
Nonblocking On-Chip Interconnection Networks

Dissertation

Vom Fachbereich Informatik der Technischen Universität Kaiserslautern zur Verleihung des
akademischen Grades Doktor der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Dissertation

von

Tripti Jain

Datum der wissenschaftlichen Aussprache — 26.07.2019

Dekan — Prof. Dr. Stefan Deßloch

Gutachter — Prof. Dr. Klaus Schneider

Prof. Dr. Onur Mutlu

D 386

Abstract

Interconnection networks enable fast data communication between compo-
nents of a digital system. The selection of an appropriate interconnection net-
work and its architecture plays an important role in the development process
of the system. The selection of a bad network architecture may significantly
delay the communication between components and decrease the overall system
performance.

There are various interconnection networks available. Most of them are
blocking networks. Blocking means that even though a pair of source and
target components may be free, a connection between them might still not
be possible due to limited capabilities of the network. Moreover, routing
algorithms of blocking networks have to avoid deadlocks and livelocks, which
typically does only allow poor real-time guarantees for delivering a message.

Nonblocking networks can always manage all requests that are coming from
their input components and can therefore deliver all messages in guaranteed
time, i.e, with strong real-time guarantees. However, only a few networks are
nonblocking and easy to implement. The simplest one is the crossbar network
which is a comparably simple circuit with also a simple routing algorithm.
However, while its circuit depth of O(log(n)) is optimal, its size increases with
O(n2) and quickly becomes infeasible for large networks. Therefore, the con-
struction of nonblocking networks with a quasipolynomial size O(n log(n)a)
and polylogarithmic depth O(log(n)b) turned out as a research problem.
Beneš [Clos53; Bene65] networks were the first non-blocking networks hav-
ing an optimal size of O(n log(n)) and an optimal depth of O(log(n)), but
their routing algorithms are quite complicated and require circuits of depth
O(log(n)2) [NaSa82].

Other nonblocking interconnection networks are derived from sorting net-
works. Essentially, there are merge-based (MBS) and radix-based (RBS) sort-
ing networks. MBS and RBS networks can be both implemented in a pipelined
fashion which leads to a big advantage for their circuit implementation. While
these networks are nonblocking and can implement all n! permutations, they
cannot directly handle partial permutations that frequently occur in practice
since not every input component communicates at every point of time with an
output component. For merge-based sorting networks, there is a well-known
general solution called the Batcher-Banyan network. However, for the larger

iii

class of radix-based sorting networks this does not work, and there is only one
solution known for a particular permutation network.

In this thesis, new nonblocking radix-based interconnection networks are
presented. In particular, for a certain permutation network, three routing
algorithms are developed and their circuit implementations are evaluated con-
cerning their size, depth, and power consumption. A special extension of these
networks allows them to route also partial permutations. Moreover, three gen-
eral constructions to convert any binary sorter into a ternary split module were
presented which is the key to construct a radix-based interconnection network
that can cope with partial permutations. The thesis compares also chip de-
signs of these networks with other radix-based sorting networks as well as with
the Batcher-Banyan networks as competitors. As a result, it turns out that
the proposed radix-based networks are superior and could form the basis of
larger manycore architectures.

iv

ACKNOWLEDGEMENT

First and foremost, I want to express my deep gratitude to my advisor Prof.
Klaus Schneider for his meticulous care, kindness and generosity. He is an
excellent teacher and a great motivator. These four years, which I have spent
under his guidance have brought me to a level where I can attempt to explore
further the sea of knowledge on my own. I will always be indebted to him for all
the guidance and assistance. I always find myself captivated by the simplified
and intuitive approach that he follows to explain complicated concepts. I
am extremely thankful for the tremendous time and effort that he invested
in correcting my papers and thesis. It is not just guidance in teaching or
research, I found him helping me in all aspects of personal development. He
always aspires me to become a better person. He has always taken time out of
his busy schedule to listen to my problems, however small they are, and I will
always be indebted for that. I appreciate all his contributions of time, ideas,
and funding to make my Ph.D. experience productive and stimulating. The
joy and enthusiasm he has for his research was contagious and motivational
for me, even during tough times in the Ph.D. pursuit.

I am also thankful to Marita Stuppy who has always helped me during my
stay at TU Kaiserslautern. Her timely help has ensured the smooth execution
of all the administrative tasks. I am also thankful to all of my colleagues which
during the course of my stay here became my very good friends. It would have
been impossible to work without having those fun moments which we shared
together. I would like to specially thank Xiao, Maximilian, Omair, Mark,
Martin and Anoop for all those technical and non-technical discussions which
we had from time to time. I am also thankful to my friends Vivek, Sunita,
Neelima, Rahul, Sagar, and Atul with whom I enjoyed my best moments in
life. They made me feel home during my stay in Germany. I wish to express
heartfelt love and appreciation to my dear friend and my fiance Ankesh for his
constant inspiration, support and encouragement. Throughout this journey,
many more people have provided their support and encouragement and I am
thankful to each one of them.

At last but not the least, I would like to dedicate this thesis to my parents
Mr. Paras Jain and Mrs. Mona Jain who have always been a source of
inspiration, infinite love and affection. I owe this completely to them and
without their care and support, I could not have come this far. I would also

v

like to thank my uncles, my sisters and brother-in-laws for their unconditional
support and care.

December 2018, Tripti Jain

vi

Contents

1. Introduction 1
1.1. Motivation . 1

1.2. Contributions . 3

1.3. Outline . 5

2. State of the Art 7
2.1. Basics of Interconnection Networks 7

2.2. Multistage Interconnection Networks 14

2.3. Sorting Networks . 20

2.4. Current Commercial Interconnection Networks 23

2.5. Summary . 24

3. New RBS Networks for Total Permutations 25
3.1. Basic Definitions: . 26

3.2. Distribution-Based Interconnection Networks 28

3.3. Sorters with Half Cleaner based RBS Network 40

3.4. Summary . 44

4. New RBS networks for Partial Permutations 47
4.1. Routing Partial Permutations by Sorting Networks 47

4.2. Routing Partial Permutations . 49

4.3. Summary . 54

5. Experimental Results and Comparison 57
5.1. Asymptotic Complexities . 57

5.2. Experimental Results . 58

5.3. Analysis of Results . 60

6. Conclusions 63

Bibliography 65

A. Experimental Tables 73

B. Experimental Graphs 87

vii

Contents

C. Curriculum Vitae 101

viii

List of Figures

2.1. Bus architecture . 11

2.2. 2-D mesh architecture . 11

2.3. 2-D Torus architecture . 12

2.4. Ring architecture . 12

2.5. Binary tree architecture . 13

2.6. Hypercube architecture . 13

2.7. Crossbar architecture . 14

2.8. The two states of a 2 × 2 crossbar switch. 15

2.9. Examples of 8 × 8 bidelta networks 16

2.10. Dilated multistage interconnection network k = 2 17

2.11. 8 × 8 replicated multistage network k = 2 18

2.12. 4 × 4 fat tree network . 18

2.13. Clos network . 19

2.14. Beneš network . 19

2.15. Flattened bufferfly network . 20

2.16. Merge-based sorting network . 21

2.17. Radix-based sorting network . 21

2.18. An 8-input Narasimha’s concentrator 22

2.19. An 8-input Koppelman and Oruç’s concentrator 22

2.20. Chien-Oruç’s merge circuit . 23

3.1. Recursive construction of binary sorter for n inputs/outputs. . 28

3.2. Entire Interconnection Network based on Radix-based Sorting. 29

3.3. Circuits for n = 2 and n = 4 for Parallel Prefix Computation. . . 31

3.4. Implementing Split modules by two sorting networks and a half
cleaner module. 40

3.5. Compare-and-swap switch (the arrow points towards the mini-
mum output). 41

3.6. A half cleaner module with 8 inputs and 8 outputs consisting of
four 2 × 2 compare-and-swap switches (the arrows of compare-
and-swap switches point towards the minimum output). 41

ix

List of Figures

3.7. Possible/impossible inputs and outputs of compare-and-swap
switches of the half cleaner under the assumptions given in
Lemma 3.2: The first and the last input/output rows cannot
occur, and therefore yi ≠ 1 and yi+n ≠ 0 holds for i = 0, . . . , n − 1. 43

3.8. A RBS network for 8 inputs constructed by Split modules ac-
cording to Figure 3.4. 44

4.1. Converting Sequences to Prefix Sequences. 50
4.2. Entire Interconnection Network based on Radix-based Sorting. 50
4.3. Ternary RBS network. 51
4.4. Construction of a Ternary Sorter by two Binary Sorters. 52
4.5. Construction of a Ternary Splitter by Binary Sorters. 54
4.6. Construction of a Ternary Splitter by Ternary Sorters and a

Half Cleaner. 55

B.1. CNC-BIN-HC0 . 88
B.2. CNC-BIN-HC1 . 89
B.3. CNC-TRP-HC0 . 90
B.4. CNC-TRP-HC1 . 91
B.5. CNC-TRC-HC0 . 92
B.6. NET-BIN-HC0 . 93
B.7. NET-BIN-HC1 . 94
B.8. NET-TRP-HC0 . 95
B.9. NET-TRP-HC1 . 96
B.10.NET-TRC-HC0 . 97
B.11.TNT-BIN-HC0 . 98
B.12.Comparison with Others Networks 99

x

List of Tables

2.1. Commercial multicore architectures and their interconnection
networks . 24

3.1. Configuration of switch i depending on the parity pi ∶= x0⊕. . .⊕
x2i of the inputs. 29

3.2. Ranking-based configuration pi of switch i in the network shown
in Figure 3.1 based on the most significant bits msb (x2i),msb (x2i+1)
of the target addresses and the ranks ranks r2i, r2i+1 of the in-
puts x2i, x2i+1, respectively. We also determine the local ad-
dresses/ranks rLi and rUi to be used in the lower and upper
subnetworks for further routing. 35

5.1. Comparsion of asymptotic complexities 58

A.1. CNC-BIN-HC0 . 74
A.2. CNC-BIN-HC1 . 75
A.3. CNC-TRP-HC0 . 76
A.4. CNC-TRP-HC1 . 77
A.5. CNC-TRC-HC0 . 78
A.6. NET-BIN-HC0 . 79
A.7. NET-BIN-HC1 . 80
A.8. NET-TRP-HC0 . 81
A.9. NET-TRP-HC1 . 82
A.10.NET-TRC-HC0 . 83
A.11.TNT-BIN-HC0 . 84
A.12.Comparison With Other Networks 85

xi

Chapter 1
Introduction

1.1. Motivation

The rapid advancement of technology and process scaling has helped in real-
izing computers clocked at several GHz. However, process scaling has already
approached an atomic level and the researchers have started discussing the end
of Moore’s law [PaAv12]. It is now very difficult to further increase the perfor-
mance of computational devices based on synchronous circuits by increasing
the clock frequency. This motivates the designer to explore other possible ar-
chitectures which are either not running on a clock, i.e., asynchronous circuits,
or circuits which do not use a single global clock. The design of asynchronous
circuits does not have the limitations of clock skew and electromagnetic in-
terference (EMI). However, ensuring a glitch-free operation in case of asyn-
chronous designs is very challenging and EDA tools are not fully supportive for
these designs. Therefore, instead of using fully asynchronous circuits, a better
strategy is to use locally synchronous circuits having globally asynchronous
interconnections also classified as GALS (globally asynchronous and locally
synchronous) architectures in the literature where the individual local syn-
chronous circuits can also use different clocks. This will allow one to optimize
the power consumption and will also help in reducing the EMI effects.

Another dimension to further enhance the performance of computers is to
exploit parallelism like pipelining in its architectures. Among many potential
ways to still increase the performance of future chip designs, one that already
became successful lead to system-on-a-chip designs where entire systems are
connected on a single chip. This has lead to the development of multicore pro-
cessor architectures. Compared to a single core architecture where the core
interacts with the memory and the input output systems through a bus, a mul-
ticore architecture has several cores and a common bus interface to interact
with the external memory and peripheral input and output systems. Essen-
tially, all new processor architectures are now multicore architectures with an
increasing number of cores.

Intel’s SCC (single-chip cloud computer) and Xeon Phi architectures as well
as the modern programmable GPUs are one of the examples of the upcom-

1

Chapter 1: Introduction

ing manycore architectures that integrate a large number of cores on a single
chip. Other examples are Raw [LBFS98] with the commercial variant Tilera
[BEAC08], WaveScalar [SSMP07], TRIPS [BKMD04], Flexcore [TSBS07], ex-
plicit datapath wide SIMD [WSCH15], SCAD [BhJS15] and the Transport-
Triggered architectures (TTAs) [Corp94]. These architectures provide a large
number of processing units and the compiler is not only responsible to sched-
ule the instructions to these processing units but also to move data from one
processing unit to another. Hence, systems-on-a-chip designs are nowadays
prevalent and require efficient interconnection networks for the communica-
tion of the single systems on the chip. De Micheli and also others [BeMi02;
Mein03] therefore already predicted the need for networks on a chip to cope
with the communication bandwidths needed in these designs.

The increasing number of on-chip components imposes new challenges for
developing efficient interconnection networks that make a good compromise
between the chip size, latency, complexity of routing algorithms, and the band-
width of the networks. There are many different interconnection networks that
can be considered for this purpose (see [BjMa06; Feng81; AgIS09; DaTo04] as
surveys). So far, buses, ring structures, torus networks, and n-dimensional
mesh networks have been considered in on-chip network research. However,
the performance of these networks is limited since these networks are blocking
networks which means that even though a pair of source and target compo-
nents may be free, a connection between them might still not be possible due
to limited capabilities of these networks. Moreover, routing algorithms have to
avoid deadlocks, livelocks and starvation in these networks which only allows
pessimistic estimations of real-time guarantees.

Nonblocking networks, on the other hand, are able to implement all n! per-
mutations of n components. Many nonblocking networks are already known:
The simplest one is the crossbar network which is a comparably simple cir-
cuit with also a simple routing algorithm. However, while its circuit depth
of O(log(n)) is optimal, its size increases with O(n2) and quickly becomes
infeasible for large manycore architectures. For this reason, Clos and Beneš
[Clos53; Bene65] networks have been developed that are also nonblocking.
Beneš networks have an optimal size of O(n log(n)) and an optimal depth
of O(log(n)), but their routing algorithms are quite complicated and require
circuits of depth O(log(n)2) [NaSa82].

Other nonblocking interconnection networks are derived from sorting net-
works. Essentially, there are merge-based (MBS) (Figure 2.16) and radix-based
(RBS) (Figure 2.17) sorting networks. MBS networks first split the given in-
put list into halves, sort them independently and then merge the sorted halves
into a single sorted list. RBS networks partition the given inputs, e.g., into
two partitions such that all inputs in a partition are already in the right halves
so that they can be recursively sorted.

The implementation of RBS networks mainly depends on the implemen-
tation of Split modules and the implementation of MBS networks depends
on the implementation of Merge modules. Their size and depth determines
the size and depth of the entire network. Batcher has presented circuits for

2

1.2. Contributions

Merge modules that lead to his famous bitonic sorter and oddeven sorter
[Batc68]. Both have a size of O(n log(n)2) and a depth of O(log(n)2) in
terms of compare-and-swap modules.

Split modules are usually implemented by binary sorters where the in-
puts are just sorted by their most significant bits of the target addresses.
Many implementations of binary sorters are known [Nara94; KoOr90; ChCh96;
ChOr94] that lead to circuits of RBS networks of size of O(n log(n)3) and a
depth of O(log(n)2) or O(log(n)3) in terms of constant fan-in/out circuit
gates.

MBS and RBS networks can be both implemented in a pipelined fashion
which leads to a big advantage for their circuit implementation compared to
Beneš or Clos networks. However, there is another problem that has to be
solved in practice: While these networks are nonblocking and can implement
all n! permutations, they cannot directly handle partial permutations that
frequently occur in practice since not every input component communicates
at every point of time with an output component. However, only two solu-
tions are known that extend sorting networks to nonblocking interconnection
networks that can deal with partial permutations: (1) The Batcher-Banyan
network extends Batcher’s networks by a further back-end permutation net-
work [HuKn84; Nara88] and (2) Narasimha showed that his RBS network can
deal with partial permutations when extended by a front-end permutation
network [Nara94].

Hence, the overall problem considered in this thesis is the circuit design of
nonblocking interconnection networks that can handle both total and partial
permutations.

1.2. Contributions

In order to implement Split and Merge modules for RBS and MBS inter-
connection networks, this work first focuses on permutation networks. While
some permutation networks can be used as Split and Merge modules, others
cannot be used as such. A systematic methodology to analyze permutation
networks by means of binary decision diagrams (BDDs) has been presented in
[JaSc16]. The proposed method can be applied to all permutation networks.
This work verified that some of the permutation networks can be used as
Split and Merge modules provided that a specific permutation of the outputs
is added to the permutation network.

In particular, the permutation network used by Narasimha’s concentra-
tor belongs to the interesting class of powerful permutation networks. As
Narasimha already showed, it leads to a RBS network that can handle partial
permutations. However, this concentrator has a bad circuit depth of O(n)
which is impractical. The first contribution of the thesis is therefore a parallel
implementation [JaSJ17] of Narasimha’s concentrator that only has a depth
of O(log(n)2) while keeping its size in O(n log(n)2).

In [JaSJ17], details of the implementation of the new Split modules are
described, and the asymptotic complexity of the circuit size and depth are

3

Chapter 1: Introduction

presented and compared with other interconnection networks. Moreover, that
network as well as other related RBS networks have been implemented using
65nm CMOS chip technology. The maximal frequency, the required chip area,
and the power consumption of these circuits were compared. The evaluation
shows that the new network is best among the considered radix-based net-
works regardless whether the maximal frequency, the chip area or the power
consumption was considered.

Another contribution of the thesis shows a special variant of Koppelman
and Oruc’s concentrator that can, in contrast to the original version, also deal
with partial permutations. In [JaSc18c], details of the implementation of the
Split modules are described, and the asymptotic complexity of the circuit size
and depth are presented and compared with other interconnection networks.

Splitters can be implemented either using concentrators or binary sorters.
It is well-known that the use of more general concentrators instead of binary
sorters may lead to more efficient circuits. However, the design of concen-
trators turned out to be a challenging task for many decades. In [JaSJ17b],
we proposed that one can construct from any binary sorter a corresponding
concentrator by means of Batcher’s half cleaner circuit. This way, one can
improve any existing Split module that is implemented by a sorter.

Special modifications are required for sorting networks for routing partial
permutations. For merge-based sorting networks, there is a well known solu-
tion known as the Batcher-Banyan network. However, for the larger class of
RBS networks this does not work, and there is only one solution known by
Narasimha’s network that can route partial permutations.

One way to route partial permutations in RBS networks is to replace the
binary Split modules by ternary Split modules. General ways to convert any
binary sorter into a ternary sorter or directly to a ternary Split module are
presented in [JaSc18a; JaSc18c]. These circuits almost maintain the depth of
the binary sorters, but essentially double their size. The half-cleaner optimiza-
tion also works for ternary sorters [JaSc18; JaSJ17c] and may therefore almost
halven the size again. This generalization is based on the use of Batcher’s half
cleaner circuit that has the ability to partition sorted sequences according to
their most significant bits.

Moreover, in [JaSc18c] we proved that the improved configuration logic de-
veloped in [JaSJ17] for the reverse banyan flip-shuffle network also used by
Narasimha does also route partial permutations provided a front-end concen-
trator is added. Together with the half cleaner optimization, this leads to a
very efficient RBS network that can route all partial permutations.

To summarize, this thesis proposes three new non-blocking unicast inter-
connection networks based on the radix sorting scheme. It also successfully
analyses different RBS networks and proves the efficacy of the proposed inter-
connection networks through analytic and simulation results. We have further
proposed a scheme to design interconnection networks with partial permuta-
tions using ternary Split modules.

4

1.3. Outline

1.3. Outline

This work presents new non-blocking interconnection networks that can handle
both total and partial permutations. It is organized as follows: In Chapter 2,
we discuss the theoretical background of the contributions presented in this
thesis, covering a wide range of topics that are used throughout this thesis.
This chapter is focused on the necessary technical background to understand
the rest of the thesis.

In Chapter 3, we first discuss constructions of new non-blocking unicast
interconnection networks based on the radix sorting scheme for total permu-
tations. This also includes the basic definitions of the terms used to describe
these new RBS networks. Then, we discus algorithms and asymptotic com-
plexities of these new networks.

In Chapter 4, we first prove that the particular class of configuration circuits
can be extended to route partial permutations. Furthermore, we also discuss
alternatives for implementing partial permutations by implementing ternary
Split modules

In Chapter 5, we first report about the asymptotic complexity obtained for
proposed networks and compare it with other networks. Then, we report the
comparison of experimental results obtained by implementations of various
binary sorters and networks. Our experimental results were made by a netlist
generator written in F# and the Cadence® RC compiler (version 14.2) using
65nm CMOS technology.

In Chapter 6, we summarize presented work with some conclusions.

5

Chapter 2
State of the Art

Contents

2.1. Basics of Interconnection Networks 7

2.1.1. Basic Terminology 8

2.1.2. Network Aspects 9

2.1.3. Network Architectures 10

2.2. Multistage Interconnection Networks 14

2.2.1. Permutation Networks 14

2.2.2. Dilated Multistage Network 17

2.2.3. Replicated Multistage Network 17

2.2.4. Fat Tree Networks 18

2.2.5. Clos Networks . 18

2.2.6. Beneš Networks . 19

2.2.7. Flattened and 2-Dilated Flattened Butterfly Networks 20

2.3. Sorting Networks . 20

2.3.1. Merge-based Sorting Networks 20

2.3.2. Radix–based Sorting Networks 21

2.4. Current Commercial Interconnection Networks . . 23

2.5. Summary . 24

2.1. Basics of Interconnection Networks

In general, interconnection networks have the task to connect a fixed number
n of input components with n output components. At any point of time, each
one of the input components I0, . . . , In−1 may provide an input pair (mi, ti)
where mi is a message for the output component Oti with target address
ti ∈ {0, . . . , n − 1}. The task of the interconnection network is to deliver the
message mi of input component Ii as efficient as possible to output component
Oti whose address is ti. The efficiency of an interconnection network usually
refers to the following parameters,

7

Chapter 2: State of the Art

• Latency: It defines the time required to deliver an individual message
from the input to the output of the network.

• Throughput or bandwidth: It defines the capacity of a network to
transmit an amount of data from the input to the output in a unit
interval of time usually, expressed in bits per second [bits/sec].

• Hardware cost: It refers to the cost of the implementation of the
interconnection network.

An ideal network supports a small size, a high bandwidth and a low latency,
even though there exists a tradeoff between these parameters. The bandwidths
become important when trying to minimize the hardware cost of the intercon-
nection network. The message size, the length of a message in bits, is another
important design consideration, affect the performance of the interconnection
network. The message size can be reduced by dividing them into smaller units,
called packets. This thesis considers only latency, throughput and hardware
cost parameters.

2.1.1. Basic Terminology

Terminal Node and Switch Node

A node that acts as a source and sink for the data is called a terminal node.
On the other hand, a node that forwards data from input ports to output
ports is called a switch node.

Direct and Indirect Networks

In a direct network, every node is both a switch node and a terminal node.
Messages are transferred from a source node to a destination node via in-
termediate nodes. Some well-known examples of a direct networks are ring,
star, and mesh networks. In an indirect network, a node is either a termi-
nal node or a switch node. The messages are transferred from a source node
to a destination node via switch nodes. Some well-known examples of an
indirect networks are crossbar switches [ScRe39], multistage networks like Ω -
permutation networks [Lawr75], Banyan networks [OrOr85],[GoLi98], fat trees
[Leis85a], flattened butterfly networks [KiDA07], 2-dilated butterfly networks
[ThCh10], and Beneš networks [Clos53],[Bene64],[Bene65],[Bene75],[Waks69].

Static and Dynamic Networks

In a static network, the connections between source and destination nodes are
fixed and can’t be changed. The examples of this type of network are rings,
stars,chordal rings, etc. In contrast, the connections of a dynamic network
can be reconfigured. Examples of dynamic networks are multistage networks
like the Ω -permutation network, Beneš, clos etc.

8

2.1. Basics of Interconnection Networks

Blocking and Nonblocking Networks

Nonblocking networks allow every input node to be connected to any output
node that is not also the target of another input node. Mathematically speak-
ing, such networks can implement all permutations to map their inputs to their
outputs. A crossbar network [ScRe39] is an example of a non-blocking network
which allows all components to communicate with each other at the same point
of time. In contrast, blocking networks can’t implement all permutations to
map their inputs to their outputs. Banyan networks [OrOr85],[WuFe80] are
examples of blocking networks.

Multicast and Unicast Networks

In a multicast network, single input components may send a message to several
output components. In contrast, A unicast network corresponds with one to
one mappings where one input component may send a message to exactly
one output component.Both multicast and unicast networks may have target
address conflicts.

Self-Routing Networks

A network that does not need any additional setup time to route the data,
since the target address directly defines the conflict free routes, is called a
self-routing network. Delta networks and sorting networks are examples of
self-routing networks.

2.1.2. Network Aspects

There are four common aspects that must be considered in the design of any
interconnection network. These aspects determine how the interconnection
network is implemented and also affect the cost and performance of the net-
work.

Topology

The topology of an interconnection network specifies the way connections are
wired. Basically, it defines how nodes and links are connected. Since the
topology dictates the total number of alternate paths a message can take to
reach the destination, it directly affects the bandwidth and latency of the
network. The network reliability is also greatly influenced by the topology.

Routing Algorithms

Routing algorithms determine the specific path a message will take from a
source to a destination for a given network topology. If many routes are
possible, the goal of the routing algorithm is to distribute traffic evenly among
the paths supplied by the network topology and to minimize contention, thus
improving network latency and throughput.

9

Chapter 2: State of the Art

Flow Control

The flow control assigns different resources such as buffers and channels as
the message progresses from source to destination. Basically, a flow control
protocol dictates how the message actually traverses the assigned route, in-
cluding when a message must be buffered and when it leaves a intermediate
node through the desired outgoing link. A good flow control protocol can
lower the latency and increase the network throughput. Proper flow control
is also required to avoid deadlocsk and livelocks in the network.

Microarchitecture

The microarchitecture defines how the router is organized. Basically, it re-
alizes the routing and flow control protocols and critically shape the circuit
implementation.

2.1.3. Network Architectures

The most important and critical step is to choose the network architecture
for a communication system. The network architecture includes the network
topology, the buffer sizes, the buffer positions, and so on. The chosen archi-
tecture must fulfill all the requirements of the expected network traffic.

Network architectures are classified as wired or wireless. In this thesis, we
focused on wired network architectures. Many wired network architectures
have been proposed [BjMa06; Feng81; AgIS09; DaTo04; ScJu96]. Some of
them are briefly discussed below.

Bus

A bus (Figure 2.1) provides a simple broadcast medium and an easy-to-use
communication schema where all terminals are connected via the same bus
with each other. The source terminal initiates the communication by allocat-
ing the bus. It transmits the target address and the message via the bus. All
terminals listen to the bus and compare this target address with their own. An
address match identifies the target terminal which reads the message. Finally,
the bus is deallocated.

Due to the concept of a single common bus, only two nodes can communicate
with each other at a time. Thus, the bandwidth becomes a major bottleneck
as the number of nodes to be connected increases. Also, the power usage
per communication event grows as more units are added, since the further
attached units lead to higher capacitive loads [BjMa06].

Mesh Networks

For networks on chip where the processing elements are arranged in a matrix,
mesh networks are quite popular. They connect the input/output terminals
via routers and switches to the grid network. It can be one dimensional, two

10

2.1. Basics of Interconnection Networks

Bus

T T T

Figure 2.1.: Bus architecture

dimensional, or three dimensional. Figure 2.2 shows a two dimensional mesh
network.

Each router is connected to its two nearest neighbors in each dimension.
Four bidirectional links handle all the communications between the routers of
a 2-D mesh. The number of links per router does not change if additional
terminals are added to the mesh network. Therefore, a mesh network offers
very good scalability.

The communication is usually implemented by sending messages from one
router to another one where the routers have to determine the route to one
of its neighbors that will then be responsible for the further routing. A mesh
network consumes however a substantial part of the overall energy and also
claims a large part of the chip size [BJSH15; SDMS12]. Moreover, due to the
local decisions of the routers, it is essentially impossible to guarantee bounds
on the time required for a message to arrive at its target address [JiYa14;
KeME16]. Depending on the used routing algorithms [Hols09; HeWC04], it
may even lead to livelocks and deadlocks. However, there are methods to avoid
deadlocks like x-y routing etc.

R R R

R R R

R R

T T

R

T

T

TTT

T T

Figure 2.2.: 2-D mesh architecture

11

Chapter 2: State of the Art

Torus Networks

The torus is an extension of the mesh architecture. It is a mesh architecture
where all edge routers have additional links to their corresponding edge router
at the opposite edge. Figure 2.3 depicts a two-dimensional torus (2-D torus).

A torus is a direct network, like a mesh. Due to the similar structure, a
torus reveals the same advantages and drawbacks as a mesh. However, a mesh
architecture is not symmetric on the edges, so the Torus avoids this problem
with the price of a more difficult chip layout.

R R R

R R R

R R

T T

R

T

T

TTT

T T

Figure 2.3.: 2-D Torus architecture

Ring Networks

The ring is another static/direct architecture. In such an architecture, each
router is connected to exactly two other routers, one on each side, leading
to an overall structure of a closed loop (Figure 2.4). The target address and
message are sent to the ring, and usually circle in a common direction from
router to router.

The main drawbacks of the ring architecture are: (a) low reliability (entire
network is affected if any link fails), (b) high latency, and (c) not easy to scale.

R R R

T T T

Figure 2.4.: Ring architecture

Tree Networks

A Tree architecture is an indirect network. In the tree architecture, all routers
are arranged as a tree. A root router is connected to two successor routers and
these routers are again connected to their successor routers, and so on. The

12

2.1. Basics of Interconnection Networks

routers with no further successor routers are called leafs and are the terminal
nodes. If all the routers are connected to a fixed number k of successors (except
the leafs or terminals), the network architecture is called a k-ary tree. Figure
2.5 shows a binary tree which is also called balanced because all terminal
nodes have the same distance to the root node. In such an architecture, the
communication between any node in the left half with any node in the right
half is always established via the root router. Therefore, the root router acts as
a bottleneck of the network. An alternative structure named fat tree [Leis85a]
which overcomes this problem is described in Sect. 2.2.

R

RR

R

R R R

T T T T

Figure 2.5.: Binary tree architecture

Hypercube Networks

The hypercube [RJMC95] is another direct network used frequently in paral-
lel computing. The nodes of the hypercube also represent the nodes of the
network. Figure 2.6 shows a three-dimensional hypercube.

Concerning the blocking behavior, equal problems arise as with a mesh
network: It provides low latency and its chip layouts are quite difficult.

T T

T

R

R

R R

R

R

R R

T

T

T

T

T

Figure 2.6.: Hypercube architecture

13

Chapter 2: State of the Art

Crossbar Networks

Crossbars [ScRe39; BjMa06] are dynamic networks consisting of a switch ma-
trix. It is very simple to design and allows all n components to communicate
with each other at the same point of the time (i.e., it is non-blocking). Fig-
ure 2.7 shows a 4 × 4 crossbar, consists of four inputs and four outputs. The
switches are located at the crosspoints of the horizontal and vertical lines.
Each switch corresponds to a specific input-output pair connect the related
source and destination terminals.

Since n inputs and n outputs produce n2 crosspoints, it means crossbars
are poorly scalable: its size increases with O(n2); the main drawback of the
crossbars. Hierarchically connected crossbars, e.g., multistage interconnection
networks (Sect.2.2), avoid this drawback.

T

T

T

T

Crossbar

0 1 2

3

0

1

2

3

Figure 2.7.: Crossbar architecture

2.2. Multistage Interconnection Networks

To overcome the drawbacks of crossbars, multistage interconnection networks
(MINs) [Lawr75; Lee85; RaVa87; NgDu01; Cam03] have been introduced.
MINs are indirect/dynamic networks based on switching elements (SEs). The
switching elements are constructed by k × k crossbar switches (for some small
numbers of k like 2 or 4), and are arranged in stages and connected by inter-
stage links.

The interstage link structure and number of switching elements character-
ize multistage interconnection networks. Several multistage interconnection
network architectures exist. Some of them are briefly discussed below.

2.2.1. Permutation Networks

Permutation networks are typically built of 2 × 2 crossbar switches that are
organized for a n × n permutation network in a grid with n

2 rows and log2(n)
columns. Such a 2 × 2 crossbar switch with inputs x0 and x1 and outputs y0

and y1 can be brought in one of two states (see Figure 2.8) controlled by a

14

2.2. Multistage Interconnection Networks

further select input s that is typically not drawn. If the select input s is 0,
it is in ‘through’ mode, thus mapping its inputs x0 and x1 to its outputs y0

and y1, respectively, and if the select input s is 1, it is in ‘crossed’ mode, thus
mapping its inputs x0 and x1 to its outputs y0 and y1, respectively.

x0

x1

x0

x1

y0y0

y1 y1

Figure 2.8.: The two states of a 2 × 2 crossbar switch.

Permutation networks for the same number of inputs and the same num-
ber of switches may differ in many aspects, in particular, on how many and
which permutations they can implement, and on how the configurations can
be computed for a desired permutation.

The delta network is an an × bn switching network with n input stages, con-
sisting of a × b crossbar modules. This network has one and only one path
from any input to any output and thus covers a very large class of possible
network structures [KrSn83; KrSn86]. Rectangular delta networks addition-
ally demand square sized switching elements (i.e., equal number of switching
element inputs and outputs). In practice, an an × bn crossbar module for a
delta network is more cost-effective if a and b are powers of 2. Bidelta net-
works (i.e., delta property for input-to-output direction and output-to-input
direction), include the Omega, Flip, Baseline, Indirect Binary Cube (IBC),
modified data manipulator and reverse baseline networks which have all been
proven topologically equivalent in [WuFe80]. Examples of 8 × 8 networks are
shown in Figure 2.9. Their interstage connections distinguish them.

As can be seen, the topology of the bidelta network depends on two param-
eters: First, use a specific permutation between the columns of the network,
and second, recursively partition the columns into blocks where these permu-
tations are applied. If no partitioning is applied, i.e., the selected permutation
is applied in every column to all of the n values, we call it a multistage net-
work, if the number of blocks is doubled from right to left, we call it a banyan
network, and if the number of blocks is doubled from left to right, we call it a
reverse banyan network.

Some permutations (interstage connections) used for permutation networks
are defined below in terms of the binary representation ap−1, . . . , a0 of an ad-
dress where p = log2(n) bits are required for n inputs/outputs:

• PerfectShuffle(ap−1, . . . , a0) ∶= (ap−2, . . . , a0, ap−1)

• FlipShuffle(ap−1, . . . , a0) ∶= (a0, ap−1, . . . , a1)

• Butterfly(ap−1, . . . , a0) ∶= (a0, ap−2, . . . , a1, ap−1)

As can be seen, the perfect shuffle permutation rotates the leftmost bit to
the right, and the flip shuffle permutation rotates the rightmost bit to the
left. Hence, both permutations are the inverses of each other. The butterfly

15

Chapter 2: State of the Art

Indirect Binary Cube Modified Data Manipulator

Flip Omega

Baseline Reverse Baseline

Figure 2.9.: Examples of 8 × 8 bidelta networks

16

2.2. Multistage Interconnection Networks

permutation exchanges the leftmost and rightmost bits and is therefore inverse
to itself. All the bidelta networks can be renamed, on the bases of the rules
of the interstage connections and topology, are given in Table 2.1

Network Topology Permutation

IndirectBinaryCube ∶= BanyanButterfly Banyan Butterfly
ModifiedDataManipulator ∶= ReverseBanyanButterfly ReverseBanyan Butterfly
F lip ∶=MultistageF lipShuffle Multistage F lipShuffle
Omega ∶=MultistagePerfectShuffle Multistage PerfectShuffle
Baseline ∶= ReverseBanyanF lipShuffle ReverseBanyan F lipShuffle
ReverseBaseline ∶= BanyanF lipShuffle Banyan F lipShuffle

The general delta network is formally proven to be self-routing in [Pate81].
On the other hand, it is also well-known that these networks are necessarily
blocking i.e., they cannot implement all n! permutations of the inputs.

2.2.2. Dilated Multistage Network

The concept of dilated multistage networks was introduced by Kruskal and
Snir [KrSn83]. This network reduces blocking by replicating the interstage
connection lines k times. Then, the crossbar switch size must be increased
by a factor of k to ensure the required number of inputs and outputs for the
interstage connection lines. Figure 2.10 shows the architecture of an 8 × 8
dilated multistage network with all interstage connection lines doubled (k =
2). It allows transmitting up to k packets from a particular crossbar column
stage i to at stage i + 1. Blocking may occur if more than k packets are sent.

Figure 2.10.: Dilated multistage interconnection network k = 2

2.2.3. Replicated Multistage Network

Similar to the dilated, replicated multistage networks were also introduced by
Kruskal and Snir [KrSn83]. This network also reduces blocking by replicating
the network k times. Figure 2.11 shows the architecture of an 8× 8 replicated
multistage network consisting of 2 × 2 crossbar switches and two layers.

17

Chapter 2: State of the Art

Input 0

Input 1

Input 2

Input 3

Input 4

Input 5

Input 6

Input 7

Output 0

Output 1

Output 2

Output 3

Output 4

Output 5

Output 6

Output 7

Figure 2.11.: 8 × 8 replicated multistage network k = 2

2.2.4. Fat Tree Networks

Generally, tree based networks work with a simple routing, and the distance
between two nodes is no more than 2 log(n) for a tree with n leaves. In a
binary tree, links at higher levels of the tree have to potentially deal with
more traffic than those at the lower levels. Therefore, the root router acts
as a bottleneck of the network. Fat tree networks [Leis85a] overcome this
problem by doubling the number of links at every level of the tree. As the
number of communication links increases from the leaf nodes to the root, the
communication bandwidth increases as well. Figure 2.12 shows a 4×4 fat tree
network. Fat binary trees are nonblocking networks.

Figure 2.12.: 4 × 4 fat tree network

2.2.5. Clos Networks

Clos networks [Clos53; TuMe03] are nonblocking multistage networks. The
basic Clos network consists of three stages. A symmetric Clos network is

18

2.2. Multistage Interconnection Networks

characterized by a triple, (m,n, r) where m is the number of middle-stage
switches, n is the number of input (output) ports on each input (output)
switch, and r is the number of input and output switches [DaTo04], as shown
in the Figure 2.13. Clos networks may be recursively decomposed into a five
stage, a seven stage and so on by replacing each switch in the central stage
by a three stage Clos network. Clos has shown in [Clos53] that his network is
strictly non-blocking if the condition m ≥ (2n − 1) holds.

Clos networks provide path diversity, but their routing is difficult and also
has a cost that is nearly twice of that of the Banyan butterfly.

1

2

11

22

1 11 11 1

mr r

n nr rm m

Figure 2.13.: Clos network

2.2.6. Beneš Networks

Beneš networks [Clos53; Bene64; Bene65; Bene75; Waks69; Kann05] are also
nonblocking networks [Pipp78a], built by extending a baseline network with
its inverse one. The last stage of the baseline and the first stage of the inverse
baseline are shared. The Beneš network consists of n

2 rows and 2 log(n) − 1
columns of 2 × 2 crossbar switches. Figure 2.14 shows the Beneš network of
size 8 × 8.

Figure 2.14.: Beneš network

It offers enough path diversity to implement all possible n! permutations of
mapping its n inputs to its n outputs. Setting up the switches of the Beneš net-
work to implement a desired permutation requires however a non-trivial rout-
ing algorithm [Andr77; NaSa81; NaSa82; FeSe94; LeLi96; KiYM97; SeFL99;

19

Chapter 2: State of the Art

CaFo99; LuZh02] which requires at least O(n ⋅ log(n)) time with sequential
algorithms [NaSa82]. Beneš networks can also be viewed as recursively con-
structed by Clos networks.

2.2.7. Flattened and 2-Dilated Flattened Butterfly Networks

Flattened butterfly [KiDA07] is built by combining or flattening the routers
in each row of the network into a single router of a conventional butterfly
network. Examples of flattened butterfly constructions are shown in Figure
2.15.The flattened butterfly is a blocking network, and this blocking behavior
can degrade the performance of the network [ThCh10].

A 2-dilated flattened butterfly [ThCh10] is derived from a flattened butterfly.
This network reduces blocking by duplicating the interstage connection lines
of the flattened butterfly.

R0

R1

R2

R3

Figure 2.15.: Flattened bufferfly network

2.3. Sorting Networks

Sorting networks are another way to implement interconnection networks
where the input messages are sorted with respect to their target addresses.
Sorting networks are non-blocking networks. Sorting networks are built by
2 × 2 compare-and-swap modules that compare the target addresses of two
inputs and swaps them if needed to generate the two outputs. This way,
these networks are self-routing, i.e., do not require additional configuration
logic. There are two important classes of such a sorting networks, namely the
merge-based (MBS) and the radix-based (RBS) sorting networks.

2.3.1. Merge-based Sorting Networks

The merge-based sorting paradigm is shown in Figure 2.16. In the merge-based
approach, a sorting network MBS (n) for n inputs is recursively constructed
by splitting the given sequence into two halves, recursively sorting these by
sorting networks MBS (n2) of half the size, and then merging the sorted halves
by a merge module Merge(n). The well known and the best practical merge

20

2.3. Sorting Networks

based MBS networks are Batcher’s bitonic and oddeven sorters having a size
of O(n logn2) and a depth of O(logn2) in terms of compare-swap modules.

MBS(n/
2)

MBS(n/
2)

Merge(n)MBS(n) :=

Figure 2.16.: Merge-based sorting network

2.3.2. Radix–based Sorting Networks

The radix-based sorting paradigm is shown in Figure 2.17. In radix-based
sorting networks, the given inputs are partitioned into two halves by a Split(n)
module according to the most significant bit of their target address. Thus,
after the Split(n) module, the given inputs have already been routed to the
right halves, so that the remaining problems can be dealt with recursively in
the same way (ignoring now the most significant bits of the target addresses).

RBS(n/2)

Split(n)

RBS(n/2)

:=RBS(n)

Figure 2.17.: Radix-based sorting network

The implementation of radix-based sorting networks mainly depends on the
implementation of the Split(n) modules. Their size and depth determines the
size and depth of the entire network. There are many ways to implement a
Split(n) module, e.g., by means of concentrators [Pins73; Pipp77; Chun78;
MaGN79]: A (n,m)-concentrator is a circuit with n inputs and m ≤ n outputs
that can route any given number k ≤m of valid inputs to k of its m outputs.
Split modules can therefore be implemented by two (n, n2)-concentrators: One
that routes the n

2 inputs with a most significant target address bit 1 from the
n inputs to the n

2 outputs, and another one routing the other n
2 inputs with

a most significant target address bit 0 to its outputs. The two concentrators’
outputs are then the upper and lower halves of the Split module’s outputs.

Most of the practically useful Split(n) modules are implemented by permu-
tation networks. Some of them are briefly discussed below.

Narashima’s Networks

Basically, Narasimha’s networks are a recursive construction of a binary sorter
based on the reverse banyan flip shuffle network. This binary sorter routes the
valid inputs to the output array with the highest indices.

Narasimha’s binary sorter is shown in Figure 2.18. The aim of the leftmost
column, consisting of 2 × 2 switches, is to distribute the 0s and 1s equally in

21

Chapter 2: State of the Art

two halves that are then recursively treated in the same way. A final output
permutation converts the generated sequence into a sorted one. The routing
algorithm is easy to implement. However, the performance is quite slow due
to its large depth of O(n).

Figure 2.18.: An 8-input Narasimha’s concentrator

Koppelman and Oruç’s Networks

Koppelman and Oruç’s networks [KoOr90] are also a recursive construction
of a binary sorter based on the cube network. As shown in Figure 2.19, the
routing of the permutation network is based on a ranking circuit. The ranking
circuit computes local addresses of all valid inputs which are then used as
target addresses to route the inputs through the permutation network.

Figure 2.19.: An 8-input Koppelman and Oruç’s concentrator

Chien and Oruç’s Networks

Chien and Oruç’s networks [ChOr94] are based on the parallel merge-sort
paradigm. Chien and Oruc’s merge circuit for n inputs is shown in Figure
2.20. The merge algorithm described in [ChOr94] is based on so-called bi-
sorted binary sequences, i.e., sequences whose two halves are sorted sequences.
The key observation for their binary sorter is that if a sorted binary sequence
is cut into two halves, then one of the two halves either contains only 0s or only
1s (called a clean sequence) while the other one is still a sorted sequence. This
observation is used in a recursive construction where multiplexers are used to

22

2.4. Current Commercial Interconnection Networks

select the unclean half for recursive treatment that is then concatenated with
the clean half. Their binary sorter has a depth of O(log(n)2) and a size of
O(n log(n)2).

InMux(n)

Merge(n/2)

OutMux(n)

Figure 2.20.: Chien-Oruç’s merge circuit

Cheng and Chen’s Networks

Cheng and Chen’s [ChCh96] networks are another radix-based sorting inter-
connection networks based on the generalized cube permutation network. The
idea of that network is based on the consideration of so-called compact se-
quences which are sequences of the form 0i1j0k or 1i0j1k. This sophisticated
circuit computes the configuration of a permutation network and yields a bi-
nary sorter with a depth of O(log(n)) and a size of O(n log(n)).

2.4. Current Commercial Interconnection Networks

Recently, there has been a large number of multicore architectures designed
and manufactured for the commercial market which are developed by indus-
try as well as research groups. These multicore architectures target a range of
applications covering embedded, general purpose desktop, and server realms.
Therefore, the selection of an appropriate interconnection network and its
architecture to connect processor cores plays an important role in the devel-
opment process of the system. The selection of a bad network architecture
may significantly delay the communication between the processing cores and
decrease the system performance.

As already mentioned in this chapter, there are various interconnection net-
works available for intercore communications. Each one of them has its own
pros and cons in terms of scalablity, simplicity, and performance. All tradi-
tional interconnection networks are realized using a bus structure. However,
with an increasing number of cores, the bus structure does no longer meets
the needs of new multicore architectures. Therefore, buses have been replaced
by mesh networks, but also mesh networks have limited capabilities.

Table 2.1 presents different commercial multicore architectures with inter-
connection networks. Some of them are general purpose multicores, some are
specialized for specific application domains and some are more specialized to
target high performance in their application domains.

23

Chapter 2: State of the Art

Multicore Architectures Number of Cores Interconnect Networks

Intel Larrabee up to 48 Bidirectional ring
Microsoft Xenon three Crossbar
Intel Core I7 2 to 8 Point to point
Sun Niagara T2 8 Crossbar
Intel Atom 1 to 2 Bus
ARM Cortex- A9 1 to 4 Bus
Element CXI Eca-64 4 clusters of 1 core + alu Hierarchial noc
Tilera Tile64 36 to 64 NoC
Intel ASCI Red Pragon 2 with 4510 number of nodes 2D mesh
IBM ASCI White SP Power3 16 with 512 number of nodes Bidirectional MIN with 8-ports

bidirectional switches (typi-
cally a fat tree or Omega)

Intel Thunder Itanium2 Tiger4 4 with 1024 number of nodes Fat tree with 8-port bidirec-
tional switches

Cray XT3 1 with 30,508 number of nodes 3D torus
Cray X1E 1 with 1024 number of nodes 4-way bristled 2D torus with

express links
IBM ASC Purple pSeries 575 8 with more than 1280 number

of nodes
Bidirectional MIN with 8-ports
bidirectional switches (typi-
cally a fat tree or Omega)

IBM Blue Gene/L eServer So-
lution

2 with 65,536 number of nodes 3D torus

MIT Raw 16 network ports (16 tiles or
cores)

2D mesh

IBM Power5 7 network ports (2 PE cores
and 5 other ports)

Crossbar

U.T. Austin TRIP Edge 40 network ports (16 L2 tiles
and 24 network interface tile)

2D mesh

Sony, IBM,Toshiba Cell BE 12 network ports Ring

Table 2.1.: Commercial multicore architectures and their interconnection networks

2.5. Summary

Most of the interconnection networks like buses, torus, n-dimensional meshes
etc, are blocking networks. The performance of these networks is limited since
even though a pair of source and target components may be free, a connec-
tion between them might still not be possible due to limited capabilities of
these networks. Non-blocking networks offer ideal performance, but very few
are non-blocking networks. Crossbars are one of them which are simple in
design, but the size increases with O(n2). Beneš and Clos, are also nonblock-
ing, have an optimal depth and size, but their routing algorithms are quite
complicated. Other non-blocking interconnection networks are derived from
sorting networks. Batcher’s famous bitonic sorter and oddeven sorter have a
size of O(n log(n)2) and a depth of O(log(n)2) in terms of compare-and-swap
modules. Split(n) modules, the basic building block of radix-based sorting
networks, are usually implemented by binary sorters where the inputs are just
sorted by their most significant bits of the target addresses. Many implemen-
tations of binary sorters are known that lead to circuits of RBS networks of
size of O(n log(n)3) and a depth of O(log(n)2) or O(log(n)3) in terms of sim-
ple circuit gates.This thesis considers efficient circuits for implementation of
non-blocking interconnection networks.

24

Chapter 3
New RBS Networks for Total
Permutations

Contents

3.1. Basic Definitions: . 26

3.1.1. Total Permutations 26

3.1.2. Partial Permutations 26

3.1.3. Splitter . 26

3.1.4. Concentrator . 27

3.1.5. Ternary Sorter . 27

3.2. Distribution-Based Interconnection Networks . . . 28

3.2.1. Correctness of the Binary Sorter 29

3.2.2. Switch Configuration Circuits 31

3.3. Sorters with Half Cleaner based RBS Network . . 40

3.3.1. The Half Cleaner Lemma 40

3.4. Summary . 44

Nonblocking unicast interconnection networks allow every input component
to be connected to any output component that is not also the target of another
input component. The efficient implementation of such networks turned out
to be a difficult challenge for many decades. Sorting networks are attractive
alternatives for the design of such networks.

Therefore, we present new nonblocking unicast interconnection networks
based on radix sorting scheme. First, we discuss the basic definitions of the
terms that we will use to describe these new RBS networks. Then, we de-
scribe the construction of these new RBS networks. Finally, we discuss the
algorithms, and the asymptotic complexities of these new networks.

To analyze the complexity of networks for a number of inputs n, we consider
the following well-known circuit complexity measures:

• Depth: The depth is the length of the longest path through combina-
tional gates from inputs to outputs in the considered circuit.

25

Chapter 3: New RBS Networks for Total Permutations

• Size: The size is the number of gates1 used in the circuit where only
2-input/1-output gates are allowed.

3.1. Basic Definitions:

The interconnection network can be described as a set of interconnection func-
tions, where each is a permutation (bijection) on the set of port numbers which
is either source or destination addresses [Lai00]. Addresses of input and output
components are numbered as 0, . . . , n − 1 in the following.

3.1.1. Total Permutations

Definition 3.1 〈 Total Permutations 〉
Total permutations are all bijective mappings of 0, . . . , n − 1 to itself, i.e,
uniquely mapping. Since all the inputs need the connection to one of the
outputs, sorting networks can be used to implement total permutations.

3.1.2. Partial Permutations

Definition 3.2 〈 Partial Permutations 〉
Partial permutations are partially defined injective functions from
0, . . . , n − 1 to itself. Since some of the inputs may not need a connec-
tion to a target address, their target addresses are invalid, denoted as � in
this thesis.

3.1.3. Splitter

Definition 3.3 〈 Splitter 〉
A splitter is a module that permutes its 2n inputs x0, . . . , x2n−1 over values
{0,�,1} to its 2n outputs y0, . . . , y2n−1 such that all input sequences where
at most n of the inputs xi are 0 and at most n of the inputs xi are 1 are
mapped to outputs satisfying the following properties:

• yi ∈ {0,�} for i = 0, . . . , n − 1
• yn+i ∈ {�,1} for i = 0, . . . , n − 1

Input sequences where more than n values are 0 or more than n inputs are
1 may be permuted to any output sequence2.

1It is well-known that another set of gates yields at 3-most a constant blow-up since all
2-input/1-output gates can be implemented with a constant number of other 2-input/1-
output gates that form a boolean basis.

26

3.1. Basic Definitions:

Hence, all xi = 0 are routed to the lower half y0, . . . , yn−1 and all xi = 1 are
routed to the upper half yn, . . . , y2n−1. The halves do not have to be sorted,
i.e., the elements {0,�} in the lower half and the elements {�,1} in the upper
half may appear in any order.

An important case are binary input sequences, i.e., sequences where no value
is �. In that case, the condition mentioned in the definition means that exactly
n values are 0 and the other n values are true, and the consequence demands
that the output sequence is sorted. We do however not demand that other
binary input sequences will be sorted, and therefore splitters are even in the
case of binary sequences more general than sorters.

3.1.4. Concentrator

Definition 3.4 〈 Concentrator 〉
A (n,m)-concentrator is a circuit with n inputs and m ≤ n outputs that
can route any given number k ≤m of valid inputs to k of its m outputs.

In the following, we are mainly interested in (n, n2)-concentrators. Consid-
ering inputs 1 as the valid ones, it is clear that we can implement a (n, n2)-
concentrators by any splitter with n inputs simply by ignoring the lower half,
and analogously, considering inputs 0 as the valid ones, we can implement a
(n, n2)-concentrators by simply ignoring the upper half of outputs.

Conversely, we can construct a splitter by means of two concentrators: One
concentrator considers input values 0 as valid ones and routes these m ≤ n

2
input values 0 to its n

2 outputs together with n
2 − m values �. The other

concentrator considers input values 1 as valid ones and routes these m′ ≤ n
2

input values 1 to its n
2 outputs together with n

2 −m
′ values �. Since (n,m)-

concentrators have a minimal size of O(n) [Pins73], we conclude that there
are also splitters of size O(n).

3.1.5. Ternary Sorter

Definition 3.5 〈 Ternary Sorter 〉
A ternary sorter permutes its n inputs x0, . . . , xn−1 over values {0,�,1} to
a sorted output sequence y0, . . . , yn−1, i.e., where yi ⪯ yi+1, with the total
order 0 ⪯ � ⪯ 1.

Clearly, any ternary sorter with 2n inputs is also a splitter, since the input
sequences where at most n inputs are 0 and 1, respectively, are sorted as any
other input sequence, and therefore all values 0 are mapped to the lower half

27

Chapter 3: New RBS Networks for Total Permutations

and all values 1 are mapped to the upper half, respectively. However, ternary
sorters also sort the other half, and also all other input sequences which are
considered as don’t care values for splitters.

As a consequence, ternary sorters are more specific, and therefore their
minimal size is O(n log(n)) [HoSR98] while splitters and concentrators can be
built with size O(n).

3.2. Distribution-Based Interconnection Networks

As any interconnection network based on radix-sorting (see the Chapter 2),
also this new network mainly depends on the construction of a suitable Split(n)
module. The core idea of implementing the Split(n) module is the use of a bi-
nary sorter similar to the one presented by Narasimha [Nara94]. This Split(n)
module, which is like Narasimha’s binary sorter, is recursively constructed as
shown in Figure 3.1. Both networks discussed in this section are based on this
binary sorter.

x[0]

x[1]

x[2i]

x[2i+1]

x[n-2]

x[n-1]

u[0]

u[1]

u[2i]

u[2i+1]

u[n-2]

u[n-1]

y[0]

y[1]

y[n-2]

y[n-1]

y[n-3]

y[n-4]

y[2]

y[3]
lower

subnetwork

upper
subnetwork

0

n/2-1

i

0

n/2-1

i

n/2-1

n/2-2

0

1

n/2-1

n/2-2

0

1

…

…
…

…
…

…

…
…

…

p[i]

p[0]

p[n/2-1]

…
…

…
…

…
…

Figure 3.1.: Recursive construction of binary sorter for n inputs/outputs.

Figure 3.1 shows the construction of the binary sorter for n inputs x0, . . . ,
xn−1. As can be seen, it consists of a column of n

2 2 × 2 crossbar switches
that are controlled by inputs p0, . . . , pn

2
−1. Switch i is thereby in one of two

modes: If the configuration input pi is 0, it is in ‘through’ mode, thus mapping
its inputs x2i and x2i+1 to its outputs u2i and u2i+1, respectively, and if the
configuration pi is 1, it is in ‘crossed’ mode, thus mapping its inputs x2i and
x2i+1 to its outputs u2i+1 and u2i, respectively. Note that the outputs u2i and
u2i+1 of switch i are mapped to the lower and upper subnetwork’s input i,
respectively (where the lower and upper one’s local addresses 0, . . . , n2 − 1 are
associated with the global addresses 0, . . . , n2 −1 and n

2 , . . . , n−1, respectively).

It can be directly seen in Figure 3.1 that the permutation between the
columns of the switches is a flip-shuffle permutation fs that maps the address
bits ap−1, . . . , a0 to a0, ap−1, . . . , a1 and that the output permutation shown in
Figure 3.1 is the perfect shuffle permutation ps that maps the address bits

28

3.2. Distribution-Based Interconnection Networks

pi x2i x2i+1 u2i u2i+1 remark
0 0 1 0 1 up1 = low1, send x2i+1 to upper
0 1 0 1 0 up1 = low1 + 1, send x2i to lower
1 0 1 1 0 up1 = low1 + 1, send x2i+1 to lower
1 1 0 0 1 up1 = low1, send x2i to upper
∗ 0 0 0 0 same inputs, same outputs
∗ 1 1 1 1 same inputs, same outputs

Table 3.1.: Configuration of switch i depending on the parity pi ∶= x0 ⊕ . . .⊕ x2i of
the inputs.

ap−1, . . . , a0 to ap−2, . . . , a0, ap−1. At the end, we obtain3 a reverse banyan net-
work with flip-shuffle fs permutations between its stages, and a reverse-bit
rv output permutation that maps address bits ap−1, . . . , a0 to a0, . . . , ap−1. A
complete RBS-network based on this permutation network is shown in Fig-
ure 3.2, and we can see Split modules for n = 8,4,2 inputs, and all of them
are constructed according to Figure 3.1.

We will prove in the next section that the switches should be configured
such that the 1s (and 0s) of the binary input sequence x0, . . . , xn−1 are equally
distributed to the two subnetworks, and in case that the number of 1s (and
0s) is odd, then the additional 1 is routed to the upper subnetwork (and the
additional 0 is routed to the lower subnetwork). For this reason, the final
output permutation that routes outputs i of the lower and upper subnetworks
to the final outputs y2i and y2i+1, respectively, will shuffle the sorted binary
sequences coming from the subnetworks into a single binary sorted sequence.

y7

y6

y5

y4

y3

y2

y1

y0

x7

x6

x5

x4

x3

x2

x1

x0

Figure 3.2.: Entire Interconnection Network based on Radix-based Sorting.

3.2.1. Correctness of the Binary Sorter

Here, we prove that the recursive implementation as given in the previous
section implements a binary sorter. The overall idea is to distribute the 1s
(and therefore also the 0s) of any prefix of the inputs x0, . . . , xi equally to the
two subnetworks, and in case the number of 1s is odd, we route the additional
1 to the upper and the additional 0 to the lower subnetwork.

3This can be proved by induction where the induction step is proved as follows:

ps(ap−1, rv(ap−2 . . . , a0)) = ps(ap−1, a0, . . . , ap−2)
= a0, . . . , ap−1 = rv(ap−1, . . . , a0)

29

Chapter 3: New RBS Networks for Total Permutations

This can be achieved by configuring the switches by the parities pi ∶= x0 ⊕
. . .⊕ x2i of the inputs as explained below:

• If x2i = x2i+1 holds, the configuration of switch i does not matter since
then the same number of 0s and 1s are routed from this switch to the
two subnetworks in any case.

• If x2i ≠ x2i+1 holds, one of the two is 0 while the other one is 1. Depending
on the number of 1s that occurred in x0, . . . , x2i−1, the new 1 has to be
routed to the lower or upper subnetwork so that our equal distribution
of 1s is maintained. To this end, assume that up1 and low1 denote
the numbers of 1s occurring in x0, . . . , x2i−1 that were already sent to
the upper and lower subnetworks, respectively. Since we either have
up1 = low1 or up1 = low1 + 1, depending on whether the number of 1s
was even or odd, respectively, we just need to know whether the number
of 1s in x0, . . . , x2i−1 is even or odd. Now note that pi⊕x2i = x0⊕. . .⊕x2i−1

holds (since x ⊕ x = 0 and x ⊕ 0 = x holds in general). Hence, we have
the following:

– up1 = low1 if and only if pi ⊕ x2i = 0 holds.

– up1 = low1 + 1 if and only if pi ⊕ x2i = 1 holds.

Inspecting the cases shown in Table 3.1 finally shows that using pi ∶=
x0⊕ . . .⊕x2i as configuration of switch i will equally distribute the 1s in
x0, . . . , x2i+1 to the two subnetworks.

Hence, with the computed configuration, the 1s contained in the input se-
quence x0, . . . , xn−1 are equally distributed to the two subnetworks in case
their number is even, and otherwise the additional 1 is sent to the upper and
the additional 0 is sent to the lower subnetwork.

We finally prove the correctness of the binary sorter based on the above
equal distribution property by induction on the number n of inputs/outputs:

induction base: For n = 2, the network consists of a single 2×2 crossbar switch.
If we use for such a single crossbar switch p0 ∶= x0 as its configuration,
it can be easily seen by Table 3.1 that it will sort its two binary inputs.
This already proves the induction base.

induction step: In the induction step, we may assume by the induction hy-
pothesis that the two subnetworks in Figure 3.1 implement binary sorters.
Now, it is important that we have equally distributed the 1s of the input
sequence x0, . . . , xn−1 to the two subnetworks, and in case their number
was odd, the additional 1 is in the upper network. Because of this, the
final perfect shuffle permutation will produce a sorted sequence of the
two sorted subsequences of the local subnetworks (note that the sorted
subsequences are either both 0i1

n
2
−i or 0i+11

n
2
−(i+1) from the lower and

0i1
n
2
−i from the upper subnetwork).

30

3.2. Distribution-Based Interconnection Networks

3.2.2. Switch Configuration Circuits

In the previous section, we have seen that the configuration of switch i should
be computed as pi ∶= x0 ⊕ . . . ⊕ x2i. The simplest circuit to implement this
configuration logic has been suggested by Narasimha in [Nara94]. Narasimha’s
configuration logic leads to a circuit size of O(n log(n)), and depth O(n) which
is quite slow. Therefore, we presented two circuits to efficiently compute the
switch configurations pi = x0 ⊕ . . .⊕ x2i as required by previous section.

Parallel Prefix Computation

For computing the configuration of the switches, we have to compute all pre-
fixes Pi ∶= a0 ⊕ . . . ⊕ ai for i = 0, . . . , n − 1 of a binary sequence a0, . . . , an−1.
This can be done with the following well-known work-efficient parallel algo-
rithm that we only explain for the case where n is a power of 2 (it works
however also for any number n):

⊕

⊕

⊕

⊕

x[0]

x[1]

x[2]

x[3]

p[0]

p[1]

p[2]

p[3]

⊕
x[0]

x[1]

p[0]

p[1]

Figure 3.3.: Circuits for n = 2 and n = 4 for Parallel Prefix Computation.

1. Compute the following list using n
2 XOR gates in one step: [b0, . . . , bn

2
−1] =

[a0 ⊕ a1, a2 ⊕ a3, . . . , an−2 ⊕ an−1], i.e., we define bi ∶= a2i ⊕ a2i+1 for
i = 0, . . . , n2 − 1.

2. Recursively apply the parallel prefix computation to the list [b0, . . . , bn
2
−1]

and obtain its prefixes [c0, . . . , cn
2
−1]. Thus, we have cj ∶= b0⊕ . . .⊕ bj for

j = 0, . . . , n2 − 1.

3. Since bj ∶= a2j⊕a2j+1 holds, we therefore have cj ∶= a0⊕a1⊕. . .⊕a2j⊕a2j+1,
and have therefore already the prefixes P2j+1 ∶= cj for the odd indices
2j + 1 for j = 0, . . . , n2 − 1. The prefixes of the even indices P2j are now
computed in one parallel step as P0 ∶= a0 and P2j ∶= P2j−1⊕a2j = cj−1⊕a2j

for j = 1, . . . , n2 − 1 using n
2 − 1 XOR gates.

The correctness of the above algorithm is easily shown by induction where we
use the base cases as shown in Figure 3.3. Hence, we obtain for the depth
Dprefix (n) and size Sprefix (n) the following recursive formulas:

• Dprefix (n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 : for n = 1
1 : for n = 2
2 : for n = 4

Dprefix (n2) + 2 : for n > 4

• Sprefix (n) = { 0 : for n = 1

Sprefix (n2) + n − 1 : for n > 1

31

Chapter 3: New RBS Networks for Total Permutations

It can be easily proved by induction on n that we have the following solutions
of the above recursive definitions:

• Dprefix (n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 : for n = 1
1 : for n = 2
2 log(n) − 2 : for n > 2

• Sprefix (n) = 2n − log(n) − 2 for all n that are powers of 2

Complexity Analysis of the Binary Sorter:
For computing the configuration of the switches in Figure 3.1, we have to
compute the parities pi ∶= x0⊕ . . .⊕x2i for i = 0, . . . , n2 −1. To this end, we first
compute the following values zi for i = 0, . . . , n2 − 1:

zi ∶= { x0 : for i = 0
x2i−1 ⊕ x2i : for i = 1, . . . , n2 − 1

The computation of all zi can be done in one step using exactly n
2 − 1 XOR

gates. After this, we apply the parallel prefix computation of the previous
section to the n

2 values z0, . . . , zn
2
−1. The result values p0, . . . , pn

2
−1 are then

our values needed to configure the switches because of the following:

pi ∶= z0 ⊕ z1 ⊕ . . .⊕ zi = x0 ⊕ (x1 ⊕ x2) . . .⊕ (x2i−1 ⊕ x2i)

Hence, we can compute all pi for i ∈ {0, . . . , n2 −1} of one column with a circuit
having the following depth DcolCF (n) and size ScolCF (n) for n > 1:

• DcolCF (n) = { 0 : for n ≤ 2

Dprefix (n2) + 1 : for n > 2

• ScolCF (n) = { 0 : for n = 1

Sprefix (n2) +
n
2 − 1 : for n > 1

which means the following for all n that are powers of 2:

• DcolCF (n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 : for n ≤ 2
2 : for n = 4
2 log(n) − 3 : for n > 4

• ScolCF (n) = { 0 : for n = 1
3
2n − log(n) − 2 : for n > 1

To compute the depth DnodeCF (n) and size SnodeCF (n) of the entire configu-
ration logic for the binary sorter shown in Figure 3.1, we set up the following
recursive formulas:

• DnodeCF (n) = { 0 : for n = 1

DcolCF (n) +DnodeCF (n
2
) : for n > 1

• SnodeCF (n) = { 0 : for n = 1

ScolCF (n) + 2SnodeCF (n
2
) : for n > 1

32

3.2. Distribution-Based Interconnection Networks

which have the following solutions:

• DnodeCF (n) = { 0 : for n ≤ 2
log(n2)

2 + 1 : for n > 2

• SnodeCF (n) = (3

2
n + 1) log(n) − 4n + 4 for n ≥ 1

In addition to the above size and depth for the configuration logic, we also
have to add the switches needed in the binary sorter. It is easily seen that the
recursive definition according to Figure 3.1 will generate for n inputs/outputs
log(n) columns with n

2 rows of switches.
For each one of the n

2 log(n) switches, we need q + log(n) copies to route q
message bits together with the log(n) bits of their destination address. How-
ever, in the final column, we can remove the most significant address bit since
it will no longer be required in the next stages of the network. For this reason,
the depth DnodeSW (n) and the size SnodeSW (n) of the switches in a binary
sorter are as follows for n > 1:

• DnodeSW (n) = log(n)

• SnodeSW (n) = (q + log(n)) n
2

log(n) − n
2

As the final result, we therefore obtain the following depth Dnode (n) and
size Snode (n) for our binary sorter for n > 1:

• Dnode (n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 : for n = 1
1 : for n = 2
log(n)(log(n) − 1) + 2 : for n > 2

• Snode (n) = (q + log(n) + 3)n
2

log(n) + log(n) − 9

2
n + 4

Hence, Dnode (n) is in O(log(n)2) and the asymptotic complexity of Snode (n)
is in O((q + log(n))n log(n)) which means O(n log(n)2) for constant q. While
the size is exact, the depth computed above is just an upper bound of the
real depth of the circuit (since the critical paths of the sequential parts of the
circuit are not connected).

Complexity Analysis of the Network:
By the recursive construction of the radix-based sorting network as shown in
Chapter 2, we directly derive the following formulas for the depths DnetCF (n)
and DnetSW (n) and sizes SnetCF (n) and SnetSW (n) of the configuration logic
and the switches, respectively:

• DnetCF (n) = { DnodeCF (n) +DnetCF (n
2
) : for n > 2

0 : for n = 2

• DnetSW (n) = { DnodeSW (n) +DnetSW (n
2
) : for n > 2

1 : for n = 2

33

Chapter 3: New RBS Networks for Total Permutations

• SnetCF (n) = { SnodeCF (n) + 2 ⋅ SnetCF (n
2
) : for n > 2

0 : for n = 2

• SnetSW (n) = { SnodeSW (n) + 2 ⋅ SnetSW (n
2
) : for n > 2

q : for n = 2

and obtain the following solutions:

• DnetCF (n) = 1

6
(2 log(n)3 − 3 log(n)2 + 7 log(n) − 6))

• DnetSW (n) = 1

2
log(n) (log(n) + 1)

• SnetCF (n) = (3

4
n log(n) − 13

4
n − 1) log(n) + 6(n − 1)

• SnetSW (q, n) = n

12
log(n) (2 log(n)2 + (3q + 3) log(n) + 3q − 5)

Hence, we conclude for the depth Dnet (n) = DnetCF (n) + DnetSW (n) and
size Snet (n) = SnetCF (n) + SnetSW (n) of entire interconnection network the
following asymptotic complexities:

• Dnet (n) ∈ O(log(n)3)

• Snet (n) ∈ O((q + log(n))n(log(n))2),
i.e., Snet (n) ∈ O(n(log(n))3) for constant q

Ranking-based Configuration

This circuit is based on the computation of ranks as suggested by [KoOr90]
for the generalized cube network. Our contribution in this thesis is to show
that a ranking-based approach can also configure the network of Figure 3.1
by using a parallel prefix computation similar to the one of the parities we
used in Section 3.3.1 (using adders instead of XOR gates). To this end, we
first compute the following ranks with the most significant target address bits
msb (xi):

ri ∶=
⎛
⎝

i

∑
j=0

¬msb (xj)
⎞
⎠
− 1 for i = 0, . . . , n − 1,

i.e., the number of inputs xj in the prefix x0, . . . , xi that have a most significant
bit msb (xi) = 0 minus 1. The ranks can now be used as local addresses of the
network of Figure 3.1 in that an input xi with msb (xi) = 0 must be routed to
output yri . We do not care about inputs xi with msb (xi) = 1, since routing
the inputs xi with msb (xi) = 0 to the correct places will implicitly also route
the others in the right part of the output sequence (maybe in a permuted
ordering). This will make sure that the Split module sorts its inputs xi by
msb (xi).

In general, permutation networks like the considered RB-FS-RV network
are blocking, i.e., cannot implement all permutations of input addresses to

34

3.2. Distribution-Based Interconnection Networks

Table 3.2.: Ranking-based configuration pi of switch i in the network shown in
Figure 3.1 based on the most significant bits msb (x2i),msb (x2i+1) of the
target addresses and the ranks ranks r2i, r2i+1 of the inputs x2i, x2i+1,
respectively. We also determine the local addresses/ranks rLi and rUi

to be used in the lower and upper subnetworks for further routing.

msb (x2i) msb (x2i+1) r2i r2i+1 pi rLi rUi

0 0 2k 2k + 1 ∗ k k
0 0 2k + 1 2k + 2 1 k + 1 k
0 1 2k − 0 k −
0 1 2k + 1 − 1 − k
1 0 − 2k 1 k −
1 0 − 2k + 1 0 − k
1 1 − − ∗ − −

target addresses. However, the RB-FS-RV network is able to route the 0s to
monotonically increasing target addresses as proved in the following. We will
also see that the ranking-based approach will compute exactly the same config-
uration as the approaches using parity bits. To this end, consider Table 3.2
where we determine the configuration pi of switch i based on the most signif-
icant bits msb (x2i) and msb (x2i+1) of the target addresses of inputs x2i and
x2i+1, respectively, and their ranks r2i and r2i+1, respectively.

The configuration pi of switch i is obtained according to Table 3.2 as follows:
First note that the lower subnetwork in Figure 3.1 is connected with the even
output addresses, and that the upper subnetwork is connected with the odd
output addresses. Second, recall that rank ri = k means that there are k + 1
0s in the prefix x0,. . . ,xk. Thus, we have the following cases (note that we do
not care about routing inputs xi with msb (xi) = 1 since these are implicitly
routed to the remaining target addresses):

• If msb (x2i) = msb (x2i+1) = 0 and r2i = 2k holds, then r2i+1 = r2i + 1 = 2k + 1
holds, and the prefix x0,. . . ,x2i−1 contains (r2i−1)+1 = 2k 0s which are equally
distributed, i.e., k of them have been sent to the lower subnetwork and k others
to the upper subnetwork that occupy the local addresses 0,. . . ,k − 1 there. The
configuration pi does not matter here, we will send one input to the lower and
the other to the upper subnetwork with local address/rank k = ⌊ r2i

2
⌋ = ⌊ r2i+1

2
⌋.

• If msb (x2i) = msb (x2i+1) = 0 and r2i = 2k + 1 holds, then r2i+1 = r2i + 1 = 2k + 2
holds, and the prefix x0,. . . ,x2i−1 contains (r2i − 1) + 1 = 2k + 1 0s which are
equally distributed, i.e., k + 1 of them have been sent to the lower subnetwork
and k others to the upper subnetwork that occupy the local addresses 0,. . . ,k
and 0,. . . ,k − 1 there. The configuration pi does matter here in the sense that
we will send 0s to each subnetwork, but we have to define pi ∶= 1 so that x2i
will be sent to the upper subnetwork with local address/rank k = ⌊ r2i

2
⌋ = 2k+1

2
while x2i+1 will be sent to the lower subnetwork with local address/rank k+1 =
⌊ r2i+1

2
⌋ = 2k+2

2
.

• If msb (x2i) = 0, msb (x2i+1) = 1, and r2i = 2k holds, then the prefix x0,. . . ,x2i−1
contains (r2i − 1)+ 1 = 2k 0s which are equally distributed, i.e., k of them have
been sent to the lower subnetwork and k others to the upper subnetwork that
occupy the local addresses 0,. . . ,k−1 there. We define pi ∶= 0 so that x2i will be

35

Chapter 3: New RBS Networks for Total Permutations

sent to the lower subnetwork with local address/rank k = ⌊ r2i
2
⌋ = 2k

2
while x2i+1

will be sent to the upper subnetwork (and we don’t care about its address).

• If msb (x2i) = 0, msb (x2i+1) = 1, and r2i = 2k + 1 holds, then the prefix
x0,. . . ,x2i−1 contains (r2i − 1) + 1 = 2k + 1 0s which are equally distributed,
i.e., k + 1 of them have been sent to the lower subnetwork and k others to the
upper subnetwork that occupy the local addresses 0,. . . ,k and 0,. . . ,k−1 there.
We define pi ∶= 1 so that x2i will be sent to the upper subnetwork with local
address/rank k = ⌊ r2i

2
⌋ = 2k+1

2
while x2i+1 will be sent to the lower subnetwork

(and we don’t care about its address).

• If msb (x2i) = 1, msb (x2i+1) = 0, and r2i+1 = 2k holds, then the prefix x0,. . . ,x2i−1
contains (r2i+1−1)+1 = 2k 0s which are equally distributed, i.e., k of them have
been sent to the lower subnetwork and k others to the upper subnetwork that
occupy the local addresses 0,. . . ,k − 1 there. We define pi ∶= 1 so that x2i+1 will
be sent to the lower subnetwork with local address/rank k = ⌊ r2i+1

2
⌋ = 2k

2
while

x2i will be sent to the upper subnetwork (and we don’t care about its address).

• If msb (x2i) = 1, msb (x2i+1) = 0, and r2i+1 = 2k + 1 holds, then the prefix
x0,. . . ,x2i−1 contains (r2i+1 − 1) + 1 = 2k + 1 0s which are equally distributed,
i.e., k + 1 of them have been sent to the lower subnetwork and k others to the
upper subnetwork that occupy the local addresses 0,. . . ,k and 0,. . . ,k−1 there.
We define pi ∶= 0 so that x2i+1 will be sent to the upper subnetwork with local
address/rank k = ⌊ r2i+1

2
⌋ = 2k+1

2
while x2i will be sent to the lower subnetwork

(and we don’t care about its address).

• The only not yet considered cases are those where msb (x2i) = msb (x2i+1) = 1
hold with arbitrary ranks. Since we do not care about routing these inputs, the
configuration pi can be chosen arbitrarily in these cases, and we also do not
have to determine local addresses/ranks for these inputs.

Note that the above discussed cases which are also listed in Table 3.2 are
complete, since in the first two cases, r2i+1 is determined by the values of
msb (x2i) ,msb (x2i+1) , r2i. For this reason, we now derive the following Karnaugh-
Veitch diagram from Table 3.2 using the least significant bits lsb (r2i), lsb (r2i+1)
of r2i,r2i+1, respectively:

msb (x2i+1) lsb (r2i+1)
msb (x2i) lsb (r2i) 00 01 11 10

00 ∗ ∗ 0 0
01 1 ∗ 1 1
11 1 0 ∗ ∗
10 1 0 ∗ ∗

We therefore can define pi by the following minimal disjunctive normal forms:

•pi ∶= msb (x2i) ∧ ¬lsb (r2i+1) ∨ ¬msb (x2i) ∧ lsb (r2i)
•pi ∶= msb (x2i+1) ∧ lsb (r2i) ∨ ¬msb (x2i+1) ∧ ¬lsb (r2i+1)
•pi ∶= ¬msb (x2i) ∧ lsb (r2i) ∨ ¬msb (x2i+1) ∧ ¬lsb (r2i+1)

Using multiplexers, we can also equivalently define

•pi ∶= if msb (x2i) then ¬lsb (r2i+1) else lsb (r2i)
•pi ∶= if msb (x2i+1) then lsb (r2i) else ¬lsb (r2i+1)

36

3.2. Distribution-Based Interconnection Networks

Having determined the configurations pi of switch i in the first column of the
network shown in Figure 3.1, we can recursively determine the configurations
of the other columns in the subnetworks since we have also determined the
local addresses/ranks rLi and rUi to be used in the subnetworks as shown
in Table 3.2: As can be seen, the local address/rank rLi and rUi is simply
obtained by removing the least significant bit from the rank of the value that
is routed to that place.

Using ranks as local target addresses for the Split modules determines the
same configurations that we obtained by computing parity bits: Note that all in-
puts xi with msb (xi) = 0 were routed to the lower subnetwork if their rank was
even, and otherwise to the upper subnetwork. Hence, also the ranking-based
approach equally distributes the inputs xi with msb (xi) = 0 and msb (xi) = 1,
respectively, to the lower and upper subnetworks, given preference to the
lower and upper subnetworks for additional inputs xi with msb (xi) = 0 and
msb (xi) = 1, respectively.

Complexity Analysis of the Binary Sorter:
For computing the configuration of the switches in Figure 3.1, we have to com-
pute the following ranks with the most significant target address bits msb (xi):

ri ∶=
⎛
⎝

i

∑
j=0

¬msb (xj)
⎞
⎠
− 1 for i = 0, . . . , n − 1,

i.e., the number of inputs xj in the prefix x0, . . . , xi that have a most significant
bit msb (xi) = 0 minus 1. These ranks can be computed as a parallel prefix
computation similar to the one of the parities we used in Section 3.3.1 (using
adders instead of XOR gates).

Since the ranking circuit is based on a parallel prefix computation, we can
compute the depth Drank (n) and size Srank (n) similarly to Section 3.3.1
(using adders instead of XOR gates)

• Drank (n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 : for n = 1
1 : for n = 2
2 log(n) − 2 : for n > 2

• Srank (n) = 2n − log(n) − 2 for all n that are powers of 2

The size of the adders used ranges from one bit adders on the lowest level
up to log(n) bit address at the highest level. Hence, as an upper bound, no
more than log(n)(2n − log(n) − 2) gates were used.

Having computed the ranks, we can compute the configurations pi of all the
switches in the first column of the binary sorter for i ∈ {0, . . . , n2 − 1} using n

2
multiplexer (see section 3.3.2). Hence, the circuit depth DcolCF (n) and size
ScolCF (n) for computing the all pi for i ∈ {0, . . . , n2 − 1} of one column are as
follows:

• DcolCF (n) = { 0 : for n ≤ 2
Drank (n) + 1 : for n > 2

37

Chapter 3: New RBS Networks for Total Permutations

• ScolCF (n) = { 0 : for n = 1
Srank (n) + n

2 : for n > 1

which means the following for all n that are powers of 2:

• DcolCF (n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 : for n ≤ 2
2 : for n = 4
2 log(n) − 1 : for n > 4

• ScolCF (n) = { 0 : for n = 1
n
2 − 2 log(n)(n − 1) − log(n)2 : for n > 1

Having determined the configurations of the first column of the network, we
can recursively determine the configurations of the other columns in the sub-
networks using the rank as the local address. As can be seen, the local ad-
dress/rank for the subnetworks is simply obtained by removing the least sig-
nificant bit from the rank of the value that is routed to that place. Therefore,
to compute the depth DnodeCF (n) and size SnodeCF (n) of the entire configu-
ration logic for the binary sorter shown in Figure 3.1, we set up the following
formulas:

• DnodeCF (n) = { 0 : for n = 1
DcolCF (n) + (logn − 1) : for n > 1

• SnodeCF (n) = { 0 : for n = 1
ScolCF (n) + n

2 .(logn − 1) : for n > 1

and which have the following solutions:

• DnodeCF (n) = { 0 : for n ≤ 2
3 log(n) − 2 : for n > 2

• SnodeCF (n) = (5

2
n − 2 − log(n)) log(n) for n ≥ 1

In addition to the above size and depth for the configuration logic, we also
have to add the switches needed in the binary sorter. It is easily seen that the
recursive definition according to Figure 3.1 will generate for n inputs/outputs
log(n) columns with n

2 rows of switches. For each one of the n
2 log(n) switches,

we need q+ log(n) copies to route q message bits together with the log(n) bits
of their destination address. In addition to q + log(n) bits, each switch in the
ith column carries log(n)−i−1 bits of rank information. In the final column, we
can remove the most significant address bit since it will no longer be required
in the next stages of the network. For this reason, the depth DnodeSW (n) and
the size SnodeSW (n) of the switches in a binary sorter are as follows for n > 1:

• DnodeSW (n) = log(n)

• SnodeSW (n) = (q + log(n)) n
2

log(n) − n
2
+

log(n)−1

∑
i=0

(log(n) − i − 1))

38

3.2. Distribution-Based Interconnection Networks

As the final result, we therefore obtain the following depth Dnode (n) and
size Snode (n) for the binary sorter for n > 1:

• Dnode (n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 : for n = 1
1 : for n = 2
3 log(n) − 2 + log(n) : for n > 2

• Snode (n) = (4q + 5 log(n) − 1)n
4

log(n) − n
2

Hence, Dnode (n) is in O(log(n)) and the asymptotic complexity of Snode (n)
is in O((4q + 5 log(n) − 1)n4 log(n)) which means O(n log(n)2) for constant q.

It can be easily seen that size and depth of ranking based circuit to compute
the configuration logic of presented split module is asymptotically better than
the parallel parity computation circuit.

Complexity Analysis of the Network:

By the recursive construction of the radix-based sorting network as shown in
Chapter 2, we directly derive the following formulas for the depths DnetCF (n)
and DnetSW (n) and sizes SnetCF (n) and SnetSW (n) of the configuration logic
and the switches, respectively:

• DnetCF (n) = { DnodeCF (n) +DnetCF (n
2
) : for n > 2

0 : for n = 2

• DnetSW (n) = { DnodeSW (n) +DnetSW (n
2
) : for n > 2

1 : for n = 2

• SnetCF (n) = { SnodeCF (n) + 2 ⋅ SnetCF (n
2
) : for n > 2

0 : for n = 2

• SnetSW (n) = { SnodeSW (n) + 2 ⋅ SnetSW (n
2
) : for n > 2

q : for n = 2

and obtain the following solutions:

• DnetCF (n) = 3

2
(log(n)2 + log(n) − 4

3
)

• DnetSW (n) = 1

2
log(n) (log(n) + 1)

• SnetCF (n) = 5

2
log(n)2 (n + 2

5
) + 5

2
log(n) (n + 12

5
) − 10(n − 1)

• SnetSW (q, n) = 5n

12
log(n)3 + 2nq log(n)2 + n

2
log(n)(4q + 1)

Hence, we conclude for the depth Dnet (n) = DnetCF (n) + DnetSW (n) and
size Snet (n) = SnetCF (n) + SnetSW (n) of entire interconnection network the
following asymptotic complexities:

39

Chapter 3: New RBS Networks for Total Permutations

• Dnet (n) ∈ O(log(n)2)

• Snet (n) ∈ O(n((log(n))3))

Thus, the final size of the entire RBS network is asymptotically the same for
these two circuits, namely O(n log(n)3), the depth of the RBS network with
the ranking-based approach is only O(log(n)2) while it is O(log(n)3) for the
parallel parity computation.

3.3. Sorters with Half Cleaner based RBS Network

Fortunately, Narasimha observed in [Nara88] (Section V) that one can con-
struct Split modules as shown in Figure 3.4 using Batcher’s sorting networks
with n

2 inputs/outputs and a half cleaner circuit. Half cleaners were intro-
duced by Batcher in [Batc68] for the construction of his bitonic sorting net-
works. Narasimha’s construction has also been implicitly used in [KoOr90],
but no correctness proofs were reported so far. To that end, we found a simple
and general lemma about half cleaner modules (can be derived from Batcher’s
original lemma) that can also be used with any binary and ternary sorters to
implement binary and ternary4 Split modules.

Sort(n/2)

Sort(n/2)

HC(n):=Split(n)

Figure 3.4.: Implementing Split modules by two sorting networks and a half
cleaner module.

3.3.1. The Half Cleaner Lemma

We first define half cleaner and then prove the half cleaner lemma that is used
to implement binary and ternary (see next chapter) Split modules.

Sorting networks are usually constructed by compare-and-swap switches
which have two inputs x0 and x1 that are routed to the two outputs y0 and
y1 such that y0 ∶= min{x0, x1} and y1 ∶= max{x0, x1} holds. The compare-
and-swap switch, shown in Figure 3.5, uses an arrow to denote the minimum
output y0.

Definition 3.6 〈 Half Cleaner 〉
A half cleaner with 2n inputs x0, . . . , x2n−1 of some totally ordered set and
outputs y0, . . . , y2n−1 consists of n compare-and-swap switches such that

4For partial permutation (see the next chapter), we have to replace the binary sorters by
ternary sorters, since we then find target addresses with most significant bits 0,�,1 where
we use � as most significant bit of those inputs that have no associated target address.

40

3.3. Sorters with Half Cleaner based RBS Network

x0

x1 y1

y0

Figure 3.5.: Compare-and-swap switch (the arrow points towards the minimum
output).

switch i has inputs xi and xi+n and outputs yi and yi+n that are computed
as yi ∶= min{xi, xn+i} and yn+i ∶= max{xi, xn+i} for i = 0, . . . , n − 1.

x0

x1

x2

x3

x4

x5

x6

x7 y7

y6

y5

y4

y3

y2

y1

y0

Figure 3.6.: A half cleaner module with 8 inputs and 8 outputs consisting of four
2 × 2 compare-and-swap switches (the arrows of compare-and-swap
switches point towards the minimum output).

Half cleaner modules were introduced in [Batc68] as building blocks for
Batcher’s bitonic sorting network. To prove its correctness, Batcher proved
the following Lemma in [Batc68]:

Lemma 3.1 (Half Cleaner Lemma (I)) Given a bitonic5 sequence
x0, . . ., x2n−1 with elements xi of some totally ordered set as input to a
half cleaner, the following holds for its outputs y0, . . . , y2n−1:

• yi ≤ yn+j for all i, j ∈ {0, . . . , n − 1} and

• both halves y0, . . . , yn−1 and yn, . . . , y2n−1 are bitonic sequences.

Batcher used the above lemma for the recursive construction of the sorting
network. We prove a simpler lemma about the half cleaner module for ternary
inputs, i.e., 0,�,1 where we use � as inputs that have no associated target
address. This half cleaner lemma will be useful for implementing both the
binary and ternary6 Split modules. Our lemma is the following one:

6For partial permutation (see the next chapter), we have to replace the binary sorters by

41

Chapter 3: New RBS Networks for Total Permutations

Lemma 3.2 (Half Cleaner Lemma (II)) Given sorted lists a0 ⪯ . . . ⪯
an−1 and b0 ⪰ . . . ⪰ bn−1 with elements ai, bi ∈ {0,�,1} with the total order
0 ⪯ � ⪯ 1 such that the following holds (i.e., both the numbers of 0s and 1s
contained are ≤ n):

• ∣{i ∈ {0, . . . , n − 1} ∣ ai = 0}∣ + ∣{i ∈ {0, . . . , n − 1} ∣ bi = 0}∣ ≤ n

• ∣{i ∈ {0, . . . , n − 1} ∣ ai = 1}∣ + ∣{i ∈ {0, . . . , n − 1} ∣ bi = 1}∣ ≤ n

If the input sequence a0, . . . , an−1, b0, . . . , bn−1 is given as input to a half
cleaner, we obviously obtain the following outputs y0, . . . , y2n−1 for i =
0, . . . , n − 1:

• yi ∶= min{ai, bi} and

• yn+i ∶= max{ai, bi}

It then follows that we have yi ∈ {0,�} and yn+i ∈ {�,1} for i = 0, . . . , n−1,
so that the left half y0, . . . , yn−1 contains all values 0 while the right half
yn, . . . , y2n−1 contains all values 1 of the input lists. Exchanging input
sequences a0 ⪯ . . . ⪯ an−1 and b0 ⪰ . . . ⪰ bn−1 with each other yields the
same results.

Proof: We first prove that the two values ai and bi that arrive at a switch
of the half cleaner can be neither both 0 nor can they be both 1:

• Assuming that both ai and bi would be 0, it would follow that at least
all a0, . . . , ai and also all bi, . . . , bn−1 would have to be 0 since the input
lists a and b are sorted. However, these are (i+1)+(n− i) = n+1 values,
which is in contradiction to the assumption that at most n values are 0.

• Assuming that both ai and bi would be 1, it would follow that at least
all ai, . . . , an−1 and also all b0, . . . , bi would have to be 1 since the input
lists a and b are sorted. However, these are (n− i)+(i+1) = n+1 values,
which is in contradiction to the assumption that at most n values are 1.

Hence, it is impossible that two input values ai, bi of switch i in the half cleaner
would be both 0 or both 1 (but both could be �). Therefore, yi ∶= min{ai, bi} ∈
{0,�} and yn+i ∶= max{ai, bi} ∈ {�,1} for i = 0, . . . , n − 1 as can be seen by the
table in Figure 3.7. ∎

Now, we will show how the above lemma can be used to implement a Split
module for the construction of an RBS network.

ternary sorters, since we then find target addresses with most significant bits 0,�,1 where
we use � as most significant bit of those inputs that have no associated target address.

42

3.3. Sorters with Half Cleaner based RBS Network

ai bi yi ∶=min{ai, bi} yn+i ∶=max{ai, bi}
�0 �0 �0 �0
0 � 0 �
0 1 0 1
� 0 0 �
� � � �
� 1 � 1
1 0 0 1
1 � � 1

�1 �1 �1 �1

Figure 3.7.: Possible/impossible inputs and outputs of compare-and-swap switches
of the half cleaner under the assumptions given in Lemma 3.2: The
first and the last input/output rows cannot occur, and therefore yi ≠ 1
and yi+n ≠ 0 holds for i = 0, . . . , n − 1.

Theorem 3.1 (Half Cleaner Optimization of Split Modules)
Given an input sequence x0, . . . , x2n−1 where xi ∈ {0,�,1} and where at
most n of the inputs xi are 0 and also at most n of the inputs xi are 1,
then the outputs y0, . . . , y2n−1 of the Split module shown in Figure 3.4
will satisfy the following:

• yi ∈ {0,�} for i = 0, . . . , n − 1

• yn+i ∈ {�,1} for i = 0, . . . , n − 1

Hence, all xi = 0 are routed to the lower half y0, . . . , yn−1 and all xi = 1 are
routed to the upper half yn, . . . , y2n−1.

Proof: Given a ternary input sequence x0, . . . , x2n−1, we can sort its lower
half x0, . . . , xn−1 and its upper half xn, . . . , x2n−1 separately using the sorting
networks shown in Figure 3.4. The outputs of the lower and upper sorting
networks are the sequences b0 ⪰ . . . ⪰ bn−1 and a0 ⪯ . . . ⪯ an−1 mentioned in
Lemma 3.2, respectively. Thus, the above theorem follows now directly from
Lemma 3.2. ∎

According to the above theorem, the output sequence y0, . . . , y2n−1 is parti-
tioned such that the 0s are in the lower half, the 1s are in the upper half, and
inputs � may occur in both halves. Hence, the half cleaner and the two sorting
networks implement a Split module as required for the recursive construction
of a RBS network even in case of partial permutations.

Figure 3.8 shows a general RBS network for 8 inputs constructed by Split
modules according to Figure 3.4. Since the size and the depth of the these half
cleaner circuits are O(n) and O(1), respectively, the size and depth of these
Split modules are mainly dominated by the used sorting networks.

43

Chapter 3: New RBS Networks for Total Permutations

Sort(2)

Sort(2)

HC(4)

Sort(2)

Sort(2)

HC(4)

Sort(2)

Sort(4)

Sort(4)

HC(8)

Sort(2)

Sort(2)

Sort(2)

Figure 3.8.: A RBS network for 8 inputs constructed by Split modules according
to Figure 3.4.

Complexity Analysis of the split module and the Network:

The complexity of this network mainly depends up on the used binary sorter
to implement the Split modules. Clearly, we can compute the depth Dhc(n) ∶=
D(n2)+1 and the size Shc(n) ∶= 2⋅S(n2)+c⋅n of these Split modules for a binary

sorter of depthD(n) and size S(n). For example, for a depthD(n) ∶= a⋅log(n)b
this becomesDhc(n) = a⋅(log(n)−1)b+1 ∈ Θ(a⋅log(n)b) thus becomes negligible
for large n, while for a depth D(n) ∶= a ⋅ n (like in [Nara94]), this becomes
Dhc(n) = a

2n+1 and roughly halvens the depth. For a size S(n) ∶= a ⋅n ⋅ log(n)b
this becomes Shc(n) = a ⋅ n ⋅ (log(n) − 1)b + c ⋅ n ∈ Θ(a ⋅ n ⋅ log(n)b), thus also
negligible for large n. Hence, this half cleaner construction does not improve
the asymptotic complexity of neither the considered binary sorter nor the
network implemented using this construction.

3.4. Summary

In this chapter, we present new non-blocking unicast interconnection networks
based on radix sorting scheme. As any interconnection network based on radix
sorting, also these networks mainly depend on the construction of a suitable
Split module.

The core idea of the proposed Split modules is the use of the permutation
network of Narasimha [Nara94]. Therefore, first two Split modules are based
on a reverse-banyan flip-shuffle permutation network with an outgoing permu-
tation that reverses the addresses. Narasimha showed that using the parities
pi ∶= x0⊕. . .⊕x2i to configure the switches will make the Split module a binary
sorter. Therefore, we present two circuits to compute the switch configura-
tions pi ∶= x0 ⊕ . . . ⊕ x2i as required to implement a Split module. The first
circuit is based on a work- efficient parallel prefix computation and the second
is based on a ranking-based approach.

Since ranks can be computed by a parallel prefix sum using O(n) gates
and O(log(n)) depth, the size and depth of the ranking-based circuit to com-
pute the configuration logic is asymptotically better than the parallel prefix
computation. However, while the ranking-based approach improves the size
and depth of the configuration logic, it has the disadvantage that the com-
puted ranks have to be forwarded to the subnetworks which requires additional
switches. Thus, while saving gates for computing the configuration, we have

44

3.4. Summary

to add gates for forwarding the centrally computed configuration (the ranks)
through the network.

While the final size of the entire RBS network is asymptotically the same
for these two circuits, namely O(n log(n)3), the depth of the RBS network
with the ranking-based approach is only O(log(n)2) while it is O(log(n)3) for
the parallel parity computation.

The third network uses two sorters with a half cleaner to implement the
Split module. Since the size and the depth of the half cleaner circuits to
implement this third RBS network is O(n) and O(1) respectively, the size
and the depth of this RBS network are mainly dominated by the used sorting
networks.

45

Chapter 4
New RBS networks for Partial
Permutations

Contents

4.1. Routing Partial Permutations by Sorting Networks 47

4.2. Routing Partial Permutations 49

4.2.1. Front-end Valid Sorter for Prefix Defined Networks 49

4.2.2. Constructing Split Modules as Ternary Sorters . . . 52

4.2.3. Constructing Split Modules by Ternary Concentrators 53

4.2.4. Constructing Split Modules by Ternary Sorters and
Half Cleaners . 54

4.3. Summary . 54

Nonblocking unicast interconnection networks allow every input component
x0,. . .,xn−1 to be connected with any output component y0, . . . , yn−1 provided
that none of the outputs yj is the target of more than one input xi. Hence,
such networks can implement all n! permutations of the addresses {0, . . . , n−1}
as routes through a switching network. In practice, however, not all input
components have to be always connected to an output component. For this

reason, even all ∑ni=0 i!(ni)
2

partial permutations have to be implemented by
non-blocking unicast interconnection networks.

As already mentioned, sorting networks [Batc68] are an attractive alterna-
tive for the design of non-blocking interconnection networks [GaPa83]. How-
ever, the implementation of partial permutations by sorting networks is not
straightforward and depends on the used sorting algorithms as we will outline
in the next section.

4.1. Routing Partial Permutations by Sorting Networks

Independent on the choice of a particular sorting algorithm, sorting networks
at first only implement total permutations in that they can sort the n inputs

47

Chapter 4: New RBS networks for Partial Permutations

by their target addresses which are numbers 0, . . . , n − 1. If some inputs do
not need a connection to an output, their target addresses are invalid, denoted
as � in the following. Note that there is no ordering of {�,0, . . . , n − 1} that
would still solve the routing problem by a simple sorting approach, since many
values � may now occur and they may have to be routed to different places in
the final output sequence.

For merge-based sorting networks, there is a well-known solution known as
the Batcher-Banyan network [HuKn84; Nara88]. The main idea is thereby
to first treat � as a number larger than all target addresses so that after
using a normal sorting network this way, one obtains a preliminary output
sequence y0, . . . , yk−1, yk, . . . , yn−1 where the k valid inputs were sorted as the
prefix y0, . . . , yk−1 while the invalid ones are placed in the suffix yk, . . . , yn−1.
A final Banyan permutation network can then be used to move the valid
inputs y0, . . . , yk−1 to the right places. To that end, one can simply use a bit-
controlled network like the Ω-network [Lawr75] where invalid target addresses
� are ignored, so that the valid ones are routed to their final destination. It
can be shown [Nara88] that the Ω-network [Lawr75] while being blocking in
general will never block in this setting.

The same approach does however not work for the radix-based networks: If
we treat � as a number larger than all target addresses, it may happen that
valid inputs with a most significant bit 1 will be erroneously routed by Split
modules to the lower sub-network, where they are mixed up with other valid
inputs having a most significant bit 0. Hence, the resulting preliminary output
sequence will not consist of a sorted prefix of valid inputs as in the case of
merge-based networks.

Hence, the Batcher-Banyan construction does not work for RBS networks.
Recall that the task of Split modules was to route the inputs already in the
right halves. Inputs with invalid target addresses can be routed to any half,
but inputs with valid target address must be routed to the lower and upper
sub-networks in case the most significant bit of the target address is 0 and 1,
respectively.

Instead of using binary sorters as in case of total permutations, one could
therefore use ternary sorters as Split modules using the ordering 0 ⪯ � ⪯ 1.
This way, the output sequence of a Split module will still route the inputs
with valid target addresses to the right halves, while invalid inputs may be
routed to any half (note that still at most n

2 inputs can have most significant
bits 0/1). However, while many constructions for binary sorters have been
proposed [JaOr93; LeOr95a; ChOr94; ChCh96; KoOr90; Nara94], none are
known for the ternary case.

Narasimha addressed the problem to route partial permutations in his RBS
network in [Nara94]. In Section III of [Nara94], he explains that his network
can also work with partial permutations if an additional Split module is added
on the left side of his RBS network. However, he neither gave a proof of this
claim, nor did he discuss how that construction could be generalized to other
networks.

Therefore, in this chapter, we give a formal proof of this statement and gen-

48

4.2. Routing Partial Permutations

eralize it to an entire class of configuration circuits. Additionally, also present
three general constructions that can transform binary sorters to ternary Split
modules. This way, one can transform any RBS network that has been con-
structed for total permutations into a more powerful one that can work with
partial permutations as well.

4.2. Routing Partial Permutations

For all networks with partial permutations, we assume that any input xi is
a bitvector in the format given as below: The leftmost q bits xi,0 . . . xi,q−1

are the message bits that should be sent to an output, xi,q is the valid bit
that indicates whether this input contains a message and shall be connected
to some output, and the remaining bits xi,q+1 . . . xi,q+log(n) are the bits of the
target address where xi,q+log(n) is the most significant bit.

xi,0 . . . xi,q−1 xi,q xi,q+1 . . . xi,q+log(n)

For partial permutations, the valid bit xi,q and bit xi,q+log(n) are now consid-
ered together as most significant bit of input xi in that we define the following
value msb (xi) ∈ {0,�,1} by xi,q and xi,q+log(n) as follows:

xi,q xi,q+log(n) msb (xi)
0 ∗ �
1 0 0
1 1 1

Therefore, we consider now inputs xi of the Split modules that have msb (xi) ∈
{0,�,1} where � means that the xi has no valid target address, while 0 and
1 are the most significant bits of the otherwise valid target address. In every
stage of the RBS networks, the Split modules will remove a target address bit
xi,q+log(n) in the RBS network so that finally only the message and the valid
bit will arrive at the output.

4.2.1. Front-end Valid Sorter for Prefix Defined Networks

A major observation made by Narasimha [Nara94] was that his RBS network
also works for partial permutations if an additional Split module (called a front-
end concentrator) is added (see Figure 4.1 and 4.3 for the general construction
and Figure 4.2 for n = 8 inputs). Such a additional Split module(also called
a valid sorter) is also a RB-FS-RV network that is used as a special binary
sorter: To this end, we simply sort the inputs xi according to their negated
valid bits xi,q. This means that the invalid messages are sorted to a suffix of
the sequence. As a result, the vector ui that is generated as output from the
front-end valid sorter is a prefix sequence defined as follows:

49

Chapter 4: New RBS networks for Partial Permutations

TRBS(n)

V
a
lid

S
o
rt

e
r

:=

 P
a
rt

ia
l

Pe
rm

u
ta

ti
o
n

Figure 4.1.: Converting Sequences to Prefix Sequences.

y7

y6

y5

y4

y3

y2

y1

y0

x7

x6

x5

x4

x3

x2

x1

x0

Figure 4.2.: Entire Interconnection Network based on Radix-based Sorting.

Definition 4.1 〈 Prefix Sequence 〉
Sequence x0, . . . , xn−1 is called a prefix sequence, if the sequence
msb (x0), . . . , msb (xn−1) of their most significant bits is of the form
b0, . . . , bk,�, . . . ,� with bi ∈ {0,1}.

The task of the front-end valid sorter is therefore to partition the inputs into
valid and invalid ones which can be easily done by sorting according to ¬xi,q.
We will prove next that the configurations we determined in the previous
chapter can route all prefix sequences correctly. This is easily seen by the
ranking-based approach, so that we first focus on this one: After the front-end
binary sorter, we apply the following mapping before we forward the inputs
to the Split modules:

xi,q xi,q+log(n) %�(xi,q) %�(xi,q+log(n))
0 ∗ 0 0
1 0 1 0
1 1 1 1

Thus, we define %�(xi,q) ∶= xi,q and %�(xi,q+log(n)) ∶= xi,q ∧ xi,q+log(n) which
will make sure that bit xi,q+log(n) is only 1 for valid entries. Ranks are now
computed as follows:

ri ∶=
⎛
⎝

i

∑
j=0

¬%�(xj,q+log(n))
⎞
⎠
− 1 for i = 0, . . . , n − 1,

i.e., we are computing ranks for those inputs that are either invalid xi,q = 0
or have xi,q+log(n) = 0. These inputs are then routed by the configuration we

50

4.2. Routing Partial Permutations

determined in the previous Section 3.3.2 to the right local target addresses,
i.e., their ranks. Since we already have proved that this is always possible for
any binary sequence, we conclude the following theorem:

Theorem 4.1 (Ternary Sorting Prefix Sequences) All binary
sorters configured by the circuits described in previous chapter can sort
any ternary prefix sequence by the ordering 0 ⪯ � ⪯ 1.

Proof: As we compute the ranks as explained above, inputs with msb (xi) ∈
{0,�} will be routed correctly to the local addresses given as their ranks.
As these are the first contiguous addresses 0, . . . , k, and are monotonically
increasing, i.e., i ≤ j implies ri ≤ rj , it follows that inputs xi with msb (xi) = 0
have smaller ranks than inputs xi with msb (xi) = �. Thus, all 0s will appear
in a prefix of the sequence before the �s, and it also follows that inputs xi with
msb (xi) = 1 are all routed into the suffix. As a result, the output after the
ranking-based routing is a sorted ternary sequence 0i�j1k. Note further that
the relative position of inputs xi with msb (xi) ∈ {0,�} are maintained while
others may be permuted.

As the parity-based configurations also use %�(xj,q+log(n)), we conclude that
their configuration is again the same. ◻

:=TRBS(n) Split(n)

TRBS(n/2)

TRBS(n/2)

Mirror

Figure 4.3.: Ternary RBS network.

Theorem 4.2 (Routing Partial Permutations) The RBS network
with a front-end concentrator as constructed according to Figures 4.1 and
4.3 will correctly route any partial permutation if the circuits described in
the previous chapter are used as Split modules.

Proof: Finally, a little modification has to be made to the radix-based sorting
network so that it can be used as an interconnection network for partial permu-
tations: We therefore implement a TRBS network for n inputs x0, . . . , xn−1 as
shown in Figure 4.3. Due to Figure 4.1, we can assume that the input is a prefix
sequence bi�j with boolean values b. Thus, using one of the three Split modules
of the previous section, it will be sorted into a sequence u0, . . . , un−1, where
sorted means that msb (ui) ⪯ msb (ui+1) with ordering 0 ⪯ � ⪯ 1. Since the

51

Chapter 4: New RBS networks for Partial Permutations

inputs x0, . . . , xn−1 must be a partial permutation of the addresses 0, . . . , n−1,
there are at most n

2 inputs xi with msb (xi) = 0 and there are also at most n
2

inputs xi with msb (xi) = 1. Hence, we conclude that the halves u0, . . . , un
2
−1

and un
2
, . . . , un−1 must be of the form 0m�n

2
−m and �n

2
−k1k, respectively. For

this reason, we reverse the upper half �n
2
−k1k by the Mirror module shown

in Figure 4.3 so that the inputs to the two TRBS modules become prefix se-
quences u0, . . . , un

2
−1 and un−1, . . . , un

2
. Since both halves are now again prefix

sequences, it follows by the induction hypothesis that these are also routed
correctly by a TRBS module. ◻

Hence, the circuits we constructed using the RB-FS-RV network are able to
sort all ternary prefix sequences by little modifications: We just have to con-
sider %�(xi,q+log(n)) ∶= xi,q∧xi,q+log(n) for computing the ranks or the parities to
achieve this. Since arbitrary ternary sequences are converted to ternary pre-
fix sequences by the front-end concentrator, and since our Split modules also
generate again prefix sequences, these RBS networks can handle all partial
permutations.

4.2.2. Constructing Split Modules as Ternary Sorters

We already proved that the RBS network built by Split modules that discussed
in previous chapter can route all partial permutations. This is not possible for
arbitrary RBS networks using other Split modules. For this reason, we con-
sider ways to generate ternary sorters from binary sorters. Using the ternary
sorters as Split modules leads to other RBS networks that can handle partial
permutations.

binary
sorter

(1-sorter)

binary
sorter

(0-sorter)

⊥➜0

⊥➜1

M
U

X
 (

se
le

ct
 0

 f
ro

m
 0

-s
o
rt

e
r

a
n

d
 1

fr

o
m

 1
-s

o
rt

e
r)

x[n-1]

x[0]

x[n-1]

x[0]

y[n-1]

y[0]

u[0]

u[n-1]

l[n-1]

l[0]

xi,q xi,q+log(n) x0
i,q x0

i,q+log(n) x
1
i,q x1

i,q+log(n)
0 ∗ 0 1 0 0
1 0 1 0 1 0
1 1 1 1 1 1

x0
i,q ∶= xi,q x0

i,q+log(n) ∶= ¬xi,q ∨ xi,q+log(n)
x1
i,q ∶= xi,q x1

i,q+log(n) ∶= xi,q ∧ xi,q+log(n)

li,q ∶ 1 . . . 1 ∗ . . . ∗ ∗ . . . ∗
li,q+log(n) ∶ 0 . . . 0 1 . . . 1 1 . . . 1

ui,q ∶ ∗ . . . ∗ ∗ . . . ∗ 1 . . . 1
ui,q+log(n) ∶ 0 . . . 0 0 . . . 0 1 . . . 1

yi,q ∶ 1 . . . 1 0 . . . 0 1 . . . 1
yi,q+log(n) ∶ 0 . . . 0 1 . . . 1 1 . . . 1

Figure 4.4.: Construction of a Ternary Sorter by two Binary Sorters.

The left-hand side of Figure 4.4 shows how a ternary sorter can be con-
structed by two binary sorters that we call the 0-sorter and the 1-sorter, re-
spectively. Both binary sorters obtain the n inputs x0, . . . , xn−1 after a pre-
processing step that modifies the msbs xi,q+log(n) of the invalid target addresses
as shown on the upper right part of Figure 4.4 as x0

i,q+log(n) and x1
i,q+log(n) for

the 0- and 1-sorter, respectively. Note that after the pre-processing step, only
the valid inputs have msbs 0 and 1 for the 0- and 1-sorter, respectively.

52

4.2. Routing Partial Permutations

After this, the 0-sorter and the 1-sorter sort their input sequences to output
sequences l0, . . . , ln−1 and u0, . . . , un−1, respectively, by only considering the
modified msbs x0

i,q+log(n) and x1
i,q+log(n). Hence, the 0-sorter uses the ordering

0 ≺ {�,1} while the 1-sorter uses ordering {0,�} ≺ 1 (regarding the original
inputs).

The lower right part of Figure 4.4 shows how the 0- and 1-sorter’s output se-
quences look like in general: The 0-sorter’s output sequence starts with values
(li,q, li,q+log(n)) = (1,0), i.e., 0, followed by values (li,q, li,q+log(n)) = (∗,1), i.e., �
or 1, while the 1-sorters output sequence starts with values (ui,q, ui,q+log(n)) =
(∗,0), i.e., 0 or �, followed by values (ui,q, ui,q+log(n)) = (1,1), i.e., 1. The final
stage of multiplexers will then determine output yi by selecting one of the
corresponding values li or ui as follows where l′i is obtained from li by setting
its valid bit to 0:

yi ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ui : if ui,q ∧ ui,q+log(n)
li : if li,q ∧ ¬li,q+log(n)
l′i : otherwise

Note that the number of valid inputs can be at most n, hence, we never have
both ui,q ∧ ui,q+log(n) and li,q ∧ ¬li,q+log(n). Note further that we have to set
li,q ∶= 0 in case li is chosen for yi, but li,q ∧ ¬li,q+log(n) does not hold (this
way, we avoid that an input with (xi,q, xi,q+log(n)) = (1,1) will be taken from
the 0-sorter that has already been copied from the 1-sorter). It can be easily
verified that the circuit shown in Figure 4.4 implements a ternary sorter, i.e.,
any input sequence x0, . . . , xn−1 of values {0,�,1} is correctly sorted using the
total order 0 ≺ � ≺ 1.

4.2.3. Constructing Split Modules by Ternary Concentrators

We have already mentioned that the Split modules do not have to be ternary
sorters to partition the inputs according to their msbs. Instead, it is sufficient
to route all inputs xi with (xi,q, xi,q+log(n)) = (1,1) to the upper half and all
inputs xi with (xi,q, xi,q+log(n)) = (1,0) to the lower half, while the invalid
inputs xi with xi,q = 0 may be routed to any half among the other values
routed there.

For this reason, we can also consider the slightly simplified construction
given in Figure 4.5. Compared to Figure 4.4, we modify the msbs xi,q+log(n) of
the target addresses in the same way, but additionally invalidate all 1s and 0s in
the 0- and 1-sorter, respectively, as shown in the upper right part of Figure 4.5.
Hence, the 0-sorter will only have inputs (x0

i,q, x
0
i,q+log(n)) ∈ {(0,1), (1,0)}, i.e.,

{�,0}, and the 1-sorter will only have inputs (x1
i,q, x

1
i,q+log(n)) ∈ {(0,0), (1,1)},

i.e., {�,1}.

Again, the 0- and 1-sorter only consider the modified msbs x0
i,q+log(n) and

x1
i,q+log(n), respectively, to generate their output sequences l0, . . . , ln−1 and
u0, . . . , un−1, respectively.

Assuming now that at most n
2 inputs xi satisfy (xi,q, xi,q+log(n)) = (1,0)

and also at most n
2 inputs xi satisfy (xi,q, xi,q+log(n)) = (1,1), we can simply

53

Chapter 4: New RBS networks for Partial Permutations

y[n-1]

y[0]

y[n/2]

y[n/2-1]

binary
sorter

(1-sorter)

binary
sorter

(0-sorter)

⊥➜0

⊥➜1

x[n-1]

x[0]

x[n-1]

x[0]

u[n-1]

u[0]

l[n-1]

l[0]

xi,q xi,q+log(n) x0
i,q x

0
i,q+log(n) x

1
i,q x

1
i,q+log(n)

0 ∗ 0 1 0 0
1 0 1 0 0 0
1 1 0 1 1 1

x0
i,q ∶= xi,q ∧ ¬xi,q+log(n) x0

i,q+log(n) ∶= ¬xi,q ∨ xi,q+log(n)
x1
i,q ∶= xi,q ∧ xi,q+log(n) x1

i,q+log(n) ∶= xi,q ∧ xi,q+log(n)

li,q ∶ 1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0
li,q+log(n) ∶ 0 . . . 0 1 . . . 1 1 . . . 1 1 . . . 1

ui,q ∶ 0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1
ui,q+log(n) ∶ 0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1

yi,q ∶ 1 . . . 1 0 . . . 0 0 . . . 0 1 . . . 1
yi,q+log(n) ∶ 0 . . . 0 1 . . . 1 0 . . . 0 1 . . . 1

Figure 4.5.: Construction of a Ternary Splitter by Binary Sorters.

determine yi as follows (see lower right part of Figure 4.5):

yi ∶= { ui : if i ∈ {n2 , . . . , n − 1}
li : if i ∈ {0, . . . , n2 − 1}

As long as at most n
2 inputs xi are 0 and 1, the output sequence will even be

a sorted ternary sequence. However, if more than n
2 inputs xi should be 0 or

more than n
2 inputs xi should be 1, the circuit will omit some of the inputs and

will therefore no longer be correct. We therefore do not consider the circuit
of Figure 4.5 as a ternary sorter, but each part of it is a (n, n2) concentrator
that concentrates on the 0 and 1 values, respectively.

While not yielding a ternary sorter for general ternary sequences, Figure 4.5
still sorts all ternary input sequences that will appear in RBS networks for
partial permutations. However, it does not allow some further optimizations
as the one shown in the next section.

4.2.4. Constructing Split Modules by Ternary Sorters and Half
Cleaners

In section 3.3, we have already shown how (ternary) Split modules with n
ports can be constructed using two (ternary) sorters with n

2 ports and a half
cleaner circuit(is also shown in Figure 4.6). Half cleaners were introduced by
Batcher in [Batc68] for the construction of his bitonic sorting networks.

As already proved, it is required to use sorting networks for the construction
of Figure 4.6. In particular, the construction shown in the previous section,
i.e., in Figure 4.5 cannot be used. Hence, even though our initial construc-
tion of Figure 4.4 cannot compete with the one in Figure 4.5, it allows the
optimization shown in Figure 4.6.

4.3. Summary

In practice, not all input components have to be always connected to an output
component. For this reason, partial permutations have to be implemented by

54

4.3. Summary

Sort(n/2)

Sort(n/2)

HC(n):=Split(n)

Figure 4.6.: Construction of a Ternary Splitter by Ternary Sorters and a Half
Cleaner.

non-blocking unicast interconnection networks. The implementation of partial
permutations by sorting networks is not straightforward and depends on the
used sorting networks and algorithms. For merge-based sorting networks,
there is a well-known solution to implement partial permutations, known as
the Batcher-Banyan network. However, The same approach, used for merge-
based networks to implement the partial permutations, does not work for the
radix-based networks.

For RBS network, only one solution exist which is suggested by Narasimha.
He claimed that his network can also work with partial permutations if an
additional Split module is added on the left side of his RBS network. he did
not discuss how that construction could be generalized to other networks.

Therefore, in this chapter, we generalized it to an entire class of configuration
circuit. Additionally, We also present three general constructions that can
transform binary sorters to ternary Split modules. This way, one can transform
any RBS network that has been constructed for total permutations into a one
that can work with partial permutations as well.

55

Chapter 5
Experimental Results and
Comparison

Contents

5.1. Asymptotic Complexities 57

5.2. Experimental Results 58

5.2.1. Total Permutations 59

5.2.2. Partial Permutations 59

5.3. Analysis of Results . 60

In this chapter, we present experimental results of proposed interconnection
networks based on radix-sorting, both for total and partial permutations. We
also report asymptotic complexities of our networks and a comparison with
other state of the art interconnection networks [Nara94; KoOr90; ChOr94;
ChCh96; Batc68] to quantitatively demonstrate the effectiveness of the pro-
posed interconnection networks. Finally, we analyze and discuss the obtained
experimental results.

5.1. Asymptotic Complexities

Table 5.1 summarizes the asymptotic complexities obtained for our networks
and compares them with others. It shows the comparison of the sizes and the
depths of the networks. Note that ‘size’ denotes here the number of logical
gates used in the circuits and ‘depth’ denotes the length of the longest path
through combinational gates from inputs to outputs in the considered circuit.
An ideal network has both a size as small as possible and a depth as small as
possible. However, there is a trade-off between these two parameters.

In Table 5.1, it can be seen that the crossbar network has the worst size
complexity of O(n2), and that the other networks have the same asymptotic
size O(n(log(n))3). The depths of the networks differ more: The Narasimha

57

Chapter 5: Experimental Results and Comparison

Table 5.1.: Comparsion of asymptotic complexities

network depth size

Crossbar O(log(n)) O(n2)
Narasimha [Nara94] O(n) O(n(log(n))3)
Parallel prefix computation O(log(n)3) O(n(log(n))3)
Ranking based computation O(log(n)2) O(n(log(n))3)
Batcher-Bitonic [Batc68] O(log(n)3) O(n(log(n))3)
Chien-Oruç [ChOr94] O(log(n)3) O(n(log(n))3)
Cheng-Chen [ChCh96] O(log(n)2) O(n(log(n))3)

network has an unacceptable depth of O(n) while the parallel prefix computa-
tion, the Batcher-bitonic, and the Chien-Oruç network have depth O(log(n)3),
and the ranking-based computation and Cheng-Chen’s network even have only
depth O(log(n)2).

The optimal depth O(log(n)) is only obtained by the crossbar network, but
its size of O(n2) is unacceptable. Thus, we can conclude that the crossbar
network cannot be recommended due to the worst size complexity of the net-
work. The size complexity of the other networks is more or less the same, but
they differ in their depths.

Depth and size of partial permutation circuits are mainly dominated by
the used binary sorters which are also building blocks of total permutation
networks. As we have already discussed in Chapter 3, the construction of
a split module by a binary sorter and a half cleaner does not improve the
asymptotic complexity of the considered binary sorter. Therefore, we can say
that the asymptotic complexities of partial permutation circuits are the same
as those of the corresponding total permutation networks.

5.2. Experimental Results

The experimental results considered in this chapter were obtained by imple-
menting Split(n) modules and their corresponding RBS networks for 6 binary
sorters mentioned in Table 5.1. In the following, we abbreviate these networks
by the acronyms of the authors of the paper where these binary sorters were
originally published: Nara94 [Nara94], ChOr94 [ChOr94], ChCh96 [ChCh96],
Batc68 (the bitonic sorter reduced to one bit) [Batc68], JaSJ17 [JaSJ17], and
JaSc18c [JaSc18c]. JaSJ17 and JaSc18c denote our prefix-based and ranking-
based circuits, respectively.

All experimental results are made by a netlist generator written in F#
and the Cadence® RC compiler (version 14.2) using 65nm CMOS technology.
In all tables and plotted graphs, size and depth are the results that were
obtained by our netlist generator while the number of cells, chip area, power
consumption and latency are the results which are obtained by the Cadence
tool.

58

5.2. Experimental Results

5.2.1. Total Permutations

Table A.1 and Figure B.1 show the comparison of Split(n) modules for dif-
ferent numbers of inputs n. Similarly, Table A.6 and the plotted graphs in
Figure B.6 show the comparison of the corresponding networks for different
numbers of inputs n. The runtime for synthesis is several miliseconds up to
n = 64, however, it exponentially grows for higher values of n. Therefore, we
have synthesized all the networks only up to n = 128.

Comparing the plotted graphs in Figure B.1, B.6 and tables in Table A.1,
A.6, it turns out that size and area of ChOr94 and Batc68 quickly grow with
the number of inputs. Area and size of ChCh96, Nara94, and JaSJ17 Split
modules and networks are more or less the same, but they differ in their depth
and latency. The Nara94 network cannot be recommended since its depth
and latency grow quickly with number of inputs. Depths of our JaSJ17 and
the ChCh96 networks are comparable in the ranges up to n = 64, where the
former is better for n ≤ 64, and becomes worse after that. Hence, we would
recommend our JaSJ17 network for n ≤ 64 and the ChCh96n network for
n > 64. Thus, ChCh96 and our JaSJ17 are better in terms of size, cells, area,
depth and latency.

Table A.2, A.7 and the plotted graphs in Figure B.2, B.7 show the experi-
mental results that we have obtained by implementing the Split modules and
RBS networks using the half cleaner optimization. Wee have already discussed
that the half cleaner optimization does not improve the asymptotic complexity
of the considered binary sorters. However, after comparing the experimental
results of tables Table A.6 and Table A.7, it is clear that it improves the size
and depth of the considered binary sorters as well as the network based on
these binary sorters.

5.2.2. Partial Permutations

There are different ways to generalize RBS-interconnection networks to deal
with partial permutations as discussed in Chapter 4. Depth and size of the
partial permutation circuits are mainly dominated by the used binary sorters.
While the depth only increases by some constant, the size obviously is twice
the size of the binary sorters with few additional gates for mapping the the
values and the half cleaner. However, the asymptotic growth of depth and size
of circuits are the same as the those for the total permutations.

Table A.3, Table A.5, and Table A.4 show the experimental results ob-
tained for different ternary sorters, ternary concentrators and ternary sorters
with half-cleaner constructions, respectively. Similarly, Table A.8, Table A.10
and Table A.9 show the experimental results obtained for the corresponding
networks for partial permutations, respectively. The size always improves from
Table A.8 via Table A.10 to Table A.9, but the depths are sometimes best for
ternary concentrators and sometimes for ternary sorters with half cleaners.

Table A.11 shows the experimental results obtained for front end valid sorter
RBS networks. As we have already discussed in Chapter 4, this network
construction works for only a special class of binary sorters. Thus, the table

59

Chapter 5: Experimental Results and Comparison

shows only three networks out of the six. Comparing the results of Table A.11
with Table A.8, Table A.10, and Table A.9, it turns out that both size and
depth of the front-end valid sorter RBS networks are better. It is also clear
that out of these three networks, our JaSJ17 network is overall best.

Table A.12 and the plotted graphs in Figure A.12 show the experimental
results for other non-blocking networks and our JasJ17 with front-end valid
sorter. Here, we have considered three networks as our competitors: Batcher
banyan, Beneš, and a crossbar network. Results for the Beneš network are
directly taken from [JiYa17] as they have also realized it using Cadence in
65 nm technology. On comparison, it turns out that the number of cells of
Batcher banyan quickly grows with the number of inputs. The number of
cells used by the crossbar and our network are more or less the same for the
considered inputs. However, they differ in their latency and power. It can be
easily be observed that the latency and the power consumption of the crossbar
is much better than those of our JaSJ17 network. However, we know that the
crossbar network has the worst size complexity of O(n2), it will grow quickly
for larger values of n. Thus, we can conclude that the crossbar network could
only be recommended for small value of n, but for larger values of inputs, our
JaSJ17 network will be superior.

5.3. Analysis of Results

The experimental results obtained by the netlist generator show the expected
growth rates for the size and depth of the networks. We also observed that the
of size (obtained by the netlist generator) and the number of cells (obtained by
Cadence) is approximately constant for different number of inputs. Similarly,
the quotient of depth and latency are also approximately constant for different
number of inputs . This brings us to the conclusion that the growth rates of
the size and the depth obtained through the two experimental methods are
same. However, the absolute numbers obtained through both the methods
are not the same for the same number of inputs. The reason behind this
is the following: Cadence also optimizes the circuit and reduces the overall
gate count. Also, our netlist generator generates an approximate network
netlist where it assumes that all components have the same size and depth
irrespective of their fan-out, while Cadence generates exact values of these
parameters considering the fan-out of all components.

The power dissipation of networks realized in CMOS mainly consist of dy-
namic and leakage power. The dynamic power is proportional to frequency
and parasitic capacitance while leakage power is significantly smaller and can
be assumed as zero for all calculations. In order to have a fair comparison,
all power dissipation results are obtained at a constant operating frequency of
100 MHz and constant supply voltage of 1.2 V. Therefore, power dissipation
should be proportional to effective parasitic capacitance. To a first order ap-
proximation, this can be assumed to be proportional to the area. However,
as different cells have different area to parasitic capacitance ratio. In partic-
ular, the ratio of parasitic capacitance to cell area is larger for components

60

5.3. Analysis of Results

with larger drive strengths. Therefore, power dissipation is proportional to
Ax where x is slightly larger than 1 because for higher values of n there is
the large probability that components with higher drive strength will be used.
The value of x is found to be in the range of 1.1 to 1.3.

61

Chapter 6
Conclusions

This thesis presents new radix-based interconnection networks to improve the
limitations of existing interconnection networks and reviews and compares
these with some existing nonblocking radix-based interconnection networks.
Special modifications are required for sorting networks for routing partial
permutations. For merge-based sorting networks, there is a well-known so-
lution known as the Batcher-Banyan network. However, for the larger class
of RBS networks this does not work, and there is only one solution known by
Narasimha’s network that can route partial permutations. Thus, this thesis
presents a special extension of the proposed networks which allows them to
also route partial permutations. Moreover, three general constructions were
presented to convert any binary sorter to a ternary split module which is the
key to construct a radix-based interconnection network that can cope with
partial permutations. The thesis compares also chip designs of these networks
with other radix-based sorting networks as well as with the Batcher-Banyan,
crossbar and Beneš networks as competitors. As a result, it turns out that
the proposed radix-based networks are superior to the Batcher-Banyan and
Beneš networks. However, up to a certain value of n, crossbars are better but
after that, its size grows quickly beyond reasonable thresholds. Hence, as a
result, it turn out that the proposed radix-based networks are superior and
could form the basis of large manycore architectures.

63

Bibliography

[AgIS09] A. Agarwal, C. Iskander, and R. Shankar. “Survey of Network
on Chip (NoC) Architectures and Contributions”. In: Journal of
Engineering, Computing and Architecture 3.1 (2009).

[Andr77] S. Andresen. “The Looping Algorithm Extended to Base 2l Rear-
rangeable Switching Networks”. In: IEEE Transactions on Com-
munication 25 (1977), pp. 1057–1063.

[Batc68] K.E. Batcher. “Sorting Networks and their Applications”. In:
AFIPS Spring Joint Computer Conference. Vol. 32. 1968, pp. 307–
314.

[BeMi02] L. Benini and G. De Micheli. “Networks on chips: a new SoC
paradigm”. In: Computer 35.1 (Jan. 2002), pp. 70–78.

[BEAC08] Shane Bell, Bruce Edwards, John Amann, Rich Conlin, Kevin
Joyce, Vince Leung, John MacKay, Mike Reif, Liewei Bao, John
Brown, et al. “Tile64-processor: A 64-core soc with mesh inter-
connect”. In: Solid-State Circuits Conference, 2008. ISSCC 2008.
Digest of Technical Papers. IEEE International. IEEE. 2008,
pp. 88–598.

[Bene64] V.E. Beneš. “Optimal Rearrangeable Multistage Connecting Net-
works”. In: The Bell System Technical Journal 43 (1964), pp. 1641–
1656.

[Bene65] V.E. Beneš. Mathematical Theory of Connecting Networks and
Telephone Traffic. Academic Press, 1965.

[Bene75] V.E. Beneš. “Proving the Rearrangeability of Connecting Net-
works by Group Calculations”. In: The Bell System Technical
Journal 45 (1975), pp. 421–434.

[BhJS15] A. Bhagyanath, T. Jain, and K. Schneider. “A Time-Predictable
Model of Computation”. In: Real-Time Systems Symposium (RTSS).
Ed. by M. Caccamo. San Antonio, Texas, USA: IEEE Computer
Society, 2015, p. 376.

[BjMa06] T. Bjerregaard and S. Mahadevan. “A Survey of Research and
Practices of Network-on-Chip”. In: ACM Computing Surveys (CSUR)
38.1 (Mar. 2006), pp. 1–51.

65

Bibliography

[BJSH15] H. Bokhari, H. Javaid, M. Shafique, J. Henkel, and S. Parameswaran.
“SuperNet: multimode interconnect architecture for manycore
chips”. In: Design Automation Conference (DAC). San Francisco,
CA, USA: ACM, 2015, 85:1–85:6.

[BKMD04] Doug Burger, Stephen W Keckler, Kathryn S McKinley, Mike
Dahlin, Lizy K John, Calvin Lin, Charles R Moore, James Burrill,
Robert G McDonald, and William Yoder. “Scaling to the End of
Silicon with EDGE Architectures”. In: Computer 37.7 (2004),
pp. 44–55.

[Cam03] H. Cam. “Rearrangeability of (2n-1)-Stage Shuffle-Exchange Net-
works”. In: SIAM Journal of Control and Optimization (SICON)
32.3 (2003), pp. 557–585.

[ChCh96] W.-J. Cheng and W.-T. Chen. “A New Self-Routing Permuta-
tion Network”. In: IEEE Transactions on Computers 45.5 (May
1996), pp. 630–636.

[CaFo99] H. Çam and J.A.B. Fortes. “Work-Efficient Routing Algorithms
for Rearrangeable Symmetrical Networks”. In: IEEE Transac-
tions on Parallel and Distributed Systems 10.7 (July 1999), pp. 733–
741.

[Chun78] F.R.K. Chung. “On Concentrators, Superconcentrators, Gener-
alizers, and Nonblocking Networks”. In: The Bell Systems Tech-
nical Journal 58.8 (Oct. 1978), pp. 1765–1777.

[Clos53] C. Clos. “A Study of Non-Blocking Switching Networks”. In: Bell
System Technical Journal 32.2 (1953), pp. 406–424.

[ChOr94] M.V. Chien and A.Y. Oruç. “High Performance Concentrators
and Superconcentrators Using Multiplexing Schemes”. In: IEEE
Transactions on Communications 42.11 (Nov. 1994), pp. 3045–
3050.

[Corp94] Henk Corporaal. “Design of transport triggered architectures”.
In: VLSI, 1994. Design Automation of High Performance VLSI
Systems. GLSV’94, Proceedings., Fourth Great Lakes Symposium
on. IEEE. 1994, pp. 130–135.

[DaTo04] W.J. Dally and B. Towles. Principles and Practices of Intercon-
nection Networks. Morgan Kaufmann, 2004.

[Feng81] T. Feng. “A Survey of Interconnection Networks”. In: IEEE Com-
puter 14.12 (Dec. 1981), pp. 12–27.

[FeSe94] T.-Y. Feng and S.-W. Seo. “A New Routing Algorithm for a Class
of Rearrangeable Networks”. In: IEEE Transactions on Comput-
ers (T-C) 43.11 (1994), pp. 1270–1280.

[GoLi98] L.R. Goke and G. Jack Lipovski. “Banyan Networks for Parti-
tioning Multiprocessor Systems”. In: 25 Years of the Interna-
tional Symposia on Computer Architecture (ISCA). Barcelona,
Spain: ACM, 1998, pp. 117–124.

66

Bibliography

[GaPa83] Z. Galil and W.J. Paul. “An Efficient General-Purpose Paral-
lel Computer”. In: Journal of the ACM (JACM) 30.2 (1983),
pp. 360–387.

[HuKn84] A. Huang and S. Knauer. “Starlite: A wideband digital switch”.
In: Global Telecommunications Conference (GLOBECOM). 1984,
pp. 121–125.

[Hols09] R. Holsmark. “Deadlock Free Routing in Mesh Networks on Chip
with Regions”. PhD. PhD thesis. Linköping Studies in Science
and Technology, 2009.

[HoSR98] E. Horowitz, S. Sahni, and S. Rajasekaran. Computer Algorithms.
Computer Science Press, 1998.

[HeWC04] J. Henkel, W. Wolf, and S. Chakradhar. “On-chip networks: a
scalable, communication-centric embedded system design paradigm”.
In: International Conference on VLSI Design. IEEE Computer
Society, 2004, pp. 845–851.

[JaOr93] C.Y. Jan and A.Y. Oruç. “Fast Self-Routing Permutation Switch-
ing on an Asymptotically Minimum Cost Network”. In: IEEE
Transactions on Computers 42.12 (Dec. 1993), pp. 1469–1479.

[JaSc16] T. Jain and K. Schneider. “Verifying the Concentration Property
of Permutation Networks by BDDs”. In: Formal Methods and
Models for Codesign (MEMOCODE). Ed. by E. Leonard and K.
Schneider. Kanpur, India: IEEE Computer Society, 2016, pp. 43–
53.

[JaSc18] T. Jain and K. Schneider. “The Half Cleaner Lemma: Construct-
ing Efficient Interconnection Networks from Sorting Networks”.
In: Parallel Processing Letters 28.1 (Mar. 2018).

[JaSc18a] T. Jain and K. Schneider. “Routing Partial Permutations in Gen-
eral Interconnection Networks based on Radix Sorting”. In: Meth-
oden und Beschreibungssprachen zur Modellierung und Verifika-
tion von Schaltungen und Systemen (MBMV). Ed. by O. Bring-
mann and A. von Bernuth. ISBN 978-3-00-059317-8. Tübingen,
Germany, 2018.

[JaSc18c] T. Jain and K. Schneider. “Routing Partial Permutations in In-
terconnection Networks based on Radix Sorting”. In: 2018 13th
International Symposium on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC). IEEE. 2018, pp. 1–10.

[JaSJ17] T. Jain, K. Schneider, and A. Jain. “An Efficient Self-Routing
and Non-Blocking Interconnection Network on Chip”. In: Net-
work on Chip Architectures (NoCArc). Ed. by M. Ebrahimi and
T. Hollstein. Boston, MA, USA: ACM, 2017, 4:1–4:6.

67

Bibliography

[JaSJ17b] T. Jain, K. Schneider, and A. Jain. “Deriving Concentrators from
Binary Sorters Using Half Cleaners”. In: Reconfigurable Comput-
ing and FPGAs (ReConFig). Ed. by P. Athanas, R. Cumplido,
C. Feregrino, and R. Sass. Cancun, Mexico: IEEE Computer So-
ciety, 2017, pp. 1–6.

[JaSJ17c] T. Jain, K. Schneider, and A. Jain. Deriving Concentrators from
Binary Sorters Using Half Cleaners. Poster Presented at ReCon-
Fig. Dec. 2017.

[JiYa14] Y. Jiang and M. Yang. “On circuit design of on-chip non-blocking
interconnection networks”. In: System-on-Chip Conference (SOCC).
Las Vegas, NV, USA: IEEE Computer Society, 2014, pp. 192–197.

[JiYa17] Yikun Jiang and Mei Yang. “Hardware design of parallel switch
setting algorithm for Benes networks”. In: International Journal
of High Performance Systems Architecture 7.1 (2017), pp. 26–40.

[Kann05] R. Kannan. “The KR-Beneš Network: A Control-Optimal Re-
arrangeable Permutation Network”. In: IEEE Transactions on
Computers (T-C) 54.5 (2005), pp. 534–544.

[KiDA07] J. Kim, W.J. Dally, and D. Abts. “Flattened butterfly: a cost-
efficient topology for high-radix networks”. In: International Sym-
posium on Computer Architecture (ISCA). Ed. by D.M. Tullsen
and B. Calder. San Diego, California, USA: ACM, 2007, pp. 126–
137.

[KeME16] S. Kerrison, D. May, and K. Eder. “A Beneš Based NoC Switch-
ing Architecture for Mixed Criticality Embedded Systems”. In:
Embedded Multicore/Many-core Systems-on-Chip (MCSOC). Lyon,
France: IEEE Computer Society, 2016, pp. 125–132.

[KoOr90] D.M. Koppelman and A.Y. Oruç. “A Self-Routing Permutation
Network”. In: Journal of Parallel and Distributed Computing
10.2 (1990), pp. 140–151.

[KrSn83] C.P. Kruskal and M. Snir. “The Performance of Multistage In-
terconnection Networks for Multiprocessors”. In: IEEE Transac-
tions on Computers 32.12 (Dec. 1983), pp. 1091–1098.

[KrSn86] C.P. Kruskal and M. Snir. “A Unified Theory of Interconnection
Network Structure”. In: Theoretical Computer Science (TCS) 48
(1986), pp. 75–94.

[KiYM97] M.K. Kim, H. Yoon, and S.R. Maeng. “On the correctness of
inside-out routing algorithm”. In: IEEE Transactions on Com-
puters (T-C) 46.7 (July 1997), pp. 820–823.

[Lai00] Wei Kuang Lai. “Performing permutations on interconnection
networks by regularly changing switch states”. In: IEEE Trans-
actions on Parallel & Distributed Systems 8 (2000), pp. 829–837.

68

Bibliography

[Lawr75] D.H. Lawrie. “Access and Alignment of Data in an Array Pro-
cessor”. In: IEEE Transactions on Computers (T-C) 24 (Dec.
1975), pp. 1145–1155.

[LBFS98] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikr-
ishna, Jonathan Babb, Vivek Sarkar, and Saman Amarasinghe.
“Space-time scheduling of instruction-level parallelism on a raw
machine”. In: ACM SIGPLAN Notices. Vol. 33. 11. ACM. 1998,
pp. 46–57.

[Lee85] K.Y. Lee. “On the Rearrangeability of (2 log(N)-1) Stage Permu-
tation Networks”. In: IEEE Transactions on Computers (T-C)
34.5 (1985), pp. 412–425.

[Leis85a] C.E. Leiserson. “Fat-trees: Universal Networks for Hardware Ef-
ficient Supercomputing”. In: IEEE Transactions on Computers
(T-C) 34.10 (Oct. 1985), pp. 892–901.

[LeLi96] T.T. Lee and S.Y. Liew. “Parallel routing algorithms in Beneš-
Clos networks”. In: Fifteenth Annual Joint Conference of the
IEEE Computer Societies. Networking the Next Generation. San
Francisco, CA, USA: IEEE Computer Society, 1996, pp. 279–286.

[LeOr95a] C.-Y. Lee and A.Y. Oruç. “Design of Efficient and Easily Routable
Generalized Connectors”. In: IEEE Transactions on Communi-
cations 43.2-4 (1995), pp. 646–650.

[LuZh02] E. Lu and S.Q. Zheng. “A Fast Parallel Routing Algorithm for
Beneš Group Switches”. In: International Parallel and Distributed
Processing Symposium (IPDPS). Cambridge, Massachusetts, USA,
2002, pp. 67–72.

[Mein03] J.D. Meindl. “Beyond Moore’s Law”. In: Computing in Science
and Engineering (CiSE) 5.1 (2003), pp. 20–24.

[MaGN79] G.M. Masson, G.C. Gingher, and S. Nakamura. “A Sampler of
Circuit Switching Networks”. In: IEEE Computer 12.6 (1979),
pp. 32–48.

[Nara88] M.J. Narasimha. “The Batcher-Banyan self-routing network: uni-
versality and simplification”. In: IEEE Transactions on Commu-
nications 36.10 (Oct. 1988), pp. 1175–1178.

[Nara94] M.J. Narasimha. “A Recursive Concentrator Structure with Ap-
plications to Self-Routing Switching Networks”. In: IEEE Trans-
actions on Communications 42.2-4 (1994), pp. 896–898.

[NgDu01] H.Q. Ngo and D.-Z. Du. “Remarks on Beneš Conjecture”. In:
Switching Networks: Recent Advances. Ed. by D.-Z. Du and H.Q.
Ngo. Kluwer, 2001. Chap. Remarks on Beneš Conjecture, pp. 257–
258.

[NaSa81] D. Nassimi and S. Sahni. “A Self-Routing Beneš Network and
Parallel Permutation Algorithms”. In: IEEE Transactions on Com-
puters (T-C) 30.5 (1981), pp. 332–340.

69

Bibliography

[NaSa82] D. Nassimi and S. Sahni. “Parallel Algorithms to Set Up the
Beneš Permutation Network”. In: IEEE Transactions on Com-
puters (T-C) 31.2 (Feb. 1982), pp. 148–154.

[OrOr85] A.Y. Oruç and M.Y. Oruç. “Equivalence Relations Among In-
terconnection Networks”. In: Journal of Parallel and Distributed
Computing 2 (1985), pp. 30–49.

[PaAv12] K.V. Palem and L. Avinash. “What to do about the end of
Moore’s law, probably!” In: Design Automation Conference (DAC).
Ed. by P. Groeneveld, D. Sciuto, and S. Hassoun. San Francisco,
California, USA: ACM, 2012, pp. 924–929.

[Pate81] J.H. Patel. “Performance of Processor-Memory Interconnections
for Multiprocessors”. In: IEEE Transactions on Computers 30.10
(Oct. 1981), pp. 771–780.

[Pins73] M.S. Pinsker. “On the Complexity of a Concentrator”. In: Inter-
national Teletraffic Conference (ITC). Stockholm, Sweden, 1973,
318:1–318:4.

[Pipp77] N. Pippenger. “Superconcentrators”. In: SIAM Journal on Com-
puting 6.2 (June 1977), pp. 298–304.

[Pipp78a] N. Pippenger. “On Rearrangeable and Non-Blocking Switching
Networks”. In: Journal of Computer and System Sciencies (JCSS)
17.2 (Oct. 1978), pp. 145–162.

[RJMC95] David F Robinson, Dan Judd, Philip K McKinley, and Betty
HC Cheng. “Efficient multicast in all-port wormhole-routed hy-
percubes”. In: Journal of parallel and distributed computing 31.2
(1995), pp. 126–140.

[RaVa87] C.S. Raghavendra and A. Varma. “Rearrangebility of the five
stage shuffle-exchange network for N=8”. In: IEEE Transactions
on Communication 35.8 (Aug. 1987), pp. 808–812.

[SDMS12] K. Sewell, R.G. Dreslinski, T. Manville, S. Satpathy, et al. “Swizzle-
Switch Networks for Many-Core Systems”. In: IEEE Journal on
Emerging and Selected Topics in Circuits and Systems 2.2 (June
2012), pp. 278–294.

[SeFL99] S.-W. Seo, T.-Y. Feng, and H.-I. Lee. “Permutation Realizability
and Fault Tolerance Property of the Inside-Out Routing Algo-
rithm”. In: IEEE Transactions on Parallel and Distributed Sys-
tems 10.9 (1999), pp. 946–957.

[ScJu96] T. Schwederski and M. Jurczyk. Verbindungsnetze – Strukturen
und Eigenschaften. Springer, 1996.

[ScRe39] F.J. Scudder and J.N. Reynolds. “Crossbar Dial Telephone Switch-
ing System”. In: Bell System Technical Journal 18.2 (Jan. 1939),
pp. 76–118.

70

Bibliography

[SSMP07] Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew
Petersen, Andrew Putnam, Ken Michelson, Mark Oskin, and Su-
san J Eggers. “The wavescalar architecture”. In: ACM Transac-
tions on Computer Systems (TOCS) 25.2 (2007), p. 4.

[ThCh10] A. Thamarakuzhi and J.A. Chandy. “2-Dilated Flattened But-
terfly: A nonblocking switching network”. In: International Con-
ference on High Performance Switching and Routing. Richardson,
Texas, USA: IEEE Computer Society, 2010, pp. 153–158.

[TSBS07] Martin Thuresson, Magnus Själander, Magnus Björk, Lars Svens-
son, Per Larsson-Edefors, and Per Stenstrom. “FlexCore: Utiliz-
ing exposed datapath control for efficient computing”. In: Journal
of Signal Processing Systems 57.1 (2009), pp. 5–19.

[TuMe03] J.S. Turner and R. Melen. “Multirate Clos Networks”. In: IEEE
Communications Magazine 41.10 (Oct. 2003), pp. 38–44.

[WSCH15] Luc Waeijen, Dongrui She, Henk Corporaal, and Yifan He. “A
low-energy wide SIMD architecture with explicit datapath”. In:
Journal of Signal Processing Systems 80.1 (2015), pp. 65–86.

[Waks69] A. Waksman. “A Permutation Network”. In: Journal of the ACM
(JACM) 15.1 (Jan. 1969), pp. 159–163.

[WuFe80] C. Wu and T. Feng. “On a Class of Multistage Interconnec-
tion Networks”. In: IEEE Transactions on Computers (T-C) 29.8
(July 1980), pp. 694–702.

71

Appendix A
Experimental Tables

73

Appendix A: Experimental Tables

Table A.1.: CNC-BIN-HC0
Size

n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 18 32 8 8 8 23
4 156 139 183 82 82 164
8 816 493 1068 364 363 669

16 3360 1541 4277 1260 1256 2209
32 12000 4441 14310 3844 3833 6524
64 38976 12101 43047 10852 10826 17986

128 118272 31649 120712 29060 29003 47315

Number of Cells
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 9 13 8 7 7 16
4 124 114 155 65 65 118
8 692 430 988 299 298 567

16 2904 1366 4097 1059 1055 1908
32 10448 3954 13934 3275 3264 5675
64 34048 10782 42283 9323 9297 15693

128 103488 28186 119176 25099 25042 41342

Area (µm2)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 51 76 44 41 41 85
4 714 682 859 382 382 673
8 4006 2569 5472 1760 1754 3314

16 16859 8139 22679 6234 6208 11197
32 60764 23504 77105 19276 19207 33346
64 198266 63968 233925 54865 54701 92239

128 603190 166965 659228 147679 147319 242992

Depth
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 3 5 1 1 1 6
4 9 9 5 4 4 10
8 18 12 12 7 8 15

16 30 15 22 13 12 21
32 45 18 35 22 18 27
64 63 21 51 39 26 33

128 84 24 70 72 34 39

Latency (pico seconds)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 468.2000 907.5000 401.4000 405.4000 405.4000 746.5000
4 961.7000 1525.9000 929.4000 748.9000 710.6000 1185.5000
8 1742.2000 2089.9000 1783.8000 1154.8000 1235.8000 1978.0000

16 2836.6000 2663.7000 2985.7000 1769.8000 1824.1000 2759.4000
32 4240.3000 3248.9000 4522.7000 2698.4000 2688.2000 3543.4000
64 5965.4000 3834.0000 6353.2000 4419.2000 3667.2000 4348.6000

128 7233.6000 4422.0000 8667.5000 7802.3000 4797.0000 5132.3000

Power (mW)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 0.8322 1.9526 0.5814 0.5645 0.5645 1.2575
4 13.2451 18.6319 16.0588 8.4931 8.4931 14.8418
8 78.1262 99.8236 147.8342 59.0447 58.5408 105.0164

16 399.7474 502.5331 904.7243 370.9658 367.4707 570.7982
32 1546.2277 2121.1031 3768.1479 1794.4202 1777.3061 2588.2974
64 5862.5201 9025.8116 15363.6389 7652.9236 7590.2861 11567.3425

128 19569.1842 33783.4438 50089.4197 29526.6717 29309.2850 42773.6437

74

Appendix A: Experimental Tables

Table A.2.: CNC-BIN-HC1
Size

n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 18 18 18 18 18 18
4 104 148 100 100 100 130
8 544 542 686 396 396 560

16 2352 1706 3120 1320 1318 1930
32 8800 4906 11282 3960 3952 5858
64 29696 13298 35668 11080 11058 16440

128 92928 34570 103446 29512 29460 43780

Number of Cells
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 16 16 16 16 16 16
4 78 86 80 74 74 92
8 452 432 642 320 320 426

16 2016 1436 3024 1104 1102 1640
32 7632 4220 11074 3368 3360 5066
64 25888 11556 35220 9512 9490 14312

128 81216 30204 102486 25480 25428 38220

Area (µm2)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 92 92 92 92 92 92
4 449 499 449 430 430 518
8 2616 2553 3577 1870 1870 2452

16 11703 8499 16802 6471 6458 9580
32 44385 24973 61446 19766 19715 29693
64 150747 68340 195265 55860 55721 83999

128 473372 178488 567892 149685 149357 224433

Depth
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 3 3 3 3 3 3
4 6 8 4 4 4 9
8 12 12 8 7 7 13

16 21 15 15 10 11 18
32 33 18 25 16 15 24
64 48 21 38 25 21 30

128 66 24 54 42 29 36

Latency (pico seconds)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 502.4000 502.4000 502.4000 502.4000 502.4000 502.4000
4 722.4000 1157.7000 647.4000 646.9000 646.9000 991.5000
8 1244.0000 1779.4000 1179.2000 1002.1000 954.0000 1439.8000

16 2059.9000 2349.4000 2074.3000 1430.3000 1522.7000 2244.3000
32 3176.3000 2930.3000 3305.0000 2056.0000 2126.3000 3011.4000
64 4604.9000 3518.9000 4744.9000 2963.2000 2922.2000 3803.6000

128 5743.8000 4079.2000 6720.6000 4660.9000 3946.5000 4574.3000

Power (mW)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 1.3456 1.3456 1.3456 1.3456 1.3456 1.3456
4 7.8871 10.2075 7.2164 7.1151 7.1151 9.1829
8 46.8118 62.7319 66.1365 40.5886 40.5886 58.4196

16 256.1821 316.2490 485.6127 225.0268 224.1208 308.3723
32 1030.1926 1326.9856 2301.3149 1006.8466 1001.5025 1383.6883
64 4084.6397 6021.9044 10189.5893 4936.3471 4899.8487 6729.3180

128 14033.7302 23879.5470 36147.3203 19813.1422 19674.7495 27033.6676

75

Appendix A: Experimental Tables

Table A.3.: CNC-TRP-HC0
Size

n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 96 124 76 76 76 106
4 576 478 710 364 364 528
8 2576 1546 3416 1288 1286 1898

16 9696 4522 12442 3960 3952 5858
32 32640 12402 39196 11208 11186 16568
64 101632 32522 112990 30024 29972 44292

128 298752 82498 306848 77320 77206 113830

Number of Cells
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 74 82 73 67 67 88
4 488 412 654 311 311 420
8 2232 1372 3256 1107 1105 1646

16 8464 4044 12082 3427 3419 5128
32 28576 11108 38444 9747 9725 14550
64 89088 29116 111462 26195 26143 38938

128 262016 73780 303776 67603 67489 100092

Area (µm2)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 417 468 401 382 382 487
4 2806 2414 3614 1798 1798 2395
8 12916 8069 18009 6436 6423 9561

16 49137 23810 66830 19984 19933 29927
32 166216 65408 212636 56938 56799 85092
64 518869 171410 616460 153189 152861 227953

128 1527489 434225 1679993 395638 394918 586281

Depth
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 8 10 6 6 6 11
4 14 14 10 9 9 15
8 23 17 17 12 13 20

16 35 20 27 18 17 26
32 50 23 40 27 23 32
64 68 26 56 44 31 38

128 89 29 75 77 39 44

Latency (pico seconds)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 739.6000 1178.9000 677.4000 676.8000 676.8000 1017.9000
4 1276.9000 1801.9000 1215.9000 1041.8000 986.6000 1472.4000
8 2109.3000 2372.5000 2126.4000 1467.5000 1549.8000 2277.5000

16 3241.8000 2950.1000 3228.6000 2055.0000 2103.5000 3041.3000
32 4281.7000 3538.1000 4820.0000 2980.7000 2937.5000 3832.9000
64 6446.2000 4098.8000 6829.3000 4712.8000 4031.9000 4604.0000

128 7727.8000 4721.8000 9211.7000 8081.9000 4952.2000 5427.5000

Power (mW)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 6.3763 9.1667 6.5712 6.2745 6.2745 7.6234
4 57.2612 72.1800 81.9911 45.2470 45.2786 62.8794
8 255.5837 272.3994 468.2553 211.9002 210.4990 300.9913

16 1108.9580 1373.8542 2285.0621 1020.2022 1013.4040 1383.5394
32 4330.1079 5808.7771 9037.7924 4853.5155 4827.8073 6565.3476
64 15126.1619 23647.6484 32266.2432 20190.5643 20079.1430 27431.4282

128 47867.1009 84740.5279 103167.2178 75012.1582 74664.0011 100933.7498

76

Appendix A: Experimental Tables

Table A.4.: CNC-TRP-HC1
Size

n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 28 28 28 28 28 28
4 328 384 288 288 288 348
8 1584 1324 1932 1096 1096 1424

16 6464 4020 8480 3504 3500 4724
32 23168 11284 29572 10160 10144 13956
64 75648 30052 90696 27664 27620 38384

128 230656 77076 256588 72080 71976 100616

Number of Cells
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 25 25 25 25 25 25
4 258 274 260 244 244 286
8 1336 1128 1772 926 926 1144

16 5576 3520 8056 2990 2986 4068
32 20160 9976 28628 8742 8726 12144
64 66080 26664 88712 23942 23898 33548

128 201856 68472 252508 62630 62526 88116

Area (µm2)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 145 145 145 145 145 145
4 1466 1567 1447 1397 1397 1605
8 7697 6584 9832 5352 5352 6547

16 32303 20638 44650 17371 17346 23621
32 117130 58590 158570 50938 50837 70824
64 384602 156700 491179 139758 139480 196067

128 1176251 402472 1397708 366030 365373 515558

Depth
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 4 4 4 4 4 4
4 12 14 10 10 10 15
8 18 18 14 13 13 19

16 27 21 21 16 17 24
32 39 24 31 22 21 30
64 54 27 44 31 27 36

128 72 30 60 48 35 42

Latency (pico seconds)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 553.4000 553.4000 553.4000 553.4000 553.4000 553.4000
4 1026.9000 1466.2000 967.9000 964.1000 964.1000 1305.2000
8 1585.0000 2095.8000 1515.5000 1341.8000 1280.5000 1773.4000

16 2436.9000 2669.6000 2350.4000 1746.9000 1831.2000 2580.7000
32 3330.8000 3253.3000 3577.3000 2365.7000 2426.9000 3355.3000
64 5045.5000 3817.5000 5163.0000 3282.3000 3276.1000 4119.5000

128 6209.6000 4410.2000 7202.3000 4981.8000 4174.1000 4895.8000

Power (mW)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 1.5244 1.5244 1.5244 1.5244 1.5244 1.5244
4 28.3911 33.4193 27.3574 26.5222 26.5222 30.6783
8 145.5789 153.4029 195.1405 117.9520 117.9203 150.4810

16 669.7401 767.1961 1192.8364 553.3545 551.6426 736.4296
32 2795.8870 3200.2776 5347.3195 2718.5154 2705.8285 3607.1063
64 10183.1689 13750.3972 21252.3494 11608.4982 11548.4263 15302.8558

128 33774.7034 51934.3679 73025.3970 48238.6083 48007.6255 63151.8275

77

Appendix A: Experimental Tables

Table A.5.: CNC-TRC-HC0
Size

n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 75 104 56 56 56 84
4 518 422 654 308 308 468
8 2428 1402 3272 1144 1142 1746

16 9336 4170 12090 3608 3600 5490
32 31792 11570 38364 10376 10354 15704
64 99680 30602 111070 28104 28052 42308

128 294336 78146 302496 72968 72854 109350

Number of Cells
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 39 48 24 36 36 52
4 272 300 372 195 195 297
8 1354 1060 2218 763 761 1291

16 5536 3244 8920 2511 2503 4193
32 19816 9156 29814 7455 7433 12223
64 64640 24508 89460 20687 20635 33363

128 197024 63156 250162 54735 54621 87093

Area (µm2)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 218 272 126 202 202 284
4 1561 1769 2047 1128 1128 1697
8 7829 6275 12256 4452 4439 7535

16 32126 19210 49320 14701 14651 24578
32 115234 54186 164867 43718 43579 71756
64 376413 144921 494705 121417 121089 195963

128 1148448 373158 1383348 321402 320682 511624

Depth
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 5 7 4 4 4 8
4 11 11 8 6 6 12
8 20 14 15 9 10 17

16 32 17 25 15 14 23
32 47 20 38 24 20 29
64 65 23 54 41 28 35

128 86 26 73 74 36 41

Latency (pico seconds)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 574.4000 1004.5000 478.3000 497.5000 497.5000 852.7000
4 1086.2000 1616.7000 989.9000 847.5000 801.4000 1291.5000
8 1892.3000 2176.9000 1854.8000 1255.6000 1341.0000 2088.9000

16 3001.6000 2750.7000 3095.5000 1866.7000 1937.5000 2873.7000
32 4424.1000 3333.2000 4574.0000 2768.6000 2761.2000 3658.7000
64 6037.4000 3917.3000 6450.1000 4505.5000 3775.4000 4429.4000

128 8235.3000 4475.4000 8822.2000 7872.7000 4931.4000 5214.8000

Power (mW)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 3.0463 5.7740 1.9925 3.0134 3.0134 4.5019
4 32.4649 54.8658 43.6811 28.0092 28.0408 45.0029
8 155.7463 214.8474 306.1900 143.6000 142.1988 228.9463

16 754.8696 1116.9435 1686.8566 758.9662 752.1680 1110.8239
32 3040.2113 4801.8868 7066.6719 3735.4532 3709.7451 5409.2782
64 11053.3428 19878.2120 26351.0494 16082.2308 15970.8095 23133.0407

128 36140.0703 72217.4487 86547.9604 61202.4591 60854.3020 86640.4504

78

Appendix A: Experimental Tables

Table A.6.: NET-BIN-HC0
Size

n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 18 32 8 8 8 23
4 192 203 199 98 98 210
8 1200 899 1466 560 559 1089

16 5760 3339 7209 2380 2374 4387
32 23520 11119 28728 8604 8581 15298
64 86016 34339 100503 28060 27988 48582

128 290304 100327 321718 85180 84979 144479

Number of Cells
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 9 13 8 7 7 16
4 142 152 155 72 72 152
8 976 734 1298 436 435 895

16 4856 2834 6693 1924 1918 3698
32 20160 9622 27320 7116 7093 13071
64 74368 30026 96923 23548 23476 41835

128 252224 88238 313022 72188 71987 125012

Area (µm2)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 51 76 44 41 41 85
4 815 910 859 423 423 856
8 5637 4389 7191 2566 2559 5178

16 28132 16916 37061 11324 11286 21554
32 117029 57336 151227 41883 41737 76454
64 432323 178639 536379 138589 138134 245147

128 1467837 524243 1731986 424816 423546 733287

Depth
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 3 5 1 1 1 6
4 12 14 6 5 5 16
8 30 26 18 12 13 31

16 60 41 40 25 25 52
32 105 59 75 47 43 79
64 168 80 126 86 69 112

128 252 104 196 158 103 151

Latency (pico seconds)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 468.2000 907.5000 401.4000 405.4000 405.4000 746.5000
4 1153.2000 2184.3000 1040.1000 877.6000 839.3000 1665.4000
8 2618.7000 3993.3000 2478.6000 1755.7000 1798.4000 3400.0000

16 5178.6000 6380.3000 5104.7000 3248.8000 3345.8000 5882.7000
32 9142.2000 9352.5000 9189.9000 5670.5000 5757.3000 9149.4000
64 14830.9000 12909.8000 15069.4000 9813.0000 9147.8000 13221.3000

128 21787.8000 17055.1000 23304.1000 17338.6000 13668.1000 18076.9000

Power (mW)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 0.8322 1.9526 0.5814 0.5645 0.5645 1.2575
4 13.5515 28.5858 17.0525 10.3574 10.3574 24.0663
8 149.6018 210.7147 230.8509 98.2670 97.8582 192.6794

16 1058.1856 1441.0819 2119.5930 810.4535 806.1196 1454.6979
32 5969.9147 7547.1088 13084.9849 4663.8750 4627.4714 8334.4215
64 30557.6707 35702.3586 71587.0034 24720.2680 24533.4596 40874.0635

128 146049.0382 143112.1068 345672.4540 104879.3045 104183.6489 174555.0044

79

Appendix A: Experimental Tables

Table A.7.: NET-BIN-HC1
Size

n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 18 18 18 18 18 18
4 140 184 136 136 136 166
8 824 910 958 668 668 892

16 4000 3526 5036 2656 2654 3714
32 16800 11958 21354 9272 9260 13286
64 63296 37214 78376 29624 29578 43012

128 219520 108998 260198 88760 88616 129804

Number of Cells
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 16 16 16 16 16 16
4 110 118 112 106 106 124
8 672 692 866 532 532 678

16 3360 2820 4756 2168 2166 3044
32 14352 9860 20586 7704 7692 11154
64 54592 31276 76392 24920 24874 36620

128 190400 92756 255270 75320 75176 111460

Area (µm2)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 92 92 92 92 92 92
4 632 682 632 613 613 701
8 3880 4069 4840 3096 3096 3880

16 19463 16638 26483 12663 12651 17643
32 83310 58249 114413 45093 45017 64979
64 317367 184838 424090 146046 145755 213956

128 1108107 548164 1416072 441777 440867 652346

Depth
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 3 3 3 3 3 3
4 9 11 7 7 7 12
8 21 23 15 14 14 25

16 42 38 30 24 25 43
32 75 56 55 40 40 67
64 123 77 93 65 61 97

128 189 101 147 107 90 133

Latency (pico seconds)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 502.4000 502.4000 502.4000 502.4000 502.4000 502.4000
4 948.1000 1383.4000 873.1000 872.6000 872.6000 1217.2000
8 1915.4000 2913.7000 1750.2000 1598.0000 1549.9000 2390.4000

16 3698.6000 4982.2000 3464.9000 2751.6000 2795.9000 4380.4000
32 6598.2000 7635.8000 6376.9000 4530.9000 4645.5000 7115.1000
64 10926.4000 10878.0000 10656.4000 7217.4000 7291.0000 10642.0000

128 16393.5000 14680.5000 16954.8000 11601.6000 10960.8000 14939.6000

Power (mW)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 1.3456 1.3456 1.3456 1.3456 1.3456 1.3456
4 13.5706 15.8721 12.8811 12.7798 12.7798 14.5749
8 93.1995 123.0287 114.3379 85.8074 85.7757 112.1950

16 638.5895 879.7108 1018.9073 591.2659 590.5817 832.3628
32 3650.9391 5198.3616 7229.8854 3347.1387 3336.6214 4936.1671
64 20203.3967 27302.4211 43245.1110 17544.9031 17469.2485 26635.3669

128 97858.1025 118981.4100 223260.4063 78912.1013 78540.4893 121561.5283

80

Appendix A: Experimental Tables

Table A.8.: NET-TRP-HC0
Size

n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 96 124 76 76 76 106
4 768 726 862 516 516 740
8 4112 2998 5140 2320 2318 3378

16 17920 10518 22722 8600 8588 12614
32 68480 33438 84640 28408 28362 41796
64 238592 99398 282270 86840 86696 127884

128 775936 281294 871388 251000 250598 369598

Number of Cells
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 74 82 73 67 67 88
4 636 600 800 445 445 600
8 3504 2572 4856 1997 1995 2894

16 15472 9188 21794 7421 7409 10916
32 59520 29484 82032 24589 24543 36382
64 208128 88084 275526 75373 75229 111702

128 196156 249948 234338 218349 217947 323496

Area (µm2)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 417 468 401 382 382 487
4 3640 3501 4417 2562 2562 3393
8 20196 15071 26843 11561 11548 16651

16 89528 53952 120517 43105 43030 63228
32 345272 173312 453669 143148 142858 211549
64 1209414 518035 1523799 439486 438576 651051

128 1813982 1470295 2351176 1274610 1272070 1888382

Depth
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 8 10 6 6 6 11
4 22 24 16 15 15 26
8 45 41 33 27 28 46

16 80 61 60 45 45 72
32 130 84 100 72 68 104
64 198 110 156 116 99 142

128 287 139 231 193 138 186

Latency (pico seconds)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 739.6000 1178.9000 677.4000 676.8000 676.8000 1017.9000
4 1739.8000 2731.7000 1616.6000 1441.9000 1386.7000 2223.7000
8 3572.4000 4823.3000 3391.5000 2632.7000 2659.8000 4246.9000

16 6537.5000 7496.7000 6245.0000 4411.0000 4486.6000 7011.5000
32 10542.5000 10758.1000 10650.5000 7115.0000 7147.4000 10567.7000
64 16712.0000 14580.2000 17067.5000 11551.1000 10902.6000 14895.0000

128 18176.6000 19025.3000 22479.9000 19356.3000 15578.1000 20045.8000

Power (mW)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 6.3763 9.1667 6.5712 6.2745 6.2745 7.6234
4 81.9568 110.0755 106.8742 70.7551 70.7551 102.8880
8 481.1277 585.0780 752.7020 411.5899 410.8098 585.0680

16 3029.6446 3544.3889 5310.1564 2412.9998 2404.4858 3469.2340
32 15561.6242 17441.8435 29052.3419 13063.8332 13000.8675 19148.1143
64 71702.9282 78710.6211 146082.2742 59580.8489 59292.9244 87049.1599

128 92041.5869 311112.8757 181913.2227 242820.6518 241712.7122 352159.6294

81

Appendix A: Experimental Tables

Table A.9.: NET-TRP-HC1
Size

n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 28 28 28 28 28 28
4 384 440 344 344 344 404
8 2352 2204 2620 1784 1784 2232

16 11168 8428 13720 7072 7068 9188
32 45504 28140 57012 24304 24280 32332
64 166656 86332 204720 76272 76180 103048

128 563968 249740 666028 224624 224336 306712

Number of Cells
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 25 25 25 25 25 25
4 308 324 310 294 294 336
8 1952 1824 2392 1514 1514 1824

16 9480 7168 12840 6018 6014 7812
32 39120 24312 54308 20778 20754 27768
64 144320 75288 197328 65498 65406 89084

128 140274 219048 169249 193626 193338 266284

Area (µm2)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 145 145 145 145 145 145
4 1757 1858 1738 1687 1687 1896
8 11210 10603 13308 8727 8727 10389

16 54723 41845 71266 34824 34799 45004
32 226575 142280 301102 120586 120435 160832
64 837753 441259 1093383 380931 380349 517732

128 1295590 1284989 1677563 1127892 1126072 1551021

Depth
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 4 4 4 4 4 4
4 16 18 14 14 14 19
8 34 36 28 27 27 38

16 61 57 49 43 44 62
32 100 81 80 65 65 92
64 154 108 124 96 92 128

128 226 138 184 144 127 170

Latency (pico seconds)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 553.4000 553.4000 553.4000 553.4000 553.4000 553.4000
4 1303.6000 1742.9000 1244.6000 1240.8000 1240.8000 1581.9000
8 2611.9000 3599.7000 2483.4000 2305.9000 2244.6000 3088.7000

16 4772.1000 5992.6000 4482.3000 3776.1000 3799.1000 5408.0000
32 7826.2000 8969.2000 7710.5000 5865.1000 5949.3000 8486.6000
64 12595.0000 12510.0000 12489.6000 8870.7000 8948.7000 12329.4000

128 13551.0000 16643.5000 16397.6000 13575.8000 12846.1000 16948.5000

Power (mW)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 1.5244 1.5244 1.5244 1.5244 1.5244 1.5244
4 37.8530 42.2299 36.1680 35.3328 35.3328 39.2845
8 271.5421 316.7599 330.2248 243.7332 243.7015 290.9532

16 1473.0293 1736.6309 2036.7871 1267.4096 1266.1503 1667.2239
32 8337.7871 9344.5826 13862.1410 7154.9615 7136.3007 9684.5555
64 40900.1835 46086.5194 75671.9110 35590.0280 35477.0894 48255.8320

128 53673.4678 198472.2801 101129.6243 157510.1224 156942.3425 215807.5654

82

Appendix A: Experimental Tables

Table A.10.: NET-TRC-HC0
Size

n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 75 104 56 56 56 84
4 668 630 766 420 420 636
8 3764 2662 4804 1984 1982 3018

16 16864 9494 21698 7576 7564 11526
32 65520 30558 81760 25528 25482 38756
64 230720 91718 274590 79160 79016 119820

128 755776 261582 851676 231288 230886 348990

Number of Cells
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 39 48 24 36 36 52
4 350 420 420 267 267 405
8 2054 1900 3058 1297 1295 2149

16 9644 7044 15036 5105 5093 8491
32 39104 23244 59886 17665 17619 29205
64 142848 70996 209232 56017 55873 91773

128 144542 205148 188820 166769 166367 270639

Area (µm2)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 218 272 126 202 202 284
4 1997 2464 2300 1532 1532 2291
8 11823 11204 16856 7516 7504 12420

16 55772 41617 83032 29734 29658 49418
32 226778 137420 330931 103187 102896 170592
64 829968 419761 1156568 327791 326881 537147

128 1325659 1212681 1873156 976984 974443 1585918

Depth
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 5 7 4 4 4 8
4 16 18 12 10 10 20
8 36 32 27 19 20 37

16 68 49 52 34 34 60
32 115 69 90 58 54 89
64 180 92 144 99 82 124

128 266 118 217 173 118 165

Latency (pico seconds)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 574.4000 1004.5000 478.3000 497.5000 497.5000 852.7000
4 1383.9000 2372.1000 1185.8000 1068.3000 1022.2000 1877.6000
8 2999.5000 4268.1000 2686.5000 2047.2000 2086.5000 3722.0000

16 5724.4000 6742.1000 5356.8000 3637.2000 3747.3000 6319.0000
32 9871.8000 9798.6000 9490.8000 6129.1000 6231.8000 9701.0000
64 15632.5000 13439.2000 15402.3000 10357.9000 9730.5000 13853.7000

128 16789.5000 17637.9000 20355.7000 17953.9000 14385.2000 18791.8000

Power (mW)
n Batc68 ChCh96 ChOr94 Nara94 JaSJ17 JaSc18c

2 3.0463 5.7740 1.9925 3.0134 3.0134 4.5019
4 43.4914 79.2644 51.3901 40.4376 40.4376 68.1163
8 268.4023 423.7202 448.2497 259.8300 259.1449 417.1688

16 1876.5566 2680.6319 3690.7993 1678.0244 1669.9539 2604.9523
32 10426.3503 13740.2453 22062.7514 9788.0757 9725.3160 15109.6888
64 50482.0207 63721.1678 117156.6877 46392.2651 46110.9553 70448.2731

128 70832.1232 257641.8359 156864.5754 195164.0131 194060.4007 292581.2895

83

Appendix A: Experimental Tables

Table A.11.: TNT-BIN-HC0
Size

n Nara94 JaSJ17 JaSc18c

2 42 42 72
4 300 300 494
8 1332 1330 2166

16 4856 4846 7812
32 15808 15774 25182
64 47744 47646 75400

128 136640 136382 214194

Number of Cells
n Nara94 JaSJ17 JaSc18c

2 36 36 55
4 242 242 369
8 1080 1078 1787

16 3984 3974 6559
32 13112 13078 21363
64 39960 39862 64401

128 115192 114934 183819

Area (µm2)
n Nara94 JaSJ17 JaSc18c

2 212 212 306
4 1425 1425 2114
8 6360 6347 10411

16 23459 23396 38372
32 77197 76982 125228
64 235223 234604 377888

128 677960 676330 1079162

Depth
n Nara94 JaSJ17 JaSc18c

2 3 3 13
4 10 10 27
8 20 22 47

16 39 38 74
32 70 62 107
64 126 96 146

128 231 138 191

Latency (pico seconds)
n Nara94 JaSJ17 JaSc18c

2 640.8000 640.8000 1326.5000
4 1483.2000 1387.0000 2700.0000
8 2811.3000 2937.9000 5252.7000

16 4948.1000 5120.1000 8520.5000
32 8268.7000 8287.5000 12601.5000
64 14120.7000 12732.4000 17432.7000

128 25093.5000 18527.5000 23099.7000

Power (mW)
n Nara94 JaSJ17 JaSc18c

2 3.6670 3.6670 5.7177
4 43.7881 43.6931 68.7773
8 246.0875 244.8548 414.3183

16 1402.0442 1386.9506 2298.2443
32 6987.0256 6904.0813 11788.2386
64 29786.1777 29425.9866 49250.2605

128 113772.3410 112437.6853 189943.3253

84

Appendix A: Experimental Tables

Table A.12.: Comparison With Other Networks
Number of Cells

n BatcherBanyan JaSJ17(front-end valid sorter) CrossbarPartial Beneš

4 462 242 112 100
8 2196 1078 488 1810

16 8512 3974 2016 8110
32 29184 13078 7776 36200
64 91392 39862 30464 132000

128 271552 114934 119936 —

Latency (pico seconds)
n BatcherBanyan JaSJ17(front-end valid sorter) CrossbarPartial Beneš

4 2475.2000 1387.0000 662.9000 103.0000
8 4836.7000 2937.9000 753.0000 834.0000

16 7638.5000 5120.1000 874.4000 2300.0000
32 10669.9000 8287.5000 964.5000 3680.0000
64 15162.4000 12732.4000 1059.4000 5590.0000

128 21157.7000 18527.5000 1160.2000 —

Power (mW)
n BatcherBanyan JaSJ17(front-end valid sorter) CrossbarPartial Beneš

2 6.2566 3.6670 1.8360
4 71.5909 43.6931 8.8459
8 451.0856 244.8548 34.1927

16 2483.0007 1386.9506 117.7731
32 12083.4982 6904.0813 350.3599
64 50469.1407 29425.9866 977.6127

128 195253.6889 112437.6853 2716.8357

85

Appendix B
Experimental Graphs

87

Appendix B: Experimental Graphs

0 20 40 60 80 100 120 140

0

0.5

1

⋅105

n

S
iz

e

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Size

0 20 40 60 80 100 120 140

0

20

40

60

80

n

D
ep

th

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Depth

0 20 40 60 80 100 120 140

0

0.5

1

⋅105

n

N
u
m

b
er

of
C

el
ls

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Number of Cells

0 20 40 60 80 100 120 140

0

2,000

4,000

6,000

8,000

n

L
a
te

n
cy

(p
ic

o
se

co
n
d
s)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Latency (pico seconds)

0 20 40 60 80 100 120 140

0

2

4

6

⋅105

n

A
re

a
(µ
m

2
)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Area (µm2)

0 20 40 60 80 100 120 140

0

2

4

⋅104

n

P
ow

er
(m
W

)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Power (mW)

Figure B.1.: CNC-BIN-HC0

88

Appendix B: Experimental Graphs

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

⋅105

n

S
iz

e

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Size

0 20 40 60 80 100 120 140

0

20

40

60

n

D
ep

th

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Depth

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

⋅105

n

N
u
m

b
er

of
C

el
ls

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Number of Cells

0 20 40 60 80 100 120 140
0

2,000

4,000

6,000

n

L
a
te

n
cy

(p
ic

o
se

co
n
d
s)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Latency (pico seconds)

0 20 40 60 80 100 120 140

0

2

4

6
⋅105

n

A
re

a
(µ
m

2
)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Area (µm2)

0 20 40 60 80 100 120 140

0

1

2

3

⋅104

n

P
ow

er
(m
W

)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Power (mW)

Figure B.2.: CNC-BIN-HC1

89

Appendix B: Experimental Graphs

0 20 40 60 80 100 120 140

0

1

2

3

⋅105

n

S
iz

e

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Size

0 20 40 60 80 100 120 140
0

20

40

60

80

n

D
ep

th

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Depth

0 20 40 60 80 100 120 140

0

1

2

3

⋅105

n

N
u
m

b
er

of
C

el
ls

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Number of Cells

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1
⋅104

n

L
a
te

n
cy

(p
ic

o
se

co
n
d
s)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Latency (pico seconds)

0 20 40 60 80 100 120 140

0

0.5

1

1.5

⋅106

n

A
re

a
(µ
m

2
)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Area (µm2)

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

⋅105

n

P
ow

er
(m
W

)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Power (mW)

Figure B.3.: CNC-TRP-HC0

90

Appendix B: Experimental Graphs

0 20 40 60 80 100 120 140

0

1

2

⋅105

n

S
iz

e

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Size

0 20 40 60 80 100 120 140
0

20

40

60

n

D
ep

th

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Depth

0 20 40 60 80 100 120 140

0

1

2

⋅105

n

N
u
m

b
er

of
C

el
ls

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Number of Cells

0 20 40 60 80 100 120 140
0

2,000

4,000

6,000

n

L
a
te

n
cy

(p
ic

o
se

co
n
d
s)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Latency (pico seconds)

0 20 40 60 80 100 120 140

0

0.5

1

1.5
⋅106

n

A
re

a
(µ
m

2
)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Area (µm2)

0 20 40 60 80 100 120 140

0

2

4

6

8
⋅104

n

P
ow

er
(m
W

)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Power (mW)

Figure B.4.: CNC-TRP-HC1

91

Appendix B: Experimental Graphs

0 20 40 60 80 100 120 140

0

1

2

3

⋅105

n

S
iz

e

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Size

0 20 40 60 80 100 120 140

0

20

40

60

80

n

D
ep

th

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Depth

0 20 40 60 80 100 120 140

0

1

2

⋅105

n

N
u
m

b
er

of
C

el
ls

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Number of Cells

0 20 40 60 80 100 120 140
0

2,000

4,000

6,000

8,000

n

L
a
te

n
cy

(p
ic

o
se

co
n
d
s)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Latency (pico seconds)

0 20 40 60 80 100 120 140

0

0.5

1

1.5
⋅106

n

A
re

a
(µ
m

2
)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Area (µm2)

0 20 40 60 80 100 120 140

0

2

4

6

8

⋅104

n

P
ow

er
(m
W

)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Power (mW)

Figure B.5.: CNC-TRC-HC0

92

Appendix B: Experimental Graphs

0 20 40 60 80 100 120 140

0

1

2

3

⋅105

n

S
iz

e

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Size

0 20 40 60 80 100 120 140

0

100

200

n

D
ep

th

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Depth

0 20 40 60 80 100 120 140

0

1

2

3

⋅105

n

N
u
m

b
er

of
C

el
ls

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Number of Cells

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2

2.5
⋅104

n

L
a
te

n
cy

(p
ic

o
se

co
n
d
s)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Latency (pico seconds)

0 20 40 60 80 100 120 140

0

0.5

1

1.5

⋅106

n

A
re

a
(µ
m

2
)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Area (µm2)

0 20 40 60 80 100 120 140

0

1

2

3

⋅105

n

P
ow

er
(m
W

)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Power (mW)

Figure B.6.: NET-BIN-HC0

93

Appendix B: Experimental Graphs

0 20 40 60 80 100 120 140

0

1

2

⋅105

n

S
iz

e

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Size

0 20 40 60 80 100 120 140

0

50

100

150

200

n

D
ep

th

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Depth

0 20 40 60 80 100 120 140

0

1

2

⋅105

n

N
u
m

b
er

of
C

el
ls

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Number of Cells

0 20 40 60 80 100 120 140

0

0.5

1

1.5

⋅104

n

L
a
te

n
cy

(p
ic

o
se

co
n
d
s)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Latency (pico seconds)

0 20 40 60 80 100 120 140

0

0.5

1

1.5
⋅106

n

A
re

a
(µ
m

2
)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Area (µm2)

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2

⋅105

n

P
ow

er
(m
W

)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Power (mW)

Figure B.7.: NET-BIN-HC1

94

Appendix B: Experimental Graphs

0 10 20 30 40 50 60 70

0

1

2

3
⋅105

n

S
iz

e

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Size

0 10 20 30 40 50 60 70

0

50

100

150

200

n

D
ep

th

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Depth

0 10 20 30 40 50 60 70

0

1

2

3
⋅105

n

N
u
m

b
er

of
C

el
ls

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Number of Cells

0 10 20 30 40 50 60 70

0

0.5

1

1.5

⋅104

n

L
a
te

n
cy

(p
ic

o
se

co
n

d
s)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Latency (pico seconds)

0 10 20 30 40 50 60 70

0

0.5

1

1.5

⋅106

n

A
re

a
(µ
m

2
)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Area (µm2)

0 10 20 30 40 50 60 70

0

0.5

1

1.5

⋅105

n

P
ow

er
(m
W

)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Power (mW)

Figure B.8.: NET-TRP-HC0

95

Appendix B: Experimental Graphs

0 20 40 60 80 100 120 140

0

2

4

6

⋅105

n

S
iz

e

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Size

0 20 40 60 80 100 120 140

0

50

100

150

200

n

D
ep

th

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Depth

0 10 20 30 40 50 60 70

0

0.5

1

1.5

2

⋅105

n

N
u
m

b
er

of
C

el
ls

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Number of Cells

0 10 20 30 40 50 60 70

0

0.5

1

⋅104

n

L
a
te

n
cy

(p
ic

o
se

co
n

d
s)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Latency (pico seconds)

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2
⋅106

n

A
re

a
(µ
m

2
)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Area (µm2)

0 10 20 30 40 50 60 70

0

2

4

6

8
⋅104

n

P
ow

er
(m
W

)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Power (mW)

Figure B.9.: NET-TRP-HC1

96

Appendix B: Experimental Graphs

0 10 20 30 40 50 60 70

0

1

2

3
⋅105

n

S
iz

e

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Size

0 10 20 30 40 50 60 70

0

50

100

150

n

D
ep

th

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Depth

0 10 20 30 40 50 60 70

0

0.5

1

1.5

2

⋅105

n

N
u
m

b
er

of
C

el
ls

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Number of Cells

0 10 20 30 40 50 60 70

0

0.5

1

1.5

⋅104

n

L
at

en
cy

(p
ic

o
se

co
n

d
s)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Latency (pico seconds)

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

⋅106

n

A
re

a
(µ
m

2
)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Area (µm2)

0 10 20 30 40 50 60 70

0

0.5

1

⋅105

n

P
ow

er
(m
W

)

Batc68
ChCh96
ChOr94
Nara94
JaSJ17
JaSc18c

Power (mW)

Figure B.10.: NET-TRC-HC0

97

Appendix B: Experimental Graphs

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2

⋅105

n

S
iz

e

Nara94
JaSJ17
JaSc18c

Size

0 20 40 60 80 100 120 140

0

50

100

150

200

250

n

D
ep

th

Nara94
JaSJ17
JaSc18c

Depth

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2
⋅105

n

N
u
m

b
er

of
C

el
ls

Nara94
JaSJ17
JaSc18c

Number of Cells

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2

2.5

⋅104

n

L
a
te

n
cy

(p
ic

o
se

co
n
d
s)

Nara94
JaSJ17
JaSc18c

Latency (pico seconds)

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

⋅106

n

A
re

a
(µ
m

2
)

Nara94
JaSJ17
JaSc18c

Area (µm2)

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2
⋅105

n

P
ow

er
(m
W

)

Nara94
JaSJ17
JaSc18c

Power (mW)

Figure B.11.: TNT-BIN-HC0

98

Appendix B: Experimental Graphs

0 10 20 30 40 50 60 70

0

0.5

1

⋅105

n

N
u
m

b
er

o
f

C
el

ls

BatcherBanyan

JaSJ17(front-end valid sorter)
CrossbarPartial

Beneš

Number of Cells

0 10 20 30 40 50 60 70

0

0.5

1

1.5

⋅104

n

L
at

en
cy

(p
ic

o
se

co
n
d

s)

BatcherBanyan

JaSJ17(front-end valid sorter)
CrossbarPartial

Beneš

Latency (pico seconds)

0 20 40 60 80 100 120 140

0

0.5

1

1.5

⋅106

n

A
re

a
(µ
m

2
)

BatcherBanyan

JaSJ17(front-end valid sorter)
CrossbarPartial

Area (µm2)

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2

⋅105

n

P
ow

er
(m
W

)

BatcherBanyan

JaSJ17(front-end valid sorter)
CrossbarPartial

Power (mW)

Figure B.12.: Comparison with Others Networks

99

Appendix C
Curriculum Vitae

Professional Experience

2015–2018 Wissenschaftlicher Hilfskraft TU Kaiserslautern, Germany
Fachbereich Informatik, Arbeitsgruppe Matritzen

2013–2014 Research Associate IIT Bombay, India
Electrical Department, PI: Prof. Virendra Singh

2012–2013 Project Trainee IIT Bombay, India
Electrical Department, PI: Prof. Maryam S. Bhagini

2011–2012 SMDP-II, Lecturer SGSITS Indore, India
Electronics and Instrumentation Department

2010–2010 Lecturer SVIT Indore, India
Electrical and Electronics Department

2009–2010 Lecturer IIST Indore, India
Electronics and Communication Department

2004–2007 Lecturer SVITS Indore, India
Electrical Engineering Department

Education

2007–2009 M.Tech in Microelctronics and VLSI Design SGSITS Indore
Thesis: Reconfigurable Hardware Implementation of Median Filter for

Image Processing

1999–2003 B.E. in Electrical Engineering SGSITS Indore
Thesis: Implementation of continuation Power flow

Schulausbildung

1986-1998 High School SKBVN Indore, India
Majors: Mathematics, Physics, Chemistry

101

Appendix C: Curriculum Vitae

102

	Abstract
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline

	2 State of the Art
	2.1 Basics of Interconnection Networks
	2.1.1 Basic Terminology
	Terminal Node and Switch Node
	Direct and Indirect Networks
	Static and Dynamic Networks
	Blocking and Nonblocking Networks
	Multicast and Unicast Networks
	Self-Routing Networks

	2.1.2 Network Aspects
	Topology
	Routing Algorithms
	Flow Control
	Microarchitecture

	2.1.3 Network Architectures
	Bus
	Mesh Networks
	Torus Networks
	Ring Networks
	Tree Networks
	Hypercube Networks
	Crossbar Networks

	2.2 Multistage Interconnection Networks
	2.2.1 Permutation Networks
	2.2.2 Dilated Multistage Network
	2.2.3 Replicated Multistage Network
	2.2.4 Fat Tree Networks
	2.2.5 Clos Networks
	2.2.6 Beneš Networks
	2.2.7 Flattened and 2-Dilated Flattened Butterfly Networks

	2.3 Sorting Networks
	2.3.1 Merge-based Sorting Networks
	2.3.2 Radix–based Sorting Networks
	Narashima's Networks
	Koppelman and Oruç's Networks
	Chien and Oruç's Networks
	Cheng and Chen's Networks

	2.4 Current Commercial Interconnection Networks
	2.5 Summary

	3 New RBS Networks for Total Permutations
	3.1 Basic Definitions:
	3.1.1 Total Permutations
	3.1.2 Partial Permutations
	3.1.3 Splitter
	3.1.4 Concentrator
	3.1.5 Ternary Sorter

	3.2 Distribution-Based Interconnection Networks
	3.2.1 Correctness of the Binary Sorter
	3.2.2 Switch Configuration Circuits
	Parallel Prefix Computation
	Ranking-based Configuration

	3.3 Sorters with Half Cleaner based RBS Network
	3.3.1 The Half Cleaner Lemma

	3.4 Summary

	4 New RBS networks for Partial Permutations
	4.1 Routing Partial Permutations by Sorting Networks
	4.2 Routing Partial Permutations
	4.2.1 Front-end Valid Sorter for Prefix Defined Networks
	4.2.2 Constructing Split Modules as Ternary Sorters
	4.2.3 Constructing Split Modules by Ternary Concentrators
	4.2.4 Constructing Split Modules by Ternary Sorters and Half Cleaners

	4.3 Summary

	5 Experimental Results and Comparison
	5.1 Asymptotic Complexities
	5.2 Experimental Results
	5.2.1 Total Permutations
	5.2.2 Partial Permutations

	5.3 Analysis of Results

	6 Conclusions
	Bibliography
	A Experimental Tables
	B Experimental Graphs
	C Curriculum Vitae

