
Towards Usability in
Private Data Analytics

Thesis approved by

the Department of Computer Science

Technische Universität Kaiserslautern

for the award of the Doctoral Degree

Doctor of Engineering (Dr.-Ing.)

to

Reinhard Richard Munz

Date of Defense: December 6, 2019

Dean: Prof. Dr.-Ing. Stefan Deßloch

Reviewer: Prof. Dr. Paul Francis

Reviewer: Prof. Dr. Deepak Garg

Reviewer: Prof. Dr. Matteo Maffei

D 386

c© 2019 by Reinhard Richard Munz
All rights reserved

To my wife, Lisette,
my parents, Sibylle and Heinrich,
and my brothers, Jürgen and Wilfried.

Abstract

Private data analytics systems preferably provide required analytic accuracy to
analysts and specified privacy to individuals whose data is analyzed. Devising a
general system that works for a broad range of datasets and analytic scenarios
has proven to be difficult.

Despite the advent of differentially private systems with proven formal privacy
guarantees, industry still uses inferior ad-hoc mechanisms that provide better ana-
lytic accuracy. Differentially private mechanisms often need to add large amounts
of noise to statistical results, which impairs their usability.

In my thesis I follow two approaches to improve the usability of private data
analytics systems in general and differentially private systems in particular. First,
I revisit ad-hoc mechanisms and explore the possibilities of systems that do not
provide Differential Privacy or only a weak version thereof. Based on an attack
analysis I devise a set of new protection mechanisms including Query Based Book-
keeping (QBB). In contrast to previous systems QBB only requires the history of
analysts’ queries in order to provide privacy protection. In particular, QBB does
not require knowledge about the protected individuals’ data.

In my second approach I use the insights gained with QBB to propose UniTraX,
the first differentially private analytics system that allows to analyze part of a
protected dataset without affecting the other parts and without giving up on
accuracy. I show UniTraX’s usability by way of multiple case studies on real-world
datasets across different domains. UniTraX allows more queries than previous
differentially private data analytics systems at moderate runtime overheads.

vii

Acknowledgements

Many people contributed to this thesis. I would like to thank everyone that
helped me through the past eight years. In the following, I would like to express
my gratitude to the most notable companions.

First and foremost I would like to thank my adviser, Paul Francis. He gave
me the freedom to shape this thesis and introduce and realize my very own ideas
with it. He motivated me to create private analytics systems that are usable first
and private second. He guided me through the longer part of my PhD time at
MPI-SWS and was patient with me during those times that made it the longer
part.

I would like to thank my other committee members, Deepak Garg and Matteo
Maffei, for their feedback and help. Their criticism and hard questions helped me
improve my research in many ways. I am grateful to them and Fabienne Eigner
for their help on UniTraX. It was their expertise on formal models and proofs
that turned UniTraX into a provably private system.

Unfortunately, I never had the opportunity to collaborate with any members of
my research group except my adviser. Nevertheless, I would like to thank Imran
Khan and İstemi Ekin Akkuş for the time we spent together. Kudos to Ekin and
Ruichuan Chen, another former member of the group, for being such great hosts
during my internship at Nokia Bell Labs.

Special thanks go to all other former and present members of MPI-SWS. In
particular, I would like to mention Umut Açar and Allen Clement, my advis-
ers during the first years. In their research groups I had the pleasure to work
with Arthur Charguéraud, Ezgi Çiçek, Matthew Hammer, Mike Rainey, Mustafa
Zengin, Nancy Estrada, and Natacha Crooks.

From the technical and support staff that work behind the scenes I would like to
especially thank Carina Schmitt, Christian Klein, Claudia Richter, Maria-Louise
Albrecht, Rose Hoberman, and Vera Schreiber. Whenever I had any problem
it was mostly them who had to deal with me and my usually special requests.
Thanks for your patience and care.

I found many friends in the institute. I would like to thank Anjo Vahldiek-
Oberwagner, Aastha Mehta, Arpan Gujarati, Felipe Cerqueira, Juhi Kulshrestha,

ix

Acknowledgements

Mainack Mondal, Manohar Vanga, Oana Goga, Paarijaat Aditya, Przemyslaw
Grabowicz, and Raul Herbster for making the few time besides work worthwhile.

Apart from the mentioned I had the joy to interact with many more people in
and around the institute. In the interest of space I only noted those whom I spent
most time with or caused most troubles for. However, these are non-exhaustive
samples and I would like to thank everyone else as well. It has been an awesome
time.

At this point I would like to extend these acknowledgements and thank people
outside MPI-SWS. Special thanks go to my friends from CMU, Uni Würzburg,
and my very close friends from high school, church community, and the summer
camp instructor team. Thanks for keeping me posted and invited although I am
rarely able to be part of any activities.

The most important people, however, come at the end. Without them I would
have given up long before. I am grateful to my family, my parents, Sibylle and
Heinrich, and my brothers, Jürgen and Wilfried. Without their love and moral
support I would not have made it.

Finally, I am most thankful to Lisette. It has been her never ending love and
care that kept me going through these years.

x

Publications
Parts of this thesis have appeared in the following publications.

1. Reinhard Munz, Fabienne Eigner, Matteo Maffei, Paul Francis, and Deepak
Garg. “UniTraX: Protecting Data Privacy with Discoverable Biases”. In:
Proceedings of the 7th International Conference on Principles of Security
and Trust (POST’18). Edited by Lujo Bauer and Ralf Küsters. Vol-
ume 10804. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2018, pages 278–299. doi: 10.1007/978-3-319-89722-6_12

1’. Reinhard Munz, Fabienne Eigner, Matteo Maffei, Paul Francis, and Deepak
Garg. UniTraX: Protecting Data Privacy with Discoverable Biases. Tech-
nical report MPI-SWS-2018-001. Kaiserslautern and Saarbrücken: Max
Planck Institute for Software Systems (MPI-SWS), Feb. 2018. url: https:
//www.mpi-sws.org/tr/2018-001.pdf

2. Paul Francis, Sebastian Probst Eide, and Reinhard Munz. “Diffix: High-
Utility Database Anonymization”. In: Proceedings of the 5th Annual Pri-
vacy Forum (APF’17). Edited by Erich Schweighofer, Herbert Leitold,
Andreas Mitrakas, and Kai Rannenberg. Volume 10518. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2017, pages 141–158. doi:
10.1007/978-3-319-67280-9_8

2’. Paul Francis, Sebastian Probst Eide, Pawel Obrok, Cristian Berneanu, Sasa
Juric, and Reinhard Munz. Extended Diffix. 2018. arXiv: 1806 . 02075
[cs.CR]

The following publications are not part of this thesis and vice versa.

3. Iulian Moraru, David G. Andersen, Michael Kaminsky, Nathan Binkert,
Niraj Tolia, Reinhard Munz, and Parthasarathy Ranganathan. Persis-
tent, Protected and Cached: Building Blocks for Main Memory Data Stores.
Technical report CMU-PDL-11-114 v2. Pittsburgh: Parallel Data Labora-
tory (PDL), Carnegie Mellon University (CMU), Nov. 2012. url: http:
//www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-11-114v2.pdf

xi

https://doi.org/10.1007/978-3-319-89722-6_12
https://www.mpi-sws.org/tr/2018-001.pdf
https://www.mpi-sws.org/tr/2018-001.pdf
https://doi.org/10.1007/978-3-319-67280-9_8
https://arxiv.org/abs/1806.02075
https://arxiv.org/abs/1806.02075
http://www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-11-114v2.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-11-114v2.pdf

Publications

3’. Iulian Moraru, David G. Andersen, Michael Kaminsky, Nathan Binkert,
Niraj Tolia, Reinhard Munz, and Parthasarathy Ranganathan. Persistent,
Protected and Cached: Building Blocks for Main Memory Data Stores.
Technical report CMU-PDL-11-114. Pittsburgh: Parallel Data Labora-
tory (PDL), Carnegie Mellon University (CMU), Dec. 2011. url: http:
//www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-11-114.pdf

xii

http://www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-11-114.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-11-114.pdf

Vita

Higher Education

Max Planck Institute for Software Systems (MPI-SWS) Jul’11–present
Doctoral student, Computer Science
Enrolled at Technische Universität Kaiserslautern Oct’14–present

Carnegie Mellon University (CMU) Sep’09–Dec’10
Master of Science in Information Technology
with Specialization in Very Large Information Systems
GPA: 3.87/4.33

Julius-Maximilians-Universität Würzburg Oct’06–Sep’14
Vordiplom (German Intermediate Diploma) Apr’08
Computer Science, Grade: 1
(1=excellent, 2=very good, 3=good, 4=pass, 5=fail)

Research Experience

UniTraX Apr’16–present
Security & Privacy at MPI-SWS
Developing methods to improve yield on limited query budgets
without reducing result accuracy. Designing and implement-
ing budget tracking solely based on queries, which allows to
publish tracking state without the danger of leaking sensitive
information.—Publication at POST’18

Paul Francis
Deepak Garg
Matteo Maffei

Towards Low Noise and Large Budgets May’15–present
Security & Privacy at MPI-SWS
Designing systems that provide graceful deviation from pri-
vacy guarantees in order to allow more queries with less noise
on results.—Submission to NDSS’17

Paul Francis

xiii

Vita

Giving Up on Privacy Guarantees Jun’14–present
Security & Privacy at MPI-SWS
Investigating practical alternatives to “Differential Privacy”.
Working towards support of unbounded numbers of queries
with bounded result noise.—Publication at APF’17

Paul Francis

Alsviðr Jan’17–May’17
Autonomous Software Systems Research at Nokia Bell Labs
Designed data layer for serverless computing platform. Eval-
uated performance of existing distributed storage systems.

Volker Hilt

Triage May’13–May’14
Distributed, Dependable, and Mobile Systems at MPI-SWS
Improved user satisfaction through more accurate backend re-
sponse time prediction. Selective execution of requests with
good prognosis raises system goodput.—Poster at SOSP’13

Allen Clement
Björn

Brandenburg

Multi-KV Nov’12–Aug’13
Distributed, Dependable, and Mobile Systems at MPI-SWS
Built mechanisms for consistency in geo-replicated storage
systems.—Poster at EuroSys’13

Allen Clement

Work Stealing at Scale Jan’12–Oct’12
Programming Languages and Systems at MPI-SWS
Scaled work stealing schedulers to clusters of machines. Umut Acar

PCM-KV: A Key-Value Store on Phase Change Memory Sep’10–Dec’10
Parallel Data Lab (PDL) at CMU
Developed OS mechanisms to handle shortcomings of non-
volatile main memory alternatives. Evaluated wear-leveling
memory allocator. —Technical Report at PDL’12

David Andersen
Michael

Kaminsky

Honors & Awards
ACM SOSP Student Scholarship Nov’13
USENIX OSDI Student Grant Oct’12
Max Weber-Programm, Study Abroad Grant Sep’09
Max Weber-Programm, Fellowship for gifted students Oct’08–Mar’12

xiv

Skills
German (mother tongue), English (fluent, CEFR C2)
Java, C#, C++, Python

Extra-Curricular Activities
“Snack Shop” Apr’13–present
Personal initiative to improve the work environment by selling
beers and snacks at MPI-SWS.

“Allowio” Kolping Zeltlager Amorbach 2002–present
Summer camp instructor for ∼75 children.

Contact
Reinhard Munz
MPI-SWS munz@mpi-sws.org
Campus E1.5 +49 681 9303-9100
66123 Saarbrücken
Germany

xv

Contents

Abstract vii

Acknowledgements ix

Publications xi

Vita xiii

Contents xvii

List of Figures xxi

1. Introduction 1

I. Leaving Differential Privacy 7

2. Giving up on privacy guarantees 9
2.1. Design overview and assumptions 10
2.2. Protection and detection mechanisms 11
2.3. Attacks . 13

2.3.1. Adversaries . 13
2.3.2. Strategies . 14

2.4. Attack implementation . 15
2.5. Conclusion . 17

3. Towards low noise and large budgets in privacy preserving analytics 19
3.1. Utility of ProPer . 21
3.2. Query Based Bookkeeping . 23
3.3. Increasing budgets for counting queries 30

3.3.1. Query Similarity Detection 31
3.3.2. Cheater Detection . 33

xvii

Contents

3.3.3. Gaussian noise . 38
3.3.4. Remaining attacks . 43

3.4. The complete design . 47
3.5. Case study: taxi rides in New York City 48

3.5.1. Unknown records lower confidence 49
3.5.2. Prerequisites for successful attacks 52

3.6. Related work . 55
3.6.1. The most recent and most known 56
3.6.2. The usually applied . 56
3.6.3. Related techniques of disclosure control 57
3.6.4. Tracker attacks . 58

3.7. Conclusion . 59

II. Returning to Differential Privacy 61

4. UniTraX: protecting data privacy with discoverable biases 63
4.1. System comparison . 65
4.2. Design overview . 68
4.3. Formal description and Differential Privacy 70

4.3.1. Formal model of UniTraX 71
4.3.2. Privacy property and its formalization 76

4.4. Related work . 78
4.5. Conclusion . 80

5. Testing UniTraX’s usability 81
5.1. Implementation . 82
5.2. Evaluation . 87

5.2.1. Datasets . 87
5.2.2. Analysis sessions . 92
5.2.3. Experimental setups . 94
5.2.4. Hardware . 94
5.2.5. Software . 95
5.2.6. Relative budget consumption 96
5.2.7. Absolute and relative latency overheads 98
5.2.8. Latency overheads for PINQ partitioning 107
5.2.9. Total query times and clean-up mechanisms 110

5.3. Conclusion . 116

xviii

6. Conclusion 117
6.1. This thesis . 117
6.2. The bigger picture . 118
6.3. Future work . 118

A. Proofs of the formal results on UniTraX 121

Bibliography 131

xix

List of Figures
2.1. Sets used in attacks . 14

3.1. High-level system design with example of successful query 20
3.2. Examples of filter conditions for one- and two-dimensional user data 25
3.3. Rules for queries accepted by the query interface in BNF 26
3.4. Intuition of the history of QBB 28
3.5. Example of filter condition for directly asking for the data as well

as repeating the same query multiple times 31
3.6. Example scenarios depicting the evaluation of similarity between

filter conditions . 33
3.7. Example of attack with different filter conditions in order to cir-

cumvent QSD . 34
3.8. Example of attack exploiting silent record dropping 36
3.9. Example of hypothetical attack using queries counting different

sets of records . 39
3.10. Example of rare but possible attack where the attacker knows a

lot about the data in close vicinity of a victim 40
3.11. CDF of attack confidence for different noise distributions 42
3.12. Example of advanced attack combining pairs of queries 43
3.13. An analyst sends a query to and receives an answer from our system 45
3.14. Query handling of our system design in pseudo code 46
3.15. Percentage of attacks disturbed by unknown records 50
3.16. Observational capabilities required to attack a random taxi ride . 53
3.17. Observational capabilities required when more noise is added . . . 54

4.1. System comparison . 65
4.2. Allowed interactions between analyst and UniTraX 72
4.3. Semantics of UniTraX . 74
4.4. Semantics extension for silent record dropping 76
4.5. Trace distance . 78

5.1. CDF of relative budget use versus PINQ 97

xxi

List of Figures

5.2. CDF of relative budget use versus PINQ with partitioning 99
5.3. End-to-end latencies of queries in the mobility session 100
5.4. CDF of relative latency overheads in the mobility session 101
5.5. End-to-end latencies of queries in the financial session 102
5.6. CDF of relative latency overheads of the financial session 103
5.7. End-to-end latencies of queries of the medical session 104
5.8. CDF of relative latency overheads of the medical session 105
5.9. End-to-end latencies of queries of the streaming session 106
5.10. CDF of relative latency overheads of the streaming session 108
5.11. End-to-end latencies with PINQ partitioning 109
5.12. CDF of relative latency overheads with PINQ partitioning 111
5.13. Total query times including clean-up 112
5.14. CDF of relative total-query-time overheads 114
5.15. Number of subspaces tracked by UniTraX 115

xxii

1. Introduction

Private data analytics is a long-standing and complex research problem. The goal
is to provide a general data analytics interface for analysts to obtain statistical
results over individuals’ data without violating any single individual’s privacy.
To be generally applicable desired solutions are independent of specific analytic
scenarios as well as specific datasets. They further conform to differing ana-
lytic accuracy requirements of analysts as well as differing privacy preferences of
individuals.

Until the early 2000’s providing privacy was simply to prevent an adversar-
ial analyst from inferring any fact about a single individual. A diverse set of
techniques was proposed, e.g., data swapping, rounding, or value aggregation [1,
3, 4, 28, 35]. Unfortunately, there was also a diverse set of attacks shown [21,
22, 31, 33, 34, 64, 98, 99]. These attacks render proposed defenses void, except
for specific hypothetical scenarios. As a result, none of the proposed protective
techniques is able to provide a meaningful amount of privacy protection.

In 2002 Sweeney introduced k-anonymity [109, 110], the first data analytics
technique to provide a configurable privacy parameter, k. Individuals are guar-
anteed to be indistinguishable to a group of at least k − 1 other individuals. To
provide indistinguishability the original data must be modified and individuals’
data either be changed or removed. These modifications introduce non-uniform
noise that is highly dependent on the particular implementation. The amount of
noise and how it effects specific analytic queries cannot be communicated to ana-
lysts. Therefore, k-anonymity is in general unable to guarantee analytic accuracy.
To improve accuracy the original paper suggests to selectively apply k-anonymity
only to parts of the data. Partial application, however, leads to partial protection
and subsequently requires additional mitigation techniques [73, 76]. Nevertheless,
all proposed mechanisms fail to guarantee acceptable levels of privacy and accu-
racy at the same time [38].

To allow configurable per-query accuracy while providing a guaranteed upper
bound on privacy loss, Dwork et al. introduced Differential Privacy (DP) [40].
DP is not a single mechanism but a theoretical framework to reason about the
privacy provided by arbitrary systems. Privacy loss is thereby defined as the ob-

1

1. Introduction

servable amount any output changes when a specific individual’s data is modified
or removed from the system. Noise addition to system outputs controls both
privacy loss and analytic accuracy. Both are represented by the parameter ε that
determines the amount of noise to be added.

Naturally, choosing a specific ε leads to a trade-off between privacy loss and
analytic accuracy. Adding high levels of noise to any system output provides low
privacy loss but impairs analytic accuracy and vice versa. At the same time the
sum over all queries’ ε’s, a cumulative ε, determines the total privacy loss any
individual might have suffered. DP systems allow to set a limit, a privacy budget
ε, count all queries against that budget and thus provide a guaranteed upper
bound.

Unfortunately, DP systems tend to require large amounts of noise to guarantee
chosen bounds on privacy loss and often miss to satisfy analytic needs [7]. Failure
to make systems usable for analysts seems to be the reason why DP systems
have not found wide-spread adoption in industry. Despite the availability of
formal mechanisms with proven privacy guarantees, industry continues to use
ad-hoc techniques of previous times. For example, online social media platforms
employ simple privacy protections when they allow advertisers to obtain statistical
results for a wide range of attributes over their users. Despite evidence of possible
attacks [70], these interfaces cannot simply be removed, as they are at the core of
major business models. Data analytics thereby is and will be a growing market
for the foreseeable future. Businesses inside this market will only adopt as much
privacy protection as is usable in accordance with their analytic requirements.
Therefore, my research focuses on building data analytics systems that provide
increased usability to analysts.

The goal of my research is to provide usable private data analytics systems
that can be deployed in real-world analytic scenarios. To this end I follow two
different approaches to improve on two usability challenges of DP. These chal-
lenges are (1) weakening DP’s assumptions and guarantees to lower the noise
while maintaining acceptable levels of privacy, and (2) selectively analyzing and
using privacy budgets on parts of a dataset while keeping accuracy controllable
and saving the budget on other parts. My approaches to these challenges are
(1) doing completely away with DP guarantees and exploring the resulting possi-
bilities for private analytics systems, and (2) using previously gained insights to
improve DP and propose UniTraX, a solution to the second challenge.

2

Usability over privacy. In the first approach I start with the most usable yet
privacy protection enabled system. Usability is ensured by requirements of unlim-
ited queries and a publicly known low bound on noise added to answers. Privacy
is not only protected by the noise added to answers but also by a defense-in-depth
design consisting of different ad-hoc prevention and detection mechanisms that
together counter different attack scenarios. Given the absence of formal methods
there are no scientific guarantees, yet a security analysis over all practical attacks
known to me shows them to be detectable if not preventable for an adversary
without additional knowledge. Unfortunately, in the real world adversaries often
do possess additional knowledge and attacks would succeed.

Weak DP. Building on my analysis of attacks I propose a hybrid system design
that provides a weak version of DP. Weak in this context means probabilistic.
The system provides DP but is allowed to fail in few cases. At the cost of perfect
privacy protection the system is able to reduce required noise by a factor of 3.6. In
the context of this system design I introduce Query Based Bookkeeping (QBB),
a technique to keep track of privacy loss based on queries and their potential
combinations. The novelty of the technique is its independence of the protected
dataset. Using a real-world dataset of taxi rides in New York City (NYC) I show
that the probability to be the victim of an unprevented attack is low. The insights
on attacks and defenses gained with these system designs provide the grounds for
Diffix [55], a commercially deployed analytics system that provides ad-hoc privacy
protection.

UniTraX. Further building on the insights gained in the first approach, my sec-
ond approach investigates potential improvements of DP mechanisms. In this
context I present UniTraX [86], the DP successor of QBB. UniTraX allows ana-
lysts to query and analyze only a part of a dataset without limiting future analyses
of other parts. In contrast to previous work [50], UniTraX is able to make in-
troduced dataset bias observable to analysts and thus preserves statistical result
accuracy. Biases are introduced when an analyst queries an important part of
the dataset, depletes its privacy budget, and thus prohibits its use in any further
queries. When other analysts do not know about this previous analysis and query
the whole dataset their interpretation of answers is likely wrong, as they would
not know that the important part of the dataset was not used to prepare their
answer. UniTraX can block potentially biased queries and inform analysts about
heavily queried parts of the dataset (see chapter 4 for details).

3

1. Introduction

UniTraX’s usability. UniTraX is designed with formal privacy guarantees in
mind and there is a formal prove that UniTraX provides DP. To show its usabil-
ity and general applicability I conduct multiple case studies on real-world datasets
from different domains. In particular, I use one dataset each from the mobility,
financial and medical domain, transform the data into the numeric format re-
quired by UniTraX, and perform different analytic tasks using UniTraX’s privacy
protecting analytic interface. I show that UniTraX saves significant amounts of
privacy budget at moderate runtime overheads compared to previous differen-
tially private systems. Saved budget is available for additional queries, which
means that UniTraX allows more queries than previous systems while providing
the same privacy protection and analytic accuracy.

Contributions. The contributions of this thesis are nine-fold.

1. A defense-in-depth system design (A) of ad-hoc mechanisms that provides
privacy protection with guaranteed usability.

2. An attack analysis showing that (A) is able to defend against attackers that
lack additional knowledge.

3. A system design (B) employing QBB and query constraints to achieve higher
usability than previous work.

4. Mechanisms that allow (B) to provide more counting queries at the cost of
weaker privacy protection.

5. A partial empirical validation on a real dataset showing that (B) is difficult
to attack, despite weaker protection.

6. UniTraX, a system model and design that allows more queries than previous
work, while making introduced biases observable.

7. A theoretical framework and proof that UniTraX provides DP.

8. An implementation of UniTraX that works across different domains.

9. An evaluation of UniTraX showing its ability to save significant amounts of
privacy budgets at moderate overheads.

4

Structure. Chapter 2 presents system design (A) and its attack analysis. Sys-
tem design (B), its weaker protections, and its partial empirical validation are
detailed in chapter 3. UniTraX is introduced in chapter 4 and evaluated in chap-
ter 5. Finally, chapter 6 concludes and presents future work.

5

Part I.

Leaving Differential Privacy

7

2. Giving up on privacy
guarantees

This chapter starts the first approach of my research. At its core, system usability
is put before individuals’ privacy protection. Giving up on privacy to preserve
usability stands in contrast to most previous work, DP techniques in particular.
However, reading critiques of DP techniques [7] it becomes clear that requirements
of high noise and limits on the amounts of queries are two of the most important
reasons for the lack of their adoption. To create a system that is easy to adopt
I invert these requirements at the cost of privacy guarantees. Thus, my initial
requirements are (1) low bounded noise and (2) unlimited queries.

Given the two initial requirements, DP techniques cannot be used to design a
system as they require the opposite. Their requirements stem from the assump-
tion of a powerful adversary with full knowledge of all individuals’ data except for
the individual of interest. In combination with low bounded noise and unlimited
queries such adversary is always able to break the privacy of said individual. Sim-
ply repeating a query removes the noise added to answers after a finite amount of
time. The knowledge of all other data allows the adversary to construct specific
queries and corresponding answers to circumvent additional protective measures.

The requirement of bounded noise also precludes the use of any data modifying
measures. Such techniques, e.g., k-anonymity, introduce noise into the original
data through their privacy enabling data modifications. The system cannot tell
the analyst the amount by which individuals’ data was modified without breaking
individuals’ privacy. Statistical results over such modified data may then contain
noise above any specific low bound.

Taking aforementioned conditions into account this chapter explores today’s
possibilities of ad-hoc techniques considering the various attacks that have been
found. To prevent these attacks the presented system relies on a defense-in-depth
approach combining multiple ad-hoc mechanisms. These mechanisms restrict the
queries that the system may answer and monitor queries to suspend analysts
when an attack is detected.

9

2. Giving up on privacy guarantees

To evaluate the system’s protective capabilities, the second half of this chapter
investigates different kinds of attacks for different types of adversarial analysts.
Unfortunately, the evaluation shows that in the general case only an adversary
without any knowledge can successfully be defended against. In most cases there
exist attacks which already work with few additional knowledge. In the general
case the presented system is thus not able to provide acceptable privacy protec-
tion.

The chapter is structured as follows. First, an overview of the system design
and its assumptions are presented in section 2.1. Second, all protecting and
detecting mechanisms are listed in section 2.2, each with a short explanation of
its purpose. Third, attacks for a variety of different assumptions of adversarial
capabilities are evaluated in section 2.3 before I conclude in section 2.5.

2.1. Design overview and assumptions

The system makes a set of assumptions common to many private analytics sys-
tems. These are:

1. Individuals’ data resides in a database with a single table.

2. Each row of the single table contains all data of a single individual.

3. All data is numerical.

4. Analysts (both benign and adversarial) can only access the data through a
restricted and monitored analytic interface.

According to these assumptions the system resembles a database wrapper with
control over any query going in and any answer coming out of the database. It
is thus able to restrict queries and anonymize answers. Additional assumptions
are:

5. Queries are restricted to counting, e.g., “SELECT count(*) WHERE x”.

6. Conditions “x” may neither contain negations (¬) nor disjunctions (∨), only
conjunctions (∧) are allowed.

Negations and disjunctions give an adversary with little knowledge about some
individuals’ data the flexibility to add known data into many query answers. The
more known data answers contain the less anonymizing measures work. Thus,
both these capabilities are forbidden. Their use can be simulated with multiple
queries using only conjunctions at the cost of additional noise on answers.

10

2.2. Protection and detection mechanisms

2.2. Protection and detection mechanisms

The system uses a layered defense-in-depth approach. The following mechanisms
are all applied together in order to prevent attacks. Actual counts ca from the
database pass through all mechanisms before the last mechanism releases the final
count c to the analyst.

Low count filter. Uses thresholds t1 (usually 1) and t2 (usually 3). If the actual
count ca is below or equal to t1, i.e., ca ≤ t1, it is suppressed and the returned
count cr is set to 0. If ca is above t1, i.e., ca > t1, a noise value is drawn from a
Normal distribution with low standard deviation σ (usually 1) and added to ca,
i.e., c′a = ca +N (0, σ). If the answer c′a is below t2 it is suppressed and cr is again
set to 0. Otherwise, cr = ca is returned.
The low count filter prevents any query to count only a single or a small group

of individuals. It prevents an adversary without any additional knowledge from
attacking a single individual. All queries must count at least max(t1, t2) individ-
uals. Thus, all answers contain additional individuals’ data. An attacker must
know these individuals’ data in order to be successful.
Through careful configuration of t1 and t2 the system administrator is able to

control the minimum requirements for an attack.

High touch suppression. Skips exposed individuals while counting. Individu-
als are exposed if they have been counted significantly more times than others.
The system stores the number of times an individual was counted. When a set
of individuals is counted, the system determines the mean and variance of the
previous counts of all individuals in the set with respect to a Normal distribution.
If the probability for the number of counts is below a threshold for any individual,
the individual is skipped and not counted.
High touch suppression prevents attacks that leverage additional knowledge

about specific parts of the data. There, an adversary would separately query
for each known part in combination with the same unknown individual. This
attacked individual’s data is then the only unknown component of each answer.
By combining many queries and answers the attacker would finally obtain the
individual’s data.
Benign analysts are unlikely to use queries that count one specific individual

unlikely many more times than others. Therefore, benign analysts do generally
not experience additional noise in their answers. Analysts that trigger high touch

11

2. Giving up on privacy guarantees

suppression more than a defined threshold of times are temporarily suspended
until further investigation by a system administrator. To allow for such investi-
gation the system must store all queries.

Fixed noise. Noise added to output cr after low count filter and high touch
suppression have completed. The noise depends on the records counted in the
actual count ca. The system hashes secret record identifiers of all records counted
in ca and uses the hash h as seed to a Normal distribution. The random value v
drawn from this distribution is added and c′r = cr + v is forwarded to the next
layer. The standard deviation of the Normal distribution is chosen low (e.g.,
∼1.41).
Basing the random noise on the set of counted records prevents attacks that

repeatedly count the same records. In such an attack the adversary would try
to average away any added noise. Queries would be syntactically different but
semantically identical. Therefore, these queries would all count the same set of
individuals. In case of independent noise, the noise values would be different for
all answers and gradually average away. With fixed noise, however, the same set
of individuals always leads to the same noise for an answer. The noise can thus
not be averaged away by repeatedly counting the same set of records.
Benign analysts should not have to count the same set of records, i.e., individ-

uals, twice. The system therefore counts the occurrences of each set of records for
each analyst. Once a threshold is reached for any particular set, the respective
analyst is temporarily suspended until further investigation by a system admin-
istrator.

Random noise. Noise added to resulting count c′r of the previous layer. The
noise is drawn from a Normal distribution initialized with a random seed. Another
random value v′ is added to the output of the previous layer and the answer
c′′r = c′r + v′ is handed to the next layer. Again, the standard deviation of this
noise is chosen low. If both fixed and random noise choose the standard deviation
∼1.41, the combined standard deviation is ∼2.
Using random noise in addition to fixed noise prevents an adversary from di-

rectly recognizing whether two counts stem from the same set of individuals.
With only fixed noise the released answer would not change if the same set of
individuals was counted twice. For different sets, however, the answer would
change. With random noise answers always change independent of the counted
set of individuals.

12

2.3. Attacks

Rounding. Takes the count c′′r of the last layer, rounds it to the nearest step
s (usually 5) and returns the final count c to the analyst.

Although rounding is just a different kind of noise, it requires additional queries
to remove, while having only a limited effect on output accuracy. An adversary
needs additional knowledge to interpret the meaning of final counts being rounded
to different values.

2.3. Attacks

In an iterative process the just presented system design with its different layers of
defense and detection mechanisms is improved with the help of different attacks.
Increasingly severe assumptions about the adversaries’ powers are used as follows.

2.3.1. Adversaries

At the very minimum any adversary needs to know some condition that is unique
to the individual they want to attack. Without such knowledge there is no way
an adversary can succeed. Without knowing anything about an individual it is
not possible to know whether the individual will be counted by a specific query.

Next to this basic attack knowledge adversaries might know about the data of
different numbers of other individuals. In general, the more they know the better
they can attack. The different adversaries to consider are thus:

• No additional knowledge. The adversary knows enough to uniquely identify
and count the victim but no data of other individuals.

• Few additional knowledge. The adversary also knows some of the other
individuals’ data.

• Substantial additional knowledge. The adversary knows the data of many
but not all other individuals.

• Worst-case additional knowledge. The adversary knows all other individu-
als’ data.

Beyond knowledge of other individuals’ data an adversary might also be able to
create, modify, or delete data. However, the following paragraphs present generic
attacks that are possible for the two weakest adversaries without such additional
capabilities. Before the system can successfully defend against all attacks of a
weak adversary, it is not necessary to investigate more powerful adversaries.

13

2. Giving up on privacy guarantees

Comparison set Attack set

Possible size n n− 1 n n+ 1

Combination 1 I I I ∪ {v}

Combination 2 I ∪ {v} I I ∪ {v}

Figure 2.1.: Sets used in attacks

2.3.2. Strategies

To obtain information about a single individual, e.g., whether the individual’s
data is in the database, an adversarial analyst must use queries that are able to
circumvent all defense and detection mechanisms. As the interface is limited to
counting individuals whose data matches specific conditions, the adversary needs
to be able to infer from counts whether the targeted individual got counted.

The general attack strategy for inferring information through counts is to create
two counts, (1) a controlled comparison count and (2) an attack count. For the
first count the adversary knows whether the victim would be present or absent.
The second count then challenges this knowledge. Depending on the outcome of
the second query it becomes clear whether the victim is actually present. It is
not necessary to know the true counts for the attack to work. The adversary only
needs to be able to determine whether the counts differ.

The simplest way would be to only count v, which does not work because of
the low count filter. Instead, each count needs to include additional individuals.
These must be part of a controlled set I for the attack to work as explained.
Figure 2.1 shows the different possible combinations of comparison and attack
set. For the comparison set an adversary knows whether it includes v. For the
attack set it is to be found out. More formally this works as follows.

Combination 1. The adversary is able to devise a query that counts I, i.e.,
a query that does not count v. This means that the answer to the query is so
constrained that v is not counted. To learn something about the victim it must
be allowed to appear and one needs to be able to measure whether it did. To
this end, one needs to create an attack query that only allows the victim v to
additionally match. The easiest way to create such an attack query is to modify
the condition c of the comparison query, remove a part, and obtain condition c′.
The adversary needs to be sure that c′ does not allow any other new individual

14

2.4. Attack implementation

to show up except potentially v. Through comparison of the answers it is then
obvious whether v actually showed up and thus participates in the database.

Combination 2. In this combination the adversary knows that v is present in
the dataset and is able to generate a query that counts I∪{v}. In order to obtain
new information about v, an attack query must then result in either the same
answer or one where v is removed. Similar to before one can simply modify the
initial condition c but this time add a new part to create c′. Of c′ the adversary
must know that it does not constrain I, i.e., c′ matches all individuals in I. The
answer to the modified query will either be I ∪ {v} or just I. Comparing with
the initial answer allows the adversary to find out whether v’s data matches the
new condition c′.
Because our fixed noise is the same for equivalent sets, one can simply compare

the answers once the random noise and rounding has averaged away. In order
to detect an adversary who averages away the added random noise and round-
ing, we track the number of occurrences per unique set of individuals. Once a
threshold has been reached we suspend analysts for further inspection. However,
if adversaries know the exact thresholds of the detection mechanism, it is possible
for them to stop their attack before it can be detected.

2.4. Attack implementation

The attack strategy presented in the previous section explains why the system
does not allow negation and disjunction in query conditions. With those capa-
bilities even an adversary of the weakest assumptions, i.e., with no knowledge
of other individuals’ data, could easily devise queries for comparison and attack
sets. Banning the use of ¬ and ∨ operators thus increases the difficulty to cre-
ate suitable attack queries. Unfortunately, negation and disjunction can often be
simulated through semantically identical queries without these operators. The
next paragraphs provide a more detailed look at the implementation details and
explain how attacks on the system might be implemented.

Conditions. An analyst provides a condition c in a query to select the set of
individuals counted by the query answer. Query execution matches c to all indi-
viduals’ data in the database and returns the number of matching individuals. To
match a condition the attributes of an individual’s data must match the analyst

15

2. Giving up on privacy guarantees

provided values in the condition. A single attribute gets matched to a single value
by binary operators ==, <,>,≤,≥.

Isolating condition. In order to attack an individual an adversary needs to be
able to uniquely identify that individual’s data with a query condition. For exam-
ple, the adversary might know that the victim individual is the only employee in
a company’s database with a salary of $300,000.00. An isolating condition would
then be “salary == 300000”.

Attacking with combination 1. By using an isolating condition an adversary
is able to create a query that counts some individuals I other than the victim
v. The simplest way—negating the condition—is prevented by the ban of the
¬ operator. However, it is still a simple task to come up with a suitable query
condition, e.g., “salary < 300000”. This query counts all employees with lower
salaries but not the victim with isolating condition “salary == 300000”. The
attack query condition is then “salary ≤ 300000”.

Cheating same set detection. If it were possible the adversary would just
repeat the two queries until the random noise and rounding has averaged away
and the different answers could be compared. However, the same sets of indi-
viduals would be counted multiple times and depending on the threshold setting
that point might not be reached. Nevertheless, there are different strategies the
adversary can use in order to avoid detection.
An adversary without knowledge of other individuals’ data can perform the

attack counting different sets by using a moving split. In that scenario the attacker
uses an additional part in query conditions that splits each query into two half
queries. For example, the adversary might choose a condition on month of birth to
create 12 different splits. Condition “salary < 300000” then becomes 24 separate
conditions “salary < 300000 ∧ month-of-birth ≤ 1”, “salary < 300000 ∧ month-of-
birth > 1”, etc., each of which can be repeated threshold-1 times without detection
(assuming a large enough dataset where multiple employees have birthdays each
month).

Attacking with combination 2. Here, the adversary knows that victim v is
part of the database. The goal is to learn additional data about the victim. The
comparison query for combination 2 must include the victim so the adversary
might simply reuse condition “salary ≤ 300000”. However, in order to create an

16

2.5. Conclusion

attack query the adversary requires additional knowledge about the other em-
ployees counted in that query. This knowledge is necessary to devise a condition
that cannot exclude anyone except potentially the victim. For example, if the
adversary is certain that no other employee with a lower salary owns a helicopter
the respective condition to test whether the victim does is “salary ≤ 300000 ∧
helicopter == 0”. If the second answer differs from the first v has a helicopter.
Again, one can only compare the answers after the removal of random noise and
rounding, which works as before.

Cheating high touch detection. In both above presented attacks all counted
individuals are counted roughly the same number of times. Never is there an
individual that is counted significantly more times than other individuals. To
ensure that all individuals in the database are counted exactly the same number
of times one can also add additional queries that count all remaining individuals.
For example, if there is a query with condition “salary < 300000” one just adds
another query with condition “salary ≥ 300000”. That way all individuals are
always counted exactly the same number of times and high touch suppression
and detection fail to prevent and detect the attack.

Variations on attacks. Next to directly learning some new fact about an in-
dividual there are similar attacks with different goals. The simplest is to just
learn a true count. The adversary is interested in learning the count of a set
of individuals, e.g., how many people have a higher salary. Another variation
is learning value steps. There, the adversary wants to know, for example, the
different salaries the company pays its employees and what the distances between
them are. The attack would continuously increase the salary range in its query
conditions. Whenever a new fixed noise is detected, a new salary step is discov-
ered. Example conditions would be “salary ≤ 10000”, “salary ≤ 10001”, “salary
≤ 10002”, etc., however, same set detection might not be as easily cheated with
such small value steps.

2.5. Conclusion

In this chapter we explored the possibilities of a useful private data analytics
system. Useful in this context meant unlimited queries with strictly low bounded
noise on any returned statistical results. Despite severe restrictions on the query
interface and multiple layers of ad-hoc defense and detection mechanisms even

17

2. Giving up on privacy guarantees

the weakest attackers are still able to launch successful attacks. Although there
might be datasets for which these protections would suffice our system design does
not work as the sought general solution for private data analytics. Nevertheless,
we take away the following insights.

1. High touch based mechanisms can easily be cheated.

2. Attacks work with analyst chosen value ranges in conditions.

3. Different sets of individuals are simple to create by splitting the same set
many times along different dimensions (month-of-birth in our example).

4. Depending on the system’s choice of noise in combination with rounding, a
single query can be more or less effective in an attack.

5. Attacks on additional information are hard, as specific sets of individuals—
matching the sought information—must be known to the adversary.

6. The sets known to the adversary must be “next” to the victim in the dataset
so one can include or exclude the victim in comparison and attack queries.

From these insights we derive multiple paths of future work.

• Investigate restrictions on value ranges in query conditions (Insight 2).

• Investigate mechanisms to prevent the use of splits in attacks (Insight 3).

• Investigate whether it helps to track the actual protection the system pro-
vided in a specific execution of a query (Insight 4).

• Investigate tracking queries and preventing attacks by stopping once a
threshold on “bad” queries has been reached (Insight 4).

• Investigate detection of queries that are “next” to each other (Insight 6) and
its effect on adversaries with limited knowledge (Insight 5).

While I follow the last two paths in the following chapter of this thesis, the
first two paths provided the grounds for development of the Diffix system [55].

18

3. Towards low noise and large
budgets in privacy preserving
analytics

In chapter 2 I gave up on privacy guarantees in favor of usability for analysts.
I defined usability to be low bounded noise per query and unlimited queries.
However, the system design I came up with was not able to fully prevent attacks
for adversaries with limited knowledge of other data in the protected database.
I believe that in most real scenarios certain knowledge about the data in the
protected database is available to adversaries. This might simply be the case
because common knowledge applies. However, I also believe that in reality the
all-knowing adversary is unlikely to exist and thus most if not all attacks are
performed based on partial knowledge.

Continuing with what I started in chapter 2 I still try to answer the questions:
Can one draw on both ad-hoc and formal research threads to build a system that is
on one hand relatively general and easy to use, while on the other hand satisfies
analytic needs? To the extent that one can, what trade-offs are necessary, for
instance, in terms of weakened assumptions or system constraints? As a second
step in answering these questions, the following chapter presents a system design,
informal analysis of that design, and a partial validation of the design based on
a real dataset (the NYC taxi dataset). This chapter was written in collaboration
with my adviser Paul Francis and thus continues in we perspective.

The starting point in our design is the Provenance for Personalised Differential
Privacy (ProPer) [50] system, a DP system that increases the effective privacy
budget by applying per-user budgets. In ProPer, a user’s budget is only reduced
if the user’s record contributes to a query’s answer, or put another way, if the
user’s record passes the filter conditions of the query. This increases the effective
overall budget because queries with disjoint filter conditions deplete different
users’ budgets. When a user’s budget is depleted, the user’s record is silently

19

3. Towards low noise and large budgets in privacy preserving analytics

Send query
Forward ap-

proved query
Execute

query

Analyst DatabaseQBB, etc.

Release anony-

mized answer

Return true

answer

1) 2)

3)

4)5)

Figure 3.1.: High-level system design of our system, which follows the concept of
a database wrapper. The example shows a successful query and its
respective answer passing through the system. An analyst sends the
query to our system (1). After approval the query is forwarded (2) to,
and executed by the database (3). The true answer is returned to our
system (4), which releases the anonymized answer to the analyst (5).

dropped from the database. However, dropped records might distort answers
without the analyst being aware of the distortion.

To alleviate this problem, while still maintaining the benefits of disjoint bud-
get tracking, our design uses query-based budget tracking (called Query Based
Bookkeeping, QBB) rather than user-record based tracking. By way of example,
suppose a query counts the number of users between ages 10 and 20. ProPer
would decrement the individual budgets of each user that falls in that age range.
By contrast, QBB keeps track of the budget for the the age range itself. As a
result, the analyst knows how budget is reduced for each query. Instead of giving
distorted answers as with ProPer, QBB simply blocks queries where part of the
range has a depleted budget. This comes at a cost: tables are limited to numerical
data, and the system must maintain per-query state.

Although QBB and ProPer behave differently, they provide the same budget
overall. Separate from QBB, our system introduces new mechanisms that further
increase the budget by a factor of 3.6 by exploiting the assumption that attackers
have only partial knowledge of the database—an assumption that is realistic in
many scenarios. These mechanisms include a constraint on queries that limits
analysts to one range per column per query, checks that prevent analysts from
repeatedly generating identical answers, and the use of Gaussian rather than
Laplacian noise. This comes at the cost of opening the system to possible but
“hard-to-launch” attacks.

All our proposed mechanisms are part of a system design that follows the
high-level concept of a database wrapper. Such wrappers intercept any queries

20

3.1. Utility of ProPer

going into and any answers coming out of the database holding the users’ data.
Figure 3.1 shows this high-level concept, where our system with QBB and the
other mechanisms sits in between the analyst and the database. Any query going
into the database is thus approved first, while any answer released to the analyst
is anonymized. At both points the system can intervene in order to protect users’
privacy.

To better understand the amount to which users’ privacy in our system is
susceptible to any of the remaining types of attacks we undertake a case study
based on the NYC taxi dataset. This study shows that exploiting our system
design with direct or observed knowledge about users’ data is difficult. We verify
these findings across adversaries of different strengths all the way to a realistic
worst-case adversary. Using the taxi data we demonstrate for each assumed
attacker the amount of knowledge that is necessary for a successful attack and
thereby empirically verify that attacks are indeed hard to perform in practice.

Our contributions in this chapter are threefold:

• A system design that improves the usability of ProPer at the expense of
constraints on queries’ filter conditions.

• Mechanisms that increase the budget by 3.6x for counting queries at the
expense of opening the system to hard-to-launch attacks.

• A partial empirical validation on a real dataset showing that attacks are
indeed hard to launch in practice.

We first illustrate the utility problems with ProPer in section 3.1, before we
introduce QBB in section 3.2. We describe the mechanisms that allow to in-
crease the budget for counting queries in section 3.3 and present the complete
system design in section 3.4. The empirical evaluation and case study we show
in section 3.5, before we conclude with future work in section 3.7.

3.1. Utility of ProPer

ProPer allows significantly more queries per budget than previous DP based sys-
tems, which typically manage the budget at a global level. Global budgets must
be diminished by every query answered by the system independent of which users’
data, i.e., records, are read by the query. By keeping a separate budget per record,
ProPer is able to run queries that have disjoint filter conditions in parallel without

21

3. Towards low noise and large budgets in privacy preserving analytics

diminishing any single budget twice. Thus, partitioning the data with disjoint
filter conditions into n parts allows n times as many queries as before.

Dynamic streaming databases are the use case for which Ebadi et al. claim to
provide acceptable utility, however they note that it remains unclear how much
utility ProPer is able to provide in case of a static database. For the static
case we find that the focus on personal budgets and the generality of allowed
transform and filter operations impair utility of the system. In the following
paragraphs we first illustrate these problems with two examples. We then propose
a system design based on uniform budgets and QBB that provides utility without
compromising privacy.

To protect each users’ preferred level of privacy, ProPer tracks each individual
user’s chosen budget for the user’s record, diminishes the budget when a query
reads the record, and silently drops the record when its budget is depleted. How-
ever, due to the randomness of user chosen privacy levels at any point in time
the system potentially drops an unknown number of records and thus changes
the base number of records that is read by queries. Results of queries therefore
turn into arbitrary numbers and are useless. For instance, assume the following
example.

Example. An analyst explores the salary structure of a company and wants
to obtain scatter plots of salary ranges versus other dimensions, e.g., amount
of holidays taken. She creates filter conditions for each combination of range
on salary and range on the respective other dimension, e.g., salaries from $40k
to $50k and 5 to 10 holidays taken. With each such filter she counts matching
employees and successively obtains the data for all her plots. Although the sum
of all counts per plot should be within noise bounds, they decrease with each
successive plot.

Total counts successively decrease as over time records have been dropped
silently from the database, which cannot be revealed to the analyst. Therefore it
is now unclear which counts in the analysis are based on how large a part of the
originally complete set of employees. Some budgets might have been too small
for the cost of even a single count, others too small for the cost of two counts,
and so forth. However, the analyst has no way to determine which employees
contribute to each count and therefore the counts received from the system are
of low utility to her. In summary, many statistical outputs of the system have
low utility when users’ preferred levels of privacy are configured.

22

3.2. Query Based Bookkeeping

To increase utility and prevent problems with personalized budgets we use
initially uniform budgets across all records, the amount of which can be publicly
known. Knowing the initially available budget allows the analyst to plan ahead
and adjust her behavior. In particular, she might ask for fewer salary groups with
more employees per group, which allows for higher noise on the counting queries
and thus a lower budget cost per query. By adjusting queries to known budgets
analysts thus achieve high utility within the given limits on noise and budget.

Unfortunately, achieving high utility not only depends on knowing the initial
budget given to records but also on keeping track of any remaining budgets. At
this point tracking budgets is a cumbersome manual process, as ProPer cannot
tell the remaining budgets after using the expressive filter and transformation
functions it allows. Any union-preserving function can be applied to transform
or filter the data, however it takes additional effort to determine if and how such
function partitions the data. For instance, assume the following example.

Example. The analyst uses automated tools to find clusters in the salary data,
to create custom filter functions for each cluster, and to perform additional anal-
yses for each cluster. She knows the uniform initial budgets and is sure that even
if clusters overlap budgets will not be depleted. Nevertheless, to determine the
exact remaining budgets for successive analyses she needs to manually inspect
the sequence of queries made by used tools and also determine how the custom
filter functions partitioned the data. She must find out which sets of queries got
asked about each partition of the data and how much budget therefore remains
for each.

In summary, it is difficult for analysts to keep track of remaining budgets de-
spite the use of uniform initial budgets. However, without careful bookkeeping
there is the risk of silently dropped records that reduce utility of statistical re-
sults. We conclude that there should never be the case where records are silently
dropped from the database. In contrast, the analyst should be able to plan her
analysis around how much budget she uses and how much budget remains given
her previous queries.

3.2. Query Based Bookkeeping

To mitigate analysts problems with tracking budgets we propose Query Based
Bookkeeping (QBB), a mechanism that tracks budgets exclusively based on queries
and not on records. It allows analysts to exploit queries with disjoint filter con-

23

3. Towards low noise and large budgets in privacy preserving analytics

ditions, but unlike ProPer it further allows analysts to stay informed about re-
maining budgets and thus better plan their future queries. All queries are known
to analysts and thus only public information is used in this mechanism to make
any decisions about how much budget remains. Therefore, when analysts pose
new queries QBB can decide to reject select queries where remaining budgets are
too small, but allow others that still fit. None of these decisions are based on
the records in the database and thus no private information is leaked by knowing
about what and how the mechanism decided.

In this section we explain how QBB protects users’ privacy, how we simplify
its design, how the mechanism actually tracks budgets, and how the budget cost
of a query depends on its parameters. Instead of tracking the total budget costs
for sets of queries actually reading the same records as ProPer does, QBB tracks
the total budget costs for sets of queries that have the potential to read the same
records. We thus create a strictly more restrictive mechanism in order to be able
to base it exclusively on queries and their respective parameters.

The most important query parameter for budget bookkeeping is the filter con-
dition, which determines whether a user’s record is read by a query or not. We
know that queries with disjoint filter conditions cannot read the same record, and
inversely queries with non-disjoint, i.e., intersecting, filter conditions potentially
read the same record. In fact, any record matching such intersection of filter
conditions is read by all respective queries and potentially suffers their combined
privacy loss. Therefore, QBB tracks budgets for all possible sets of queries with
intersecting filter conditions, which for any record in the database includes all
sets reading that record. Rejecting new queries if they deplete the budget of
any single such set thus protects all users’ privacy without using any information
about the actual records in the database.

To be able to determine when filter conditions intersect we restrict their expres-
siveness to ranges over numerical data. We further simplify our design by only
allowing a single range condition per data field of a record. Joining a set of such
ranges across multiple columns results in a single bounding box that determines
which records pass and can be read by a query and which cannot. Non-disjoint
ranges or bounding boxes then intersect in some areas and records in those ar-
eas are read by all respective queries. Figure 3.2 shows examples of such filter
conditions for one- and two-dimensional data and for both scenarios the figure
indicates the area of intersection, where records are read by all queries. The same
principles work for higher dimensional records.

In both examples of Figure 3.2 QBB tracks budgets for the four subsets {{},
{q1}, {q2}, {q1, q2}} of queries. It is obvious how any record must be covered

24

3.2. Query Based Bookkeeping

users’ data filter condition/ / intersection

Salary

q1 q2

(a)

A
g
e

Salary

q1
q2

(b)

Figure 3.2.: Examples of filter conditions of two different queries q1 and q2 for
one-dimensional (a) and two-dimensional (b) user data. In both cases
shown filter conditions are not disjoint and therefore intersect. We
only allow filter conditions that consist of a single range per data
dimension, which results in a single bounding box filter condition per
query.

by one of these four. Therefore, tracking budgets for each subset is equivalent
to tracking budgets for any record with the advantage that tracked budgets are
public and can be used by analysts to plan ahead and obtain statistical output
with high utility.

However, as already mentioned, the advantages of QBB come at the cost of re-
strictions to expressiveness. These restrictions are enforced by the query interface
of our system, which only accepts queries following the rules shown in Figure 3.3.
The rules ensure, for example, that no more than a single range can be defined
per column and thus queries follow the rule of a single bounding box. If a query
does not define a range for a column, the system automatically assumes a wild-
card range, i.e., [−∞,∞]. Columns, transformations, and query types thereby
need to be pre-approved and installed by an administrator, who ensures that all
transformations have a single numeric dimension as output and all query types
have correct parameters specified for their results to be properly anonymized.
The administrator further adds the output dimensions of transformation func-
tions to the set of allowed dimensions, e.g., the transformation that calculates
day-of-week of the entry date of an employee results in the day-of-week-of-entry
dimension to be allowed in the definition of a filter range. Similarly, new query

25

3. Towards low noise and large budgets in privacy preserving analytics

〈lowval〉 ::= 〈decimal〉 | ‘min’;

〈highval〉 ::= 〈decimal〉 | ‘max’;

〈range〉 ::= ‘low’ 〈lowval〉, ‘high’ 〈highval〉;

〈col-conc〉 ::= ‘column c’, 〈range〉;
with c ∈ {1, 2, ..., nc}
and nc = # of columns

〈col-con-listi〉 ::= ‘’ | 〈col-coni〉, 〈col-con-listj〉;
with i > j

〈tran-cont〉 ::= ‘transformation t’, 〈range〉;
with t ∈ {1, 2, ..., nt}
and nt = # of transformations

〈tran-con-listk〉 ::= ‘’ | 〈tran-conk〉, 〈tran-con-listl〉;
with k > l

〈condition〉 ::= ‘filter’ 〈col-con-listr〉, 〈tran-con-lists〉;

〈query〉 ::= ‘query q’, 〈condition〉, ‘noise’ 〈decimal〉;
with q ∈ {1, 2, ..., nq}
and nq = # of query types

Figure 3.3.: Rules for queries accepted by the query interface in BNF

26

3.2. Query Based Bookkeeping

types must be appended to the list of allowed types to be available for analysts
to use.

Although we severely restrict the interface compared to ProPer, we believe
these restrictions are necessary for useful analytics. In any event, more complex
transformation and filter functions can still be run as part of a query. The analyst
only needs to ask for the approval of a new query type that combines the complex
filter function with the actual code of a previous query and thus creates a new
combined type of query. Furthermore, analysts can combine the results of multiple
queries with disjoint filter conditions in order to simulate the operations of logical
OR or NOT, which both are effectively prevented by the restriction of a single
bounding box. For instance, assume the following example.

Example. To analyze the salary structure of departments at the west coast the
analyst can separately analyze each state and combine the results herself or she
creates a new type of query that reads all records and internally filters them before
computing its final output. The former only affects budgets on the west coast
partition of the data but leads to multiple times noise added to the combined
answer as the result of each state includes noise. The latter affects all budgets
but only includes noise once in the final result. A third option would be to
introduce a new transformation function that maps records to 0 or 1 depending
on whether they are west coast or not and then use regular filter conditions on
that new dimension.

Analysts have a choice between higher noise, wasted budget, and impaired
performance. They can either use a combination of multiple queries with different
filters each of which increases the noise on the final result. As a second option
they might execute everything in a single combined query with a wildcard filter
in which case budget is potentially wasted. Or they introduce a new dimension
into the bookkeeping mechanism, which increases the dimensionality of tracked
filter conditions. High dimensionality, however, might negatively affect future
query execution times. The optimal choice of method depends on the structure
of the data and the number of transformation functions and query types that are
already present in the system.

It is the restrictions and simplifications on queries that enable QBB to under-
stand which sets of queries read the same records. Nevertheless, in order to find
all sets of previous queries intersecting with a new query, QBB needs to keep
a history of all queries. In addition to space requirements, such history poses
different challenges with respect to performance. One way to exploit the spatial

27

3. Towards low noise and large budgets in privacy preserving analytics

actual query intersection query

Salary, 1.00

q1, 0.75

(a)

Salary, 1.00

q1, 0.75
q2, 0.75

qi, 0.50

(b)

Figure 3.4.: Intuition of the history of QBB. We assume that the total allowed
budget is 1.00 and that each query incurs a cost of 0.25. Figure (a)
shows the state of the history after the first query is added into the
system and its remaining budget is set to 0.75. Figure (b) shows the
new state after the second query is added with its budget set to 0.75
respectively. The intersection of both queries has a lower remaining
budget and requires an intersection query with a budget of 0.50. The
terms query and filter condition are used interchangeably here.

28

3.2. Query Based Bookkeeping

nature of queries in implementing the system is to use a spatial index structure,
e.g., a R*-tree or related structure [11]. To keep inspection and approval times for
queries short one can use precomputed remaining budgets. One might further use
a search technique that requires only a single scan of any relevant history entries
to find the intersection of the new query with the lowest remaining budget.

The history structure works similar to the intuition provided in Figure 3.4.
Here the terms query and filter condition are used interchangeably, so when we
refer to a query most of the time we actually refer to its filter condition here.
In the figure one can see how queries are stored preserving their spatial nature.
The example shows the two different states of the history while two queries are
added. Each query carries the highest remaining budget it can offer to any new
query. In the example the cost of each query is assumed to be 0.25, while the
overall total budget at any point is 1.00, which is indicated on the x-axis. For any
intersection between queries where a query is equal to the intersecting area, i.e.,
where one query is completely subsumed by another query and thus covers the
total intersecting area, no additional intersection query must be added in order
to store the remaining budget for the intersection. In the example however that
is not the case and an additional intersection query with a budget of 0.50 must
be added to the history.

To determine the budget cost of a query we use the theory of DP, in which
budget and cost both are represented by ε. The theory defines a fixed relationship
between the worst case budget cost ε, the noise added to the answer, and the
sensitivity, i.e., the worst case output change with respect to a single record
change, of a query. We use this relationship to determine the worst case cost
given the noise level requested by the analyst in the query and assuming that the
database administrator correctly verified the claimed sensitivity of the requested
query type. As the sensitivity is fixed, cost and noise directly correlate with each
other. This allows analysts to pre-determine the cost of their queries, as they
know the query types and the amounts of noise they are going to request.

In summary, this section answers the four main questions of how QBB pro-
tects privacy, how it is more restricted than previous systems, how it keeps track
of budgets, and how the budget cost of a query is determined. It details why
privacy protection is based on statefully tracking ε-costs for sets of queries with
intersecting filter conditions that are restricted to single ranges over numerical
data dimensions. At an informal level this section also shows how tracking bud-
gets for all possible records is strictly more restrictive than ProPer, which only
tracks budgets for existing records. We therefore propose to replace the record
based protection mechanism by the strictly more restrictive QBB and remove un-

29

3. Towards low noise and large budgets in privacy preserving analytics

necessary redundancy. QBB is thereby fully compliant with the theory of DP and
can provide a guaranteed upper bound on privacy loss. At the cost of restrictions
to the expressiveness of filter and transformation functions we arrive at a design
that provides predictability and increased utility to analysts.

3.3. Increasing budgets for counting queries

QBB allows larger budgets when queries partition the data, which conforms to the
theory of DP. In general it contradicts this proven theory to be able to increase
budgets and keep the noise without suffering from a significantly increased risk of
privacy loss. Nevertheless, in this section we exploit QBB to double the budget
for counting queries at the cost of opening the system to hard-to-launch attacks.
After giving the high level intuition we present an investigation of possible types
of attacks, during which we introduce three additional protection mechanisms,
Query Similarity Detection (QSD), Cheater Detection (CD), and Gaussian noise.
Together, these prevent many and impair the remaining attacks. In the end, we
discuss which powerful attacks prevent us from increasing utility further.

We consider an attack to be “hard-to-launch” when an attacker requires knowl-
edge of some of the victim’s data as well as knowledge of data points “around” the
victim in order to achieve even a small probability of learning something about
the victim with high confidence.

Raising utility despite the theory of DP requires weakening the assumptions of
that theory. An interesting idea in that direction is Noiseless Database Privacy [8,
14], a theoretical concept that allows to reduce added noise, if the input data of
a query already contains uncertainty, i.e., noise in the form of records unknown
to analysts. For such records to exist the authors weaken the assumptions of DP
and only assume attackers with partial knowledge. This is reasonable in many
real world scenarios with static databases. We also believe that many queries
have filter conditions that include records unknown to an analyst. However, as
we show later in this section, certain types of attacks remain powerful and thus
completely removing artificial noise is not an option.

Before we look at attacks we want to first talk about the effect of uncertainty
on answers to queries. In general it is not clear how much noise such uncertainty
adds to an answer. Assume a record with a severe outlying data value. A sum
over the column containing this value is then dominated by the outlier, which is
easy to spot and thus makes the noise of the unknown records insignificant. As a
simplifying design decision we therefore constrain ourselves to counting queries,

30

3.3. Increasing budgets for counting queries

unknown

filter condition

// known/ no HIV/ HIV

victim

A
g
e

Salary

Figure 3.5.: Example of filter condition for directly asking for the data as well
as repeating the same query multiple times. For simplicity the filter
condition does not indicate its implicit “no HIV” setting.

where answers are the least dependent on any data values in records, as they
simply count the number of records passing the filter condition.

For the following investigation of attacks we assume a system that employs
QBB and allows twice the budget for counting queries than would be allowed
according to DP. Additionally we assume that any single query is only allowed
to consume up to a certain amount of budget, e.g., 25%, so multiple queries are
needed to consume the total budget. For a successful attack it is then necessary
to use multiple counting queries without uncertainty about the counted data, i.e.,
only known records plus the victim are counted. To defend against these attacks
the system must ensure that unknown records are included in any such query.
In the following paragraphs we present different types of attacks on the assumed
system. We start with the simplest and end with the most sophisticated type
we could formulate. In between we introduce Query Similarity Detection (QSD),
Cheater Detection (CD), and Gaussian noise to successively upgrade the system
to better defend against these attacks.

3.3.1. Query Similarity Detection

At this point we revisit and work from the previous example of the analyst in-
vestigating the salary structure of her company. However, this time we assume
the following additional circumstances. First, employee records also contain the
employee’s HIV status. Second, the analyst knows the age and salary of some of
her colleagues and also knows that there are no other employees with the same
data. Third, for one of the otherwise known colleagues she does not know the
HIV status and wants to find out.

31

3. Towards low noise and large budgets in privacy preserving analytics

Attack. The simplest attack the analyst can conduct is to simply ask for the
data. She thus prepares a filter condition with ranges for the known age and salary
and additionally a range that only matches the numerical representation of “no
HIV”. If the system returns a count of 1 the colleague in question is indeed HIV
positive, otherwise the count is 0, which indicates the colleague is HIV negative.
We can see a depiction of this attack in Figure 3.5. For simplicity the shown filter
condition does not indicate the setting “no HIV”.

Unfortunately for the analyst we have not completely removed artificial noise
and additionally have a limit on the budget cost per query, which results in a
lower bound on the noise the analyst might choose. Therefore, the answer to her
query might be 0 or 1 but also −1, 2 or any other number with some probability.
To overcome this noise the analyst must obtain the same count with different
noise values multiple times so she can average away the noise. As the noise is
drawn from a symmetrical distribution, averaging over enough samples reveals
the mean, i.e., the true count.

Attack. To repeatedly obtain the same result with different noise, the analyst
repeats the previous attack query. Filter conditions are the same for all queries.

The problem with this attack is the fact that the analyst is able to use the
same query and filter condition throughout the attack. The effort of finding a
suitable condition thus only needs to be rendered once. To counteract this attack
opportunity we propose Query Similarity Detection (QSD), a stateful mechanism
that detects and prevents the repeated use of the same or similar filter conditions.
An attacker then has to find multiple different filter conditions that all fulfill the
attack requirements and only allow known records and the victim to be counted.
Such requirement significantly reduces the number of cases where an attack is
possible and is one of several mechanisms that make attacks hard to launch.
Filter similarity is defined per data dimension of two queries. If the ranges in

any dimension do not intersect, the queries are not similar. Otherwise, they are
similar if for all dimensions the ratio of intersecting range iD to total range tD is
above a certain threshold, e.g., 90%. Figure 3.6 shows two example scenarios of
comparing a new to a previous filter condition. In Figure 3.6a the ratio 100 · iD

tD
is

above 90% for both dimensions D and the filter conditions are determined to be
similar. In Figure 3.6b the ratio for the “Salary” dimension is below 90%, which
results in the filter conditions not being similar.

Not only to impede attacks but also as a convenience to the analyst, we propose
for QSD to return any found duplicate or similar query and its corresponding

32

3.3. Increasing budgets for counting queries

intersecting rangefilter condition/ total range

A
g
e

Salary

iAtA

tS

iS

(a)

A
g
e

Salary

iAtA

tS

iS

(b)

Figure 3.6.: Example scenarios depicting the evaluation of similarity between fil-
ter conditions. In the top scenario the two conditions are similar (a),
in the bottom scenario they are not (b).

previous answer. In that way analysts can repeat their queries and receive an
answer without incurring any budget cost. For benign analysts there should be
no reason to require the same true count with fresh noise as an attacker does.
As comparing filter conditions does not involve any user records, QSD does not
reveal any private information and thus it is safe to return to the analyst any
known data it has access to, including previous answers.

3.3.2. Cheater Detection

Given the additional restrictions of QSD, attackers cannot attack using the same
query, i.e., the same filter condition, multiple times. It is further not possible
to only change filters in a technical rather than a practical sense, e.g., add few
cents to the range on salary or a few seconds to age. Instead, attackers must
use multiple significantly different filters, where at least one range intersects less
than 90%, i.e., differs by more than 10%, each time. Nevertheless, there are still
attacks possible. However, these require more common or observed knowledge.

We continue in our example of the adversarial analyst trying to obtain infor-
mation about the HIV status of one of her colleagues. In the following attack
scenario we assume she possesses the additional knowledge that there is a gap in
salary between the highest paid employee and all other employees.

33

3. Towards low noise and large budgets in privacy preserving analytics

unknown

filter condition

// known/ no HIV/ HIV

victimknown empty

A
g
e

Salary

(a)

A
g
e

Salary

(b)

Figure 3.7.: Example of attack with different filter conditions in order to circum-
vent QSD. For simplicity filter conditions again do not indicate their
implicit “no HIV” setting. The first query uses the same filter condi-
tion as before (a). However, the following queries extend their filters
into the region that is known to be empty (b).

34

3.3. Increasing budgets for counting queries

Attack. To circumvent QSD, the analyst requires additional knowledge. Fig-
ure 3.7 depicts this scenario, where the knowledge of a salary gap is marked by
the shaded area. Knowing that there cannot be any employees with a salary
value in the gap area allows the analyst to extend queries into that area multiple
times without counting anything but the victim. The figure shows two of the
queries, which both solely count the victim although they differ in the salary
range by more than 10%. Given the size of the empty area multiple such queries
are possible.

This attack uses observed or common knowledge to circumvent privacy protec-
tion. While observational capabilities of attackers are likely limited, they can be
sufficient for an attack. Likewise it is often easy to obtain some kind of common
knowledge, e.g., no Uber pickup happens in the ocean and no living human being
is older than 150 years. It is thereby usually easier to obtain negative conditions,
i.e., conditions that no record can fulfill, than positive conditions, i.e., conditions
for which the exact number of matching records is known. Attackers then use the
known negative conditions to extend and thus change their queries while resting
assured that they do not count unknown records.

This attack further shows that attackers are able to use different queries to
produce the same counts, in fact, count the exact same records. Coincidental
occurrence of such event for any benign analyst seems unlikely, in particular as
QSD ensures a significant difference between queries. Therefore, we consider it
cheating behavior to count the same set of records with intersecting but different
queries more than once. To detect such an event we propose Cheater Detection
(CD), a stateful mechanism that actively monitors all true answers provided by
the database and recognizes duplicate answers as cheating behavior. It thereby
scans a history of previous answers and compares the sets of counted records. For
intersecting queries the same set should only rarely occur. One way to implement
this mechanism and make it scale to large numbers of queries is using hashes
over sets of records. Instead of actually scanning the whole history, a hash based
index indicates in constant time whether a given set of records has already been
observed and thus whether the inspected query shows cheating behavior or not.

Upon detection of a cheating query, CD increases the query’s associated budget
cost to a multiple of its original value. The purpose of this increase is to eliminate
any advantage the detected query might have achieved. The increase thus needs
to be high enough to re-establish the conditions of DP, where cheating cannot
lead to privacy loss. However, as these decisions are based on users’ data, CD
cannot cooperate with QBB, which is exclusively based on public data. Instead,
a shadow copy of QBB runs inside CD using the updated budgets.

35

3. Towards low noise and large budgets in privacy preserving analytics

unknown

filter condition

// known/ no HIV/ HIV

victimknown empty

A
g
e

Salary

(a)

A
g
e

Salary

(b)

A
g
e

Salary

(c)

Figure 3.8.: Example of attack exploiting silent record dropping. For simplicity
filter conditions again do not indicate their implicit “no HIV” setting.
Attackers intentionally trigger CD by repeatedly using large filter
conditions counting the same set of records (a, b). They stop right
at the point where the next repetition of the same set of records
will lead to record dropping while counting a different set will not.
Then they extend the filter condition so it potentially matches the
victim (c). If the victim indeed matches the filter the set of counted
records changes and no records are dropped, otherwise all previously
counted records are dropped, which is observable given a large enough
initial filter.

36

3.3. Increasing budgets for counting queries

In case CD detects that some of the updated budgets is depleted it cannot
simply reject queries as that can potentially leak private information. Instead,
it must suspend the analyst and disallow any subsequent queries until further
inspection by an administrator in order to minimize any loss of privacy. In fact,
the suspension alone already allows an attacker to answer a single true/false
question about the victim. However, extended privacy loss is prevented and
detected attackers could for instance be held liable to legal action.

At this point there is no way around suspending analysts. In particular, we
cannot silently drop records as ProPer does, due to the possibility of the following
attack.

Attack. For this attack we assume that the protective system employs silent
record dropping instead of analyst suspension. This means that once budgets
are depleted CD silently removes records from the database, repeats the query,
and returns the updated count. The analyst does not get suspended. As CD
is triggered based on analysts’ behavior, the malicious analyst can exploit it to
obtain information about a victim. To do so she uses a query that counts records
next to but not including the victim (see Figure 3.8a). She intentionally repeats
queries that count the same set of records, which triggers CD to increase the
budget cost during each such repetition. She then stops this procedure right at
the point where the next repetition with the same set of counted records would
require silent dropping. However, in the next query she uses a filter that allows the
victim to pass if it matches the attack condition (see Figure 3.8c). If the victim
passes, it changes the set of counted records and silent dropping is not activated.
Otherwise, silent dropping is indeed activated and given a large enough initial
count the analyst is able to observe the drop and thus determine that the victim
does not match the attack condition.

This attack shows that if a mechanism is based on information from the database
as well as analyst behavior, the analyst can influence and exploit the mechanism’s
decisions to obtain information about users. Analyst observable effects of such
mechanisms therefore need to be limited to suspension. We argue that it is ok
to suspend analysts here as benign analysts are not cheating and thus are likely
never affected by this mechanism. To allow for accidental activation of CD the
administrator can configure lower budgets to be used in QBB. Budgets must be
chosen low enough so QBB triggers before CD despite the queries that incurred
higher budget costs. If QBB triggers first, queries are simply rejected and analysts
are not suspended.

37

3. Towards low noise and large budgets in privacy preserving analytics

3.3.3. Gaussian noise

With both QSD and CD in place, attackers must use different queries with dif-
ferent results for an attack. If they don’t comply they fail by either repeatedly
obtaining previous and thus useless answers or by being detected and suspended.
However, there is a way to fulfill these requirements and still be successful, which
we show in the following attack.

Attack. To always count a unique set of records while never counting any un-
known ones, the analyst uses multiple bounding boxes in each query’s filter con-
dition, as shown in Figure 3.9. Shown queries only include specifically chosen
records and circumvent both QSD and CD.

Unfortunately for the attacker, QBB constrains filter conditions to a single
bounding box per query. This attack is thus hypothetical for the case of a system
without QBB. We did not want to skip this attack as it is very flexible in avoiding
unknown records and thus avoiding uncertainty about the data analyzed by a
query. The possibility of this kind of attack is our main argument for keeping the
rule of a single bounding box per filter.

To attack using only single bounding box filters is challenging at this point.
Attack filter conditions must allow for the victim to be included, must include
at least one unique known record, and must not include any unknown record.
In order to fulfill all these requirements in multiple different queries an attacker
needs a lot of knowledge about the data in close vicinity of a victim, as the
following attack shows.

Attack. At this point, the success of an attack depends on the specific context,
i.e., the state of the data and the attacker’s knowledge about that state. The
analyst must be able to create multiple attack queries for a victim using only a
single bounding box per query. Figure 3.10 shows an example where the attacker
can successfully formulate multiple such queries. Each of the shown queries in-
cludes the victim and a different known record in order to make the set of counted
records unique per query. The most difficult requirement for these queries to work
is the required additional knowledge that no unknown record is counted in any
of the attack queries. This knowledge of empty areas is indicated through orange
shading in the diagrams. One can see from the figure how the attacker needs to
know records and empty areas in close vicinity of the victim in order to attack.

This attack only works in cases where attackers possess the required knowledge.
Nevertheless, attackers know when that is the case, i.e., identify victim records

38

3.3. Increasing budgets for counting queries

unknown

filter condition

// known/ no HIV/ HIV

victim

A
g
e

Salary

(a)

A
g
e

Salary

(b)

A
g
e

Salary

(c)

Figure 3.9.: Example of hypothetical attack using queries counting different sets
of records in order to circumvent both QSD and CD. The three di-
agrams show three different queries, each counting a different set
of records. Filter conditions on these queries are chosen to pre-
clude any uncertainty about the resulting counts by not counting
unknown records. Furthermore, each query includes at least one dif-
ferent record, which leads to unique sets of records being counted by
all queries and CD not being triggered. For simplicity filter condi-
tions do not show their implicit “no HIV” setting.

39

3. Towards low noise and large budgets in privacy preserving analytics

unknown

filter condition

// known/ no HIV/ HIV

victimknown empty

A
g
e

Salary

(a)

A
g
e

Salary

(b)

A
g
e

Salary

(c)

Figure 3.10.: Example of rare but possible attack where the attacker knows a lot
about the data in close vicinity of a victim. In particular, the three
diagrams show how the attacker is able to create three queries with a
single bounding box filter each. All three filters thereby only include
records known to the attacker and the victim. Again, for simplicity
filter conditions do not show their implicit “no HIV” setting.

40

3.3. Increasing budgets for counting queries

for which their knowledge is sufficient. Thus, there is the danger that attackers
actively look for victims where they deem their chances of success high.

To make the success of attacks less predictable we explore the use of Gaussian
instead of Laplacian noise, as would, for instance, be used on a stand-alone QBB
system (see section 3.2). Laplacian noise is able to always provide a fixed bound
on privacy loss. In contrast, Gaussian noise fails to do so in some cases, but
provides a better bound in all other cases. Gaussian noise is thus able to provide
similar protection at a lower overall level of noise. The lower noise increases util-
ity of the system, while the random probability of failure minimizes predictability
for attackers. Failures are random as it is impossible to know if and when the
Gaussian distribution fails to provide adequate levels of noise. Therefore, attack-
ers can no longer anticipate the likelihood of success of an attack, which prevents
them from targeting selected weak victims.

Enough knowledge in the context of Laplacian noise allows attackers to increase
the guaranteed value of epsilon in any attack as shown in Figure 3.11 from, e.g.,
ε = 1.39 to ε = 2.78. The former value thereby allows 80% attack confidence while
doubling it results in 94% confidence. Such fixed worst case confidence cannot
be provided by Gaussian noise. However, one can find Gaussian distributions
that fail such upper limit on confidence only in a configurable random amount of
cases. In the example we see one distribution configured for 0.5% miss rate at the
level of 80% confidence and its counterpart with twice the budget, which misses
in 5% of cases. As these cases are selected at random attackers cannot anticipate
a fixed confidence for an attack, but only how close they are to either the dashed
or the solid Gaussian distribution, which means some chance of success out of
[0.5%, 5%].

Gaussian noise allows for a different trade-off between budget, noise, and attack
confidence. When a maximum bound on attack confidence is desired it allows to
trade a small amount of successful attacks for lower noise and larger budgets, while
restraining predictability by choosing successful attacks at random. The amount
of successful attacks varies depending on the configuration of the system, e.g.,
where any attacker has a 0.5% chance to succeed an attacker with full knowledge
of users’ data gets a 5% chance to succeed. However, reaching these 5% with
only partial information is hard as our restrictions impair creation of suitable
attack queries. At the same time opening the system to this potential amount of
successful attacks allows us to increase budgets for counting queries by another
1.8 times to a total of 3.6 times the original budget.

In summary Gaussian noise as we apply it in the Noise Adder (NA) (see Fig-
ure 3.13) improves utility for analysts and impedes predictability for attackers at

41

3. Towards low noise and large budgets in privacy preserving analytics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1

C
D
F
of

at
ta
ck
s

Confidence

GD misses 0.5%
GD misses 5%

LD ε = 1.39

LD ε = 2.78

Figure 3.11.: CDF of attack confidence for different noise distributions. Distri-
butions try to provide at most 80% attack confidence for a given
budget over queries. Before doubling the ε-budget for chosen Lapla-
cian distribution (LD) no attack achieves above 80% confidence,
afterwards all attacks do. In contrast, before doubling the budget
for chosen Gaussian distribution (GD) 0.5% of randomly selected
attacks achieve above 80% confidence, afterwards 5% do.

42

3.3. Increasing budgets for counting queries

unknown

filter condition

// known/ no HIV/ HIV

victimknown empty /

A
g
e

Salary

(a)

A
g
e

Salary

(b)

Figure 3.12.: Example of advanced attack combining pairs of queries. As before,
filter conditions do not indicate their implicit “no HIV” setting. Each
diagram shows a single step in the attack process, where each uses
a combination of two attack queries.

the cost of a small probability that carefully crafted attacks succeed. One might
now say that even if the chance of success is only 0.5%, it might hit the important
few users in the database. However that would be wrong, as the Gaussian mech-
anism chooses successful attacks at random, the only influence the users’ data
might have is whether attackers manage to trick QSD and CD and thus achieve
the maximum possible probability of success. This maximum probability is 5%
in the case where 0.5% is the best case provided by the Gaussian noise.

3.3.4. Remaining attacks

To increase the probability of a successful attack despite the Gaussian noise an
attacker needs to try many attacks on different victims. To be able to try more
attacks with limited knowledge a more general type of attack that does not require
a lot of knowledge about the close vicinity of a victim is needed. The following
attack represents such type.

Attack. In this type of attack the analyst creates pairs of queries that need to
be combined. In each attack step she creates a query that includes potentially

43

3. Towards low noise and large budgets in privacy preserving analytics

the victim and for sure one additional known record. Then she creates a query
that asks for all parts of the first query she does not know about. Subtracting
the answer of the second query from that of the first removes the unknown parts
from the first answer. At the cost of twice the noise the analyst is thereby able
to repeatedly query the victim with fresh noise. Figure 3.12 shows two such
combinations of queries, where the dashed query asks for all the parts of the solid
query that the analyst is unsure about. Subtracting the answer of the dashed
query from the solid query removes any unknown parts from the equation. Only
the victim remains.

This attack is the reason we cannot do better than doubling the budget for
counting queries. For any query that intersects the victim we have to assume there
is a single other query that can ask for all the unknown parts of the answer and
thus eliminate all the uncertainty an attacker might have had. The uncertainty
of the data can thus be removed by exactly twice the amount of queries, which
leads to twice the budget.

Next to all so-far described attacks there are few additional attacks that got
excluded by assumption. In particular we make two implicit assumptions through-
out the chapter that prevent attacks. The first assumption we make is taken from
ProPer, which is the independence of records. We assume that records are not
strongly and predictably correlated, e.g., it does not happen that all employees
of a certain department get a raise together. The second assumption is that the
data does not follow any clear structure that an attacker can exploit, e.g., it does
not happen that there is exactly one employee per each year of age with the
salary being exactly twice the age in thousands. We also assume that the attack-
ers partial knowledge is spread over the whole database and not concentrated in
a single small partition. Removing these assumptions would allow an attacker
to successfully attack the system and thus require the use of a global budget.
However the same is true for ProPer and similar systems.

To summarize, in this section we show how weakening the assumptions of DP in
order to increase budgets requires additional restrictive mechanisms to make then
possible attacks hard to launch. We learn that veering off the proven theory opens
Pandora’s box of attacks, which are difficult to control and impair. Nevertheless,
we show three mechanisms that help to prevent many attacks and make the rest
hard to launch, while preserving utility for benign analysts.

44

3.4. The complete design

Analyst

a)

QBB

Database

CD

hk

QSD

hu

b) c)

d)e)

NA

Figure 3.13.: An analyst sends a query to and receives an answer from our system
(bold arrows). The query is restricted by the query interface that
requires queries to be in a special format (a) and passes QSD (b)
and QBB (c). Together with the true answer from the database it
gets approved by CD (d). Before it is sent back to the analyst, the
answer is obfuscated by the NA (e). Information from the database
is only handled by components inside the shaded box, while any in-
formation outside is known to analysts. Components (b) and (c) can
therefore provide feedback or previous answers to the analyst, while
(d) cannot. The separation also necessitates two different query his-
tory structures, hk that contains queries and anonymized answers
known to analysts, and hu that also contains the true answers from
the database unknown to analysts.

45

3. Towards low noise and large budgets in privacy preserving analytics

. Histories of queries and answers (un)known to analyst
1: KnownHistory hk
2: UnknownHistory hu
3: function HandleQuery(q)

. QSD, return previous anonymized answer if possible
4: hk,o ← Overlapping(q, hk)
5: qs ← DetectSimilar(q, hk,o)
6: if qs then
7: ca,s ← Answer(qs, hk,o)
8: return (similar, qs, ca,s, null)
9: end if

. QBB, reject query if budget is depleted
10: bAvail← TrackBudget(hk,o)
11: bReq ← RequiredBudget(q)
12: if bAvail < bReq then return (reject, q, null, bAvail)
13: end if

. ENTER SECTION handling users’ data
. Obtain true answer and hash of read records from DB

14: (ct, hash)← DbExecute(q)
. CD, suspend analyst if necessary

15: susp← DetectCheater(q, ct, hash, hu)
16: if susp then return (suspend, null, null, null)
17: end if

. NA, anonymizes true answer
18: ca ← AddNoise(ct)

. Update histories
19: Update(hu, q, ct, hash)

. EXIT SECTION handling users’ data
20: Update(hk, q, ca)
21: hk,o ← Overlapping(q, hk)
22: bRemain← TrackBudget(hk,o)

. Return anonymized answer
23: return (new, q, ca, bRemain)
24: end function

Figure 3.14.: Query handling of our system design in pseudo code

46

3.4. The complete design

3.4. The complete design

Combining all presented components in a single design leads to a defense-in-
depth system with multiple modules cooperating in order to protect users’ privacy.
Additionally to QBB, QSD, and CD we introduced the NA, which anonymizes
true answers from the database by adding Gaussian noise. Altogether we put
four separate modules in front of the database to monitor, compare, approve,
and anonymize queries entering as well as answers leaving the system.

Figure 3.13 shows our setup as a diagram with the path of a regular query
marked with bold arrows, while Figure 3.14 shows the same path in form of
pseudo code of the query handling function. As handling queries includes stateful
mechanisms, we introduced two history structures hk for queries and anonymized
answers known to analysts and hu with queries and true answers unknown to
analysts. Confining data unknown to analysts in a separate part of the system
lowers the chance of unintended leakage for instance in the form of side-channels
derived from the limitations we enforce. Components outside that part cannot
cause any loss of privacy. Neither their decisions when to enforce limitations nor
the additional feedback they give to analysts can possibly include any information
about users’ data, as by design they cannot look at such data. In Figure 3.13
the shaded area indicates the part where data unknown to analysts is used, while
comments indicate the same for the pseudo code in Figure 3.14.

Before a query enters the area of unknown information it has to pass and
be approved by multiple other modules. First a query passes through the query
interface (Figure 3.13a). At that point it conforms to all syntactic restrictions and
the system starts to handle it (Figure 3.14 Line 3). The second component is the
QSD (Figure 3.13b), which obtains all previous queries overlapping the new query,
i.e., with non-disjoint filter conditions, from hk and checks these overlapping
queries for similar ones (Figure 3.14 Line 5). If a similar query is found it is
returned together with its previous anonymized answer and the new query is
dropped. Otherwise, the QBB (Figure 3.13c) determines the budget available for
the query to run (Figure 3.14 Line 10), compares it with the budget required by
the query, and rejects the query if it cannot fit. The rejection includes information
about how much budget is still available so analysts can adjust their behavior
and pose an adapted query. Once a query got approved by QBB it executes on
the database, which returns the true answer and the corresponding hash of the
consumed set of records to the system. At this point the query, the answer, and
the hash enter the confined area where they are inspected (Figure 3.14 Line 15)
by the CD (Figure 3.13d), and its own shadow budget tracking. If there is enough

47

3. Towards low noise and large budgets in privacy preserving analytics

budget, query and answer are approved for anonymized release, which requires
the NA (Figure 3.13e) to anonymize the answer (Figure 3.14 Line 18) and finally
return it to the analyst.

3.5. Case study: taxi rides in New York City

In the previous section we put all parts together and presented our complete
system design. What remains is the question of how hard these hard-to-launch
attacks are, which the system allows in return for increased utility. Section 3.3
provided a general intuition about how attackers can create queries to exploit our
system design and circumvent its restrictions in order to attack users’ privacy.
This section evaluates these intuitions in a case study on real data to empirically
show that attacks are indeed hard to launch in practice.

We study the difficulties an attacker faces in two separate analyses. First, we
look at how much the uncertainty about the users’ data influences the attackers
confidence before we secondly look at the required additional knowledge for at-
tacks that work despite such uncertainty. Both scenarios also have a minor aspect
to them. From the first scenario we derive that attackers without any knowledge
of any of the users’ data are not able to learn anything. The second scenario
further shows the size of the data partition for which a single attack attempt
consumes budget. Lower budgets impair further attacks and thus attempting to
attack a record increases protection for records in its vicinity, an unexpected case
of interdependency.

To show these cases we use taxi rides from the NYC taxi dataset from 2013 [26,
82]. For the following analyses we use all rides of January 2013, a set of around
14 million rides. We assume our system to protect single rides with a separate
budget each. In other words, each ride represents a single user’s record. We
further assume a configuration of the system with a minimum noise of standard
deviation sd = 3.0 and the goal to limit attack confidence to at most 80%. As the
system is not perfect we need to determine an interval of accepted failure rates,
for which we choose [0.5%, 5%]. Given these parameters the system can provide
a budget of four counting queries for the minimum noise.

We investigate different combinations of context parameters to cover a large
space of potential attack scenarios. The parameters we consider are the fraction
of rides fully known to attackers, the area and time intervals in and during which
they are able to observe taxi rides, and the fraction of taxi rides that share the
condition of interest with the victim. This condition of interest is the information

48

3.5. Case study: taxi rides in New York City

attackers want to know. We use the amount of tip, e.g., was the amount larger
than $5, for all our analyses. This choice is made with an attack in mind that
actually happened for the very dataset we use [115]. We evaluate a variety of
different tip amounts to show cases where fractions of rides of different orders of
magnitude share the targeted condition. Similarly we vary the size of the area
and the length of the time interval in and during which attackers observe taxi
rides happening, but do not know the full set of data values for those rides. In
particular they cannot observe the amount of tip given in those rides.

For the fraction of rides attackers fully know we assume two different scenarios.
In the first scenario we try to model a single worst case attacker. We determine
such attacker to be someone similar to the largest taxi operator in NYC, who
operates up to 8% of all NYC taxis [118]. We thus choose a random set of 8% of
all taxis for this case. Beyond that we model a scenario where the majority of taxi
operators in NYC collaborate in attacks. In our case that means we randomly
choose 56% of all taxis to be part of the controlled set in this case. During attacks
all rides in the set of controlled taxis are considered fully known to attackers.

Next to these varying parameters we use the same set of randomly chosen 1000
rides as victims across both studied scenarios. We assume that attackers do not
know anything about the victims except the pickup location and time, which in
combination form an isolating filter for each victim, i.e., a filter condition that
only contains a victim and no other ride. For simplicity we do not consider drop-
off location and time in any of our investigations, however, we strongly suspect
that any insight gained from the use of pickup location and times similarly applies
to drop-off location and times. In general, it also applies to many other types of
data columns. We merely use these particular columns as examples of observable
data, which is usually used to create isolating filters. In contrast, the amount of
tip, which we consider to be of interest to attackers, is the typical unknown and
unobservable type of data.

3.5.1. Unknown records lower confidence

Our first analytic scenario evaluates the degree to which unknown records disturb
a type of attack that attempts to minimize the effects of such records but cannot
fully prevent them. The evaluation shows that without extensive observational
capabilities even for the attacker that knows 56% of all rides more than 20%
of attack attempts are disturbed for interesting conditions, i.e., conditions that
match only few rides. All attackers confidence thus is below 80% for this type of
attack and all attacks fail. From that result we derive that attackers without any

49

3. Towards low noise and large budgets in privacy preserving analytics

match 0.004%
match 0.04%

match 0.5%
match 5%

match 48%

1

10

100

none
5m 2 484m 2

12100m 2

5km 2
493km 2

allD
is
tu
rb
ed

at
ta
ck
s
[%

]

Observed area

(a)

1

10

100

none
5m 2 484m 2

12100m 2

5km 2
493km 2

allD
is
tu
rb
ed

at
ta
ck
s
[%

]

Observed area

(b)

Figure 3.15.: Percentage of attacks disturbed by unknown records for attackers
knowing 8% (a) and 56% (b) of taxi rides respectively. For each
percentage the same 1000 victims were separately attacked and out-
comes aggregated.

50

3.5. Case study: taxi rides in New York City

knowledge of users’ data have practically zero chance to successfully attack any
victim.

The analyzed type of attack is based on the one previously shown in Figure 3.10
in subsection 3.3.3. It uses queries with single bounding box filter conditions that
each include a unique known record, which must match the condition of interest,
e.g., tip amount is larger than $5. Attackers use their set of fully known records
to fulfill this requirement. To minimize the likelihood of unknown records being
counted in the attack queries, attackers use records with rides that happen either
shortly before or shortly after the victim ride. As the system allows for four
queries at minimum noise they need to use four such records.

Additionally, attackers exploit their observed knowledge, i.e., time and loca-
tion of rides happening in a restricted area and time interval around the victim.
Attackers do not use any attack queries that have the potential to count any
of the records of the observed rides. As attackers do not know whether these
records actually match the query condition or not, this is an overestimating mea-
sure that can remove working attack queries. In contrast to the attack described
in Figure 3.10 we assume here that attackers do use queries for which they lack
some knowledge of empty areas. If the finally chosen four queries do not count
any unknown records, the attack achieves the highest possible probability to suc-
ceed, which is 5% for the assumed system configuration. However if any of these
queries counts at least a single unknown record, the final outcome of the attack
is disturbed and thus of little use.

For each combination of observable area and condition of interest we attacked
the taxi ride dataset for all 1000 victim records and obtained the percentage
of attacks that were disturbed by unknown records. Figure 3.15 shows these
percentages for the different combinations of considered parameters. The graph
above (Figure 3.15a) shows the numbers for the single worst case attacker, who
knows 8% of all taxi rides. We observe that for any interesting conditions (the
three left bars in each group) the amount is always close to 100%. Only for a
common condition and for a powerful attacker, who can observe a very large area
(the rightmost bar of the whole graph), disturbance decreases to around 0%. The
graph below (Figure 3.15b) shows the same percentages for the collaboration case
where more than half of NYC’s taxi operators work together and together know
more than every second taxi ride. Despite this impressive amount of knowledge
the graph shows that such attackers still have to put up with more than 20% dis-
turbance for interesting conditions. In practice this means that unknown records
indeed increase uncertainty and lower the confidence of attackers, which therefore
cannot use attacks where they lack some knowledge about empty areas.

51

3. Towards low noise and large budgets in privacy preserving analytics

3.5.2. Prerequisites for successful attacks

The first analysis shows that attackers need to know about the absence of un-
known records in any attack query. Following this direction the second analysis
investigates the amount of observation required to possess such knowledge. We
show that for the single worst case attacker extensive amounts of observation are
necessary to successfully attack even 1 in 5000 records let alone reach the best
possible and attack 1 in 2000. Nevertheless, we also show that if database ad-
ministrators require higher security, they can raise the minimum allowed noise in
the system’s configuration and attacks automatically become harder to launch as
more queries are necessary and thus more data needs to be observed.

We assume the same attack as before however this time attackers only use
attack queries for which they know that no unknown record can be counted.
Therefore the attack now exactly resembles the example shown in Figure 3.10 in
subsection 3.3.3. Observation is thereby the only means of attackers to obtain
the required knowledge about empty areas. The attacker needs to observe the
whole partition of data included in each attack queries’ filter condition. Only
queries where there are no unknown rides observed for their partition might then
be used in the attack. To successfully attack 1 in 5000 records attackers need to
find three attack queries, while for attacking 1 in 2000 records they need four.

Figure 3.16 shows our results for different scenarios. The x-axis of each graph
shows the size of the area attackers must observe, while the y-axis details for how
long they need to observe it. Up to five different lines are presented in each graph,
one for each fraction of taxi rides matching the attack condition. Lines represent
the amount of observation necessary to successfully attack a randomly chosen
ride with a certain probability. A single line thereby represents all combinations
of area and time that provide the same chance of success. The different graphs
in the figure each show results for a different configuration. The upper three
graphs are for the single worst case attacker controlling 8% the lower three for
the collaborating attackers controlling 56% of taxi rides. The four on the left are
for the currently assumed minimum standard deviation of the Gaussian noise of
sd = 3.0, while the two graphs on the right show the effect of increasing said
minimum noise to sd = 5.0 while keeping the other parameters constant with
respect to the two middle graphs.

Graph 3.16a, for example, shows the amounts of observation needed by attack-
ers who know 8% of all records in a system configured with a minimum standard
deviation of the Gaussian noise of sd = 3.0. The leftmost point in that graph
indicates that such attackers need to observe 484m2 for 23.2 days in order to be

52

3.5. Case study: taxi rides in New York City

match 0.004%
match 0.04%

match 0.5%
match 5%

match 48%

2s
20s

3.3m
34m
5.6h
2.3d
23.2d

none
5m 2

484m 2

12100m 2

5km 2
493km 2

all

O
bs
er
ve
d
ti
m
e

Observed area

(a)

2s
20s

3.3m
34m
5.6h
2.3d
23.2d

none
5m 2

484m 2

12100m 2

5km 2
493km 2

all
O
bs
er
ve
d
ti
m
e

Observed area

(b)

2s
20s

3.3m
34m
5.6h
2.3d
23.2d

none
5m 2

484m 2

12100m 2

5km 2
493km 2

all

O
bs
er
ve
d
ti
m
e

Observed area

(c)

2s
20s

3.3m
34m
5.6h
2.3d
23.2d

none
5m 2

484m 2

12100m 2

5km 2
493km 2

all

O
bs
er
ve
d
ti
m
e

Observed area

(d)

Figure 3.16.: Observational capabilities required to attack a random taxi ride.
The top row (a, b) details numbers for attackers that know 8% of
all rides, the bottom row (c, d) for those that know 56% of all rides.
The two on the left (a, c) present numbers to successfully attack
1 in 2000 rides and the two on the right (b, d) for 1 in 5000 rides,
all four for the minimum configured standard deviation of sd = 3.0.

53

3. Towards low noise and large budgets in privacy preserving analytics

match 0.004%
match 0.04%

match 0.5%
match 5%

match 48%

2s
20s

3.3m
34m
5.6h
2.3d
23.2d

none
5m 2

484m 2

12100m 2

5km 2
493km 2

all

O
bs
er
ve
d
ti
m
e

Observed area

(a)

2s
20s

3.3m
34m
5.6h
2.3d
23.2d

none
5m 2

484m 2

12100m 2

5km 2
493km 2

all

O
bs
er
ve
d
ti
m
e

Observed area

(b)

Figure 3.17.: Observational capabilities required when more noise is added. The
top graph (a) details numbers for attackers that know 8% of all
rides, the bottom graph (b) for those that know 56% of all rides.
An increased minimum standard deviation of sd = 5.0 improves
protection and requires more observation to succeed on 1 in 5000
rides compared to a case of sd = 3.0 (compare Figures 3.16b and d).

54

3.6. Related work

able to successfully attack 1 in 2000 records with a condition that matches almost
every second record. The following points on the shown line detail that attackers
can likewise observe 12100m2 for only 5.6 hours or 5km2 for 3.3 minutes. For any
condition matching less than 5% of rides there is no line present in the graph.
These attacks failed due to insufficient knowledge.

Going to the right to graph 3.16b we observe the curve for attack conditions
that match 5% of rides has dropped close to the line for 48%. This means that
these attacks have become easier to conduct as less observation is necessary. This
observation is in accordance with the fact that the middle graphs show the simpler
attack that only works on 1 in 5000 victims. Going down to graph 3.16d shows
the same effect of dropping lines. However, in this case it is not the attack that
has become easier but the knowledge of the attacker has increased as the lower
three graphs represent the case of the collaborating attackers.

The difference between the middle and the right graphs is the minimum noise
allowed by the system. For the right graphs, e.g., graph 3.17b, the minimum
noise of the system is increased from sd = 3.0 to sd = 5.0, which means more
queries need to be used in a comparable attack. Finding additional attack queries
is hard, which is why lines presented in the right graphs have risen compared to
the middle graphs. In the chosen setting they actually rise to a comparable level
with the left graphs, which is coincidental and has no relevant meaning.

Taking all gained insights together we learn that attackers need a lot of observed
data for a large partition of the data around any victim, which means that attacks
are indeed hard to launch in practice.

3.6. Related work

Private data analytics techniques, also called disclosure control techniques, can be
roughly categorized into three groups, (1) those that perturb the original data,
(2) those that perturb the output of an analytics system, and (3) those that
filter, limit, and modify the queries before execution. The latter group includes
techniques that suppress some outputs entirely.

Our system design works on raw unmodified data to avoid the potential biases
of data perturbation [2]. Thus, we only discuss k-anonymity [109, 110] and pseu-
donymization [93] of the first group of systems [32, 66, 75, 94, 108]. The second
group contains DP [44], research wise the golden standard of privacy protection
systems. However, for our system design we took most ideas from the third group.

55

3. Towards low noise and large budgets in privacy preserving analytics

In the following we discuss the techniques that influenced our system design as
well as the popular systems in research and industry.

3.6.1. The most recent and most known

The related work section of [76] provides a good overview over different kinds of
techniques. It includes well-known original data perturbation techniques in the
line of k-anonymity [73, 76, 88, 109, 110], but does not yet cover the more recent
output perturbation techniques in the line of DP [16, 40–42, 44, 47, 81, 90]. An
extensive overview of DP is provided in [46].

Despite their success in protecting privacy, both k-anonymity and DP based
techniques are often criticized for the resulting loss in analytical utility [7, 17, 38,
61, 62, 74]. Either they provide good privacy but low utility, or their utility is
acceptable but good privacy cannot be guaranteed any longer.

DP’s application is further shown to be problematic considering specific real-
world scenarios, e.g., social networks [58, 68]. This thesis only considers simpler
scenarios where these problems do not occur. Otherwise, presented solutions are
as susceptible to these problems as most other DP systems.

3.6.2. The usually applied

Pseudonymization [93] is one of—if not the—most applied ad-hoc technique for
privacy protection. The technique is simple. It replaces any directly identify-
ing data values, e.g., first and last names, with randomly chosen pseudonyms.
Consistent use of the same pseudonyms for the same data values preserves inter
record dependencies and correlations. Other data fields remain untouched, which
allows for high data utility and increased usability.

Given its popularity, many data privacy laws and regulations require pseudony-
mization. Examples are HIPAA (Health Insurance Portability and Accountability
Act) [27] and GDPR (General Data Protection Regulation) [25]. The first regu-
lates the protection of medical data, i.e., patients’ health records, and has lead to
wide adoption of pseudonymization in respective systems (e.g., see [89, 97]). The
second has come into effect only recently but governs any and all data exchange
or processing in the European Union. For instance, it requires online services to
apply privacy protections, e.g., to pseudonymize server logs [54].

Despite its wide adoption, pseudonymization has severe flaws. Although spe-
cific data values might not be directly identifying, they might still be unique to a
specific data record or user account. Knowledge of such values allows to identify

56

3.6. Related work

specific records and de-anonymize the data [111–113, 116]. Consider, for exam-
ple, the dataset of NYC taxi rides [26, 82]. The dataset does not contain any
directly identifying data values for passengers. Nevertheless, paparazzi with pic-
tures of celebrities entering taxis were able to identify corresponding trip records
via the unique combination of location and time. This led to the public exposure
of celebrities’ tipping behavior [115].

3.6.3. Related techniques of disclosure control

In [35] Denning and Schlörer give an overview over related research. Among others
they cover systematic and random output rounding, query modification, query
overlap control, and query auditing. These techniques anticipate the design of
our system. The authors conclude that only a combination will be able to provide
high security paired with low information loss, i.e., high utility.

At the same time Sichermann et al. [104], as well as later Dinur and Nissim [36],
conclude that a general solution to the disclosure problem will have potentially in-
finite complexity and require large amounts of perturbation, i.e., noise. Although
DP circumvents the complexity by making an elegant worst-case assumption, the
high noise and the resulting low utility is often unacceptable. We do not make this
worst-case assumption, but due to the resulting complexity we can only provide
probabilistic intuitions with respect to known attacks.

Particular ideas for designing our system were taken from the following related
work. There are many different topics that our system design relates to and many
different techniques that influenced it. However, to our knowledge, we are the
first to combine multiple of the presented individual techniques in the way that
Denning and Schlörer once suggested.

Output perturbation Different forms of output rounding [1, 3, 28, 53, 87, 92,
99–101] are the predecessors to noise addition techniques [9, 15, 36, 39, 102,
114], which finally led to differentially private noise [40]. We use Gaussian noise
to make the success of attacks less predictable as we detail in subsection 3.3.3.
Gaussian noise is only able to provide an (ε, δ)-privacy guarantee [43]. However,
we show that despite the possibility of low Gaussian noise values an attacker
requires extensive additional knowledge to successfully attack.

Query modification Modifying the input query to change the output in certain
ways can be helpful in different scenarios. Enforcing complex access policies [107],

57

3. Towards low noise and large budgets in privacy preserving analytics

integrity constraints [106], or lower answer granularity bounds [77] are three ex-
amples in the database security area. We modify the input query if it is similar,
i.e., too close, to some previous query. In those cases we change the query to the
previous one and return the previous answer.

Query overlap control Controlling and disallowing queries that overlap pre-
vious queries has also been investigated in different cases in the past [30, 31,
37]. Different techniques have been introduced since and even ProPer [50] can
be viewed as a kind of overlap control, restricting the amount of queries overlap-
ping on each individual user. We pick up on this idea and restrict the amount of
overlap on top of each query bounding box.

Query auditing Inspecting the queries of an analyst to determine the potential
of an attack and decide whether the next query should be allowed or not requires
the auditor to recognize attack patterns. Among others, [23, 24, 37, 67, 69]
present systems that can identify attacks for specific kinds of queries. In [21]
Chin then concludes that for a combination of different kinds of queries complexity
is a problem. Therefore, we rely on the administrator to determine whether a
suspended analyst actually attacked or not. Kenthapadi et al. [67] identify the
problem of potential information leakage through the banning itself. We believe
this risk to be an acceptable trade-off for an increased amount of queries.

3.6.4. Tracker attacks

The so called “tracker attack” [33] is the basis for many attacks. All the attacks
we investigated in the context of our system design are based on some version of
a tracker. Trackers are often simple to find [34, 105], and despite the fact that the
then-assumed system model was different and more general than ours, the attacks
we investigated are still special versions of the “individual tracker” attacks.

In fact, the simplicity of finding “general” trackers led to our decision to restrict
the potential query space further. Not allowing logical “OR” in queries together
with demanding contiguous ranges, basically forces any attacker to use individual
trackers of which he needs to find a different one for each record or user of interest.
The idea of this restriction we took from [35], while the necessity of an isolating
query we got from [33].

58

3.7. Conclusion

3.7. Conclusion

This chapter represents our second take at a system design that tries to improve
usability of a private data analytics system at the cost of guarantees. Nevertheless,
there is still a great deal to be learned before we can conclude that this is the way
to achieve the usability analysts desire. At this point we envision three major
directions for future work: to get a better understanding of usability, to formally
verify the system, and to gain more practical experience.

As a first step of formally verifying our system we proof QBB correct with
respect to DP in chapter 4. Beyond that, we expect it to be challenging to
provide formal guarantees for mechanisms that allow hard-to-launch attacks.

Both QSD (subsection 3.3.1) and Gaussian Noise (subsection 3.3.3) can be
found in adapted versions in the Diffix system [55].

59

Part II.

Returning to Differential Privacy

61

4. UniTraX: protecting data
privacy with discoverable
biases

Chapter 3 introduced QBB, a mechanism to track budgets and protect privacy
based on queries. This chapter proofs QBB correct with respect to DP. To this
end, QBB’s design is improved and reimplemented in a system called UniTraX.
In UniTraX budgets are tracked based on queries as was the case in QBB. Ad-
ditionally, UniTraX allows more kinds of queries utilizing the Privacy Integrated
Query (PINQ) [80] framework. This chapter compares UniTraX to PINQ’s global
budget tracking as well as the personalized budget tracking of the Provenance for
Personalised Differential Privacy (ProPer) [50] system. Both of these systems are
proven to be differentially private.

This chapter is a result of a collaboration between Fabienne Eigner from CISPA
and Saarland University, Matteo Maffei from TU Vienna, Deepak Garg from
MPI-SWS, my adviser Paul Francis, and me. Without Fabienne’s, Matteo’s, and
Deepak’s expertise the formal model and the proofs that UniTraX maintains DP
budgets would not have been possible.

A simple but common approach to DP budgets is to maintain a single global
budget. With this approach, all queries draw from the budget regardless of how
many user records are used to answer a given query. In systems where users can
specify their own individual budgets, the global budget is effectively the minimum
of user budgets.

An alternative approach is to maintain per-user budgets. The idea here is that
a given query draws only from the budgets of users whose records contribute to
the answer. This can substantially improve system utility. An analysis that for
instance targets smokers in a medical dataset would not reduce the budgets of
non-smokers. Furthermore, per-user budgets maximize utility in systems where
users specify their individual budgets because low-budget users do not constrain
the queries that are made over only high-budget users.

63

4. UniTraX: protecting data privacy with discoverable biases

In spite of the tremendous potential for increasing the utility of DP systems,
we are aware of only a single system, ProPer [50], that tracks per-user budgets.1
This is because of a fundamental difficulty with per-user budget systems. Namely,
the system cannot report on the remaining budget of individual users without
revealing private information. If budgets were made public in this way, then an
analyst could trivially obtain information about users just by observing which
users’ budgets changed in response to a query.

Because of this, ProPer keeps user budgets private: it silently drops the record
of a user from the dataset when the user’s budget is depleted. This creates
a serious usability problem for the analyst. Suppose there are two analysts,
Alice and Bob. Alice wishes to learn about smokers, Bob wishes to learn about
lung-cancer patients. Suppose Alice makes a set of queries about smokers, and
as a result many smokers’ budgets are depleted and these smokers’ records are
dropped from the dataset. Afterwards Bob asks the question: “What fraction of
lung cancer patients are smokers?”. Because many smokers have been dropped
from the dataset, and non-smokers have not, Bob’s answer is incorrect. Worse,
Bob has no way of knowing whether the answer is incorrect, or how incorrect it
is. Bob’s answer is effectively useless. We call this unknown dataset bias.
To address this problem, this chapter presents UniTraX, a DP system that

allows for the benefits of keeping per-user budgets without the disadvantage of
unknown dataset bias. The key insight of UniTraX is in how it tracks bud-
get. Rather than privately tracking individual users’ remaining budget, UniTraX
publicly tracks the budget consumed by prior queries over regions of the data
parameter space. In addition, UniTraX adds each user’s initial budget to the
dataset, making it a queryable parameter.

For example, assume a query asks for the count of users between the ages
of 10 and 20. ProPer would privately deduct the appropriate amount from the
individual remaining budget of all users in that age range. By contrast, UniTraX
publicly records that a certain amount of budget was consumed for the age range
10-20. Because the consumed budget is public, the analyst can calculate how
much initial budget any given point in the data parameter space would need in
order to still have enough remaining budget for some specific query the analyst
may wish to make. Because initial budgets are also a queryable parameter, the
analyst can then explicitly exclude from the query any points whose initial budget
is too small. This allows the analyst to control which points are included in

1Other DP systems also permit per-user or per-field initial budgets [5, 65]. However, these
systems do not track the consumption of budget on a per-user basis.

64

4.1. System comparison

budget attribution
global per-user

consumed budget
visibility

private ProPer
public DP reference UniTraX

Figure 4.1.: System comparison

answers and therefore avoid unknown dataset bias. (See section 4.1 for a detailed
example.)

Internally, UniTraX utilizes the same calculation of required initial budget to
reject any query that covers points without sufficient budget. Critically, such
a rejection does not leak any private information as it solely depends on public
budget consumption data and query parameters. In fact, the decision to reject a
query does not even look at the actual data.

The contributions of this chapter are twofold:

1. A system model and design that maintains the advantages of per-user pri-
vacy budgets, while avoiding the problem of unknown dataset bias.

2. A theoretical framework and proof that the design provides DP.

In section 4.1 we compare different system models for DP and provide an
example to illustrate the effect of unknown dataset bias. We introduce the design
of UniTraX in section 4.2 and detail the theoretical framework and the proof of
DP in section 4.3. In section 4.4 we discuss related work before we conclude in
section 4.5.

4.1. System comparison

To better understand the differences and advantages of UniTraX, we start with
overviews of UniTraX and two prior system models, the classic DP “reference”
model with a global budget, and ProPer with private per-user budgets. We use
a simple running example to illustrate the differences. Figure 4.1 contrasts the
public, per-user budget model of UniTraX with DP reference and ProPer.

For the example we assume that two analysts Alice and Bob want to analyze
a dataset of patient records. These records contain a variety of fields among
which is one that indicates whether a patient is a smoker, and one that indicates

65

4. UniTraX: protecting data privacy with discoverable biases

whether the patient suffers from lung cancer. We assume that Alice is interested
in smokers and wants to run various queries over different fields of smokers while
Bob is interested in the fraction of lung cancer patients that are smokers. We
assume that Alice does her analysis first, followed by Bob.

Regarding the setting of each patient’s (user’s) initial budget, we consider two
cases: (1) all initial budgets are the same (uniform initial budgets), and (2) each
budget is set by the user (non-uniform initial budgets). In the case of UniTraX,
the initial budget is just another field in each record.

DP reference. The DP reference mechanism uses a publicly visible global bud-
get. In the case of uniform initial budgets, the global budget is set as the system
default. In the case of non-uniform initial budgets, the global budget is set to the
lowest initial budget among all users.

The reference mechanism counts every query against this single global budget.
First, Alice runs her queries against smokers. Since each query decrements from
the global budget, this budget may well be depleted before Bob can even start.
At this point no information about non-smokers will have left the system. Still,
the system has to reject all further queries.

ProPer. ProPer tracks one budget per user but must keep it private. Users
whose budgets are depleted are silently dropped from the dataset and not con-
sidered for any further queries. Nevertheless, each user’s full budget can be used.

Staying in our example, Alice’s queries use no budget of non-smokers under this
tracking mechanism. Once Alice has finished her queries, Bob starts his analysis.
Bob wishes to make two queries, one counting the number of smokers with lung
cancer, and one counting the number of non-smokers with lung cancer. Bob may
look at Alice’s queries, and observe that she focused on smokers, and therefore
know that there is a danger that his answers will be biased against smokers. In
the general case, however, he cannot be sure if his answers are biased or not.

In the case of uniform budgets, if Alice requested histograms, then she would
have consumed the smokers’ budgets uniformly and depleted either all or none
of the smokers’ budgets. If Bob gets an answer that, keeping in mind the noise,
is significantly larger than zero, then Bob’s confidence that his answer is non-
biased may be high. If on the other hand Alice focused some of her queries on
specific ranges (e.g., certain age groups), or if budgets are non-uniform, then Bob
knows that the answer for smokers with lung cancer may be missing users, while

66

4.1. System comparison

the answer for non-smokers with lung cancer will not. He may therefore have
unknown dataset bias, and cannot confidently carry out his analysis.

Our system (UniTraX). UniTraX tracks public budgets that are computable
from the history of previous queries. UniTraX is able to tell an analyst how much
budget has been consumed by previous queries for any subspace of the param-
eter space. For example, the analyst may request how much budget has been
consumed in the subspace defined by “age≥10 AND age<20 AND gender=male
AND smoker=1”.

UniTraX tracks budget consumption over regions of the parameter space. For
example, if a query selects records over the subspace “age≥10 AND age<20”, then
UniTraX records (publicly) that a certain amount of budget has been consumed
from this region of the parameter space. Initial budgets are an additional dimen-
sion of the parameter space in UniTraX. In particular, the initial budget of an
actual record in the database is stored in a field in the record. By comparing
the (public) consumed budget of any point in the parameter space to the ini-
tial budget of that point, UniTraX can determine publicly whether that point’s
budget has been fully consumed or not. This allows UniTraX to reject a query
safely: If, after the query, the consumed budget of any point selected by the
query will exceed that point’s initial budget, then the query is immediately re-
jected. This decision does not require looking at the actual data, and reveals no
private information.

Critically, public consumed budgets combined with the ability to filter queries
based on users’ initial budgets allows analysts to control and eliminate unknown
dataset bias. Returning to our example, when Bob is ready to start his analy-
sis, he queries UniTraX to determine the consumed budgets for “smoker=1 AND
disease=lungCancer”, and “smoker=0 AND disease=lungCancer”. Because no
queries have been made for non-smokers, the consumed budget of the latter
query’s region would be zero. Suppose that UniTraX indicates that the con-
sumed budget for the region “smoker=1 AND disease=lungCancer” is 50, and
that Bob’s two queries will further consume a budget of 10 each. Because the
two groups are disjoint, Bob knows that any user with an initial budget of 60 or
higher has enough remaining budget for his queries. (If the two queries were not
known to have disjoint user populations, then Bob would need to filter for initial
budgets of 70 or higher.)

67

4. UniTraX: protecting data privacy with discoverable biases

Bob generates the following two queries:

• “count WHERE smoker=1 AND disease=lungCancer AND initBudget≥60”,

• “count WHERE smoker=0 AND disease=lungCancer AND initBudget≥60”.

In doing so, Bob is assured that that no users are excluded from either query,
and avoids unknown dataset bias.

Note that if users select their own initial budgets, and there is some correlation
between user attributes and initial budgets, then there may still be a specific
bias in the data. For instance if smokers tend to choose high budgets and non-
smokers tend to choose low budgets, then Bob’s queries would be biased towards
smokers. This problem appears fundamental to any system that allows individual
user budgets.

So far, we have described how Bob may query only points with sufficient re-
maining budget. However, when this is not the case, UniTraX is able to simply
reject Bob’s queries. In fact, UniTraX can even inform him about which points
are out of budget without leaking private information. Privacy is protected by
the fact that Bob does not know whether these points exist in the dataset or
not. UniTraX’s rejection does not reveal this information to Bob as it solely
depends on public consumed budgets and query parameters. Using the returned
information, Bob is able to debug his analysis and retry.

UniTraX not only allows analysts to debug their analyses but is fully compatible
with existing DP systems. Any analysis that successfully executes over a dataset
protected by a global budget system requires only a simple initialization to run on
the same dataset protected by UniTraX (see chapter 5 for PINQ-based analyses).
Thus, analysts can easily adapt to UniTraX and exploit the increased utility of
per-user budgets.

4.2. Design overview

Threat model. UniTraX uses the standard threat model for DP. The goal is to
prevent malicious analysts from discovering whether a specific record (user) exists
in the queried database (dataset). We assume, as usual, that analysts are limited
to the interface offered by UniTraX and that they do not have direct access to the
database. We make no assumptions about background or auxiliary knowledge of
the analysts. Analysts may collude with each other offline.

68

4.2. Design overview

Goals. We designed UniTraX with the following goals in mind.
Privacy: Users should be able to set privacy preferences (budgets) for their records
individually. These preferences must be respected across queries.
Utility: Querying a parameter subspace should not affect the usability of records
in a disjoint subspace.
Bias discovery: The system should allow the analyst to discover when there may
be a bias in query answers because privacy budgets of some parts of the parameter
space have been depleted by past queries.
Efficiency: The overhead of the system should be moderate.

In the following we describe the design of UniTraX, explaining how it attains the
first three goals above. The fourth goal, efficiency, is justified by the experimental
evaluation in chapter 5.

Design overview. For simplicity, we assume that the entire database is orga-
nized as a single table with a fixed schema. The schema includes a designated
column for the initial privacy budget of each record. UniTraX is agnostic to how
this initial budget is chosen—it may be a default value common to all records
or it may be determined individually for each record by the person who owns
the record. Higher values of initial budget indicate less privacy concerns for that
record. Records may be added to the database or removed from it at any time.

The set of all possible records constitutes the parameter space.2 We use the
term point for any point in the parameter space; a point may or may not exist
in the actual database under consideration. We use the terms actual record and
record for the points that actually exist in the database under consideration.
Like most DP systems, UniTraX supports statistical or aggregate queries. The

query model is similar to that of PINQ [80]. An analyst performs a query in
two steps. First, the analyst selects a subspace of the parameter space using
a SQL SELECT-like syntax. For example, the analyst may select the subspace
“age≥10 AND age<20 AND gender=male AND smoker=1”. Next, the analyst
runs an aggregate query like count, sum, median, or average on this selected
subspace.
To protect privacy, UniTraX adds random noise to the result of the query. The

amount of noise added is determined by a privacy parameter, ε, that the analyst
provides with the query. For lower values of ε, the result is more noisy, but the
reduction of privacy budget is less (thus leaving more budget for future queries).

2The parameter space is also sometimes called the “domain” of the database.

69

4. UniTraX: protecting data privacy with discoverable biases

The novel aspect of UniTraX is how it tracks budgets. When an aggregate
query with privacy parameter ε is made on a selected subspace S, UniTraX sim-
ply records that budget ε has been consumed from subspace S. The remaining
budget of any point in the parameter space is the point’s initial budget (from the
point’s designated initial budget field) minus the ε’s of all past queries that ran
on subspaces containing the point.

The consumed budgets of all subspaces are public—analysts can ask for them
at any time. This allows analysts to determine which subspaces have been heavily
queried in the past and, hence, become aware of possible data biases. Moreover,
analysts may select only subspaces with sufficient remaining budgets in subse-
quent queries, thus increasing their confidence in analysis outcomes, as illustrated
in section 4.1.

To respect privacy budgets, it is imperative that a query with privacy param-
eter ε does not execute on any points whose remaining budget is less than ε.
This is enforced by query rejection, where a query is executed only if all points
in the selected subspace have remaining budget at least ε. Note that this check
is made on not only actual records but all points in the selected subspace. If
any such point does not have sufficient remaining budget, the query is rejected
and an error is returned to the analyst (who may then select a smaller subspace
with higher initial budgets and retry the query). Whether a query is executed or
rejected depends only on the consumption history, which is public, so rejecting
the query provides no additional information to the analyst.

Initial budgets. UniTraX is agnostic to the method used to determine initial
budgets of actual records and supports any scheme for setting initial budgets on
actual records. The simplest scheme would assign the same, fixed initial budget
to every actual record. A more complex scheme may allow users to choose from
a small fixed set of initial budgets for each record they provide, while the most
complex scheme may let users freely choose any initial budget for every record.

4.3. Formal description and Differential Privacy

In this section, we describe UniTraX using a formal model. We specify the DP
property that we expect UniTraX to satisfy and formally prove that the property
is indeed satisfied. Our formalization is directly based on ProPer’s formaliza-
tion [50], which we find both elegant and natural.

70

4.3. Formal description and Differential Privacy

4.3.1. Formal model of UniTraX

Database. We treat the database as a table with n columns of arbitrary types
C1, . . . , Cn and an initial budget column—a non-negative real number. The type
of each record, also called the parameter space, is R = C1 × . . .× Cn × CB, where
CB = R≥0 is the type of the initial budget column. At any point of time, the
state of the database is a set E of records from the parameter space (E ∈ 2R).

UniTraX. UniTraX acts as a reference monitor between the database and the
analyst. Its internal state consist of two components: (1) the consumption his-
tory H and (2) the select table T .

1. UniTraX tracks the budget consumed by past queries on every subspace of
the parameter space. Formally, this is equivalent to storing a map from
points in the parameter space to non-negative real numbers. We call this
map the consumption history, denoted H. H has the type H = R → R≥0.
Intuitively, H(r) is the amount of budget consumed by past queries that
ran on subspaces containing the point r of the parameter space.

2. To run an aggregate query in UniTraX, the analyst must first select a
subspace of the parameter space. To support selection of records that
have at least a stipulated remaining budget, UniTraX allows selected sub-
spaces to also span the consumption history. Consequently, a selected sub-
space is a subset of R × R≥0 (points extended with their consumed bud-
gets). We represent such subspaces via logical predicates sspace of type
P = R × R≥0 → {true, false}. For the analyst’s convenience, UniTraX
allows storing a list of selected subspaces, indexed by subspace variables
drawn from a set SVar. UniTraX stores the association between subspace
variables and subspaces in a select table, T , of type SVar→ P .

Analyst. We model an adaptive analyst, who queries UniTraX based on an
internal program and previously received answers. Formally, the analyst is a
(possibly infinite) state machine with states denoted by P and its decorated vari-
ants, and state transitions defined by the relation P

a−−→ P ′. Here a, b denote
interactions between the analyst and UniTraX. Allowed interactions are summa-
rized in Figure 4.2. Note that interactions consist of either an instruction to, or
an observable output from UniTraX, or both. In detail, the interactions are:

71

4. UniTraX: protecting data privacy with discoverable biases

a, b ::= sv := sspace select subspace sspace and name it sv
Qε(sv)?n run aggregation query Q on sv , observe output n
update database update
read?H read consumption history, result is H

Figure 4.2.: Allowed interactions between analyst and UniTraX

• sv := sspace represents the instruction to UniTraX to associate the subspace
variable sv with the subspace sspace, which must be in P . This models the
selection of a subspace (for use in later aggregation queries).

• Qε(sv)?n models the instruction to UniTraX to run the aggregation query
Q with privacy parameter ε on the subspace previously mapped to variable
sv . The interaction also includes the noised result n of the query. If some
point in subspace sv has remaining budget less than ε, the output n is
‘reject’.

• update represents an output from UniTraX to the analyst indicating that
the database has been updated. The output does not specify which records
were added or deleted (else the analyst could trivially break DP).

• read?H models reading the entire current consumption history by the ana-
lyst. H is the history returned by UniTraX.

We make no assumptions about the analyst (i.e., its state machine). It may
select any subspace, run any aggregation query, and read the consumption history
at any time. However, for technical reasons we assume (like ProPer) that the an-
alyst is internally deterministic and deadlock-free, meaning that it branches only
on observable output from the database and that it can always make progress.3
Our assumptions are formalized by the following condition:

If P a−−→ P ′ and P b−→ P ′′, then

1. if a = b then P ′ = P ′′

2. if a = (sv := sspace) then a = b

3. if a = Qε(sv)?n then b = Qε(sv)?n′ for some n′ and for all n′′ there

exists P ′′′ with P
Qε(sv)?n

′′

−−−−−−−→ P ′′′

3These restrictions do not affect the analyst’s attack capabilities.

72

4.3. Formal description and Differential Privacy

4. if a = read?H then b = read?H ′ for some H ′ and for all H ′′ there
exists P ′′′ with P read?H′′

−−−−−−→ P ′′′

Configuration. A configuration C = (P,E,H, T) represents the state of the
complete system. It includes the state of the analyst (P), the database of actual
records (E) and the internal state of UniTraX (consumption history H and select
table T).

Execution semantics. We model the evolution of the system using transitions
C

α−−→p C
′. Here, α ∈ Act denotes an action label describing an operation within

the system and p is a transition probability (real number between 0 and 1). The
transition C α−−→p C

′ reads as follows: If, in configuration C, the operation α
happens, then, with probability p, the configuration changes to C′. α may be any
one of:

• τ : analyst selects a subspace

• n ∈ Val: query by analyst that returns result n

• reject: query by analyst that is rejected

• Rin : Rdel : database update that adds records Rin and removes records Rdel

• H: analyst reads consumption history H

The transition system C
α−−→p C

′ is defined by the five rules shown in Figure 4.3.
These rules model the system’s behavior as follows.
(Update) Models a database update by adding some record set Rin and removing
some record set Rdel from the database E. This transition returns to the analyst
the observable output ‘update’ (first premise).
(Select) Represents the analyst’s selection of subspace sspace, naming it sv .
(Read-History) Denotes the analyst reading the current consumption history
H. This rule forces our privacy proofs to internally show that the consumption
history is indeed public.
(Query) Models the successful execution of aggregation query Q on subspace
sspace identified by sv with privacy parameter ε. The execution requires all
points in sspace to have a remaining budget of at least ε. A point r is in sspace
if sspace(r,H(r)) = true. (In the rule, r.cB is short-hand for the initial budget
column of point r.) As a consequence of the query, two things happen. First,

73

4. UniTraX: protecting data privacy with discoverable biases

Update

P
update−−−−−→ P ′ Rin , Rdel ⊆ R

(P,E,H, T)
Rin :Rdel−−−−−−→1 (P ′, (E ∪Rin) \Rdel , H, T)

Select
P

sv :=sspace−−−−−−−→ P ′ sspace ∈ P
(P,E,H, T)

τ−−→1 (P ′, E,H, T [sv := sspace])

Read-History
P

read?H−−−−−→ P ′

(P,E,H, T)
H−−→1 (P ′, E,H, T)

Query

P
Qε(sv)?n−−−−−−→ P ′ sspace := T (sv) ∈ P

∀r ∈ R.sspace(r,H(r))⇒ H(r) + ε ≤ r.cB p = Prob[Qε(E|sspace,H) = n]

(P,E,H, T)
n−−→p (P ′, E,H ′, T)

where H ′(r) :=

{
H(r) + ε if sspace(r,H(r))

H(r) otherwise

and E|sspace,H
def
= {r ∈ E | sspace(r,H(r))}

Reject

P
Qε(sv)? reject−−−−−−−−−→ P ′

sspace := T (sv) ∈ P ∃r ∈ R.sspace(r,H(r)) ∧ H(r) + ε > r.cB

(P,E,H, T)
reject−−−−→1 (P ′, E,H, T)

Figure 4.3.: Semantics of UniTraX

74

4.3. Formal description and Differential Privacy

the consumption history of all points in the subspace is increased by ε, to record
that a query with privacy parameter ε has run on the subspace. Second, the
answer to query Q executed over those records that are both in the subspace and
actually exist in the database E (selected by the operation E|sspace,H) is returned
to the analyst after adding differentially private noise for the parameter ε. The
transition’s probability p is equal to the probability of getting the specific noised
answer for the query (the noised answer is denoted n in the rule).
(Reject) Represents UniTraX’s rejection of query Q due to some point in the
query’s selected subspace not having sufficient remaining budget. The analyst
observes a special response ‘reject’ (first premise).
With the notable exception of (Query), all rules are deterministic—they hap-

pen with probability 1 (the p in α−−→p is 1).

Trace semantics. The relation C α−−→p C
′ describes a single step of system

evolution. We lift this definition to multiple steps. A trace σ is a (possibly
empty) finite sequence of labels α1, . . . , αn. We write C σ

=⇒q C
′ to signify that

configuration C evolves in multiple steps to configuration C′ with probability q.
The individual steps of the evolution have labels in σ. Formally, we have:

C
[]

=⇒1 C

C
α−−→p C

′ C′
σ

=⇒q C
′′

C
ασ

==⇒p·q C
′′

We abbreviate C σ
=⇒q C

′ to C σ
=⇒q when C′ is irrelevant.

Note that from the transition semantics (Figure 4.3) it follows that a trace σ
records all updates to the database and all observations of the analyst (the latter
is comprised of all responses from UniTraX to the analyst).

Extension to Silent Record Dropping. Up to this point, our design rejects
a query whose selected subspace includes at least one point with insufficient re-
maining budget. This protects user privacy and prevents unknown dataset bias.
However, in some cases, an analyst might prefer the risk of unknown dataset bias
over modifying their existing programs to handle query rejections. This might
be the case, for instance, if the analyst already knows by other means that the
percentage of records with insufficient budget will be negligible. In this case, it
would be preferable to automatically drop records with insufficient budget during
query execution, as in ProPer. It turns out that we can provide silent record
dropping without weakening the privacy guarantee. In the following paragraph,

75

4. UniTraX: protecting data privacy with discoverable biases

Query-Drop

P
Qdrop
ε (sv)?n−−−−−−−→ P ′ sspace := T (sv) ∈ P p = Prob[Qdrop

ε (E‖sspace,H,ε) = n]

(P,E,H, T)
n−−→p (P ′, E,H ′, T)

where H ′(r) :=

{
H(r) + ε if sspace(r,H(r)) ∧H(r) + ε ≤ r.cB

H(r) otherwise

and E‖sspace,H,ε
def
= {r ∈ E | sspace(r,H(r)) ∧H(r) + ε ≤ r.cB}

Figure 4.4.: Semantics extension for silent record dropping

we detail a simple extension of UniTraX that allows the analyst to specify for
each query individually whether the system should silently drop records with
insufficient remaining budgets instead of rejecting the query.

In order to enable silent record dropping, we introduce an extended query
interaction Qdrop

ε (sv)?n for the analyst’s program. Unlike the previously described
interaction, Qε(sv)?n, this interaction cannot fail (be rejected). The semantics
of Qdrop

ε (sv)?n is defined by the new rule (Query-Drop) shown in Figure 4.4.
The query executes on those records in database E that (1) are in subspace
sspace, and (b) have remaining budget at least ε. These records are selected
by E‖sspace,H,ε. As a consequence of the query, two things happen. First, the
consumption history of all points in the parameter space satisfying (1) and (2) is
increased by ε. Second, the answer of the query is returned to the analyst with
probability p, which is determined by the same method used in (Query).

4.3.2. Privacy property and its formalization

UniTraX respects the initial privacy budget of every record added to the database
in the sense of DP. Before explaining this property formally, we recap the standard
notion of DP due to Dwork et al. [40].

Standard Differential Privacy. LetQ be a randomized algorithm on a database
that produces a value in the set V . For example, the algorithm may compute
a noisy count of the number of entries in the database. We say that Q is ε-

76

4.3. Formal description and Differential Privacy

differentially private if for any two databases D,D′ that differ in one record and
for any V ′ ⊆ V , ∣∣∣∣ln(Pr [Q(D) ∈ V ′]

Pr [Q(D′) ∈ V ′]

)∣∣∣∣ ≤ ε.

In words, the definition says that for two databases that differ in only one record,
the probabilities that the analyst running Q makes a specific observation are very
similar. This means that any individual record does not significantly affect the
probability of observing any particular outcome. Hence, the analyst cannot infer
(with high confidence) whether any specific record exists in the database.

If the analyst runs n queries that are ε1-, . . . , εn-differentially private, then the
total loss of privacy is defined as ε1 + . . . + εn. Typically, a maximum privacy
budget is set when the analyst is given access to the database and after each
ε-differentially private query, ε is subtracted from this budget. Once the budget
becomes zero, no further queries are allowed. In this mode of use, DP guarantees
that for any two possible databases D,D′ that differ in at most one record, for
any sequence of queries ~Q, and for any sequence of observations ~o,∣∣∣∣∣∣ln

 Pr
[
~Q results in ~o on D

]
Pr
[
~Q results in ~o on D′

]
∣∣∣∣∣∣ ≤ η,

where η is the privacy budget.

Our privacy property. We use the same privacy property as ProPer. This pri-
vacy property generalizes DP described above by accounting for dynamic addition
and deletion of records and, importantly, allowing all new records to carry their
own initial budgets. Informally, our privacy property is the following. Consider
two possible traces σ0 and σ1 that can result from the same starting configuration.
Suppose that σ0 and σ1 differ only in the updates made to the database and are
otherwise identical. Let p0 and p1 be the respective probabilities of the traces.
Then,

∣∣∣ln(p0p1)∣∣∣ ≤ η, where η is the sum of the initial budgets of all records in
which the database updates differ between σ0 and σ1.

Why is this a meaningful privacy property? We remarked earlier that a trace
records all observations that the analyst (adversary) makes. Consequently, by
insisting that the traces agree everywhere except on database updates, we are
saying that the two traces agree on the analyst’s observations. Hence, if an
analyst makes a sequence of observations under database updates from σ0 with

77

4. UniTraX: protecting data privacy with discoverable biases

dist(σ, σ′)
def
=


⋃
i∈[1,n] dist(αi, α

′
i) if σ = α1, . . . , αn and σ′ = α′1, . . . , α

′
n

(Rin∆R′in) ∪ (Rdel∆R
′
del) if σ = Rin : Rdel and σ′ = R′in : R′del

∅ if σ = σ′

Figure 4.5.: Trace distance

probability p0, then the probability that the analyst makes the same observations
under database updates from σ1 is very close to p0. In fact, the log of the ratio of
the two probabilities is bounded by the sum of the initial budgets of the records
in which the updates differ. This is a natural generalization of DP’s per-database
budgets to per-record budgets.
To formalize this property, we define a partial function dist(σ, σ′) that returns

the set of records in which database updates in σ and σ′ differ if σ and σ′ agree
pointwise on all labels other than database updates. If σ and σ′ differ at a label
other than database update then dist(σ, σ′) is undefined. The formal definition
is shown in Figure 4.5.

Definition 1 (Privacy). We say that UniTraX preserves privacy if whenever
C

σ0==⇒p0
and C σ1==⇒p1

and dist(σ0, σ1) = R, then
∣∣∣ln(p0p1)∣∣∣ ≤∑

r∈R

r.cB.

Our main result is that UniTraX is private in the sense of the above definition.

Theorem 1 (Privacy of UniTraX). UniTraX preserves privacy in the sense of
Definition 1.

We prove this theorem by first proving a strong invariant of configurations that
takes into account how UniTraX tracks the consumption history. The proof was
worked out by my collaborators and can be found in Appendix A as well as in
our technical report [85].

4.4. Related work

Due to its age, the area of privacy-preserving data analytics has amassed a vast
amount of work. The related work section of [76] provides a good overview of
early work in this space. Additional background information can be found in
section 3.6.

78

4.4. Related work

Around ten years ago Dwork et al. introduced Differential Privacy (DP) [40],
which quickly developed into a standard for private data analytics research (see [46]).
In this section, we focus on research that investigates heterogeneous or personal-
ized budgets, tracking of personalized budgets, and private analytics on dynamic
datasets.

Alaggan et al. [5] propose Heterogeneous Differential Privacy (HDP) to deal
with user-specific privacy preferences. They allow users to provide a separate pri-
vacy weight for each individual data field, a granularity finer than that supported
by UniTraX. However, the total privacy budget is a global parameter. When
computing a statistical result over the dataset, HDP perturbs each accessed data
value individually according to its weight and the global privacy budget. UniTraX
can be extended to support per field rather than per record budgets at the cost
of additional runtime latency. Further, UniTraX allows analysts to query parts
of a dataset without consuming the privacy budget of other parts. UniTraX also
supports a greater set of analytic functions, e.g., median. HDP does not provide
these capabilities. Queries can only run over the whole dataset and, as privacy
weights are secret, the exact amount of answer perturbation remains unknown to
the analyst.

Jorgensen et al.’s Personalized Differential Privacy (PDP) is a different ap-
proach to the same problem [65]. In contrast to UniTraX, PDP trusts analysts
and assumes that per-user budgets are public. It tracks the budget globally but
manages to avoid being limited to the most restrictive user’s budget by allow-
ing the analyst to sample the dataset prior to generating any statistical output.
Depending on the sampling parameters the analyst is able to use more than the
smallest user budget for a query (but on a subset of records). PDP only supports
querying the entire dataset at once. Nevertheless, we believe that a combination
of PDP and UniTraX could be useful, in particular to allow analysts to make
high budget queries on low budget records. The combination could also do away
with PDP’s assumption that analysts be trusted.

In place of personalized privacy protection, Nissim et al. [91] and earlier re-
search projects [29, 59] provide users different monetary compensation based on
their individual privacy preferences. It is unclear whether these models can be
combined with UniTraX as they do not provide any personalized privacy protec-
tion. Users with a higher valuation receive a higher compensation but suffer the
same privacy loss as other users.

Despite allowing users to specify individual privacy preferences, all the above
systems track budget globally and do not allow analysts to selectively query
records and consume budget only from the queried records. To the best of our

79

4. UniTraX: protecting data privacy with discoverable biases

knowledge, ProPer [50] is the only system that allows this. We compared exten-
sively to ProPer in section 4.1. Our formal model in section 4.3 is also based on
ProPer’s formal model.

Similar to ProPer and UniTraX, Google’s RAPPOR [51] provides DP guaran-
tees based on user-provided parameters. However, the system model is signif-
icantly different from ours and the privacy guarantee holds only when certain
cross-query correlations do not occur. In contrast, we (and ProPer) need no such
assumptions.

Recently, DP is being increasingly applied to dynamic datasets rather than
static databases. Since the first consideration of such scenarios in 2010 [45],
numerous systems have emerged [18–20, 57, 95, 96, 103] that aggregate dynamic
data streams rather than static datasets in a privacy-preserving manner. UniTraX
and ProPer can be immediately used for dynamic data streams since their designs
and privacy proofs already take record addition and deletion into account.

4.5. Conclusion

This chapter presented UniTraX, the first differentially private system that sup-
ports per-record privacy budgets, tells the analyst where (in the parameter space)
budgets have been used in the past, and allows the analyst to query only those
points that still have sufficient budget for the analyst’s task. UniTraX attains
this by tracking budget consumption not on actual records in the database, but
on points in the parameter space. As a result, information about budget con-
sumption reveals nothing about actual records to the analyst.

We have also presented a formal model of UniTraX and a formal proof that
UniTraX respects DP for all records. Next, chapter 5 introduces a prototype
implementation of UniTraX and an evaluation of its usability in comparison to
its costs. In particular, the evaluation quantifies saved privacy budgets as well as
latency overheads for different realistic workloads.

80

5. Testing UniTraX’s usability

Data analytics systems should be fast, accurate, and generally applicable. Private
data analytics systems at the same time also need to protect the privacy of users
whose data is analyzed. The golden standard are differentially private systems
that provide formal guarantees of protection. To achieve these guarantees, such
systems commonly return only numerical statistical output to analysts with ad-
ditional artificial random noise added to each output. The amount of noise can
be configured by analysts.

Despite being considered a golden standard, differentially private data analytics
systems have a severe usability problem. At usable amounts of noise they do
not allow enough queries, i.e., when probabilistic bounds on the noise added to
statistical outputs satisfy analytic needs, the number of queries possible at that
amount of noise is too low. I believe this to be the reason for the low adoption
rate of DP in industry. Industry to date prefers ad-hoc mechanisms that allow
unlimited queries.

One way to mitigate this problem is UniTraX, a DP system that allows more
queries than previous systems without giving up on result accuracy (see chap-
ter 4). Similar to previous differentially private systems UniTraX protects privacy
by tracking privacy loss across queries. Once a certain budget of privacy has been
depleted, no more queries are possible. The goal of UniTraX is to provide more
queries for a given budget than other systems. It so does by tracking different
budgets for distinct parts of a database’s parameter space. Queries over one part
then do not use the budgets of other parts. The saved budget is available for
additional queries that would otherwise not be possible.

However, UniTraX’s budget savings come at a cost. A significant practical
concern is that tracking budgets across the entire parameter space, which will
usually be substantially larger than the number of actual records in the database,
can be quite expensive. Excessive query latency overheads can severely impair
UniTraX’s utility and defeat its purpose of improving the usability.

To understand UniTraX’s costs and benefits, I built a prototype implementa-
tion of UniTraX on top of PINQ [80]. This chapter presents both the implemen-
tation as well as its evaluation. By carefully clubbing budgets over contiguous

81

5. Testing UniTraX’s usability

regions of the parameter space, I am able to save significant amounts of privacy
budget with average overheads of less than 70 % over a no-privacy baseline on
realistic workloads. These results indicate that UniTraX is generally applicable
and works with moderate overheads across a range of different domains.

Altogether, this chapter continues to follow the proposed paths of future work
from the end of section 3.7. These suggested to work on (1) a better understanding
of usability, (2) a formal verification of QBB, and (3) more practical experience
with it. Chapter 4 implements the second point by introducing UniTraX, an
improved version of QBB, and proving it formally correct with respect to the
rules of DP. This chapter continues with the first and third points. It makes the
following two contributions.

1. An implementation of UniTraX that allows analysts to save privacy budgets
across a range of different domains and analytic scenarios.

2. An evaluation showing that the system is able to save significant amounts
of privacy budgets at average overheads of less than 70 %.

The chapter is structured as follows. I first present the implementation of Uni-
TraX and its features in section 5.1. In section 5.2 I then detail UniTraX’s evalu-
ation. Among others I present the datasets for the evaluation in subsection 5.2.1,
the evaluation’s analysis sessions, i.e., analytic tasks, in subsection 5.2.2, details
on the experiments in subsections 5.2.3 to 5.2.5, and the actual results of the
experimental evaluation from subsection 5.2.6 onwards.

5.1. Implementation

I have implemented UniTraX on top of PINQ, an earlier framework for enforcing
DP with a global budget for the database [80]. I briefly review relevant details of
PINQ before explaining my implementation.

PINQ review. PINQ adds DP to the Language Integrated Query (LINQ) frame-
work, a general-purpose database query framework and well-integrated declara-
tive extension of the .NET platform. LINQ provides a unified object-oriented data
access and query interface, allowing analysts data access independent of how the
data is provided and where the answer is finally computed. Data providers can be
switched without changing code and can be, e.g., local files, remote SQL servers,
or even massive parallel cluster systems like DryadLINQ [117].

82

5.1. Implementation

LINQ definesQueryable objects, abstractions over data sources, e.g., a database
table. The Queryable object may be transformed by a SQL SELECT-like oper-
ation to obtain another Queryable object representing selected records from the
table. One may run an aggregate query on this second object to obtain a specific
value.

PINQ provides a thin DP wrapper over LINQ. Building on LINQ, PINQ main-
tains a global privacy budget for the entire database. For all queries, it ensures
that sufficient budget is available and that returned answers are appropriately
noised. This budget is set when a Queryable object is initialized. Subsequently,
differentially private noise is added to every aggregation query on every object de-
rived from this Queryable object and the global budget is appropriately reduced.

My implementation uses PINQ in an unconventional way—I initialize a new
PINQ object prior to every data analysis, and use PINQ to enforce a stipulated
budget. Additionally, I track budget consumption on subspaces of the parameter
space across queries.

For the purpose of this thesis I consider PINQ as a black box system. I thus
consider any bugs or vulnerabilities [48, 60] as orthogonal. Applicable solutions
to these problems are described in the respective papers. I do not believe these
problems to be fundamental as a simplified and verified implementation of PINQ
exists [49]. However, in this thesis I use PINQ’s original implementation as pub-
lished by its author [79].

UniTraX implementation. My implementation currently supports only query
execution with rejection. The main addition to PINQ is tracking of consumption
budgets over subspaces. In principle, I must store the consumption budget for
every point in the parameter space. In practice, queries tend to select contigu-
ous ranges, so at any point of time, the parameter space splits into contiguous
subspaces, each with a uniform consumption budget. Accordingly, my imple-
mentation tries to cluster contiguous subspaces with identical consumption and
represents them efficiently.
My interface defines a new object type, UQueryable, which represents a sub-

space. Like Queryable, this object can be transformed via SQL SELECT-like
operations to derive other, smaller UQueryable objects. To run an analysis on
a subspace, the analyst invokes a special function, GetAsPINQ, to convert a
UQueryable object representing the subspace into a PINQ object representing
the same subspace. This special function also takes as an argument a budget,
which the analysis will eventually consume. The function first checks that this

83

5. Testing UniTraX’s usability

budget is larger than the remaining budget of all points in the subspace. If not,
the function fails. Otherwise, this budget is immediately added to the consump-
tion budget of the subspace and a fresh PINQ object initialized with this budget
is returned. Subsequently, the analyst can run any queries on the PINQ object
and PINQ’s existing framework enforces the allocated budget.

I also provide a new interface to the analyst to ask for the maximum budget
consumed in a given subspace.

Typical analysis workflow. I briefly describe the steps an analyst must follow
to run an analysis on my implementation. Assume that the analyst wants to
analyze records within a specific subspace with a set of queries that require a
certain amount of budget to run successfully. Further assume that the analysis
needs to run on a stipulated minimum number of user records for its results to
be meaningful. The analyst would perform the following steps:

1. Obtain the initial UQueryable object representing the entire database.

2. Select the desired subspace obtaining another UQueryable object.

3. Obtain the maximum budget consumed on the second object.

4. Add the budget required for the analysis and a budget for a noisy count to
the just-obtained maximum budget.

5. Select the subspace that has at least the just-calculated sum of budgets
available, obtaining yet another UQueryable object.

6. Obtain a PINQ object from the last UQueryable object with the PINQ
budget set to the budget of the count.

7. Perform a (noisy) count on the PINQ object. If it is too low, stop here.

8. Otherwise, obtain another PINQ object, this time with the budget required
for the analysis.

9. Perform the analysis on the second PINQ object. All records in the PINQ
object have enough budget for the full analysis.

84

5.1. Implementation

Hidden columns and tables. All implementations of DP systems that I am
aware of require the protected data to be numerical and the database schema
to be very simple. Usually, the protected database consists of a single table
where each row represents a different user’s data. UniTraX requires the same
data layout. However, not all datasets conform to this typically assumed layout.
Two of the problems that I encountered are string columns and one-to-many
relationships.

For the datasets I work with in the context of this thesis most string columns
actually represent an enumerable datatype. For such columns the number of
distinct string values is small and the values themselves do not leak any private
information. For example, a column might indicate whether a customer paid
with “cash” or “card”. Such column can easily be transformed into a numerical
datatype by establishing and publishing a mapping of numerical to string values.
However, when a string column contains private information, e.g., the content
of a comment field, values cannot be published and thus the column cannot be
transformed into a useful numerical format.

A different problem are one-to-many relationships. These occur when a user
can have an arbitrary number of a specific data item, e.g., transactions. To fulfill
the requirement of a single row per user one can flatten the list of transactions per
user and add them to the end of the row. However, in many cases the resulting
high number of columns leads to extreme performance penalties.

To solve both these problems UniTraX uses hidden columns and tables. Such
hidden data might not be aggregated and returned to analysts. However, analysts
are able to use hidden data in query conditions and are thus able to have other
aggregated values, e.g., counts, depend on the hidden data. Analysts are thus
still able to obtain limited statistical information about the hidden data. At the
same time UniTraX is able to prevent private information from leaking and does
not suffer from any extreme performance penalties.

Data stream analysis. UniTraX can be directly used for analysis on streams of
data since its design and privacy proof already take record addition and deletion
into account. To allow analysts to use the full budget of newly arriving records, I
assume records to be timestamped on arrival; this timestamp is another column in
the parameter space. At any time, all active analyses use points with timestamps
in a specific window of time only. When the budgets of points in the window
run out, the window is shifted to newer timestamps. Records with timestamps in

85

5. Testing UniTraX’s usability

the old window can be discarded. All analyses share the budgets of points in the
active time window.

With UniTraX analysts are not only able to use the just described sliding
window analysis but also a more flexible multi-windowed analysis. There, the
analyst can have concurrent windows with varying sizes. Budgets are only used
when an analysis is performed on a window. It is thus possible to allocate all
budget to a single window and none to the concurrent windows. The multi-
windowed analysis allows to have analyses for short time ranges run in parallel
with analyses on long-term ranges. For instance, one analysis might run every
ten minutes and analyze data of the previous hour, while another analysis only
executes at the end of every month for all the data of the full month.

Clean-up mechanisms. UniTraX tracks budgets for all data points in the whole
parameter space of a database. Instead of actually storing a budget amount for
each datapoint, UniTraX actually stores a compressed history of budget usage on
subspaces. Each new query’s subspaces might thereby intersect with a number of
previous subspaces and thus produce multiple new entries in the history structure.
However, the more entries there are in the history the longer it takes to check
whether there is enough budget left for the next query. Therefore, the history
structure needs to be cleaned in regular intervals.

Cleaning UniTraX’s internal history structure can be a time consuming oper-
ation. While it can be done asynchronously and thus for a single query does not
add to end-to-end query latencies, it still matters for batch processing. To give
administrators and analysts more control over when cleaning operations are per-
formed, UniTraX provides two different mechanisms, re-balancing and cleaning
threshold. The threshold delays cleaning until a specific amount of additional
state has accumulated. It provides control over when time is spent for cleaning
but does not help reduce the size of UniTraX’s internal state. Re-balancing on
the other hand does allow the analyst to reduce UniTraX’s internal state at the
cost of additional budget. The following two paragraphs detail the differences of
re-balancing with an example.

In the “without re-balancing” strategy (w/o RB), the analyst queries data only
within a range of interest. For instance, suppose that the analyst is interested
in a histogram of taxi fares between $0 and $100. The analyst may request ten
$10 bars. As long as each bar consumes the same budget, UniTraX will optimize
tracking state and merge the subspaces of these ten bars into a single subspace.
The range above the histogram (above $100), however, cannot be merged. As

86

5.2. Evaluation

a result, UniTraX stores two subspaces for the fare column. The same happens
with other columns, which results in a combinatoric explosion in the number of
subspaces because of the combinations of the columns’ multiple subspaces.

In the “with re-balancing” strategy (w/ RB), the analyst instead queries data
that covers the full range of a column, even though the analyst may not be
interested in all of that range, or may even know that no data exists in some
subrange (e.g., no taxi pickups over water). As a result, UniTraX is able to
merge more subspaces, even those of different columns. At the cost of budget,
this reduces the number of subspaces substantially, in some cases by more than
an order of magnitude. Re-balancing thus allows analysts to trade-off overheads
against budget savings.

5.2. Evaluation

This section presents an evaluation of the usability of my implementation of
UniTraX and its performance. Of primary interest to me are the amount of
saved privacy budgets and the increase in end-to-end latency experienced by the
analyst (time from query submission to answer reception) as compared to both
PINQ (reference DP) and LINQ (baseline that provides no privacy). Additionally,
I want to understand the overhead of storing UniTraX’s budget consumption
history data structure.

In absolute terms, these overheads are a function of the access pattern on the
parameter space. The exact column names, the data in them or the precise queries
do not matter for this. Nonetheless, I briefly describe the datasets I use and the
queries I run. The queries are deliberately chosen to be simple since long-running,
complex queries will mask UniTraX’s relative overheads.

In the following subsections I first introduce the different datasets before I de-
scribe the queries I use throughout different analysis sessions on the datasets. I
then provide details on the different experimental setups, i.e., systems, that I com-
pare against each other, together with descriptions of my experiments’ hard- and
software setup. Finally, I present and interpret my experimental measurements
and results.

5.2.1. Datasets

I use three real-world datasets from three different domains, namely the mobility,
financial, and medical domains. First, working with different domains shows

87

5. Testing UniTraX’s usability

UniTraX’s versatility. Second, it is a piece of evidence that obtained experimental
results apply in a universal sense.

For each dataset I modify its records to contain numerical data where possible.
When used with UniTraX, I add an additional initial budget for each record. For
the purpose of my measurements all budgets are chosen high enough so that no
budgets expire.

Where transformation to numerical data is not possible, e.g., where publishing
a mapping to numerical data would leak private information, I make use of hidden
columns and tables (see section 5.1). The use of hidden data is explicitly indicated
in the following descriptions of the different datasets. All of the following datasets
are publicly available online.

Mobility records. The first dataset is from the mobility domain and consists
of taxi rides from New York City (the NYC taxi dataset) [26, 82]. It is publicly
available from the Taxi and Limousine Commission’s website, which covers rides
of yellow and green taxis as well as some private limousine services and contains
the data of over a decade of taxi rides. Throughout this thesis I use the yellow
cab rides reported for January 2013 (≈14 M records; see section 3.5).

The dataset consists of a single table where each row contains the data of a
single taxi ride. This includes the date and time for pickup and dropoff of a ride
as well as GPS coordinates of the respective locations, trip distance, trip time,
and the number of passengers in the taxi. It also provides a detailed run down of
payments with separate fields on tax, surcharge, tolls, tips, the fare amount, and
the grand total.

A ride is the individual protected entity for this dataset, i.e., I assume rides are
independent of each other and each ride has to be protected individually. This
assumption might not always hold, e.g., the same person might take the same
ride every day. When the assumption does not hold the protection guarantee is
lowered to the sum of budgets of all dependent records. However, the dataset
does not specify any unique passenger identifier so it is on one hand impossible
for us to know all rides of a single user and adequately protect them, on the other
hand it also requires extensive additional knowledge on any attackers side to still
attack. In this thesis taxi drivers are not considered protected individuals.

With the exception of vendor ID, rate code, store and forward flag, and payment
method all fields of the taxi ride dataset are numerical. For simplicity, I remove
the non-numerical fields and only use the numerical ones. In comparison to my
dataset, the currently downloadable version of the dataset does not contain the

88

5.2. Evaluation

trip time in seconds as a separate field. Older versions of the dataset additionally
contain medallion numbers and hashes of drivers’ licenses, which uniquely identify
car and driver across ride records. These do not exist in the current version of
the dataset and are not used in this thesis.

Financial records. The second dataset contains customer data of a Czech bank.
The data is anonymized and got published by the PKDD’99 discovery chal-
lenge [13]. Anonymized in this case means that customers’ names are removed
and addresses are limited to district granularity. I am not aware of any further
changes to the data. Note that this simple form of anonymization cannot defend
against an attacker with additional knowledge. For example, if an attacker knows
amount and date of a single transaction of a victim, it is highly likely that such
attacker gets to know all financial records of this victim. The attacker only fails
in case another user has an identical transaction.

The financial dataset consists of eight tables with information regarding bank
accounts and clients. In detail these are the following tables.

Account. Provides information on when the account was created and in which
district. It also specifies the frequency at which statements are
issued.

Card. Details a card’s type, issue date, and its respective disposition, i.e.,
a client to account relationship that the card is associated with.
There are no clients with more than a single card.

Client. Only lists a client’s birthdate and district. The client’s sex is en-
coded in the date using a custom format. Other data has been
removed during the anonymization process.

Disposition. A disposition is a client to account relationship. Each records speci-
fies a client, an account, and whether the client is the account owner
or only a simple user. There are no clients with more than a sin-
gle account. All cards are associated to account owners, none to
account users.

District. This table provides 15 properties for each district. Among others it
specifies number of municipalities of different sizes, average salary,
unemployment numbers, and crime rates for two years.

89

5. Testing UniTraX’s usability

Loan. When an account has a loan associated, this table shows the date
the loan was granted, the loaned amount, the duration, the height
of monthly payments, and the loan’s status. There is no account in
the dataset with more than a single loan.

Order. The order table contains all accounts’ permanent orders. Each order
is associated to a single account, specifies the receiving bank and
account, the amount, and the type of payment. An account can
have arbitrary many orders.

Transaction. Similar to permanent orders, transactions capture all changes to
an account’s balance. Next to the account, amount, date of trans-
action, the bank and account the transfer came from or went to,
and the balance on the account after the transaction, the table also
holds information on whether the transaction went into or out of
the account, the kind of operation the transaction was part of, and
a characterization of its purpose. Again, an account may have an
arbitrary number of transactions associated.

Most of the data in the financial dataset refers to or is associated with a bank
account. Therefore, I use accounts as the protected entities in my experiments.
Given the absence of clients with relations to multiple accounts all clients are
naturally independent and thus fully protected for this particular dataset. Oth-
erwise, clients with multiple accounts would only be protected with the sum of
privacy budgets across all their accounts.

Both orders and transactions have many-to-one relationships to bank accounts.
These relationships require the use of hidden tables. In general, cards and loans
could also have many-to-one relationships. However, in the given dataset both
only have one-to-one relationships. Thus, I am able to merge these tables into
the main—account—table. In the end four tables remain, the account table and
one hidden table each for districts, orders, and transactions.

Medical records. The third and final real-world dataset I use is from the med-
ical domain. It is another dataset from the PKDD’99 discovery challenge and
contains a Japanese hospital’s patient data [13]. Similar to the bank dataset
personal patient information was removed during anonymization. Again, anyone
with access to a single laboratory report of a patient or similar data is able to
de-anonymize the data. Such attacker would then have access to data considered
most personal.

90

5.2. Evaluation

The dataset focuses on thrombosis as a common symptom of Collagen diseases.
It consists of three tables, one with patient data, one with regular laboratories,
and one with special laboratories conducted by a lab specialized in Collagen
diseases. In detail these are the following tables.

Patient. Basic data on each patient is provided in this table. It holds the
patient’s sex, birthday, date and type of first admission, diagnosis,
and the date when the record was added to the system.

Standard labs. This table holds standard hospital laboratories. Standard means
that these laboratories hold results of regular examinations as
done for any patient regardless of diagnosis. The table holds
details on over 40 different lab values including the date of the
examination. A patient may have arbitrarily many standard lab-
oratories.

Special labs. These laboratories were conducted by a lab specialized in Colla-
gen diseases. It provides an additional 11 lab values specifically
related to thrombosis and Collagen diseases. Although patients
could potentially have multiple special laboratories there is no
patient that has more than a single special lab in the dataset.

Naturally, patients are the protected entities for this dataset. As the relation-
ship between patients and special laboratories is one-to-one for this particular
dataset I could also use the special laboratories as protected entities. However,
not all patients have such a special laboratory as these were only conducted for
patients where thrombosis and a resulting potential for Collagen diseases were
strongly suspected. Therefore, patients are the protected entities for this dataset.

The medical records turn out to be the worst to transform as they are dirty and
ill maintained. For most part the dataset looks like a digitization of manually
filled documents. For many types of laboratory data a multitude of different
formattings are used to describe the same value. For example, values “<5”, “5-”,
and “5>” would all be used to indicate a value of less than five. I am thus not
claiming full correctness for the data that I finally use with UniTraX. I transform
the data to the best of my knowledge and ability but in some cases I am simply
lacking the knowledge of a medical professional.

Given the one-to-one relationship between patients and special laboratories I
am able to merge both tables. However, as not all patients have such a laboratory
I must encode null values wherever the data is missing. This leads me to the use

91

5. Testing UniTraX’s usability

of hybrid columns, numerical columns that contain both continuous values as well
as values that are part of an enumerable mapping. For example, many lab values
are positive by nature. In those cases I encode null by using a value of -1. The
table with standard laboratories cannot be merged with the main table and stays
a separate hidden table.

5.2.2. Analysis sessions

To my knowledge there are no established reference analyses available for private
data analytics. By reference analyses I mean query traces that are deemed rep-
resentative for the types of analyses analysts would want to run against privacy
protected databases. Given their absence I tried to the best of my abilities to
create my own set of representative analyses. In the following I briefly describe
the four sessions, i.e., sets of queries, which I use for my experiments.

Mobility session. The session for the taxi ride dataset is roughly patterned
off of the analysis of the same dataset described in [52]. The session consists of
1213 queries split into three groups. The first group covers the entire geographic
area, and consists of six histograms for different columns. The subsequent groups
focus on a 16× 16 grid of squares in Manhattan. The second group of queries
counts the number of rides in each square, and takes averages over two different
columns for squares that have more than 5000 rides with sufficient budget. The
third group counts rides again and takes the median of one column for squares
that have more than 1000 rides with sufficient budget.

Financial session. For the fianancial dataset’s analysis session I assume an
analyst wants to investigate female clients. After obtaining counts for male and
female clients, the scenario requests queries for six different histograms. Each
histogram analyzes the female clients’ bank accounts along a different dimension.
Among others, the analysis includes a bucketization along the dimension of sum
of transaction amounts. This bucketization represents a special histogram as it
is formed over data from a hidden table.

Note that hidden data cannot be directly aggregated and returned, e.g., it
is impossible to return the average transaction amount across all clients. In a
histogram, however, the data is only used to decide whether a client should be
counted or not, which is allowed.

92

5.2. Evaluation

Medical session. Similar to the financial session I assume that an analyst wants
to know more about severe thrombosis patients of the medical dataset. First, the
analysis session issues queries to obtain a histogram over the different grades of
thrombosis. In the second step the session creates 15 histograms over different
features of patients with the most severe diagnosis of thrombosis. There is not
only a histogram over the hidden laboratory table but also one over a hidden
column in this session. In that case the histogram simply counts patients that
have a certain abbreviated diagnosis contained in the hidden diagnosis field (of
type string).

Data stream session. I consider one special analysis session, a data stream
session. It shows that UniTraX is not only able to provide DP protection to static
but also highly dynamic streaming datasets. In a streaming dataset new data is
constantly added with the same queries issued on new data once a specific amount
has been added or a certain value range has been reached. The most prominent
kind of value range is time ranges. The newly arriving data thereby carries
increasing timestamps and the same queries are issued for different windows in
time.

In traditional global budget systems like PINQ each query to a time window
reduces the global budget. The budget thus depletes rapidly. UniTraX, in con-
trast, reduces budgets of records in distinct time windows only once. Therefore
UniTraX is able to save the majority of privacy budgets compared to previous
global budget systems. The saved budget can then be used on additional queries,
e.g., on larger time windows.

I use the taxi rides dataset for this analysis session. To save on experiment
runtime I do not add records over time. Instead the session simply queries data
over different windows of time. UniTraX is oblivious to the data so it does
not change any results if the data is static. On the contrary, adding data in
between queries creates significant database overheads that have the potential
to mask UniTraX’s overheads. Database overheads are thereby mostly due to
index updates. To avoid interference of database overheads I add all the data
beforehand and only act as if it were added in between queries.

For the data stream session I assume that an analyst is interested in the average
speed of taxis going from southern Manhattan to Times Square. I further assume
that the data needs to be updated every hour, e.g., to provide traffic estimates.
Therefore, the session executes queries for average trip time and trip distance for
every hour of data. These queries include a conditional query that only executes

93

5. Testing UniTraX’s usability

the following queries if at least 25 taxi rides happened during the time window
of interest.

To show UniTraX’s ability to flexibly handle time windows of any size and
combination, queries not only try to run for the previous hour of newly added
data. If the postulated minimum number of 25 rides is not fulfilled queries repeat
for larger time windows of the previous two to six hours before they give up. Note
that only the first previous hour consists of newly added and thus untouched data.
Records of the other hours have been queried already.

I further assume that a second analyst is interested in the monthly average
trip time from John F. Kennedy airport to each of the 16× 16 square areas of
Manhattan, which I already used in the mobility session. The analytic scenario
thus runs additional queries on all the data of the dataset at the end of the session.
Queries again test for a minimum of 25 rides but do not continue for different
time frames if not enough rides are available.

5.2.3. Experimental setups

I run the analysis sessions over each of the following three setups:

1. Directly on LINQ using the LINQ-to-SQL interface (no privacy protection)

2. Through a PINQ object (DP protection with a global budget)

3. With UniTraX

Unless otherwise indicated UniTraX is configured to clean its internal data struc-
tures after each query. During the evaluation of different clean-up mechanisms
I compare to three additional UniTraX configurations. (1) A clean-up happens
only once 500 additional subspaces have been added. (2) The analyst uses re-
balancing to keep the size of UniTraX’s internal state small but cleaning executes
after every query. And (3), both re-balancing and clean-up after 500 are applied
in combination.

5.2.4. Hardware

All experiments run on two identical commodity Dell PowerEdge M620 blade
systems. Each is equipped with dual Intel Xeon E5-2667 v2 8-core CPUs with
Hyperthreading disabled (total of 16 cores = hardware threads per machine) and
256 GB of main memory. Both systems are connected to two separate top-of-rack

94

5.2. Evaluation

switches with one 1 Gbit/s connections each. The two connections per machine
are bonded and use MAC based layer two routing. This was the default network
configuration provided to me, which could not be reconfigured.

5.2.5. Software

UniTraX is based on PINQ. To be able to use PINQ as provided, I adapted to its
requirements and dependencies, which reflect in the following software choices.

OS & Database. I use Microsoft Windows Server 2016 on both blade systems.
The first system runs both UniTraX as well as the client query program. Microsoft
Visual Studio Community 2017 is the only additional software installed for these
tasks. The second system runs Microsoft SQL Server 2017 Developer Edition as
the remote database server. To optimize database performance I put data and
index files of my database onto a RAM-disk, create indexes that fit my queries,
and make the database read-only.

Microsoft SQL Server further provides a performance feature called “memory-
optimized tables”, where all data is kept in main memory. However, for my
experiments this feature resulted in a performance degradation for most queries.
I thus do not use this feature for the purposes of this thesis.

To obtain comparable performance numbers I set the concurrency parameter
of the database server to sequential execution. This means that single operators
execute utilizing only a single thread. However, different operators might still ex-
ecute concurrently. Forced sequential execution is necessary as the database uses
different numbers of threads for operations on differently sized indexes. UniTraX’s
budget column increases the size of its database indexes and would thus lead to
incomparable performance numbers when sequential execution is not enforced.

Query library. The three systems of my experimental setups each provide a
syntactically different query interface. Thus, each of them requires its own special
implementation for each query. However, ensuring the semantic equivalence of
multiple separate query implementations is complex and error prone. To mitigate
this problem I introduce a query library for equivalent query composition. My
library allows to compose single query objects that are able to automatically
provide a query implementation for each of the three systems.

95

5. Testing UniTraX’s usability

Experiment automation. Similar to the different query interfaces, UniTraX
additionally requires a different database setup. For UniTraX each dataset must
include the initial budget column, which also needs to be added to each index. In
order to guarantee identical database states at the beginning of each experimental
run, I implemented a second library for automated experiment orchestration.
With this library I am able to automatically wipe and reinitialize the database
with the accordingly configured dataset. It allows me to automatically run a large
number of differently configured experiments.

5.2.6. Relative budget consumption

Figure 5.1 presents UniTraX’s budget consumption relative to PINQ’s. The graph
shows a CDF for each analysis session described in subsection 5.2.2. For each ses-
sion the CDF ranges over all records in its respective dataset. The x-axis reports
on UniTraX’s budget consumption on a record divided by the corresponding con-
sumption of PINQ. Budget consumption for a record is thereby defined as the
difference between the record’s available budget before and after the respective
analysis session has executed.

Please note that I only report on existing records in the dataset here. The
graph does not show budget use for data points that do not have a corresponding
record in the dataset.

The figure provides a curve for each of my four analysis sessions, mobility,
financial, medical, and streaming. The further each curve reaches into the upper
left corner the more budget UniTraX saves compared to PINQ. At the 99th-
percentile UniTraX uses less than 1 % of budget in the mobility session, less
than 2.5 % in the financial session, less than 10.5 % in the medical session, and
practically none in the streaming session. It is obvious that UniTraX is able to
save significant amounts of privacy budget in comparison to a traditional global
budget system.

Nevertheless, these results depend on the specific session. Different queries lead
to different results and not all combinations might save as much as the presented.
However, with histograms and spatial analyses I use tasks that are commonly
performed by data analysts.

PINQ partitioning. PINQ is not a pure global budget system. To increase
budget efficiency PINQ provides a partitioning operation that allows splitting
the data into distinct parts, track a separate budget for each part, and at any
point in time subtracting the maximum among these budgets from the original

96

5.2. Evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D
F

Relative budget use versus PINQ

Streaming Medical Financial Mobility

Figure 5.1.: CDF of relative budget use of UniTraX versus PINQ during different
analysis sessions. At the 99th-percentile UniTraX uses less than 1 %
of budget in the mobility session, less than 2.5 % in the financial
session, less than 10.5 % in the medical session, and practically none
in the streaming session. Depending on the given analysis session
UniTraX is able to save up to nearly all the budget that PINQ would
have used. For clarity the x-axis does not start at zero, the y-axis
does not end at one, and gridlines are removed.

97

5. Testing UniTraX’s usability

global budget. As such it is an effort in the direction of finer grained budgets
without the flexibility that UniTraX provides.

Figure 5.2 shows UniTraX’s budget consumption relative to PINQ with par-
titioning. The difference between the two systems’ budget consumptions has
shrunk significantly. By giving up on a single global budget and using separate
budgets on distinct partitions, PINQ is able to save large parts of records’ privacy
budgets.

UniTraX’s additional savings depend on the specific queries asked in each anal-
ysis session. In the mobility session half of the queries concern taxi rides only
in Manhattan, in the financial session queries mainly investigate female clients,
and in the medical session the major focus is on few severely ill patients. These
circumstances determine the amount of budget UniTraX saves. These savings are
reflected in the shapes of the respective curves.

5.2.7. Absolute and relative latency overheads

In the following paragraphs I present end-to-end latencies for the three exper-
imental setups: Direct, PINQ, and UniTraX. For each analysis session I show
absolute latencies for each setup as well as UniTraX’s relative latency overheads
in comparison to the other two systems. End-to-end means the time between an
analyst posing a query and receiving the corresponding answer.

All presented graphs are generated from the data of eight repeated experiment
executions. I throw away the first execution of each experiment, as it is used to
warm caches and thus prevent measurement noise from startup overheads. For
each measured value of each query I collect the values of the other seven execu-
tions, sort them, throw away the smallest and the largest value, and obtain the
final result by calculating the average out of the remaining five values. Each point
in my graphs is thus an average, i.e., mean, of five values with the most extreme
values removed beforehand. Any error bars indicate the standard deviation over
the five runs.

Mobility session. Figure 5.3 presents absolute end-to-end latencies for a ran-
dom 5 % sample of the 1213 queries of the mobility session. Queries are sorted
on the x-axis by increasing latency with respect to the Direct system. Overheads
are moderate. As expected, UniTraX is slower than PINQ, which is slower than
Direct query execution without any privacy protection.

In Figure 5.4 I present the corresponding CDF for all 1213 queries in terms
of the overhead of UniTraX relative to Direct and PINQ respectively. In half

98

5.2. Evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D
F

Relative budget use versus PINQ with partitioning

Medical Financial Mobility

Figure 5.2.: CDF of relative budget use of UniTraX versus PINQ with partition-
ing. At the 50th-percentile UniTraX uses less than 55 % of budget
in the mobility session, less than 8 % in the financial session, and
less than 6.5 % in the medical session. There are no numbers for the
streaming session as PINQ does not support dynamic datasets with
the partitioning operation. In comparison to Figure 5.1 it is obvious
that partitioning improves PINQ’s budget efficiency by a large mar-
gin. However, for the three presented analysis sessions UniTraX is
able to save more budget than PINQ.

99

5. Testing UniTraX’s usability

0

20

40

60

80

100

120

140

160

La
te
nc
y
[m

s]

Query

Direct PINQ UniTraX

Figure 5.3.: End-to-end latencies of a 5 % sample of the 1213 queries in the mobil-
ity session. Queries are ordered according to latencies of the Direct
system. Error bars indicate the standard deviation over five runs.
The trend in the order of performance is evident. UniTraX is slower
than PINQ, which is slower than Direct.

100

5.2. Evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
D
F

Relative overhead

UniTraX/PINQ UniTraX/Direct

Figure 5.4.: CDF of relative end-to-end latency overheads incurred by UniTraX
across all 1213 queries of the mobility session. At the 99th-percentile
UniTraX is 1.13 x slower than PINQ and 2.72 x slower than the Direct
system.

of the cases, UniTraX is 1.03 x slower than PINQ and 1.17 x slower than the
Direct system. At the 99th-percentile UniTraX is 1.13 x slower than PINQ and
2.72 x slower than the Direct system. On average, UniTraX is 1.04 x slower than
PINQ and 1.64 x slower than the Direct system. In summary, latency overheads
introduced by UniTraX are moderate compared to a no privacy system and low
compared to a global budget systems.

Financial session. Figure 5.5 shows absolute end-to-end latencies for a random
10 % sample of the 512 queries of the financial session. Queries are again sorted on
the x-axis by increasing latency with respect to the Direct system. The numbers
confirm the previously identified trend. However, due to the small measurements

101

5. Testing UniTraX’s usability

0

0.5

1

1.5

2

2.5

La
te
nc
y
[m

s]

Query

Direct PINQ UniTraX

Figure 5.5.: End-to-end latencies of a 10 % sample of the 512 queries of the finan-
cial session. Queries are ordered according to latencies of the Direct
system. Error bars indicate the standard deviation over five runs.

naturally the noise in the measurements is larger relative to the measured values.
Error bars indicate the standard deviation over five runs.

Figure 5.6 shows the corresponding CDF for all 512 queries in terms of the
relative overheads. At the median, UniTraX is 1.04 x slower than PINQ and 1.34 x
slower than the Direct system. At the 99th-percentile UniTraX is 1.15 x slower
than PINQ and 2.52 x slower than the Direct system. On average, UniTraX is
1.05 x slower than PINQ and 1.67 x slower than the Direct system. These numbers
confirm the findings in the mobility session.

Medical session. Figure 5.7 presents absolute end-to-end latencies for a random
30 % sample of the 157 queries of the medical session. Queries are sorted by
increasing latency with respect to the Direct system.

102

5.2. Evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
D
F

Relative overhead

UniTraX/PINQ UniTraX/Direct

Figure 5.6.: CDF of relative end-to-end latency overheads incurred by UniTraX
across all 512 queries of the financial session. At the 99th-percentile
UniTraX is 1.15 x slower than PINQ and 2.52 x slower than the Direct
system.

103

5. Testing UniTraX’s usability

0

0.5

1

1.5

2

2.5

3

La
te
nc
y
[m

s]

Query

Direct PINQ UniTraX

Figure 5.7.: End-to-end latencies of a 30 % sample of the 157 queries of the med-
ical session. Queries are ordered according to latencies of the Direct
system. Error bars indicate the standard deviation over five runs.

104

5.2. Evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
D
F

Relative overhead

UniTraX/PINQ UniTraX/Direct

Figure 5.8.: CDF of relative end-to-end latency overheads incurred by UniTraX
across all 157 queries of the medical session. At the 99th-percentile
UniTraX is 2.80 x slower than PINQ and 2.81 x slower than the Direct
system. However, these numbers must be viewed with caution as the
absolute numbers are small (see Figure 5.7).

Figure 5.8 contains the corresponding CDF of the relative overheads for the
157 queries. At the median, UniTraX is 0.98 x slower than both PINQ and the
Direct system, i.e., it is actually a bit faster. At the 99th-percentile UniTraX is
2.80 x slower than PINQ and 2.81 x slower than the Direct system. On average,
UniTraX is 1.01 x slower than PINQ and the Direct system. Provided that the
absolute numbers are small (see Figure 5.7) and that queries are executed on a
remote database system, the observed minor speedup of UniTraX in comparison
to the baseline systems must be viewed as within measurement variability.

105

5. Testing UniTraX’s usability

1

10

100

1000

10000

La
te
nc
y
[m

s]

Query

Direct PINQ UniTraX

Figure 5.9.: End-to-end latencies of a 2 % sample of the 3067 queries of the stream-
ing session. Queries are ordered according to latencies of the Direct
system. Error bars indicate the standard deviation over five runs.
The y-axis is presented in log scale as execution times of the monthly
analysis are significantly higher than those of the hourly analyses.

Streaming session. Figure 5.9 shows absolute end-to-end latencies for a ran-
dom 2 % sample of the 3067 queries of the streaming session. Queries are sorted
by increasing latency with respect to the Direct system. The y-axis is presented
in log scale as execution times of the monthly analysis are significantly higher
than those of the hourly analyses.

Figure 5.10 shows the corresponding CDF of the relative overheads for the
3067 queries of the streaming session. At the median, UniTraX is as fast as
PINQ and 1.97 x slower than the Direct system. At the 99th-percentile UniTraX
is 1.15 x slower than PINQ and 2.17 x slower than the Direct system. On average,
UniTraX is as fast as PINQ and 1.56 x slower than the Direct system.

106

5.2. Evaluation

The graph in Figure 5.10 further shows a speedup of UniTraX with respect to
both Direct and PINQ. Both become significantly slower during their own specific
short period of time. These periods do not overlap and consistently occur at their
own specific time during the analysis session. Queries and results are identical
to the other, non-affected systems during these periods. At this point I can only
speculate as to why this happens.

Summary. Across the different analysis sessions UniTraX shows average over-
heads of less than 70 % compared to a no-privacy baseline and up to 5 % compared
to a global budget system.

5.2.8. Latency overheads for PINQ partitioning

PINQ’s partitioning operation always materializes and caches the resulting sub-
sets of records immediately. To provide a fair comparison I additionally ran all
my experiments in a version where all systems employ identical local caching. In
the interest of space I solely present results for the mobility session.

Figure 5.11 shows absolute end-to-end latencies for a 5 % sample of the 1213 queries
of the mobility session. Queries are sorted by increasing latency with respect to
the Direct system. All systems cache the data of different partitions locally. For
most queries the database server is not involved. Performance enhancing features
of the server, e.g., indexes, are thus not available. However, there are no network
overheads either.

In comparison to Figure 5.3 one can observe the same trends. However, absolute
query times have significantly decreased due to the use of caching. Then again,
relative distances between the different systems have increased. These increases
are due to less efficient local query execution as well as the omission of network
and database overheads.

Figure 5.12 shows the corresponding CDF of the relative overheads for the
1213 queries of the mobility session when PINQ uses the partitioning operation
and all systems run on locally cached data. The x-axis is rendered in log scale to
accommodate the increased slow-downs compared to the Direct system. At the
median, UniTraX is 1.67 x slower than PINQ and 5.80 x slower than the Direct
system. At the 99th-percentile UniTraX is 4.53 x slower than PINQ and 111 x
slower than the Direct system. On average, UniTraX is 2.11 x slower than PINQ
and 9.07 x slower than the Direct system.
The CDF confirms my previous finding. The trends stay the same but the

distances between the different systems increase. The large slow-down compared

107

5. Testing UniTraX’s usability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

C
D
F

Relative overhead

UniTraX/PINQ UniTraX/Direct

Figure 5.10.: CDF of relative end-to-end latency overheads incurred by UniTraX
across all 3067 queries of the streaming session. At the 99th-
percentile UniTraX is 1.15 x slower than PINQ and 2.17 x slower
than the Direct system. The observable speedup is caused by the Di-
rect system and PINQ becoming significantly slower during a short
period of time.

108

5.2. Evaluation

0

5

10

15

20

25

30

La
te
nc
y
[m

s]

Query

Direct-B PINQ-B UniTraX-B

Figure 5.11.: End-to-end latencies of a 5 % sample of the 1213 queries of the mobil-
ity session. Queries are ordered according to latencies of the Direct
system. Error bars indicate the standard deviation over five runs.
PINQ employs its partitioning operation to safe further budgets. All
systems cache the data of different partitions locally. Although ab-
solute numbers are lower than with the database server, differences
between the different systems have increased (compare Figure 5.3).

109

5. Testing UniTraX’s usability

to the Direct system is due to the Direct system benefitting more from local
caching. UniTraX performs worse than PINQ because of its additional budget
check. I suspect that without the help of an index the local query executor checks
all records sequentially.

The curve showing UniTraX’s performance relative to PINQ’s is slightly above
zero at 1 with a tail of inverse slow down before. These speed-ups are caused
by the eight partitioning queries in the mobility session. During these queries
the database server performs the actual partitioning of the data and sends the
individual partitions of data to the client for local caching. Overheads of parti-
tioning are significantly larger for PINQ due to its use of a partitioning function
in a group by operation. Such partitioning function must be evaluated on every
record, which results in a full table scan. UniTraX and the Direct system on the
other hand are able to leverage indexes as their partitioning is based on ranges.

5.2.9. Total query times and clean-up mechanisms

Figure 5.13 shows total query times. These measure from one query’s start to the
next query’s start and include not only afore reported query latencies but also each
query’s respective clean-up time. The presented 5 % sample of the 1213 queries of
the mobility session are the same as in Figure 5.4, but in execution order. Queries
are thus not ordered according to the Direct system’s end-to-end latencies, but
shown in the order in which they execute during the mobility session.

Although the order is different, UniTraX’s additional overheads in comparison
to Figure 5.4 are evident. These are for most parts due to the clean-up overheads
of the internal history structure. The larger the structure becomes over time, the
higher the resulting clean-up overhead. However, without any cleaning UniTraX
quickly experiences query latency overheads. In that case analysts must wait
longer for their results, which is not desirable.

Figure 5.13 further presents the effects of the two different clean-up mecha-
nisms, cleaning threshold and re-balancing (see “Clean-up mechanisms” at the
end of section 5.1). The system labelled “UniTraX” represents the default version
that executes a clean-up of internal history data structures after every query. “U-
Threshold”, in contrast, waits until 500 additional subspaces have accumulated
before a clean-up is performed. Note that this does not necessarily mean that
500 additional queries must execute, as a single query can—and regularly does—
result in many additional subspaces. “U-Re-balancing” uses additional budget to
allow for further compression of the internal history data structures. Neverthe-
less, it performs a clean-up after every query. Finally, “U-both” combines both

110

5.2. Evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

C
D
F

Relative overhead

UniTraX-B/PINQ-B UniTraX-B/Direct-B

Figure 5.12.: CDF of relative end-to-end latency overheads incurred by UniTraX
across all 1213 queries of the mobility session. PINQ is configured
to use partitioning and all systems cache data locally. Note that
the x-axis starts at 0.8 and is presented in log scale. At the 99th-
percentile UniTraX is 4.53 x slower than PINQ and 111 x slower than
the Direct system. The curve that shows UniTraX relative to PINQ
is slightly above zero at 1 due to the eight partitioning queries that
take longer for PINQ.

111

5. Testing UniTraX’s usability

0

100

200

300

400

500

600

700

To
ta
lq

ue
ry

ti
m
e
[m

s]

Query

PINQ
UniTraX

U-Threshold
U-Re-balancing

U-both

Figure 5.13.: Total query times including clean-up of a 5 % sample of the
1213 queries of the mobility session. Queries are in execution order.
Error bars indicate the standard deviation over five runs. In com-
parison to Figure 5.4 the large clean-up overheads of UniTraX are
evident. UniTraX with cleaning threshold performs at query execu-
tion latency until the threshold is reached. At that point a clean-
up takes longer as additional work has accumulated. Re-balancing
helps keeping UniTraX’s internal state small and regular clean-ups
fast. Nevertheless, the best performance is achieved by their com-
bination.

112

5.2. Evaluation

techniques and uses re-balancing but waits for 500 additional subspaces before
cleaning.

As expected, U-Threshold executes queries as fast as PINQ and thus faster than
UniTraX, which gets cleaned after every query. However, when the threshold of
additional subspaces is reached, the following clean-up takes significantly longer
than UniTraX because of the accumulated additional subspaces.

U-Re-balancing regularly performs worse than U-Threshold. This behavior is
expected as U-Re-balancing performs a clean-up after every query. Nevertheless,
it does not suffer the occasional high overheads of U-Threshold when the threshold
is reached and a clean-up has to be performed.

Despite a clean-up after every query, U-Re-balancing performs significantly
better than UniTraX, due to its smaller internal state. The lowest total query
times, however, are reached by U-both, as it combines both threshold and re-
balancing.

Figure 5.14 shows the corresponding CDF of relative total-query-time overheads
incurred by UniTraX across all 1213 queries of the mobility session. It confirms
my finding that a combination of cleaning threshold and re-balancing performs
closest to optimal. Both methods individually are better than pure UniTraX with
clean-up after every query. However, both have their individual shortcomings. U-
Threshold significantly diverts from the optimum for a small number of queries,
i.e., the ones when a clean-up happens. U-Re-balancing outperforms U-Threshold
on those queries but is slower for most of the remaining queries. The combination,
U-both, is able to combine the advantages of both and stays close to the relative
query latency overheads reported in Figure 5.4, i.e., close to the relative overhead
without clean-up.

Size of budget tracking state. Figure 5.15 shows the number of subspaces
tracked by UniTraX at the end of each query. Queries are again in execution
order (compare Figure 5.13). These numbers do not change across different runs.
The four curves represent the four possible combinations of the two clean-up
mechanisms, cleaning threshold and re-balancing. They illustrate that the analyst
can dramatically affect the size of the budget tracking state based on how queries
are formulated.

113

5. Testing UniTraX’s usability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

C
D
F

Relative overhead

UniTraX/PINQ Lat
U-both/PINQ

U-Threshold/PINQ

U-Re-balancing/PINQ
UniTraX/PINQ

Figure 5.14.: CDF of relative total-query-time overheads incurred by UniTraX
across all 1213 queries of the mobility session. At the 99th-percentile
UniTraX is 19.39 x slower than PINQ. These overheads are largely
due to the expensive clean-up operations performed by UniTraX
once a query’s result has been returned. Cleaning threshold (U-
Threshold), re-balancing (U-Re-balancing), and their combination
(U-both) help reducing UniTraX’s total query time overheads, get-
ting close to relative query latency overheads (UniTraX/PINQ Lat;
from Figure 5.4), i.e., close to the relative overhead without clean-
up.

114

5.2. Evaluation

0

500

1000

1500

2000

2500

N
um

be
r
of

su
bs
pa

ce
s

Query

UniTraX
U-Threshold

U-Rebalancing
U-both

Figure 5.15.: Number of subspaces tracked by UniTraX for a 5 % sample of the
1213 queries of the mobility session. Queries are in execution or-
der. Subspaces are counted after any clean-up, right before the next
query. UniTraX accumulates more subspaces as queries execute and
despite its constant cleaning efforts. As expected, U-Threshold col-
lects more subspaces except for when the threshold is reached and a
cleanup performed. U-Re-balancing, i.e., the version that uses bud-
gets more evenly, is able to keep the number of subspaces relatively
constant. Finally, U-both, the combination of cleaning threshold
and re-balancing, allows for more fluctuation but returns back to
the constant low number of subspaces every time the threshold is
reached. These observations directly connect to the measured total
query times in Figure 5.13.

115

5. Testing UniTraX’s usability

5.3. Conclusion

This chapter presented a prototype implementation of UniTraX and its evalua-
tion. It showed that UniTraX is able to save significant amounts of privacy bud-
gets compared to global budget systems. The prototype implementation works
on a range of different domains and incurs moderate overheads on realistic work-
loads.

There are several directions for future work. First, PINQ allows for arbitrary
partitioning functions and additional work is needed to understand their full
budget saving potential. Second, UniTraX can be extended to track budgets at
even finer granularity, e.g., a budget for every field. Third, one could investigate
how queries can be optimized to reduce budget consumption.

Engineering-wise, the prototype implementation could be further enhanced in
the following ways.

1. The prototype is sequential at the moment. Nevertheless, many functions
could be parallelized. For instance, any operation on the internal history
structure could work on different subspaces in parallel.

2. The history structure uses simple lists to store subspaces. However, opti-
mized data structures for spatial data exist [10–12]. Such data structures
could offer performance trade-offs that are currently not possible.

3. UniTraX does not support projection. The schema of the database needs to
prevail, which is not guaranteed after general projection. However, UniTraX
should be able to support a limited version, e.g., one that allows to project
onto a subset of data fields.

4. Based on PINQ’s use, UniTraX employs double and float data types for all
numerical columns. However, practical experience with the system showed
that inaccuracies in floating point arithmetic are a constant source of bugs
and problems. Provided that UniTraX’s tracking mechanism is discrete in
nature, these could be changed to long and bigint datatypes, depending
code in UniTraX be simplified, and values only be transformed back to
double when used with PINQ.

116

6. Conclusion

Private analytics systems today come in two flavors, the preferred and the ac-
tually used. The preferred systems are based on the theory of DP and are able
to provide formal guarantees of privacy. The actually used systems are based
on ad-hoc techniques that often fail to adequately protect privacy. The latter
thrive throughout industry as they fulfill analytic requirements and thus provide
increased usability.

6.1. This thesis

In this thesis I have investigated usable private data analytics systems in the
context of DP. I tackled two challenges to improve DP’s usability. (1) Weak-
ening DP’s guarantees to increase result accuracy but maintain proper privacy
protection. (2) Limiting privacy budget use to part of a dataset without sacri-
ficing result accuracy. To this end, I used two different approaches to overcome
these challenges. (1) I did away with the requirements of DP, started from the
point of view of an attacker, and created a system design that allows higher result
accuracy than DP but is hard to attack in practice. (2) I used my insights to
improve DP systems and introduced UniTraX, the first DP system that allows to
use privacy budgets on only parts of a dataset without sacrificing result accuracy.

Leaving Differential Privacy. My first approach consisted of two parts. First
I created a system design with guaranteed utility in form of unlimited queries
and fixed levels of noise added to results. Unfortunately, this design could still be
easily attacked. However, using my insights I created a second design, which is
close to DP but only provides a weakened version thereof. Despite the weakening
I showed together with my adviser that attacking the system is hard in practice.
One component of the design was QBB, a protective mechanism based only on
queries.

117

6. Conclusion

Returning to Differential Privacy. In my second approach I built on the in-
sights of the first. In particular, I extended and developed QBB into its DP
successor—UniTraX. Together with my collaborators I developed a formal model
and we presented a proof that UniTraX fulfills the rules of DP. UniTraX is the
first DP system that allows to restrict usage of privacy budgets to parts of a
dataset without giving up on result accuracy. In contrast to other systems, it is
able to inform analysts about potential biases introduced by privacy protection
itself. I implemented and evaluated a prototype and showed that UniTraX is able
to save significant amounts of privacy budgets at average overheads below 70 %
for realistic workloads across different domains.

6.2. The bigger picture

Taking a step back, the general problem at hand is the gap between DP worst
case assumptions on one hand and the context and behavior of real data analytics
tasks on the other. Previous DP systems typically assume that attackers know
all records except the victim’s. They assume that all queries against the system
target the victim, and that all records are potential victims. Obviously, for real
data analytics tasks these assumptions are too negative. Nevertheless, protective
systems use these assumptions to dimension the safeguards, e.g. artificial noise
added to results. It is not surprising that exaggerated assumptions and safeguards
lead to diminished usability.

This thesis is a first step in improving DP systems’ usability as it is a first
step in closing the gap between worst case assumptions and real analytic tasks.
UniTraX allows to limit the worst case assumptions about a query to only part
of a dataset. Thus, records in the other parts are not considered victims with
regards to that query. Therefore, their privacy budget does not need to be reduced
and is available for further queries. By adjusting the worst case assumptions by
a small bit, UniTraX is able to save significant amounts of privacy budgets and
thus allow additional queries.

6.3. Future work

Following the insights of this thesis I suggest the following three directions of
future work.

1. Derive a simple meaning for ε, starting from an attacker’s perspective.

118

6.3. Future work

2. Safe additional budget by refining further worst case assumptions.

3. Extend and formally prove the idea of reducing artificial noise depending
on an attacker’s uncertainty about the data around a victim’s record.

Deriving a meaning for ε. Despite different efforts [6, 63, 71, 72, 78], I am to
date not aware of any simple meaning of ε. To find such a meaning, I suggest to
continue from the findings of the first part of this thesis. There, I showed that
even if DP’s requirements are not always fulfilled it is hard to attack a system. I
showed the huge amount of additional knowledge attackers need in order to only
have a small chance of being successful. Attackers’ chances and their confidence
in having obtained private information are good starting points in understanding
what specific system configurations—including ε—mean.

Saving additional budgets. For saving ε, i.e., saving privacy budgets, this
thesis presented a first step. It showed how to make DP systems more usable
by refining their worst case assumptions. However, DP makes and upholds many
worst case assumptions. Most of them help simplify the problem of ensuring and
proofing DP’s guarantees. Nevertheless, I believe it to be possible to identify
more cases where assumptions can be better fit to actual analyses at the benefit
of increased budget savings.

Replacing noise with uncertainty. In the first part of this thesis I assumed
attacker’s to be uncertain about the data. I used the uncertainty about the data
around a victim’s record to reduce the artificial noise on the answers. Despite
specific restrictions, e.g., queries were limited to counts, I believe the results to
be promising. Building on these results, I suggest to extend and formalize the
mechanism with the goal of proofing it formally correct. In the end, one would
like to create a system that understands which uncertainty exists in the data
and how it is structured. Such system could apply this knowledge to accurately
reduce artificial noise and safe additional privacy budgets.

119

A. Proofs of the formal results
on UniTraX

We first show a lemma that will prove helpful in the proofs of our main results.

Lemma 1 (Distributivity of Distance). For all sets E,E ′, F, F ′ ∈ 2R the following
statements hold:

1. (E∆E ′) ∩ F = (E ∩ F)∆(E ′ ∩ F)

2. (E ∪ F) \ (E ′ ∪ F ′) ⊆ (E \ E ′) ∪ (F \ F ′)

3. (E ∪ F)∆(E ′ ∪ F ′) ⊆ (E∆E ′) ∪ (F∆F ′)

4. (E \ F) \ (E ′ \ F ′) ⊆ (E \ E ′) ∪ (F ′ \ F)

5. (E \ F)∆(E ′ \ F ′) ⊆ (E∆E ′) ∪ (F∆F ′).

Proof. The proof uses simple set theory operations.

1. We show statement 1 as follows:

(E∆E ′) ∩ F = ((E \ E ′) ∪ (E ′ \ E)) ∩ F
= ((E \ E ′) ∩ F) ∪ ((E ′ \ E) ∩ F)

= (((E \ E ′) ∩ F) ∪ ∅) ∪ (((E ′ \ E) ∩ F) ∪ ∅)
= (((E \ E ′) ∩ F) ∪ (E ∩ ∅)) ∪ (((E ′ \ E) ∩ F) ∪ (E ′ ∩ ∅))
= (((E \ E ′) ∩ F) ∪ (E ∩ (F \ F))) ∪

(((E ′ \ E) ∩ F) ∪ (E ′ ∩ (F \ F)))

= ((E ∩ F) \ E ′) ∪ ((E ∩ F) \ F) ∪
((E ′ ∩ F) \ E) ∪ ((E ′ ∩ F) \ F)

= ((E ∩ F) \ (E ′ ∩ F)) ∪ ((E ′ ∩ F) \ (E ∩ F))

= (E ∩ F)∆(E ′ ∩ F)

121

A. Proofs of the formal results on UniTraX

2. We show statement 2 as follows:

(E ∪ F) \ (E ′ ∪ F ′) = (E ∪ F) ∩ (E ′ ∪ F ′)−1

= (E ∪ F) ∩ (E ′−1 ∩ F ′−1)
= (E ∩ (E ′−1 ∩ F ′−1)) ∪ (F ∩ (E ′−1 ∩ F ′−1))
= ((E \ E ′) ∩ F ′−1) ∪ ((F \ F ′) ∩ E ′−1)
⊆ (E \ E ′) ∪ (F \ F ′)

3. Statement 3 follows immediately from the defintion of ∆ by applying state-
ment 2 twice.

4. We show statement 4 as follows:

(E \ F) \ (E ′ \ F ′) = (E ∩ F−1) ∩ (E ′ ∩ F ′−1)−1

= (E ∩ F−1) ∩ (E ′−1 ∪ (F ′−1)−1)

= (E ∩ F−1) ∩ (E ′−1 ∪ F ′)
= (E ∩ F−1 ∩ E ′−1) ∪ (E ∩ F−1 ∩ F ′)
= ((E \ E ′) ∩ F ′−1) ∪ ((F ′ \ F) ∩ E)

⊆ (E \ E ′) ∪ (F ′ \ F)

5. Statement 5 follows immediately from the defintion of ∆ by applying state-
ment 4 twice.

Furthermore, we note the following observation that follows immediately from
the definition of the history in the semantic rules (Query) and (Query-Drop).
This will prove useful in the proof of the main results.

Observation A.0.1 (History Continuously Increasing). For all configurations
C = (P,E,H, T),C′ = (P ′, E ′, H ′, T ′) ∈ Config, all traces σ ∈ Act∗, and all
probabilities p ∈ [0, 1] such that C σ

=⇒p C
′ it holds that H(r) ≤ H ′(r) for all

r ∈ R.

In order to show the privacy of UniTraX (Theorem 1), we first show the fol-
lowing strong invariant of configurations that takes into account how UniTraX
tracks the consumption history. We show two different theorems: one for a single
configuration step and one that extends the invariant to traces.

122

Theorem 2 (Configuration Invariant (Single Step)). Let C0 = (P0, E0, H0, T0),
C′0 = (P ′0, E

′
0, H

′
0, T

′
0), C1 = (P1, E1, H1, T1), C′1 = (P ′1, E

′
1, H

′
1, T

′
1) ∈ Config be

four configurations, α0, α1 ∈ Act two action labels, p0, p1 ∈ [0, 1] two probabilities,
and Rα, R ∈ 2R two sets of records.
If
(P.1) for i ∈ {0, 1} it holds that Ci

αi−−→pi C
′
i and

(P.2) P0 = P1 and H0 = H1 and T0 = T1 and

(P.3) dist(α0, α1) = Rα and

(P.4) E0∆E1 = R and

(P.5) for all r ∈ R it holds that H0(r) ≤ r.cB
then
(C.1) P ′0 = P ′1 and H ′0 = H ′1 and T ′0 = T ′1 and

(C.2) E ′0∆E ′1 ⊆ Rα ∪R and

(C.3) p0 ≤ p1 · e
∑
r∈Rα∪RH

′
0(r)−H0(r) and

(C.4) for all r ∈ R it holds that H ′0(r) ≤ r.cB.

Proof. Proof by case distinction on label αi, i.e., the applied operational semantics
rule. We note that since dist(α0, α1) is defined, the applied rule in both configu-
ration steps must have been the same. We rely on the fact that the analyst is by
definition internally deterministic and deadlock-free.

Case: Deterministic rules (Select), (Read-History), and (Reject). We
note that in these cases α0 = α1 and by definition of dist it holds that Rα =
dist(α0, α1) = ∅. By inspection of the rules and the fact that the analyst is by
definition internally deterministic and deadlock-free, it immediately follows that
P ′0 = P ′1, H0 = H ′0 = H ′1 = H1, and T ′0 = T ′1 (C.1). Furthermore, we note that
p0 = p1 = 1 and since H ′0 = H0 we can immediately conclude both (C.3) and
(C.4) (by (P.5)). We also observe that in all these cases E ′0 = E0 and E ′1 = E1,
i.e., E ′0∆E ′1 = E0∆E1 = R and thus E ′0∆E ′1 ⊆ Rα ∪R (C.2).

Case: Deterministic rule (Update). In this case we know that P ′0 = P ′1,
H0 = H ′0 = H ′1 = H1, and T0 = T ′0 = T ′1 = T1 (C.1). Furthermore, we note that
p0 = p1 = 1 and since H ′0 = H0 we can immediately conclude both (C.3) and
(C.4) (by (P.5)). Additionally, we know that αi = Ri

in : Ri
del for some sets of

123

A. Proofs of the formal results on UniTraX

records Ri
in, R

i
del ∈ 2R and i ∈ {0, 1}. Thus, by definition of dist it must be the

case that

Rα = dist(α0, α1) = (R0
in∆R

1
in) ∪ (R0

del∆R
1
del).

This also means that

E ′i = (Ei ∪Ri
in) \Ri

del.

It remains to be shown that

E ′0∆E
′
1 ⊆ Rα ∪R.

This is equivalent to showing that

((E0 ∪R0
in) \R0

del)∆((E1 ∪R1
in) \R1

del)

⊆ ((R0
in∆R

1
in) ∪ (R0

del∆R
1
del)) ∪ (E0∆E1).

We apply statement 5 of Lemma 1 to deduce that

((E0 ∪R0
in) \R0

del)∆((E1 ∪R1
in) \R1

del)

⊆ ((E0 ∪R0
in)∆(E1 ∪R1

in)) ∪ (R0
del∆R

1
del).

We then apply statement 3 of Lemma 1 to deduce that

((E0 ∪R0
in)∆(E1 ∪R1

in)) ∪ (R0
del∆R

1
del)

⊆ (E0∆E1) ∪ (R0
in∆R

1
in) ∪ (R0

del∆R
1
del)

and conclude.

Case: Probabilistic query rule (Query). By the definition of dist we know
that there must exist some value n ∈ Val such that α0 = α1 = n and Rα =
dist(α0, α1) = ∅. Using our previous knowledge and the definition of (Query)
we can immediately observe that P ′0 = P ′1, H ′0 = H ′1, T ′0 = T ′1 and deduce (C.1).
We also know that E ′i = Ei for i ∈ {0, 1} and thus E ′0∆E ′1 = E0∆E1 ⊆ R ⊆ Rα∪R
(C.2). We know that for all r ∈ R the history H ′0 = H ′1 is defined as H ′0(r)

def
=

H0(r) if ¬sspace(r,H0(r)) and as H ′0(r)
def
= H0(r)+ε if sspace(r,H0(r)) is true. In

the latter case of sspace(r,H0(r)), the premises of (Query) additionally guarantee
that H0(r) + ε ≤ r.cB, which lets us immediately conclude that H ′0(r) ≤ r.cB,

124

for all r ∈ R such that sspace(r). Using (P.5) we can directly deduce that
H ′0(r) ≤ r.cB, for all r ∈ R (C.4). The probabilities pi are defined as

Prob[Qε(Ei|sspace,H0) = n].

By the differential privacy of the underlying query mechanism Qε(sv) it must
thus be the case that

p0 ≤ p1 · eε·|Rsspace |,

where we define

Rsspace
def
= E0|sspace,H0∆E1|sspace,H0 .

We can rewrite the cardinality of Rsspace and thus know that

p0 ≤ p1 · e
∑
r∈Rsspace

ε.

By definition of H ′0 we know that H ′0(r) − H0(r) = ε for all r ∈ R such that
sspace(r,H0(r)) and 0 otherwise. Thus,

p0 ≤ p1 · e
∑
r∈Rsspace

H′
0(r)−H0(r).

We know that

Rsspace
def
= E0|sspace,H0∆E1|sspace,H0 .

We also know that by definition

Ei|sspace,H0 = {r ∈ Ei | sspace(r,H0(r))} = Ei ∩ {r ∈ R | sspace(r,H0(r))}.

By statement 1 of Lemma 1 it follows that

Rsspace
def
= E0|sspace,H0∆E1|sspace,H0 = (E0∆E1)|sspace,H0 = R|sspace,H0 .

We know by their definition that

R|sspace,H0 ⊆ R ⊆ Rα ∪R.

We can thus conclude that

p0 ≤ p1 · e
∑
r∈Rsspace

H′
0(r)−H0(r) ≤ p1 · e

∑
r∈Rα∪RH

′
0(r)−H0(r).

Thus, (C.3) is fulfilled.

125

A. Proofs of the formal results on UniTraX

Case: Probabilistic query rule with silent record dropping (Query-Drop).
By the definition of dist we know that there must exist some value n ∈ Val such
that α0 = α1 = n and Rα = dist(α0, α1) = ∅. Using our previous knowledge
and the definition of (Query-Drop) we can immediately observe that P ′0 = P ′1,
H ′0 = H ′1, T ′0 = T ′1 and deduce (C.1). We also know that E ′i = Ei for i ∈ {0, 1}
and thus E ′0∆E ′1 = E0∆E1 ⊆ R ⊆ Rα ∪ R (C.2). We know that for all r ∈ R
the history H ′0 = H ′1 is defined as H ′0(r)

def
= H0(r) + ε if sspace(r,H0(r)) and

H0(r) + ε ≤ r.cB and as H ′0(r)
def
= H0(r) otherwise. Using (P.5) we can directly

deduce that H ′0(r) ≤ r.cB, for all r ∈ R (C.4). The probabilities pi are defined as

Prob[Qdrop
ε (Ei‖sspace,H0,ε) = n].

By the differential privacy of the underlying query mechanism Qdrop
ε (sv) it must

thus be the case that

p0 ≤ p1 · eε·|Rsspace |,

where we define

Rsspace
def
= E0‖sspace,H0,ε∆E1‖sspace,H0,ε.

We can rewrite the cardinality of Rsspace and thus know that

p0 ≤ p1 · e
∑
r∈Rsspace

ε.

We also know that by definition

Ei‖sspace,H0,ε = {r ∈ Ei | sspace(r,H0(r)) ∧H0(r) + ε ≤ r.cB}
= Ei ∩ {r ∈ R | sspace(r,H0(r)) ∧H0(r) + ε ≤ r.cB}.

We can thus apply statement 1 of Lemma 1 to deduce that

Rsspace
def
= E0‖sspace,H0,ε∆E1‖sspace,H0,ε

= (E0∆E1)‖sspace,H0,ε

= R‖sspace,H0,ε.

126

By definition of H ′0 we know that H ′0(r)−H0(r) = ε for all r ∈ R such that both
sspace(r,H0(r)) and H0(r) + ε ≤ r.cB and 0 otherwise. Thus, by the definition of
H ′0 and R‖sspace,H0,ε it holds that H ′0(r) −H0(r) = ε for all r ∈ R‖sspace,H0,ε and
hence

p0 ≤ p1 · e
∑
r∈Rsspace

ε

= p1 · e
∑
r∈R‖sspace,H0,ε

ε

= p1 · e
∑
r∈R‖sspace,H0,ε

H′
0(r)−H0(r)

.

We know by their definition that

R‖sspace,H0,ε ⊆ R ⊆ Rα ∪R.

Since H ′0(r) ≥ H0(r) for all r, we can conclude that

p0 ≤ p1 · e
∑
r∈Rα∪RH

′
0(r)−H0(r).

Thus, (C.3) is fulfilled.

Theorem 3 (Configuration invariant (traces)). Let C0 = (P0, E0, H0, T0), C′0 =
(P ′0, E

′
0, H

′
0, T

′
0), C1 = (P1, E1, H1, T1), C′1 = (P ′1, E

′
1, H

′
1, T

′
1) ∈ Config be four

configurations, σ0, σ1 ∈ Act∗ two traces, p0, p1 ∈ [0, 1] two probabilities, and
Rσ, R ∈ 2R two sets of records.
If
(P.1) for i ∈ {0, 1} it holds that Ci

σi==⇒pi
C′i and

(P.2) P0 = P1 and H0 = H1 and T0 = T1 and

(P.3) dist(σ0, σ1) = Rσ and

(P.4) E0∆E1 = R and

(P.5) for all r ∈ R it holds that H0(r) ≤ r.cB
then
(C.1) P ′0 = P ′1 and H ′0 = H ′1 and T ′0 = T ′1 and

(C.2) E ′0∆E ′1 ⊆ Rσ ∪R and

(C.3) p0 ≤ p1 · e
∑
r∈Rσ∪RH

′
0(r)−H0(r) and

(C.4) for all r ∈ R it holds that H ′0(r) ≤ r.cB.

Proof. We define m ∈ N as the length of the two traces σi, i.e.,, m
def
= |σ0 | = |σ1|.

The proof proceeds by induction on m.

127

A. Proofs of the formal results on UniTraX

Case: m = 0. In this base case it immediately follows that p0 = p1 = 1, σ0 =
σ1 = [], and that Ci = C′i for i ∈ {1, 2}. (C.1), (C.2), (C.4) follow immediately
from the assumptions. Furthermore, for all r ∈ R it holds that H ′0(r)−H0(r) = 0
and thus we can immediately conclude (C.3).

Case: m > 0. By the definition of trace semantics we know that for i ∈ {0, 1}
there must exist two configurations Ci = (P ′′i , E

′′
i , H

′′
i , T

′′
i) ∈ Config, two labels

α1 ∈ Act, two traces σ′i ∈ Act∗ and four probabilities p′i, p′′i ∈ [0, 1] such that

• σi = αiσ
′
i and

• pi = p′i · p′′i and

• Ci
αi−−→p′i

C′′i and

• C′′i
σ′
i==⇒p′′i

C′i.

We define Rα ∈ 2R as dist(α0, α1). We can immediately apply Theorem 2 to
deduce that

• P ′′0 = P ′′1 and H ′′0 = H ′′1 and T ′′0 = T ′′1 and

• E ′′0∆E ′′1 ⊆ Rα ∪R and

• p′0 ≤ p′1 · e
∑
r∈Rα∪RH

′′
0 (r)−H0(r) and

• for all r ∈ R it holds that H ′′0 (r) ≤ r.cB.

We would like to apply the induction hypothesis to C′′i
σ′
i==⇒p′′i

C′i (note that |σ′i| =
|σi| − 1), using this as (P.1). We have just shown that (P.2) is also fulfilled. For
(P.3) and (P.4) we use Rσ′ , R′ ∈ 2R to denote Rσ′ = dist(σ′0, σ

′
1) and R′ = E ′′0∆E ′′1 .

We have already previously shown the fact that for all r ∈ R it holds that
H ′′0 (r) ≤ r.cB (P.5). We can thus apply the induction hypothesis and derive that

• P ′0 = P ′1 and H ′0 = H ′1 and T ′0 = T ′1 and

• E ′0∆E ′1 ⊆ Rσ′ ∪R′ and

• p′′0 ≤ p′′1 · e
∑
r∈Rσ′∪R

′ H′
0(r)−H′′

0 (r) and

• for all r ∈ R it holds that H ′0(r) ≤ r.cB.

128

We can immediately see that (C.1) and (C.4) hold. Furthermore we know that
since p0 = p′i · p′′i it must be the case that

pi = p′0 · p′′0 ≤ p′1 · e
∑
r∈Rα∪RH

′′
0 (r)−H0(r) · p′′1 · e

∑
r∈Rσ′∪R

′ H′
0(r)−H′′

0 (r)

= p′1 · p′′1 · e
∑
r∈Rα∪RH

′′
0 (r)−H0(r)+

∑
r∈Rσ′∪R

′ H′
0(r)−H′′

0 (r).

We note that by definition of dist it holds that Rα ⊆ Rσ and thus Rα∪R ⊆ Rσ∪R.
Furthermore, by the definition of dist it follows that Rσ′ ⊆ Rσ and that from
our previous results it holds that R′ = E ′′0∆E ′′1 ⊆ Rα ∪ R ⊆ Rσ ∪ R. Thus,
Rσ′ ∪ R′ ⊆ Rσ ∪ (Rσ ∪ R) = Rσ ∪ R. Since we know that E ′0∆E ′1 ⊆ Rσ′ ∪ R′ we
can immediately deduce E ′0∆E ′1 ⊆ Rσ ∪R, thus showing (C.2). Furthermore, by
Observation A.0.1 we know that for all r ∈ R it holds that H ′′0 (r) − H0(r) ≥ 0
and H ′0(r)−H ′′0 (r) ≥ 0.

We conclude that

p0 ≤ p′1 · p′′1 · e
∑
r∈Rα∪RH

′′
0 (r)−H0(r)+

∑
r∈Rσ′∪R

′ H′
0(r)−H′′

0 (r)

≤ p′1 · p′′1 · e
∑
r∈Rσ∪RH

′′
0 (r)−H0(r)+

∑
r∈Rσ∪RH

′
0(r)−H′′

0 (r)

≤ p′1 · p′′1 · e
∑
r∈Rσ∪RH

′′
0 (r)−H0(r)+H′

0(r)−H′′
0 (r)

≤ p′1 · p′′1 · e
∑
r∈Rσ∪RH

′
0(r)−H0(r)

= p1 · e
∑
r∈Rσ∪RH

′
0(r)−H0(r),

thus showing (C.3).

Using Theorem 3 we show the privacy guarantees of UniTraX (Theorem 1).

Restatement A.0.1 (Theorem 1: Privacy of UniTraX). Let C = (P,E,H, T) ∈
Config be a configuration with H(r) ≤ r.cB for every r, σ0, σ1 ∈ Act∗ two traces,
p0, p1 ∈ [0, 1] two probabilities, and R ∈ 2R a set of records.
If
(P.1) for i ∈ {0, 1} it holds that C σi==⇒pi

and

(P.2) dist(σ0, σ1) = R
then p0 ≤ p1 · e

∑
r∈R r.cB .

Proof. We note that E∆E = ∅. We can thus immediately apply Theorem 3. It
follows that there exists a configuration C′ = (P ′, E ′, H ′, T ′) ∈ Config such that
C

σ0==⇒
m

p0
C′ and

• p0 ≤ p1 · e
∑
r∈RH

′(r)−H(r) and

129

A. Proofs of the formal results on UniTraX

• for all r ∈ R it holds that H ′(r) ≤ r.cB.

From the last two statements we deduce that

p0 ≤ p1 · e
∑
r∈RH

′(r)−H(r) ≤ p1 · e
∑
r∈RH

′(r) ≤ p1 · e
∑
r∈R r.cB .

130

Bibliography

[1] Jame O. Achugbue and Francis Y. L. Chin. “The Effectiveness of Output
Modification by Rounding for Protection of Statistical Data Bases”. In:
Infor 17.3 (1979), pages 209–218.

[2] Nabil R. Adam and John C. Wortmann. “Security-Control Methods for
Statistical Databases: A Comparative Study”. In: ACM Computing Sur-
veys (CSUR) 21.4 (1989), pages 515–556. doi: 10.1145/76894.76895.

[3] Vangalur S. Alagar. “Range Equations and Range Matrices: a Study in
Statistical Database Security”. In: Proceedings of the International Con-
ference on Cryptology (AUSCRYPT’90). Edited by Jennifer Seberry and
Josef Pieprzyk. Volume 453. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 1990, pages 360–385. doi: 10.1007/BFb0030376.

[4] Vangalur S. Alagar, Bernard Blanchard, and David Glaser. “Effective in-
ference control mechanisms for securing statistical databases”. In: Proceed-
ings of the AFIPS National Computer Conference (AFIPS’81). Volume 50.
AFIPS Conference Proceedings. New York: ACM, 1981, pages 443–452.
doi: 10.1145/1500412.1500476.

[5] Mohammad Alaggan, Sébastien Gambs, and Anne-Marie Kermarrec. “Het-
erogeneous Differential Privacy”. In: Journal of Privacy and Confidentiality
7.2 (2016), pages 127–158. url: http://repository.cmu.edu/jpc/vol7/iss2/
6.

[6] Mário S. Alvim, Miguel E. Andrés, Konstantinos Chatzikokolakis, Pier-
paolo Degano, and Catuscia Palamidessi. “Differential Privacy: On the
Trade-Off between Utility and Information Leakage”. In: Proceedings of
the 8th International Workshop on Formal Aspects of Security and Trust
(FAST’11). Edited by Gilles Barthe, Anupam Datta, and Sandro Etalle.
Volume 7140. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2012, pages 39–54. doi: 10.1007/978-3-642-29420-4_3.

131

https://doi.org/10.1145/76894.76895
https://doi.org/10.1007/BFb0030376
https://doi.org/10.1145/1500412.1500476
http://repository.cmu.edu/jpc/vol7/iss2/6
http://repository.cmu.edu/jpc/vol7/iss2/6
https://doi.org/10.1007/978-3-642-29420-4_3

Bibliography

[7] Jane R. Bambauer, Krish Muralidhar, and Rathindra Sarathy. “Fool’s
Gold: An Illustrated Critique of Differential Privacy”. In: Vanderbilt Jour-
nal of Entertainment & Technology Law 16.4 (2014), pages 701–755. url:
http://jetlaw.org/?p=22904.

[8] Raef Bassily, Adam Groce, Jonathan Katz, and Adam D. Smith. “Coupled-
Worlds Privacy: Exploiting Adversarial Uncertainty in Statistical Data
Privacy”. In: Proceedings of the 54th IEEE Symposium on Foundations of
Computer Science (FOCS’13). IEEE, 2013, pages 439–448. doi: 10.1109/
FOCS.2013.54.

[9] Leland L. Beck. “A Security Mechanism for Statistical Databases”. In:
ACM Transactions on Database Systems (TODS) 5.3 (1980), pages 316–
338. doi: 10.1145/320613.320617.

[10] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. “The R*-Tree: An Efficient and Robust Access Method for Points
and Rectangles”. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data (SIGMOD’90). Edited by Hector Garcia-
Molina and H. V. Jagadish. New York: ACM, 1990, pages 322–331. doi:
10.1145/93597.98741.

[11] Norbert Beckmann and Bernhard Seeger. “A revised R*-tree in comparison
with related index structures”. In: Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD’09). Edited by
Ugur Çetintemel, Stanley B. Zdonik, Donald Kossmann, and Nesime Tat-
bul. New York: ACM, 2009, pages 799–812. doi: 10.1145/1559845.1559929.

[12] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. “The X-tree:
An Index Structure for High-Dimensional Data”. In: Proceedings of the
22nd International Conference on Very Large Data Bases (VLDB’96).
Edited by T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and
Nandlal L. Sarda. Morgan Kaufmann, 1996, pages 28–39. url: http://
vldb.org/conf/1996/P028.PDF.

[13] Petr Berka. PKDD ’99 Discovery Challenge – A collaborative effort in
knowledge discovery from databases. University of Economics, Prague.
1999. url: https://sorry.vse.cz/~berka/challenge/pkdd1999/chall.htm
(visited on 12/18/2018).

132

http://jetlaw.org/?p=22904
https://doi.org/10.1109/FOCS.2013.54
https://doi.org/10.1109/FOCS.2013.54
https://doi.org/10.1145/320613.320617
https://doi.org/10.1145/93597.98741
https://doi.org/10.1145/1559845.1559929
http://vldb.org/conf/1996/P028.PDF
http://vldb.org/conf/1996/P028.PDF
https://sorry.vse.cz/~berka/challenge/pkdd1999/chall.htm

[14] Raghav Bhaskar, Abhishek Bhowmick, Vipul Goyal, Srivatsan Laxman,
and Abhradeep Thakurta. “Noiseless Database Privacy”. In: Proceedings
of the 17th International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT’11). Edited by Dong
Hoon Lee and Xiaoyun Wang. Volume 7073. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2011, pages 215–232. doi: 10.1007/
978-3-642-25385-0_12.

[15] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. “Prac-
tical privacy: The SuLQ framework”. In: Proceedings of the 24th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS’05). Edited by Chen Li. New York: ACM, 2005, pages 128–
138. doi: 10.1145/1065167.1065184.

[16] Avrim Blum, Katrina Ligett, and Aaron Roth. “A learning theory ap-
proach to non-interactive database privacy”. In: Proceedings of the 40th
ACM Symposium on Theory of Computing (STOC’08). Edited by Cyn-
thia Dwork. New York: ACM, 2008, pages 609–618. doi: 10.1145/1374376.
1374464.

[17] Justin Brickell and Vitaly Shmatikov. “The cost of privacy: Destruction of
data-mining utility in anonymized data publishing”. In: Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’08). Edited by Ying Li, Bing Liu, and Sunita
Sarawagi. New York: ACM, 2008, pages 70–78. doi: 10 .1145/1401890.
1401904.

[18] T.-H. Hubert Chan, Mingfei Li, Elaine Shi, and Wenchang Xu. “Differ-
entially Private Continual Monitoring of Heavy Hitters from Distributed
Streams”. In: Proceedings of the 12th International Symposium on Privacy
Enhancing Technologies (PETS’12). Edited by Simone Fischer-Hübner
and Matthew K. Wright. Volume 7384. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2012, pages 140–159. doi: 10.1007/978-
3-642-31680-7_8.

[19] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. “Private and Contin-
ual Release of Statistics”. In: ACM Transactions on Information and Sys-
tem Security (TISSEC) 14.3 (2011), 26:1–26:24. doi: 10.1145/2043621.
2043626.

133

https://doi.org/10.1007/978-3-642-25385-0_12
https://doi.org/10.1007/978-3-642-25385-0_12
https://doi.org/10.1145/1065167.1065184
https://doi.org/10.1145/1374376.1374464
https://doi.org/10.1145/1374376.1374464
https://doi.org/10.1145/1401890.1401904
https://doi.org/10.1145/1401890.1401904
https://doi.org/10.1007/978-3-642-31680-7_8
https://doi.org/10.1007/978-3-642-31680-7_8
https://doi.org/10.1145/2043621.2043626
https://doi.org/10.1145/2043621.2043626

Bibliography

[20] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. “Privacy-Preserving
Stream Aggregation with Fault Tolerance”. In: Revised Selected Papers of
the 16th International Conference on Financial Cryptography and Data
Security (FC’12). Edited by Angelos D. Keromytis. Volume 7397. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2012, pages 200–
214. doi: 10.1007/978-3-642-32946-3_15.

[21] Francis Y. L. Chin. “Security problems on inference control for SUM,
MAX, and MIN queries”. In: Journal of the ACM 33.3 (1986), pages 451–
464. doi: 10.1145/5925.5928.

[22] Francis Y. L. Chin and Gultekin Özsoyoglu. “Statistical Database De-
sign”. In: ACM Transactions on Database Systems (TODS) 6.1 (1981),
pages 113–139. doi: 10.1145/319540.319558.

[23] Francis Y. L. Chin and Gultekin Özsoyoglu. “Auditing and Inference Con-
trol in Statistical Databases”. In: IEEE Transactions on Software Engi-
neering 8.6 (1982), pages 574–582. doi: 10.1109/TSE.1982.236161.

[24] Francis Chin and Gultekin Ozsoyoglu. “Auditing for Secure Statistical
Databases”. In: Proceedings of the ACM Annual Conference (ACM’81).
New York: ACM, 1981, pages 53–59. doi: 10.1145/800175.809832.

[25] European Commission. 2018 reform of EU data protection rules. 2018.
url: https://ec.europa.eu/commission/priorities/justice-and-fundamental-
rights/data-protection/2018-reform-eu-data-protection-rules_en (visited
on 01/03/2019).

[26] NYC Taxi & Limousine Commission. TLC Trip Record Data. May 2017.
url: http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
(visited on 05/19/2017).

[27] U.S. Congress. Health Insurance Portability and Accountability Act. U.S.
Government Printing Office. 1996. url: https : / / www . govinfo . gov /
content/pkg/PLAW-104publ191/html/PLAW-104publ191.htm (visited
on 01/03/2019).

[28] Tore Dalenius. “A Simple Procedure for Controlled Rounding”. In: Statis-
tisk Tidskrift. 3rd series 19 (1981), pages 202–208. url: http://scb.se/H/
Statistisk%20tidskrift%201963-1984/Statistisk-tidskrift-1981.pdf.

134

https://doi.org/10.1007/978-3-642-32946-3_15
https://doi.org/10.1145/5925.5928
https://doi.org/10.1145/319540.319558
https://doi.org/10.1109/TSE.1982.236161
https://doi.org/10.1145/800175.809832
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/2018-reform-eu-data-protection-rules_en
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://www.govinfo.gov/content/pkg/PLAW-104publ191/html/PLAW-104publ191.htm
https://www.govinfo.gov/content/pkg/PLAW-104publ191/html/PLAW-104publ191.htm
http://scb.se/H/Statistisk%20tidskrift%201963-1984/Statistisk-tidskrift-1981.pdf
http://scb.se/H/Statistisk%20tidskrift%201963-1984/Statistisk-tidskrift-1981.pdf

[29] Pranav Dandekar, Nadia Fawaz, and Stratis Ioannidis. “Privacy Auctions
for Recommender Systems”. In: Proceedings of the 8th International Work-
shop on Internet and Network Economics (WINE’12). Edited by Paul W.
Goldberg and Mingyu Guo. Volume 7695. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2012, pages 309–322. doi: 10.1007/978-
3-642-35311-6_23.

[30] George I. Davida, David J. Linton, C. Russel Szelag, and David L. Wells.
“Database Security”. In: IEEE Transactions on Software Engineering 4.6
(1978), pages 531–533. doi: 10.1109/TSE.1978.234140.

[31] Richard A. DeMillo, David P. Dobkin, and Richard J. Lipton. “Even Data
Bases That Lie Can Be Compromised”. In: IEEE Transactions on Software
Engineering 4.1 (1978), pages 73–75. doi: 10.1109/TSE.1978.231469.

[32] Dorothy E. Denning. “Secure Statistical Databases with Random Sample
Queries”. In: ACM Transactions on Database Systems (TODS) 5.3 (1980),
pages 291–315. doi: 10.1145/320613.320616.

[33] Dorothy E. Denning, Peter J. Denning, and Mayer D. Schwartz. “The
Tracker: A Threat to Statistical Database Security”. In: ACM Transactions
on Database Systems (TODS) 4.1 (1979), pages 76–96. doi: 10 . 1145 /
320064.320069.

[34] Dorothy E. Denning and Jan Schlörer. “A Fast Procedure for Finding a
Tracker in a Statistical Database”. In: ACM Transactions on Database
Systems (TODS) 5.1 (1980), pages 88–102. doi: 10.1145/320128.320138.

[35] Dorothy E. Denning and Jan Schlörer. “Inference Controls for Statistical
Databases”. In: Computer 16.7 (1983), pages 69–82. doi: 10.1109/MC.
1983.1654444.

[36] Irit Dinur and Kobbi Nissim. “Revealing information while preserving pri-
vacy”. In: Proceedings of the 22nd ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (PODS’03). Edited by Frank
Neven, Catriel Beeri, and Tova Milo. New York: ACM, 2003, pages 202–
210. doi: 10.1145/773153.773173.

[37] David P. Dobkin, Anita K. Jones, and Richard J. Lipton. “Secure Databases:
Protection Against User Influence”. In: ACM Transactions on Database
Systems (TODS) 4.1 (1979), pages 97–106. doi: 10.1145/320064.320068.

135

https://doi.org/10.1007/978-3-642-35311-6_23
https://doi.org/10.1007/978-3-642-35311-6_23
https://doi.org/10.1109/TSE.1978.234140
https://doi.org/10.1109/TSE.1978.231469
https://doi.org/10.1145/320613.320616
https://doi.org/10.1145/320064.320069
https://doi.org/10.1145/320064.320069
https://doi.org/10.1145/320128.320138
https://doi.org/10.1109/MC.1983.1654444
https://doi.org/10.1109/MC.1983.1654444
https://doi.org/10.1145/773153.773173
https://doi.org/10.1145/320064.320068

Bibliography

[38] Josep Domingo-Ferrer and Vicenç Torra. “A Critique of k-Anonymity and
Some of Its Enhancements”. In: Proceedings of the 3rd International Con-
ference on Availability, Reliability and Security (ARES’08). IEEE, 2008,
pages 990–993. doi: 10.1109/ARES.2008.97.

[39] George T. Duncan and Sumitra Mukherjee. “Disclosure Limitation using
Autocorrelated Noise”. In: Database Security, VI: Status and Prospects.
Results of the IFIP WG 11.3 Workshop on Database Security (’92). Edited
by Bhavani M. Thuraisingham and Carl E. Landwehr. Volume A-21. IFIP
Transactions. Amsterdam: North-Holland, 1993, pages 211–224.

[40] Cynthia Dwork. “Differential Privacy”. In: Proceedings of the 33rd Interna-
tional Colloquium on Automata, Languages and Programming (ICALP’06).
Edited by Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo
Wegener. Volume 4052. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer, 2006, pages 1–12. doi: 10.1007/11787006_1.

[41] Cynthia Dwork. “Differential Privacy: A Survey of Results”. In: Proceedings
of the 5th International Conference on Theory and Applications of Mod-
els of Computation (TAMC’08). Edited by Manindra Agrawal, Dingzhu
Du, Zhenhua Duan, and Angsheng Li. Volume 4978. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2008, pages 1–19. doi:
10.1007/978-3-540-79228-4_1.

[42] Cynthia Dwork. “A firm foundation for private data analysis”. In: Com-
munications of the ACM 54.1 (2011), pages 86–95. doi: 10.1145/1866739.
1866758.

[43] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov,
and Moni Naor. “Our Data, Ourselves: Privacy Via Distributed Noise
Generation”. In: Proceedings of the 25th International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT’06).
Edited by Serge Vaudenay. Volume 4004. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2006, pages 486–503. doi: 10 .1007/
11761679_29.

[44] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. “Cali-
brating Noise to Sensitivity in Private Data Analysis”. In: Proceedings of
the 3rd Theory of Cryptography Conference (TCC’06). Edited by Shai
Halevi and Tal Rabin. Volume 3876. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2006, pages 265–284. doi: 10 .1007/
11681878_14.

136

https://doi.org/10.1109/ARES.2008.97
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1145/1866739.1866758
https://doi.org/10.1145/1866739.1866758
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14

[45] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum.
“Differential privacy under continual observation”. In: Proceedings of the
42nd ACM Symposium on Theory of Computing (STOC’10). Edited by
Michael Mitzenmacher and Leonard J. Schulman. New York: ACM, 2010,
pages 715–724. doi: 10.1145/1806689.1806787.

[46] Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of Dif-
ferential Privacy”. In: Foundations and Trends in Theoretical Computer
Science 9.3-4 (2014), pages 211–407. doi: 10.1561/0400000042.

[47] Cynthia Dwork and Adam Smith. “Differential privacy for statistics: What
we know and what we want to learn”. In: Journal of Privacy and Confi-
dentiality 1.2 (2010). url: http://repository.cmu.edu/jpc/vol1/iss2/2.

[48] Hamid Ebadi, Thibaud Antignac, and David Sands. “Sampling and parti-
tioning for differential privacy”. In: Proceedings of the 14th Conference on
Privacy, Security and Trust (PST’16). IEEE, 2016, pages 664–673. doi:
10.1109/PST.2016.7906954.

[49] Hamid Ebadi and David Sands. “Featherweight PINQ”. In: Journal of
Privacy and Confidentiality 7.2 (2016). url: http://repository.cmu.edu/
jpc/vol7/iss2/7.

[50] Hamid Ebadi, David Sands, and Gerardo Schneider. “Differential Pri-
vacy: Now it’s Getting Personal”. In: Proceedings of the 42nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’15). Edited by Sriram K. Rajamani and David Walker. New York:
ACM, 2015, pages 69–81. doi: 10.1145/2676726.2677005.

[51] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. “RAPPOR: Ran-
domized Aggregatable Privacy-Preserving Ordinal Response”. In: Proceed-
ings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS’14). Edited by Gail-Joon Ahn, Moti Yung, and Ninghui Li.
New York: ACM, 2014, pages 1054–1067. doi: 10.1145/2660267.2660348.

[52] Lisette Espín-Noboa, Florian Lemmerich, Philipp Singer, and Markus
Strohmaier. “Discovering and Characterizing Mobility Patterns in Ur-
ban Spaces: A Study of Manhattan Taxi Data”. In: Proceedings of the
25th International Conference on World Wide Web (WWW’16). Edited
by Jacqueline Bourdeau, Jim Hendler, Roger Nkambou, Ian Horrocks,
and Ben Y. Zhao. New York: ACM, 2016, pages 537–542. doi: 10.1145/
2872518.2890468.

137

https://doi.org/10.1145/1806689.1806787
https://doi.org/10.1561/0400000042
http://repository.cmu.edu/jpc/vol1/iss2/2
https://doi.org/10.1109/PST.2016.7906954
http://repository.cmu.edu/jpc/vol7/iss2/7
http://repository.cmu.edu/jpc/vol7/iss2/7
https://doi.org/10.1145/2676726.2677005
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2872518.2890468
https://doi.org/10.1145/2872518.2890468

Bibliography

[53] I. P. Fellegi and J. J. Phillips. “Statistical Confidentiality: Some Theory
and Application to Data Dissemination”. In: Annals of Economic and So-
cial Measurement 3.2 (1974), pages 399–409. url: http : //econpapers .
repec.org/RePEc:nbr:nberch:10117.

[54] Ulrich Flegel. “Pseudonymizing Unix Log Files”. In: Proceedings of the
International Conference on Infrastructure Security (InfraSec’02). Edited
by George I. Davida, Yair Frankel, and Owen Rees. Volume 2437. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 2002, pages 162–
179. doi: 10.1007/3-540-45831-X_12.

[55] Paul Francis, Sebastian Probst Eide, and Reinhard Munz. “Diffix: High-
Utility Database Anonymization”. In: Proceedings of the 5th Annual Pri-
vacy Forum (APF’17). Edited by Erich Schweighofer, Herbert Leitold,
Andreas Mitrakas, and Kai Rannenberg. Volume 10518. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2017, pages 141–158. doi:
10.1007/978-3-319-67280-9_8.

[56] Paul Francis, Sebastian Probst Eide, Pawel Obrok, Cristian Berneanu,
Sasa Juric, and Reinhard Munz. Extended Diffix. 2018. arXiv: 1806.02075
[cs.CR].

[57] Arik Friedman, Izchak Sharfman, Daniel Keren, and Assaf Schuster.
“Privacy-Preserving Distributed Stream Monitoring”. In: Proceedings of
the 21st Symposium on Network and Distributed System Security (NDSS’14).
ISOC, 2014. doi: 10.14722/ndss.2014.23128.

[58] Johannes Gehrke, Edward Lui, and Rafael Pass. “Towards Privacy for
Social Networks: A Zero-Knowledge Based Definition of Privacy”. In: Pro-
ceedings of the 8th Theory of Cryptography Conference (TCC’11). Edited
by Yuval Ishai. Volume 6597. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2011, pages 432–449. doi: 10.1007/978-3-642-19571-
6_26.

[59] Arpita Ghosh and Aaron Roth. “Selling privacy at auction”. In: Proceedings
of the 12th ACM Conference on Electronic Commerce (EC’11). Edited by
Yoav Shoham, Yan Chen, and Tim Roughgarden. New York: ACM, 2011,
pages 199–208. doi: 10.1145/1993574.1993605.

[60] Andreas Haeberlen, Benjamin C. Pierce, and Arjun Narayan. “Differential
Privacy Under Fire”. In: Proceedings of the 20th USENIX Security Sym-
posium (USS’11). USENIX, 2011. url: http://usenix.org/events/sec11/
tech/full_papers/Haeberlen.pdf.

138

http://econpapers.repec.org/RePEc:nbr:nberch:10117
http://econpapers.repec.org/RePEc:nbr:nberch:10117
https://doi.org/10.1007/3-540-45831-X_12
https://doi.org/10.1007/978-3-319-67280-9_8
https://arxiv.org/abs/1806.02075
https://arxiv.org/abs/1806.02075
https://doi.org/10.14722/ndss.2014.23128
https://doi.org/10.1007/978-3-642-19571-6_26
https://doi.org/10.1007/978-3-642-19571-6_26
https://doi.org/10.1145/1993574.1993605
http://usenix.org/events/sec11/tech/full_papers/Haeberlen.pdf
http://usenix.org/events/sec11/tech/full_papers/Haeberlen.pdf

[61] Raquel Hill. “Evaluating the Utility of Differential Privacy: A Use Case
Study of a Behavioral Science Dataset”. In: Medical Data Privacy Hand-
book. Edited by Aris Gkoulalas-Divanis and Grigorios Loukides. Berlin,
Heidelberg: Springer, 2015, pages 59–82. doi: 10.1007/978-3-319-23633-
9_4.

[62] Raquel Hill, Michael Hansen, Erick Janssen, Stephanie A. Sanders, Ju-
lia R. Heiman, and Li Xiong. “A Quantitative Approach for Evaluating
the Utility of a Differentially Private Behavioral Science Dataset”. In: Pro-
ceedings of the IEEE International Conference on Healthcare Informatics
(ICHI’14). IEEE, 2014, pages 276–284. doi: 10.1109/ICHI.2014.45.

[63] Justin Hsu, Marco Gaboardi, Andreas Haeberlen, Sanjeev Khanna, Ar-
jun Narayan, Benjamin C. Pierce, and Aaron Roth. “Differential Privacy:
An Economic Method for Choosing Epsilon”. In: Proceedings of the 27th
IEEE Computer Security Foundations Symposium (CSF’14). IEEE, 2014,
pages 398–410. doi: 10.1109/CSF.2014.35.

[64] Wiebren de Jonge. “Compromising Statistical Databases Responding
to Queries about Means”. In: ACM Transactions on Database Systems
(TODS) 8.1 (1983), pages 60–80. doi: 10.1145/319830.319834.

[65] Zach Jorgensen, Ting Yu, and Graham Cormode. “Conservative or liberal?
Personalized differential privacy”. In: Proceedings of the 31st International
Conference on Data Engineering (ICDE’15). Edited by Johannes Gehrke,
Wolfgang Lehner, Kyuseok Shim, Sang Kyun Cha, and Guy M. Lohman.
IEEE, 2015, pages 1023–1034. doi: 10.1109/ICDE.2015.7113353.

[66] Zach Jorgensen, Ting Yu, and Graham Cormode. “Publishing Attributed
Social Graphs with Formal Privacy Guarantees”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data (SIG-
MOD’16). Edited by Fatma Özcan, Georgia Koutrika, and Sam Madden.
New York: ACM, 2016, pages 107–122. doi: 10.1145/2882903.2915215.

[67] Krishnaram Kenthapadi, Nina Mishra, and Kobbi Nissim. “Simulatable
auditing”. In: Proceedings of the 24th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS’05). Edited by
Chen Li. ACM, 2005, pages 118–127. doi: 10.1145/1065167.1065183.

[68] Daniel Kifer and Ashwin Machanavajjhala. “No free lunch in data pri-
vacy”. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’11). Edited by Timos K. Sellis, Renée

139

https://doi.org/10.1007/978-3-319-23633-9_4
https://doi.org/10.1007/978-3-319-23633-9_4
https://doi.org/10.1109/ICHI.2014.45
https://doi.org/10.1109/CSF.2014.35
https://doi.org/10.1145/319830.319834
https://doi.org/10.1109/ICDE.2015.7113353
https://doi.org/10.1145/2882903.2915215
https://doi.org/10.1145/1065167.1065183

Bibliography

J. Miller, Anastasios Kementsietsidis, and Yannis Velegrakis. New York:
ACM, 2011, pages 193–204. doi: 10.1145/1989323.1989345.

[69] Jon M. Kleinberg, Christos H. Papadimitriou, and Prabhakar Ragha-
van. “Auditing Boolean Attributes”. In: Proceedings of the 19th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems (PODS’00). Edited by Victor Vianu and Georg Gottlob. New York:
ACM, 2000, pages 86–91. doi: 10.1145/335168.335210.

[70] Aleksandra Korolova. “Privacy Violations Using Microtargeted Ads: A
Case Study”. In: Proceedings of the 10th IEEE International Conference on
Data Mining Workshops (ICDMW’10). Edited by Wei Fan, Wynne Hsu,
Geoffrey I. Webb, Bing Liu, Chengqi Zhang, Dimitrios Gunopulos, and
Xindong Wu. IEEE, 2010, pages 474–482. doi: 10.1109/ICDMW.2010.137.

[71] Jaewoo Lee and Chris Clifton. “How Much Is Enough? Choosing ε for
Differential Privacy”. In: Proceedings of the 14th International Conference
on Information Security (ISC’11). Edited by Xuejia Lai, Jianying Zhou,
and Hui Li. Volume 7001. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2011, pages 325–340. doi: 10 . 1007 / 978 - 3 - 642 -
24861-0_22.

[72] Jaewoo Lee and Chris Clifton. “Differential identifiability”. In: Proceed-
ings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’12). Edited by Qiang Yang, Deepak
Agarwal, and Jian Pei. New York: ACM, 2012, pages 1041–1049. doi:
10.1145/2339530.2339695.

[73] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. “t-Closeness:
Privacy Beyond k-Anonymity and l-Diversity”. In: Proceedings of the 23rd
International Conference on Data Engineering (ICDE’07). Edited by Rada
Chirkova, Asuman Dogac, M. Tamer Özsu, and Timos K. Sellis. IEEE,
2007, pages 106–115. doi: 10.1109/ICDE.2007.367856.

[74] Tiancheng Li and Ninghui Li. “On the tradeoff between privacy and utility
in data publishing”. In: Proceedings of the 15th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD’09).
Edited by John F. Elder IV, Françoise Fogelman-Soulié, Peter A. Flach,
and Mohammed Javeed Zaki. New York: ACM, 2009, pages 517–526. doi:
10.1145/1557019.1557079.

140

https://doi.org/10.1145/1989323.1989345
https://doi.org/10.1145/335168.335210
https://doi.org/10.1109/ICDMW.2010.137
https://doi.org/10.1007/978-3-642-24861-0_22
https://doi.org/10.1007/978-3-642-24861-0_22
https://doi.org/10.1145/2339530.2339695
https://doi.org/10.1109/ICDE.2007.367856
https://doi.org/10.1145/1557019.1557079

[75] Ashwin Machanavajjhala, Daniel Kifer, John M. Abowd, Johannes Gehrke,
and Lars Vilhuber. “Privacy: Theory meets Practice on the Map”. In:
Proceedings of the 24th International Conference on Data Engineering
(ICDE’08). Edited by Gustavo Alonso, José A. Blakeley, and Arbee L. P.
Chen. IEEE, 2008, pages 277–286. doi: 10.1109/ICDE.2008.4497436.

[76] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthurama-
krishnan Venkitasubramaniam. “l-Diversity: Privacy beyond k-anonymity”.
In: ACM Transactions on Knowledge Discovery from Data (TKDD) 1.1,
Article 3 (2007). doi: 10.1145/1217299.1217302.

[77] David J. Martin, Daniel Kifer, Ashwin Machanavajjhala, Johannes Gehrke,
and Joseph Y. Halpern. “Worst-Case Background Knowledge for Privacy-
Preserving Data Publishing”. In: Proceedings of the 23rd International
Conference on Data Engineering (ICDE’07). Edited by Rada Chirkova,
Asuman Dogac, M. Tamer Özsu, and Timos K. Sellis. IEEE, 2007,
pages 126–135. doi: 10.1109/ICDE.2007.367858.

[78] David McClure and Jerome P. Reiter. “Differential Privacy and Statistical
Disclosure Risk Measures: An Investigation with Binary Synthetic Data”.
In: Transactions on Data Privacy (TDP) 5.3 (2012), pages 535–552. url:
http://www.tdp.cat/issues11/abs.a093a11.php.

[79] Frank McSherry. Privacy Integrated Queries (PINQ). Microsoft Research.
June 2009. url: https://www.microsoft.com/en-us/research/project/
privacy-integrated-queries-pinq/ (visited on 01/02/2019).

[80] Frank McSherry. “Privacy integrated queries: an extensible platform for
privacy-preserving data analysis”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD’09). Edited
by Ugur Çetintemel, Stanley B. Zdonik, Donald Kossmann, and Nesime
Tatbul. New York: ACM, 2009, pages 19–30. doi: 10 . 1145 / 1559845 .
1559850.

[81] Frank McSherry and Kunal Talwar. “Mechanism Design via Differential
Privacy”. In: Proceedings of the 48th IEEE Symposium on Foundations of
Computer Science (FOCS’07). IEEE, 2007, pages 94–103. doi: 10.1109/
FOCS.2007.41.

[82] Andrés Monroy-Hernández. NYC Taxi Trips. 2014. url: http ://www.
andresmh.com/nyctaxitrips/ (visited on 06/26/2014).

141

https://doi.org/10.1109/ICDE.2008.4497436
https://doi.org/10.1145/1217299.1217302
https://doi.org/10.1109/ICDE.2007.367858
http://www.tdp.cat/issues11/abs.a093a11.php
https://www.microsoft.com/en-us/research/project/privacy-integrated-queries-pinq/
https://www.microsoft.com/en-us/research/project/privacy-integrated-queries-pinq/
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1109/FOCS.2007.41
http://www.andresmh.com/nyctaxitrips/
http://www.andresmh.com/nyctaxitrips/

Bibliography

[83] Iulian Moraru, David G. Andersen, Michael Kaminsky, Nathan Binkert,
Niraj Tolia, Reinhard Munz, and Parthasarathy Ranganathan. Persistent,
Protected and Cached: Building Blocks for Main Memory Data Stores.
Technical report CMU-PDL-11-114. Pittsburgh: Parallel Data Laboratory
(PDL), Carnegie Mellon University (CMU), Dec. 2011. url: http://www.
pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-11-114.pdf.

[84] Iulian Moraru, David G. Andersen, Michael Kaminsky, Nathan Binkert,
Niraj Tolia, Reinhard Munz, and Parthasarathy Ranganathan. Persistent,
Protected and Cached: Building Blocks for Main Memory Data Stores.
Technical report CMU-PDL-11-114 v2. Pittsburgh: Parallel Data Labora-
tory (PDL), Carnegie Mellon University (CMU), Nov. 2012. url: http:
//www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-11-114v2.pdf.

[85] Reinhard Munz, Fabienne Eigner, Matteo Maffei, Paul Francis, and
Deepak Garg. UniTraX: Protecting Data Privacy with Discoverable Biases.
Technical report MPI-SWS-2018-001. Kaiserslautern and Saarbrücken:
Max Planck Institute for Software Systems (MPI-SWS), Feb. 2018. url:
https://www.mpi-sws.org/tr/2018-001.pdf.

[86] Reinhard Munz, Fabienne Eigner, Matteo Maffei, Paul Francis, and
Deepak Garg. “UniTraX: Protecting Data Privacy with Discoverable Bi-
ases”. In: Proceedings of the 7th International Conference on Principles of
Security and Trust (POST’18). Edited by Lujo Bauer and Ralf Küsters.
Volume 10804. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2018, pages 278–299. doi: 10.1007/978-3-319-89722-6_12.

[87] M. S. Nargundkar and W. Saveland. “Random Rounding to Prevent Statis-
tical Disclosure”. In: Proceedings of the Social Statistics Section (SSS’72).
Edited by Edwin D. Goldfield. American Statistical Association, 1972,
pages 382–385. url: http : / / amstat . org / sections / srms /Proceedings /
y1972/Random%20-Rounding%20To%20Prevent%20Statistical%20Disclosures.
pdf.

[88] Mehmet Ercan Nergiz, Maurizio Atzori, and Chris Clifton. “Hiding the
presence of individuals from shared databases”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data (SIG-
MOD’07). Edited by Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou.
New York: ACM, 2007, pages 665–676. doi: 10.1145/1247480.1247554.

142

http://www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-11-114.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-11-114.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-11-114v2.pdf
http://www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-11-114v2.pdf
https://www.mpi-sws.org/tr/2018-001.pdf
https://doi.org/10.1007/978-3-319-89722-6_12
http://amstat.org/sections/srms/Proceedings/y1972/Random%20-Rounding%20To%20Prevent%20Statistical%20Disclosures.pdf
http://amstat.org/sections/srms/Proceedings/y1972/Random%20-Rounding%20To%20Prevent%20Statistical%20Disclosures.pdf
http://amstat.org/sections/srms/Proceedings/y1972/Random%20-Rounding%20To%20Prevent%20Statistical%20Disclosures.pdf
https://doi.org/10.1145/1247480.1247554

[89] Thomas Neubauer and Johannes Heurix. “A methodology for the pseudo-
nymization of medical data”. In: International Journal of Medical Infor-
matics 80.3 (2011), pages 190–204. doi: 10.1016/j.ijmedinf.2010.10.016.

[90] Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. “Smooth sen-
sitivity and sampling in private data analysis”. In: Proceedings of the 39th
ACM Symposium on Theory of Computing (STOC’07). Edited by David
S. Johnson and Uriel Feige. New York: ACM, 2007, pages 75–84. doi:
10.1145/1250790.1250803.

[91] Kobbi Nissim, Salil P. Vadhan, and David Xiao. “Redrawing the bound-
aries on purchasing data from privacy-sensitive individuals”. In: Proceed-
ings of the 5th Conference on Innovations in Theoretical Computer Science
(ITCS’14). Edited by Moni Naor. New York: ACM, 2014, pages 411–422.
doi: 10.1145/2554797.2554835.

[92] Gultekin Özsoyoglu and Z. Meral Özsoyoglu. “Update Handling Tech-
niques in Statistical Databases”. In: Proceedings of the 1st LBL Workshop
on Statistical Database Management (SSDBM’81). Edited by Harry K. T.
Wong. Berkeley: Lawrence Berkeley Laboratory, 1982, pages 249–283.

[93] Andreas Pfitzmann and Marit Köhntopp. “Anonymity, Unobservability,
and Pseudonymity - A Proposal for Terminology”. In: Proceedings of the
International Workshop on Design Issues in Anonymity and Unobservabil-
ity. Edited by Hannes Federrath. Volume 2009. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2000, pages 1–9. doi: 10.1007/3-540-
44702-4_1.

[94] Davide Proserpio, Sharon Goldberg, and Frank McSherry. “Calibrating
Data to Sensitivity in Private Data Analysis”. In: PVLDB 7.8 (2014),
pages 637–648. url: http://www.vldb.org/pvldb/vol7/p637-proserpio.
pdf.

[95] Do Le Quoc, Martin Beck, Pramod Bhatotia, Ruichuan Chen, Christof
Fetzer, and Thorsten Strufe. “PrivApprox: Privacy-Preserving Stream
Analytics”. In: Proceedings of the USENIX Annual Technical Conference
(ATC’17). Edited by Dilma Da Silva and Bryan Ford. USENIX, 2017,
pages 659–672. url: https://www.usenix.org/conference/atc17/technical-
sessions/presentation/quoc.

143

https://doi.org/10.1016/j.ijmedinf.2010.10.016
https://doi.org/10.1145/1250790.1250803
https://doi.org/10.1145/2554797.2554835
https://doi.org/10.1007/3-540-44702-4_1
https://doi.org/10.1007/3-540-44702-4_1
http://www.vldb.org/pvldb/vol7/p637-proserpio.pdf
http://www.vldb.org/pvldb/vol7/p637-proserpio.pdf
https://www.usenix.org/conference/atc17/technical-sessions/presentation/quoc
https://www.usenix.org/conference/atc17/technical-sessions/presentation/quoc

Bibliography

[96] Vibhor Rastogi and Suman Nath. “Differentially private aggregation of dis-
tributed time-series with transformation and encryption”. In: Proceedings
of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’10). Edited by Ahmed K. Elmagarmid and Divyakant Agrawal.
New York: ACM, 2010, pages 735–746. doi: 10.1145/1807167.1807247.

[97] Bernhard Riedl, Thomas Neubauer, Gernot Goluch, Oswald Boehm, Gert
Reinauer, and Alexander Krumboeck. “A secure architecture for the pseu-
donymization of medical data”. In: Proceedings of the 2nd International
Conference on Availability, Reliability and Security (ARES’07). IEEE,
2007, pages 318–324. doi: 10.1109/ARES.2007.22.

[98] Jan Schlörer. On statistical confidentiality: Minimum query language re-
quirements for tracker building. Materialien Nr. 33. Department of Medical
Statistics, Documentation and Data Processing, University of Ulm, July
1975.

[99] Jan Schlörer. Security of Statistical Databases: Ranges and Trackers. Klin-
ische Dokumentation, Universität Ulm, W. Germany, Nov. 1981.

[100] Jan Schlörer. “Sicherung statistischer Datenbanken: Output von Inter-
vallen”. In: Proceedings of the 3rd Conference of the European Cooper-
ation in Informatics (ECI’81). Edited by Wilfried Brauer. Volume 50.
Informatik-Fachberichte. Berlin, Heidelberg: Springer, 1981, pages 327–
336. doi: 10.1007/978-3-662-01089-1_30.

[101] Jan Schlörer. “Outputkontrollen zur Sicherung statistischer Datenbanken.
Ein Überblick”. In: Informatik Spektrum 5.4 (1982), pages 224–236.

[102] Jan Schlörer. Sicherheit statistischer Datenbanken; Untersuchungen zum
Identifikations- und Outputproblem; Schlußbericht an die Stiftung Volkswa-
genwerk. Klinische Dokumentation, Klinikum der Universität Ulm, Ulm,
Germany, July 1984.

[103] Elaine Shi, T.-H. Hubert Chan, Eleanor G. Rieffel, Richard Chow, and
Dawn Song. “Privacy-Preserving Aggregation of Time-Series Data”. In:
Proceedings of the Symposium on Network and Distributed System Security
(NDSS’11). ISOC. 2011. url: https://www.isoc.org/isoc/conferences/
ndss/11/pdf/9_3.pdf.

144

https://doi.org/10.1145/1807167.1807247
https://doi.org/10.1109/ARES.2007.22
https://doi.org/10.1007/978-3-662-01089-1_30
https://www.isoc.org/isoc/conferences/ndss/11/pdf/9_3.pdf
https://www.isoc.org/isoc/conferences/ndss/11/pdf/9_3.pdf

[104] George L. Sicherman, Wiebren de Jonge, and Reind P. van de Riet. “An-
swering Queries Without Revealing Secrets”. In: ACM Transactions on
Database Systems (TODS) 8.1 (1983), pages 41–59. doi: 10.1145/319830.
319833.

[105] Andrew C. Simpson, David J. Power, and Mark Slaymaker. “On tracker
attacks in health grids”. In: Proceedings of the ACM Symposium on Applied
Computing (SAC’06). Edited by Hisham Haddad. New York: ACM, 2006,
pages 209–216. doi: 10.1145/1141277.1141326.

[106] Michael Stonebraker. “Implementation of Integrity Constraints and Views
by Query Modification”. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD’75). Edited by
W. Frank King. ACM, 1975, pages 65–78. doi: 10.1145/500080.500091.

[107] Michael Stonebraker and Eugene Wong. “Access Control in a Relational
Data Base Management System by Query Modification”. In: Proceedings
of the ACM Annual Conference (ACM’74). Volume 1. New York: ACM,
1974, pages 180–186. doi: 10.1145/800182.810400.

[108] Latanya Sweeney. “Datafly: A System for Providing Anonymity in Medical
Data”. In: Database Securty XI: Status and Prospects, IFIP TC11 WG11.3
Eleventh International Conference on Database Security (’97). Edited by
Tsau Young Lin and Shelly Qian. Volume 113. IFIP Conference Proceed-
ings. Chapman & Hall, 1998, pages 356–381.

[109] Latanya Sweeney. “k-Anonymity: A Model for Protecting Privacy”. In: In-
ternational Journal on Uncertainty, Fuzziness and Knowledge-Based Sys-
tems 10.5 (2002), pages 557–570. doi: 10.1142/S0218488502001648.

[110] Latanya Sweeney. “Achieving k-Anonymity Privacy Protection Using Gen-
eralization and Suppression”. In: International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 10.5 (2002), pages 571–588. doi:
10.1142/S021848850200165X.

[111] Latanya Sweeney. Only You, Your Doctor, and Many Others May Know.
Technology Science. Sept. 2015. url: https://techscience.org/a/2015092903
(visited on 01/04/2019).

[112] Latanya Sweeney, Ji Su Yoo, Laura Perovich, Katherine E. Boronow, Phil
Brown, and Julia Green Brody. Re-identification Risks in HIPAA Safe
Harbor Data: A study of data from one environmental health study. Tech-

145

https://doi.org/10.1145/319830.319833
https://doi.org/10.1145/319830.319833
https://doi.org/10.1145/1141277.1141326
https://doi.org/10.1145/500080.500091
https://doi.org/10.1145/800182.810400
https://doi.org/10.1142/S0218488502001648
https://doi.org/10.1142/S021848850200165X
https://techscience.org/a/2015092903

Bibliography

nology Science. Aug. 2017. url: https://techscience.org/a/2017082801
(visited on 01/04/2019).

[113] Aron Szanto and Neel Mehta. A Host of Troubles: Re-Identifying Airbnb
Hosts Using Public Data. Technology Science. Oct. 2018. url: https://
techscience.org/a/2018100902 (visited on 01/04/2019).

[114] Patrick Tendick and Norman S. Matloff. “A Modified Random Perturba-
tion Method for Database Security”. In: ACM Transactions on Database
Systems (TODS) 19.1 (1994), pages 47–63. doi: 10.1145/174638.174641.

[115] J.K. Trotter. Public NYC Taxicab Database Lets You See How Celebrities
Tip. Gawker. Oct. 2014. url: http://gawker.com/the-public-nyc-taxicab-
database-that-accidentally-track-1646724546 (visited on 01/22/2016).

[116] Ji Su Yoo, Alexandra Thaler, Latanya Sweeney, and Jinyan Zang. Risks
to Patient Privacy: A Re-identification of Patients in Maine and Vermont
Statewide Hospital Data. Technology Science. Oct. 2018. url: https ://
techscience.org/a/2018100901 (visited on 01/04/2019).

[117] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlings-
son, Pradeep Kumar Gunda, and Jon Currey. “DryadLINQ: A System
for General-Purpose Distributed Data-Parallel Computing Using a High-
Level Language”. In: Proceedings of the 8th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI’08). Edited by Richard
Draves and Robbert van Renesse. USENIX, 2008, pages 1–14. url: https:
//www.usenix.org/event/osdi08/tech/full_papers/yu_y/yu_y.pdf.

[118] Simon Van Zuylen-Wood. The Struggles of New York City’s Taxi King.
Aug. 2015. url: http : / / www . bloomberg . com / features / 2015 - taxi -
medallion-king/ (visited on 08/02/2016).

146

https://techscience.org/a/2017082801
https://techscience.org/a/2018100902
https://techscience.org/a/2018100902
https://doi.org/10.1145/174638.174641
http://gawker.com/the-public-nyc-taxicab-database-that-accidentally-track-1646724546
http://gawker.com/the-public-nyc-taxicab-database-that-accidentally-track-1646724546
https://techscience.org/a/2018100901
https://techscience.org/a/2018100901
https://www.usenix.org/event/osdi08/tech/full_papers/yu_y/yu_y.pdf
https://www.usenix.org/event/osdi08/tech/full_papers/yu_y/yu_y.pdf
http://www.bloomberg.com/features/2015-taxi-medallion-king/
http://www.bloomberg.com/features/2015-taxi-medallion-king/

	Abstract
	Acknowledgements
	Publications
	Vita
	Contents
	List of Figures
	Introduction
	Leaving Differential Privacy
	Giving up on privacy guarantees
	Design overview and assumptions
	Protection and detection mechanisms
	Attacks
	Adversaries
	Strategies

	Attack implementation
	Conclusion

	Towards low noise and large budgets in privacy preserving analytics
	Utility of ProPer
	Query Based Bookkeeping
	Increasing budgets for counting queries
	Query Similarity Detection
	Cheater Detection
	Gaussian noise
	Remaining attacks

	The complete design
	Case study: taxi rides in New York City
	Unknown records lower confidence
	Prerequisites for successful attacks

	Related work
	The most recent and most known
	The usually applied
	Related techniques of disclosure control
	Tracker attacks

	Conclusion

	Returning to Differential Privacy
	UniTraX: protecting data privacy with discoverable biases
	System comparison
	Design overview
	Formal description and Differential Privacy
	Formal model of UniTraX
	Privacy property and its formalization

	Related work
	Conclusion

	Testing UniTraX's usability
	Implementation
	Evaluation
	Datasets
	Analysis sessions
	Experimental setups
	Hardware
	Software
	Relative budget consumption
	Absolute and relative latency overheads
	Latency overheads for PINQ partitioning
	Total query times and clean-up mechanisms

	Conclusion

	Conclusion
	This thesis
	The bigger picture
	Future work

	Proofs of the formal results on UniTraX
	Bibliography

