not, take the branch if most vector elements do.

Translated to AVX2 code, the mappings could be expressed as follows:

// C/C++ source code
__m256 a,b,c; int m;
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// m[i] = a[i] < b[i] ? 1 : 0;
m = _mm256_movemask_ps(_mm256_cmplt_ps(a, b));

// take branch if at least one element does
if(m != 0) { ... }

// do not take branch if at least one (out of 8) element does not
if(m != 0xff) { ... }

// take branch if most (out of 8) vector elements do
if(_mm_popcnt_u32(m) > 4) { ... }

// iterate over active elements
while(m != 0) {

int index = _tzcnt_u32(m);
...
m = _blsr_u32(m);

}

The vector comparison instruction either sets all bits of an element or none in the
destination register. The subsequent movemask instruction concatenates the most
significant bits, i.e., the sign bits of the vector elements into a compact bit mask. The
popcnt instruction counts the number of set bits, i.e., active elements. In additions to
the mappings, the while loop demonstrates how to iterate over active elements and
obtain the corresponding element index. The tzcnt and blsr instructions count the
number of zero bits until the first set bit starting from the least significant bit and
clear the first set bit, respectively.

Following the decision with mixed comparison results about which code path to
take, the inactive vector elements which do not agree with the decision continue
to execute (meaningless) instructions on their data. This is acceptable, as long as
the data is eventually discarded and intermediate results are not used for memory
accesses. Some care must be taken with floating point operations not to generate de-
normal or not-a-number values by accident in the inactive vector elements because
such value can severely affect instruction performance.

Alternatively, modification of inactive vector elements can be prohibited by using
masking. A bit mask generated from the comparison indicates which elements should
be affected by a successive instruction and which should be passed through unmod-
ified.

For AVX2 and below, the mask vector resulting from a vector comparison can not
be used to prevent modification of selected vector elements directly, but it can be
subsequently applied to combine modified and unmodified elements correspond-
ing to destination and source register of an instruction, for example by using blend:

// C/C++ source code
// c = a < b ? a + b : a
__m256 a,b,c,m;
m = _mm256_cmplt_ps(a, b)
c = _mm256_add_ps(a, b);
c = _mm256_vblend_ps(a, c, m);

For AVX-512, the masking functionality has been extended to include dedicated
mask registers and masked instruction support. The code snippet above can be
transformed into:

// C/C++ source code
__m512 a,b,c; __mmask16 m;
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m = _mm512_cmplt_ps(a, b)
c = _mm256_add_ps(a, m, a, b);

The mask register m allocates a single bit per vector element to store the result of
the comparison. The subsequent addition only updates elements in c with the sum
of a and b if the corresponding bit in m is one, otherwise a is passed through. The
masking implementation in AVX-512 saves instructions and also applies to memory
accesses, i.e., inactive elements are neither read from nor written to memory during
a masked vector instruction with memory operands.

2.5.3 Multi-core

A multi-core processor supports the execution of multiple threads of a program in
parallel. The threads run asynchronously with respect to each other and execute
independent tasks within a shared memory address space. As long as data is read-
only the threads can access the same memory region in parallel without conflicts.
As soon as data is modified within a memory region that is accessed by multiple
threads synchronization is required to avoid data inconsistencies.

Commonly used synchronization primitives include the barrier and the lock. A bar-
rier ensures that a group of threads, upon finishing execution of the barrier, have
passed a well defined point within the program such that all expected reads and
writes to a memory region prior to this point have been completed. A lock guards a
defined region of memory and gives access to a single thread only at a time. Other
threads must wait or retry at a later time if they require access to a locked memory
region. Waiting is performed either by a busy loop repeatedly checking the memory
state of the lock or by yielding to the operating system which suspends the thread
until the lock becomes available. Barriers and locks impact scalability of a program
by blocking threads while waiting on other threads to catch up or to release a lock.

Non-blocking synchronization is possible with atomic operations. Atomic opera-
tions load an operand from memory, perform the designated operation, e.g., a con-
ditional swap or an addition, and write the result back to memory, all within a sin-
gle indivisible transaction. This ensures a sequential ordering of operations among
threads performing an operation on the same variable in parallel. Atomic opera-
tions are used to implement barriers and locks and can be used to implement custom
specialized synchronization primitives, see Chapter 5 for examples. On processors
with a shared last level cache for all cores atomic operations usually take a few CPU
cycles only. Scalability issues can arise in case of congestion, i.e., if many threads
operate on the same cache line with a high frequency. Independent of the atomicity
of operations, writes from alternating threads to a shared cache line can significantly
increase memory traffic even though different memory addresses are accessed, a sit-
uation known as false sharing. The reason is that memory coherence is established on
cache line granularity and writes by one thread invalidate a cache line for all other
threads which then must be reloaded.

Sharing of data, either true or false, becomes more critical in the case of non-uniform
memory access (NUMA), i.e., if for a specific core some memory regions are more
expensive to access than others. For example, in a multiprocessor system each pro-
cessor has a set of physically close memory banks which are favourable to access
in terms of latency and memory bandwidth compared to memory banks associated
with another processor. Thus, private memory regions should be allocated local to
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the processor a thread is running on and shared memory usage reduced to a mini-
mum.

Ideally, the scalability of a parallel program running on a multi-core processor is
expected to be linear in the number of cores. Otherwise, either synchronization,
false sharing or contention of shared resources like memory bandwidth or cache
capacity are likely responsible for performance discrepancies. Another factor may
contribute to sub-linear scalability: dynamic clock frequency adjustments. Proces-
sors with only a few busy cores can sustain higher clock frequencies compared to full
utilization while remaining within power and thermal specifications. For example,
a program might be processed at 3GHz while using only a single core and at 2GHz
if all available cores are utilized.

Also, in order to increase instruction level parallelism and thus utilization of exe-
cution units physical cores are often subdivided into multiple logical cores, usually
two or four. However, two threads running on the same physical core cannot be ex-
pected to be as fast as if they ran on separate physical cores. Depending on how well
a single thread already utilizes the execution units of the physical core, two threads
can roughly achieve a scalability factor between 1.0 and 1.5.

2.5.4 Cluster

A cluster is a supercomputer that consists of a set of processor nodes interconnected
by a network such as Ethernet or InfiniBand. Similar to multi-core processors a clus-
ter can be categorized as a MIMD architecture where multiple instruction streams
are processed in parallel. The main difference is the distributed memory organi-
zation: each node has local memory with a local address space instead of shared
resources. Data exchange between nodes is performed by network adapters which
copy the data as instructed from a remote memory location to a node’s local mem-
ory. A node’s processor can then access the local copy of the remote data. Due to
limited network bandwidth and increased latency access to remote memory is usu-
ally an order of magnitude slower compared to local memory.

The prevalent programming model for clusters is based on message passing. Both
the sender and receiver nodes initiate a transfer on their respective local side. The
sender node copies the data in a dedicated staging area from where the sender net-
work adapter reads the data and sends it over the network to the receiver network
adapter. The receiver network adapter writes the data to a dedicated staging area
from where the receiver processor can copy the data to the desired location in local
memory. The advantage of the message passing model is that it is easy and save
to use. However, application performance is negatively impacted by the copying
overhead and two-sided nature of the transfer: both sender and receiver processors
are actively involved and need to synchronize. Also, algorithm design based on a
synchronous communication paradigm is encouraged, resulting in algorithms with
inherent scalability limitations.

An alternative approach is known as remote direct memory access (RDMA). Here,
data is transferred directly between two nodes’ memories by the respective network
adapters’ DMA controllers without intermediate copies to staging areas, a technique
known as zero-copy. Also, RDMA operation are one-sided, i.e., the communication is
initialized by the local node only and the data transfer does not interfere with either
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node’s processor during the transfer. This allows to design algorithms which overlap
computation with communication. The communication performed by the network
adapters is asynchronous with respect to both the local and remote node. The result
is negligible cost of communication in terms of CPU cycles enabling highly scalable
algorithms.

2.6 Parallel Ray Tracing

The computational complexity for generating ray-traced images, especially when
including global illumination, motivates the exploitation of parallel computation re-
sources. Rendering algorithms solving the path integral based on ray tracing are
highly amenable to parallelization since different samples are independent of each
other. Hence, ray tracing is often categorized as an embarrassingly parallel algo-
rithm.

However, different techniques for improving performance introduce new depen-
dencies between samples by sharing data or exploiting data parallelism. Data shar-
ing can be beneficial either implicitly by increasing cache hit rates or explicitly by
reusing intermediate results. For example, reuse is effective for feature reconstruc-
tion via filtering, adaptive sample placement and caching of intermediate steps in
bi-directional approaches. Data parallel sample evaluation dictates a shared con-
trol flow between a group of samples. Efficiently managing divergence in the data-
driven control flow of different samples is a challenging problem. Also, exposing
parallel computation within a single sample is possible but difficult to turn into per-
formance gains.

Further, an important part of scalable parallel rendering is the load balancing, i.e.,
distributing the parallel work among the parallel units, and aggregation of partial re-
sults into the final image, here referred to as the distribution framework. Load balanc-
ing should be as fine-grained as necessary in order to avoid execution stalls but neg-
ligible in computation so that the actual rendering is not obstructed. The common
approach for MIMD architectures is to divide the image plane into independent tiles
to determine the granularity of the load balancing. For shared memory multi-core
processors tile distribution is efficiently implemented using simple atomic counters
but for clusters load balancing is more involved because of the network bottleneck
and a generally larger number of parallel units, i.e, nodes.

In the sections below, the previous work related to the research reported in this
dissertation is examined and connected to the new contributions described in the
later chapters. First, the important concept of ray coherence is defined, followed by
vectorized traversal for single rays and ray groups, parallel BVH construction and
distribution frameworks for clusters.

2.6.1 Ray Coherence

The coherence of a ray set can be defined as the tendency of the individual rays to
follow the same traversal path through an acceleration structure, e.g. the BVH, and
to intersect the same primitives. Perfectly coherent rays perform identical opera-
tions on the same data throughout the entire traversal routine.
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a) b) c)

FIGURE 2.7: The two approaches to ray coherence. (a) Structured
coherence: the algorithm knows that all rays in a group have high co-
herence. The example shows primary rays originating at the camera.
(b) Unstructured coherence: The algorithm cannot make any assump-
tions about the coherence of a group of rays. The example shows rays
originating from diffuse reflections. (c) Sub-groups of unstructured
rays may have strong coherence which a traversal algorithm can take

advantage of.

Primary visibility queries, for example, produce well structured coherent ray sets with
a common origin and tightly bundled ray directions along the camera orientation
that often share a common traversal path down to the leaf nodes, see Figure 2.7a.

In contrast, the rays spawned by diffuse global illumination calculations can orig-
inate anywhere on the scene surface and have their directions randomly distributed,
leading to a divergence of the rays’ traversal paths already at the upper levels of the
hierarchy, see Figure 2.7b. However, even for ray sets without structured coherence
groups of rays might end up following a shared path partially or completely during
traversal, i.e., exhibit unstructured coherence, as indicated in Figure 2.7c.

2.6.2 Vectorized Traversal

A prerequisite for vectorization is availability of data parallelism in the traversal
routine. By structuring the traversal algorithm in different ways vector elements
can be either filled with multiple nodes or multiple rays or a mixture thereof. For
a benefit in case of multiple rays the existence of either structured or unstructured
coherence among the rays is mandatory. In the following, previous work related to
the different approaches towards data parallelism in BVH traversal is introduced.

Single Rays

For traversal of a single ray through a binary BVH the exposed amount of data par-
allelism is scarce since a single traversal step requires only little computation and
consecutive steps have sequential dependence. A multi-branch BVH [32, 24, 107]
reduces the depth of a binary hierarchy by removing intermediate nodes to make
it possible in a single traversal step to test multiple child nodes. In addition to in-
creased memory access coherence and fewer traversal steps overall this approach en-
ables data-parallel bounding box intersection tests using vector instructions. Com-
putation time spent during a traversal step is shifted from the intersection test to
stack operation and child ordering.
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The 4-ary BVH has been combined with the sign heuristic either by storing the in-
termediate binary BVH [24] or by a local look-up table stored within the nodes [32].
The corresponding results demonstrate a significant performance gain over the bi-
nary BVH, the kd-tree and the bounding interval hierarchy [104]. The 16-ary BVH
paired with the distance heuristic has been evaluated on a simulator for a 16 element
wide vector instruction set extension [107]. The comparison to a binary BVH packet
traversal yields only minor performance gains.

The current multi-branch traversal methods do not scale well towards higher branch-
ing factors, i.e., vector widths, primarily because of the following limitations: (1)
node ordering and stack operation do not saturate vector registers and requires in-
creasingly more instructions per traversal step while (2) the gain of higher branching
factors diminishes because the reduction in total traversal steps is only logarithmic
at best. Chapter 3 describes new techniques for more scalable multi-branch traversal
by addressing limitations (1) and (2).

Ray Packets

A ray packet [112] is a set of rays which are traversed simultaneously in a data-
parallel manner using vector instructions where each ray is mapped to a single vec-
tor element. Because of the shared control flow rays within a packet should be as
coherent as possible, i.e., follow the same traversal path, in order to achieve a high
vector utilization. In case of divergence only a subset of the vector elements corre-
sponding to active rays perform useful calculations. For tightly bundled rays such
as camera rays or shadow rays towards small light sources identical paths are the
common case and a significant speed-up is observed for packet tracing.

Structured coherence allows to generate ray packet proxies such as frustums, in-
tervals and corner rays [19] which can be used to cull child nodes conservatively for
the entire packet, reducing the number of executed ray-bounding box intersections.

Packet proxies are especially efficient if the number of coherent rays is large: the
DynBVH traversal [108] for the binary BVH supports arbitrarily sized packets. Such
a large packet is composed of multiple smaller packets matching the native vector
width. The algorithm employs arithmetic culling and speculative decent to acceler-
ate packet traversal by algorithmic means in addition to vector scaling.

The formidable results of the DynBVH applied to primary and shadow rays have
motivated assembly strategies for packets of rays originating from general global il-
lumination effects [20]. Good results have been demonstrated for specular reflection
and refraction.

As a ray packet descents deeper down into the BVH coherence may degrade as
more and more rays may become inactive, i.e., diverge from the current control flow.
Combining packet and single ray traversal [12] allows to switch between the two
modes depending on packet utilization. A threshold on the number of active rays
in the packet determines when it becomes more efficient to proceed with individual
traversal.

Ray packets have been demonstrated to perform very well on binary BVHs. Fol-
lowing the development of multi-branch traversal for single rays the question has
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been raised whether ray packets can be integrated with high performance within
the same structure as well [107]. Chapter 3 introduces a very fast packet traversal
algorithm that can be combined with single ray traversal for multi-branch BVHs
featuring high branching factors.

Ray Streams

The efficiency of packet traversal has motivated algorithms that attempt to extract
coherent sub-sets out of incoherent ray sets, i.e, organizing unstructured coherence
into structured coherence. Stream filtering and related methods [84, 113] intersect a
group of active rays with the current node in a breadth-first manner. Rays missing
the current node are taken out of the stream upon decent, extracting coherency im-
plicitly during tree traversal. While this approach promises high vector utilization,
it requires expensive gather and scatter operations or sorting which are detrimental
to traversal performance. Also, saturating the vector unit necessitates one ray per
vector element. If only a few rays are active, e.g., in the lower levels of the BVH, or
the size of the stream is not a multiple of the vector width computation in wasted.

Improving the effective vector utilization is possible by combining ray streams with
the multi-branch BVH [100]. A single ray is used to saturate a 4-element wide vector
register while traversing a 4-ary BVH. The stream approach helps to amortize the
costs among the rays related to node ordering and accessing and setting up the node
data and, at the leaves, primitive data. Like previous streaming algorithms, a major
drawback is that a common traversal order is enforced for every ray in the stream.
This reduces the effectiveness of early culling as some rays might visit nodes in re-
verse order.

The dynamic ray stream traversal (DRST) [11] relaxes the requirement of a single
traversal order: in the case of 4-ary BVH each ray can follow approximately the
same traversal order that would result from individual traversal with the distance
heuristic. Despite the high performance reported for DRST, two major flaws are
apparent in the algorithm design:

• First, the flexible traversal order results in a large number of bins leading to
fragmentation of the ray stream and increased book-keeping overhead. Ac-
cordingly, the method achieves its full potential only for large ray streams.

• Second, despite the flexibility, the number of permitted traversal order permu-
tations is still limited to 8 (2!*2!*2!) out of the possible 24 (4!) for a cluster of
four child nodes.

Both of these issues are addressed in a new stream traversal algorithm described in
Chapter 3.

2.6.3 Bounding Volume Hierarchy Construction

An acceleration structure such as the BVH is essential for efficient ray tracing. For
applications that interact with dynamic and massive scenes a fast BVH construction
method is key to reduce the time-to-image. Hence, parallelization of BVH construc-
tion is of particular interest in order to increase build performance.

A variety of construction algorithms exist that can be categorized as divisive top-
down and agglomerative bottom-up types. The linear BVH (LBVH) [76] is one of the
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fastest implementations regarding construction speed and part of the agglomerative
family. Its efficiency originates from a linear time complexity and straightforward
parallelizability where the primitives are sorted into an implicit octree-like structure
defined by the Morton space-filling curve, followed by a simple merging procedure
to construct the hierarchy of bounding boxes. However, due to the predetermined
structure this method does not adapt to the scene geometry and produces BVHs of
low quality, resulting in inflated ray tracing times. Various extensions aim at improv-
ing LBVH quality, such as approximate agglomerative clustering [50], post-process
optimization [67, 16] or hybrid strategies [85, 43]. However, the quality remains in-
ferior to divisive construction based on the surface area heuristic (SAH) [47, 51, 3].

Augmenting the SAH-based algorithm with the option to split primitives, if cost
effective, leads to the split BVH (SBVH) [97, 91] which produces the highest qual-
ity BVHs of all known methods. The drawback of the divisive algorithms is the
increased time complexity O(N log N) over the agglomerative approaches based on
the LBVH and the increased difficulty for scalable parallelization. In particular, effi-
cient memory management for primitive splits becomes an issue in the presence of
multiple threads. While parallelization schemes have been proposed for BVH con-
struction without splits [105, 106, 17], an scalable solution for the SBVH is not yet
available.

Also missing from the research so far is the utilization of data parallelism by appli-
cation of vector instructions to accelerate performance critical parts of the construc-
tion algorithms. Chapter 4 develops a parallelization framework for high-quality
BVH and SBVH construction addressing previous scalability bottlenecks for multi-
threaded execution and integrating support for vector instructions.

2.6.4 Cluster

Massively parallel rendering using supercomputers such as clusters has broad ap-
plication in a variety of disciplines. Existing rendering approaches and systems can
be categorized by considering the main aspect underlying their design, including:
rendering algorithms (e.g., ray tracing [22, 115], volume rendering [66]); latency
(e.g., real-time rendering [61], off-line rendering [89]), data management (e.g., dis-
tributed rendering [78, 89], replicated rendering [29]), and target architecture (e.g.,
cluster [110], shared-memory [96]). The computational cost involved in achieving
the desired rendering quality and scale is rapidly increasing, and research must con-
sider both hardware and software to achieve the necessary rendering efficiency. An
overview of research challenges in parallel rendering is provided by [13].

An essential part of every parallel rendering stack is a scalable communication layer,
i.e., a distribution framework, that provides a transparent interface between parallel
hardware architecture and rendering algorithms for distribution of rendering tasks
and aggregation of results. Distribution frameworks for distributed memory archi-
tectures are traditionally designed with a message passing paradigm in mind [36]
where two communicating nodes actively send and receive messages. For multi-core
nodes a hybrid approach combining message passing with shared memory commu-
nication between cores of the same node has been found to reduce the overhead of
message passing implementations [55].
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A partitioned global address space (PGAS) provides a fundamentally different ap-
proach to distributed memory communication, where nodes can directly access the
memory of their peers without synchronization or involvement of the remote node
[44]. This approach has the potential to scale more efficiently compared to mes-
sage passing if the algorithms themselves are designed to be asynchronous and one-
sided. The research in Chapter 5 brings the PGAS paradigm to the domain of cluster-
based rendering upon which a distribution framework for real-time path tracing is
designed.

An early approach for interactive ray tracing performed on a cluster [110] demon-
strates good scalability for a small number of nodes with 14 cores in total. Frames
may overlap for improved load balancing, and tiles are preferably assigned to the
same node when transitioning from frame to frame, to take advantage of data local-
ity. The centralized tile distribution step, actively performed by the display node,
does not cause a bottleneck in the experimental set-up due to the small number of
rendering nodes used.

The method discussed by DeMarle et al. [29] recognizes the centralization bottle-
neck arising in a larger cluster environment. They propose to use a decentralized
work-stealing strategy for load balancing by randomly selecting victims among the
participating rendering nodes. An additional benefit of their method is the implicit
data locality – previously obtained explicitly – since tiles remain with the same node
when processing frames, unless tiles are stolen. The steals are scheduled at the end of
a frame, which may not always be frequent enough to achieve optimal load balance.
A 64 core set-up is used for the results but no exact numbers regarding scalability
are provided.

Cosenza et al. [23] improve the work-stealing design by allowing steals to be per-
formed throughout a frame, on demand. Their approach generates a predictive cost
map by rendering an approximation of the current view on the display node’s GPU;
all tiles are distributed, at the start of a frame, among the rendering nodes consider-
ing balanced cost. Imbalances arising from the initially static tile assignment during
rendering are counteracted by work stealing. The results show parallel efficiencies
between 83% and 98% scaling up to 84 cores.

A similar approach is described in [98], which relies on frame-to-frame coherence to
generate a predictive cost map based on a previous frame’s load distribution. This
method is demonstrated to be sufficiently accurate for simple ray tracing work loads
and a medium-sized cluster totalling 240 cores, achieving parallel efficiencies be-
tween 92.9% and 95.9%. Communication is completely avoided throughout a frame,
which is greatly beneficial for cluster environments without high-performance inter-
connects.

The approach covered in [61] performs centralized tile assignment, similarly to the
method presented in [110]; however, the targeted cluster environment is more mod-
ern and significantly larger with multi-core nodes and InfiniBand network. It is
proposed to use the InfiniBand network’s RDMA capabilities for efficient one-sided
communication, but the described implementation is not able to perform one-sided
operations due to the underlying communication library’s limitations. The results
are obtained on a 512 core cluster and show sub-linear scalability although exact
numbers are not provided.
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In this dissertation, the goal is to research and design a distribution framework ca-
pable of achieving linear scalability by using, in contrast to all previous work, a fully
asynchronous, one-sided PGAS approach. Also, the targeted system totalling 1200
cores is considerably larger compared to previous results which allows a more accu-
rate evaluation of scalability. Chapter 5 describes the new distribution framework
and the corresponding algorithms and techniques in detail.

2.7 Conclusion

Photo-realistic rendering is a tremendously complex computation. A major part of
this complexity stems from frequent global visibility queries that must take into ac-
count the entirety of a scene. The visibility queries are processed by the ray tracing
algorithm; despite efficient acceleration structures such as the BVH and a multitude
of techniques to reduce the amount of queries, sequential computers are not fast
enough to meet the computational demand of real-time photo-realistic rendering.
Hence, this dissertation’s research pursues parallel algorithms to allow the problem
to scale to as many parallel computational units as necessary.
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Chapter 3

Vectorized Bounding Volume
Hierarchy Traversal

The traversal of a ray through a BVH quickly reduces the scene geometry to a small
set of potentially intersecting primitives. The traversal operation accounts for a large
share in the overall ray tracing time, thus acceleration of the ray traversal has a sig-
nificant effect on ray tracing performance. Accordingly, the research focus in this
chapter is on efficient, vectorized traversal algorithms exploiting data parallelism.
Two known techniques, the multi-banch BVH and ray sets, allow to expose data
parallelism for ray traversal. Section 3.1 introduces a novel traversal algorithm for
tracing single rays through wide multi-branch BVHs. Section 3.2 and 3.3 introduce
novel traversal algorithms for ray sets of unstructured coherence, i.e., stream traver-
sal, and for ray sets of structured coherence, i.e., packet traversal, respectively. This
chapter is based on two publications by Fuetterling et al. [39, 38].

3.1 Multi-branch Traversal

Traversal algorithms for single rays generally can be divided into separate phases,
which are: ray setup, inner node traversal, leaf intersection, and the stack pop.
Ray setup performs pre-computation to facilitate efficient execution of the remaining
phases. During inner node traversal the ray descents down the BVH until it misses
all children of an inner node or encounters a leaf. In the first case, traversal directly
proceeds to the stack pop; in the second case, intersection with the leaf’s primitives is
performed first, reducing the maximum ray distance t f ar to the closest primitive in-
tersection (if any). The stack pop takes the top node from the stack (if a node exists)
and determines whether the corresponding ray entry distance is still within t f ar. If
this is not the case, the next node is taken from the stack. After the stack pop ray
traversal continues with inner node traversal.

A multi-branch tree, compared to a binary tree, allows every inner node of the hierar-
chy to have more than two child nodes. For ray tracing, the benefit of a multi-branch
BVH becomes evident in the context of vectorized traversal algorithms. One costly
part of the inner node traversal is the intersection test of the ray with the child nodes’
bounding boxes. Since the floating point computation can be performed over multi-
ple bounding boxes in a data-parallel manner an opportunity for vector instructions
is created. The vector utilization is optimal if the number of child nodes, i.e., the
branching factor, is equal to the vector width because every vector processing ele-
ment is tasked with one ray-box intersection test.

However, the multi-branch approach affects other parts of the traversal algorithm as
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well. Most notably, determination of the traversal order, i.e., the order at which in-
tersected child nodes are subsequently traversed, becomes more difficult. Efficiently
finding the first intersecting primitive along a ray necessitates to descent into the
hierarchy in a front-to-back manner, i.e., to always follow the child which is closest
to the ray origin. Thus, a sorting step must be added to the multi-branch inner node
traversal whereas a simple comparison is sufficient in the binary case. The complex-
ity of the sorting step increases with the number of child nodes n as O(n log n) and
counteracts the performance benefit obtained from intersection test vectorization.

The stack push is another part of the inner node traversal that becomes more com-
plex in a multi-branch scenario. After sorting the child nodes according to inter-
section distance all intersected nodes, except the closest, must be placed in reverse
order onto the stack. This requires looping through a list of intersected child nodes
and placing them on the stack one-by-one, resulting in a O(n) complexity.

Considering the scalability of such a multi-branch traversal algorithm, the ideal
O(1) complexity for the vectorized intersection test is counteracted by traversal or-
der determination and stack push with O(n log n) and O(n) complexities, respec-
tively. Hence, increasing n leads to a performance gain up to a nmax, after which
performance starts to decline with respect to theO(log n) binary traversal of a multi-
branch node and eventually turns into a performance loss.

A new traversal algorithm for wide vector units WIVE introduced in the follow-
ing solves the complexity problem, yieldingO(1) for the entire inner node traversal.
Instead of ordering child nodes by ray distance WIVE utilizes precomputed front-to-
back traversal orders based on the split axes of the BVH construction and ray signs.

3.1.1 Multi-branch Traversal Order

Sorting child nodes by intersection distance from the ray origin is not the only ef-
ficient method to determine a good traversal order [79]. In fact, the distance order
does not guarantee perfect front-to-back traversal, as demonstrated by the following
example: if two child nodes overlap and the ray pierces through the overlapping vol-
ume, a ray-primitive intersection in the sub-tree of the far child node might be closer
than a primitive intersection in the sub-tree of the near child node (Figure 2.6). An
order decision resulting in prefect front-to-back traversal is not possible without in-
vestigating all overlapping child node sub-trees first. Hence, a heuristic must be
used to generate an approximation.

The sign heuristic is a competitive alternative to the distance heuristic. A simple
example illustrates the essential idea: two non-overlapping child nodes’ bounding
boxes are separated along the x-axis; intuitively a ray with a positive sign in the x-
direction should always choose the child node with the smaller x-coordinates first.
The separating axis and the corresponding order of a child node pair can be precom-
puted and stored with the node data structure and retrieved during traversal. If no
separating axis exists, i.e., the child nodes overlap, the axis with the shortest pro-
jected overlap can be chosen. Compared to the distance heuristic, the sign heuristic
produces an identical order in case of a separating axis and a possibly different order
otherwise, depending on the actual ray and child node geometry.
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FIGURE 3.1: WIVE single ray algorithm for wide vector units. (a)
A treelet embedded in a larger binary BVH. Collapsing the treelet
yields a 8-ary BVH node cluster (colored squares). The inner nodes of
the treelet (disks) are labeled according to the split axis used during
binary BVH construction. (b) Bounding boxes of the 8-ary BVH node
cluster from (a) in a 2D, xy-coordinate system. A ray with positive
x and negative y sign is shown, with marked entry and exit points
on the edges of bounding boxes. (c) Ordered traversal for the ray in
(b). The initial order of the nodes is based on the order in memory,
which is chosen to conform with positive ray signs. Step A performs
the node permutation for the ray, which can be deduced from (a) by
flipping the children of the Y nodes due to the negative y sign. Step
B performs the intersection test resulting in a mask that is applied in
step D for compressing the valid nodes into a continuous array. Step
C loads the current stack top element which takes the first slot in the
compressed result if no valid node exists. The first element of this
array is extracted in step E to be the next node to be traversed and the

remaining part is stored in order atop the stack in the final step F.
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The sign heuristic has been applied to binary BVHs initially and later has been ex-
tended very specifically to a 4-ary BVH [32, 25]. For the WIVE algorithm a general
extension to arbitrary branching factors is required, as illustrated in Figure 3.1. A
multi-branch BVH is usually derived from a binary BVH, which is either generated
on-the-fly for temporary storage or fully constructed a priori. Starting from the root,
the binary BVH is divided into treelets according to the desired branching factor of
the multi-branch BVH. An exemplary treelet is shown in Figure 3.1a. Inner nodes
and intermediate leaves are represented as black circles labeled by axis of separation
and colored squares labeled by memory order, respectively. The treelet’s intermedi-
ate leaves form a child node cluster whereas the treelet’s inner nodes are eventually
removed. The inner nodes’ axes of separation are used for the derivation of the front-
to-back traversal order according to the sign heuristic. In the example, taking on the
perspective of a ray with only positive directional components, following a branch
to the left yields the near child node and following a branch to the right yields the far
child node. Accordingly, the branches are swapped if a ray has a negative directional
component along the axis of the branch label. In Figure 3.1b the depicted ray has a
positive component in the X direction and a negative components in the Y direction.
By swapping all branches in 3.1a with a Y label the traversal order as defined by
the sign heuristic is retrieved, which is (1,0,6,7,3,2,5,4), see also the second row in
3.1c. Omitting all child nodes which are not intersected, this order is equivalent to
the order in which the ray penetrates the child node bounding boxes and intuitively
appears to be a good front-to-back approximation.

In general, a d-dimensional ray amounts to 2d possible sign combinations, which
result in up to 2d unique traversal orders per node cluster as determined by the sign
heuristic. In a n-ary BVH a cluster is composed of up to n nodes, so that a traver-
sal order may be represented by a vector of up to n indices, where each index must
be at least log2 n bits in size. This permutation vector specifies how to re-arrange the
nodes with respect to the base order, i.e., the order in which the nodes are laid out in
memory. Thus, by pre-computing permutation vectors for all 2d sign combinations
and storing them in the cluster data structure, the traversal order for a particular ray
is retrieved by concatenating its directional sign bits to form an d-bit index into the
table of permutation vectors.

3.1.2 Algorithm

LISTING 3.1: Main traversal function for WIVE.
1 def traverseRay ( node , ray )

s tack ← { stop }
3 while ( t rue )

i f ( node . i s I n n e r ( ) )
5 ( elems , num) ← t r a v e r s e C l u s t e r ( node . c l u s t e r , ray , s tack . top ( ) . getNode ( ) )

node ← elems [ 0 ] . getNode ( )
7 s tack . push ( elems [ 1 :num] , num−1)

e lse i f ( node . i s L e a f ( ) )
9 i f ( i n t e r s e c t L e a f ( node , ray ) )

s tack . c u l l ( ray . t f a r )
11 node ← s tack . pop ( ) . getNode ( )

e lse
13 break

In the following the WIVE algorithm is described on a high-level with references to
Listing 3.1 (using line numbers) and Figure 3.1c. The implementation details of the
essential parts are deferred to Section 3.1.3.
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The ray and the initial node, usually the BVH’s root node, are passed as arguments
to the traversal function traverseRay (line 1). The initialization of the node stack (line
2) with a terminating stop element is followed by the traversal loop (lines 3-12). At
the beginning of an iteration the type of node is determined by testing if it is an inner
node (line 4) or a leaf (line 7), i.e., references a node cluster or a primitive cluster,
respectively (line 4). In the first case, the traverseCluster function returns the next
node and a sorted list of elements referencing further intersected nodes and the cor-
responding entry distances (line 5). This list is pushed to the stack (line 6). In the
second case, the ray is intersected with the primitives (line 8). If a valid intersection
exists, the the maximum distance t f ar of the ray is reduced accordingly and the stack
is culled by keeping only elements with a node entry distance closer compared to
the updated t f ar (line 10). The compression step is optional, i.e., the algorithm func-
tions correctly even when it is omitted, but performance is increased by removing
all node references from the stack fully occluded by the latest primitive intersec-
tion, avoiding unnecessary further traversal iterations. To continue the traversal the
next node is taken from the stack (line 11). If the node is neither inner node nor leaf
(line 12) it must be the stop element from the bottom of the stack, indicating that
all leaf nodes potentially containing the closest ray-primitive intersection have been
exhausted, leading to the termination of the traversal routine (line 13). The closest
primitive intersection, if it exists, is stored in the ray structure.

The key innovations of the WIVE algorithm lie in the traverseCluster function and
the stack push. These parts of the algorithm are illustrated in Figure 3.1c, continuing
the example defined by the node cluster and the ray shown in Figure 3.1b and the
corresponding hierarchical representation of the node cluster in Figure 3.1a. The pro-
cedure begins with a vector containing the nodes of the cluster in the order in which
they are are laid out in linear memory. In (A) the permutation vector selected by
the ray’s directional signs, i.e., (1,0,6,7,3,2,5,4) in the example, is applied to the node
vector, re-arranging the nodes into the desired front-to-back order. The intersection
test (B) produces a bit mask that selects only the nodes with a valid ray-bounding
box intersection (colored) whereas the remaining nodes are discarded (gray). To
continue the traversal, the closest node must be extracted and the remaining active
nodes must be stored to the stack. If no node with a valid intersection exists, the
topmost element of the stack must fill the the slot of the next active node. In order to
take care of this special case, the topmost stack element T is loaded into the first slot
of a separate vector (C), also used as the destination vector for the following com-
paction operation (D). The compaction operation concatenates all nodes marked as
active by the bit mask from the intersection test by removing the inactive nodes in
between and writing the continuous list of active nodes to the destination vector (D).
If the list is not empty it overwrites the previously loaded stack element. In either
case, reading the first element of the vector correctly extracts the closest node for
the next traversal iteration (E) and the remaining nodes are pushed in front-to-back
order onto the stack (F) with a single store operation. Eventually, the stop element S
terminates the traversal.

In the case of single-instruction support for the permutation and compression vec-
tor operations, this algorithm has a time complexity of O(1) for both the child node
ordering and stack push operations compared to the typical O(n log n) complexity
for sorting n active nodes and O(n) complexity for pushing them onto the stack.
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The vectors and the formatting of the data they contain, i.e., nodes and stack ele-
ments, are still lacking a precise definition. The exact mapping of the WIVE algo-
rithm to binary vector registers will be described next.

3.1.3 Implementation

The WIVE algorithm allows two variants of efficiently vectorized implementations.
In the full width variant, the width of the vector registers, i.e., the number of vec-
tor elements, is equal to the branching factor of the BVH, whereas in the half width
variant, the width is twice the branching factor. This gives WIVE a broad applica-
bility because it can be tuned to different kinds of applications and architectures.
For instance, an AVX2 implementation with a vector width of eight elements may
use a 4-ary or 8-ary BVH whereas a AVX-512 implementation with 16 elements may
choose between a 8-ary and 16-ary BVH for full vector utilization, assuming single
precision floating point data for computation. The two implementation variants are
discussed in the following two sections, exemplified for an 8-ary BVH.

The implementation descriptions do not assume a particular vector instruction set,
but a certain set of operations must be supported to achieve high performance. The
corresponding AVX2 and AVX-512 instructions [59] are annotated to each operation
for the full width and half width implementations, respectively. Key operations for
WIVE that may not be available for all instruction sets are permutation and compaction:

• vpermq a, b, c: Copy 32/64-bit elements from c selected by the lower three bit
of the 32/64-bit elements in b to the corresponding positions in a.

• vpcompressq a{k}, b: Select 32/64 bit elements in b using mask k and compress
the selected elements to form a continuous array aligned to the low element in
a.

For example, AVX2 does not have a compaction operation but it can be emulated
efficiently by a permute operation and a look-up table as explained in the last part
of the following section.

Full Width

The data structure for an 8-ary BVH node cluster laid out to support a full width
WIVE implementation is depicted in 3.2a. The bounding box data comes first, each
node defined by three [min, max] intervals along the principal axes. A structure-of-
array layout organizes the xmin, xmax, ymin, ymax, zmin and zmax bounding box planes
into arrays, such that the ith element corresponds to node i. Each element is stored
in a four byte single precision floating point format for a total of 32 bytes per array.

The six arrays of bounding box planes are followed by the offset array n. Relat-
ing to node i, ni contains an inner node flag and a memory offset pointing to a child
node cluster if the flag is set or to a primitive cluster otherwise.

The permutation vectors are stored in the last part of the data structure in an array
of eight 32-bit elements. The elements of the permutation vectors, the permutation
indices, are 3 bit in size for an 8-ary BVH and the total of eight permutation vectors
are stored in an interleaved manner, so that there is exactly one permutation index
per permutation vector per 32 bit of memory. The following formula defines the
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FIGURE 3.2: Data layout of a 8-ary BVH node cluster with a total size
of 256 bytes. The nodes’ bounding boxes are stored as separate x-, y-
and z-vectors with alternating max/min coordinates. A fourth vector
contains five bytes for child offset and flags (n) and three bytes for

permutation indices (s) per node.

three bits allocated to permutation index (k, i), where k is the 3-bit directional sign
octant and i the position to place the node referenced by the permutation index:

(k, i)→ [i ∗ 32 + k ∗ 3 : i ∗ 32 + (k + 1) ∗ 3] .

Further, for a valid permutation vector (k, i) 6= (k, j) must hold, i.e., there is exactly
one reference to each node.

LISTING 3.2: Core traversal function for WIVE, full width approach.
All local variables are vectors with the exception of mask and num.

The {} operator performs a broadcast of scalar values.
1 def t r a v e r s e C l u s t e r ( c l u s t e r , ray , stacknode )

( bxmin , bxmax , bymin , bymax , bzmin , bzmax , n , s ) ←c l u s t e r . load ( )
3 i f ( ray . s ign . x ) ( bxmin , bxmax ) ←( bxmax , bxmin ) / / Swi tch min / max bounding p l a n e s

i f ( ray . s ign . y ) ( bymin , bymax ) ←( bymax , bymin ) / / t o conform with ray d i r e c t i o n .
5 i f ( ray . s ign . z ) ( bzmin , bzmax ) ←( bzmax , bzmin )

tx min ←( bxmin − { ray . org . x } ) ∗ { ray . i d i r . x } / / Compute ray t i n t e r v a l s be tween
7 ty min ←( bymin − { ray . org . y } ) ∗ { ray . i d i r . y } / / min / max bounding p l a n e s .

t z min ←( bzmin − { ray . org . z } ) ∗ { ray . i d i r . z }
9 tx max ←( bxmax − { ray . org . x } ) ∗ { ray . i d i r . x }

ty max ←( bymax − { ray . org . y } ) ∗ { ray . i d i r . y }
11 t z max ←( bzmax − { ray . org . z } ) ∗ { ray . i d i r . z }

t min ←max( tx min , ty min , t z min , { r . tnear } ) / / Find i n t e r v a l o v e r l a p o v e r a l l
13 t max ←min ( tx max , ty max , t z max , { r . t f a r } ) / / d i m e n s i o n s and a l o n g ray segment .

index ← s h i f t ( s , { ray . s ign . xyz } ) / / E x t r a c t p e r m u t a t i o n v e c t o r .
15 t min ←permute ( t min , index ) / / Apply p e r m u t a t i o n v e c t o r t o a r r a n g e t

t max ←permute ( t max , index ) / / i n t e r v a l s and node d a t a n in t r a v e r s a l o r d e r .
17 n← permute ( n , index )

mask← compare ( t min , t max ) / / Compute i n t e r s e c t i o n mask .
19 elems ← ( compact ( mask , n , stacknode ) , compact ( mask , t min ) ) / / S t a c k e l e m e n t s .

num← countB i t s ( mask ) / / Number o f i n t e r s e c t e d c h i l d nodes .
21 return ( elems , num)

The pseudo code for the half width flavor of the traverseCluster function left un-
specified in Listing 3.1 is printed in Listing 3.2 and discussed in the following with
references to line numbers.

Initially, in line 2, the arrays making up the node cluster data structure in Figure
3.2a are loaded into vector registers (vmovaps,vmovdqa). The minimum and maxi-
mum bounding box planes bxmin, bymin, bzmin and bxmax, bymax, bzmax, respectively,
are kept in separate registers as indicated by Figure 3.3a, with superscripts indicat-
ing the corresponding node index. It is instructive to contrast this layout to Figure
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FIGURE 3.3: (a) Full width register layout for bounding box intersec-
tion. Entry (tmin) and exit (tmax) distances are kept in seperate regis-
ters with one node per 4-byte vector element. (b) Stack layout. Stack
elements are 4 bytes in size with seperate stacks for child offset and
entry distance (tmin). The stop elements S mark the bottoms of the

stacks. Different colors indicate different nodes.

3.4a for the half width approach.

In the next step, from lines 3-5, minimum and maximum bounding box planes are
exchanged for every dimension where the ray has a negative directional coordinate
using a conditional move operation (vblendvps). This transforms the bounding box
such that minimum and maximum values are consistent with the ray’s point of view.
The conditions can be evaluated before traversal begins and readily kept in registers
since they depends only on the immutable signs of the ray direction.

After rearranging the bounding box planes, the distances between the ray origin and
each plane are computed between lines 6-11 (vsubps,vmulps). The multiplication with
the inverse ray direction ray.idir, precomputed right before traversal, replaces a more
costly division by the actual ray direction. Rearranging e.g. (bxmin − {ray.org.x}) ∗
{ray.idir.x} into bxmin ∗ {ray.idir.x} − {ray.org.x ∗ ray.idir.x} allows to perform the
computation in a single multiply-add operation (vfmsub*ps) which may be faster on
some architectures but also can lead to numerical precision issues [99].

Entry and exit distances of of the ray with respect to the bounding box are found
in lines 12-13 by determining the maximum across all minimum distances tmin and
the minimum across all maximum distances tmax, respectively (vminps,vmaxps). If
tmin and tmax define a valid segment, i.e., tmin ≤ tmax, the ray pierces the bounding
box. The box segment is further reduced by clipping tmin and tmax to the valid seg-
ment of the ray defined by tnear and t f ar.

Before the comparison tmin ≤ tmax is performed, however, the traversal order is es-
tablished by permutation. In line 14, a shift of the vector register containing the set
of interleaved permutation vectors aligns the permutation indices associated with
the ray’s directional signs to the lower three bits of every vector element (vpsrlvd),
effectively selecting one out of the eight precomputed permutation vectors. The shift
value ray.sign.xyz is a concatenation of the three sign bits and thus constant through-
out traversal of a single ray.

The resulting vector index is applied to tmin, tmax and the n vector containing the
offset array in lines 15 - 17, thus rearranging the order of the node data with respect
to the memory layout to conform to the traversal order (vpermps, vpermd).
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The comparison deciding on the ray-bounding box intersections follows in line 18,
producing a mask with a set bits for vector elements corresponding to an intersected
node (vcmpps).

Line 19 implements the compaction of intersected nodes illustrated in Figure 3.1c,
steps C and D. Since the intersection data is split across two vector registers, the
bounding box entry distance tmin and the child cluster offset n, a compact operation
is applied to each. The operation takes up to three arguments, (1) the mask produced
in line 18 to select the elements part of the resulting compact vector, (2) the source
vector, and optionally, (3) a fill vector to provide explicit values for elements of the
result vector where no compact values exist (the default is ”0”). A fill vector contain-
ing the stacktop in the first element (or in every element) is used for the compaction
of n, ensuring that the cluster offset for the next traversal iteration is available in the
compact result even if no node intersections exists. For tmin the value from the stack
is not required because it is only used for stack culling after successful primitive in-
tersection, not within a traversal iteration.

The rather specialized compact operation is available as a single instruction (vcom-
pressps, vpcompressq) in AVX-512 but not for other instruction sets, AVX2 being one
example. Hence, a sequence of more generic instructions are presented as a replace-
ment in Listing 3.3.

LISTING 3.3: Replacement for vcompressps, vpcompressq instructions.
1 const LUT[ 2 5 6 ] , s h i f t V e c o r

def compact ( mask , n , stacknode )
3 index ← r i g h t S h i f t ( { LUT[ mask ] } , s h i f t V e c t o r )

elems ← permute ( n , index )
5 return blend ( elems , stacknode , index )

The look-up table LUT stores 256 permutation vectors, one for each 8-bit mask value,
implementing every possible compaction operation for a vector width of eight ele-
ments. In order to reduce the memory footprint of the look-up table the permutation
vectors are compressed to 32-bit integers and expanded to full vectors after selection
using a broadcast (vpbroadcastd) and variable bit shift to the right (vpsrld). The mag-
nitude s of the shift, stored in the shi f tVector, is proportional to the vector element
index i ∈ [0, 7], i.e., si = 4 ∗ i, aligning a different 4-bit slice to the beginning of each
element of the resulting index vector. The lower three bits of every index element
are used by the permutation operation vpermd, whereas the fourth bit is set to zero
everywhere with one exception: for a zero mask, bit 31 of the look-up table value,
i.e., the fourth bit in s7, is set. If no child node intersection exists, this results in a set
sign bit of the first element of the index vector, which is further used as the selector
in a sign-based blend operation vblendvps, placing the stacknode into the first element
of the result vector, according to Figure 3.1c, step C.

Back to Listing 3.2, the number num of intersected nodes is determined by count-
ing the set mask bits in line 20. The traverseCluster function ends by returning the
number num together with the corresponding lists of node offsets and entry dis-
tances in line 21.

Following the traverseCluster function, the algorithm continues in Listing 3.1, line
6: the cluster offset for the next iteration is extracted from the elems list, i.e., from
the first element of the corresponding vector register (movq). The stack push in line
7 is implemented with two masked store operations (vmovups, vmovdqu32), one for
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FIGURE 3.4: (a) Half width register layout for bounding box inter-
section. Entry (tmin) and exit (tmax) distances are computed simulta-
neously within 8-byte lanes for each node, which requires tmin to be
treated as negative. (b) Stack layout. Stack elements are 8 byte in
size with interleaved child offset and entry distance (tmin). The stop
element S indicates the bottom of the stack. Different colors indicate

different nodes.

each stack as illustrated in Figure 3.3b. Since the sorted nodes must be put on the
stack in reverse order to be retrieved as intended the stack grows towards smaller
memory addresses. The mask is necessary to prevent existing stack values from
being overwritten by the inactive vector elements remaining after the compaction
(the grayed-out elements in Figure 3.1). The mask is obtained by comparing the
node register either to the original fill vector used during the compaction operation
(vpcmpeqd) or to zero (vptestnmd). After the stack push, the WIVE inner traversal it-
eration is concluded.

On a final note, if the compaction by look-up table is used, a change to the look-
up table allows to get rid of the mask: the permutation vectors can be precomputed
such that the first active element is moved to the first element as usual but the re-
maining active elements are densely aligned to the end of the vector register. In this
case no mask is necessary because no existing stack elements can get overwritten
during a regular store.

Half Width

The half width variant of the WIVE algorithm utilizes twice the number of vector
elements compared to the full width variant by interleaving the majority of the com-
putations for which separate instructions would be required otherwise. Therefore,
in this section, the two adjacent 32-bit vector elements aliased with a single 64-bit el-
ement are referred to as lanes and the lower and upper 32-bit elements as even and
uneven elements, respectively, see Figure 3.4a. The memory layout of an 8-ary BVH
cluster is illustrated in Figure 3.2b, with a standard 256-byte footprint correspond-
ing to four 64-byte vectors. The nodes’ bounding boxes are stored in three separate
arrays, one for every axis, with alternating maximum and minimum planes. The
fourth array encodes the permutation vectors and the node data, which includes a
flag to indicate an inner node or a leaf, the corresponding child cluster or primi-
tive cluster offset, a mask to identify valid nodes in a child cluster or the number of
primitive clusters within a leaf. Permutation indices are three bit in size to reference
one of the eight nodes, and the eight permutation vectors are compressed into three
bytes per node.



3.1. Multi-branch Traversal 41

Listing 3.4 shows the traverseCluster function which is described in detail in the fol-
lowing paragraphs, referencing the corresponding line numbers.

LISTING 3.4: Core traversal function for WIVE, half width approach.
All local variables are vectors with the exception of mask and num.

The {} operator performs a broadcast of scalar values.
1 def t r a v e r s e C l u s t e r ( c l u s t e r , ray , stacknode )

( bx , by , bz , ns ) ← c l u s t e r . load ( )
3 i f ( ray . s ign . x ) bx ← swapEvenOdd ( bx ) / / Swi tch min / max bounding p l a n e s

i f ( ray . s ign . y ) by ← swapEvenOdd ( by ) / / t o conform with ray d i r e c t i o n .
5 i f ( ray . s ign . z ) bz ← swapEvenOdd ( bz )

tx ← ( bx − { ray . org . x } ) ∗ {−ray . i d i r . x , ray . i d i r . x } / / Compute ray t i n t e r v a l s
7 ty ← ( by − { ray . org . y } ) ∗ {−ray . i d i r . y , ray . i d i r . y } / / b e tween

t z ← ( bz − { ray . org . z } ) ∗ {−ray . i d i r . z , ray . i d i r . z } / / min / max bounding p l a n e s .
9 t ← min ( tx , ty , tz , {− r . tnear , r . t f a r } ) / / Common i n t e r v a l .

index ← s h i f t ( ns , { ray . s ign . xyz } ) / / Pe rmuta t i on v e c t o r .
11 t ← permute ( t , index ) / / Arrange and combine t i n t e r v a l s and node d a t a .

nt ← b i t w i s e S e l e c t ( n , tmin , selectMask )
13 nt ← permute ( nt , index )

tmax ← swapEvenOdd ( t )
15 tmin ← f l ipSignsOdd ( t )

mask← compare ( tmin , tmax ) / / Compute i n t e r s e c t i o n mask .
17 elems ← compact ( mask , nt , stacknode ) / / S t a c k e l e m e n t s .

num← countB i t s ( mask ) / / Number o f i n t e r s e c t e d c h i l d nodes .
19 return ( elems , num)

In line 2 the three bounding box arrays for the x−,y− and z−axes are loaded into
vector registers (vmovps), so that the max/min pairs align with the lanes, see Figure
3.4a. Depending on the sign of the rays directional components the corresponding
max/min values are be swapped within lanes in lines 3-5 to conform with the ray’s
point of view. The swaps are performed efficiently with masked 64-bit rotate opera-
tions (vprolq), where the mask for every axis is assumed to have been precomputed
during the ray setup phase. After swapping, in lines 6-9, the ray’s entry and exit
distance calculations are performed for all eight nodes in parallel, computing tmax
and −tmin in even and odd lanes, respectively. The calculations correspond to the
following four equations:

tn,i
max = (bn,i

max − oi) ∗ di

tn
max = min

i=x,y,z
tn,i
max

−tn,i
min = (bn,i

min − oi) ∗ (−di)

−tn
min = min

i=x,y,z
−tn,i

min

(3.1)

Here, i and n denote the axis and the lane, respectively, oi is a component of the
ray origin, di is the inverse component of the ray direction, and bn,i represent the
minimum and maximum bounding box planes after the initial swap. Both oi and di

are constant throughout traversal, and the sign of the dn,i = (−1)ndi vector can be
adjusted during the ray setup phase to alternate between di and −di.

The tn
max and −tn

min values are further clipped to the active segment of the ray de-
fined by tnear and t f ar (vminps), and the final result is laid out in the vector register as
illustrated in Figure 3.4a.

Next, the results are arranged according to the front-to-back traversal order stored
in the node cluster. In line 10, the appropriate permutation vector is extracted from
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the fourth array shown in Figure 3.2b by bit-shifting with the concatenated sign
bits of the ray’s directional components, i.e., a precomputed three-bit value, to align
the permutation vector’s components to the lower three bits of the vector regis-
ter’s 64-bit elements (vprolvq). After the permutation step (vpermq) in line 11, the

tmax −tmin pairs are ordered such that the first node to be traversed corresponds
to the last active node lane in the register.

The same permutation is applied to the stack element candidates nt in line 13 af-
ter composition in line 12. The stack elements combines the node offsets and cor-
responding tmin values according to the formatting indicated by Figure 3.4b. The
bitwiseSelect function allows to select, for every bit, between the two input operands
n and tmin, based on the selectMask (vpternlogq). n and tmin are aligned to the begin-
ning and end of the odd and even vector lanes, respectively. The node offset allo-
cated in the data layout in Figure 3.2b is 40 bits in size. If all bits are to be used the
lower eight bits of tmin may be modified. This does not compromise the correctness
of the stack culling later on but may lead to a minor reduction in its efficiency due
to a more conservative test. The sign bit of tmin may be undefined at this point and
is set to zero upon retrieval from the stack since tmin is positive by definition.

The intersection test is completed by comparing tmax and tmin to retrieve the active
mask, which requires the values to be in separate registers aligned to the odd el-
ements. This requirement is met via a 64-bit rotate operation (vprolq) in line 14 to
form −tmin tmax pairs and a sign flip with an exclusive or operation (vpxorq) in
line 15 to obtain tmax tmin pairs. Since tmin ≥ 0 always holds, the predicate of
the test tmin ≤ tmax in line 16 can be determined correctly with integer arithmetic
by re-interpreting the floating-point patterns of the pairs as 64-bit signed integers
(vpcmpq). The resulting mask is used to for the following compaction operation in
line 17 (vpcompressq) together with the topmost stack element as the default value if
no intersection exists.

Leaf Clusters and Stack Culling

Once the inner node traversal reaches a leaf, the intersectLea f function in Listing 3.1,
line 9, is executed. The node offset no longer references a child node cluster but a list
of primitive clusters instead. For the experiments in the following section a primitive
cluster packs up to four triangles, which has been found to result in the best perfor-
mance regardless of the vector width. Larger clusters increase vector utilization at
the cost of performing more intersection tests and increased bandwidth demand.
Smaller clusters have the inverse effect. The optimal balance depends on multiple
factors such as hardware architecture and traversal algorithm. An overview over
optimized and vectorized triangle intersection algorithms can be found in [82, 94, 9,
70, 116].

Once an actual intersection is found among the triangle clusters the maximum ray
distance t f ar is updated accordingly. In this case, nodes on the stack with t f ar < tmin
are removed by the cull function in line 10. This pruning procedure is efficiently im-
plemented by loading as many stack elements as possible into a vector register, start-
ing from the stack bottom, performing the comparison and compacting and storing
the remaining valid elements back onto the stack. The implementation of the com-
parison and compaction operations for the stack culling is analogous to the inner
node traversal.
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Eventually, once the ray has exhaustively traversed the hierarchy, the node repre-
sents no longer a node cluster or a primitive cluster but the terminal stack element.
The terminal stack element initiates the stop of the traversal loop in line 13 and the
completion of the traverseRay function.

3.1.4 Results

The WIVE algorithm is evaluated by generating performance data based on AVX2
and AVX-512 implementations on the dual-socket Intel R© Xeon

TM
E5 2680v3 with

2.5GHz (HW) and the Intel R© Xeon Phi
TM

7250 with 1.4GHz (KNL), respectively.
The results are compared with those obtained from Embree 2.15.0 [111], the lead-
ing high-performance ray tracing library for CPUs. In order to ensure comparability
of performance data, the WIVE code has been integrated into the open source Em-
bree benchmark suite Protoray [30], which by default offers Embree and Nvidia R©

OptiX
TM

[87] kernels. A comparison to the GPU-leading OptiX ray tracing library is
outside the scope of this dissertation, however results from the Protoray benchmark
have been published elsewhere [33]. Embree constructs a native 8-ary BVH using
SAH-based centroid binning [106], which is directly converted to WIVE’s native data
layout retaining the exact same topology. Spatial splits are disabled to ensure better
comparability of the results shown here with results obtained with other methods.
In order to generate the permutation indices for the sign heuristic the Embree code
has been modified to annotate each node cluster with the original split hierarchy. Tri-
angle intersection is served by the same Möller-Trumbore [82] implementation and
triangle data structure as used in Embree. Therefore, the traversal algorithms are
solely responsible for the observed performance differences. The performance eval-
uation is based on five scenes consisting of between 5.7M and 37.5M triangles. On
the KNL, these benchmarks are processed by all 272 threads, with all data allocated
in the high-bandwidth memory segment. The on-chip mesh network is configured
in quadrant mode. On the HW all 48 threads are active.

TABLE 3.1: Traversal statistics for sign and distance ordering based
on Embree’s SAH-binned 8-ary BVH. The columns I(nner)Nodes,
Leaves and Tri(angle)s list the per-ray average numbers of inner nodes
visited, leaves intersected, and triangles intersected, respectively. The
SAH cost for each scene is also broken down by I(nner)Nodes and

Leaves. The rendered images are shown in Figure 3.5.

Sign Distance SAH
INodes Leaves Tris INodes Leaves Tris INodes Leaves

MAZDA 14.1 3.6 4.1 14.1 3.6 4.1 4.20 2.23
SAN MIGUEL 21.2 4.5 5.4 21.2 4.2 5.1 4.01 1.90
ART DECO 11.1 2.3 2.9 11.0 2.2 2.8 4.59 2.74
POWERPLANT 20.5 5.6 9.3 20.3 5.6 9.2 5.78 4.21
VILLA 17.4 4.6 5.5 17.4 4.5 5.4 20.7 15.6

The key comparison between distance and sign heuristics determines how well they
approximate a front-to-back traversal order to maximize node culling, see Table 3.1.
The three per-ray average indicators (inner nodes visited, leaves intersected, and tri-
angles intersected) are very close to being equal across the scenes, with a slight bias
towards the distance heuristic. A notable discrepancy is observed for SANMIGUEL,
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FIGURE 3.5: Pictures of benchmark scenes rendered with the WIVE
algorithm using path tracing. The shading color is based on the sur-
face normal. From left to right and top to bottom, and with triangle
counts: VILLA (37.5M), ARTDECO (10.7M) and MAZDA (5.7M), all
courtesy of Evermotion, POWERPLANT (12.8M), courtesy of Univer-
sity of North Carolina, SAN MIGUEL (10.5), courtesy of Guillermo M.

Leal Llaguno.
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where the number of intersected leaves and triangles is up 6-7% for the sign heuris-
tic, which is attribute to the high degree of overlap of the alpha-textured leaf trian-
gles. In such a setting, the distance heuristic can be more precise as it considers the
actual intersection point of the ray. For completeness Table 3.1 also lists the surface
area heuristic (SAH) cost [47, 107] associated with each of the generated 8-ary BVHs.

TABLE 3.2: Performance in million-rays per second (MRays/s) for
the sign-based WIVE algorithm and Embree based on AVX2 and
AVX-512 implementations. Rendering is performed at a resolution of
3840×2160 pixels using diffuse path tracing with up to eight bounces.
The rendered images are shown in Figure 3.5. Colors are based on
surface normals and the shading cost is included in the results, ac-

counting for 8-12% of the rendering time.

MAZDA SAN MIGUEL ART DECO POWERPLANT VILLA

# triangles[M] 5.7 10.5 10.7 12.8 37.5
AVX2

WIVE 74.0 46.0 97.2 57.4 48.8
Embree 70.9 43.0 93.7 51.9 46.2
WIVE[+%] 4 7 4 11 6

AVX-512
WIVE 126.7 73.1 165.0 85.4 87.4
Embree 110.0 63.2 143.4 68.4 76.3
WIVE[+%] 15 16 15 25 15

Table 3.2 provides performance data measured in million-rays per second (MRay/s)
for a basic diffuse path tracer with up to eight bounces per sample. When compar-
ing the AVX-512 implementations of the sign-based WIVE traversal to the distance-
based Embree algorithm, a sizeable speed-up of between 15% and 25% is observed
across all scenes. The increased efficiency can only originate from the traversal phase
since all other parts share the same implementation. This implies that the reduced
code complexity due to our novel algorithm is the only significant differentiating
factor. Variance in memory access patterns due to slight differences in traversal or-
der between the two heuristics is negligible, which follows from the nearly identical
data listed in Table 3.1. The WIVE algorithm is especially advantageous when rays
frequently overlap with more than three children during a traversal step, e.g., in the
POWERPLANT scene. The resulting performance data are shown in Table 3.3. In this
case, the distance heuristic requires increasingly expensive sorting and stack oper-
ations while the WIVE algorithm’s execution is independent of the number of active
children.

TABLE 3.3: Distribution of numbers regarding valid child node inter-
sections (in percent) for a single traversal step.

0 1 2 3 >3
MAZDA 24 39 22 9 6
SAN MIGUEL 29 35 19 9 8
ART DECO 30 38 17 8 7
POWERPLANT 40 24 14 10 12
VILLA 25 36 20 11 8
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Performance comparison of the AVX2-based implementations of WIVE and Embree
demonstrates that WIVE is faster also for the “BVH branching factor equals vector
width” variant, albeit with a smaller relative difference of between 4% and 11%.
Since Embree also uses an interleaved slab test for AVX-512 and a regular slab test
for AVX2, the only notable differences between the WIVE variants is the compact op-
eration and the double stack. The compaction operation is emulated due to the lack
of hardware support by a sequence of four instruction including a memory access
into a sizable table. The double stack is intrinsic to the algorithm and requires an
additional compaction operations and an additional store to memory.

3.1.5 Summary

The introduction of the multi-branching bounding volume hierarchy has led to the
last major performance gain in single ray traversal, by utilizing vector instructions
for bounding box tests. This section has continued and completed the formulation
of an innovative, fully vectorized BVH traversal by introducing the WIVE algorithm.
The efficiency gain obtained by WIVE is made possible by transforming node order-
ing and stack-push operations from conditional scalar execution paths to constant-
time vector operations, making them ideal for current and future massively parallel
microarchitectures. The algorithm’s performance is demonstrated by experiment
with an implementation for the AVX-512 instruction set. The performance data doc-
ument that WIVE outperform the industry-leading ray tracing library Embree by
between 15% and 25% on an Intel R©Xeon Phi

TM
CPU. A corresponding AVX2 imple-

mentation on an Intel R© Xeon
TM

CPU has yielded a speed-up compared to Embree
by between 4% and 11% despite incomplete instruction support.

3.2 Stream Traversal

Stream traversal conceptually aggregates multiple traversal requests into a single
set of rays. A sufficiently large set is traversed through the bounding volume hierar-
chy as a whole, in every traversal iteration testing all active rays against the current
node and partitioning the set according to the intersection results. Hence, the ray
sets provide inherent data parallelism exploitable for vectorization and superscalar
execution of independent instructions.

A further major motivation for stream traversal is optimizing the memory access
behavior compared to basic single ray traversal. Both memory bandwidth and ac-
cess latency for node data fetches are amortized among multiple rays, thus relieving
the memory subsystem and reducing execution stalls from cache misses. Necessar-
ily, the memory footprint of the ray data is required to comfortably fit into the cache
hierarchy.

A prerequisite for the efficiency of stream traversal is coherence among the rays in
a set. Stream traversal allows to capitalize on unstructured ray coherence as defined
in Section 2.6.1. At the root node all rays are considered coherent by definition and
subsequent traversal iterations automatically partitions the initial set into smaller
subsets of stronger coherence, i.e., of longer common traversal path. At the leaf
nodes typically only a few fully coherent rays remain of the initial set. Hence, every
traversal iteration operates on the complete subset of rays with identical coherence.
Thus, if there is any coherence among rays in a set, stream traversal uncovers it and
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puts it to use by filling vector units and amortizing memory access to node data.

A fundamental challenge for stream traversal is maintaining a front-to-back traver-
sal order per ray for efficient node culling, in particular for multi-branch bounding
volume hierarchies. Previous work, for example [100], followed the node with the
smallest average distance over all rays first, leading to increased number of traversal
steps and primitive intersection per ray on average compared to single ray traversal.
A simple illustration of the problem is to imagine two rays with opposing directions
where one ray follows its front-to-back order, forcing the other ray to take a back-to-
front order.

The algorithm proposed by Barringer et al. [11], dynamic ray stream traversal (DRST),
lifts the restrictions on one global traversal order. Every ray is allowed to choose be-
tween a subset of all possible traversal orders in every traversal iteration based on
the distance heuristic. As a negative consequence, the ray sets become more frag-
mented as shared traversal paths become shorter. Another issue of DRST is the com-
putational complexity imposed by the dynamic traversal order. Especially when
only a few rays remain in a subset, which is a common occurrence, the cost of the
overhead becomes high per ray. DRST works around this issue by switching to single
ray traversal once the number of rays falls under a parameter threshold, accepting
that the switching logic itself adds further overhead.

The stream traversal algorithm introduced in the following, named ordered ray
stream traversal (ORST), addresses the limitations of DRST. A different approach
to ordering removes computational complexity and prohibits fragmentation during
traversal. As a result, ORST is able to maintain larger coherent ray sets compared to
DRST while being close in performance to dedicated single ray traversal even if only
a single ray remains in a set.

3.2.1 Ordered Traversal

The ordering mechanism described in the following implements the sign-based or-
der heuristic discussed in Section 3.1.1 for a 4-ary BVH using a two-stage look-up ta-
ble. A previous approach [24], combining the sign-based heuristic with a 4-ary BVH,
produces an implementation with higher computational overhead and reduced flex-
ibility because only a subset of the 24 possible order arrangements for a four-node
cluster are supported, i.e., those eight that can be mapped to a balanced binary BVH
sub-tree. Compared to the technique introduced in Section 3.1.1 the mechanism de-
scribed here requires less memory per node and is better suited for stream evalua-
tion; the traversal order however is exactly the same.

Figure 3.6 illustrates the new look-up-table-based implementation. A perm value,
stored in the BVH node layout discussed later (Figure 3.7), is used in conjunction
with the ray sign mask to obtain an order index from the two-dimensional order look-
up table (orderLUT). The ray sign mask contains the signs of the ray components in
the lowest 3 bits, and the order index represents one of the 24 possible traversal or-
ders. The order index together with the active node mask forms a second index pair to
obtain the actual order from the two-dimensional compact look-up table (compact-
LUT). The order contains 2-bit indices to the child nodes in a front-to-back order,
where the 2 lowest bits are occupied by the most distant node. The active node mask
maps the lowest 4 bits to the child nodes according to the memory position and has
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signs: 0y1x activeMask: 1011

orderLUT[ signs ][ node.perm ]
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FIGURE 3.6: Visualization of the traversal order look-up mechanism.
The colored boxes represent child nodes which are labeled according
to memory order. A ray with a negative x sign and a positive y sign
intersects child nodes 3, 1 and 0, and the corresponding color-coded
active mask is shown. The geometrical relations of the child nodes
are captured in the parent node’s perm field. The perm value together
with the ray signs produces an order index from the order look-up
table which may represent any permutation of the child nodes. The
order index together with the active mask are used for a second look-up

to retrieve a sorted, compact list of intersected child nodes.

a set bit for every intersected node. As a result, the indices obtained from the order
are already compacted to reference only child nodes that are actually intersected, so
that the traversal can directly proceed without additional checks. The complex logic
implemented by the two look-ups is very efficient and would require significantly
more instructions otherwise.

The remainder of this section explains the details of the perm index structure. The
perm index is constructed as a hierarchy of three subdivisions to partition the four
child nodes. There are exactly two unique hierarchy types: One is the balanced type,
where the first subdivision creates two sets of two nodes, and the second is the un-
balanced type, where the first subdivision creates one set of one node and one set of
three nodes. All possible subdivision variations of the balanced type are symmet-
ric and can be accounted for by adjusting the relative position of the child nodes in
memory accordingly. For the unbalanced type four unique topologies exist. Thus
the first part of the perm index identifies one of the five possible topologies. The
second part defines the axes for each of the three subdivisions. The three possible
axes (x,y,z) result in 3 ∗ 3 ∗ 3 = 27 variants for each topology. Thus the perm index is
computed as:

axis1stsplit + axis2ndsplit ∗ 3 + axis3rdsplit ∗ 9 + topologyId ∗ 27

Since a ray can have 23 = 8 possible sign combinations, eight sets of the topology
variants are required, resulting in a orderLUT size of 5 ∗ 27 ∗ 8 = 1080 bytes which
corresponds to 17×64 byte cache lines. The compactLUT has a size of 24 ∗ 16 = 384
bytes (24 possible traversal orders and 16 possible active mask combinations), so
that a total of 26 cache lines is reserved for the look-up tables. If a 4-ary BVH is
derived from a binary BVH, the original binary BVH traversal order is maintained
by transfering the axis values (defining the axis along which the two children of
a binary BVH node overlap the least) and setting the topologyID to the balanced
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type. Consider a binary BVH treelet with a root node, two intermediate nodes and
four child nodes, which is flattened into a single 4-ary BVH node. Then axis1stsplit
receives the axis value of the root node, and axis2ndsplit and axis3rdsplit receive the axis
values of the left and right intermediate nodes, respectively. The four child nodes
are arranged in memory according to the traversal order of a ray with only positive
direction components. Example code for the look-up table generation is provided in
[39].

3.2.2 Algorithm

The key feature of the new algorithm is the traversal order look-up mechanism pre-
sented in Section 3.2.1. The order produced by this method is exactly the same for
all rays with identical signs. Thus, sorting a stream into the octants generated by the
possible sign combinations elegantly groups the rays by common traversal order,
resulting in up to eight disjoint sets which are then processed successively. The rays
included in a stream are tracked by a list of ray indices (short integers). During node
intersection a new list for each of the four child nodes is created which contains the
indices of all the rays intersecting the respective child node. The four lists are pushed
to four seperate stacks mapped to the four nodes, and the algorithm proceeds with
the stack entry corresponding to the node chosen by ordered traversal. Pseudo code
is listed in Algorithm 1, and details are discussed below, referencing line numbers.

At the start, the ray indices of the stream are pushed onto one of eight ray index
stacks depending on the ray sign, each stack corresponding to one of the octants
(lines 5-9). A ray stack is also called a lane, and the first four lanes are simultane-
ously mapped to the four child nodes during traversal. Then, a task is generated
for each octant that is not empty and pushed onto the task stack (lines 11-16). The
core loop begins with popping a task (line 20), checks whether the current node is
an inner node (line 21) and, if not, jumps to the leaf intersection (line 46). Otherwise,
the corresponding rays are intersected with the current child nodes in parallel (lines
25-32). The variable rayStart4 aliases with the first four lanes of the rayStart stack in-
dices. The ray index is copied to the first four lanes associated with the child nodes
(lines 28-30), and rayStart4 is increased for every lane that matches a successful child
node intersection (line 31). Since msk4 has all bits set if the corresponding node is in-
tersected, the value is subtracted from rayStart4 in order to increase the stack indices
by one. After all active rays have been tested, the traversal order is obtained from
the look-up tables, where the bits of the active ray mask are set for all lanes with at
least one child node intersection (lines 33-36). Finally, a new task is generated for
all active child nodes and pushed onto the task stack in back-to-front order (lines
39-44). The algorithm is simple and efficient, maximizes coherence and enables high
vector utilization.

The memory layout of the 4-ary BVH structure is shown in Figure 3.7. Conceptually,
a BVH node is considered separate from its geometric bounding box. The nodes are
always grouped in clusters with capacities of two or four nodes (never three due to
16 byte alignment for vectorized memory access). Every cluster is adjacent in mem-
ory to four bounding boxes in SOA format (96 bytes) which are located in front of the
cluster. With this definition a node occupies only eight bytes, with a five byte index
to the child node cluster, one byte for the active child mask, one byte for the node’s
relative index within its own node cluster, and one byte for traversal order look-up.
In case of a leaf, the active child mask is set to zero, the five byte index points to a
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Algorithm 1 Ordered ray stream traversal Vector symbols are postfixed with a 4, as are
functions operating on vector data. For the definition of functions see Algorithm 2.

1: rayStack[8][]
2: rayStart[8]← 0
3: sP← 0
4: {Sort ray indices onto stacks based on sign octant.}
5: for rayID ← 0 to |R| do
6: signs← Sign4(R(rayID))
7: rayStack[signs][rayStart[signs]]← rayID
8: rayStart[signs]← rayStart[signs] + 1
9: end for

10: {Generate task for each octant and push to task stack.}
11: for i← 0 to 8 do
12: if rayStart[i] > 0 then
13: taskStack[sP]← (root, rayStart[i], i, i)
14: sP← sP + 1
15: end if
16: end for
17: {Main traversal loop.}
18: while sP > 0 do
19: sP← sP− 1
20: (node, numRays, lane, sign)← taskStack[sP]
21: if node is inner node then
22: rayStart[lane]← rayStart[lane]− numRays
23: numActive4← rayStart4
24: {Intersection of active rays with current child nodes and push of intersecting rays’

indices to corresponding stacks.}
25: for r ← 0 to numRays do
26: rayID ← rayStack[lane][rayStart[lane] + r]
27: msk4← IsectBox4x1(node, R(rayID))
28: for i← 0 to 4 do
29: rayStack[i][rayStart[i]]← rayID
30: end for
31: rayStart4← rayStart4−msk4
32: end for
33: activeMsk←Sign4(rayStart4 > numActive4)
34: numActive4← rayStart4− numActive4
35: orderIdx ← orderLUT[sign][node.perm]
36: order[]← compactLUT[orderIdx][activeMsk]
37: cnt← CountBits(activeMsk)
38: {Generate task for each non-empty child node and push to task stack in order.}
39: for i← 0 to cnt do
40: o ← order[i]
41: n← root + node.child + o
42: taskStack[sP]← (n, numActive[o], o, sign)
43: sP← sP + 1
44: end for
45: else
46: Leaf intersection
47: end if
48: end while
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list of primitives and the number of primitives is saved in the look-up byte. This
somewhat flexible structure allows to save about 5% of memory compared to the
standard 128 byte layout [24, 32] and also performs slightly faster during traversal.
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FIGURE 3.7: Memory layout of the 4-ary BVH. A node contains four
records: child is an index to a cluster of child nodes, index is the rela-
tive position of a node within its own cluster, active is a bit mask that
has a set bit for every active child node, and perm encodes the geo-
metric configuration of the child nodes which is used in the ordered
traversal look-up. If the node is a leaf, child indexes a list of primitives
and perm holds the primitive count. Every node cluster is directly pre-
ceded by a SOA structure of four bounding boxes independent of the

cluster size to allow vectorized access.

3.2.3 Results

The new ordered ray stream traversal (ORST) is compared to the previously fastest
algorithm named dynamic ray stream traversal (DRST) [11] using the original code
provided by the authors. BVHs are generated by the SBVH algorithm described
later in Chapter 4 with identical topologies but different binary formats for ORST

and DRST, corresponding to the respective optimized node layout. The same trian-
gle intersection test implementation is used for both algorithms. The benchmarks
are performed for six different scenes, the SPONZA, FAIRY, DRAGON, HAIRBALL,
POWERPLANT and the R8. Fixed camera samples along a fly-through path have
been generated for every scene in order to capture the full scene complexity and
avoid view point specific variations. The hardware platform is a dual socket Intel R©

Xeon
TM

E5-2680v3 Haswell (24 cores / 48 threads total at 2.5GHz) which allows DRST

to use AVX2 while the more widely available AVX instruction set is sufficient for the
ORST implementation. In the last part of this section, the look-up table sign heuris-
tic described in Section 3.2.1 is compared to the distance heuristic approximated by
DRST and commonly used by other single and packet traversal algorithms.

The benchmark results are presented in Table 3.4. All frames are rendered in 17
iterations, where each iteration consists of a single primary ray per pixel spawning
16 diffuse rays from its scene intersection point. The diffuse rays are distributed ran-
domly over the hemisphere around the surface normal according to the Lambertian
reflectance model. They can bounce up to four times and are terminated earlier only
if they hit the background. In total up to 17 × 16 × 4 = 1088 rays are traced per
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FIGURE 3.8: Pictures of benchmark scenes rendered with the ORST
and CLPT algorithms using path tracing. The shading includes mate-
rials and textures, if available. From left to right and top to bottom,
and with triangle counts: FAIRY (174K), courtesy of the University
of Utah, HAIRBALL (2.9M), courtesy of NVIDIA Research, SPONZA
(66K), courtesy of Marko Dabrovic, and DRAGON (871K), courtesy of

Stanford University.

pixel and frame and care is taken that the rays are exactly the same for all competing
algorithms. The primary ray traversal is performed using a packet algorithm (CLPT,
see Section 3.3.1) with a tile size of 8×8 pixels and all diffuse rays corresponding to
the same tile (up to 1024) are placed in a single stream for the first bounce. Each
bounce then produces a new stream that is equal or smaller in size compared to the
previous stream. An optimized single ray implementation (SR), also based on the
traversal look-up mechanism, is provided for reference. The measurements include
random number and ray generation, traversal, intersection and shading (with tex-
tures). Both ORST and DRST are AVX/AVX2 implementations that always intersect
two rays simultaneously with four nodes or four triangles. DRST switches to single
ray traversal once the stream size drops below a certain threshold which is optimally
set to 16, whereas for ORST a switch to single ray traversal is not required to increase
overall performance. ORST is able to outperform DRST by 37% on average with re-
spect to the total run time. If only ray traversal and intersection is considered, ORST

is about 51% faster. One notable result is the complex HAIRBALL scene where DRST

offers no advantage over single ray traversal, while ORST can maintain a 31% lead.
The throughput increase from DRST to ORST can be attributed to lower overhead
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TABLE 3.4: Results for diffuse rays. Pictures of the test scenes are pre-
sented in Figures 3.5, 3.8 and 3.9. The measurements are taken dur-
ing a full camera fly-through with the total number of frames listed
below. The performance numbers include the entire rendering pro-
cess, while ray queries lists the percentage of the total time spent in
traversal and intersection as measured for single rays (SR). For each
frame 17 primary samples and up to 272 diffuse rays with a max-
imum bounce depth of 4 are generated per pixel at a resolution of
1280×1024. Speed-up percentages are given once for the total render-
ing process, and once only for the combined traversal and intersection

part.

SPONZA DRAGON FAIRY R8 HAIRBALL POWERPLANT

# triangles 66k 871k 174k 795k 2.9M 12.8M
# frames 20 13 15 20 10 13
Ray queries 76% 84% 73% 81% 91% 86%

Mray/s Mray/s Mray/s Mray/s Mray/s Mray/s
SR (SSE4) 75 73 72 75 27 74
ORST (AVX) 117 117 115 118 35 119
DRST (AVX2) 84 86 85 85 27 84

Speed-up Speed-up Speed-up Speed-up Speed-up Speed-up
Total 39% 35% 35% 39% 31% 41%
Traversal 59% 47% 61% 53% 35% 53%

(node ordering, stack operations, lane management) and reduced stream fragmen-
tation. The difference in overhead is already apparent from the single ray threshold
(0 vs 16) for which either algorithm achieves its maximum performance. Thus the
implementation of the ORST traversal logic is nearly as efficient as for pure single
ray traversal.

Table 3.5 presents a direct measurement of the stream fragmentation by averaging
the stream size maintained by each algorithm throughout traversal and intersection,
which can be compared to the average initial stream size. The data is broken down
by bounce number to demonstrate the effect of increasingly chaotic ray distributions.
For DRST the switch to single ray traversal is disabled to allow a direct comparison
to ORST, otherwise the results for the effective stream size would be significantly
lower. The numbers show clearly that ORST can always maintain larger streams for
both traversal and intersection, up to 19% during the first bounce for the R8 scene.
On average, ORST requires only 85% of the traversal steps and 95% of the triangle in-
tersections performed by DRST. Once a stream is sorted into octants by ray direction,
the corresponding sub-sets never fragment and two rays that have an overlapping
traversal path are guaranteed to perform the common steps and triangle intersec-
tions together. This property is unique to ORST and explains the higher efficiency
for coherence extraction compared to DRST. For higher bounces the advantage de-
creases slightly due to overall decreased ray coherence.

Table 3.6 compares the distance heuristic and sign heuristic for traversal ordering
according to the number of resulting traversal steps and intersection tests for single
ray traversal. Both heuristics perform about the same on average for intersection and
traversal, with a slight preference for the distance heuristic. Due to the fast look-up
mechanism single ray traversal with the sign ordering is about 1% faster compared
to the distance ordering in this particular implementation, though ultimately this
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TABLE 3.5: Performance counts for diffuse rays corresponding to the
benchmarks presented in Table 3.4. For each bounce the average ef-
fective stream size (number of active rays in a stream) during traver-
sal and intersection is listed. The stream size for ORST is presented in
absolute numbers, while for DRST the results are expressed relative to
ORST. In addition the average initial stream size is given. The switch

to single ray traversal for DRST is disabled.

SPONZA DRAGON FAIRY R8 HAIRBALL POWERPLANT

avg. rays avg. rays avg. rays avg. rays avg. rays avg. rays
node / leaf node / leaf node / leaf node / leaf node / leaf node / leaf

Bounce 1
Initial 1024 1007 1024 1021 984 1000
ORST 27.6 / 8.69 17.3 / 6.19 23.5 / 8.61 35.3 / 14.7 8.84 / 4.03 38.1 / 13.6
DRST 88% / 93% 85% / 88% 85% / 87% 84% / 84% 86% / 88% 87% / 88%
Bounce 2
Initial 1009 294 617 599 705 603
ORST 8.06 / 3.15 3.29 / 1.41 6.29 / 2.93 6.62 / 2.90 2.94 / 1.55 9.25 / 3.93
DRST 85% / 91% 88% / 93% 86% / 87% 82% / 86% 84% / 90% 88% / 89%
Bounce 3
Initial 991 131 376 556 621 497
ORST 5.02 / 2.17 2.19 / 1.16 3.93 / 2.08 4.13 / 1.88 2.13 / 1.21 5.13 / 2.35
DRST 86% / 93% 90% / 96% 88% / 89% 85% / 90% 86% / 94% 89% / 91%
Bounce 4
Initial 968 78 258 552 553 440
ORST 4.09 / 1.90 1.87 / 1.10 3.16 / 1.84 3.38 / 1.63 1.86 / 1.11 3.85 / 1.83
DRST 87% / 93% 93% / 97% 88% / 90% 86% / 92% 88% / 95% 90% / 93%

TABLE 3.6: Performance counters for the single ray traversal order
produced by the distance heuristic and the sign heuristic correspond-
ing to the benchmarks presented in Table 3.4. The total number of
visited nodes and intersected triangles for the distance heuristic rela-

tive to the sign heuristic is reported.

SPONZA DRAGON FAIRY R8 HAIRBALL POWERPLANT

Single ray
# nodes 99.9% 100.0% 99.8% 100.0% 100.3% 99.8%
# triangles 103.9% 99.8% 99.7% 100.0% 100.0% 98.9%

depends on the specifics of the rendering framework and in general both methods
appear to be an equally good choice. The major strength of the sign heuristic is
the synergy with ORST where it helps to reduce stream fragmentation without com-
promising the traversal order quality for individual rays compared to the distance
heuristic.

3.2.4 Summary

The introduced ORST algorithm is a novel ray stream traversal algorithm for pro-
cessing traversal requests of ray groups with unstructured coherence. The algo-
rithm is tailored towards 4-ary BVHs and vector widths of four to eight elements. A
front-to-back traversal order based on the ray directional signs avoids dynamic frag-
mentation of the ray stream which enables higher coherence extraction and reduces
complexity compared to previous approaches. The experimental results show that
the sign-based order is on par with the distance-based alternative in terms of node
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culling. An average traversal speed-up of 51% compared to the best performing
stream algorithm DRST has been measured in the experiments.

3.3 Packet Traversal

The ray stream traversal introduced in the previous section benefits from unstruc-
tured coherence in ray sets and, if none exists, degrades gracefully to single ray
traversal performance. For ray sets with structured coherence such as primary rays
or shadow rays probing a common light source, for example, packet traversal allows
even more aggressive vectorization and amortization techniques.

A very efficient packet traversal algorithm for the binary BVH is described by Wald
et al. [108], where a single search ray out of the packet is intersected with the current
BVH node, speculatively descending the entire packet on hit. Otherwise, a conser-
vative frustum or interval test attempts to reject the node completely. Only then the
individual rays are tested and upon the first intersection (if any) the search ray is
updated and the traversal continues down the hierarchy. The implementation com-
bines speculative early hit, conservative early miss, ordered traversal, active ray tracking
and a packet test of last resort in a single unified traversal step.

The contribution of this section is the extension of the original packet traversal algo-
rithm to support multi-branch BVHs. This allows mixing of packets with ray streams
and single rays using the same acceleration structures, so that the most suitable tech-
nique can be chosen during runtime depending on the workload, for example small
or large ray sets with or without structured coherence. In addition, multi-branch
BVHs reduce the number of traversal steps and thus promise further performance
gains for packets.

The basis for the novel multi-branch packet traversal is formed by the node order-
ing and stack modification techniques developed in the previous two sections for
streams and single rays. Accordingly, two slightly different variants of the algo-
rithm are described in the following, based on the ORST look-up table mechanism
and the WIVE mechanism, respectively. Further, a reworked deferred packet test of
last resort ensures that the same culling efficiency of the binary packet traversal is
maintained for multi-branch BVHs as well.

3.3.1 Coherent Large Packet Traversal

This section describes the coherent large packet traversal (CLPT) based on the look-
up table mechanism for node ordering introduced previously for ORST, thus target-
ing a 4-ary BVH. In the following, the terms packet and large packet are distinguished
with respect to the number of rays contained and the corresponding memory layout.
A packet exactly fits the vector length, for example containing eight rays for AVX, and
organizes its rays into a SoA layout. A large packet comprises several packets orga-
nized in an AoS layout. The idea behind grouping rays in sets larger than the vector
size is to allow conservative rejection and speculative acceptance of a node for the
entire large packet, aggressively taking advantage of the assumed high coherence
among the rays. The pseudo code of the complete algorithm is given in Algorithm
2, and the various techniques are discussed in detail below.
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Algorithm 2 Coherent large packet traversal Vector symbols are postfixed with a 4, as are functions operating
on vector data. Individual rays are accessed with R(ray index), SIMD ray packets with R4(packet index). Sign4()
concatenates the sign bits of vector elements to a 4-bit integer, IsectBox4x1() intersects four child nodes with one ray,
IsectBox1x4() intersects one node with a SIMD packet, FirstSetBit() returns the index of the lowest set bit, BitSet()
returns the value of a bit at the given bit index, and CountBits() counts the number of set bits.

1: stack[]
2: sP← 0
3: node← root
4: activeRID ← 0
5: loop
6: if node is inner node then
7: {Conservative early miss test using interval arithmetic.}
8: activeMsk← IntersectBox4(node, intRay)
9: activeMsk← activeMsk and node.activeMsk

10: if activeMsk = 0 then
11: goto line 46
12: end if
13: {Speculative early hit test with first active ray.}
14: (hitMsk, t4)←IsectBox4x1(node, R(activeRID))
15: savedRID ← activeRID
16: orderIdx ← orderLUT[sign][node.perm]
17: order[]← compactLUT[orderIdx][activeMsk]
18: o ← 0
19: {Packet test of last resort and active ray tracking.}
20: for cnt← CountBits(activeMsk)−1 to 0 do
21: o ← order[cnt]
22: if BitSet(hitMsk, o) then
23: goto line 35
24: end if
25: for p← activeRID/4 to numPackets do
26: msk← IsectBox1x4(node,R4(p))
27: if msk 6= 0 then
28: activeRID ← p ∗ 4+FirstSetBit(msk)
29: goto line 35
30: end if
31: end for
32: end for
33: goto line 46
34: {Push remaining nodes to stack and continue with the closest according to ordered traversal.}
35: for i← 0 to cnt− 1 do
36: so ← order[i]
37: n← root + node.child + so
38: stack[sP]← (n, savedRID, t4[so])
39: sP← sP + 1
40: end for
41: node← root + node.child + o
42: continue
43: else
44: Leaf intersection
45: end if
46: while sP← sP− 1 ≥ 0 do
47: (node, activeRID, t)← stack[sP]
48: {Early hit pruning.}
49: if cast2uint(t) < cast2uint(R(activeRid).t) then
50: goto line 5
51: end if
52: {Deferred packet test of last resort and active ray tracking.}
53: for p← activeRID/4 to numPackets do
54: msk← IsectBox1x4(node, R4(p))
55: if msk 6= 0 then
56: activeRID ← p ∗ 4+FirstSetBit(msk)
57: goto line 5
58: end if
59: end for
60: end while
61: break
62: end loop
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Conservative early miss: this test attempts to quickly reject nodes which do not
overlap with any rays in the large packet. Algorithm 2 employs interval arithmetic
(IA) as discussed in [52] (line 8). While the alternative frustum plane test [8] is less
conservative, the increased computational cost does not pay off, especially because
IA shares some calculations with the speculative early hit (line 14, see below).

Applying IA to a set of rays generates intervals for the x-,y- and z-coordinates of
ray origins and directions for all rays of a large packet to perform a conservative
rejection test for nodes outside these intervals. The bounding box intersection test
already is an IA operation itself, producing the [tmin, tmax] interval. By expanding the
definition of an origin oi and inverse direction di from points and vectors to the in-

tervals [oi, oi] and [di, d
i
], respectively, tmin and tmax can be computed conservatively

for a set of rays with the following changes applied to Equation 3.1:

tn,i
max = (bn,i

max − oi) ∗ d
i

−tn,i
min = (bn,i

min − oi) ∗ (−di)
(3.2)

Here, we assume that (di, d
i
) does not contain 0, i.e., all ray directions in the large

packet have the same sign combinations. During the set-up phase, a special interval
ray ”intRay” is created with maximum and minimum values for the origin and the
direction vector components. Bounding boxes missed by this interval ray will be
missed by the large packet and can be ignored.

The IA is evaluated for all four child nodes simultaneously, resulting in a 4 bit active
mask which is further superimposed with the active mask stored in the node data
structure (Figure 3.7). If the active mask is zero at this point, all active child nodes
are missed and traversal can continue with a node from the stack (lines 46-60).

Speculative early hit: the purpose of this test is descending into a child node early
if it overlaps with the current active ray (see active ray tracking below), omitting
bounding box intersections for the rest of the rays, which are assumed to take the
same traversal path. While this speculation can be harmful in the case of divergent
rays, for highly coherent rays the performance gains can be huge. The intersection
of the active ray is performed for all child nodes in parallel and an early hit mask
along with the intersection distance is produced (line 14). The intersection distance
is set to a value with all bits equal to one if no intersection exists.

Ordered traversal: as described in Section 3.2.1, the perm field of the current node to-
gether with the signs of the active ray represent an index into the orderLUT, which
yields the order index (line 16). The order index in conjunction with the active mask
form another index into the compactLUT, which returns an ordered list of active
child node indices (line 17). The list is represented by a single byte and the elements
are 2-bit values.

Deferred packet test of last resort: the ordered child nodes are iterated from front to
back (lines 20-32). First, the early hit mask of the current child node is checked and if
the corresponding bit is set, control flow exits the loop (lines 22-24). Otherwise, the
packet test of last resort is executed (lines 25-31). If a new active ray can be found,
control flow returns to the early hit path (lines 27-30). If not, the loop continues with
the next child node until all have been processed without success (line 33). At this
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point, traversal can continue with a node from the stack. The first child node with a
ray overlap (if any) becomes the new current node (line 41). The remaining unpro-
cessed child node indices are pushed onto the stack in a back-to-front order, together
with the near distance value from the early hit test and the corresponding active ray
(lines 35-40). This way, the packet test of last resort is deferred for stacked nodes
until the moment of their retrieval (lines 47, 53-59), maximizing culling efficiency.

Active ray tracking: active ray tracking is essential for the early hit test, because
if the test fails once it will fail for the entire sub-tree. Instead, a new active ray (if
any) is found during the packet test of last resort (line 28). As a bonus, all rays that
come before the active ray are guaranteed to miss the current sub-tree and require
no further processing. In our implementation, the rays of a large packet are stored
continuously in memory in a SOA format befitting the vector width, so that all rays
in a packet can be intersected with one node simultaneously (line 26). The active ray
is the first ray in memory order, which has an overlap with the current node. The
ray index of the active ray is composed from its packet index and its position within
the packet (lines 28 and 56).

Early hit pruning: a node popped from the stack requires a deferred packet test
of last resort if the early hit test has failed, but also if, in the meantime, the active ray
has detected a primitive intersection closer than the hit distance saved earlier. This
is important to increase culling efficiency. Since the saved distance value is either a
positive real number due to a successful early hit or a value with all bits set to one
otherwise, both cases are evaluated correctly by comparing the bit patterns of the
saved distance and the active ray distance as unsigned integers (line 49).

The combination of the presented techniques forms an efficient algorithm for large
packet traversal of coherent rays in a 4-ary BVH. The overhead of the traversal logic
is minimized due to the order and compaction look-up mechanism, and a culling
efficiency identical to the original binary BVH traversal is achieved by the combi-
nation of the deferred packet test of last resort and early hit pruning. The notable
advantages of the new algorithm are full vector utilization during early hit and early
miss tests and significantly reduced traversal steps resulting from the shallower hi-
erarchy.

3.3.2 Wide Vector Coherent Large Packet Traversal

This section discusses the idea of augmenting the WIVE single ray traversal ap-
proach with interval arithmetic (IA) culling and node ordering for packet tracing.

The recipe of the algorithm includes most of the ingredients of CLPT, as outlined in
the previous section, omitting a dedicated speculative early hit test with a single ray.
Instead, the first successful packet intersection initiates the speculative descent for
the remaining packets, if any, into the corresponding node. Accordingly, the active
ray tracking is replaced by first packet tracking for large packets. This is achieved
by means of a first packet index (FPI), initialized to the first element in the packet
list. Bounding box intersection starts with the FPI packet, and if a valid intersection
exists the remaining packets will be assumed to hit the node as well; otherwise, the
FPI will be incremented until either the first packet with a valid intersection is found,
which will continue traversal, or all packets have been tested, triggering a stack-pop
operation. The assumption is, similar to CLPT, that if packets have high coherence
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the result of a single packet correctly predicts the behavior of the remaining packets,
reducing bounding box tests considerably. Wrong predictions will drag uninvolved
packets down the BVH and increase the number of bounding box tests instead.

The change from look-up table to WIVE for node ordering and stack management,
combined with the simplified speculative descent, yields a more streamlined and
compact variant of CLPT with support for BVHs with large branching factors, named
WIVEC.

Listing 3.5 provides pseudo code for the WIVEC algorithm. The input variable pack-
ets is a list containing one or more ray packets (line 1). The interval ray is calculated
(line 3) to enclose all rays within the packets, with maximum and minimum values
located in the even and odd lanes for half width traversal or in separate registers
for full width traversal, respectively. If the current node points to a node cluster one
of the traverseCluster functions defined in Listings 3.4 and 3.2 is performed on the
interval ray (line 7), returning the sorted list of elements, where the first element is
extracted for continued traversal (line 8) and the remaining elements are stored to
the stack (line 9). The function is slightly modified (*) in the sense that it returns dif-
ferent stack elements compared to those illustrated in Figure 3.2c. Instead of a direct
reference to the child cluster, a reference to the parent node is stored, along with the
current FPI. The tmin value is not required because the intersection test is performed
for the first active packet only (lines 14 to 17) and deferred for the remaining packets
until they become the fist active, so there is no need for stack culling. If the current
node points to a primitive cluster, primitive intersection is performed (line 11), fol-
lowed by a stack pop (line 12). In the following loop (line 13) the current node is
intersected by the ray packets (line 15) and repeatedly replaced by a new node from
the stack until either the first valid intersection is found (line 16) or the bottom of
the stack is reached (line 13), i.e., no more stack elements exist and the traversal is
completed (line 19). The current method (line 15) returns the packet pointed to by
the FPI, and the next method (line 17) advances the FPI to the next packet. If only a
single packet is traversed, lines 14 and 17 can be omitted.

LISTING 3.5: Main traversal function for WIVEC.
1 def t r a v e r s e P a c k e t s ( node , packets )

s tack ← { }
3 ray ← packets . in terva lRay ( )

do
5 outerLoop :

i f ( node . i s I n n e r ( ) )
7 ( elems , num) ← t r a v e r s e C l u s t e r ∗ ( node . c l u s t e r , ray , s tack . top ( ) )

( node , packets . f p i ) ← elems [ 0 ]
9 s tack . push ( elems [ 1 :num] , num−1)

e lse
11 i n t e r s e c t L e a f ( node , packets )

( node , packets . f p i ) ← s tack . pop ( )
13 while ( node 6= s tack . bottom ( ) )

do
15 i f ( i n t e r s e c t ( node , packets . current ( ) )

goto outerLoop
17 while ( packets . next ( ) )

( node , packets . f p i ) ← s tack . pop ( )
19 while ( node 6= s tack . bottom ( ) )
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3.3.3 Results

The results for CLPT and WIVEC are obtained from the experimental setups familiar
from ORST and WIVE evaluation, respectively. The different hardware platforms do
not allow a direct comparison, however the two algorithms are not considered to
be competing methods since they provide same function for different types of data
structures, catering to different application designs. CLPT is evaluated first with a fo-
cus on large packets and maximum throughput given abundant coherence, followed
by WIVEC processing only single packets to demonstrate performance in situations
where only a small set of rays of high coherence is available.

TABLE 3.7: Results for primary rays. Pictures of the test scenes
are presented in Figures 3.5, 3.8 and 3.9. The measurements are
taken during a full camera fly-through with the total number of
frames listed below. The performance numbers include ray gener-
ation, traversal, intersection and simple shading. The resolution is

1280×1024 with 1 and 16 samples per pixel (spp).

SPONZA DRAGON FAIRY R8 HAIRBALL POWERPLANT

# triangles 66k 871k 174k 795k 2.9M 12.8M
# frames 4000 2600 3000 4000 2000 2600

Mray/s Mray/s Mray/s Mray/s Mray/s Mray/s
1 spp 16 spp 1 spp 16 spp 1 spp 16 spp 1 spp 16 spp 1 spp 16 spp 1 spp 16 spp

CLPT (AVX) 1192 1552 594 1247 819 1282 883 1362 178 452 583 1018
BVH2 (AVX) 655 736 427 717 493 636 577 752 113 212 286 424
Embree (AVX2) 349 383 293 409 322 385 387 463 110 161 250 307

Speed-up Speed-up Speed-up Speed-up Speed-up Speed-up
BVH2 1.8× 2.1× 1.4× 1.7× 1.7× 2.0× 1.5× 1.8× 1.6× 2.1× 2.0× 2.4×
Embree 3.4× 4.1× 2.0× 3.1× 2.5× 3.3× 2.3× 3.0× 1.6× 2.8× 2.3× 3.3×

The CLPT results are presented in Table 3.7. The measurements include ray gen-
eration, intersection and simple shading (dor product, no secondary rays), which
only amounts to a small fraction of the total run time. Embree is configured to use
packet traversal (BVH4Triangle4Intersector8ChunkMoellerNoFilter). The BVH2 entry
is a custom, optimized implementation of the original binary BVH algorithm [108],
the starting point for the CLPT design. Both algorithms coexist in the same code base
and use a tile size of 8×8 pixels. CLPT is able to outperform Embree significantly,
from 1.6× for the HAIRBALL at 1 spp to 4.1× in SPONZA at 16 spp. The algorithm
aggressively exploits the high coherence in the ray sets, saving many instructions
compared to Embree due to conservative early miss, speculative early hit and effi-
cient culling. This can be demonstrated in two ways, either by increasing the pixel
samples or by considering, for example, the HAIRBALL and SPONZA results. HAIR-
BALL is a chaotic model with many small triangles, while SPONZA has a number
of large surfaces composed of few triangles so that rays are more likely to hit the
same triangle. In both situations rays tend to have higher coherence, which shows
in the relative performance increase. The comparison of the HAIRBALL and SPONZA

results also brings up a limitation and a corresponding optimization opportunity
for CLPT, which shares the performance characteristics of the original binary BVH
algorithm: For scenes with very small triangles (compared to the tile size) perfor-
mance degrades disproportionately compared to Embree due to the overestimating
nature of the speculative early hit. In this case a switch from large packets to a
finer granularity could be beneficial. Comparing CLPT to its binary BVH ancestor, a
speed-up from 1.4× up to 2.4× is observed. For the first time, a 4-ary BVH traversal
for primary rays is demonstrated to be faster than the best competing binary BVH
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algorithm.

TABLE 3.8: Performance counters for the distance and sign traversal
order heuristics for coherent ray packets corresponding to the bench-
marks presented in Table 3.7. The total number of visited nodes and
intersected triangles for the distance heuristic relative to sign heuris-

tic is reported.

SPONZA DRAGON FAIRY R8 HAIRBALL POWERPLANT

Large packet
# nodes 100.2% 101.2% 100.6% 99.9% 100.1% 99.7%
# triangles 104.9% 102.7% 104.2% 99.9% 100.7% 100.6%

Both implementations perform exactly the same number of triangle intersections
because the traversal order produced by the sign heuristic is identical in both cases,
as is the culling efficiency due to the deferred packet test of last resort. At the same
time, CLPT requires less traversal steps due to the higher branching factor of the
4-ary BVH and also allows to efficiently vectorize the conservative early miss and
speculative early hit tests. Table 3.8 compares the distance and sign traversal order
heuristics according to the number of resulting traversal steps and intersection tests
for CLPT. Intersection tests are slightly reduced in case of the sign heuristic, while
traversal steps are about equal compared to the distance heuristic. The CLPT results
are similar to the single ray case in Table 3.6.

TABLE 3.9: Performance in million-rays per second (MRays/s) for
our WIVE coherent algorithm (WIVEC) and Embree’s hybrid traver-
sal based on AVX-512 implementations. The packet size is 4×4 pix-
els. An image is rendered at a resolution of 3840×2160 pixels using
primary rays. The camera perspectives in the scenes correspond to

Figure 3.5.

MAZDA SAN MIGUEL ART DECO POWERPLANT VILLA

# triangles[M] 5.7 10.5 10.7 12.8 37.5
AVX-512

WIVEC 555 533 796 472 337
Culling[%] 73 82 82 78 76
Embree 275 220 409 212 184
WIVEC[+%] 102 142 95 123 83

The WIVEC algorithm is evaluated next. The performance comparison data for the
WIVEC traversal and Embree’s hybrid traversal for primary rays is provided in Ta-
ble 3.9. To obtain a valid comparison WIVEC is executed on a single ray packet at
a time, thus exploiting coherence at the same granularity as the hybrid traversal.
The results demonstrate a significant and consistent speed-up of between 83% and
142% for WIVEC across all scenes. The culling statistics shown in Table 3.9 indi-
cate that the interval ray avoids between 73% and 82% of all node intersection tests,
partly explaining these impressive results. The other important aspect is reduced
code complexity resulting from the integrated culling and ordering technique. Since
only a single ray packet is processed at a time, conventional culling implementa-
tions would pose a significant overhead because amortization over a large packet is
not possible. The chosen high image resolution favors frustum culling methods due
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to high ray coherence. Less coherence would reduce culling efficiency and speed-
up accordingly. However, this is true for packet tracing in general. As an avenue
for future work fusing of WIVEC and hybrid traversal could prove beneficial to fur-
ther accelerate partly coherent ray packets such as those occurring for shadows and
specular effects.

3.3.4 Summary

The two algorithms, CLPT and WIVEC, presented in this section accelerate the traver-
sal of packets featuring structured coherence. Speculation and interval arithmetic
applied to the entirety of a ray packet scales the efficiency gains beyond the vec-
tor width. The novel algorithms build on an original packet traversal algorithm
designed for the binary BVH and extend it to support multi-branching BVHs. The
main difference between CLPT and WIVEC is the traversal order technique, resulting
in compatibility with either ORST or WIVE data strutures, respectively. For primary
visibility, the conducted experiments show that CLPT achieves an average speed-
up factor of 2.8× over Embree, which is the industry-leading ray tracing library.
In the case of WIVEC a speed-ups by between 83% and 142% are observed on an
Intel R©Xeon Phi

TM
CPU.

3.4 Conclusion

This chapter has introduced four novel algorithms for ray traversal through bound-
ing volume hierarchies, motivated by the observation that ray traversal performance
is fundamental to the design of any efficient ray tracing system. The overarching
approach for the design of these algorithms has been parallelization through vector-
ization, i.e., utilizing the vector capabilities of modern processors to profit the data
parallelism exposed through multi-branching BVH and ray coherence techniques.
Each of the algorithms, within their respective categories, define the current state-
of-the-art regarding traversal performance on CPUs as verified by experiment.

With the WIVE algorithm a fully vectorized formulation and implementation for
single rays and wide multi-branching BVHs has been introduced, which completes
the partial vectorization of previous approaches and improves upon scalability cor-
respondingly.

The ORST algorithm solves the problem of dynamic fragmentation of ray streams
due to front-to-back traversal ordering, increasing effective ray coherence and re-
ducing code complexity.

The pair of WIVEC and CLPT algorithms, based on an original algorithm designed
for binary BVHs, accelerate the traversal of ray packets featuring high coherence
compatible with multi-branching BVHs.

The manual vectorization exercised during the implementation of the traversal al-
gorithms, besides parallelization, has yielded highly optimized code in general. The
procedure shifts the focus from language abstractions towards instruction set archi-
tecture and data structures, which, in a feedback-loop with algorithm design, are
key to gaining access to the entire computational performance.
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Which of the introduced algorithms performs best is application dependent in gen-
eral. Ray streams and ray packets require the application to commit rays for traver-
sal in sufficiently large groups for efficient execution, preferably with an effort to
maximize ray coherence within groups. A design for rendering pipelines facilitat-
ing ray streams and packets is ongoing research [77, 2]. For applications traversing
only a small number of rays at a time, single ray tracing is most likely the fastest
and most convenient option. Sometimes, a modification or permutation of the tech-
niques discussed in this chapter may yield a new algorithm variant best suited for
the particular needs of the application.

Looking forward, it is unclear if major leaps in CPU-based ray traversal perfor-
mance can be expected, given the tight coupling and high degree of optimization
of the algorithms and their implementations presented here. A promising avenue
for dramatically improving ray traversal performance in the future are special pur-
pose accelerators in hardware, for example co-processors on the CPU die.
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FIGURE 3.9: Pictures of benchmark scenes rendered with the ORST
and CLPT algorithms using path tracing. The shading includes mate-
rials and textures, if available. From top to bottom, and with triangle
counts: R8 (795K), and BOEING (300M), courtesy of Boeing Corpora-

tion.
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Chapter 4

Parallel Bounding Volume
Hierarchy Construction

In this chapter a new algorithm for parallel construction of high-quality BVHs is in-
troduced. The quality of a BVH directly relates to the traversal performance achieved
by a given traversal algorithm and, thus, it is a key aspect in maximizing ray trac-
ing speed. Another key aspect is the BVH construction time, which is especially
important for dynamic applications where parts of the scene geometry change over
time, requiring a partial or full rebuild of the BVH in every frame. Constructing a
BVH with high quality requires more computation compared to a low-quality BVH
so that a trade-off must be made between speed and quality. On opposing ends
of the algorithm spectrum, the split BVH (SBVH) [97] produces the best quality
hierarchy on average, while the linear BVH (LBVH) [76] features the lowest con-
struction times. Conversely, SBVH construction is notoriously slow while the LBVH
yields poor traversal performance. The far inferior construction speed of the orig-
inal SBVH implementation compared to the LBVH is caused not only by the addi-
tional computation but more significantly due to the lack of parallelization. In the
following several parallelization techniques are introduced that make possible the
derivation of a new massively parallel SBVH algorithm. Initially, Section 4.1 de-
tails the SBVH algorithm in its original form to provide context and terminology.
Section 4.2 discusses the challenges associated with SBVH parallelization regarding
task scheduling, memory management and vectorization and the following Sections
4.3-4.5 present the corresponding solutions, respectively. Finally, Section 4.6 deliv-
ers experimental results and Section 4.7 concludes the chapter, which is based on a
publication by Fuetterling at al. [40].

4.1 Bounding Volume Hierarchies with Spatial Splits

This section introduces the SBVH algorithm [97] and establishes the terminology
used throughout the chapter. The structure of the SBVH algorithm is similar to
other divisive BVH builders. Initially, a single set of primitives exists (the parent
set) that is partitioned into two smaller sets (the child sets). Partitioning is repeated
recursively until the sets are small enough to form leaf sets. Along with every new
child set a node is created which is referenced by its parent node and holds the axis-
aligned bounding box enclosing all the primitives in the set. Once a set is turned into
a leaf the corresponding node (now a leaf node) references the remaining primitives
directly. As the SBVH is SAH-based, determining the partitioning with minimum
cost for a given set is required before the actual subdivision can be performed. Since
finding the exact partitioning with minimum cost is not feasible, an approximate is
computed by choosing a small number of samples and selecting the one with the
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lowest cost. The sampling is implemented in the form of binning, where the par-
ent bounding box is subdivided into n + 1 equally-sized bins by n equidistant axis-
aligned planes. The binning is performed for each axis separately.

The SBVH algorithm distinguishes between object binning and spatial binning. Dur-
ing object binning primitives are only considered as point-like elements defined by
the center of their bounding box, while spatial binning takes the full size of a prim-
itive into account. Thus, spatial binning requires a primitive to be split if it over-
laps one or multiple of the planes. While object binning produces partitionings that
have disjoint child sets which may have overlapping bounding boxes, spatial bin-
ning leads to partitionings with disjoint bounding boxes but possibly overlapping
child sets. Which binning strategy will result in the lowest cost partitioning is de-
pendent on the primitive constellation and cannot be foreseen. Thus, the approach
taken by the SBVH is to find the best object partitioning and, if the corresponding
child bounding boxes overlap by a certain amount, try to lower the cost further by
testing the spatial binning. This is a sensible compromise because splitting is an
expensive operation and increases memory consumption, while it is unlikely to im-
prove SAH cost if object binning yields spatially disjoint sets. The total amount of
splits during hierarchy construction is bounded by the split budget parameter. Once
the split budget is consumed spatial binning is disabled. The SBVH algorithm is
summarized in the following pseudo code:

1: stack[]
2: task← root
3: loop
4: loop
5: lea f Cost← CalculateLeafCost(task)
6: objCost← BestObj(task)
7: if task.childBoxes overlap then
8: spatialCost← BestSpatial(task)
9: end if

10: if lea f Cost is best then
11: createLeaf(task)
12: break
13: else if objCost is best then
14: (le f t, right)← PartitionObj(task)
15: else
16: (le f t, right)← PartitionSpatial(task)
17: end if
18: createNodes(task)
19: stack.push(right)
20: task← le f t
21: end loop
22: task← stack.pop()
23: if task is empty then
24: break
25: end if
26: end loop
A task contains all the information required to partition the corresponding set of
primitives. After partitioning, execution continues with one of the two resulting
tasks, denoted left and right, while the other is pushed to the task stack. Once the
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task stack is popped in an empty state, hierarchy construction is finished.

4.1.1 Primitive Fragments

Instead of working directly with the primitives (triangles in most cases), proxy ele-
ments called fragments are used. A fragment stores the axis-aligned bounding box
and a reference to the primitive it represents. Thus fragment data is sufficient for
the binning process and access to the full primitive structure is only required in the
event of splitting. Also splitting does not result in duplication of the primitives, just
copies of the corresponding fragments with refitted bounding boxes.

4.1.2 Binning

As mentioned previously, the parent bounding box is sliced into n + 1 equally sized
bins bi, i ∈ [0, n], separated by n equidistant axis-aligned planes pi, i ∈ [0, n − 1].
Each bin keeps track of the number and spatial extent of the fragments assigned to
it. The bin index i corresponding to a particular coordinate c is computed as i =
(c− parentmin) /planeDistance. In the case of object binning a fragment’s bin index
is derived from its bounding box centroid. Spatial binning requires two indices, imin
and imax, calculated from the minimum and maximum of the fragment’s bounding
box, respectively. If the indices differ the fragment overlaps all bins bi, i ∈ [imin, imax]
and requires splitting at every plane pi, i ∈ [imin, imax − 1], resulting in imax − imin
new fragments. The bounding boxes of the fragments are updated to tightly fit the
primitive they represent within their respective bin. After the binning procedure, the
SAH cost is evaluated for every pair of child partitions left and right to the planes
pi.

4.1.3 Partitioning

Performing the partitioning resulting from object binning is straightforward: for
each fragment the bin index is computed again and compared to the best plane
index ibest. If the bin index is smaller the fragment is moved to the left, otherwise
to the right set. Since the left and right counts are known from the binning, mem-
ory offsets can be computed to store the fragments of both sets in a continuous array.

In the case of spatial binning the procedure is slightly different: minimum and max-
imum indices are computed again and compared to the best plane index ibest. If
imin/imax is smaller/larger than ibest the fragment is moved to the left/right set. Oth-
erwise the fragment intersects the split plane and requires insertion into both sets.

4.2 Parallelization Considerations

The properties of the SBVH algorithm most relevant to parallelization are its classi-
fication as a divisive construction algorithm and its dynamically growing working
set due to the spatial splitting of objects. The implication of these properties are dis-
cussed in the following paragraphs with respect to multi-threaded execution.

Divisive algorithms repeatedly divide the working set into disjoint partitions, each
linked to an independent task as defined in the previous section. The tasks can be
processed by multiple threads in parallel without synchronization at maximum par-
allel efficiency.
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However, at the start of hierarchy construction, only a single task exists (the root
task) and with every subsequent level of subdivision the number of independent
tasks doubles. Consequently, a maximum of 2n tasks are available at level n. If the
number of participating threads is high, this initial bottleneck harms scalability con-
siderably since the amount of work is approximately constant at every level. For
example, a 256 thread CPU would start using 100% of its resources only from level
eight onward, yielding an overall efficiency of only 56% for a hypothetical balanced
16 level BVH.

Removing this bottleneck requires the implementation of shared task parallelism,
so that multiple threads can collaborate on the same task [105, 111]. A shared task
distributes its fragments among the participating threads which have a separate set
of bins each. The threads map their fragments to their local set of bins and a re-
duction operation at the end of the binning phase accumulates the local bins for the
global result and calculates per-thread offsets for the following partitioning phase.
Thus, shared tasks introduce synchronization points and additional bookkeeping
with detrimental effects on scalability. The impact on performance depends on the
ratio of fragments per thread: if it is very high (10000, for example) the impact may
be negligible but for low ratios (100, for example) it can be substantial. Hence, per-
thread exclusive tasks are preferable when possible.

However, exclusive tasks are not free from scalability pitfalls either due to their vari-
able computational cost. An imbalance occurs at the end of construction if not all
threads finish their final task at the exact same time because no further work can be
distributed to idling threads. This issue can be minimized by ensuring that tasks
with mostly homogeneous, small workloads remain towards the completion of the
BVH.

Further, since the generation of new tasks hierarchically depend on the completion
of previous tasks, a single large task can produce a global bottleneck: if a thread re-
quest a new task but the outstanding number of tasks is zero, then this thread may
have to stall until the large task completes and produces two new tasks. This situa-
tion is equivalent to the beginning of construction where only the root task exists.

Figure 4.1 gives an illustration of task dependencies and possible bottlenecks in ex-
treme cases. Initially, two threads are about to take on a new task each after com-
pleting a shared task (black dot). Thread 1 continues to work on task 1 and the
corresponding sub-tree (red circle) and thread 2 starts processing task 2 (green dot).
The key question is which task (3 or 5) thread 2 should continue with after task 2 is
finished, assuming that the time required for a task is proportional to the number of
its fragments and, without loss of generality, that task 5 is larger than task 3. Shown
on the right of Figure 4.1, the five possible extreme configurations of task sizes are:

a) Task 1 and its entire sub-tree take less time than task 2. Stall unavoidable.

b) Thread 2 chooses task 5, tasks 1 and 3 including their sub-trees are finished by
thread 1 after task 5. No stall.

c) Thread 2 chooses task 3 and its sub-tree while thread 1 gets task 5. No stall but
takes more time than b) to finish task 5.
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FIGURE 4.1: Example of a task dependency tree. Solid discs mark
individual tasks, circles represent the set of tasks corresponding to an
entire sub-tree. On the right, five examples illustrate the time lines
of the tasks as colored blocks arranged in double rows, matching the
corresponding task color on the left. The double rows correspond to
two separate threads. The various constellations are explained in the

text.

d) Thread 2 chooses task 5, tasks 1 and 3 including their sub-trees are finished by
thread 1 after task 5. Short stall.

e) Thread 2 chooses task 3 and its sub-tree while thread 1 gets task 5. Long stall.

Hence, in any of these cases, the best possible outcome is achieved when the larger
task 5 is prioritized. This corresponds to minimizing the maximum latency in the
task dependency chain.

In addition to task distribution, a second critical component for multi-threaded SBVH
construction is efficient memory management. For efficiency reasons, the fragments
of a partition are kept in an array of continuous memory instead of, for example, a
linked list. Splitting the partition without increasing the number of fragments pro-
duces two new partitions that fit again into the original partition’s memory as two
separate, continuous arrays. In the event of spatial splits, however, the number of
fragments increases and the available memory is no longer sufficient to host the two
new partitions as continuous arrays. With multiple threads, the original partition
can not safely grow its bounds to the left or to the right because other threads may
be working on neighbouring partitions. Thus, a straightforward solution would
be to dynamically allocate memory for the new partitions. Since splits happen fre-
quently and the number fragments increase recursively, this would lead to excessive
allocation which would waste resources and reduce scalability.

In the following, the aforementioned parallelization issues are addressed by new
approaches for task parallelism and dynamic memory growth.

4.3 Multi-thread Schedule

The multi-thread schedule proposed in this section introduces dynamic thread pools
and prioritized task exchange, two novel strategies for balancing BVH construction
based on the previous observations. Dynamic thread pools initially employ shared
tasks with the goal to create an equal work distribution among threads but strive to
permanently switch to exclusive task execution as soon as possible. For the dynamic
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load-balancing of exclusive tasks a lightweight lock-free mechanism is introduced
which allows prioritized on-demand sharing of tasks while maintaining the task
topology. Both contributions are generally applicable to divisive algorithms given
an appropriate task cost estimation.

0-3
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0-1

2-3

0 1

2 3

FIGURE 4.2: Visualization of the thread management. The numbers
represent thread identifiers. The root task is processed by all threads,
and after the subdivision the thread pool is split into two in propor-
tion to the left and right set size. The next subdivision performed by
threads 0 and 1 yields one very small and one very large set on the
left and on the right, respectively, so the left task is inserted into the
global task queue (implemented as a ring buffer) and both threads
continue with the right task. Once a thread owns a task exclusively
it switches to single-threaded execution. Dynamic load balancing is
performed by exchanging tasks on the global task queue as indicated

by the dashed arrows.

4.3.1 Dynamic Thread Pools

As mentioned previously, the goal of shared tasks is to allow fully multi-threaded
execution from the start of hierarchy construction. At the same time it is desirable
to minimize the number of threads processing the same task simultaneously and
quickly reach the threshold where every thread can work on a single task exclu-
sively. While the concept of shared tasks is not new itself [106], the proposed novel
scheduling mechanism optimizes the above constrain, permanently switching to ex-
clusive tasks as soon as a proper load balancing is established with the help of dy-
namic thread pools. Dynamic thread pools prevent the inherent risk of a permanent
switch, once the number of independent task is equal to the number of threads,
that the complexity of the individual tasks may vary widely, to the point where one
thread has finished the entire sub-tree belonging to its task, while another thread is
still working on the first subdivision, thus stalling the fast thread due to the lack of
more tasks. Figure 4.1a gives an example of this kind of bottleneck.

The idea of dynamic thread pools is illustrated in Figure 4.2. For the root task all
threads belong to a single pool. After the first subdivision the thread pool of size T
is split into two, with the number of threads in each pool proportional to the number
of fragments in the respective child tasks, according to the following equation:

Tl =

⌊
Nl

Nl + Nr
T + 0.5

⌋
, Tr = T − Tl ,

where Nl and Nr are the number of fragments of the left and right child tasks, re-
spectively, and Tl and Tr the number of threads of the corresponding thread pools.
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Both pools can now operate independently. This procedure is repeated recursively,
and once a thread finds itself to be the only one in the pool it permanently switches
to exclusive task execution. If the subdivision of a shared task yields one child task
with too few fragments to be assigned even a single thread, the task is inserted into
the global queue for exclusive tasks and the entire thread pool continues with the
larger child task. As a result, all threads will have tasks with roughly the same num-
ber of fragments upon switching from shared to exclusive task execution, creating
an initial equalized work distribution such that the demand for dynamic load bal-
ancing of exclusive tasks is kept to a minimum and the risk for stalls due to high
latency tasks is minimized.

4.3.2 Prioritized Task Exchange

Exclusive tasks are processed by a single thread only, thus avoiding any kind of
synchronization. However, dynamic load balancing requires that tasks produced by
one thread can be consumed by another. In addition, the task topology should be
maintained across thread boundaries so that post-order procedures can be applied
to the BVH hierarchy, such as leaf pruning.

In contrast to previous approaches, the novel algorithm does not classify tasks by
the number of primitives to push them either to a strictly local stack or to a shared
task pool. Instead, tasks are always placed on the local stack and exchange of tasks
is achieved with a global task queue storing task pointers, which is implemented as a
lock-free atomic ring buffer. The target size defines the number of tasks that should
be available from the task queue at any time, for which the base-two logarithm of
the thread count has been determined to be a good value. After subdivision of a task
into two child tasks, the thread continues with the child task containing the larger
number of fragments, i.e., higher cost estimation, and pushes the remaining child
task onto the local stack. The thread checks the number of tasks in the global queue
against the target size and inserts a task if necessary. Since the check is not atomic,
it may happen that the number of tasks in the queue increases above the target size
occasionally. Task insertion is always performed with a pointer to the bottom-most
task on the local stack. Upon insertion the task is marked as non-local. As soon
as post-order traversal of the local stack pops a non-local task, the traversal is ter-
minated and a new task pointer is fetched from the global queue. A place holder
containing the task pointer is pushed to the local stack. Once post-order traversal
returns to the place holder, the corresponding pointer is used to write a completion
notification to the original task on another thread’s local stack. If a fetch operation is
not successful because the queue is empty, the operation will block until a new task
pointer is inserted by another thread. Once all threads have entered the blocking
state hierarchy construction is almost finished and the threads are released with a
null pointer. In the final step the remaining non-local and place holder tasks on the
local stacks are processed until the post-order traversal reaches the root node.

The advantage of this approach compared to others [111] is that, on the one hand,
task sharing happens only on demand increasing data locality, and, on the other
hand, adapts the task size dynamically for optimal load balancing, with large task at
the beginning and small tasks at the end of hierarchy construction.
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4.4 Memory Management

In this section, a novel approach for recursively growing fragment buffers based on
dynamic pre-allocation with reinjection is introduced. This solution requires no syn-
chronization, retains a small memory footprint and, as a positive side effect, keeps
the split budget balanced over the entire hierarchy.

A SBVH implementation requires two types of dynamic memory buffers: the tem-
porary buffers, containing the fragments, need to support creation and shuffling of
elements, whereas for the output buffers, holding the BVH nodes and the primitive
lists referenced by leaves, it is sufficient to support only creation with the constrain
that elements are packed as tightly as possible in memory.

Space allocation for the output elements is implemented by simple atomic counters
that are shared among all threads. This is similar to previous approaches for BVH
construction without spatial splits. In order to reduce the frequency of atomic oper-
ations threads always allocate entire chunks of elements and manage such a chunk
with local counters. This mechanism is fast and lock-free, resulting in tightly packed
elements where a small amount of fragmentation can occur only in the final chunk
of every thread. The size of the output buffers can be conservatively estimated by
considering the number of input primitives and the size of the split budget.

The presence of spatial splits complicates the management of the temporary frag-
ment buffers considerably in a multi-threaded environment. The reason is that the
fragments need to be partitioned recursively and, due to the primitive splitting, the
combined size of the two child sets may be larger than the parent set. Thus, the new
memory management needs to be significantly more flexible compared to previous
approaches.
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FIGURE 4.3: Visualization of the fragment buffer management. A
and B on the left mark the two individual buffers forming the frag-
ment double buffer. The numbers on the right denote the hierarchy
level. At the root level buffer A is partially filled with the initial set of
fragments (shaded region), while the remaining free space can be con-
sumed by splits. After the first subdivision the child sets are aligned
to the left and right borders of buffer B and the free space in the mid-
dle is divided proportionally to the set size. This process is repeated

recursively on the child sets while alternating buffers A and B.

The key idea is to bind space in the fragment buffer to tasks, and recursively dis-
tribute this space among the corresponding child tasks as visualized in Figure 4.3.
Initially, the entire fragment buffer is allocated to the root task, where the input frag-
ments reside in the lower part of the buffer and the upper part provides free space
for primitive splits. During the partitioning phase the left and right child sets are
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created adjacent to the lower and upper boundary, respectively, growing towards
the center with the free space in between. The remaining free space is distributed to
the left and right tasks in proportion to the size of the respective child sets. Thus,
a task always includes the necessary resources for its processing and a thread ac-
quiring one of the tasks can directly access these resources without any additional
synchronization. As proposed previously [105], the implementation of the fragment
buffer features a double buffering technique, where the parent set resides in one
buffer and the child sets are written to the other buffer. After a subdivision source
and destination pointers are simply swapped. This way, read/write dependencies
that would exist in an in-place approach are eliminated, allowing all fragments to be
partitioned in parallel.

As a side effect of the proposed memory management the split budget is distributed
evenly among the scene geometry, avoiding the situation where excessive splitting
during the early part of the build process can drain the split budget for the later
part. However, if a scene demands highly non-uniform split densities, the balanced
distribution can be harmful. In this case the split budgets in low density regions
go unused while in high density regions insufficient split budgets prevent optimal
subdivisions.

To remedy this situation, another mechanism is proposed to reinject unneeded split
budgets back into the build process. Upon completion of a leaf task the remaining
number of splits are added to the reserve counter. The reserve counter is a global
state that is managed with atomic operations to allow sharing of the reserve splits
among all the threads. However, to reduce frequency of the expensive atomics, each
thread caches its reserve budget with a local counter and updates the global state
only occasionally. If spatial binning produces a partitioning that exceeds the split
budget provided by the corresponding task, a thread acquires the difference from
the reserve counters, where the local counter has priority over the global counter. If
the reserve budget is insufficient, the algorithm falls back to the best object partition-
ing. Once the split budget has been secured, the fragment buffer region bound to the
current task is not large enough to hold the fragments for both child partitions, so
that a new partition needs to be allocated for the smaller of the two child partitions.
At the initial allocation of the fragment double buffer, a part of the space is set aside
for this purpose, referred to as the reserve buffer. Allocations from the reserve buffer
are performed with an atomic counter, and once all the reserve space has been used
up the remaining tasks can no longer use the reserve mechanism. It would be pos-
sible to allocate additional space from system memory as the new buffer does not
have to be continuous with respect to the initial buffer, though this would be rarely
necessary. Since the per-fragment memory consumption related to the double buffer
is marginal (less than 1%), the reserve buffer can be large (e.g. twice the split budget).

Split budget balancing with reinjection combines the advantages of the purely bal-
anced and first-come-first-served principle. Each part of a scene is guaranteed a
relative amount of splits, while the unneeded budget can be shifted to high split
density regions.

Finally, in order to reduce memory bandwidth demands and overall memory con-
sumption,the fragment double buffer is replaced with a fragment reference double
buffer and the actual fragment data is kept in a separate memory region managed
by atomic counters in the same way as the output buffers. This is distinct from
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previous publications [97, 105]. Since the fragment data structure is 32 bytes in
size, whereas a reference occupies only 4 bytes, a total of 2 ∗ 32− (2 ∗ 4 + 32) = 24
bytes is saved per fragment. The bandwidth balance is also positive since each task
reads its fragments 2 − 3× and writes once. With references this amounts up to
3 ∗ (4 + 32) + 4 = 112 bytes per fragment while using the fragments directly would
result in 3 ∗ 32+ 32 = 128 bytes. In addition, significantly reducing the size of writes
from 32 to 4 bytes has the advantage of reducing DRAM access because, while reads
are potentially serviced from the cache, writes need to be flushed to DRAM eventu-
ally. The drawback of this approach is increased access latency due to the reference
indirection and inhibition of fragment hardware prefetching. However, experimen-
tal measurements have shown that for working sets fitting into the L3 cache perfor-
mance is equal for both buffering schemes, while for working sets larger than L3 a
total run time reduction of up to 35% with references is possible.

Interestingly, a very similar technique for recursively growing memory during spa-
tial split partitioning has been developed in parallel [42]. In contrast to the proposi-
tion made here reinjection is not supported and the layout of the memory buffer does
not keep the free space centered, resulting in unnecessary memory movement. As
future work, improve parallelization of the initial phase of partitioning is suggested,
which has been addressed in the previous section.

4.5 Vector Processing

The SBVH vector implementation utilizes AVX instructions for all compute intensive
parts of the algorithm, specifically for object/spatial binning/partitioning, primitive
splitting and SAH calculation. Very important for high vector efficiency is the data
organization of the fragments: a good fit is the AoS organization as the bounding box
requires six floating point values and one primitive index. By adding one padding
element the fragment fits an AVX register exactly:

xmin ymin zmin idx xmax ymax zmax pad

An SoA layout could avoid the superfluous padding element but would otherwise
complicate the binning and partitioning computation considerably. One of the most
common operations during binning is the union of two bounding boxes. With the
previous data structure this would require unpacking and a minimum/maximum
instruction on the lower/upper part. In order to calculate the union of two frag-
ments with a single instruction, it is proposed to use the convention to store the
negatives of the minimum values:

−xmin −ymin −zmin idx xmax ymax zmax pad

This way, a single maximum instruction is sufficient, operating directly on the data
structure without transformation.

In the following, the high level vector design of the binning/partitioning kernels
and separately primitive splitting are described, which has not been discussed in
literature before. Further implementation details are revealed by the source code
provided by Fuetterling et al. [40].
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4.5.1 Binning and Partitioning

Both binning and partitioning require the calculation of bin indices as described in
sections 4.1.2 and 4.1.3. Depending on the bin index of a fragment, the binning kernel
updates the count and bounding box of the appropriate bin while the partitioning
kernel appends the fragment index either to the left or right child partition. Thus, op-
erating on multiple fragments in parallel demands partly serialized scattered mem-
ory accesses. Since no hardware support is available for this kind of scattering mech-
anism, it is not obvious how to implement it efficiently in software. In fact, the initial
attempts have barely improved performance upon the scalar code at all. Previous
work has struggled with this problem as well [105], opting to utilize vector instruc-
tions inefficiently to parallelize over bins instead of fragments. Through experimen-
tation the following efficient design pattern has been determined to work well for
both binning and partitioning multiple fragments in parallel.

The basic idea is to divide the body of the loop over all fragments into a vector-
ized part for the bin index and a scalar part for the bin update. By interleaving the
vectorized part for iteration i + 1 and the scalar part for iteration i, both parts can
be processed in parallel as they utilize different execution ports of the CPU. Mov-
ing the first iteration of the vectorized part and the last iteration of the scalar part
out of the loop yields an efficient implementation illustrated in the following snip-
pet:

1: vector part start
2: for i = start to end do
3: vector part i + 1
4: scalar part i
5: end for
6: scalar part end

For both object and spatial binning two fragments are processed along all three axes
simultaneously, utilizing six out of the eight vector elements. In this case this is
faster than working with eight fragments, because the higher utilization would not
compensate for the additional data shuffle overhead. For the object partitioning,
however, only a single axis is of interest, so here the best approach is to process
eight fragments in parallel. Spatial partitioning only operates on one fragment at a
time because the more complex control flow diminishes the advantage of multiple
elements.

4.5.2 Primitive Splitting

The primitives considered here are triangles, so primitive splitting requires a triangle-
plane intersection test. Given an axis-aligned plane, the triangle-plane intersection
is computed by choosing the two edges of the triangle overlapping the plane and
calculating the corresponding line-plane intersection points. Processing the edges
can be performed in parallel utilizing two vector elements of an AVX register. In or-
der to profit from the remaining elements, multiple triangle-plane intersections are
necessary.

The first option is to intersect one triangle with one plane in each dimension, filling
only six of the eight vector elements. Further elements are wasted because a triangle
is not very likely to overlap binning planes in all three dimensions simultaneously.
The second option is to test four different triangles with four different planes. While
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this approach guarantees high utilization, the overhead of gathering the data from
many scattered locations would be quite significant.

4 5 6 7

4 4 5 5 6 6 7 7

... ...

FIGURE 4.4: Visualization of the triangle splitting. Numbers denote
planes, colors denote triangle edges. The squares represent elements
of a vector register and are colored and numerated according to the
edge-plane combination they process. The dashed lines indicate the

tight bounding boxes of the triangle within the respective bin.

A good balance is achieved by performing intersection of one triangle with four
consecutive planes along the same axis, as illustrated in Figure 4.4. This has the
advantage of keeping data access coherent and allowing all vector elements to be
utilized. Obviously, if the number of planes a triangle overlaps is not a multiple of
four the effective AVX register utilization is reduced.

4.6 Results

The evaluation of the new SBVH algorithm focuses on three aspects: overall per-
formance, parallel efficiency and the vectorization advantage. The overall perfor-
mance is measured by constructing BVHs for several test scenes and comparing
the timings to the parallel SBVH implementation of Embree [111] (version 2.7.1),
a high-performance ray tracing library developed by Intel R©. Both implementations
are configured to perform binning along all axes with 32 object bins and 16 spatial
bins, with the split budget set to 100% of the number of input triangles. Included
in the timings are all computations required to obtain a ray tracing ready BVH, in
particular the root bounding box calculation and triangle processing for accelerated
ray-triangle intersection. Also, both implementations output a 4-ary BVH which
does not alter the SBVH algorithm except for the node layout. The parallel effi-
ciency is evaluated by analyzing build times for varying thread counts and for vary-
ing scene sizes. Finally, the performance advantage is measured which is achieved
through vectorization of the binning/partitioning kernels and triangle-plane inter-
section implementations. For all experiments the hardware platform is a dual socket
Intel R© Xeon

TM
E5-2680v3 Haswell (24 cores / 48 threads total at 2.5GHz).

Overall Performance

The build performance is tested for six of the scenes used for the ray traversal bench-
marks in the previous chapter, i.e., Figures 3.5, 3.8 and 3.9. The results are presented
in Table 4.1. The new SBVH implementation demonstrates a significant speed-up
over Embree for all scenes, ranging from 66k to 300M triangles in size. Especially for
the smaller scenes below 1M triangles the new algorithm is between 5− 7× faster.
As demonstrated below, this is influenced to a large extent by the scalability of the
two implementations.
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TABLE 4.1: Overall performance with 48 threads for several scenes
depicted in Figures 3.5, 3.8 and 3.9, comparing the new SBVH im-
plementation and Embree. The splits row indicates the increase in

triangle count due to splitting for the new implementation.

SPONZA FAIRY R8 POWERPLANT HAIRBALL BOEING

# triangles 66k 174k 795k 12.8M 2.9M 300M
Splits 30% 17% 10% 16% 89% 10%

Dual socket Intel Xeon E5-2680v3, 32 object bins and 16 spatial bins
New 3.6 ms 7.8 ms 22.9 ms 537 ms 351 ms 12.6 s
Embree 26.3 ms 42.7 ms 153.8 ms 2724 ms 1266 ms 101.2 s
Speed-up 7.3× 5.5× 6.7× 5.1× 3.6× 8.0×

Dual socket Intel Xeon E5-2680v3, 32 object bins only
New 1.0 ms 2.5 ms 11.4 ms 55.5 ms 326 ms 10.4 s
Embree 4.5 ms 9.4 ms 28.7 ms 83.8 ms 416 ms 14.3 s
Speed-up 4.5× 3.8× 2.5× 1.5× 1.3× 1.4×

Also, for extremely large scenes such as the BOEING performance is high with re-
spect to Embree. This observation is attributed in one part to the reduced parallel
efficiency of Embree measured for large scenes (Figure 4.6) and in one part to our
bandwidth conserving reference scheme, as the highest speed-up of about 35%, rel-
ative to double buffering the fragments directly, has been observed for the BOEING.

Compared to the performance achieved by LBVH based builders on a Nvidia R©

GeForce
TM

GTX Titan GPU for a moderately sized scene such as FAIRY, the new
high-quality SBVH implementation lies within the reported range of 2− 9ms [67].

Parallel Efficiency

The parallel efficiency of the new SBVH implementation is analyzed in two ways,
once by keeping the primitive count fixed and scaling the number of threads, and
once by scaling the primitive count with all of the 48 threads active. Since the test
platform has only 24 cores but 48 threads the core count is multiplied by 1.3 if hyper-
threading (HT) is enabled. This multiplier has been determined experimentally by
comparing performance for one thread and for two threads pinned to a single core.

Figure 4.5 depicts the scaling factor as a function of thread count for all the test
scenes, together with the ideal curve. Up to about 10 threads (or 8 cores + HT) all
scenes exhibit ideal scaling. After this point parallel efficiency diverges from the
ideal curve and the graphs separate into two bundles. The smaller scenes includ-
ing HAIRBALL scale up to 26×, while POWERPLANT and BOEING achieve around
20× for all threads active. This behavior indicates that our SBVH implementation
is memory bandwidth limited since all the small scenes fit (almost) entirely into the
large L3 cache.

The situation becomes clearer by analyzing Figure 4.6. Here the number of triangles
is dynamically scaled at a fixed thread count of 48. At 10k triangles the problem size
is too small for the new algorithm to scale above 15× (total run-time is about 0.7ms).
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FIGURE 4.5: Scaling factor as a function of core count with respect to
the performance of a single thread. Results for all the test scenes from
Figure 4.1 are provided. If hyper-threading is enabled (two threads

per core), the core count is multiplied by 1.3.

The plateau of highest parallel efficiency (around 26×) is reached with slightly less
than 100k triangles and extends until about 2M. After that scalability rapidly de-
creases towards a steady state of 20×. This cliff is where the L3 cache looses its
effectiveness, which fits with the data from Figure 4.5.

The scalability of Embree exhibits a different behavior. For small triangle counts
parallel efficiency is significantly worse compared to the new implementation, but
improves for larger triangle counts until catching up at about 750k triangles. From
there, however, scaling continues up to the ideal of 32×. Contrary to the new algo-
rithm there is no cliff once the scene size exceeds the L3 cache. This indicates that
Embree is not limited by memory bandwidth constrains, but rather by computation
and/or memory and thread management.

In order to illustrate the load balancing characteristic of the parallelization frame-
work (Sections 4.3.1 and 4.3.2), Figure 4.7 shows the exchange events on the global
task queue for the construction of the POWERPLANT scene. For the largest part insert
and remove events are very sparse, with only about 10% ( 300 total / 6 per thread)
exchanges until 90% of the BVH is completed. For the last 10% of BVH construc-
tion the event rate increases exponentially due to the continued decrease in average
number of fragments per task. Hence, the load balancing works as intended: the
dynamic thread pool mechanism leaves each thread with a similar initial task size
upon switching from shared to exclusive task execution, reducing the demand for
task exchange. Only when the tasks become small at the end of BVH construction,
fine grained load balancing takes over to keep all threads busy.
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FIGURE 4.6: Scaling factor (1 vs. 48 threads) as a function of triangle
count based on the BOEING scene. Results for both Embree and our

implementation are provided.

Vectorization Advantage

For the evaluation of the AVX implementations described in Section 4.5 the results
are divided in triangle intersection test and binning/partitioning kernels for both
spatial and object variants. The speed-ups reported in Table 4.2 are relative to a
scalar implementation for either the intersection test or the kernels, respectively, and
include the full build process. For the kernels, the AVX version improves between
20% to 60% upon the scalar variant. The spread depends on the ratio of object to
spatial binning, since for spatial binning most of the time is usually spent in trian-
gle intersection and not in the binning itself. For triangle intersection, the results
vary considerably from scene to scene, from a significant 3.6× for HAIRBALL to a
mediocre 1.1× for BOEING. This is in line with expectations since the HAIRBALL ge-
ometry is predestined for excessive splitting while the BOEING and also the R8 have
high object/spatial ratios.

TABLE 4.2: Speed-up due to vectorization with respect to scalar code.
The results for the binning/partitioning kernels and the triangle-
plane intersection test are reported separately. For the intersection
test the average utilization of the vector registers is indicated (4 would

be 100%).

Kernels Intersection
Speed-up Speed-up Utilization

SPONZA 1.3× 2.6× 2.3
FAIRY 1.4× 1.8× 1.6
R8 1.6× 1.2× 1.2
HAIRBALL 1.2× 3.6× 2.8
POWERPLANT 1.4× 1.4× 2.7
BOEING 1.5× 1.1× 1.6



80 Chapter 4. Parallel Bounding Volume Hierarchy Construction

 1

 10

 100

 1000
E

ve
nt

s

Progress

Insert
Remove

FIGURE 4.7: Exchange events on the global task queue (logarithmic
scale) as a function of progress bins for the construction of the POW-
ERPLANT scene with 48 threads. Progress is measured as the number
of finished nodes at the occurrence of a particular event. The last bin

accounts for 72% of all events.

Noting that an AVX register has eight elements that theoretically allow an 8× speed-
up, the question is if a more efficient vectorization compared to the one presented
here is possible. Since the binning kernels are very compact, this would most likely
require hardware assistance for the gather/scatter operations. However, the trian-
gle intersection leaves some room for further improvement since not all the possible
strategies have been explored to efficiently saturate the vector registers.

4.7 Conclusion

In this chapter an efficient parallelization approach for BVH construction with spa-
tial splits, i.e., the SBVH, has been introduced. The scalability of the new algorithm
brings together low construction times and high quality hierarchies, where previ-
ously these two optimization targets have been strongly opposing each other.

For dynamic applications this makes possible the real-time processing of up to one
Million triangles in SBVH quality for the first time. Very large scenes with hundreds
of millions of triangles also profit tremendously with almost an order of magnitude
speed-up over previous approaches, potentially accelerating the workflow for CAD
modelling distinctly, for example. The high scalability of the new approach is based
on three contributions:

1. Multi-thread schedule

The schedule results from an analysis of the dependency chain produced by
BVH construction workloads and strives to minimize the use of shared tasks
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as well as latency bottlenecks among exclusive tasks. The schedule’s special-
ization allows light-weight and lock-free load-balancing compared to a generic
task-based parallelization scheme.

2. Dynamic memory management

A synchronization-free strategy for managing recursively growing memory
buffers due to primitive splitting in a multi-threaded context by employing
a heuristic for distributing spare memory among tasks. The technique is ap-
plicable to divisive algorithms in general given a suitable heuristic.

3. Vector processing

The introduced vectorized fragment processing and triangle splitting acceler-
ates the computationally intense parts of SBVH construction while avoiding
expensive gather / scatter memory access.

The experimental measurements show that the proposed SBVH implementation out-
performs the best available alternative by 3-8x and rivals the speed of fast low-
quality BVH builders. The results also indicate that for larger scenes system memory
bandwidth limits performance despite the suggested optimization regarding frag-
ment references. Hence, future work could focus on data compression for the BVH
construction process which would likely require hardware assistance.
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Chapter 5

Asynchronous Framework for
Distributed Computing

In the previous chapters, vectorization and multi-threading have been exploited to
maximize the rendering performance of a single shared memory computer. How-
ever, the scalability of vectors and threads is naturally limited by hardware archi-
tectural design, since shared, synchronized resources eventually form bottlenecks in
the system. The computational demand of real-time photo realistic rendering by far
exceeds the performance provided by any single shared memory system to date.

In contrast, a distributed system replicates many self-contained units with loose
coupling. One example of such a massively parallel system is a cluster with physi-
cally distributed memory. Cluster nodes and their cores can operate on local mem-
ory with low latency and high bandwidth, since memory coherence with respect
to other nodes and their cores is not required. A high-performance network serves
for explicit communication between nodes. Distributed memory architectures are
highly scalable as performance of individual nodes is not degraded by adding more
nodes. In practise, software limits the scalability of a cluster application. Efficient
algorithm design for distributed architectures is challenging due to the delayed and
explicit communication between nodes.

Parallel processing for a rendering task is possible by subdivision of the image plane
into multiple, independent tiles. A load-balancing algorithm must distribute tiles
among cores and combine partial rendering results to complete the final image. An
ideal load-balancing algorithm would generate exactly one tile per core, with all
cores finishing their computations at the same time. Unfortunately, such an ideal
load-balancing algorithm would assume that the execution time for a tile is known
a priori and that communication in the system is instant. One must keep in mind
that tile execution time depends both on the work load and a specific core’s per-
formance. Further, a tile cannot be sized to match a desired work load exactly as a
single sample represent a finite piece of work that is indivisible. A lower bound on
tile size is required to keep the ratio acquisition computation / rendering computation
minimal in practice. Imbalance in work distribution and latency in communication
lead to nodes and cores being idle, with idle phases increasing super-linearly with
core count. Various aspects of this problem have been addressed in the literature as
discussed in Chapter 2.6.4. All of he previously published approaches, however, fall
below the curve of linear scalability from a certain number of nodes onward. Based
on review of the literature and experimental analysis, the following shortcomings
are likely responsible for the observed sub-linear scalability:

• Synchronization: synchronization points that exist between different nodes,
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and, within a single node between different cores, can lead to significant accu-
mulated delays, even for fine-grained imbalances.

• Two-sided communication: communication over the network requires active
process involvement on the remote node. This requirement introduces a de-
pendency between the program states of the communication partners, causing
increasing delays with increasing number of nodes.

• Centralization: centralized operations between a single process and the entire
cluster, for example, tile assignment, prohibit parallel execution by multiple
nodes and may result in blocking.

Another source of inefficiency stems from the implementation of communication li-
braries that can drain a significant amount of system resources for processing and
copying of message data.

Here, a new approach is proposed based on one-sided and asynchronous commu-
nication performed in a partitioned global address space (PGAS) via remote di-
rect memory access (DMA) that can tolerate and absorb delays and latencies. This
approach makes possible the design of a delay- and latency-resilient distribution
framework for tile-based parallel rendering with the following properties:

• Asynchronous behavior: the framework operates fully asynchronously, al-
most all of the time, and it guarantees program correctness via weak synchro-
nization, ensuring that delays occur only in exceptional cases.

• One-sided design: The new algorithms adhere to a one-sided design paradigm,
where a node fully controls its own progress by communicating exclusively
with one-sided operations that do not depend on program states of other nodes.

• Decentralized approach: the tile conquest strategy is introduced for enabling
localized tile assignment that is independent of the number of nodes.

The framework is implemented using a light-weight zero-copy PGAS communica-
tion library as foundation, leading to negligible computational overhead.

5.1 Distributed System

In high-performance computing a distributed system typically consists of proces-
sors interconnected by a high-speed network, where a processor has access to local
memory only and communication with remote processors is managed by a network
interface controller. This arrangement allows distributed systems to scale, whereas
shared memory system scalability is severely limited by memory access serializa-
tion. In fact, as the number of cores increases, memory hierarchies of processors
are organized more like a distributed system (for example, recent AMD R© Zen and
Intel R© Skylake-SP CPUs). In most cases memory is provided as a single shared ad-
dress space but physically, memory is distributed leading to non-uniform memory
access (NUMA) characteristics. Several processors exist that expose separate ad-
dress spaces, for example, the Cell Broadband Engine [63], the Single-chip Cloud
Computer [54] or the KiloCore [18]. As the number of cores continues to grow and
monolithic chip size reaches physical limits, giving rise to novel multi-chip designs,
distributed organization can be expected to become prevalent for many-processor
systems and many-core architectures.
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5.1.1 Abstract Partitioned Global Address Space Machine

For the purpose of broader applicability and generality, the subsequently introduced
algorithms are formulated for a class of distributed systems, defined as the abstract
PGAS machine, as illustrated in Figure 5.1. All system architectures that are com-
patible with this abstract PGAS machine are targeted by the algorithms.

The machine consists of compute nodes, each having several compute cores and a
local memory segment directly accessible by all cores. A network connects the com-
pute nodes to form a cluster. Further, each compute node contains a direct memory
access (DMA) controller that can invoke data transfer between a node’s own local
memory segment and any remote memory segment, i.e., a remote node’s memory
segment. Hence, the union of all memory segments in the cluster form a PGAS.
DMA operations can be initiated by any core using the local DMA controller while
permitting asynchronous execution with respect to the initiating core or any other
core. Memory access of a compute core to local memory is assumed to be signifi-
cantly faster, in terms of bandwidth and latency, when compared to remote DMA
data transfers. The inter-connection topology of the network is preferably simple,
such as a grid or torus, exposing highly non-uniform memory access behavior with
respect to different remote segments. Hence, The performance of the memory ac-
cess depends on the distance, i.e., the number of hops, between the communicating
nodes.

One of the compute nodes acts as designated display node, and it is connected to
an output device, for example, a display or video stream. In addition, it manages
input commands. The display node initiates the rendering of frames and composes
partial results obtained from all other compute nodes into a complete image before
sending it to the output device. Parallelization of the rendering process is achieved
by subdividing the image plane into rectangular tiles and assigning the independent
work packages among the cluster’s nodes and cores.

5.1.2 Distribution Framework

Scheduling tile processing and movement of the associated data among compute
nodes and cores in a cluster is performed by an algorithmic layer referred to as the
distribution framework. It acts as the interface between a distribute memory system,
i.e., the abstract PGAS machine, and a tiled renderer. The basic algorithm follows
this procedure: A compute core acquires a tile, transfers the tile data to local memory,
updates the tile data and transfers the result to the display node. The display node
collects processed tiles and generates the composed, final image using the desired
output format. The performance of a distribution framework can be characterized
by two metrics, for example: (1) percentage of compute time spent on rendering, i.e.,
throughput, and (2) overall time between initiation and completion of a frame, i.e.,
latency.

An ideal distribution framework would employ all computational resources for the
rendering problem with a perfectly balanced work load. As a consequence, com-
munication would have to exhibit zero latency with zero computational overhead
to allow instantaneous, dynamic balancing. In addition, tiles would have to be in-
finitesimally small or sized adaptively to organize an identical amount of computa-
tion per tile so that all cores finish a frame at the same time.



86 Chapter 5. Asynchronous Framework for Distributed Computing

C

Local Mem

C

C

C

C

C

C

C

D
M

A

τl

τl

I/O

FIGURE 5.1: Distributed memory system with two levels of paral-
lelism. Left: The internal layout of a compute node has three blocks,
an execute block with several compute cores (C), a local memory
block and a communication block (DMA). Compute cores and DMA
have direct access to the local memory within a local shared address
space with latency τl ; only the DMA has direct access to remote mem-
ory with latency τr � τl , depending on the remote location and net-
work congestion. Remote memory segments are accessible through
a global partitioned address space (PGAS). Right: A cluster of nine
compute nodes, with each node attached to a router (gray) and a
torus inter-connection among routers. One designated compute node
(green) acts as display node managing user input and image output

(I/O).

Unfortunately, communication has a latency τr and tile assignment and data trans-
fers between memory segments delays computation, especially for compute nodes
having larger distances. Latency can also result from inefficient software design,
potentially introducing synchronization points and dependencies on remote nodes.
For example, a central entity responsible for distributing tiles to compute cores could
become congested when attempting to feed a large number of recipients simultane-
ously, leaving resources idle.

While small tile sizes are beneficial for balanced workload across cores, tile assign-
ment has a cost, in terms of computation and communication, which must be weight-
ed against the rendering cost of the tile. Maximizing computational throughout in
practice requires to maintain a minimum tile size.

Static load balancing avoids the limitations of the network by scheduling all tiles
at the beginning of a frame. However, knowing rendering cost of a tile a priori is not
possible. Frame-to-frame coherence can be used to estimate required computation
times of images to be generated by considering the observed computation times of
already computed images. However, generating computation time estimates and
re-sizing tiles to equalize workload is expensive and not exact.
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5.1.3 Experimental Realization

In the realization of the abstract PGAS machine for experimentation, compute nodes
become multi-core shared memory processors interconnected by an InfiniBand net-
work [56, 57]. Distributed memory parallelism is implemented according to the
GASPI specification [44] using the GPI-2 library [60]. In compliance with the de-
sign of the abstract PGAS machine, GASPI views the distributed system memory
as a partitioned global address space and provides one-sided DMA operations to
transfer data between shared memory partitions. One-sided DMA communication
is natively supported by the InfiniBand hardware. The cores of a processor are pro-
grammed using threads. The GASPI specification allows all threads of a processor
to post DMA operations concurrently, which are executed asynchronously by the
network adapter.

5.2 Tile Conquest

The tile conquest (TC) algorithm introduced in this section decentralizes load-bal-
ancing for distributed, tiled rendering. Scalability and data locality are the primary
design objectives for this algorithm in order to utilize a large number of loosely cou-
pled compute nodes for efficient parallel rendering.

The TC algorithm assigns locations in the image domain to compute nodes, with
each node to process the image neighborhood of its assigned location. Given the
compute density ρ (x) of the rendering operation across the image domain, the load
is perfectly balanced when

fi

∫
Ai

ρ (x)dA = f j

∫
Aj

ρ (x)dA i, j ∈N0 ∩ [0, N − 1] , (5.1)

where N is the number of nodes with associated image areas Ai. The factors fi nor-
malize differences in compute power between heterogeneous compute nodes; they
are not needed for a homogeneous set-up. The variable ρ (x) is likely to change be-
tween frames and, with data locality in mind, re-balancing is achieved by minimally
shifting the borders between adjacent areas to keep Equation 5.1 satisfied.

In practice, the image domain is discretized by rectangular tiles representing indivis-
ible work packages for the load-balancing process. It is not desirable to solve Equa-
tion 5.1 explicitly. Instead, the proposed implementation approximates the solution
implicitly using prioritized work-stealing between neighboring compute nodes. The
priority of a tile with respect to a compute node is defined by a distance metric.
The Euclidean distance between node location and tile centroid is used. A “virtual
network” connects each compute node with its closest neighbors for work-stealing
operations, allowing a matching simple network topology (for example, a grid) to
operate with the same efficiency compared to a more complex arrangement (for ex-
ample, a fat tree). Initially, tiles are distributed among the compute nodes according
to smallest distance. During rendering a compute node processes its local tiles in
order of increasing distance. Once a compute node has processed its local tiles it
“steals” from its direct neighbors, prioritizing neighbors according the number of
remote tiles still to be processed. Tiles are stolen from the selected neighbor (the
“victim”) in order of increasing distance, relative to the compute node’s position. A
compute node transitions to the next frame when no more unprocessed tiles exist in
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FIGURE 5.2: Tile conquest (TC) algorithm. Top: Image domain po-
sitions of four nodes shown as colored disks, with centers of tiles
shown as squares. Color indicates to which node a tile currently be-
longs to. The black diagonals crossing a node separate the image into
quadrants. Depending on the quadrant a tile falls into, it is assigned
corresponding queues. Tiles are sorted with respect to node distance.
Bottom: The queues for the four nodes are shown, with arrows in-
dicating neighbor connections for work-stealing. A local node pro-
cesses tiles in an “inside-out manner,” while neighboring nodes re-

move tiles from the opposite direction.
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FIGURE 5.3: Benefit of the introduced fully asynchronous distribu-
tion approach. This example shows two compute nodes supporting
four cores and the screen (middle) partitioned into four macro tiles,
where each macro tile is subdivided into four micro tiles. Tiles are
mapped to specific nodes and cores for a single frame n. The standard
approach (left) produces idle times shown as empty spaces, being a
consequence of latencies (yellow dots) and imbalances (green dots).
The asynchronous system (right) completely eliminates idle times by
processing overlapping macro tiles and seamlessly processing sub-
sequent frames, leading to near-perfect scalability. One-sided com-
munication and the tile conquest algorithm ensure that latencies and
imbalances remain extremely small and fully hidden with increasing

number of nodes.

its neighborhood.

In other words, a compute node with a low rendering load, relative to its neigh-
borhood, conquers tiles from adjacent areas and increases its rendering ”territory”.
If the balance shifts, the neighborhood node will reclaim the lost tiles. The dynamic
re-sizing of rendering territories results in a self-balancing load distribution while
keeping tiles localized around their corresponding compute nodes in the image do-
main. Tiles owned by a compute node tend to be clustered in both space and time,
thereby improving the locality of data access patterns and reducing network traffic.

Restricting tile exchange to the local neighborhood promotes data locality and makes
possible the use of simplified, specialized network architectures. In the proposed
implementation tiles can only do one hop per frame, i.e., to directly adjacent neigh-
bours. If there is a drastic change in workload in a compute node’s territory between
frames, there will be a possibility that the local neighborhood is insufficient in re-
establishing a global balance instantaneously. Multiple iterations of frames might be
necessary until all territories are properly resized. This situation reflects the limita-
tion of the algorithm, its “theoretical failure”, since the system looses its balance and
leaves resources idle. However, under the typical assumption of frame-to-frame co-
herence and only a moderate workload change between frames, this failure mode is
not reached and the system remains fully balanced. The amount of frame-to-frame
coherence also affects the locality of data access.

Tile conquest has similarities to diffusion-based load balancing [53]. In fact, the new
approach using nodes with an adaptive area of influence can be understood (in a
dual sense) as being equivalent to an approach using tiles diffusing (along −∇ρ (x))
towards underutilized nodes. However, while tiles move in an unrestricted manner
in the diffusion model, the TC algorithm keeps them localized, i.e., in a node’s im-
age domain neighborhood. Compared to previous work-stealing approaches [28],
stealing is allowed to be done only between neighboring nodes instead of choosing
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FIGURE 5.4: Distribution framework units and transitions for a sin-
gle compute node. The bold arrows represent network communica-
tion, pointing towards the nodes (local and/or remote) actively in-
volved. The color encodes the data flow direction, towards the local
node (light blue) and towards a remote node (light gray). The stan-
dard approach (left) in addition indicates latencies (yellow dots) and
imbalances (green dots) that lead to delays during transitions. The
asynchronous system (right) avoids delays by quadrupling resources
for the execute unit, segmenting fetch and retire units into two parts
and again duplicating all units except control for frame overlap. All
communication is one-sided only (in contrast to standard approach)
and triggered by the local node, except for command messages to the

control unit which are initiated by the display node.

a victim randomly. While this restriction is intrinsic to the proposed implementation
of Equation 5.1, it also makes more informed steals possible, i.e., steals with a higher
success rate, since the state of the neighbor nodes can be monitored easily. Finally,
the implementation of the TC algorithm is different from previous load-balancing
schemes as it relies solely on one-sided communication, discussed next.

The implementation of the tile conquest algorithm for the abstract PGAS machine
is based on two central data structures: tile headers and tile header queues. The
data structures reside in the partitioned global address space where they can be ac-
cessed freely by any node using one-sided atomic operations and asynchronous data
transfers executed by the node’s DMA controller. Tile headers contain the PGAS lo-
cation of the tile data, i.e., the pixel data, and meta information about the tile, as
needed. Each tile header is unique in the sense that only a single copy exists in one
local memory segment, making the corresponding node the unambiguous owner of
the tile. Tile headers are located in one of four sorted tile header queues per node,
depending on their centroids, see Figure 5.2. The queues extend in the intrinsic co-
ordinate directions (to the left, to the right, upwards and downwards) relative to a
node’s location, separating space into quadrants. Access to a queue is controlled
by an atomic variable having two fields for start and end indices defining the range
of valid tile headers. To obtain a tile header, a local node increases the start index,
acquiring tiles closest to its location, and a remote neighbor node decreases the end
index, acquiring tiles most distant from the local node’s location. Thief nodes priori-
tize queues depending on their relative positions to a victim node in order to receive
tiles close to their own locations.

Once a node has completed the processing of a frame n− 1, it broadcasts the number
of available tiles to its neighbors, thereby enabling steals for frame n. The node keeps
processing its local tiles, taking headers from the local header queues for frame n for
rendering, and inserts the finished headers into the local header queues for frame
n + 1, using an opportunistic insertion-sort method.
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As soon as a node’s local tiles are depleted (and possibly sooner though this is not
implemented), the node starts stealing; it steals from its neighborhood, using infor-
mation from previous steals and regular update notifications from its neighbors to
select a victim and a corresponding queue. If the steal succeeds, i.e., the selected
queue has remaining tiles, then the header data will be transferred, followed by the
tile data. If the steal does not succeed, the procedure will be repeated until no more
tiles are available in the neighborhood and the node transitions to frame n + 1. Fin-
ished remotely obtained headers are modified to reflect the new memory location of
the tile data, and are inserted into the appropriate local queue.

5.3 Asynchronous Tile Processing

With tile conquest, the previous section has introduced an algorithm for tile assign-
ment among compute nodes of the abstract PGAS machine. This section is con-
cerned with the details of asynchronous transfer of tiles and their asynchronous pro-
cessing on nodes with multiple compute cores. Instead of TQ, other tile assignment
strategies could be plugged into the distribution framework described here to bene-
fit from its asynchronous properties.

Since acquisition of a tile over the network is expensive, mainly due to τr (Figure
5.1), the two-level approach from Ize et al. [61] is adopted by clustering several mi-
cro tiles to form macro tiles. Nodes exchange tiles on macro tile granularity, while
the corresponding micro tiles are distributed among the compute cores using signif-
icantly less expensive work-stealing through shared memory with latency τl . Figure
5.3 illustrates the fundamental idea of an asynchronous distribution framework for
the two-level tile approach. Idle gaps in the execution pipelines are filled by en-
abling overlapped execution of multiple micro tiles, macro tiles and frames.

Figure 5.4 (left) shows a basic distribution framework in terms of functional units
and transitions between units on a compute node. The terminology adopted in the
following is reminiscent of CPU micro architecture to highlight structural similari-
ties. The control unit receives commands from the display node and coordinates the
compute cores accordingly. In case of a render command, a transition to the fetch
unit occurs where a macro tile is acquired and made available to the execution unit.
Within the execution unit, the micro tiles of the current macro tile are rendered by
multiple cores in parallel and, upon macro tile completion, the result is processed in
the retire unit and sent to the display node, followed by a new fetch/execute/retire
cycle. The following causes lead to the observed gaps in Figure 5.3 (left):

• Remote latency in the fetch unit

• Imbalance among cores in the execution unit

• Data transfer latency in the retire unit

• Imbalance among nodes and cores at the end of a frame

• False dependencies between nodes

An asynchronous framework design allows to hide latencies, absorb imbalances and
remove dependencies. The listed issues have been partially addressed in previous
work but never in a unified and complete way. Previously published results deviate
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FIGURE 5.5: Compute node task system. Task ID and retire ID define
the unit(s) that a core executes. Both IDs are obtained with a single
atomic increment of a shared multi-counter. The task ID counter is
reset at the start of a frame, while the slot-specific retire ID counters
are reset after retirement of the corresponding macro tile. The main
tasks are (1) fetching a new macro tile; (2) rendering a micro tile; or (3)
returning to the control unit. Additional tasks are PreFetch or Retire
(Global). The retire ID triggers Retire (Local) for a slot once equal
to the number of corresponding micro tiles (all micro tiles done). The
exemplary numbers show frame n with two macro tiles (64 micro tiles
each) and four cores, matching the control tasks. The Retire (Global)

is optional (’?’) except for the final task 134, completing the frame.

from ideal scalability, even for small numbers of nodes.

Here, the the basic framework is extended by increasing the capacity of its data
structures to hold multiple tiles/frames in flight and splitting the fetch and retire
units at latency-prone points to allow temporal separation of execution, as shown in
Figure 5.4 on the the right. In addition, false dependencies are avoided by relying
on one-sided network operations exclusively. The resulting behavior is illustrated in
Figure 5.3 on the the right. The motivation for this design is provided in the follow-
ing sections by discussing the details of the individual units. Coordination among
cores is performed by the task system, illustrated in Figure 5.5. Particular tasks are
“execute tasks” and “execute sub-tasks” that are related to and used synonymous
with macro tiles and micro tiles, respectively.
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Control Unit

The control unit coordinates the cores according to the commands received from the
display node. In particular, it initializes new frames and verifies the completion of
earlier frames. The first core to enter the control unit after completion of its local
frame in the execution unit is assigned the master role – see Figure 5.5 (frame n+1,
core drawing task 131); subsequent cores (tasks 132–134) may need to stall on frame
initialization waiting for the master. The master in turn may need to wait for com-
pletion of frame n-1 before proceeding to frame n+1 initialization, since the allocated
resources suffice for two frames in the pipeline only, see Figure 5.4.

Pre-fetch Unit

The macro tile distribution logic, including tile conquest, is part of the pre-fetch unit.
The tile header for the next macro tile is determined either from the local queues or
via a remote steal operation and, in the second case, the DMA transfer of the tile
header is initiated. The pre-fetch task aliases with an execution sub-task determined
by the pre-fetch distance, as measured via the last sub-task number of the current
macro tile. In Figure 5.5, the pre-fetch distance for tasks 32 and 95 is 64− 32 = 32 and
129− 95 = 34, respectively, as the pre-fetch distance may be adjusted dynamically
on a macro tile basis. A core for which the pre-fetch task is triggered first transitions
to the pre-fetch unit and, after completion, back to the execution unit to process the
corresponding execution sub-task.

Fetch Unit

The macro tile header delivered by the pre-fetch unit is processed by the fetch unit
to set up a new execution task in one of the four execution slots, see Figure 5.4. If all
slots are occupied, the unit has to stall until one becomes available. If the tile header
originates from a local queue, the render target is set to the immediately available tile
data buffer for accumulation. Otherwise, the unit performs the following actions: (1)
It stalls if the tile header transfer is still in progress; (2) it initiates the DMA transfer
of the tile data from the source PGAS location indicated by the tile header; (3) it sets
the render target for the macro tile to an intermediate buffer that is later combined
with the tile data in the retire units. Once the execution task is ready, the task counter
(determining the number of available tasks) is increased according to the number of
micro tiles, i.e., execution sub-tasks, plus one to account for the next fetch task. In
Figure 5.5, fetch task 0 increases the task counter to 65, and fetch task 65 increases
the task counter to 130 etc. Finally, a transition occurs either to the retire (global)
unit, if vacant, or back to the execution unit, otherwise, see Figure 5.4.

Execution Unit

The execution unit can hold up to four macro tiles in execution slots. Each micro
tile spawns a corresponding execution sub-task, and each of the sub-tasks may be
processed by any of the available cores in parallel. Even though a new execution slot
is filled only when all existing sub-tasks have been acquired, it is necessary to use
multiple slots since acquired sub-tasks complete out-of-order, depending on work
load. When a core has finished an execution sub-task and requests a new task, it
increments the task ID and the corresponding slot’s retire ID of the multi-counter,
see Figure 5.5. This approach makes it possible to track the completion of the macro
tile. The core to finish the last micro tile transitions to the retire (local) unit. While the
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retirement of finished macro tiles is fully asynchronous, it is still possible for stalls
to occur in the execution unit in case the fetch unit cannot deliver new macro tiles in
time.

Retire (Local)

In the retire (local) unit, a completed macro tile is detached from its execution slot;
the corresponding tile header is moved to the retirement buffer. If the macro tile
has local origin, the accumulated result of the rendering is available and the DMA
transfer of pixel data to the display node is initiated.

Retire (Global)

The retire (global) unit clears macro tile headers from the retirement buffer and
places them in the tile header queues for the next frame n + 1. Clearing involves
these steps: (1) for tiles with remote origin, accumulation of rendering results from
the intermediate buffer with the remote tile data when available, and initiation of
the DMA transfer of pixel data to the display node; (2) checking display node DMA
transfers for completeness. Once a tile header is cleared, it is insertion-sorted into
the appropriate tile header queue in frame n + 1. Since tiles may already have been
taken from the tile header queue, via a local pre-fetch in frame n + 1, perfect sorting
is not guaranteed (but not required either). The retire (global) unit is non-blocking.
A core will be able to transition from the fetch unit if the retire (global) unit is not
occupied by another core from a previous fetch, for example. This relaxed transition
is indicated by the question mark shown in Figure 5.5. However, the core that draws
the last control task – task 134 in Figure 5.5 – will stall and repeatedly enter the retire
(global) unit until the retire buffer is depleted, indicating the completion of frame n
within the node’s scope.

5.4 Results

The new algorithms are evaluated on a 60-node cluster, each node being an Intel R©

Xeon
TM

E5-2680v2 dual socket machine interconnected by QDR InfiniBand. An addi-
tional Intel R© Xeon

TM
E5-2695v3 dual socket machine serves as display node, with a

monitor and input devices directly attached. The rendering module performs single
ray traversal on a 4-wide bounding volume hierarchy (as detailed in Chapter 3) to
compute 8-bounce diffuse path tracing with one sample per pixel. The display res-
olution is 960×540 pixel, and macro and micro tile sizes are 32×32 and 4×4 pixels,
respectively. This rather small resolution (a quarter of the common HD resolution)
has been chosen to put an emphasis on strong scaling behavior. The results are
obtained from prerecorded virtual camera flights through three benchmark scenes,
namely the SAN MIGUEL, POWERPLANT and BOEING scenes (Figures 3.5, 3.8 and
3.9). In addition to a TQ evaluation, the distribution framework is tested using a
centralized macro tile assignment strategy, done similarly in other approaches like
the ones discussed in [61, 110], based on work-stealing from the display node (MA).
Due to the asynchronous, one-sided optimization the MA implementation has bet-
ter scaling behavior compared to previously published results. Two variants of MA,
one where all nodes are synchronized between frames (MA-F) and one where all
cores of a node are synchronized between macro tiles (MA-T), artificially prohibit
frame and tile overlaps in the rendering pipeline to demonstrate the corresponding
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impact on performance.

Since the test cluster is configured for normal batch execution, various management
and monitoring processes compete for CPU time with the rendering application.
Suspension of any rendering thread can stall the entire cluster when it remains in-
active for a time longer than twice the time required for a frame, which can be on
the order of a few milliseconds. In order to minimize the probability for such an
event to occur we do not use hyper-threads, thereby trading a significant increase in
throughput for reduced volatility of the results.

Figure 5.6 provides plots of the measured throughput in million-rays per second
(MRay/s). For all three scenes TQ is the most efficient algorithm, with an advantage
of 3.7%-13.7% over the second best at 60 nodes. MA and MA-F perform well but
increasingly deviate from TQ performance with increasing node count. The large
gap for the POWERPLANT scene is a consequence of network saturation as discussed
below. The benefit of overlapping tile execution becomes evident when considering
MA-T performance as it trails the remaining results by a significant margin, reaching
only 62.2% to 72.8% of TQ throughput.

Figure 5.7 provides insight into scalability for the SAN MIGUEL scene. Since POW-
ERPLANT and BOEING results are quite similar they are omitted in the graph. In-
stead, results are added for another distribution framework for real-time ray tracing
(TAMM) [98]. TAMM computes a static load distribution for a frame to be generated
next using predictions based on statistics of previously rendered frames, combined
with frame overlap. Similarly to TQ, this strategy avoids centralized communica-
tion – in this case any communication – during rendering. Different from the results
measured here, Whitted [115] ray tracing and not path tracing has been used as the
rendering method, which allows more accurate predictions by a static load balancer.
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Compared to its competitors, TQ’s scaling behavior is qualitatively different. While
the throughput per node decreases for MA, MA-F and TAMM with increasing node
count, the TQ strategy allows nodes to gain additional throughput as their number
grows, resulting in super-linear scalability for TQ, which is explained by increas-
ing cache efficiency. Adding more nodes effectively shrinks the working set of an
individual node, and TQ’s temporal stability of load balancing make possible the
reuse of cached data between frames. This effect is significant despite the complex
and poorly localized memory access patterns intrinsic to path tracing. TAMM also
reports super-linear scaling behavior for its ray tracing core. However, in contrast
to TQ, TAMM’s overall rendering process remains well below linear scalability and
trails the baseline MA and MA-F algorithms.

TABLE 5.1: TQ rendering scalability for a sphere entirely contained in
cache. (Corrections applied to original result to account for additional

computation due to tile exchange)

Node Number 8 18 28 45 60
Performance[%] 99.2 99.3 99 98.8 98.9
With Correction[%] 99.9 99.8 99.9 99.9 99.8

In order to isolate the caching contribution from the fundamental scalability of TQ,
the following synthetic benchmark scenario is used: a triangulated sphere, with a
memory footprint within per-core L2 cache size, is rendered from within. Linear
scalability behavior can be expected for this uniformly demanding rendering task
but no super-linear cache effects. Linear scalability is confirmed by the results pro-
vided in Table 5.1. The small “corrections” applied to the measured values account
for the additional computations required for exchanging ∼1 tile/node/frame when
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stepping from one to multiple nodes.

Figure 5.8 shows overall latency of a frame, i.e., the time needed from an initial
rendering command until the completion of a frame in the display node’s memory.
This time is different from the inverse frame rate due to frame overlap, which al-
lows for two incomplete frames to be present in the rendering pipeline. The results
are normalized by MA-F latency which has frame overlap disabled. The relative
latency of TQ increases linearly with increasing node number, indicating a higher
degree of frame overlap. MA’s increase is also linear but exhibits a smaller slope.
TQ utilizes overlapping more aggressively to reach maximum throughput. The re-
sults for the POWERPLANT scene are somewhat different, where both MA and MA-F
are network-limited for more than 28 nodes – while TQ continues to scale.

Network limitation becomes evident in Figure 5.9, showing the consumed band-
width of the algorithms in gigabyte per second (GB/s) for the POWERPLANT scene.
MA reaches the maximum display node bandwidth of 3.4GB/s at 60 nodes. Scalabil-
ity already starts to degrade at 18 nodes and above: not only the bandwidth but also
the message rate approaches the limits of the display node network link. The result-
ing network congestion introduces transfer delays that propagate into the rendering
pipeline and lead to idling cores that wait, for example, for the next tile header to
arrive. The bandwidth consumed by TQ is significantly reduced compared to MA
and better distributed due to the direct neighbor communication.

Figure 5.10 summarizes overall idle time of the cores during a benchmark run in
parts per million of total execution time. Idle times occur due to unresolved depen-
dencies, i.e., data from the network or progress of other cores. Idle times increase
linearly with increasing node count in most cases, shown as logarithmic curves. De-
viations are a result of network congestion since data latency can no longer be fully
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hidden by the distribution framework. TQ idle time is significantly below the cor-
responding MA times and exhibits a smaller slope. For the MA framework and
POWERPLANT scene, idle times rise considerably, when going from 18 to 28 nodes,
and even TQ is affected slightly for 28 nodes and above due to message rate conges-
tion.

The results document that tile conquest can optimally scale rendering throughput
for large distributed systems with many nodes. Super-linear behavior emerges when
data sets no longer fit into a single node’s cache. Network traffic is reduced consid-
erably and better distributed among network resources, allowing TQ to continue
to scale while performances of competing distribution frameworks saturate. The
negative impact on frame latency is exhibited by all methods making use of frame
overlap. Mitigation is possible by allowing tiles to adapt in size for a homogeneous,
uniform work distribution, which is an important avenue for future research.

TQ draws its strength from frame coherence and localized communication; however,
this can become a disadvantage for drastic changes in rendering load. Prompt and
precise adaption to rendering load could be accomplished, for example, through dy-
namic association of nodes with screen-space. As a consequence, the currently static
grid would become a dynamically deforming grid based on screen-space load dis-
tribution. This aspect is another possible future work direction, complementing an
adaptive tile strategy. Another remaining challenge concerns dynamic, distributed
scene management on distributed systems that could potentially benefit from an ap-
proach similar to tile conquest.

5.5 Conclusion

With a focus on scalability and real-time application this chapter has introduced
a distribution framework for parallel tile-based rendering. It is designed to opti-
mally adapt to the constrains of a large distributed system with a partitioned global
address space. The scalability of the new approach more closely reaches optimal-
ity compared to previously published results and, for the first time, demonstrates
super-linear behavior for the entire rendering process, observed consistently for a
large ranges of nodes in a path-tracing experiment.

The strengths of the framework are based on two main contributions: (1) the focus
on one-sided and asynchronous communication strategies and (2) the tile conquest
algorithm for inexpensive and data locality-preserving load-balancing. As a con-
sequence of an aggregate cache effect, the efficiency of one node increases with in-
creasing number of nodes in the cluster. With the unprecedented scaling behaviour
exhibited by the new distribution framework significantly higher performance and
quality levels can be achieved simply by increasing the cluster size.

By refining the approach further, based on the ideas expressed in the Results section,
it should be possible to increase algorithmic efficiency and prevent performance
degradation in edge cases.
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Chapter 6

Application and Integration

In this final chapter, a real-time global illumination application is presented that is
built on top of the ray tracing kernels researched and developed throughout this
dissertation. The application is intended as an example to demonstrate one of the
many possible usage scenarios of the ray tracing kernels, their scalability and their
integration.

The utility of the application is the presentation and editing of large CAD scenes
based on triangular meshes. According to the intended work flow, a scene is loaded
from file and explored interactively in photo-realistic quality. The look of the scene
is adjusted as desired by modifying lighting and material and removing erroneous
or superfluous geometry. Finally, after saving the scene as configured back to a file,
the result can be presented interactively or images from different views can be ex-
ported to be used in a presentation, for example. This work flow has been applied
to prepare some of the benchmark scenes employed for the experimental results of
the dissertation (R8, BOEING).

Figure 6.1 provides a structured view of a general rendering application in the form
of three main modules. The logic module defines the functionality of the application,
i.e., what can be done with it. For example, a game would implement its set of rules
and goals, the exemplary application would implement everything needed to sup-
port the pre-described work flow. The part of the logic intended for user control
is exposed through the user interface. The rendering module produces images as in-
structed by the application logic and feeds the result back to the user interface.

The illustration of the rendering module in Figure 6.1 is further structured into sub-
modules. The GI sub-module contains the rendering or light transport algorithm
solving the rendering equation to the desired degree, which is assumed to include
global illumination in this context. The scene sub-module contains the scene descrip-
tions such as geometry, lights and materials. Light-material interaction is defined
by the shaders. Resulting from the research in this dissertation is the essential kernel
[71] sub-module, which provides parallel ray tracing and load balancing to the GI
algorithm.

In the following, the different modules are explained in detail along with the ex-
emplary application, followed by a look at how the kernel enables the application to
scale over several devices and a final conclusion.
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FIGURE 6.1: Structure of the exemplary application represented by
three main modules (user interface, render module, application logic)
and three sub-modules (Kernel, GI, Scene). The shaders are part of
the GI sub-module but specific materials are defined by the parame-
ters provided by the scene module. Interaction with the user interface
triggers the application logic (1), which translates the the user inter-
action, for example, into a change of camera position or geometry.
This change is applied to the scene (2), which initiates a new frame
to be rendered (4) and optionally communicates changes to geometry
and lights or materials to the Kernel (5) and shaders (3), respectively,
in order to update the internal data structures accordingly. During
rendering, the GI implementation repeatedly requests new tiles (6),
traces the corresponding rays (7) and commits the finished tile (8).
The load balancing and ray queries are managed transparently by the
kernel, which makes intermediate and final image results available to

the user interface (9).

6.1 Application Logic and User Interface

This section describes the exemplary application in terms of usability and function-
ality. The application logic is supposed to enable the work flow as sketched in the
introduction, exposing the corresponding controls via the the user interface, cap-
tured in Figure 6.2.

The viewport window shows the rendered scene, which can be navigated by rotat-
ing, translating and zooming the virtual camera in real time. The panel on the right
side shows one of three different tabs. The Main tab is sectioned into three blocks,
the control block providing loading, importing and saving of scene data as well as
exporting of the current rendered frame as an image and choosing the particular GI
implementation (pt, for example). Also, the settings and HDR block allow to adjust
the rendering quality parameters, which are discussed later.

The image presented in the main window in Figure 6.2 appears slightly noisy, be-
cause the rendering of the image is ongoing, as indicated by the progress bar at the
bottom of the panel. Progressive refinement of the image allows to navigate quickly
even on slower systems, while the full image quality materializes within a few mo-
ments after the camera stopped moving.

Important for the work flow is the Material tab, shown on the right side of Figure 6.2.
Here, shaders (Phong, for example) and material parameters, such as diffuse color or
texture (Diffuse), specular color or texture (Specular), glossiness (Glossy), weighing
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FIGURE 6.2: User Interface of the exemplary application. The camera
can be zoomed, rotated and translated using the mouse. The progress
of the image refinement is indicated by the progress bar, which is at
0%, meaning that so far only a single sample per pixel has been com-
puted. The Main and Material tabs allow to change the render settings

and material parameters, respectively, as described in the text.

between diffuse and specular contribution (Mix) and the index of refraction (IoR)
can be adjusted. New materials are created by pressing New and selected materials
are assigned based on mesh IDs (OID,GID) or primitive ID (PID) using the respective
Apply button. A primitive and its corresponding materials and IDs can be selected
by picking it directly from the main window.

FIGURE 6.3: Altering visibility based on material, mesh or primitive
granularity interactively.

An important feature is the visibility option for each individual material in order
to support fast exploration of a scene. Removing the tick from the check box next to
the material name in the material list instantly fades out all corresponding geometry.
This is demonstrated in Figure 6.3 with the BOEING model consisting of 300 Million
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FIGURE 6.4: Using dynamic masks for delete. Removed geometry
(red) can be restored at any time.

triangles: the outer hull and framing are removed, revealing pipes, wiring and the
interior of the cockpit.

Often, CAD data contains erroneous or superfluous geometry introduces during au-
tomated generation or processing of the data. Such geometry can be removed from
a scene by assigning it a special ”delete” material which is invisible by default. Ge-
ometry deleted by mistake may be recovered by changing the visibility of the delete
material and re-assigning the original material to the geometry parts in question.
Figure 6.4 shows in red the material deleted from the original BOEING CAD data in
order to obtain a ”camera-ready” version.

Usability

The usability of the exemplary application critically depends on the speed of the ren-
dering process. Noticeable lag between input and visual response makes navigation
in the scene imprecise and tiresome, thus reducing productivity.

Still, it is desirable to have the application function reasonably well on moderately
powerful systems such as a laptop, not only on scarcely available clusters. This is
made possible by using iterative refinement of the rendered image: the display is
continuously updated as the rendering progresses, showing a quite noisy represen-
tation of the scene in the beginning which quickly improves in quality with each
additional iteration. The advantage is that the application remains responsive even
though the system is only capable of rendering just a fraction of the full image in
real-time. If the camera moves, the refinement of the current frame stops and the
next frame starts from scratch. The ease of navigation remains mostly intact despite
the reduced quality intermediate images.
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Table 6.1 lists a qualitative evaluation of working with the R8 scene on three different
platforms: a laptop, a workstation and a cluster. There is a significant discrepancy
in computational complexity between an inside view and an outside view of the R8
because inside the car ray paths become much longer on average and thus are more
expensive.

TABLE 6.1: Qualitative evaluation of working with the exemplary ap-
plication and the R8 scene on different devices. Depending on the
device, a different combination of traversal algorithms are active, as
noted. Navigation is defined in terms of smoothness, i.e., if there is a
noticeable lag between mouse movement and the visual response of
the initial rendering iteration. Final image indicates the time frame re-
quired to complete all of the 256 refinement iterations. A distinction

is made between inside and outside views of the car.

Device Laptop Workstation Cluster
Microarchitecture Haswell Knights Landing Sandy Bridge
Cores/Threads 2/4 68/272 1200/1200
Traversal CLPT/ORST WIVEC/WIVE CLPT/ORST

Navigation
Outside Slight lag Smooth Very smooth
Inside Extreme lag Slight lag Very smooth
Final image
Outside Few minutes Few seconds Below second
Inside Several minutes Several seconds Few seconds

Navigation is rated by how fast the application responds with a single iteration im-
age during camera movement (see Figure 6.2). The cluster has no difficulty with
either inside or outside views and always delivers a smooth experience. The work-
station also allows smooth navigation outside the car but produces small but notice-
able lag between input and output from inside. Even with the laptop working with
the scene from outside is mostly pleasant, however from inside extreme lag makes
navigation very jerky and tiresome.

After the camera stops moving, the refinement of the image continues for 256 it-
erations after which visual noise has mostly disappeared. The cluster finishes an
outside view usually below one second while an inside view take a few additional
seconds. The workstation also stays within the ”seconds regime” but tends to get
close to a minute for an inside view. The laptop requires quite a bit more time which
limits its usability. For productive work sessions at least the performance of a work-
station is required.
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6.2 Rendering Module

The rendering module delivers rendered images to the application for presentation
in the viewport window. It also provides the load balancing required for multiple
threads and nodes so that different devices are transparently supported.

6.2.1 Scene

The scene sub-module contains all the data of the scene description, such as geome-
try, materials, light sources and cameras.

The geometry is represented by an indexed triangle mesh so that a single vertex
can be shared by multiple triangles. The properties of a vertex include position,
surface normal and texture coordinates. Triangles contain three indices to vertices
defining the triangular face in a counterclockwise orientation and three IDs: mate-
rial ID, mesh ID and object ID. Mesh and object IDs allow grouping of triangles into
aggregate surfaces and objects for interacting with the scene.

The material ID is a reference to a material definition which is composed of a fixed-
function shader type and corresponding parameters and texture maps. The shader
types implemented in the exemplary application’s global illumination algorithm in-
clude phong for diffuse, glossy and perfectly reflective materials, glass for transparent
materials [93] and light for emissive materials [95]. An environment light can be de-
fined for the scene in addition to emissive surfaces. This can either be a constant
color or an environment map, for example, a HDR photograph [81, 27].

The scene sub-module interacts with both the GI and kernel sub-modules, providing
surface properties and light sources for path generation as well as scene geometry
for BVH construction, respectively.

6.2.2 Global Illumination

The global illumination algorithm implemented in the exemplary application is uni-
directional path tracing. Paths start at the camera origin and are subsequently ex-
tended at surface intersection points. Depending on the surface material paths are
either reflected or transmitted. If both events are possible either one is selected by
a random draw with weights determined by a proportionality constant (Figure 6.2,
Mix). For glossy and diffuse materials the outgoing path direction is importance-
sampled according to the material’s BSDF.

In addition to the material sample a light sample is taken into the direction of a ran-
domly chosen area light source [95] or into the direction obtained from importance-
sampling the environment map [81, 27]. The light sample cannot be further ex-
tended: if a clear line-of-sight between light source and surface point exists the light
contribution counts, otherwise the light sample is dismissed. The material sample
and the light sample are combined using multiple importance sampling [103, 101].

The path is terminated either if a light source is hit directly or randomly by "Russian
roulette". Russian roulette is an unbiased technique to reduce the average length of
a path. After each sample, a random number is drawn and compared to the path
throughput or a parameter (Figure 6.2, rr): if the number is above the threshold the
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path is terminated [7]. An absolute limit on the number of extensions (Figure 6.2,
bounces) ensures that the path length cannot grow indefinitely if Russian roulette
fails to end the path.

Ray Management

Taking advantage of ray coherence necessitates a strategy for ray management since
multiple rays must be processed in parallel, which, in turn, demands a separation
of the rendering pipeline into distinct stages. Each phase consecutively operates on
the same ray stream and stores intermediate results in buffers.

In contrast, for single ray tracing, initiating and obtaining the result of an oper-
ation is sequential. For example, in order to compute the color contribution of a
surface point within the corresponding material shader, a light sample can be gen-
erated and immediately evaluated, subsequently followed by the completion of the
material shader using the obtained lighting result. For a ray stream approach, the
material shader must be split into two stages and the light sample traced in between
a third stage in order to process multiple rays together.

The exemplary application is designed for ray stream processing from the ground up
to support traversal algorithms that exploit ray coherence. For single ray traversal
algorithms the stream approach is maintained by traversing each ray in the stream
sequentially. This approach can be compared to the concurrent work of [2]. The
main difference is in the data organization, which uses the structure-of-array format
instead. While their work focuses on coherent shading where the structure-of-array
format is optimal, this dissertation focuses on coherent traversal where the array-
of-structure format simplifies loading and storing complete stream elements, i.e.,
rays. Coherent shading is not supported by the exemplary application, even though
shaders are implemented using vector instructions on a per sample granularity. A
recent approach for exploiting coherence throughout the entire rendering pipeline
in a production path tracer is presented by [77].

In practise, for each tile, the exemplary application performs a coherent packet traver-
sal for the camera rays initially. For every camera ray with a valid surface intersec-
tion the shading stage generates a fixed number of extension and light rays and
puts them into two separate streams, respectively. This arrangement supports a
technique called splitting [7] if the fixed number is larger than one (Figure 6.2, sps).
Splitting in this case reuses camera rays to generate multiple paths more efficiently.
The light ray stream is traversed first and the contributions accumulated for the
corresponding paths. Then, the extension ray stream is traversed, followed by the
shading stage. Depending on the outcome of Russian roulette, the shading stage po-
tentially generates one new extension ray and one new light ray per shaded sample,
which are put into their respective streams again, replacing the previous ray data.
The stream processing is iterated until either the extension stream becomes empty
or the maximum number of iterations, i.e., bounces, are reached.

6.2.3 Kernel

The kernel abstraction encapsulates all the complex algorithms and corresponding
data structures developed throughout this dissertation and exposes a minimal inter-
face to support global illumination rendering based on ray tracing.
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The main operation of the kernel is processing ray queries via the trace* functions,
providing global access to the scene geometry at any step of the rendering algorithm.
Depending on its type a query returns either the closest or any intersection point for
the given ray, supplemented by further data such as surface identifier, texture coor-
dinates, etc. Multiple variants of trace*, i.e., traceSingle, tracePacket and traceStream,
support queries of single rays, packets and streams, respectively.

Prior to rendering the kernel is initialized with the scene geometry, which triggers
the kernel’s BVH construction algorithm. Any changes to the scene geometry must
be communicated to the kernel in order to keep the internal BVH synchronized.
The kernel integrated into the exemplary application supports two different update
mechanisms: either, for changes to the visibility of the geometry, the update pro-
ceeds with the dynamic mask algorithm described below, or, for general changes to
the geometry, a full rebuild by the BVH construction algorithm is initiated. In gen-
eral, many applications perform changes to the scene geometry which only occur
within a small region compared to the full scene, where it is more economical to par-
tially rebuild or refit the existing BVH.

The kernel also manages load balancing for multi-core and cluster setups transpar-
ently through the getTile and commitTile semantics. A thread requests an image tile
for rendering which it then processes without further synchronization requirements.
Following completion of the tile the result is committed back to the kernel. Once the
kernel has allocated all tiles for the current frame it initiates the transition to the next
frame so that new tiles become available. Once all allocated tiles for a frame are
committed the kernel releases the finished image to the application. If activated, the
kernel also updates and maintains the accumulation buffer.

The accumulation buffer allows to progressively refine the rendered image. In the
first iteration, only a single primary sample is computed per pixel and the resulting
image is presented on the screen. The following iterations produce additional sam-
ples and accumulate the corresponding colors per pixel. After each iteration, the
accumulated pixel values are normalized, i.e., averaged, in order to produce an up-
dated image for display. Once the desired number of iterations / samples per pixel
(Figure 6.2, spp) are computed the accumulation stops and the image is complete.
It is also possible to let the accumulation continue indefinitely for the Monte Carlo
integration to converge as much as possible. This is similar to frame-less render-
ing [15, 26], except when the scene changes or the camera moves the accumulation
buffer is cleared by discarding previous samples and the accumulation starts anew.

Dynamic Masks

The ability to quickly blend in and out large parts of the scene geometry, as demon-
strated in Figures 6.3 and 6.4, is implemented in the kernel in terms of dynamic masks.

Every inner node in the scene BVH encodes a mask with one bit per child node to
indicate if the child node is active or inactive. Inactive child nodes already exist by
default since not all slots of a multi-branch node are always occupied. Combining
this child mask with the mask resulting from the bounding box test automatically
filters out the inactive child nodes in case of a falsely detected intersection. Thus,
by disabling the bit of the child mask the entire sub-tree is skipped during traversal
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and the geometry disappears in the rendered image.

In order to restore the visibility of the geometry it is necessary to differentiate a
disabled sub-tree from an empty child slot. This can be achieved either by keeping a
copy of the original mask or by encoding the original mask in the the bounding box
planes corresponding to the empty slot. The original mask can be either kept in a
separate structure or within the BVH, depending on space constraints. To construct
the original mask from the bounding box planes, a degenerate box with all planes
set to zero may represent an empty slot and everything else a disabled sub-tree.

The visibility of individual triangles within a leaf node is controlled in the same
way using the leaf node mask. If the number of triangles per leaf is unrestricted,
i.e., can be larger than the branching factor, than the leaf mask might not provide
a sufficient number of bits. A possible solution is to rearrange the list of triangles
in the leaf node and put the active ones first, the inactive ones last, and adjust the
triangle count to correspond to the active triangle number.

Triangles may be enabled or disabled individually, i.e., based on triangle ID, or based
on a mesh ID or a material ID. In general, the algorithm for updating the BVH masks
performs a post-order traversal over the entire BVH. At the leaves, the triangles are
checked for a matching ID and the corresponding leaf mask / triangle order is up-
dated. If all triangles in the leaf become disabled so does the leaf itself and this
change is propagated back up the hierarchy in order to prune a disabled sub-tree
as early as possible from the active BVH. In case a bounding box is available for all
triangles corresponding to a particular mesh ID or material ID (for a primitive ID the
bounding box can be easily calculated) the parts of the BVH which do not overlap
the query bounding box can be safely skipped during an update.

The update algorithm is implemented within the parallelization framework devel-
oped for BVH construction in Chapter 4 and thus exhibits near linear scalability on
multi-core CPUs. For common scenes a full update takes a few milliseconds at most,
and for a huge data set like the BOEING the timing is around 700ms on a dual socket
workstation.

6.3 Conclusion

This chapter has introduced an exemplary application featuring photo-realistic im-
age quality for working with large CAD models interactively, including fast explo-
ration and editing of materials and geometry visibility. The application is made pos-
sible by the performance delivered by the parallel algorithms developed throughout
this dissertation, aggregated and organized into a single kernel. A demonstration of
the exemplary application running on different devices ranging from laptop to high-
performance cluster shows its scalability obtained transparently through the kernel.
A progressive refinement of the image ensures that interactivity is maintained even
for slower devices, with full image quality reached after a few seconds.
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Chapter 7

Conclusions and Future Work

This dissertation has made significant contributions towards the long-standing goal
of real-time photo-realistic rendering by research focused on parallel, highly scal-
able algorithms for ray tracing. The research has been organized into three building
blocks which are essential for almost every photo-realistic rendering system, i.e.,
ray traversal, construction of acceleration structures and workload distribution. The
corresponding key contributions and results are summarized below:

• Vectorized ray traversal

Four new traversal algorithms have been introduced, named WIVE, ORST,
CLPT and WIVEC, respectively. Each is specialized for, and performs best in,
a different use case regarding ray coherence, hardware capabilities and ren-
dering application structure. The new algorithms have in common designs
focused on scalable data-parallel processing, which allow to use wider vec-
tor operations more effectively compared to previous approaches. As the pre-
sented experimental results have demonstrated, the higher vector utilization
translates into superior performance ranging from 10% to 300% over industry-
leading ray traversal implementations.

• Parallel BVH construction

BVH construction is important to ray tracing, because (1) its quality directly
affects ray tracing performance and (2) its construction determines the time-to-
image after loading or modifying geometry. The newly introduced construc-
tion algorithm combines both maximum quality and high scalability for best
performance, through improved scheduling, memory management and vector
processing. Its high scalability enables the efficient utilization of large multi-
core processors, which has been demonstrated by experiment to outperform
previous approaches significantly, up to a factor of eight.

• Asynchronous distributed computing

A framework for real-time, low-latency rendering on distributed computers
has been introduced, which for the first time manages network communica-
tion with fully asynchronous and one-sided techniques, both on the hardware
and software level. Load balancing with the new tile conquest algorithm in
addition brings decentralization of communication and data-locality aware-
ness, which spreads out and reduces data transfers and improves caching effi-
ciency. The combined benefit is significantly improved scaling behaviour com-
pared to previous approaches: unprecedented in distributed real-time render-
ing, super-linear scaling has been observed consistently over a large range of
nodes in experiments.
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Based on these contributions, real-time photo-realistic rendering has been realized
on a 60 node cluster, delivering a throughput of about one Billion rays per second
even for very large scenes. A more modern system of similar size today can already
be expected to achieve up to one order of magnitude higher performance using the
same scalable algorithms.

Graphics applications built on top of the three building blocks inherit the corre-
sponding scalable rendering performance. This has been demonstrated in by the
development of an application for interactive analysis and editing of very large tri-
angulated scenes with photo-realistic quality. The application runs on parallel sys-
tems ranging from laptop to supercomputer, adjusting the performance according
to the computational resources available.

Currently, the computational power of a cluster is required for very smooth photo-
realistic rendering, and sometimes even a bit more depending on the complexity of
the global illumination. The key point, however, is expressed by the hypothesis for-
mulated earlier in the dissertation’s introduction: the supercomputer of today is the
handheld device of tomorrow. And indeed, during the time span of this research,
the compute resources of a tablet have increased from a homogeneous dual core
to a heterogeneous eight core configuration interconnected by a complex on-chip
network. Also, the latest high performance processors feature multi-chip module
designs with a stark resemblance to a cluster-on-chip. Hence, the scope and rele-
vance of the presented research on scalable algorithms is expanding, from HPC to
mainstream computer graphics.

In the future, the major issues for further advancements in real-time photo-realistic
rendering are power efficiency and size. A cluster may comprise a sufficient number
of nodes for the building blocks to enable the desired rendering quality and speed,
however the form factor and power consumption is not practical for most use cases.
Integration of a cluster-like system into a single package is required. Further, dedi-
cated hardware units specialized in ray traversal and BVH construction provide the
opportunity for further acceleration compared to the software implementations of
this dissertation’s algorithms, with lower and smaller area footprint as well.
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