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Abstract

This work presents a visual analytics-driven workflow for an interpretable
and understandable machine learning model. The model is driven by a re-
verse engineering task in automotive assembly processes. The model aims
to predict the assembly parameters leading to the given displacement field
on the geometries surface. The derived model can work on both measure-
ment and simulation data. The proposed approach is driven by the scientific
goals from visual analytics and interpretable artificial intelligence alike. First,
a concept for systematic uncertainty monitoring, an object-oriented, virtual
reference scheme (OOVRS), is developed. Afterward, the prediction task is
solved via a regressive machine learning model using adversarial neural net-
works. A profound model parameter study is conducted and assisted with
an interactive visual analytics pipeline. Further, the effects of the learned
variance in displacement fields are analyzed in detail. Therefore a visual an-
alytics pipeline is developed, resulting in a sensitivity benchmarking tool.
This allows the testing of various segmentation approaches to lower the ma-
chine learning input dimensions. The effects of the assembly parameters are
investigated in domain space to find a suitable segmentation of the training
data set’s geometry. Therefore, a sensitivity matrix visualization is devel-
oped. Further, it is shown how this concept could directly compare results
from various segmentation methods, e.g., topological segmentation, concern-
ing the assembly parameters and their impact on the displacement field vari-
ance. The resulting databases are still of substantial size for complex simula-
tions with large and high-dimensional parameter spaces. Finally, the appli-
cability of video compression techniques towards compressing visualization
image databases is studied.
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Zusamenfassung

Diese Arbeit präsentiert einen visual-analytics Workflow für ein interpretier-
bares und verständliches Modell für maschinelles Lernen (ML). Das Mod-
ell ist motiviert von einem Reverse-Engineering-Problem in der Automo-
bilmontage. Das Ziel des Modells ist die Vorhersage von Montageparame-
tern, welche zu dem gegebenen Verschiebungsfeld auf der Geometrie geführt
haben. Das abgeleitete Modell kann dabei sowohl Mess- als auch Simu-
lationsdaten verarbeiten. Der vorgeschlagene Ansatz orientiert sich hier-
bei gleichermaßen an den wissenschaftlichen Zielen der visuellen Analyse
und der interpretierbaren künstlichen Intelligenz. Hierfür wird zunächst
ein Konzept zur systematischen Unsicherheitsüberwachung: ein objektori-
entiertes, virtuelles Referenzschema (OOVRS), entwickelt. Anschließend wird
die Vorhersage über ein regressives ML-Modell unter Verwendung von neu-
ronalen Netzen gelöst. Zur Validierung wird eine Modellparameterstudie
durchgeführt und mit einer interaktiven visuellen Analysepipeline versehen.
Anschließend werden die Auswirkungen der gelernten Varianz in den Ver-
schiebungsfeldern analysiert und schließlich in ein Sensitivitäts- Benchmarking-
Tool überführt. Dies ermöglicht das Testen verschiedener Segmentierungsan-
sätze, um die Eingabedimensionen für das ML zu verringern. Die Auswirkun-
gen der Montageparameter werden im Domänenraum untersucht, um eine
geeignete Segmentierung der Geometrie im Trainingsdatensatz zu bestim-
men. Zur besseren Darstellung wurde hierfür eine Sensitivitätsmatrix- Vi-
sualisierung entwickelt. In der Arbeit wurde gezeigt, wie dieses Konzept
Ergebnisse verschiedener Segmentierungsmethoden, z. B. der topologischen
Segmentierung, bezüglich der Montageparameter und deren Einfluss auf die
Verschiebungsfeldvarianz direkt verglichen werden kann. Die resultieren-
den Datenbanken sind immer noch von beachtlicher Größe für komplexe
Simulationen mit großen und hochdimensionalen Parameterräumen. Daher
wird abschließend die Anwendbarkeit von Videokompressionstechniken für
die Komprimierung von Visualisierungsbilddatenbanken untersucht.
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Chapter 1

Introduction

Interpretable and understandable intelligent systems and especially machine
learning is one of today’s most pressing challenges in computer science [1].
The stunning results and fast development of deep learning techniques in
the last decade enabled the transfer of machine learning in various appli-
cation scenarios [2]–[4]. While these models’ predictive quality reached a
superior state compared to humans in many applications [5], such as image
classification or fraud and anomaly detection, they remain a black box for
most users [6], [7]. The mostly unknown learning process is not only a secu-
rity issue, where utterly new research fields like adversarial attacks emerged
[8] but also for many applications, where unknown behavior could lead to
catastrophic consequences (e.g., medicine, power supply, financial transac-
tion). On the other hand, these intelligent models come to age, where critical
doubts slowly replace the initial excitement and risk-seeking with risk aver-
sion [9]. It leads to an increased demand for interpretability and understand-
ability throughout all applications.
In engineering and especially in quality control, the deployment of machine
learning techniques took place before the current hype on machine learn-
ing [10]–[12]. Nonetheless, the models in use were designed explicitly for a
narrow application field (e.g., visual object detection in a production line,
for specific single our small group of predefined object features). Conse-
quently, such a model’s development is very time-consuming and only prof-
itable when the number of daily decisions is justifying the initial and ongoing
development costs, even under changing production parameters. Today’s
production systems have an increased variety in products [13], which makes
those highly specialized models unprofitable in many applications, and a hu-
man workforce is preferred. On the other hand, the increasing demographic
aging, especially in western societies [14] continuously lower the available
amount of expert work-forces required for decision making in quality con-
trol. Consequently, the effectiveness of each workforce has to be increased.
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Intelligent decision support tools, which incorporate machine learning, are
the first choice here, but the requirements have changed. The main goal
now is to enable the workforce to develop models independently, tackling
the challenges from the variability while maintaining the ability to make an
increased number of decisions with high reliability. This requirement con-
sequently demands a model development pipeline, maintaining high inter-
pretability and easy access.
In the presented thesis, we elaborate on the challenges and analyze results to
meet those requirements. As an example, we choose a parameter prediction
task from an automotive assembly line. Here the goal is to reliably predict
the assembly parameters from a full face optical measurement based on a
given set of simulation results. In the current state, the simulation model is
used to solve an inverse optimization problem, which results in high compu-
tation times and costs for every prediction. Instead, we develop a machine
learning model to solve the same optimization problem based on a set of
simulation results. Hence the computational effort is only initially high, and
additionally, we allow for incorporating real measured data in the continu-
ous training of the model, which was not possible before.

Uncertainty is an everlasting challenge both for measurements and sim-
ulation models alike. Therefore assessing and documenting uncertainty in
an assembly process is the first building block of this thesis (see Chapter 2).
After describing and quantifying the uncertainty in our training data, we
develop a machine learning model capable of predicting the parameter val-
ues for a given displacement field (see Chapter 3). The displacement field
is either the result from an optical measurement to the planned CAD-model
or, for more controlled testing, the result of a simulation with parameters
not used for training. The resulting regression model thus is moderated by
the uncertainty in the training data. The model then undergoes a parameter
study focusing on the effects of distance metrics on loss-functions. Further,
we analyze the impact of the training fraction size (the number of simula-
tion results for the initial training) and the number of neurons in the first
(and only) hidden layer. The goal is to create a minimalistic model [15]. The
resulting optimized model is still overparameterized and, therefore, barely
interpretable. In summary, it proposes two major research questions:

• Why is a continuous linear function sufficient for our prediction task?
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• How to reduce the input shape, while maintaining the overall entropy
of the training data?

In Chapter 4, we develop an analysis pipeline to analyze each simulation pa-
rameter’s impact. More specifically, we map each parameter’s impact on the
resulting distances (the input for the ML-model prediction) between a target
displacement field and the training data displacement fields. It results in a
visual analysis tool, which allows the detection of dominant parameters and
their pair-wise cross-correlations. Additionally, we derive a benchmark for
checking the increase or decrease in entropy for segmentation of the input
shape.
In Chapter 5, the investigated part’s domain space is analyzed with regards
to different simulation parameter combinations using the concept of sensi-
tivity analysis. Based on these results, a sensitivity matrix view is derived.
Together with the topology analysis results on the resulting deviation fields,
we can explore possible segmentations on the machine learning model’s in-
put shape. Further, we show the applicability of topology-based metrics for
the use in more turbulent vector fields, like the geodynamo.
Finally, we investigate video compression techniques to cover the challenges
for storing and accessing large image databases resulting from in-situ visual-
izations (Chapter 6).

1.1 Machine Learning

The research field of machine learning (ML) is a broad topic and gained in-
creasing importance with the availability of big data and cloud computing
resource. In this thesis, we will focus on the branch of supervised learning.
Machine Learning is now classified as a part of Artificial Intelligence (AI).
Before that, machine learning was mostly considered a part of statistics and
there, especially in inferential statistics. Thus it is not surprising that the first
descriptions of machine learning approaches are already found in the late
’50s due to the demand for more flexible statistical prediction methods.
First, there is no clear definition, and it changes with the advancements of
technology. We choose to use the definition from Tom Mitchell, which is part
of his famous textbook on machine learning, first released in 1997 :

"Machine learning is the study of computer algorithms that allow com-
puter programs to automatically improve through experience."[16]
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Here the "learning through experience" part is what best separates machine
learning from other AI methodologies. Now we can distinguish three ways
to achieve this "learning through experience," which classifies the machine
learning field into the three major paradigms: supervised, unsupervised and
reinforced.
In supervised learning, which we also mainly consider here, the learning ob-
jective is known, and we call it "labeled." In contrast, in unsupervised learn-
ing, the object is unknown. Thus it is not clear at the beginning what exactly
is learned. One could ask the question now: " What is the purpose of learn-
ing if the objective is unknown?". The bottleneck of supervised learning gets
clearer if we look at the challenges that big data proposes to data analytics.
The amount of possible features (objectives) and their cross-dependencies is
barely manageable. Supervised learning techniques demand a clear defini-
tion of input parameters and output features. In many big data applications,
the definition of a clear objective is not possible or simply unknown. Here
unsupervised learning can help find similar clusters in a data set, where tra-
ditional "exact" methods fail due to their computational complexity. How-
ever, beware that this "unknown" analysis proposes several paradoxes. The
Simpson Paradoxon [17] is a classic example of false accusation, where the
hypothesis is formulated after the data analysis resulting in a huge interpre-
tation bias. Hence applied to a result from unsupervised learning, we tend
to over-interpret the found similarities if we did not start our analysis with a
profound hypothesis derivation.
Now there is also a third way to classify the learning objective. If the ob-
jective is known, we assumed that the objective could describe it via a la-
bel, a fixed value to say. If we want to learn an optimization task, on the
other hand, the label is not set but described by minimizing or maximizing
property. The paradigm of reinforced learning is used to solve these kinds
of learning problems. Here the input is a parameterized function, and the
output again is a function that evaluates the result from the input function,
resulting in a score for the optimization problem. The model is now learn-
ing how to adapt and find the optimal parameters of the input function. The
Braess Paradoxon [18], is very important to understand the challenges in re-
inforcement learning. In summary, it proposes the challenge of forcing the
model to change its optimization strategy while it did not reach an equilib-
rium state. Typically, there is no incentive to change the strategy as long as
the optimization function gradient decreases (for a minimization problem).
Breass’s example of network congestion showed that a change of strategy is
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ultimately needed to solve the congestion.
Regarding Visual Analytics and the approaches developed here, the Accu-
racy Paradoxon [19], [20] is the challenge we focus to overcome in Chapter
4. The accuracy metric is often over-trusted in many machine learning ap-
plications. Precision (also denoted as Sensitivity) and Recall are much better
suited for classifier performance evaluation.

1.2 Visual Analytics

The research field of Visual Analytics is the consequence of the ongoing ad-
vances in information and scientific visualization. It extends those fields by
adding active reasoning as a fundamental part. The advances in both visu-
alization fields, especially those that enabled near real-time interaction and
modifications, enabled the field of Visual Analytics. A prominent definition
of Visual Analytics is the one by J.J. Thomas:

"Visual analytics is the science of analytical reasoning facilitated by in-
teractive visual interfaces."[21]

The definition already states that Visual Analytics and Analytical Reasoning
are inextricably linked with each other. As such, we can understand Visual
Analytics as an enabler for Analytical Reasoning. The challenges that Visual
Analytics has to overcome can be summarized into the fields of Visual Repre-
sentations and Interaction Technologies, Data Representations and Transformations
and Production, Presentation, and Dissemination as introduced by Thomas [21].
As a consequence, Thomas formulates the goals on which we develop the
visual representations and interaction approaches. Those are:

• allow for continually growing collections of data of multiple types - (see
Chapter 6 - Evaluating the use of Video Compression for Visualization
Products);

• provide frameworks for spatial data - (see Chapter 5 - Impact Maps and
Sensitivity Analysis );

• support the understanding of uncertain, incomplete, and often mis-
leading information - (see Chapter 2)

• provide user- and task-adaptable guided representations that enable
full situation awareness while supporting development of detailed ac-
tions - (see Chapter 4 Figure 4.15)
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• support multiple levels of data and information abstraction, including
integrating different types of information into a single representation. -
(see Chapter 4 Figure 4.2)

Nevertheless, the task of visual analytics does not stop at the visual repre-
sentation. Further, we have to consider the initial challenges proposed by
the data representation and transformation:

• develop both theory and practice for transforming data into new scal-
able representations that faithfully represent the underlying data’s rel-
evant content. - ( see Chapter 4 - Experimental Design)

• create methods to synthesize different types of information from differ-
ent sources into a unified data representation so users can focus on the
data’s meaning in the context of other relevant data, regardless of the
data type. - (see Chapter 4 - Visual Analytics Pipeline)

• develop methods and principles for representing data quality, reliabil-
ity, and certainty measures throughout the data transformation and
analysis process. - (see Chapter 2- Object-Oriented Virtual Reference
Scheme, Chapter 4 - Classifier Performance Analysis or Chapter 3 - Ef-
fects of Distance Metrics on Learning Performance)

1.3 Interpretable and Explainable Machine Learn-

ing

The research field of interpretable machine learning has grown at a fast pace
over the last years. Regarding the recent publications in the IEEE Journal -
Transactions on Computer Graphics and Visualizations and the Proceedings
of the Visualization Conference in the years from 2015 - 2020, we observe
a tremendous increase in the field of interpretable machine learning. Each
year the number of related publications is nearly doubled in the past five
years. Qin et al. [22] and Hohman et al. [23] provide a profound overview
of the upcoming challenges and recent developments in visual analytics for
explainable machine learning. Hani Hagras [24] formulated the needs and
goals towards human-understandable artificial intelligence which also in-
cludes machine learning. As a consequence, Hagras formulated five focus
areas: Transparency - Causality - Bias - Fairness - Safety.
Further Gunning [25] identified the four main building blocks explainable
Artificial Intelligence has to address. These are:



1.3. Interpretable and Explainable Machine Learning 7

• Model Performance

• Deep Explanation

• Interpretable Models

• Model Induction

The goal for Model Performance is to explain the relationship of changing per-
formance under controlled conditions. This explanation can be achieved by
a structured model parameter study like the one conducted in Chapter 3.
As the name already suggests, Deep Explanation is a major concern in Deep
Learning approaches. The goal here is to learn explainable features. Inter-
pretable Models aim to keep them as simple as possible while monitoring their
performance change. Thereby directly follows the concept of Model Induction,
which directly focuses on general approaches, allowing the model deduc-
tion process recreation. Especially the last approach is what motivated this
work the most. As such, our derived machine learning model is based on
the concept of Yanez-Marquez[15] minimalist machine learning. For reverse
engineering applications like the one we are investigating here, we think this
approach will result in the best trade-off between performance and explain-
ability. The very structured nature of engineering applications enables such
a minimalistic approach, and the thesis shows this.
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Chapter 2

Uncertainties in Assembly
Processes

Uncertainty is a persistent challenge throughout all disciplines in science,
and engineering [26]. In natural science, the complexity of our real-world
defines uncertainty. We cannot fully control and measure all parameters and
always have to deal with some uncertainty. Ideally, we want to describe only
a subsystem of the world and, therefore, accept uncertainties when formulat-
ing a generalizing hypothesis. In engineering, we usually have more control
over the whole process.
Nonetheless, the same mechanism introduces uncertainty: not fully control-
ling all parameters. Let us take a look at the light conditions in a factory hall.
Even if we mainly use artificial light, some uncontrollable processes affect the
lighting. Such a condition could be open doorways or windows from which
daylight emits into the factory. The intensity and frequency of daylight are
uncontrollable parameters [27].
A more common and dominating process parameter that introduces the most
uncertainties in manufacturing and especially assembly is the human itself.
At every point where a human being is involved in the process, we introduce
uncertainty to it. Daily and hourly variations affect even a perfectly trained
human. If more than one person is involved, the intermediate variations be-
tween them are inducing even more uncertainty. The variational effects hold
both for manual and cognitive tasks.
Simulations, on the other hand, are always deterministic in their outcome
based on the chosen parameters. Nonetheless, it makes sense to incorporate
uncertainties in the simulation to validate and analyze the real-world, and
simulated processes [28]. The benefit of simulations is clear nowadays [29],
but it is not always clear why something should be simulated [30]. In the con-
cept of a digital twin, incorporating these uncertainties plays a crucial role.
Regarding the overall research question, the uncertainty modeling method
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strongly affects the learning model. It makes a massive difference if it is sys-
tematically defined or implicitly given in the training data. Only in the first
case we can incorporate the uncertainty as an explicit additional parameter of
the learned model. While in the latter case, we can only learn to distinguish
it.

Related Work Zouaoui et.al. [31],[32] and Barton et. al. [33] are talking in
detail on how to deal with uncertainties in the input model. While Zou et
al. [34] and McKay et al. [35] are investigating the problem of analyzing and
evaluating uncertainty. Du and Chen [36], and Hills [37] provide models on
how to manage uncertainty in the process, and therefore also provide useful
ideas on how to analyze uncertainty. A very advanced approach for its time
was proposed by Su and Lee [38], where they analyzed the uncertainty of a
process by controlled manipulation of uncertainty factors. A good resource
and starting point for visualizing uncertainties is made by Potter et al. [39].

2.1 Digital Twin and Uncertainty

Tao et al. describe the general concept of a modern digital twin [40]. The
main goal of these is an accurate copy (Twin) of a real-world process inside
given boundaries with predefined target outcome data. Simulations are a vi-
tal component of most digital twins. The predefined target outcome is often
not accurately specified. This misunderstanding elevates simulations as a
replacement of a physical process, which leads to low acceptance of simula-
tion development and results throughout the company. In engineering, this
mainly occurs in the phases of quality and machine control [41]–[43].
Instead, communicating simulations to analyze processes with the necessary
flexibility for upcoming changes is preferable. This flexibility is what de-
mands the incorporation of uncertainty. Generalization introduces flexibil-
ity, and significance is the limiting factor. The significance ensures that the
simulation matches achievable results in the real-world process. Those two
factors have to be balanced out, which leads to the formulation of the fol-
lowing optimization problem for the development of simulations as digital
twins:

Generalization := {situations, that can be simulated} (2.1)

max|Generalization|, with significance > s0 (2.2)
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Generalization consists of a set of simulatable situations. Maximizing the
number of elements in this set is interpreted as maximizing the generaliza-
tion of the simulation. On the other hand, the significance is hard to for-
malize, and so is setting a realistic threshold of s0. As stated before, the sig-
nificance ensures the realism of the simulation. In order to ensure realism,
uncertainties have to be taken into account as well [44] .
Additionally, the simulation has to match a predefined precision to be useful
at all. The somewhat fuzzy "significance" can be replaced with a combina-
tion of incorporated uncertainty and achieved precision. For an uncertain
process, uncertainty moderates the achievable precision. As such, we can
formalize the precision as a function of uncertainty. It figures out that using
uncertainty instead of certainty suits better in most cases and better copes
with the meaning for error in statistics, which is an excellent analogous for
uncertainty in simulation validation with real process data. The optimization
problem then changes to:

max|Generalization|, with precision(uncertainty) > p0 (2.3)

Now that the optimization problem is stated, the question arises how to
check if the conditions hold. First, it may be useful to have a look at the def-
initions of precision and uncertainty from the 2007 International vocabulary
of metrology [45].

Definition 1 Measurement uncertainty is a non-negative parameter char-
acterizing the dispersion of the quantity values being attributed to a measur-
and, based on the information used
" NOTE 1 Measurement uncertainty includes components arising from systematic
effects, such as components associated with corrections and the assigned quantity
values of measurement standards, as well as the definitional uncertainty. Sometimes
estimated systematic effects are not corrected for but, instead, associated measure-
ment uncertainty components are incorporated.
NOTE 2 The parameter may be, for example, a standard deviation called standard
measurement uncertainty (or a specified multiple of it), or the half-width of an inter-
val, having a stated coverage probability.
NOTE 3 Measurement uncertainty comprises, in general, many components. Some
of these may be evaluated by Type A evaluation of measurement uncertainty from
the statistical distribution of the quantity values from series of measurements and
can be characterized by standard deviations. The other components, which may be
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evaluated by Type B evaluation of measurement uncertainty, can also be character-
ized by standard deviations, evaluated from probability density functions based on
experience or other information.
NOTE 4 In general, for a given set of information, it is understood that the mea-
surement uncertainty is associated with a stated quantity value attributed to the
measurand. A modification of this value results in a modification of the associated
uncertainty."

Definition 2 Measurement precision is the closeness of agreement between
indications or measured quantity values obtained by replicate measurements
on the same or similar objects under specified conditions.
" NOTE 1 Measurement precision is usually expressed numerically by measures of
imprecision, such as standard deviation, variance, or coefficient of variation under
the specified conditions of measurement.
NOTE 2 The ’specified conditions’ can be, for example, repeatability conditions of
measurement, intermediate precision conditions of measurement, or reproducibility
conditions of measurement (see ISO 5725- 3:1994).
NOTE 3 Measurement precision is used to define measurement repeatability, inter-
mediate measurement precision, and measurement reproducibility.
NOTE 4 Sometimes "measurement precision" is erroneously used to mean measure-
ment accuracy." [45].

Summarizing, we can state that the amount of information (entropy) and
how well the process is understood defines uncertainty. At the same time,
precision is a quantifiable property that arises from repetition and systematic
testing.

2.2 Validation Paradoxon

The validation of a digital twin simulation proposes several challenges and is
often misguided due to the underlying validation process’s dimensionality.
Based on the previous observations, we can already define two parameters
for the validation process: Generalization and precision. We already figured
out that uncertainty moderates the precision of the real-world process itself.
Additionally, we can always extend the validation with an economic view-
point. The amount of effort (time, money, other resources) is limited for the
validation and adds the third dimension to trade-off in the simulation valida-
tion. In real applications, we have to balance our effort, generalization, and
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FIGURE 2.1: Simulation Validation Paradoxon. As the devel-
opment of a simulation is a continuous process, it is hard to
determine when a simulation is validated. With every newly
generated simulation, new knowledge of the modeled process
is gained. This new knowledge then affects the way we define
completeness, uncertainty, and input parameters. Those three
factors, on the other hand, are the key components the valida-
tion is built on. Therefore the validation of a simulation always

depends on the current state of the development process.



14 Chapter 2. Uncertainties in Assembly Processes

precision when developing and validating the simulation. The real challenge
now is not the three-dimensional optimization problem but the interference
of such simulations’ development process. Figure 2.1 illustrates this prob-
lem, which leads to the proposed Paradoxon.
The development of a simulation typically follows a looped cycle. We cre-
ate an initial simulation, and from the analysis of the results, we create new
knowledge about the real-world modeled process. The process’s knowledge
highly moderates the accuracy by describing the uncertainties in the process
and how accurate the generalization parameters are modeled or extended.
Both then positively affects the achievable precision as well as the current
precision of the simulation itself.
The simultaneous change of the achievable and the current simulation pre-
cision leads to an ambiguous optimization problem. This process leads to
a paradox where the simulation’s target precision could be better and worse
than the achievable precision of the real process simultaneously due to not in-
corporated uncertainties. These uncertainties depend on whether the newly
generated knowledge reveals new uncertainties or better quantifies known
ones in the real-world process. Suppose we model the simulation develop-
ment process as a state-machine. Then, the current state defines the valida-
tion, and we can solve the ambiguity. The only real limiting factor, finally, is
the available effort.

2.3 Dealing with Uncertainties

We have seen that uncertainties are a crucial part of the current strive for
digitization in manufacturing [46]. Especially in assembly processes, much
manual work is still used and therefore induces high amounts of uncertain-
ties. The add-up tolerances and errors of the previous processing steps in-
duce a high uncertainty in the final assembly stages. Quality Control (QC)
is a key instrument to deal with these uncertainties. For now, it was suffi-
cient for QC to maintain and prove predefined quality criteria without the
need to specify them thoroughly. We showed that virtual models such as
digital twins heavily rely on a profound specification of the occurring un-
certainties throughout the whole process. Without them, the virtual model’s
precision will barely approach the demanded precision needed for a digital
twin. The idea of a digital twin in quality control is to supplement high effort,
or high-cost tasks [40]. High effort tasks typically involve a complex process-
ing pipeline to be tested or where the measurement of quality criteria is only
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Gather 
Uncertainty 

influencing factors

Quantify Uncertainty

Incorporate factors as boundary conditions in 
the virtual model

FIGURE 2.2: Steps towards incorporating uncertainties in a dig-
ital twin. The process follows a looped cycle. It starts with
gathering all relevant factors and is followed by quantification
of them. The quantification step could require additional fac-
tors, which results in a back-loop. The last step is the incorpo-
ration of the quantified factors as boundary conditions in the
virtual model. In the virtual models’ validation phase, new
uncertainty factors could be identified and incorporated into

a new cycle.

possible under tremendous efforts. We want to avoid high-cost tasks where
the part is on purpose or potentially destroyed and is unusable afterward. In
order to tackle the uncertainties for the usage in digital twins, we identified
three steps:

1. Gather all uncertainty influencing factors in the process

2. Quantify the uncertainty of all factors

3. Incorporate the factors as boundary conditions in the virtual models

Remark that the process steps and their connection and dependencies to
external sources are defining the influencing factors. To cover these depen-
dencies already in the early stages, we use the Ishikawa method [42], [47] to
gather and order the influencing factors. We introduce an object-oriented ap-
proach to store a digital reference scheme, which describes the current stage
uncertainty of the virtual model.
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FIGURE 2.3: Exemplary use of an Ishikawa Diagram for a struc-
tural effect analysis on uncertainties in a process. We identi-
fied four main effect groups - Measurement, Structural Com-
ponents, Connections, and External factors. Each of those is
then subdivided into more detailed factors. E.g., the structural
component consists of deformation and load-bearing effects.
The structural components themselves bear deformation uncer-
tainties, which could moderate the overall uncertainty of the
assembled part. Different material properties lead to varying
load-bearing behavior (especially directivity properties), affect-

ing the deformation uncertainty.

2.3.1 Impact Analysis

Ishikawa diagrams, also called fishbone diagrams, herringbone diagrams,
cause-and-effect diagrams, or Fishikawa, show cause and effect relations.
The use of Ishikawa diagrams is widespread in product design and quality
control (see VDI 2870 [48]). It is used in quality control to identify potential
effects or influencing factors that might have an overall effect. Each of these
identified factors is a source of variation in the underlying process. The fac-
tors are then typically grouped into major categories. In Figure 2.3 we show
an example of an Ishikawa diagram used for the application scenario of the
assembly of a car engine hood (A.1.2).
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2.3.2 Object-Oriented Virtual Reference Scheme

To cover the complexity of digital twins’ validation process, we developed an
object-oriented approach for referencing dependencies on uncertainty and
possible impacts on subsequent process steps. The object-oriented virtual
reference scheme (OOVRS) is a tool to determine a digital process chain’s re-
liability. The idea is to allow the definition of uncertainty budgets similar to
tolerance chains [49] in the product development phase. The object-oriented
method allows us to model hierarchies and dependencies with specific and
abstract methods to calculate the uncertainty budget.
The idea is to make it possible to have specific methods modeling the de-
pendency between two or more subsequent process steps and allow for gen-
eral methods clustering steps that belong to a similar group of processes and
therefore share standard features.
Following this abstraction the development of such a scheme should follow
the SOLID principles [50]:

• Single-Responsibility Principle:
"There should never be more than one reason for a class to change." [50]

• Open-Closed Principle:
"Modules should be both open (for extension) and closed (for modifi-
cation)." [50]

• Liskov Substitution Principle:
“Let q(x) be a property provable about objects x of type T . Then q(y)

should be true for objects y of type S where S is a subtype of T ." [50]

• Interface Segregation Principle:
"Clients should not be forced to depend upon interfaces that they do
not use." [50]

• Dependency Inversion Principle:
"A. High-level modules should not depend on low level modules. Both
should depend on abstractions.
B. Abstractions should not depend upon details. Details should depend
upon abstractions." [50]
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FIGURE 2.4: Concept of the Object-Oriented Virtual Reference
Scheme. It consists of Processes (silver rectangle), Dependen-
cies (arrows), and Data Sources (orange rhombus). The pro-
cesses are extended with accuracy and uncertainty descrip-
tions, while the dependencies bear a status annotation. Besides
these restrictions, one is free to model the details of each object.
The idea is to generate a quick overview of the relationships of

accuracy and uncertainty throughout the whole process.
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The idea of OOVRS is one of an inverse reference. The typical process would
be as follows: We achieve an optimal result (physical or virtual) via cali-
brating all parameters until reaching a near-optimal state. However, this ap-
proach has a considerable disadvantage when the optimal result is not feasi-
ble or unknown, or the process itself is too complex (e.g., too many parame-
ters) to solve. Instead, based on the uncertainties in the process, the optimal
achievable result is derived from the system’s current state. As such, improv-
ing the uncertainty is conditional for the improvement of the overall result.
For the implementation of such a scheme, we have to fulfill three constraints:

• A database for all process-relevant Data

• A formalized process definition that allows for mathematical opera-
tions (e.g., uncertainty budget)

• Definition of suitable references for the smallest process entities (phys-
ical and virtual).

The virtual reference scheme is an ongoing process itself, while new data and
knowledge continuously enrich it.

Figure 2.4 is showing an abstract example of an OOVRS. Each class in the
scheme belongs to one of three main types: Process, Dependency and Data
Source.

• Process is a technologically, temporally, and locally determined inter-
action.

• dependency describes the conditional relationship between two pro-
cesses or a process and a data source.

• Data source is a deterministic source of information throughout a pro-
cess.

The selected Process A depends directly on three data sources Data1,
Data2, and Data3. It indirectly depends on Sub-process B, which means that
the uncertainty or accuracy of Process A is influenced by Sub-process B under
certain constraints, which are defined in Process A specifically, which follows
the "Dependency Inversion Principle." This principle means that Process A
knows its dependency on Sub-process B and Data1, Data2, and Data3, but
not vice versa. Each dependency is either a concrete entity or derived from
the general dependency class, which holds an attribute on the status. The
status models the knowledge of the dependency in three stages:
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FIGURE 2.5: Exemplary model of Accuracy and Uncertainty in
the OOVRS. The main difference between those two is that ac-
curacy is based on a reference object, while uncertainty evalu-
ates a process deviation. Mandatory for both is the rating object
for the calculation of error chains. The modeling in UML-Style

allows for direct software-assisted implementation.

• known: There exist a formal (mathematical) definition and method im-
plementation.

• partially known: There exists a method, but it is not validated or ap-
plicable in all scenarios. (e.g., only for a certain accuracy range)

• unspecific: There is a dependency, but its mechanism is not known yet.

These stages indicate whether the dependency is useful for formal analysis
like, e.g., uncertainty budgeting or not. Two main indicators then define each
process:

1. Accuracy: It describes the mapping accuracy in the real-world process
through the virtual process based on reference.

2. Uncertainty: It describes the uncertainty of the entropy with whom

• the reference was developed

• the method providing the accuracy of such reference

One is free to choose an ordinal or rational scale for accuracy or uncertainty,
based on the application.

2.4 Discussion

We have demonstrated the influence of uncertainties in manufacturing pro-
cesses and highlighted its importance for developing digital twins. Regard-
ing our general research question, we could state:
Uncertainty is a property that can be learned by a machine learning model
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FIGURE 2.6: Exemplary use of the OOVRS. The OOVRS high-
lights a portion from the pre-processing step of application
A.1.2. The gravitational back-propagation simulation depends
on two previous processing steps: Deformator and Meshing.
The meshing process is the starting point, where the initial sim-
ulation mesh is created and is mainly dependent on the two
data sources, CAD, and Mesh-Quality criteria. Both sources are
well understood and controlled. As such, the meshing uncer-
tainty is low, and the accuracy is known and mainly quantified.
There still exist some qualitative empirical values. As such, it
is marked yellow. The deformation algorithm, which maps a
measured displacement onto the simulation mesh, depends on
the two data sources: Optical Measurement and Deformator
Parameters. Both data sources’ impact on the Deformator is
not sufficiently studied yet(red label). Nonetheless, the overall
outcome of the Deformator remains certain and accurate (green
labels for both accuracy and uncertainty). The impact of the de-
formation result on the gravitational back-propagation simula-
tion is currently unknown. As such, accuracy and uncertainty

are only empirical estimates.
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if the digital twin used for training incorporates it. Incorporating this un-
certainty is shown to be a challenging multidimensional task. As such, the
separation of uncertainty as a learned feature from the other ones is challeng-
ing too. Additionally, in such a system, the model can only learn those un-
certainties well understood and adequately modeled. To support this task,
we evaluated the use of Ishikawa’s method [47] to determine the influenc-
ing factors and the concept of an Object-oriented Virtual Reference Scheme
(OOVRS) for modeling those uncertainties across multiple process steps.
Suppose we want to incorporate uncertainty in a more general way into the
model. In that case, we can augment the training data with real measure-
ments, which inherently cover all uncertainties present in the process. With
this approach, it is still impossible to determine what kind of uncertainty
is learned, but it is easier separable from the other learned features. Addi-
tionally, the uncertainty is learned with the right amount of influence on the
overall process if we carefully balance artificial and real measured data.
If we only want the model to learn linear elastic deformations accurately and
incorporate real measurements, then the opposite effect occurs. We want to
avoid training uncertainties, as these are process-relevant parameters, but
not describing the correct physical behavior. Depending on the impact of
those uncertainties, they can adumbrate the underlying physics, leading to a
well-trained model for this process but poor performance when transferring
it to another. As we can only validate the impact after the training and trans-
fer to another process, it is crucial to analyze the uncertainties of the currently
used process for training beforehand.
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Chapter 3

Effects of distance metrics on
machine learning performance

Distance metrics are the critical aspect for proper labeling of both test and
training data in supervised learning. Comparing two deformation fields is a
non-trivial task, and for different applications, different metrics exist. In gen-
eral, we can distinguish between feature-based, value-based, and topology-
based metrics. The value-based metrics use the actual values of the vector
field without considering the topology. A prominent representative of this
group is the mean-squared error. Feature-based metrics rely on comparing
similar features in each set and, therefore, require an additional feature ex-
traction step beforehand. Topology-based metrics put the actual values of
the vector field in perspective to their neighborhood properties. These met-
rics typically rely on kernels or geometrical properties and are therefore very
costly but lead to the most detailed results. This chapter investigates the
value-based metrics’ effect on the regression model’s needed complexity for
the given applications on the linear elastic deformation of a metal sheet.
The focus of this investigation is to understand and visually analyze the
impact of each metric. We start with the basic differenced based metrics
Mean-Absolute-Error (MAE) and Mean-Squared-Error (MSE). As a vector
describes the displacement field, we also investigate the Cosine Similarity
(COS_SIM), which uses the dot product as its main source of information.
We then introduce a combined metric that uses the difference (length of the
vector) and the dot product (angular change). We conducted a parameter
study using a neural network regression with varying loss function metrics,
training data sizes, and neurons to show practical relevance. A visual analyt-
ics approach assists the whole process of engineering an optimal model. We
designed a specific test set, which allows us to summarize the regression’s
prediction results in distinct classes rather than a floating value range.
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Related Work From the perspective of the end-user, machine learning is
still mostly labeled as a black-box. Throughout the years, visual analytics
is approaching this topic, intending to color this black box. In the work of
Duch [51], he made some early attempts that highlight the four dominant
effects in learning models, such as neural networks. These are the dynam-
ics of neural learning, under and over-fitting effects, regularization effects,
and differences between networks with the same performance. Tzeng et al.
[52] extended this work intending to improve such networks’ engineering.
With the increased usage of deep neural networks (DNNs) in the last years,
the black box coloring on the level of single neurons is no longer a feasi-
ble approach due to the immense number of neurons used here. As a con-
sequence, the visual analytics approach switched more to the output side.
Samek et.al. [53] for example introduced a direct visualization approach,
which highlighted the learned features of images using the three techniques
of a sensitivity analysis [54], Deconvolution Method [55] and the LRP Al-
gorithm [56]. Inspired by the focus on the output performance, Smilkov
et al. [57] introduced a direct-manipulation visualization approach, which
communicates the method of neural networks via an interactive playground
rather than coding. Focusing on the output, Zintgraf et al. [58] present the
prediction difference analysis method for visualizing the response of a neu-
ral network. While this work is focused mainly on image classification, it
contains the base idea of our visual analytics pipeline for the regression task.
Finally, for the combination and comparison of multiple models and input
data, Chatzimparmpas et al. [59] introduced StackGenVis.

3.1 Experimental Design

Our experimental approach systematically investigates the effects of the cho-
sen metrics on the metal sheet example’s learning performance. We choose
a general model, where we train an adversarial neural net with all the sim-
ulation output cells. We investigate the metrics for the usage as loss func-
tions. Here, we only choose the neural network as the learning model, as this
method is the only one that can sufficiently handle such high dimensional-
ity in the input shape. As distance metrics, we decided for the pairwise-
metrics: the mean-squared error (MSE), the mean absolute error (MAE), the
cosine similarity, and a custom combination of the MSE and cosine similarity
the RMSECosine, which are applied either on the magnitude of the displace-
ment vector or the vector itself. We focus on the root mean squared error
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FIGURE 3.1: General Study Design. A general regression model
using a fully connected one-layer neural network is chosen. For
the model, different loss functions are evaluated with the use
of two performance metrics. Additionally, the training fraction

size and size of the first layer are varied.

(RMSE) and the angular similarity to capture the directional error when us-
ing the vector as an input for the learned model’s performance metrics.

3.2 Visual Analytics Pipeline

For this study’s visual analytics pipeline, a four-step approach is chosen (see
Figure 3.2). At first, we investigate each metrics pairwise component’s dis-
tribution and general behavior (Figure 3.6). We split each metric’s sum into
its component. We plotted them for each cell when choosing a target and
reference data set (Figure 3.6, left) and the distribution of the summed value
and all reference data sets (Figure 3.6, right). It gives us an overview of the
expected performance of each metric. If there is a near equal distribution of
the error for all reference data sets (training data), the metric poorly describes
the differences. In the detailed view, we can observe the difference in how
the metrics treat the same cells.
Second, we investigate the loss evolution throughout the training epochs
(Figure 3.15, left) or directly compare the minimal error (Figure 3.15, right) for
different training parameters. This visualization helps us to decide whether
we need more training epochs or if we have to adjust the learning rate or
activation if the loss evolution is oscillating.
Third, we evaluate the prediction performance across all parameters by using
box-plots. Here we can use various grouping strategies based on the desired
comparison (Figure 3.10). It allows for a direct comparison of the prediction
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FIGURE 3.2: Visual Analytics Pipeline for Regression Study.
This study’s visual analytics pipeline consists of the four com-
ponents: Loss Metric Distribution - Loss Evolution, while train-
ing - Prediction Performance, across the parameters and within
the parameters. The pipeline is designed to meet the require-

ments on visual analytics described in Chapter 1.

performance in the value range of the parameters itself.
We further split the comparison for each parameter into three value cate-
gories (min, zero, max). It allows us to compare the prediction quality within
the parameters’ value range (Figure 3.11).

3.3 Pairwise - Metrics

Pairwise metrics are the most prominent metrics throughout data analytics
applications. Due to their simplistic nature and fast computation, they are
usually the first choice when comparing two numerical values. In contrast to
topological metrics, the only information processed in these metrics are the
paired-values, which allows the application on nearly every data set.
There are two general operations used for comparing a value-pair:

1. Difference: ∆− : x− y

2. Product: ∆∗x · y

The further processing is based on either one of these ∆’s. The ∆− gets en-
capsulated by another operation based on the chosen metrics. Typical choices
are:

1. Absolute: |x− y|
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2. Squared: (x− y)2

If x and y are scalar values, we can show the effects via simple line plots, as
depicted in Figure 3.3. We have two paired observations, y1, and y2. The
signed difference is visualized using arrows to point in the direction of the
difference when calculating y2 − y1. In the plots below, we depict the ab-
solute and squared errors, which are no longer signed values. The absolute
error represents the length of the arrow precisely, while the squared error
amplifies larger ones. The root-mean-squared error (RMSE) and the mean
absolute error (MAE) are only equal if the variance is 0.0. Still, the RMSE is
not directly linked to the variance but the variance of the frequency distribu-
tion of error magnitudes. It makes the RMSE harder to interpret on certain
occasions.

If X and Y are vector values, the error metrics’ effects are harder to inter-

FIGURE 3.3: Examplary handling of Differences in Observa-
tion Pairs. In the top row, an example of paired observations is
given. Additionally, a vector is added to indicate the direction
of the change from one observation to another. In the bottom
rows, the effects between using the absolute and squared errors
are depicted. Based on the desired effect, one can amplify larger

errors or handle all sizes equally.

pret. In Figure 3.4 we have depicted two vector-valued observations
−→
A and
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−→
B . The difference ∆− is then just the vector

−−−−→
∆MAE connecting the two end-

points of the vectors. So if we calculate the absolute difference, we compare
the vector

−−−−→
∆MAE for each observation. If we now encapsulate the differences

with the operations already used before in the scalar example, we get the vec-
tors
−−−−→
∆MAE and

−−−−→
∆RMSE . Now, the vectors’ length gets amplified when using

the squared difference, but the vector’s direction changes according to each
component’s difference. In our given example the difference in x-direction
is 2 and in y-direction 3, which results in a slightly more towards the y-axis
tilted vector

−−−−→
∆MAE . If we now use the squared error, we amplify this effect.

In general, the squared operations amplify the rotations towards the domi-
nating axis-component. In most cases, this is a desirable effect, as we want to
weigh our metric based on the components, but it is tough to interpret how
much of a rotation is incorporated in the resulting value. In our example we
had a ratio of 3:2 for our two components which led to a rotation angle (mea-
sured from

−→
A ) of 56.9◦ for

−−−−→
∆MAE and of 66.0◦ for

−−−−→
∆RMSE (ratio= 0.86).

In Figure 3.5, a short overview is given. We can observe three exceptional
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FIGURE 3.4: Effects of Absolute and Squared Difference on Vec-
tor Rotation. Schematic view on the effects on the resulting
difference vector when using absolute or squared value pairs.
While the length remains the same, the rotation angle is chang-

ing.

cases here. First, a pure rotation without a change in length (marked in or-
ange) leads to a constant difference for both the absolute and the squared
error. On the other hand, a constant angle but with varying length of the vec-
tors leads to a change in the resulting ∆-vectors (yellow marks in Figure 3.5 ).
The third exception here is that a small angle (18.43◦) together with a slightly
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increased difference ((1, 2) vs. (1, 3)) leads to greater deviations between the
absolute and squared error than for the contrary example (blue squares in
Figure 3.5). These are only some examples showing how difficult the inter-
pretation of the metrics gets when applied to vectors. A prevalent metric for
comparing vector-valued metrics is the Cosine Similarity, which uses the
angle between the paired vectors. The multiplication in the dot product used
to calculate the angle is an example of the alternative approach of just using
the difference. Nonetheless, we can see in Figure 3.5 in the column Angle(A,
B), that this metric does not take changes in the length of the vector into ac-
count. The optimal setting is a combination of both approaches, which we
will investigate for the usage as a loss function in the next section.

Angle(A,B) Angle(A,DV) Angle(A,D2V)
x y x y (in degree) x y x y (in degree) (in degree)

1 1 0 0 2 90 1 2 1 4 63.43 75.96 0.84
2 2 0 0 4 90 2 4 4 16 63.43 75.96 0.84
3 3 0 0 6 90 3 6 9 36 63.43 75.96 0.84
4 4 0 0 8 90 4 8 16 64 63.43 75.96 0.84
5 5 0 0 10 90 5 10 25 100 63.43 75.96 0.84
6 1 0 1 1 45 0 1 0 1 90.00 90.00 1.00
7 2 0 2 1 26.57 0 1 0 1 90.00 90.00 1.00
8 1 1 2 4 18.43 1 3 1 9 26.57 38.66 0.69
9 3 1 4 0 18.43 1 1 1 1 26.57 26.57 1.00
10 4 1 4 14 60.02 0 13 0 169 75.96 75.96 1.00

COSSIM
61.85 1.7 4.9 2.39 6.33

MAE RMSE

A B DV D2VID Angle Ratio

FIGURE 3.5: Comparison of Absolute and Squared Difference
on Vector Rotation. We defined ten exemplary use cases to
show the challenges while interpreting the different metrics’
results on vectors. The column Angle(A,B) uses the dot prod-
uct, while DV refers to the absolute difference and D2V to the
squared difference. The Angle Ratio is the ratio between An-

gle(A,DV) and Angle(A,D2V).

3.3.1 Loss Function Metrics

Fundamental Idea

The loss function is a fundamental part in neural networks. It calculates the
prediction error of a neural net, and thus it is used for steering the network.
The steering is done via gradients decent of the loss-function used to update
the neurons’ weights - the fundamental neural network training mechanism.
To say what all neural networks have in common is an optimization method
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that minimizes the prediction error via a gradient descent approach to find
the network’s optimal weights. The loss function is these optimizations in-
put.

Mathematical Description

xi and yi are scalar valued paired observations, whileXi and Yi correspond to
vector valued observation pairs. We observe the three commonly used met-
rics: Mean-Absolute-Error (MAE), Mean-Squared-Error (MSE,RSME) and
the Cosine Similarity (COSSIM).

MAE =
1

n

n∑
i=0

|xi − yi| (3.1)

MSE =
1

n

n∑
i=0

(xi − yi)2 (3.2)

RMSE =
√
MSE (3.3)

COSSIM =
1

n

n∑
i=0

Xi · Yi
||Xi||||Yi||

(3.4)

Example

Lets have a closer look on the behavior of the metrics itself. First we observe
the input for the metric. The fundamental portion of information is the com-
parison of xk and yk,i for each cell k over all ensemble members i, denoted as
∆(xk, yk,i) . Where xk is the target value for the cell k and yk,i is the prediction
i of cell k. For the MAE and MSE we use the magnitude of the vector, for the
COSSIM we use the displacement vector itself (denoted with Xk, Yk,i).

∆MAE(xk, yk,i) = |xk − yk,i| (3.5)

∆MSE(xk, yk,i) = (xk − yk,i)2 (3.6)

∆COSSIM(Xk, Yk,i) =
Xk ∗ Yk,i
||Xk||||Yk,i||

(3.7)

∆COSSIM = 1− arccos(∆COSSIM)

π
(3.8)

We can now plot this information for all cells, which results in Figure 3.6.
In the left column, we plot the metrics corresponding ∆ and the result of the
metric for a specified target-prediction pair. In the right column, we plot the



3.3. Pairwise - Metrics 31

FIGURE 3.6: Distribution Analysis of Difference Pairs. In the
left column, the metrics corresponding ∆ and the result of the
metric for a specified target-prediction pair is shown. In the
right column, the metrics result of all ensemble members i for
the chosen target is shown. We can observe that the MSE is
much more sensitive to outliers than the MAE, which results in

a steeper gradient of the plotted values.

metrics result of all ensemble members i for the chosen target. We can ob-
serve that the Mean-Squared-Error (MSE) is much more sensitive to outliers
than the Mean-Absolute-Error (MAE), which results in a steeper gradient
of the plotted values. On the other hand, the Mean-Absolute-Error (MAE)
applies less smoothing, which can be observed in the left part of the plots,
where the MAE is more oscillating then the MSE. The same pattern can be
seen for all ensemble members k in the right column. Here we see that the
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MSE amplifies extreme values and dampens lower differences.
The Cosine-Similarity (COSSIM) takes a different approach. Instead of sub-
tracting the two values, they are multiplied as part of the dot-product opera-
tion. In contrast to the MAE and MSE, higher values refer to higher similarity
and a better score. As such, we can observe that it amplifies the lower values
and dampens the higher values, which is somewhat the mirrored case of the
MSE. Compared to the MSE, this is a linear amplification instead of an expo-
nential one, which leads to less smoothing. In the given example the cosine
similarity is 0.95 which leads to an intermediate angular difference of 18.19◦

(cos−1(COSSIM)). Given a rather smooth displacement field, this is already
a huge difference. Negative values indicate intermediate angular differences
over 90◦. For a better comparison we normalize the COSSIM to the range
[0, 1] using the equation 3.8.
On the other hand, the combined view of MAE, MSE, and COSSIM could
detect rotations. As such, a low MAE and MSE with a low COSSIM , could
be an indicator for a rotation, rather than a large displacement. On the other
hand, a high COSSIM and high MAE/MSE value indicates a large removal
but in the same direction. It leads us to the definition of a combined metric.

Combined Angular-Magnitude Metric

We can now combine the metrics MSE on the magnitude with the COSSIM
on the vector itself to incorporate rotation into the loss function. To keep the
lengths up to scale, the RMSE is used.

∆(RMSE ◦ COSSIM) = RMSE · (1 + e−2·COSSIM − COSSIMe−2) (3.9)

Additionally, we introduce an optional weighting factor µ, which helps to
steer the angular dissimilarity penalty. A higher µ value corresponds to a
higher penalty for larger angels and a lower penalty for smaller angels.

∆µ(RMSE ◦ COSSIM) = RMSE · (1 + e−µ·COSSIM − COSSIMe−µ), µ ≥ 2

(3.10)
Figure 3.7 shows the amplification effect with different µ. In general, this

metric introduces an exponential amplification penalty with a higher an-
gular difference. Analyzing the distribution we now achieve a similar be-
havior than for the RMSE, but with interpretable incorporation of rotational
changes.
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FIGURE 3.7: Amplification Effect for the Combined Angular-
Magnitude Metric. With variying µ we can steer the exponen-
tial behavior from nearly linear (µ = 2) to highly exponential.
This way we can steer the penalty for larger angular deviations

in the metric.

FIGURE 3.8: Distribution Analysis of the Combined Angular-
Magnitude Metric. On the left, the metrics corresponding ∆
(Equation 3.9) and the result of the metric for a specified target-
prediction pair is shown. On the right, the metrics result of all

ensemble members i for the chosen target is shown.
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Model: "MAE_MAG"
Layer (type) Output Shape Param #
flatten (Flatten) (None, 3000) 0
dense (Dense) (None, 3000) 9003000
dense_1 (Dense) (None, 6) 18006
Total params: 9,021,006
Trainable params: 9,021,006
Non-trainable params: 0

TABLE 3.1: Exemplary Model Parameters as used in Tensor-
Flow.

3.4 Learning Regression on Sheet Metal Deforma-

tion

We will now investigate the effect of different loss metrics in a simple regres-
sion model, predicting the parameter set based on a displacement field. We
start our initial training with 2000 simulations based on an equally sampled
parameter set. We then vary the loss metrics. For the MAE and MSE, we in-
vestigate the difference between using the vector’s magnitude and the com-
plete vector itself. Afterwards we are decreasing the training size from 90%
to 80%, 70%, 60%, and 50% respectively. We use one fully connected (dense)
layer with the initial phase’s data set’s shape. Afterward, we decrease the
number of neurons in the series of [

n

2
,
n

4
,
n

8
,
n

16
, ...], with n referring to the ini-

tial number of cells present in the data set. An overview of the experimental
setup is given in Figure 3.9. We then introduce an interactive way to visually
analyze the different models and test them with specific test data sets. We
conclude this section with a general thought on the effects of metrics on this
application’s learning performance, which we will investigate further in the
next chapter.

3.4.1 Reference Regression Model

We choose a fundamental model for our investigation, with only one fully
connected (dense) layer and the output layer with the parameter set’s di-
mension. With two layers, we are still in the class of continuous functions
and can keep the method comparable to the others, as proven by Brutzkus et
al. [60]. In general, a two-layer network can learn polynomial functions of
degree r over d-dimensional inputs [61].
In Table 3.1 a summary of such a model is given.
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3.4.2 Visual Analysis

The general approach in evaluating the regression performance is by investi-
gating the loss and error function during training as depicted in Figure 3.15.
The information in this visualization is minimal and only gives us a rough
idea of the model’s correct tendency. Therefore we will mainly use this visu-
alization for testing the initial setup and check if the loss function is reaching
a saturation point or if we need to train more epochs or need to adapt the
restart method to find additional local minima.
For our evaluation, we choose a hierarchical approach to minimize the com-
binatorial complexity. Therefore we are ordering our independent variables
and choose only the best setting to proceed with in the next step. In this ap-
proach we end up with the experimental design depicted in Figure 3.9.
We start by evaluating the difference between MAE and MSE applied either

MAE

MSE

RMSE_COS

MAG

VEC

1.0

0.9

0.8

0.7

0.6

0.5

3000

1500

750

325

163

81

Loss Metric Training Fraction # Neurons

Loss Metric Test
Training Fraction Test
# Neurons Test

40

20

10

FIGURE 3.9: Hierarchical Parameter Study. First, we vary the
loss metrics while keeping the training fraction and neurons
fixed - Loss Metric Test. After finding the best-suited metrics,
we proceed with the training fraction test. Finally, we vary
the number of neurons while keeping the rest fix in an optimal

state.

on the displacement vector’s magnitude or on the vector itself, thus keeping
the initial dimensions. For this investigation, we use the special sampling of
our test data set. The parameter values examined can only assume the val-
ues −0.1, 0.0 or 0.1, respectively. All combinations of those values for the six
parameters are tested, which results in 6! = 720 possibilities covering a wide
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range of possible correlating effects. For the visual analysis, this allows us
to focus on three groups of predicted values and enables the coupled visual
analysis of each parameter, as shown in Figure 3.11. We split our analysis in
a general view (see Figure 3.10), in which we observe the resulting absolute
prediction error for each parameter and a detailed grid view for each param-
eter and each value. We developed an interactive approach, which allows us
to compare multiple models directly with each other.
For the decision on whether to use the magnitude or each vector’s compo-
nent, we can observe that the prediction error is nearly 10 times smaller for
the vector approach. Putting it into context, when using the magnitude, in-
side the first quartiles, the error range ([−0.084, 0.092]) is about 88% of the
whole value range used for training and testing. While using the vector, we
can reduce the error to the range of [−0.010, 0.003], which is about 6.5% of the
total value range.
Using the cosine similarity on his own leads to prediction errors outside of

FIGURE 3.10: Comparing Regression Performance for different
Loss-Metrics. We now observe the resulting prediction error
for each predicted parameter, grouped by the used loss metric.
Using the vector’s magnitude instead of applying the model to

each component leads to worse results.

the value range. As such, focusing purely on the directivity is not a feasible
approach here. Nonetheless, it is surprising that the combined angular and
value-based metric did not lead to overall better results. It seems that this
loss metric is too sensitive in this setup. For the parameters X1, the MAE is
the best performing, while for X2, the MSE and MAE are nearly equal. For
Z1, the combined metric RMSE_COS is the best performing. For Z2, Z3, and
Z4, the MAE is again leading. Overall we can observe that the difference be-
tween the three metrics is minimal. We will now investigate if this is true for
all parameter values by looking at the detailed view in Figure 3.11.
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In the detailed view, we can observe each parameter’s differences in de-

FIGURE 3.11: In depth Regression Performance Comparison
for different Loss-Metrics. In this setup, we used a specially
chosen test data set, which naturally results in the three groups
of value ranges shown here. It allows for an in-depth prediction
error analysis for each parameter and three main value ranges

of the parameter.

tail using the three states of the parameter range: min, zero, and max (-
0.1,0.0,0.1). Now looking at Z2, we can observe that the MSE-based predic-
tion is tending towards a lower value. For now, it looks like the MSE metric is
performing the worst out of the three vector-valued metrics. In our next anal-
ysis step, we will only focus on the vector-valued loss metrics (MAE-VEC,
MSE-VEC, and RSME-COS-VEC). Here we investigate if the same holds if we
are decreasing the training samples or reducing the neural networks weight-
ing parameters.

3.4.3 Effects on Learning Performance

In this section, we want to show how to analyze the effects of different learn-
ing parameters visually. We are reusing the scheme from above with the
overview and detail. This time, our grouping variable is either the training
fraction or the number of neurons in the first layer.
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At first, we look at the learning evolution depicted in Figure 3.15. We
plotted the error evolution through 10 epochs of training for each of the in-
vestigated training fractions on the left. All of our investigated metrics are
converging to a minimum after ten epochs. From these plots, we can de-
rive that for the MSE metric, some more epochs or an adaption of the restart
method is needed to end up in the global minimum. Comparing the three
metrics, we can observe that the MAE metric is stable among the training
fractions, while the MSE metric is starting to oscillate between local minima.
On the right, we plotted the evolution of the trained minimal error. We can
observe an exponential increase of the error with linear decreasing training
fraction throughout all metrics. In general, our application’s result here is
that taking less than 1800 (90% of the initial training data) samples for train-
ing will result in a significant error increase. As such, the previously used
2000 samples were already a good choice. Typically one would choose the
training fraction right before the exponential increase of the error as the opti-
mal training sample size. For the MSE metric, we can observe the same oscil-
lating behavior for the learning performance throughout the epochs. For the
combined custom metric, we designed the RMSE_COS. We observe a less os-
cillating behavior throughout the epochs, resulting in a more stable learning
process. Additionally, the error evolution throughout the training fractions
is nearly stable until 60% of the training fraction. This result indicates our
hypothesis that is incorporating both the angular and the absolute change
into the loss function will result in a higher entropy, allowing us to use only
1200 samples to achieve the same results as with 1800 samples.

We will now compare the MAE and RMSE_COS metrics performance for
each predicted parameter using the previous section’s scheme. The results
here for are depicted in Figure 3.12. For both of the examined metrics, we
can observe significant differences in the prediction error parameters. In our
high- level analysis from Figure 3.12, we would conclude that MAE is still the
better performing metric. Now comparing each parameter’s performance on
our test set, we can observe that the RMSE_COSINE metric is performing
better through all training fraction sizes. Especially for the fraction sizes 1.0
to 0.8, the prediction error variance is always lower than using the MAE met-
ric. Additionally, we can observe that the MAE metric’s median prediction
error (indicated by the horizontal line in each box) is barely near 0.0, and the
variance is shifted in either a positive or negative direction. There seems to
be no explainable pattern for a directivity here. In our next evaluation step,
we will only investigate the RMSE_COSINE metric for the training fraction
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FIGURE 3.12: Evaluating the Effect of Training Size. For two
loss metrics (top and bottom), the prediction error for each
parameter (x-axis) and training fraction size (color coding) is
shown. We can observe that the RMSE_COS has less variance

for larger fraction sizes while the MAE median is offset.

of 0.9.
In our last test setting, we evaluate the impact of the number of neurons in
the first hidden layer on the prediction error. First, we investigate the train-
ing behavior while decreasing the number of neurons, as depicted in Figure
3.13. We observe that more epochs are needed to achieve a stable state with
a decreasing number of neurons. On the other hand, we can conclude that
we can achieve the same overall prediction error or even better, even with
fewer neurons. It means that our initial setup tends to overfit our model.
Therefore we further decrease the number of neurons until the error rate is
reaching a local minimum. On the right in Figure 3.13, we can see that the
local minimum is between 163 and 20 neurons. Now, let’s observe how the
error behaves for each parameter when choosing the lowest number of neu-
rons. Figure 3.14 is showing the prediction error for the models with 40,20
and 10 neurons, loss metric: RMSE_COS and 1800 training samples. Remark
that the error is ten times smaller than in all previous test cases. Additionally,
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FIGURE 3.13: Training Evolution for different Hidden-Layer
sizes. We evaluate the number of neurons needed to achieve
a minimum prediction error. Here we observe that for more
than 325 neurons, the model is overparameterized and thus
performing worse. For a smaller number of neurons, more

training epochs should be allowed.

we do not observe any differences between the parameters.

FIGURE 3.14: Evaluating the Effect of used Number of Neu-
rons. Here we show the prediction error for a minimal num-
ber of neurons (10, 20, 40). We observe that for 10 neurons the
best result are achieved, if we allow more then hundred train-

ing epochs.

3.5 Discussion

In this chapter, we investigated the use of visual analytic techniques along-
side a regression study. We showed how we could subsequently narrow
down the optimal set of model parameters. We start with varying the loss
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function, then the training fractions, and finally, the number of trainable pa-
rameters steered by the number of neurons. While using a special test data
setup, we can compare the difference along with each parameter and the
overall error. We can even further narrow down our analysis to the value
ranges of each predicted parameter. Therefore, the resulting analysis pipeline
allows a seaming less switching between overview and detail throughout the
different test stages. With our experimental design, we can show the chosen
distance metric’s effects on learning performance. The derived custom loss
metric RMSE_COS allowed us to decrease the number of neurons down to 10
while achieving a prediction error of 2.5% (absolute error of 0.005) regarding
the total parameter value range of [-0.1,0.1].
So far, we could show that a simple model with one hidden layer can solve
our prediction task. As shown by Brutzkus et.al.[60] and Adoni et.al.[61], our
model is still in the domain of linearly separable functions. Even in a setting
with only ten neurons, we have 90,076 trainable parameters. In contrast to
the 2000 observations, we still have an overparameterized setting. The proof
that this still leads to reliable results was already observed by Neyshabur
et.al.[62] and Zhang et.al.[63]. Nonetheless, for an explainable model, we do
not want to accept this overparameterization. Reducing the hidden layer be-
low ten will result in a less optimal model. As such, we can only reduce the
input shape. A common approach here is to only use the n-maximal values
instead of using all cells. For image-based strategies, convolutional layers are
typically added. But all these approaches lack good interpretability, which
we want to avoid.
We first want to investigate what the model is learning and how the param-
eters are influencing this. Therefore we analyze the resulting difference be-
tween a target field and the training data concerning its prediction parame-
ters.
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FIGURE 3.15: Training Evolution for different Loss-Metrics and
Training Fractions. Here we combined two important views for
monitoring the training process. On the left, the evolution of
error prediction through the epochs is shown. Based on this
view, we can decide if more epochs for training are need or if
we have to adapt the restart function. On the right, the minimal
achieved error for each training fraction is shown. It is used to

decide what training size is needed.
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Chapter 4

Visual Classifier Performance
Evaluation

We investigated visual analytics to evaluate a regression model’s performance
using neural networks in our previous approach. What remains after this
analysis is the black-box behavior of the model itself. Therefore we want to
analyze the prediction parameters’ influence on the resulting difference be-
tween a target deformation and the training deformation fields. Therefore we
summarize the field’s difference into one value using the root-mean-squared
error on the magnitude of the resulting deformation difference field. It allows
us to use the difference results for the whole training data set for our analysis,
as analyzing 2000 × 3000 values would be impossible. We then analyze the
resulting difference concerning the to be predicted simulation parameters.
First, we normalize the resulting difference to a similarity value. We assume
that the pairs with the highest similarity values to have the most significant
impact on the learned model. Based on this assumption, we first want to de-
fine a threshold to separate the training data into two classes: an Acceptance
class for Simi > th and a Withdrawal class for Simi ≤ th. Thus the first step
of our analysis pipeline is targeted towards the definition of such a threshold.
Afterward, we are investigating the resulting classes concerning the distri-
bution of the parameters. We will use the concept of a scatter-plot matrix for
this. Afterward, we apply dimension reduction techniques to narrow down
the number of parameter pairs to the dominant ones. Finally, we want to ana-
lyze the parameter ranges in more detail. As we now have prepared our data
to be represented by two classes, we can train binary classifiers to predict
those classes based on the parameters. Those classifiers’ performance could
then be analyzed using either ROC-curves or with the concept of decision
boundaries. The ROC-curves can be used to compare the models’ sensitivity
and various target- training pairs. At the same time, the decision boundaries
visualize the sensitivity of the classification model in the parameter space. If
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we are now changing the input dimension of the deformation field based on
segmentation strategy, we could use the classification models’ sensitivity as
a benchmarking tool. The idea is to use the classifier model’s sensitivity as
an indicator for quantifying similar behavior in the segmented region.

Related Work The survey of Zhou et al. [64] classifies visualization meth-
ods based on the application scenario and industry sector. Our approach
is driven by the needs of the automotive industry, more specifically, auto-
mobile preproduction. Regarding Zhou’s taxonomy, the proposed method
concerns the phase between the design and production phases. Xu et al. in-
troduced ViDX - Visual Diagnostics for the analysis of assembly line perfor-
mance [65]. Their tool combines historical and real-time data while focusing
on anomaly detection and identifying inefficiencies. The system devised by
Ramanujan et al. [66] analyzes similarities and associated performance met-
rics in computer-aided design (CAD) repositories. Thus it mainly evaluates
the planned data. It can be useful for determining similar parts, which re-
sults in similar trained models. The approach developed by Wu et al. [67]
concentrates on condition monitoring and is therefore targeted for machin-
ery sensory data. A prominent example of the combined use of decision trees
and dimension reduction techniques is included in Sun et al. [68], which
motivated our analysis pipeline. Machine learning (ML) based analysis ap-
proaches pose new visualization challenges since interactive and visual ML
systems are still in their infancy [69].

4.1 Experimental Design

Following the steps of parameter estimation, we can employ several meth-
ods. To quantify similarity for vector field ensemble elements, for example,
Jarema et al. [70] proposed a visual analysis method combining statistical
analysis and comparative visualization used in 2D space. Considering our
application scenario, i.e., sheet metal deformation, we contemplate a defor-
mation field on a surface as a 2D vector field.
Definition and labeling of clusters of ensemble elements can be carried out
on the local scale using an entire surface geometry, using the method of Rieck
et al. [71] that clusters elements based on persistent homology. Such an ap-
proach addresses the problems encountered with unlabeled data on a given
surface. When a user labels classes, the level of confidence in decisions made
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is an important aspect. Kumpf et al. [72] considers this aspect, helping with
the understanding of different outcomes. At first, we investigate the impact
on a summarizing high level. Therefore, we investigate the pairwise metrics
used for difference calculation between the reference part and each ensem-
ble member. The 1-dimensional summarizing metrics for the segmented cell
cluster results in one result per segment per ensemble member. The distance
metric is normalized, leading to a general similarity term using the following
formula:

Si = 1− ∆(Ui, Û)

max(Ui)
. (4.1)

Here, Ui refers to each displacement field of the training data set, and Û

refers to the target displacement field. ∆ is synonymous for the chosen dis-
tance metric. In our use cases, we use the root-mean-squared (RMS) error on
the displacement magnitude. The segments are then further classified into
an acceptor and withdrawal class. For example, we could use the 80% quar-
tile to define the classification, which means that 20% of the highest values
belong to the acceptance class and the rest to the withdrawal class. To inves-
tigate the general applicability of our method, we then choose seven special
parameter settings, on which we investigate the results. The chosen settings
are described in Figure 4.1:

We choose the parameter settings to represent the boundary use cases and
represent the lower bound of achievable results. We inspect pure translation
cases either in one direction (ID5) or in all directions (ID365). In contrast to
the pure translation, we chose a setting with pure rotation without deforma-
tion (ID730). To check the sensitivity of the metrics for symmetrical behavior,
we chose two sets (ID2 and 7), which result in a nearly mirrored displace-
ment field (See Figure.4.1).

4.1.1 Selected Machine Learning Methods for Classification

In the final step of parameter estimation, we use a set of supervised learn-
ing binary classification methods. All implementations used in this evalua-
tion are from the “scikit-learn” [73]. The classifiers are chosen to represent
a vast range of methodologies, considering the application scenario’s special
properties. Analyzing the commonalities and differences helps us to select
the appropriate ones for further optimization. We developed an interactive
system in which the user can smoothly switch between different classifica-
tion methods and models. In the resulting view, we use ROC-curves and
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ID X1 X2 Z1 Z2 Z3 Z4 Property Deformation
Field

5 0.1 0.1 0.0 0.0 0.0 0.0 Pure translation in X -

365 0.1 0.1 0.1 0.1 0.1 0.1 Pure translation -

730 0.0 0.0 0.1 - 0.1 - 0.05 0.1 Rotation w/o deformation

2 0.1 0.0 0.0 0.0 0.0 0.0

Ambigious displacement 
– Symmetry of parameters

7 0.0 - 0.1 0.0 0.0 0.0 0.0

458 0.1 - 0.1 - 0.1 0.1 - 0.1 0.1 Maximum Load

220 0.0 0.1 0.0 -0.1 -0.1 0.0

381 -0.1 0.0 0.0 -0.1 0.1 0.1

FIGURE 4.1: Special Parameter Sets. Chosen parameter settings
for the experimental design. The parameter sets are chosen to

observe the model behavior in boundary cases.
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decision boundaries to visualize the classifier’s prediction performance (see
Figure 4.2).

Nearest Neighbor Classifications

It is considered as a type of instance-based learning, i.e., it is not constructing
or fitting any internal model but classifies the training data based on a ma-
jority vote [74]. The only parameters to choose is the number of neighbors
for the query and a weight function. With increasing k, noise is reduced in
favor of the distinctness of classification boundaries. In general, this method
suffers from the “curse of dimensionality” [75], [76]. In our evaluation, k = 3

turned out to be a good tradeoff value, as we expect to have only a small
degree of noise in the data. The weights are uniform, as our input space is
uniform.

Support Vector Classifier

SVC’s goal is to find a function f(x) that has at most ε deviation from the
obtained targets yi for all the training data, and at the same time, is as flat as
possible’ [77]. The main parameter for this method is the chosen kernel. In
this evaluation, we choose the radial basis function to allow for more general
shapes in the classification.

Gaussian Process Classification (GPC)

It uses a probabilistic approach for the classification. It uses the Gaussian
Process [78] to classify the training data based on a given kernel. We chose
the radial basis function for the kernel as well.

Decision Tree and Random Forest Methods

These methods follow the principle of learning a set of simple decision rules
(if-then-else) from training data[79]. Decision trees’ process resembles an ex-
perienced person’s manual progress familiar with an assembly [68]. Decision
trees are the only classifier in this evaluation that can be easily visualized
even for higher dimensions. The decision tree has the highest number of pa-
rameters. First, the quality criterion for the split is chosen. We picked Gini
impurity, as we did not observe any significant differences for depth > 4 in
comparison to entropy (information gain). For the split strategy, we chose
best over random, as our training data is nearly uniform. For all other tree
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FIGURE 4.2: Confusion Analysis. The view for detailed clas-
sifier analysis. The user can select the parameter pairs of in-
terest and investigate the classifier results in those two pro-
jections. The classifier’s decision boundaries are plotted in a
matrix style using a confusion or contingency matrix principle.
Additionally, we can see the ROC curve and the distribution
of the key performance indicators (Accuracy, Sensitivity, Speci-
ficity), which are also used in the overview. Depending on the
application’s goal, one or the other column/ row combination

is more important.

parameters, we used default values, either minimum or maximum values.
The simple decision tree tends to over-fit with these settings. We extended
our approach using the random forest classifier, which fits several decision
trees to various sub-samples and averages the results to address this short-
coming. We found out that n = 10 subdivisions are a fair tradeoff between
computational time and increased predictive quality.

Neural Network

We used a fundamental neural network definition [80] as a starting point for
further investigations. A multi-layer perceptron classifier was chosen with
rectified linear unit function for the activation, one hidden layers and a total
number of 40 perceptrons (6×16+16+16×2 = 144 weights). The default L2
penalty (0.0001) was chosen with a constant learning rate. A small test series
revealed that a maximum of 4000 iterations is a good choice as a termination
criterion.
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Naive Bayes Classifiers

These classifiers are quite straightforward among rule-based classifiers [81].
They use the naive assumption of conditional independence between every
pair of features in a dataset. We can use a maximum a posteriori estima-
tion for classification. We assumed that the likelihood of our features was
Gaussian-distributed for our evaluation, meaning that small changes in each
parameter lead to relatively the same changes in target value. We do not
expect to have sharp classification boundaries.

4.2 Visual Analytics Pipeline

FIGURE 4.3: Visual Analytics Pipeline for the Inverse Classifi-
cation. We start with a distribution analysis using violin-plots,
followed by a correlation analysis using a scatterplot matrix.
We then reduce the number of pairs in a dimension reduction
step and finally train a classifier for pair-wise comparison of the

parameters.

We start our evaluation with a rough analysis of the simulation ensemble.
Therefore we calculated the statistical properties for both fields (Displace-
ment "U," Mises-Stress "S") for each cell. The resulting field still preserved
the original topology of the part and investigated the whole geometry dis-
tribution. In Figure 4.4 the standard deviation of both fields is visualized.
Additionally, we used contours to highlight further the regions with a simi-
lar response to the induced loads.

The complete pipeline is depicted in Figure 4.3. We start with analyzing
the parameter distribution and interactively setting an initial threshold for
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our acceptor and withdrawal class. As we have two classes to compare, a
spitted violin plot [82] is chosen. After investigating each parameter on its
own, we take pairwise correlations into account in the next step. For the six
assembly parameters, this results in 15 correlation pairs. The concept of a
scatter plot matrix allows us to visualize these pairs compactly. We use the
classification methods to learn the prediction probability for each assembly
parameter in our final step. However, we can only adequately visualize the
result in 2d- planes. Therefore we would have to compare 15 sections of our
6-dimensional hypercube to investigate each pair of parameters. We insert
a dimension reduction step in our pipeline to reduce the visual complexity,
focusing only on the relevant pairs. As dimension reduction techniques, we
used hierarchical regression and the principal component analysis.

FIGURE 4.4: Visual Ensemble Analysis. The resulting field’s
standard deviation (Displacement U and Mises-1 Stress S) are
calculated along with each cell. It allows visualization of the
resulting deviations along with the whole geometry. Contours
are used to highlight similar behaving regions. The displace-
ment field shows the linking of the Z-Parameters, in the dark
green areas, while the stress field indicates a higher impact for
the X-parameters (yellow). See Figure A.1 for definitions of the

parameters.

4.2.1 Parameter Distribution Analysis

Our first parameter space visualization uses violin plots [82], see Figure 4.5.
We define a threshold value for similarity to separate our data set into two
classes. For each class, we plot the distribution of each parameter. With this
visual representation, we can compare parameter impact in terms of how
often it is present in each class. We can relatively compare the mean and



4.2. Visual Analytics Pipeline 51

FIGURE 4.5: Distribution patterns using violin plots. An exam-
ple of how violin plots can interactively spot patterns in the dis-
tributions for different similarity thresholds. The orange distri-
bution refers to the acceptance class, the blue to the withdrawal
class. For each of the six parameters, the distribution is shown.
Given the example, the values of X1 are more frequently nega-
tive for higher similarity values and positive for lower values,

which copes with the used test sample used here.

quartiles, but, more importantly, spot differences in the shape of the distribu-
tion. Of particular interest are distributions with multiple maxima or minima
(multi-modal distributions), as these suggest some symmetry. We added in-
teractive steering of the upper and lower bounds for each of the classes to
our visualization system. It allows the user to investigate different thresh-
olds and choose an appropriate one for his analysis.

At first, we analyze the distribution of similarity while setting the thresh-
old value for acceptance and withdrawal. Figure 4.5 shows the results for
one of the ambiguous cases (ID7).

4.2.2 Correlation Analysis

The predictive result for separately investigating each parameter is limited.
Therefore, we extend the analysis by using scatter plots, kernel density esti-
mates, and linear regression for each parameter pair and compare the distri-
bution and correlation with similarity in more detail, see Figure4.6. The ar-
rangement in a scatter-plot matrix (SPLOM) allows us to combine three types
of visualizations in one view. In the lower diagonal, we plot each class’s dis-
tribution based on the respective parameter values using a kernel density
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FIGURE 4.6: Scatter plot matrix (SPLOM) with kernel-density
estimator(KDE). For complete pairwise correlation analysis, we
use the concept of a SPLOM. We use a simple scatter plot in
the upper diagonal, colored based on the set class labels and
enhanced with linear regression curves for each class. On the
lower diagonal, we used a KDE to visualize the shape of the
two classes’ distribution. This high-level view allows us to spot
relevant correlations in addition to the ones already found in
the ensemble analysis, e.g., row three (Z1) and column six (Z4)

indicates a negative correlation.
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estimator (KDE). It allows us to identify high-density regions for parameter
combinations. In the upper diagonal, we use a scatter plot with linear regres-
sion for each class to highlight the interaction between the two parameters.
The correlation from the upper diagonal plots allows us to determine in what
direction to look for cluster separation. On the main diagonal, we plot the
distribution density of the classes for each parameter. Correlation maps [83]
and interactive regression lenses [84] are methods tackling this issue. Causal
and correlated behaviors often coincide, and direct visualization methods
rely on correlation coefficients only. The method of Wang et al. [85] solves
this problem by including additional quality measures computed via statis-
tical correlation in a visualization. For example, a visual analysis approach
to evaluate the capabilities of epidemic prediction models was discussed by
Bryan et al. [86].

4.2.3 Dimension Reduction

Projection-based methods, including the method described by Bui-Tahn et al.
[87] and Gaggero et al. [88], are appropriate for inverse and optimal design.
Combining these methods with machine learning (ML) and neural network
techniques has produced promising results for parameter space prediction
in inverse design applications [89]–[91]. At this point, we have analyzed
the parameters individually and found correlations between them. In the
next step, we try to reduce the dimensionality and focus on pairs of parame-
ters or linear recombinations of our initial parameter space. We investigated
two techniques, hierarchical linear regression (HLR) and principal compo-
nent analysis (PCA)[92].

Hierarchical Linear Regression (HLR)

In the HLR approach, we use ordinary-least-square (OLS) as the model with
one constant factor. First, we apply the linear regression model to each pa-
rameter individually and sort the output by explained variance (R-squared).
We use this order to incrementally add each parameter in the model and ob-
serve its impact on R-squared. Based on the added value to R-squared in
the model, we can determine what parameters to focus on. In general, this
method allows us to use any model, and it has the highest potential to incor-
porate application knowledge into the system. Unfortunately, it restricts us
to the original parameter space, and choosing a good model is a complicated
task. First, we use hierarchical linear regression analysis to order parame-
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ID HLR PCA
R2 Order R2 Ordering

5 22.15 X2,Z3,Z2,Z4,Z1,X1 40.42 X2,X1,Z1,Z3,Z2,Z4
365 25.18 X2,Z3,Z1,Z2,Z4,X1 42.86 Z1,X2,Z3,X1,Z4,Z2
730 13.84 X2,X1,Z2,Z1,Z4,Z3 46.50 X1,X2,Z3,Z1,Z4,Z2
2 14.61 X2,X1,Z3,Z2,Z4,Z1 44.70 X1,X2,Z1,Z2,Z4,Z3
7 12.73 X1,X2,Z3,Z2,Z3,Z1 43.93 X2,Z2,X1,Z4,Z1,Z3

458 12.73 X1,X2,Z3,Z2,Z4,Z1 50.98 X2,Z2,Z1,X1,Z4,Z3

TABLE 4.1: Dimension reduction results. Variance (R2) of hi-
erarchical linear regression (HLR) is always lower than that of
the first two principal components. The derived ordering varies
among the two methods. A well-chosen or known statistical
regression model could improve the results drastically. If no

model is known, the PCA will be the better choice.

ters by impact. Depending on the particular case, the expressiveness of this
ordering varies drastically, see Table 4.1.

Principal Component Analyis (PCA)

The Principal Component Analysis (PCA) finds linear recombinations of the
original parameter space based on a correlation or covariance matrix. The
only parameter we have to choose is the threshold value for similarity. The
PCA is applied to each class. From the bi-plots, shown in Figure 4.7, we
can determine what original parameters contribute to the principal derived
components. The more they align with the axes of a principal component, the
better we can separate our dimensions. The lengths of the arrows depict the
relative impact of each parameter on the derived components. If multiple
principal components have a similarly explained variance, we investigate
each combination separately to determine good splits.

4.3 Classifier Performance Analysis

4.3.1 Confusion Matrix and Decision Boundary

To objectively compare the quality of the parameter estimation, we use the
concept of confusion matrix [93]–[95]. Each method itself, and the combi-
nation of methods, leads to a prediction range in parameter space. The in-
put test parameter set and a predefined acceptable deviation are defining the
true conditions for the confusion matrix. The acceptable deviation depends
strongly on the specific application’s accuracy goal. In the case of the generic
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FIGURE 4.7: Biplot PCA. With a biplot’s help, we can project
the initial parameters concerning their variance portion on the
derived first and second principal component (yellow arrows).
The length of the arrows refers to the eigenvalues of the de-
composition. Given an example, the first principal component
mainly consists of X1, Z2, and Z4. The arrows opposite direc-
tion indicates a negative correlation between Z4 and X1, Z2.
The second principal component consists mainly of X2 and Z3.

Z1 has an equal influence on both components.

example, we chose 5% of the total parameter value range. For the real model,
we chose 10%. In the confusion matrix we counted the number of true pos-
itives tp, true negatives tn, false positives fp and false negatives fn for our
total size of the training data set n. For the evaluation and interpretation, we
focus on these three ratios derived from those numbers:

Accuracy(ACC) =
tp+ tn

n
(4.2)

Sensitivity(TPR) =
tp

tp+ fn
(4.3)

Specificity(TNR) =
tn

tn+ fp
(4.4)

Accuracy describes the ratio of all correct predictions concerning the total
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population. Accuracy does not provide information about the type of correc-
t/incorrect predictions. Therefore, we also use the sensitivity (true positive
rate), which describes the method’s ability to correctly detect true parameter
values. A high value of sensitivity reliably rules out negative predictions,
while a positive result in high sensitivity prediction is not necessarily use-
ful for ruling in the parameter set. Specificity deals with this shortcoming.
A method with a high specificity value reliably handles positive parameter
set predictions. Considering our application, one or the other rate is more
important. In machine learning, high accuracy is generally preferred over
sensitivity or specificity, but this leads to a series of drawbacks, typically de-
noted as the Accuracy Paradox [19], [20]. We consider two cases:

1. The preproduction phase and quality assurance benefit from a high sen-
sitivity over specificity to detect anomalies and failures reliably.

2. Mass production and online steering applications favor a high speci-
ficity to minimize spoilage.

Once fitting the training data is accomplished, each classifier and its un-
derlying data model can be used to predict the target class, given a set of
parameter values. Typically, a classifier does not just return the best class
label; it also generates a probability for each class in the model for specified
values. More formally,

Predict(PS)CL = [p(class0), p(class1), ..., p(classi)] (4.5)

p(classk) = 1.0−
∑

p(classj), for j 6= k, (4.6)

where PS determines the tested input parameter set, CL describes the used
classifier and p(classi) is the probability for predicting classi.

In our experimental setting, the exact parameter values are known. We
evaluate the predict function for values in a certain range, with a step size
of h used for visualization resolution. We plot results from the predict func-
tion as a heat map with value ranges between zero and one, see Figure 4.8
and 4.14. The red square is marking the acceptance window. The sensitiv-
ity is the summary result of the Acceptance Window and specificity of the
rest; accuracy summarizes both. Based on these compelling visualizations,
we could deduce a general workflow for classifier comparison, see Figure
4.3. For each classifier, we start with the summary performance indicators,
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FIGURE 4.8: Decision Boundaries for three selected use cases.
The heat maps are visualizing the prediction probability of each
classifier. A five-step color map is used to point out sharp pre-
diction boundaries. With higher values favoring the acceptance
class and lower values the withdrawal class. The red squares
are indicating the correct value ranges of the test data set. In-
stead of comparing the raw numbers, like, e.g., in ROC curves,
this visualization allows us to compare the predictive model’s
shape between the classifiers. For the ambiguous cases (ID2, 7),
the predictive quality is better than for the maximum load case
(ID458). Also, the shape implies a more stable model compared

to the maximum load case.

extend the analysis using ROC curves 4.13 and finally evaluate the shape of
the decision boundary map (see Figure 4.8).

4.4 Results and Implications for the regression model

We found out that the 80% quartile is a good indicator for a threshold on the
similarity for the metal sheet example from several analysis steps. For the
real automotive body part, a lower value is suited better. Here we used the
75% quartile. In all further investigations, we will keep these values fixed.
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FIGURE 4.9: Classifier Comparison using two parameters. The
KDE-plot shows the distribution of class labels. The ROC curve
depicts the ratio between sensitivity and inverse specificity. The
figure in the upper-left corner represents The optimal ratio.
The additional plots show the decision boundary of classifiers.
Higher values (dark) indicate higher class prediction probabil-
ity. Regarding the SVM, colors imply different levels of pre-
dicted hyperplanes, separating classes in parameter space. De-
cision boundaries vary significantly between classifiers, leading
to different prediction ranges. In the shown ambiguous sym-
metrical case, one would expect two prediction clusters, (X1,
X2)=(0.1,0.0) and (X1, X2)=(0.0,-0.1). Instead, one cluster fol-
lows a diagonal and shifts in a direction opposite of the sym-

metry pair.

4.4.1 Classifier Evaluation

First, we evaluate the general applicability of each classifier on the ambigu-
ous use case. In Figure 4.9 we visualized the resulting decision boundaries of
the classifiers along with the corresponding KDE-plot of the X1-X2 pair and
the ROC curves for each classifier. Figure 4.10 gives an overview of all ex-
ceptional cases’ summarizing performance indicators. Here we already nar-
rowed down the used classifiers to the k-nearest-neighbor, Random Forest,
Naive Bayes, and Neural Network. We eliminated the Gaussian process due
to its expensive computation costs, making it not feasible for usage in an in-
teractive visual analytics tool. Further, the Random Forest is a generalization
of the decision tree, which is less pruned to get stuck in the first encountered
local minimum. The resulting hyper-planes of the support vector machine
are hard to interpret, and therefore we opt them out in our visual analytics
tool.
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k-nearest-neighbor Method The k-nearest-neighbor (KNN) method per-
forms well for cases with few dominant effects like the ambiguous cases 2
and 7 studied here, where only x1 and x2 are varied. In general, we can
observe that the classifier performs well in the x1-x2 projection for all cases.
The ROC curves for this approach vary significantly. In the sensitivity dis-
tribution, we can observe the absence of a low sensitivity cluster in case 7
compared to case 2. Analyzing the decision boundaries (see Figure 4.9, we
find multiple small clusters with high prediction probabilities. If they spread
out slightly, sensitivity drops drastically from 0.437 (right) to 0.292 (left). This
effect shows that the KNN approach is very sensitive to outliers.

Gaussian Process The Gaussian Process performs well for the exceptional
cases of translation and maximum load. The accuracy for all tested sets is
between 0.74 (ambiguous displacement) and 0.89 (Translation), with a mean
of 0.81. In the ambiguous displacement cases, the sensitivity is nearly 0, while
the specificity is nearly 1. The same holds for the rotation. Additionally, the
Gaussian process’ derived model is the most complex one, leading to 100
times higher computation times in the evaluation.

Random Forest The random forest approach is, on average, the best per-
forming classifier for sensitivity (mean=0.25, SD=0.11). It performs similarly
to the KNN approach, but it is more stable in the presence of outliers, pro-
ducing better results on average due to its random nature. We can observe
this for the ROC curve as well, which shows slighter changes than for the
KNN approach. There is only one dominant cluster in the distribution clus-
ter, which stretches out over the three clusters from the KNN. Due to its
weighting of local minima, it allows us to detect clusters better when com-
pared to the KNN approach, see Figure 4.9. Nevertheless, the randomness
makes it harder to predict the right interval.

Neural Network The rudimentary trained neural network performs poorly
in most cases. The average sensitivity is 0.172, and the standard deviation is
only 0.078, which makes it the most stable method. In the ROC analysis, on
the other hand, the neural net achieved the overall best results. In the sen-
sitivity distribution, there is only one dense cluster, but with low sensitivity.
There are only minor variations between the cases, which confirms the low
standard deviation. When analyzing the decision boundaries, we observe
that the neural net forms one clear cluster around the target parameter set,
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kNN RF NN NB kNN RF NN NB kNN RF NN NB kNN RF NN NB kNN RF NN NB
sens 0.292 0.290 0.229 0.161 0.070 0.116 0.092 0.138 0.375 0.362 0.406 0.195 0.142 0.167 0.118 0.203 0.172 0.158 0.086 0.129
spec 0.936 0.930 0.929 0.942 0.939 0.936 0.908 0.930 0.940 0.934 0.935 0.942 0.937 0.938 0.928 0.950 0.973 0.974 0.943 0.971
acc 0.910 0.904 0.900 0.910 0.889 0.888 0.861 0.884 0.907 0.900 0.904 0.899 0.904 0.907 0.895 0.920 0.927 0.928 0.893 0.922
sens 0.437 0.397 0.208 0.127 0.145 0.132 0.062 0.110 0.380 0.276 0.063 0.160 0.260 0.230 0.059 0.121 0.259 0.240 0.077 0.133
spec 0.935 0.933 0.931 0.928 0.953 0.960 0.937 0.955 0.965 0.964 0.941 0.971 0.942 0.934 0.913 0.937 0.958 0.950 0.908 0.944
acc 0.906 0.903 0.888 0.881 0.907 0.912 0.886 0.906 0.931 0.925 0.890 0.924 0.902 0.893 0.864 0.889 0.886 0.885 0.823 0.861
sens 0.565 0.556 0.355 0.434 0.053 0.064 0.088 0.112 0.272 0.310 0.092 0.180 0.361 0.356 0.410 0.285 0.197 0.222 0.157 0.267
spec 0.957 0.950 0.946 0.958 0.937 0.926 0.909 0.921 0.951 0.942 0.913 0.946 0.963 0.966 0.961 0.969 0.969 0.969 0.965 0.974
acc 0.941 0.933 0.922 0.936 0.885 0.877 0.861 0.873 0.911 0.906 0.865 0.902 0.939 0.940 0.938 0.941 0.937 0.938 0.932 0.945
sens 0.474 0.454 0.284 0.375 0.203 0.169 0.158 0.198 0.277 0.278 0.217 0.316 0.288 0.308 0.213 0.318 0.262 0.292 0.224 0.300
spec 0.949 0.948 0.943 0.953 0.943 0.937 0.935 0.941 0.951 0.949 0.950 0.959 0.951 0.948 0.947 0.956 0.963 0.961 0.960 0.969
acc 0.930 0.928 0.916 0.929 0.913 0.906 0.904 0.911 0.924 0.922 0.920 0.933 0.924 0.922 0.917 0.930 0.934 0.934 0.930 0.942
sens 0.448 0.428 0.261 0.143 0.185 0.235 0.193 0.255 0.176 0.206 0.232 0.277 0.343 0.391 0.283 0.190 0.203 0.211 0.162 0.184
spec 0.917 0.911 0.897 0.897 0.935 0.920 0.932 0.942 0.865 0.811 0.869 0.871 0.911 0.876 0.901 0.901 0.937 0.915 0.926 0.939
acc 0.890 0.883 0.860 0.853 0.904 0.892 0.902 0.914 0.796 0.751 0.805 0.811 0.878 0.847 0.865 0.859 0.895 0.874 0.882 0.895
sens 0.317 0.304 0.109 0.163 0.112 0.111 0.090 0.093 0.071 0.070 0.056 0.048 0.025 0.062 0.060 0.060 0.106 0.089 0.091 0.131
spec 0.946 0.947 0.945 0.952 0.920 0.820 0.934 0.935 0.944 0.907 0.940 0.942 0.951 0.939 0.945 0.951 0.904 0.861 0.877 0.894
acc 0.920 0.919 0.910 0.920 0.838 0.748 0.847 0.848 0.910 0.874 0.905 0.907 0.915 0.905 0.910 0.916 0.822 0.782 0.797 0.816
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FIGURE 4.10: Performance results (Sensitivity, Specificity, and
Accuracy) for selected special cases, projections (x1,x2; z1,z4;
z2,z3; x1,z3; x2,z1) and the four studied classifiers: Nearest
neighbor (KNN), Random Forest (RF), Neural Network (NN)
and Naive Bayes (NB). The best and worst-performing predic-
tion for each entry is marked. Significant performance varia-
tion exists. Most classifiers have difficulties handling the am-
biguous and the maximum load case. We observe that there
is no overall best performing classifier. Even the rudimentary
trained neural network sometimes outperforms the other ap-
proaches. A more detailed view is needed to understand the

differences among and within the classifiers.

see Figure 4.9, but with low prediction probability. This observation is an ex-
ample of misled deduction based on merely analyzing methods’ higher-level
performance characteristics, e.g., ROC curves.

Naive Bayes The naive Bayes approach typically overfits the "dominant
optima" in parameter space. It performs best for cases where only one opti-
mum exists (Case 5, 365), and noise or ambiguities are barely existing (Case
2, 7). The approach is very sensitive to the chosen projection in parameter
space. The average sensitivity is 0.193, slightly higher than the one for the
neural network, with a standard deviation of 0.058. Focusing on the ROC
analysis, it performs worse. However, the distribution analysis also shows
that it also has one clear and dense clustering like the neural net, but with
lower sensitivity. Figure 4.10 summarizes each classifier’s performance for
each of our seven selected exceptional cases.

4.4.2 Correlation Results

Analyzing the parameter cross-correlations using the scatter-plot matrix, we
found nearly the same pattern in the comparison of X1 and X2 as depicted in
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Case ID 2 

Case ID 7

FIGURE 4.11: Classifier Comparison based on performance in-
dicators. Comparing the results for the ambiguous cases for the
k-nearest neighbor (KNN), Neural Network, naive Bayes, and
random forest approaches. We would expect similar behavior
for a stable classifier in this case. We observe differences in the
ROC curves for all classifiers with overall better results for Case
7. The sensitivity distribution remains similar for the neural net

and naive Bayes.
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Figure 4.12. It shows that those parameters are highly correlated and imply
focusing on selecting appropriate segmentation techniques.

FIGURE 4.12: Comparing Correlations with SPLOM. We can
use the SPLOM to analyze the ambiguity in the distribution
shift. For both cases, we identify a strong negative correlation
between X1 and X2, which results in the observed ambiguity in

the distribution shifts.

4.4.3 PCA Results

To reduce the complexity, we use the PCA to summarize the parameter cor-
relations into two principal components. The PCA turned out to be the most
intuitive and reasonable method here. Using the bi-plot from Figure 4.7, we
can form groups for (X1, Z2, Z4) and (X2, Z3). Z1 has an equal influence on
both groups. The vector’s opposite direction indicates a negative correlation
between Z4 and X1, Z2. The vectors’ length for X2 and Z3 further implies a
more substantial influence on the components and influences the first com-
ponent. These results cover our findings from the SPLOM analysis and show
a strong correlation between X1 and X2. Additionally, it also arranges the
other parameters accordingly, leading to a good separation, which we can
use to narrow down the number of analysis steps for the segmentation task.

4.4.4 Overall Observations

The study’s complete results can be found in [96]. We will summarize the re-
sults based on the dominant findings for the tuning of our regression model.
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FIGURE 4.13: ROC curves and classifier performance indica-
tor distributions for the maximum load case (ID458). For the
selected boundary case, the classifiers are struggling to fit an
adequate model. Only analyzing the ROC- curves would im-
ply that the neural net seems to perform well. A closer look at
the sensitivity and specificity reveals that this results from very

high specificity values shadowing the very low sensitivity.

In general, we observe that there is no overall best way for classification re-
garding the exceptional cases, which copes with the "’No free Lunch’" theo-
rem by Wolpert and Macready [97] and specifically holds for machine learn-
ing as well [98]. All classifications have low sensitivity, but the specificity
is usually high. The classifiers vary from case to case and from one projec-
tion to the other. We can only merely explain the differences between the
cases and the methodologies or projections by studying the performance in-
dicators. Therefore the enhanced concept using the decision boundaries as
depicted in Figure 4.8 improved the analysis task a lot. Using the Receiver-
Operator Curves (ROC), we can compare different pairs of parameters. Nev-
ertheless, for most cases, where all parameters have a personal impact, the
dominating parameters are hard to identify with this visualization technique
(see Figure 4.13). In general, the use of decision boundaries helps a lot under-
stand the machine learning models’ different behavior. We found out that the
random forest achieves similar results to the neural network, while the KNN-
approach fails for more complex cases. Further, we found an anomaly while
testing the method for the real automotive body part. In the correspond-
ing ambiguous load case, we spot a significant difference in the predictive
quality (see Figure 4.14). We assume that the current labeling approach does
not adequately cover the inherent asymmetric rigidity and distribution of the
boundary conditions, requiring a solution at the preprocessing level, which
further motivates the need for a good segmentation of the domain.



64 Chapter 4. Visual Classifier Performance Evaluation

FIGURE 4.14: Different classification for symmetric boundary
conditions for real car body part (sheet metal). When apply-
ing the methods to the sheet metal, we can observe large per-
formance differences for symmetric boundary conditions. The
left-side boundary condition (SB_L) is better predicted than the
right-side (SB_R). The inherent asymmetric rigidity of the part
is not captured by this simple approach. For more complex
parts an a priori feature or cluster definition in the domain

space would be needed.

4.5 Discussion

We have introduced a visual analytics pipeline to investigate the portions of
information learned from the training data deformation field’s differences to
a target deformation field. This pipeline allowed us to determine the dom-
inating parameters describing the target deformation field adequately and
the correlation under these conditions. Further, we could show how different
classifiers handled the exceptional load cases and revealed anomalies in real
automotive part examples. Additionally, the concept of decision boundaries
was beneficial as it summarizes each parameter’s impact in its value range
concerning any other. With this, we can combine the pipeline in a power-
ful analysis tool (Figure 4.15). In summary, this tool can help us investigate
the training data’s behavior on selected use cases in a globally summarizing
scope. We can now use this tool to benchmark the expected performance in-
crease of a segmentation method by investigating the classifiers’ predictive
quality increase. Therefore we expect to investigate significant changes in the
predictive quality when we feed the system with a prior segmented portion
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X2 X1

Z1

Z2,3,4

Visual Regression Analysis

Dimension Reduction

Decision Boundary Projection and Performance Plots

FIGURE 4.15: Analysis of multi-dimensional output of a clas-
sifier. The influence of parameter values on classifier output
is studied visually to identify the most relevant parameters.
Distribution plots make possible the interactive selection of ap-
propriate values. Regression analysis is used to provide ini-
tial insight into dominant parameters. A matrix visualization
shows correlations between pairs of parameters confirming the
choices made for dimension/parameter reduction. Principal
component analysis and hierarchical regression analysis pro-
vide additional means for estimation of parameter pair rele-
vance. Parameter pairs are investigated using an enhanced con-
fusion matrix with decision boundary contours and key perfor-

mance indicator plots.

of the domain. Finding a good segmentation will be the thriving goal for our
next chapter.
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Chapter 5

Impact Maps and Topological
Segmentation

The expressiveness of a globally summarizing distance metric is limited, and
feature-based methods require profound domain knowledge and validation
to ensure that all relevant properties are covered. So far, our predictive model
is still over parameterized. To reduce the number of trainable parameters, we
seek a reasonable and explainable segmentation of our domain. Addition-
ally, we have developed a visual analysis toolkit that allows us to benchmark
a segmentation before training the whole model. This way, we could increase
the explainability of our approach a lot. The goal is to find a minimal number
of segments, which can be represented by a summarizing value, such that our
regression model’s performance is still as high as for the overparameterized
setting. This way, we achieve an explainable and reliable predictive model.
So far, we evaluated the prediction performance mainly in parameter space.
It is necessary to analyze the impact of the simulation parameters in the do-
main space on the part’s geometry to understand the prediction’s learning
process. At first, we investigate various approaches to map the impact of
the parameters onto the part geometry. We start by calculating each cell’s
statistical properties along the training data set and visualize these via direct
color mapping. We combine this technique with an interactive query, which
allows us to steer the value ranges of a parameter and observe the changes.
This technique already allows us to form clusters or regions of interest visu-
ally.
We then extend this view by investigating the pair-wise correlation of pa-
rameters. The idea is to transfer the results from Chapter 4 SPLOM Analysis
into the domain space of the part geometry. We then use the resulting fields
from the sensitivity analysis and apply a gradient or topology-based metrics.
We then use these fields for topology-based segmentation and evaluate the
found patterns. Finally, we show the application of a topology-based metric
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for the usage in the analysis of a 3D vector field.

5.1 Sensitivity Analysis

"The importance of sensitivity analysis in engineering design cannot be over-
emphasized." Chen et al. [99]
Chen et al. put the importance of sensitivity analysis for understanding the
parameters in a simulation. The same holds if we want to learn exactly these
parameters in our machine learning model. For our machine learning model,
we typically are not able to change the parameters to our liking. As such,
we only can set up different queries on our training data for the sensitivity
analysis. To analyze each parameter’s impact, we are mapping each cell’s
statistical properties along with the training data in the part domain. Here
we can distinguish between two views based on the desired analysis task.
First, we can operate only on the training data to evaluate the underlying
simulation’s general properties. Here we directly calculate the statistics on
the deformation or stress field. It refers to the classical sensitivity analysis.
Our primary focus is targeted towards the simulation’s general behavior in
this approach, thus revealing general behavior patterns.
Second, we can operate on the distance to a target deformation field. The idea
here follows the inverse learning in Chapter 4, where we want to investigate
the impact of the distance metrics in the domain space to learn about the
possible features learned by our neural network. By picking specific target
deformation fields, we can analyze the expected behavior of our learning
model. Thus, our machine learning model should only learn those behaviors
that we can observe here.
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5.1.1 Statistical Properties

For our analysis we use the three basic statistical metrics: Mean, Median and
Variance (plus the standard deviation).

mean = u =
1

n

n∑
i=0

ui (5.1)

median = ũ =


un

2

, if n odd

un+ 1

2

else
(5.2)

variance = var(U) =
1

n

n∑
i=0

(ui − u)2 =
1

n

n∑
i=0

u2i − u2 (5.3)

standard deviation =
√
var(U) (5.4)

The axis for our sums is the list of training data, where n = #Training Data.
For larger data sets it makes sense to re-index the training data, such that
the block index for each simulation ensemble member represents the inner
axis and the cells are the outer axis. This way the computation time of the
statistics can make more use of parallelization capabilities. For our imple-
mentation in Paraview and TTK [100], we use this re-indexing strategy to
allow a near real-time exploration in trade-off for exceeded memory usage.

5.1.2 Visualization Pipeline

The resulting visualization pipeline in Paraview uses the TTK extension for
handling ensembles via the Cinema [101] approach. Depending on which
analysis task we are following we first load the target deformation field for
the distance computation or directly start with the ttkCinemaReader. We then
use the ttkCinemaQuery to steer our input parameter ranges for the analy-
sis. If needed the difference to the target deformation field for all ensemble
members is computed. Afterwards we apply our statistics computation to
the resulting multiBlockDataSet. Then we can directly visualize the statistical
properties in the domain space.

Example Results from the Sensitivity Analysis

First, we look at some general behavior by investigating specific queries on
the training data. In Table 5.1 we set up some queries for our investigation.
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ttkCinemaReader
Params:
• DBPath:
Sheetmetal.cdb

ttkCinemaQuery
Params:
• SQLQuery: 

<<SELECT  FROM vtkTable0 
WHERE X1>0.1>>

ttkCinemaProductReader ttkMultiBlockStatistics
Params:
• FieldOfInterest: U

Optional

customDiffMetric
Params:
• metricFunction:
metricName

vtkXMLReader
Params:
• FilePath:
sample.vtu

FIGURE 5.1: Visualization Pipeline using TTK/VTK. The cin-
ema modules ares used to retrieve the data sets based on their
parameters. This allows for a memory efficient access. On the
resulting MultiBlock standard statistics or custom metrics are

applied.

QID X1 X2 Z1 Z2 Z3 Z4 Note

1 |v|>0.1 all all all all all X1 above threshold
2 |v|<0.1 all all all all all X1 below threshold
3 >0.1 all all all all all X1 in positive direction
4 <-0.1 all all all all all X1 in negative direction
5 >0.1 >0.1 all all all all X1 AND X2 in positive direction

6 <-0.1 >0.1 all all all all X1 in negative direction AND
X2 in positive direction

7 >0.1 <-0.1 all all all all X1 in positive direction AND
X2 in negative direction

8 >0.1 all all all all >0.1 X1 AND Z4 in positive direction

TABLE 5.1: Example Queries for the Sensitivity analysis.

First, we have an isolated look at the parameter X1. We then investigate the
directivity of the parameter and then further investigate the interaction be-
tween X1 and X2 compared to X1 and Z4. In Figure 5.2 we see the results
from varying the value ranges of X1 while keeping the rest untouched. We
choose the z-component of the displacement field and the standard deviation
here. For the query with the positive value range in X1 (Query ID 3), Figure
5.2c, we observe a significant difference in the resulting variation of the dis-
placement field.
We can use this visualization pipeline to analyze combinations of parameter

value ranges further (see Figure 5.3). Here we can observe that if X2 is also
positive, the effect of X1 gets neutralized(Figure 5.3a). On the other hand,
we can observe no effect (Figure 5.3b). Additionally, Z4 is also neutralizing
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(A) Query 1 - X1 on (B) Query 2 - X1 off

(C) Query 3 - X1 positive (D) Query 4 - X1 negative

FIGURE 5.2: Results from the sensitivity analysis. Showing the
standard deviation in Z-Direction for the displacement field.
For positive X1 values (C), the displacement field variation is

increasing significantly.

the effect of X1, but more weakly. From the queries’ visual analysis, we can
deduce that there is a negative correlation between X1 and X2, and X1 and
Z4 for positive X1. If we want to quantify this correlation, we would like to
have a visualization that resembles the scatter plot matrix from Figure 4.6.

5.1.3 Sensitivity Matrix View

The scatter plot matrix is a powerful tool in visual analytics to compare
pair-wise correlations of attributes. In Chapter 4, we have seen how they
can be used to explain the strong correlation between X1 and X2. We now
have geometry represented by cells and their topology in the domain space
rather than a single data point. Thus a direct mapping of the concept is lim-
ited by the number of possible marks and channels available. We have to
find a trade-off between keeping the domain information and providing an
overview of pair-wise cross-correlation of the parameter values. To solve
this, we reinterpret the marks in the scatter plot with color-coded domain
visualization. As we are even more limited in space, we cannot use such an
image for every parameter combination. Instead, we reuse the concept from
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(A) Query 5 - X1 pos AND X2 pos (B) Query 6 - X1 neg AND X2 pos

(C) Query 7 - X1 pos AND X2 neg (D) Query 8 - X1 pos AND Z4 pos

FIGURE 5.3: Results from the sensitivity analysis with two-
parameter variations. Showing the standard deviation in Z-
Direction for the displacement field. The impact of X1 in the
positive direction is neutralized when X2 is also positive (A).
The impact of X2, when X1 is negative (B) is vanishing (com-

pared to Figure 5.2d )
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FIGURE 5.4: SPLOM for Sensitivity Analysis in Domain Space.
We are reinterpreting the concept of a Scatterplot-matrix by vi-
sualizing pair-wise range queries in a matrix view. Here we see
one element of the complete SPLOM for a selected pair. This
visualization allows us to overview the whole pair-wise corre-
lations in the domain of the geometry. Here we visualized the
variance of the resulting query in each image. We can observe
that with increasing X1, the variance is also increasing. If X2 is
also increased, the resulting variance induced by X1 gets neu-
tralized. Hence there is a positive correlation between X1 and

X2.

the sensitivity analysis and use them as representatives for a range of param-
eters on the axis. We can steer the level of detail of our view by the number
of ranges we define for our queries. In Figure 5.4, e.g., we chose four subdi-
visions of the positive parameter range and ordered the resulting visualiza-
tions for these from the sensitivity analysis in a matrix view. The two axes
thus refer to the two queries on the respective parameters. This visualization
then corresponds to one entry in the classical scatterplot matrix. We can now
further recombine these to have a complete representation for all parameters.
Technically this view is achieved by parameterizing the sensitivity analysis
form above, such that we get a resulting color-coded visual representation
of the chosen metric. In our case, we used the standard deviation on the
Z-component of the deformation field. Afterward, we define the number of
subdivisions that we want to investigate, render the visualizations, and store
them in an image database with the corresponding parameter value ranges.
We then define a matrix layout with proper labels and map the images from
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our database to it. The transformation concept is summarized in Figure 5.5.
Now that we have a compact visualization, we can use it as a general tool
to analyze our data set based on various metrics (see Figure 5.6). In the next
section, we will introduce some metrics used while studying the metal sheet
example’s behavior. The basic idea still is to find good segmentation of the
domain for better training data.

Query 
Definitions

Statistics
Computation

Visualization
Pipeline

Render
Images

Store in 
Database

Layout 
Images

FIGURE 5.5: Transformation Concept for a SPLOM with image
in-domain visualizations. We start with defining queries that
uniformly sample the parameter values in ranges. On those
queries, we then compute general statistics or other compara-
tive metrics. The following visualization pipeline is set up, and
the rendered images are stored in a database with appropriate
meta-data of the query. This meta-data is then used to layout
the images properly, such that we achieve the look of a classical

SPLOM.

(A) Displacement standard deviation (B) Cosine similarity of the displacement

FIGURE 5.6: Investigating different summarizing metrics. Be-
sides using statistical metrics such as variance or standard de-
viation, we can also observe summarizing metrics like the one
investigated for the loss functions in Section 3.3.1. In general
one is free to use any metric, which is suitable for comparing

alongside different parameter range queries.

5.2 Gradient and Topology-based Metrics

The general statistics introduced above lack the ability to incorporate topo-
logical information. As such, the achieved entropy is limited to the infor-
mation in each paired observation. In simulations and measurements alike,
each observation is coupled to a position in space or a geometry element. If
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we only interpret them as a 1-dimensional series of observations, we drop
the topological information, describing the neighboring connection of obser-
vations in space. As topological metrics, we define those that can use the
neighboring information.
The idea is to use these metrics to describe the topology of the resulting fields,
e.g., the ones from Figure 5.4. We then use these to define areas of interest, for
which we can define a summarizing value and reuse the evaluation concept
from Chapter 4, but on a specified area.
We start with the most common and straight forward metric, the k-Means.
This method is widely used in many applications and form the baseline for
our investigations. Further, we will look at more specialized metrics for vec-
tor fields, mainly using the neighboring cells’ gradient as topological infor-
mation. Those are the vorticity (curl), strain (normal and shear), the okubo-
weiss-criterion and the Angular Direction Changing Rate, which we de-
veloped for filtering highly turbulent regions in earth’s magnetic field (see
Section 5.4.

5.2.1 k-Means Distance

FIGURE 5.7: k-means Distance and Clustering. An example
of using the k-means method for clustering and summarizing
metric for the comparison task in the sensitivity analysis. The
parabolic shape induces that polynomials of degree two can de-

scribe the found clusters.

The k-means distance is the metric that directly follows after applying
k-means clustering to the data set. The k-means clustering aims to partition
the observations into k groups to minimize the within variance. The k-means
distance is the resulting distance of each point to its cluster center.
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Fundamental Idea

The k-means distance is a side-product from the k-means clustering, which
minimizes the variance of distances to a cluster i ∈ k. This metric also pro-
duces clusters of distances with sharp borders if we use the information di-
rectly. In Figure 5.7 we show the results of such a distance metric with k = 5.
In this representation, we used a 5 - wave color-map, to visualize each clus-
ter’s distances in a separate color scheme. The first clusters distances are
between [0, 1[, the second between [1, 2[ and so on. To get a smooth represen-
tation like this over the whole domain, we add the cluster-ID as a constant.
For increasing k, this metric’s visualization gets increasingly complex, as we
have to choose more and more different color maps.

Mathematical Description

The k-means clustering is an optimization of the following function:

min
S

k∑
i=0

∑
x∈Si

||x− µi||2 (5.5)

Here S is the set of points to be clustered and Si is the i-th partition of the set
with mean value µi. After solving the optimization problem and finding the
cluster centers for each partition i, the k-means distance of each point is the
same as the squared variance to the mean value of its closest center. The first
published algorithm is from Lloyd in 1982 [102], although it was developed
in 1956. Nowadays, there exist fast and efficient methods for a couple of
years [103].

∆kmeans = ||x− µclosest(x)||2 (5.6)

To separate the clusters in the distance metric we use the root of the distances
and add the cluster ID as a constant. If the value range is already normalized
to the range [0, 1] this results in a smooth distance metric for each cluster i
in the range of [i, i + 1[. In Figure 5.7 we applied a 5 − wave color-map to
visualize the distance metric with a distinct color-map for each cluster.

∆kmeans =
√

∆k−means + closest(i) (5.7)

5.2.2 k-Means Clustering

The k-means clustering is solving an optimization problem. The goal is to
partition the n observations (or cells) in k sets, such that the sum of squares
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(variance) is minimal. The mathematical description is denoted in Equa-
tion.5.5. Instead of the resulting distance to the centroid, we are now in-
terested in the partition index. The segmentation is then based on the cells
with the same partition index. In comparison to the other metrics discussed
here. The k-means approach directly segments the data set.

5.2.3 Vorticity and Strain-Rate-Tensor

The vorticity and the strain-rate-tensor are metrics from the vector field anal-
ysis that describe a vector field’s behavior concerning its direct neighbor-
hood. Therefore both rely on partial derivatives. In a discrete vector field,
these derivatives are derived via incorporating the directly neighboring cells.
Therefore both metrics are classified as topological metrics. Compared to the
k-means distance and the proposed angular direction changing rate, these
metrics’ topological scope is fixed to the direct neighborhood. Thus for in-
creasing densely sampled discretizations, the topological information van-
ishes.

Fundamental Idea

The vorticity and divergence are forming the baseline derivatives for vector
field metrics. The strain adds directivity about the element to this derivative.
A combination of vorticity and strain creates the very popular Okubo-Weiss-
Criterion for eddy detection. To better understand this criterion, we, there-
fore, look at each part of it separately. For the strain, we, therefore, look at
the normal and shear strain.

Mathematical Description

The vorticity is defined as:
−→ω = ∇×−→v (5.8)

The strain is defined on the gradient of v and yields to the tensor:

L =
∂v

∂x
(5.9)
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Here x refers to the local frame element in a discrete vector field. We can now
decompose this tensor in a symmetric and asymmetric part:

L =
1

2
(L + LT ) +

1

2
(L− LT ) (5.10)

L = D + W (5.11)

D is the deformation tensor or strain-rate tensor, while W is the spin tensor.
From the deformation tensor, we then derive the normal and shear strain.

D =


∂vx
∂x

1
2

(
∂vx
∂y

+ ∂vy
∂x

)
1
2

(
∂vx
∂z

+ ∂vz
∂x

)
1
2

(
∂vy
∂x

+ ∂vx
∂y

)
∂vy
∂y

1
2

(
∂vy
∂z

+ ∂vz
∂y

)
1
2

(
∂vz
∂x

+ ∂vx
∂z

)
1
2

(
∂vz
∂y

+ ∂vy
∂z

)
∂vz
∂z

 (5.12)

The normal strain sn are then the diagonal parts of the tensor:

sn =
∂vx
∂x
− ∂vy

∂y
− ∂vz

∂y
(5.13)

The shear strain γxy in x, y direction is defined as :

γxy =
∂vy
∂x

+
∂vx
∂y

(5.14)

Thus we can reformulate the Deformation tensor D as:

D =


∂vx
∂x

1
2
γxy

1
2
γxz

1
2
γyx

∂vy
∂y

1
2
γyz

1
2
γzx

1
2
γzy

∂vz
∂z

 (5.15)

By comparing the two formulations of D it follows that: γxy = γyx, γyz = γzy

and γxz = γzx. As such we can write the shear strain ss as:

ss =

γxyγyz
γzx

 (5.16)

Example

In Figure 5.8 we can get an idea of the metrics behavior. In the top row, the
normal and shear strain is depicted. In the bottom row, we can see the vor-
ticity magnitude. We observe two peak values for the normal strain that per-
fectly match the external load boundary conditions X1 and X2. We observe a
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(A) Normal Strain (B) Shear Strain

(C) Vorticity (D) Okubo-weiss-criterion with field lines

FIGURE 5.8: Assembly of the Okubo-weiss-criterion [104],
[105]. The criterion is assembled by the squared sum of the
three input fields: (A),(B),(C) (see Equation 5.17. Here we can
directly see, that the criterion is mainly influenced by the shear
strain and vorticity. The two peak spots of the normal strain are
no longer present in the okubo-weiss criterion. Additionally
the direction of the vorticity field is indicated with small line
glyphs. The brigther parts are more influenced by the vorticity,
while the turquoise parts are mainly influenced by the strain

components.
.

similar distribution pattern for the shear strain and the vorticity magnitude,
but with different scales. In general, all gradient-based methods suffer from
numerical instabilities near the domain boundaries.

5.2.4 Okubo-Weiss-Criterion

The Okubo-Weiss criterion is named after their founders Okubo [104] and
Weiss [105] and gained prominence in the detection of eddies in ocean water
movements[106]–[110].

Fundamental Idea

The Okubo-Weiss criterion was initially developed for eddy detection in oceanic
movements. Nowadays, methods are usually building upon this criterion as
their basis. The fundamental idea is to compare the velocity gradient for its
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relative movement. Therefore the vector field is decomposed in the normal
strain (pointing in the normal direction of the plane), the shear strain (relative
movement in the plane), and the relative vorticity (relative circular momen-
tum in the plane). The criterion is then defined as the difference between
the strain and vorticity components as depicted in Equation 5.17. For eddy
detection, a threshold is set on a negative value of W . It means the point at
which the circular movement in the plane is dominating the relative shear
movement.

Mathematical Description

The Okubbo-Weiss criterion is defined as:

W = s2n + s2s − ω2 (5.17)

Here ω is the relative vorticity in the plane defined in ss.

Example

Figure 5.8d shows an example of the Okubo-Weiss criterion on the displace-
ment difference. We can observe that the vorticity and strain in the center
axis are in balance, which means that most of the displacement here can be
described via the strain components.

Implications

So far, we have investigated some primary gradient-based metrics on the
resulting difference field. Incorporating a strain definition is especially suit-
able for our application in linear elastic load simulations. It enables us to see
if we have to allow our neural network regression to incorporate the distinc-
tion between strain and vorticity into its learned model. This would lead to
an increased combinatorial complexity as we would have to add topological
information to our input model. Further, we are now able to determine if
the gradient-based methods reveal any new patterns that were not already
captured by one of the more basic ones depicted in Figure 5.8. Nonetheless,
those metrics gain even more importance for more turbulent vector fields and
mostly 3-dimensional ones, but they are hard to interpret in a 3D-domain.
We took the best from the two worlds and developed a turbulence measure
applicable and interpretable in three-dimensional space, but with less com-
putational effort.
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FIGURE 5.9: The idea underlying our turbulence measure is
comparing each point and its respective vector quantity with
its neighborhood. As a similarity measure the angle between
vectors is used. Normalizing them to the interval [0,1] is done
to manipulate the color map. In the case of data defined on un-
structured grids, distances between points are used for weight-

ing similarity.

5.2.5 Angular Direction Changing Rate

Fundamental Idea

Our early visualization attempts of the geodynamo’s inner core A.2 behav-
ior suffered from the fact that we struggled with a meaningful and effective
way to define and visualize “structures of interest” to the scientist, especially
structures indicative of turbulent behavior. Concerning the magnetic field
data of primary interest to study the earth’s geodynamo, typical features
seen in liquid or gas flow fields are not present in the magnetic field data
of concern here. Thus, standard vector field visualization methods cannot be
applied directly to geodynamo data since the physical meaning is different
from liquid or gas flow fields. Therefore, we decided to devise a new ap-
proach to analyze geodynamo data. Instead of extracting turbulent regions
in the data set or finding single encapsulated drivers for global behavior, we
analyze turbulence and its inherent structure itself. A more specific defini-
tion of the term turbulence is needed for our data. To highlight regions in
the data that exhibit turbulent behavior, we devised a method that percep-
tually emphasizes such regions in volume visualizations. We found out that
the magnetic field vectors’ directions need to diverge above a certain amount
compared to others in a local neighborhood to indicate locally turbulent be-
havior. We define turbulence as follows:
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(A) No turbulence, maxi-
mum similarity

(B) Maximum turbulence,
minimal similarity

(C) Low turbulence, high
similarity

FIGURE 5.10: Similarity-based turbulence shown in a plane
with four equidistant neighbors. In (a) all vectors point in the
same direction, implying that the similarity in direction is max-
imal and turbulence is minimal. Image (b) shows the opposite
case that can only happen in boundary regions or when sin-
gularities are encountered. Image (c) depicts the average case.
Turbulence needs to be interpreted differently for each data set:
In the case of the geodynamo this would be classified as a no-

turbulence case.

(A) Border case (B) Normal behavior

FIGURE 5.11: Special case, where the calculated similarity
value is the same, but the interpretation of turbulence is dif-
ferent. Image (a) depicts a sharp edge or border in the vector
field. Image (b) shows a situation that can be classified as either
normal-turbulence or eddy behavior. In the case of magnetic
fields, situation (a) cannot happen unless a singularity in the
data set is hit. The situation shown in (b) could be improved
for interpretation by using a larger neighborhood. Our experi-
ments have shown that one should use at least 10 neighbors in

the 3D spatial domain.
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Definition. The turbulence of a vector field V is described by the diver-
gence of a specific vector quantity −→v (p0) at a point p0 in its spatial domain
relative to the vector quantities in a local neighborhood defined by a set of
points Pnb around p0.

Following this definition, a proper metric is needed to measure diver-
gence. Our first simple approach used the difference in the vectors’ angles
in a spatial neighborhood and applied weights to them based on distances.
Figure 5.9 and Figure 5.10 show how this definition can describe divergence
of vectors in a local region. Due to its ambiguity, non-uniqueness, there ex-
ist multiple cases that can produce the same or nearly the same numerical
value, as shown in Figure 5.11. Despite the ambiguity of this measure, it still
produces valuable results, and the special cases tend to occur only occasion-
ally or "exist only in theory." A more in-depth investigation is necessary to
understand this behavior in detail.

Mathematical Description

We now introduce the essential and needed formulas underlying our ap-
proach. They are:

t (p0) =
n∑
i=1

di
dsum

· arccos (ϕi)

π
(5.18)

cos (ϕi) =
〈−→v0 ,−→vi 〉
||−→v0 || ||−→vi ||

(5.19)

Rn (x) =
eλ·x − 1

eλ − 1
(5.20)

Here, p0 is the position with vector value −→v0 , for which the turbulence mea-
sure is calculated. The variable di is the Euclidean distance between the
points p0 and pi with vector value −→vi . Depending on the specific data dis-
tribution and/or grid type, other distance metrics should be considered as
well. The value of dsum is the accumulated sum of all distances to the points
in the local neighborhood. The notation 〈·, ·〉 refers to the standard scalar
product of two vectors. Equation 5.20 can be used to normalize the turbu-
lence measure such that low-angle differences are weighted less than linearly
and high-angle differences more than linearly, to emphasize more drastically
the turbulent regions of actual interest. We used this normalization step to
guide transfer function design for volume rendering.
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Run-time Behavior, Scalability and Complexity

The theoretical run-time of the proposed method is given as follows:

T (n) = n · [Tsearch (m,n) + Tturb (m)] (5.21)

T (n) = n · [O(m · log (n)) +O (m)] , (5.22)

where n is the number of vertices in the data set and m the number of ver-
tices in a local neighborhood. The method highly depends on an efficient
data structure that supports fast access to local neighborhood vertices. We
then decided to use a KD- tree as a data structure to access the required
neighboring vertices efficiently. Our method is implemented as an in situ
method. By fixing the number of available neighboring vertices and storing
them together with each vertex (or at least pointers), one must only calculate
the turbulence measure. The geodynamo data set is defined as a topologi-
cally structured-hexahedral grid. The set of local neighborhood vertices is
therefore implicitly defined by the index of a vertex. This fact reduces com-
putation time substantially for our method and thus only adds little overhead
computation time to the simulation itself’s computations. Suppose an in situ
approach was not feasible, e.g., due to a much more complicated underlying
grid topology. In that case, one could split the data domain into sub-domains
roughly equal to the number of available computer nodes and perform paral-
lel processing. Following such a strategy, a sub-domain should be larger than
the used local neighborhood; otherwise, the communication overhead result-
ing when performing computations at sub-domain borders would eliminate
the computational gain.

5.3 Topology-based Segmentation

So far, we used the sensitivity analysis (Section 5.1) and extended it with
gradient and topology-based metrics (Section 5.2). The definition of areas of
interest was then purely visually, based on the resulting fields. In this sec-
tion, we want to investigate a more automated approach by directly using
topology-based segmentation methods. These methods directly aim to seg-
ment the domain into subsets. As such, we can directly use the result to
define a segmentation. With the increasing complexity of a part or simula-
tion domain, the model complexity needed to learn a prediction model, like
the one introduced in Chapter 2, is also increasing. As a consequence, we
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introduce more model parameters, which complicate the interpretability of
the learned model. For complex parts, a segmentation before training a pre-
diction model helps us achieve good results while maintaining the model’s
interpretability. We will investigate four approaches to segment a displace-
ment field ensemble based on its variance. The variance field is the result of
a sensitivity analysis of the whole training data.

5.3.1 Morse Theory

The Morse Theory [111] investigates the topology of a surface employing
its critical points. The Morse-Complex partitions the manifold based on the
behavior of the gradient. The gradient ∇ of a function f defines a smooth
vector field on the manifold, where zeros define the critical points. On this
vector field, we can now define integral lines.

δ

δ t
l(t) = ∇f(l(t)) (5.23)

In such a gradient vector field, the integral lines are monotonic, which means
that an integral line’s start and the endpoint is never the same. This allows
us to define an ascending/descending manifold as follows:

• Let p be a critical point of the Manifold M . Then the ascending man-
ifold of p is the set of points, which means that integral line origin is
p.

• the descending manifold of p is the set of points, which integral lines
destination is p.

We can now use these definitions to define a segmentation of our displace-
ment field. In Figure 5.12a we visualized the critical points together with the
resulting descending manifold and the integral lines of the gradient field. In
Figure 5.12b we used the input scalar field as the background visualization
to reconnect the results to the initial domain. If we compare the input field
with the resulting three segmentations, we are missing some information.
The ascending manifold results in only one segment, as the maximas are on
the boundary of our domain.
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(A) Descending Manifold

(B) Reeb graph on Scalar Field

FIGURE 5.12: Results from applying the Morse-Theory to a
Scalar Field.

5.3.2 Topological Analysis of the Sheet Metal Ensemble

We can now use these analysis steps to enhance our initial sensitivity analy-
sis further. With the concept of the matrix layout, we can now directly com-
pare the field’s variance concerning different parameter combinations and
the topological properties of it.
In Figure 5.13 we showed the comparison of the variance of the field (top)

and its topological segmentation (bottom) using Morse-Smale complexes.
Chapter 4 we already found out that the parameters X1 and X2 have a strong
contradicting behavior. We are now varying the parameter ranges of both
and analyze the evolution of the variance. The results are then arranged in a
matrix view, similar to the scatter plot matrix concept. We can observe that
with increasing X2, the variance is decreasing (top rows), and with increas-
ing X1, the variance is increasing (right columns). If we now focus only on
the most right column where X1 > 0.15, we observe that with increasing X2,
the overall variance is decreasing. In the topological analysis, we can further
see that the number of regions decreases from six to two regions. If we now
assume a direct linear correlation, the pattern should reoccur on the matrix’s
diagonal as well. This is only the case for the two higher value ranges where
X1 and X2 are greater than 0.1. However, in general, we can still observe
similar patterns in the resulting topological regions on the matrix’s diagonal
axis, which confirms our initial result that X1 and X2 are strongly correlated.
Now we can further specify this correlation. For X1 , X2 > 0.1 we have a
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(B) Morse-Smale Complex on the Variance Field

FIGURE 5.13: Combined Sensitivity Analysis and Topological
Segmentation. We can directly compare the input scalar field
correlations with the resulting topological segmentation with
the matrix view. The segmentation patterns reveal a strong pos-

itive correlation between X1 and X2.
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near-linear correlation in the whole domain, while for 0.0 < X1 , X2 < 0.1

the influence of X2 on X1 is decreasing.
The other result from the machine learning model study in Chapter 3 was
that 10 - 20 neurons in the layer are enough to find a linear model, which
maps the deformation field onto the six input parameters. With our topolog-
ical analysis, we found no more than seven topological relevant regions that
describe our ensemble’s variance in the eight parameter ranges (four in the
positive direction and four in the negative direction). Thus we can conclude
that the 10 - 20 neurons are also covering the topological properties of the
ensemble’s variance.

5.4 Application - Measuring Turbulence in a Mag-

netic Field via Local Vector Field Similarity

5.4.1 Visualization

In order to visualize a turbulence field, typical scalar field visualization meth-
ods can be used. For smaller and structured data sets, volume rendering
can be used in all analysis and visualization tasks. In most cases, this gives
the best perception of the underlying structure of the turbulence field. The
remaining visualization parameter, therefore, is the transfer function. For
many application scientists, this is usually hard to achieve without proper
guidance. In this way, the following transfer function was developed with
the application scientists:

f (x) =
eλ× − 1

eλ − 1
, x ∈ [0, 1] (5.24)

Where x is the result from the proposed turbulence metric normalized to a
range from 0 to 1 and λ is a parameter to steer at which point the higher tur-
bulence value should affect the opacity more than linear. For our results we
were using λ = 6.5. However, this function allows only the first guidance. To
achieve better results, one needs to manually adapt the points opacity and
use the proposed function for interpolation.
For large and unstructured data sets, like the one dealt with here, the use
of volume rendering through all steps is not affordable. Even with decent
graphics computation capacities, it is impossible to achieve nearly real-time
results for the volume rendering. The most challenging factor here is the
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(A) Exemplary behavior of the transfer
function for different λ values.

(B) Example of a transfer function for
color and opacity used for geodynamo vi-

sualization.

FIGURE 5.14: The chosen transfer function for different param-
eter values. A manual adjustment is needed to achieve the best
results in terms of supporting a scientist’s specific data explo-
ration purposes. For the hot-cold color map, the values need to

be shifted accordingly.

unstructured grid of the underlying data, which slows down the computa-
tion massively. Therefore multi-layered iso-surfaces or cells only showing
up when a certain threshold is reached are more suitable for the first analysis
tasks. Nevertheless, with the near future task of visualizing unsteady data,
there is a need to deal with this problem efficiently. One wants to create the
visual results for each time step with minimal user interaction. The next big
challenge for the volume rendering in our case would be to either speed up
the computation for unstructured grids in general or find a suitable method
to transfer the unstructured into a structured grid with a low error.
One future goal is the visualization of Poincare maps. The driving challenge
here is to find a proper seeding strategy to find field lines with more than one
periodicity.

Theorem. Given a plane E0 and an integral curve in the vector field start-
ing at point p0, the curve has to cross the plane E0 after a limited number of
integration steps in order to be considered for a Poincare map.

This theorem leads to three major types of magnetic field lines:

1. The magnetic field line starts at a given point p0, and there is no plane
E which the line is crossing more than ones.

2. The magnetic field line starts at a given point p0, and there is at least
one plane E which the line is crossing more than ones.

3. The magnetic field line is starting at a given point p0 and under a given
number of maximal integration steps, there is no plane E the line is
crossing more the ones.
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For Poincare maps, usually, a slice through the whole domain is used. To
have a complete map with a given resolution of n points, one needs to in-
tegrate n field lines. Considering our example data set, one slice with the
same resolution as the data set would need about 1000 integration lines. To
capture the maximum amount of periodicity, one needs a significant large
integration time, which leads to high computational costs. Thus knowing
in advance which areas need a higher integration time than others is useful
to speed up the computation time. For example, it is of major interest for
geophysics to find those integration lines leaving towards the poles and the
domain after a certain number of orbits. Therefore it is sufficient to split the
domain into areas for leaving and staying field lines.

5.4.2 Derived Seeding Strategy for Streamlines and Stream-

surfaces

1. Seeding field lines outside of the turbulent structure will reveal mostly
horizontal, polewards oriented ones (See Figure 5.15). These lines are
also leaving the domain and have no periodicity that can be observed.

2. Seeding field lines inside the turbulent structure will align with the
turbulence field pattern.

3. Seeding field lines in high turbulent areas as depicted in Figure 5.17
one can find crucial details in the underlying vector field like eddies or
something similar to saddle points.

5.4.3 Results and Evaluation

To show the results, we mainly used two data sets from the geodynamo
simulation. In the present study, the spatial resolution is (Nr, Nθ, Nφ) =

(97, 144, 288). Both represent a snapshot when simulations reach a quasi-
steady state. We fix the E = 5 × 10−5, Pr = 1.0, and Pm = 0.5. the
only parameter changed is the Rayleigh number to be Ra = 1.2 × 107 and
Ra = 2.8 × 107, which is the ratio of buoyancy to diffusivity. Consequently,
convection is more turbulent with increasing the Rayleigh number. The aver-
age Reynolds number Re = UL/ν is 173.4 and 91.1, respectively. In Fig 5.15,
a structure tends to be more chaotic, and it is harder to perceive the pattern
induced by the spherical harmonics. In Figure 5.15b the structure is much
more smooth, and a pattern similar to the expected spherical harmonics is
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shown. Interestingly, in the lower turbulent case, the high peaks are clus-
tered on an equatorial ring. Wherein the turbulent case, the high peaks are a
lot more scattered. This method’s primary goal is to provide a good seeding
strategy to visualize magnetic field lines. Based on the resulting scalar field,
we are now able to apply the strategies for seeding streamlines mentioned
earlier in Sec. 5.4.2. The alignment of the seeded streamlines with the refer-
ring turbulence field’s structure is a general property of the metric. If this is
the case, a wide variety of applications, not only for visualization but also
for steering, come in handy. The second remarkable property is that high
encapsulated turbulence values (areas) are correlated with what is typically
denoted as critical points. We have not investigated yet if it is possible to find
all critical points using this approach. However, we were able to find criti-
cal regions of interest where the mathematical definition’s strict application
would have failed. It is especially the case in Figure 5.17b, where behavior
is found that reminds on a saddle point, but due to the magnetic field prop-
erties, there cannot be a saddle point in the proper sense. This way, one can
reveal exciting features to the application scientists that were not recognized
otherwise.

(A) Ra = 2.8 × 107. Magnetic field lines
seeded outside the turbulent area.View on

the equator.

(B) Ra = 1.2 × 107. Magnetic field lines
seeded outside the turbulent area. View on

the equator.

FIGURE 5.15: Streamlines of the magnetic field are seeded out-
side the turbulent areas marked by the volume rendered scalar
field of turbulence. The field lines seeded outside this area are
nearly straight going from one pole to the other. One can clearly
see the difference in the overall turbulence of the field based on
different Rayleigh numbers chosen. It is assumed that the field
lines outside the marked area are responsible for building the
dipole structure, as these are majorly the ones leaving the outer

core domain.
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5.4.4 Domain Expert Evaluation

The present results show that large directional changes of the magnetic field
locate along with the equator and extend along with the rotation axis. The
equatorial plane’s intense changes are due to the change in the direction
of the zonal (longitudinal) magnetic fields generated by the zonal flow (Ω-
effect). Simultaneously, the magnetic field line is twisted towards the z-
direction by the convection columns’ helical flow (so-called α-effect). How-
ever, the extracted area does not match the area where the magnetic energy
is effectively generated because the present extraction is not considered the
magnetic energy amplitude. Consequently, the present methods are useful
for finding the area where the magnetic field is twisted by the turbulence
and finding if such turbulence contributes to generating a large-scale mag-
netic field. We also expect that the present scheme potentially represents the
flow’s turbulence to apply the velocity field.

5.4.5 Conclusions

It has been shown that Magnetic Fields are a special kind of vector field in
terms of visualization, which is mainly related to the fact that magnetic fields
are, unlike flow fields, Hamiltonian systems. These systems allow for a more
restricted behavior regarding critical points but induce a more turbulent be-
havior, leading to more topological and structural motivated visualization
techniques. With a proper definition of turbulence on vector fields, we could
visualize the underlying topological structure of the magnetic field (see Fig-
ure 5.18. It allowed us to study the structure and the field lines emerging
either within or outside the structure. This way, we were able to reveal the
two main types of field lines in the geodynamo. Those who are staying in-
side the outer core and maintaining the field’s strength and those are leav-
ing the outer core at the pole regions building the typical dipole shape of
the magnetic field observed at the earth’s surface and above. The upcom-
ing challenges are leading in two directions. First of, as the magnetic field
is a Hamiltonian system, the use of Poincaré maps to visualize and analyze
the maintaining field lines rotating around the core seems very promising.
On the other hand, the challenge remains in analyzing and visualizing the
unsteady behavior of the geodynamo. Due to its large size, it is a visual chal-
lenge regarding the features or structures to be tracked and visualized over
time and a computational to allow a seamless comparison between multiple
time steps.



5.5. Discussion 93

5.5 Discussion

Mapping the impact of the parameters into the domain space is not a triv-
ial task. Therefore we first developed a concept to view the results from a
sensitivity analysis interactively. This was achieved by exploiting the func-
tionalities of the ttkCinema concept. Here used the general concept of SQL
queries on the database to achieve interactivity. With a proper query formu-
lation, we then showed how to map each parameter’s impact into the domain
space. Further, we extended this newly created view of the scatter plot matrix
to allow the evaluation of parameter cross-correlations in domain space. The
generalization of this visualization concept could then display various other
metrics defined in the domain. As such, we were finally able to observe dif-
ferent segmentation results after applying topological analysis techniques.
This allows not only to evaluate one possible segmentation and incorporate
the relationship of different parameter cross-correlations in the segmentation
step. In an ongoing study, we now observe the effects of different topological
segmentation approaches under different parameter pairs for using a mini-
malist machine learning model. Such a model’s final goal would be to train
the model only with a small number of representatives for a derived segmen-
tation. Consequently, we could drastically reduce the number of parameters
of our model and simultaneously increase the interpretability of the model.
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(A) Ra = 2.8 × 107. Magnetic field lines
seeded inside the turbulent area. View on

the equator.

(B) Ra = 2.8 × 107. Magnetic field lines
seeded inside the turbulent area. Top view

on one of the poles.

(C) Ra = 1.2 × 107. Magnetic field lines
seeded inside the turbulent area. View on

the equator.

(D) Ra = 1.2 × 107. Magnetic field lines
seeded inside the turbulent area. Top view

on one of the poles.

FIGURE 5.16: Streamlines of the magnetic field are seeded in-
side the turbulent structure depicted with the volume-rendered
scalar field. Lines seeded in this area tend to stay inside the
outer core even for the more turbulent case (a) and (b). In the
more stable version of the simulation (c),(d) nearly none of the
field lines are leaving the outer core domain. The ones that are
leaving the domain here are of special interest and lead to fur-
ther investigation. So far, no method precisely find these field

lines.
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(A) (B)

(C)

FIGURE 5.17: High turbulence Examples.From the mathemati-
cal description it can be shown, that the measurement only bare
produce results with a value t (p0) ≥ 0.75. So it makes sense to
investigate those areas in more detail. There is no single inter-
pretation of what a high turbulence value could be, so here are
some examples we investigated. In (a) we found a small eddy
at the given point. In (b) close to the eddy we found something
that looks like a saddle point, although we know they cannot
exist in theory. In (c) again we found an eddy, but with a strong

elliptical shape.
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FIGURE 5.18: Dipole Visualization.With our proposed method,
it is now possible to efficiently separate the two kinds of field
lines. On the one hand, the field lines are building up the dipole
and can be found by seeding streamlines outside the turbulent
domain. While the driver magnetic field lines keep the geody-
namo stable and stay inside the outer core. Those can be found

by seeding streamlines inside the turbulent structure.
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Chapter 6

Organizing Ensembles for Visual
Analytics

Today’s supercomputer architectures allow computational scientists to per-
form research with increasingly complex models producing high-resolution,
high-fidelity data in increasingly shorter times. It is often no longer possible
to store data set at full resolution. It is also extremely inefficient and expen-
sive to transfer such large data sets from tertiary storage to memory analysis.
Consequently, in situ visualization – i.e., the generation and storage of visual-
izations/images done as part of an ongoing computer simulation – has been
developed[112]. Nevertheless, while an in situ approach is advantageous in
many ways, it limits the possibilities of “complete data exploration" to the
set of pre-generated visualizations. Ahrens et al. [113], [114] recognized that
generating a large set of images covering the underlying parameter value
space well still allows a scientist to meaningfully analyze and discover im-
portant model behaviors while accelerating the exploratory process signifi-
cantly as all visualizations already have been generated.
The CinemaDB was first introduced by Ahrens et al. [101]. The basic idea
is to organize the images created from in-situ approaches. Thereby it in-
corporates three main concepts that scientific analysts demands, which are:
Interactive Database Exploration, Metadata Search, and Post-processing &
Recombination. The interactive exploration database enables a set of interac-
tions of pre-generated visualization and analysis results. The idea is to allow
the user interactive queries on the database based on predefined parameters.
These parameters can either be visualization or application-driven. Visual-
ization driven parameters are for example: view port or camera angle, visu-
alization method-specific parameters, e.g. iso-values for iso-surface visual-
ization. Application-driven parameters, on the other hand, specify a set of
variables from the application scenario. The most prominent example here is
time, but this could also be any parameter from the application.
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The Metadata Search allows to store and retrieve even more complex infor-
mation alongside the images in the database. The idea is to formulate com-
plex queries on the database entries to allow better analysis of the results.
For example, we can develop a query that retrieves every time step, where
the maximum value of field X is more significant than a threshold of th. We
already made extensive use of this feature in the chapters before.
The post-processing and recombination concept extends the initial focus of
mainly storing images in the database by storing arbitrary visualization or
data products. It allows us to link original raw data to our database entries
and intermediate results like depth-images or triangulations. As such, it en-
ables us to start our post-processing pipeline at any position.
In the following study of video compression techniques, we choose the depth
images as our starting point for the compression. The use of depth images is
a superior choice. It has already reduced the data to the visible range but still
allows for compositing multiple results and custom rendering and coloring
approaches in the post-processing phase.

Related Work There is a rich body of work focusing on data reduction
for computational model output. Among the typical approaches are multi-
resolution techniques, adaptive refinement, compression; a survey and overview
of techniques typically utilized in situ are given by Li et al. [115]. Com-
mon to all these techniques is that only reduced data is available for post
hoc analysis and visualization. Often, explicit error bounds are not avail-
able or very difficult to estimate except in specific circumstances (e.g. [116]).
Thus, the analysis’s accuracy is in direct competition with data reduction,
where it is essential to hit the sweet spot between the reduction rate and data
quality [117]. Taking an alternate approach, in situ visualization [112], [118]
generates visualization imagery on full-fidelity data. Through clever imple-
mentation, such as storing scalar value images and depth images instead of
RGB images, compositing and color mapping can keep the image database
size small. Lukasczyk et al. showed that under certain conditions, it is pos-
sible to reconstruct parameter sets not stored in the database, such as, e.g.,
camera positions, further enabling free exploration [119]. However, for vast
parameter spaces that arise when combining many different visualizations in
the interest of exploration, the visualization image database can become very
large, making its storage and use difficult. For specific scenarios, optimized
image formats can be defined, e.g., in the case of volume rendering [120] or
contour tree analysis [121]. However, this only marginally reduces the size
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of corresponding image databases. Image database storage also typically uti-
lizes image compression techniques such as, e.g., wavelet compression [122]
or commodity image compression codecs (e.g., JPEG) in both lossy and loss-
less modes. However, compressing each image on his own cannot leverage
the high degree of similarity between images corresponding to closely neigh-
boring parameter settings.

Based on the proof-of-concept work of Berres et al. [123], we assume that
video compression is a suitable way of reducing the size of large visualization
image databases. However, it is unclear which factors affect compression rate
(i.e., data reduction), image quality, and retrieval performance, which are the
vital pertinent aspects to consider when using compression for visualization
image databases. In this paper, we investigate these aspects in a more com-
prehensive quantitative experiment.

6.1 Video Compression for Visualization Ensem-

bles

6.1.1 Motivation

For complex visualizations generated, for example, by sampling large or
high-dimensional visualization parameter spaces, the databases needed for
storage can still be of substantial size. We adapt image and video compres-
sion techniques to reduce data size and enable more efficient management
and visualization databases. The goal is to leverage inter-image similarity
typically encountered in video image frame sequences and used to achieve
substantial compression. By “linearizing" a visualization image database, it
is possible to adapt video compression to support much more efficient data
analysis. This approach was first investigated by Berres et al. [123], where it
was shown that the approach is feasible and beneficial. However, their lin-
earization approach and choice of compression parameter values, e.g., video
codec and image encoding, were ad hoc. Our work is motivated by gain-
ing more insight into these parameters’ effects concerning video-compressed
image databases’ overall usefulness.

We present the results of a broader investigation of the different aspects
of applying video compression to visualization image databases.
We quantitatively evaluate video compression for five different data sets with
significantly different image characteristics expected to affect compression.
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We employ three general-purpose and easy-to-use video codecs (H.264 [124],
H.265 [125], VP9 [126]). We consider several quality metrics and compression/de-
compression efficiency concerning the compression ratio, serving as the main
parameter for all three codecs. We can now formulate the following hypoth-
esis for our study:

Hypothesis 1 The compression performance from video encoding techniques is sig-
nificantly higher than general data compression or pure image compression.

Hypothesis 1.1 The order axis of the collection has an impact on the compression
result.

Hypothesis 1.2 The test set (application domain) of the collection has an impact on
the compression result.

Hypothesis 1.3 The visualization technique of the collection has an impact on the
compression result.

Hypothesis 1.4 There is a significant difference in compression performance for the
different video compression techniques.

Hypothesis 2 The retrieval performance of video encoded image databases is sig-
nificantly higher than with standard databases

Hypothesis 2.1 The retrieval performance depends on the compression technique.

Hypothesis 2.2 The retrieval performance depends on the axes ordering for the en-
coding.

6.1.2 Experimental Setup

In the following, we describe the pipeline we employ to carry out our study.
A conceptual overview is given in Figure 6.1.

Data Sets and Visualizations

For the generation of the visualization image database, we use ParaView [127]
in combination with the TTK framework [100]. Prototype visualization pipelines
are created in ParaView and stored as state files, which we then parameter-
ize. The filters ttkCinemaImaging and ttkCinemaWriter are then used
to render the images for a Cartesian product of parameter samples; includ-
ing simulation time, camera positions, and iso-value (where appropriate).
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FIGURE 6.1: Overview of the image database generation, com-
pression, and decompression pipeline underlying our study.

Camera positions are located on spherical grid vertices, and the cameras are
aimed towards the data sets’ centers. Following the reasoning of Ahrens
et al. [101], we focus on a modern implementation of visualization image
databases based mainly on storing depth images instead of color images,
which allows recombination of different visualizations. As an intermediate
product, we obtain a depth image visualization database, which associates
a depth image with each parameter set and represents the ground truth for
error measurements. The image resolution is chosen as 512x512 throughout
the entire study.

Image Database Linearization

We linearize the depth image database by enumerating the Cartesian product
parameter space using an arbitrary ordering of axes. We hypothesize (and
empirically confirm, cf. Section 6.1.5) that ordering axes in a manner that the
fastest axis (along which subsequent images lie in the linearization) should
be chosen such that the inter-image similarity is large to benefit compression
efficiency.

Most video codecs assume that the changes from one frame to the other
happen smoothly and in a predictable way over a more extended period (see
the preset parameters [128]). Therefore we assume that the best compression
performance results will occur for a smooth ordering of the images. We are
investigating the impact of camera path, data time step, ensemble parame-
ter, and visualization parameter as different approaches for the dominating
ordering axis (see Figure6.2).
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FIGURE 6.2: Showing different ordering strategies for one data
set. Depending on which axis is chosen to be the dominant
one, the similarity between successive images could vary dra-
matically. From top to bottom: Iso-value, Ensemble Parameter,

Camera rotation, Simulation time step.

Camera Location The camera parameters are usually the first parameters
that are used while creating an image database. A collection of images or-
dered by camera angles is similar to tracking shots in video sequences, which
target video compression techniques. Based on the number of viewpoints
needed to capture a visualized data set; however, it is not necessarily the axis
with the smoothest transition between successive images. Especially if stor-
ing a minimum amount of images needed to visually adequately reconstruct
geometry [119], camera location index as the fastest axis is not necessarily the
right choice.

Data Time For unsteady data sets, time provides a natural parametrization.
In practice, memory or I/O constraints determine the step size between suc-
cessive discrete time points. Furthermore, considering ensemble data, step
sizes may vary per ensemble member. The chosen visualization techniques
also play a crucial role here. In contrast, some techniques will result in more
significant visual changes with small changes in the time, and others may
behave in the opposite direction. Therefore, we do not rely on smooth tran-
sitions between images for our setup when choosing time as the dominant
axis.
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Ensemble parameter space In ensemble data sets, we are particularly in-
terested in the differences in the input parameter space changes, which leads
to similar effects for setting the time step size mentioned above. Therefore,
for our investigation, we expect that it behaves similarly to the time ordering
for unsteady data sets if they have a matching resolution of the step sizes.

Isovalue Concerning algorithmic parameters that change the visualization
result, we consider iso-value in the cases described above as a proxy for more
general settings. Most notably, it is one of the most often changed parame-
ters when exploring a data set. In general, variation between images should
be small under a fine-grained sampling, as the surface varies slowly and
smoothly with a change in iso-value. Thus, we hypothesize that this param-
eter is the right choice for the fastest axis in the linearization if the sampling
is not too coarse.

Depth Image Encoding

Before applying video compression to depth images, these must be trans-
ferred into a suitable format for ingestion by video codecs. While depth im-
ages encode a single scalar in the range [0, 1] per pixel, the lack of robust sup-
port for single-channel image formats in video encoders (e.g., the gray-scale
format 12greyle) makes it difficult to pass the depth values directly. Further-
more, a lack of format with high-bit depth – at most 12 bits – would induce
inacceptable quantization to the depth images and make them practically
unusable for compositing.

Hence, we encode the scalar field (depth image) into an image format
with three channels and 8 bits per channel using Morton coding [129], map-
ping a 24-bit depth value into 3x8 bits. Here, Morton coding is much prefer-
able to the simple mapping of the high, middle, and low bytes to three chan-
nels since the Z-order curve underlying this coding guarantees that close-
by depth values will be mapped to close-by tuples. The effect of this map-
ping, interpreting the three channels as red, green, and blue colors, is illus-
trated in Figure 6.4. We pass the result of this mapping to the video codec in
the yuv444p format. YUV is the natural color space in which all considered
codecs operate, and errors induced through in-codec color space conversion
can be avoided. Note that video codecs typically accept various formats that
represent color information at a reduced resolution compared to luminance
information, such as, e.g., the often-used yuv420p format. However, we do
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not see an indication at this time how such sub-sampling would benefit the
compression of depth images and thus only consider yuv444p. In general,
this process applies to any scalar field (not only depth) input on the images.

Video Compression

Following linearization and encoding, we pass the yuv444p image sequence
directly to the video codec. As a general interface to different codecs, we
employ the ffmpeg [128] tool, and encode using three major and broadly
available video codecs:

• H.264 [124] The H.264 uses motion estimation to minimize temporal
and spatial redundancies. It is classified as a block-oriented motion
compensating compression technique.

• H.265 [125] The H.265 is based on the same principle as the H.264. Its
main difference is the increased coding tree unit from 16×16 to 64×64,
though leading in general to higher compression rates.

• VP9 [126] The VP9 codec is also a block-based format. Its main appli-
cation area is for web streaming, and therefore it is designed to ensure
a certain bit-rate rather than a consistent quality like H.264 and H.265.

Codec Parameters. In general, a vast number of parameters affect each en-
coder and allow tweaking it to different types of input. To keep our study
reasonable and achieve comparable results, we opt to focus on the constant
rate factor (CRF) as the main parameter that affects the amount compression
for each codec. We consider the values 0 (lossless), 10, 20, and 30 to represent
different compression levels. Typical CRF choices for natural images are in
the range from 18 to 24.

Furthermore, all codecs support variable-rate encoding, which adapts
bandwidth based on heuristics, in overall better image quality. However,
as the assumptions underlying these heuristics are geared towards natural
images and are not well documented, we choose not to examine this mode
due to a large amount of unpredictability it induces on results. Note that the
VP9 codec is primarily intended for streaming applications. Thus, constant
rate encoding is not its optimal mode of operation; however, we still consider
it in this study to its ubiquitous use and generally good compression/quality
performance.
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The H.264 and H.265 codecs are further able to trade off compression
speed against image quality through a preset choice. We here use the veryfast
preset to achieve the best speed. While image quality would improve with
slower presets, we obtain a lower bound on image quality at the expense of
much longer compression times, which we consider to best reflect real-world
considerations. A summary of the parameters steered by these presets can
be found in [128]

As the compression process’s output, we obtain a single video file repre-
senting the entire visualization depth image database.

Image Retrieval

To retrieve images, we again employ the ffmpeg tool to retrieve a single
image from the video file in yuv444p format and decode it using the Morton
order.

Retrieved images are compared against the (uncompressed) ground truth
images, using the metrics described in the following section.

(A) Exemplary depiction of an unequally
distributed pixel format. Picture from
https://en.wikipedia.org/wiki/YUV

©Public Domain

(B) Depiction of an ico-sphere. Show-
ing the view ports used for rendering 3d-
visualization products. The exact position-
ing and definition of the near and far- plane
allow for efficient geometry reconstruction

[119].

FIGURE 6.3: Pixel format and Ico-sphere

The depth and scalar images are generated based on the approach of
Lukasczyk et al. [119] that is implemented in the "CinemaImaging" module
of the Topology ToolKit (TTK) [100]. This module utilizes the Visualization
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ToolKit (VTK) to render opaque geometry for a Cartesian product of param-
eter samples, including time, camera positions, and iso-values. Using VTK
as a rendering backend makes it possible to deploy our simulation runtime
approach via Catalyst [127]. Our experiments’ datasets are depicted from
cameras located on spherical grid vertices, and the cameras aim towards the
dataset centers. (Figure 6.3b). The resulting images are stored individually
in a Cinema database together with their corresponding parameters.

6.1.3 From Scalars to pixel formats - Morton Quantization

The lack of a good support for scalar like image formats in video encoders
(like 12greyle) forces us to transfer our scalar field (depth image) into an
image-like 3 channel format. Most video encoders accept the YUV pixel for-
mat. The format itself comes in different variations, were the three channels
Y,U,V are differently distributed per pixel. Resulting in the 3 most common
variations of the YUV format, namely: yuv444p, yuv422p, yuv420p. While
yuv444p uses 3 bytes per pixel, yuv422p uses 4 bytes per 2 pixel and yuv420p
uses 6 bytes per 4 pixels. The p is indicating that the array is flattened out in
one dimension. For our experiment we choose to stick with the yuv444p for-
mat as it maintains the 24bit precision of our depths values. The goal therefor
is to find a transformation that is maintaining this precision and is invertible.
The easiest approach, give every channel the respective float value as an un-
signed 8bit integer, therefor is not suitable as we loose 16bit of precision. As
the pixel format only accept integers, we first transfer the scalar value into a
24 bit unsigned integer. Because our depths values are normalized between
0.0 and 1.0 this can be achieved via:

sint = s ∗ (224 − 1) (6.1)

Next, we have to split the 24bit integer into 3 x 8-bit parts. The naive ap-
proach would be to use the modulo operator for this, resulting in Y = s[0, 7],
U = s[8, 15], V = s[16− 23], with s[i] referring to the i-th bit of s. This would
lead to images like the one in Figure 6.4 (b). The resulting image is bois-
terous, and the underlying structures and features are not visible anymore.
They are resulting in an encoded video nearly the same size as the original
image database. As such, we need a conversion that leads to less noisy im-
ages to allow the video compressor to find similar compressible parts in an
image sequence. Therefore, Morton encoding, proposed by Morton [130],
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(A) Ground Truth (B) Modulo (C) Morton (D) Z-order curve

FIGURE 6.4: Encoding of a 24-bit depth image (a) to 3x8 bit
channels using reinterpretation as three bytes (b) or Morton
coding (c). The three resulting channels are interpreted as RGB
for illustration purposes. (d) shows the Z-order curve underly-

ing the Morton coding.

often referred to as z-order curve, is used. The idea is to fit a smooth param-
eterized function into a 3-dimensional space, such that the transitions from
one axis to the other are smooth(see Figure6.4).

For the z-order curve we choose the following implementation:

LISTING 6.1: Example Code for the used Morton Encoding on

the depth image values.

def f loat_to_morton ( n ) :
return u n s h i f t ( n ) , u n s h i f t ( n >> 1 ) ,

u n s h i f t ( n >> 2)

def u n s h i f t ( n ) :
n &= 0 x09249249
n = ( n ^ ( n >> 2 ) ) & 0 x030c30c3
n = ( n ^ ( n >> 4 ) ) & 0 x0300f00f
n = ( n ^ ( n >> 8 ) ) & 0 x f f 0 0 0 0 f f
return n

6.1.4 Evaluation Metrics

For our evaluation, we distinguish three significant factors: Quality of the
reconstructed visualizations images, compression efficiency in the sense of
file size and time to retrieve an image in the original domain, and, especially
for surfaces, how much the errors introduced by compression affect the com-
positing of two or more visualizations post hoc.
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Performance Metrics

For the performance measure, we use the compression and retrieval rate. For
the compression rate, we use the highest z-lib compressed depth images as
our base value. All values are then relative increases or decreases in per-
cent. We randomly draw 300 frames from each video for the retrieval rate
and apply the Morton inversion to them to end up with depth images. We
measure the time from the start of the retrieval (the video already loaded) to
the conversion end. For comparison, we measure the time for 500 database
calls using Paraview and the ttkCinema filter. The measures are then normal-
ized to time to retrieve one image. We do not take speed ups from parallel
computing into account, as such practical values can differ.

6.1.5 Results

The complete results can be found in the published article of the study [131].
As such, we only review the results focusing on the hypothesis formulated in
Section 6.1.1. Figure 6.5 shows that the video compression techniques always
achieve a higher compression rate than the zlib approach in the highest set-
ting, which confirms the first hypothesis. Additionally, we can observe that
the codecs have varying performance based on the chosen constant rate fac-
tor, which aligns with our hypothesis 1.3. The axis order, on the other hand,
only has a minor influence on the compression rate. As such, we cannot con-
firm hypothesis 1.1. In Figure 6.6, we can confirm hypothesis 1.2 and 1.3 that
there is a significant impact on the compression rate based on the data set.
Essentially streamline visualizations are more challenging to compress than
iso-surface approaches. Regarding hypothesis 2, we can confirm that the re-
trieval times from video compressed databases are significantly higher than
for uncompressed ones (see Figure 6.7. The retrieval time is in the order of
2.5 to 3.5 seconds, respectively. In contrast to our hypotheses 2.1 and 2.2,
we did not find any effect of the ordering or compression technique. For the
investigates constant rate factors, we observe that the visual quality is only
visibly decreasing with crf > 20 (see Figure 6.8).
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FIGURE 6.5: Results for the compression performance. Com-
pression rate in % of the original uncompressed image data
base. grouped by image ordering for iso-surfaces(s: cam-
era sphere, c:cycle time step, i:iso-value), image ordering for
streamlines (S: camera sphere, C:cycle time step) and constant

rate factors, colored by the used codec.

FIGURE 6.6: Results for the compression performance and con-
stant rate factors, colored by the used data set.

6.2 Discussion

We have provided a study concerning the applicability of lossy video com-
pression to visualization image databases. Our findings confirm observa-
tions made by Berres et al. [123], thereby strengthening further the argument
that video compression is a viable and beneficial approach leading to excel-
lent compression rates compared to a general-purpose lossless compressor.
Further, we observed only minor image quality loss and, in some cases, no
loss at all. The implementation complexity is manageable but needs further
improvement to retrieve single frames, which should incorporate suitable
meta-data. The use of lossy general-purpose compression techniques – i.e.,
techniques not primarily aimed at video compression – such as the ZFP [132]
compressor, should be investigated too. For real-world applications, e.g., in
situ visualizations, the ability to perform compression and encoding in par-
allel is essential. There is hardware-enabled acceleration for most codecs to
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FIGURE 6.7: Comparison of compression rate and retrieval time
clustered by codec, image ordering for iso-surfaces(s: cam-
era sphere, c:cycle time step, i:iso-value), image ordering for
streamlines (S: camera sphere, C:cycle time step), constant rate

factor and data set.

run the GPU encoding, which drastically improves the encoding speed. Ad-
ditional independent encoding of subsequences could be a valid alternative.
As we found out, the image order is only of minor importance. Future re-
search would be of interest to investigate the optimal ratio between retrieval
time, compression, and image batch size.



6.2. Discussion 111

lossless crf - 0 crf - 10 crf - 20 crf - 30

FIGURE 6.8: Depth Images before and after compression with
the H.264 codec. The visually detectable differences are very
small. Starting at crf= 10 the noise in the images is increasing
with each step. Still most of the topological structures remain

intact.





113

Chapter 7

Conclusion and Future Directions

Enabling the application engineer to develop their machine learning meth-
ods is a challenging task. It demands an understandable and interpretable
model deduction approach. In the presented thesis, we elaborated on the
challenges to meet those requirements for the application in reverse engi-
neering for linear elastic metal sheets. We showed that the concept of min-
imalist machine learning could achieve superior results in the assembly’s
well-structured application. However, it can be easily adapted to many other
applications in manufacturing and production.

Dealing with Uncertainty The challenge of uncertainty in both the ma-
chine learning model and the associated digital twin can be tackled with the
combined use of the classical Ishikawa’s method [47] and our advanced con-
cept of an Object-oriented Virtual Reference Scheme (OOVRS). The tremen-
dous advancements in simulation, physical modeling, and machine learning
pave the way for smart factories’ deployment in the next decades. Building
trust persists to be the main goal in the future for simulations and machine
learning models. We showed that uncertainty in both models and methods is
a crucial criterion for trustworthiness. However, the analysis and testing ef-
fort for achieving reliable uncertainty quantizations is an ongoing challenge.
On the other hand, with the OOVRS, we propose a solution for the integra-
tion problem of process chain elements while increasing transparency with
a human-readable concept in compliance with the SOLID principles [50].
Sticking to the SOLID principles is a necessity to allow for robust software
system architecture in smart factory applications. Jointly this opens up a
plethora of service applications with such an integrative scheme throughout
the whole production process. Thinking about the increasing demand for
transparency and traceability of production chains in industry 4.0, we intro-
duced a future proof concept for dealing with uncertainties in smart factory
eco-systems.
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Minmalistic Model and Distance Metrics The choice of a proper distance
metric as a loss function in the machine learning model is critical in the first
phase of model generation. In general, we could show that comparing the
two deformation fields is a non-trivial task. With the use of visual analytics
and a profound study design, we were able to determine the differences be-
tween different metrics and finally show that the proposed custom metric,
which combines both the change in the length of the vector in each direction
and the rotation of the vector is the best choice. Specifically, it is superior
to the other when we continuously reduce the model’s complexity, one of
our main goals for an interpretable model and one step further to a minimal-
ist machine learning model. The thoughtful deployment of visual analytics
tools and model parameter study design enables increased interpretability
of the model. Further, we could show that a simple model with one hidden
layer can solve the prediction task. Compared to the effort put in simula-
tion models for linear elastic behavior, this is a stunning result. It shows
that the linearity in the underlying physical principles persists throughout
the scales. Further, it shows that increasing the geometries discretization res-
olution is not continuously required to achieve more precise results in the
studied application for reverse parameter prediction. A study design aim-
ing for a minimalistic model turned out to be the right approach for such
predictive engineering tasks, like the one investigated here.

Integrative Visual Classifier Perfomance Benchmark To further increase
the proposed model’s understandability, we analyzed the prediction param-
eters’ influence on the resulting difference between a target deformation and
the training deformation fields. Here we showed the deduction of a powerful
visual analytics tool providing user- and task-adaptable guided representa-
tions that enable full situation awareness while supporting detailed actions.
We support multiple levels of data and information abstraction. The derived
tool is then used to benchmark the expected performance increase of a seg-
mentation method. We could confirm the Accuracy Paradox [19] implica-
tions in the studied application for reverse parameter prediction in assembly.
Instead of solely relying on the classifier’s performance metrics, deploying
an integrative visual analytics approach on the training data showed a con-
siderable impact on the model results’ interpretability. It allows a prelimi-
nary hypothesis formulation of, e.g., parameter correlations, for which the
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classifiers could be tested. Moreover, the interpretability of the model’s per-
formance increases this way significantly. It further allows us to compare dif-
ferent classification methods on a high level using ROC curves and detailed
scope using decision boundaries. The detailed scope contributes to a direct
comparison of machine learning behavior under different training data fea-
tures (variance, topology), which ultimately results in a benchmarking tool
for monitoring the general high-level machine learning parameters: input
data (fractions, segmentation), and methodology (e.g., decision tree, neural
net).

Impact Maps - Incorporating the Domain Space in the Visual Analytics
Pipeline To reduce the number of trainable parameters, we strove for an
excellent and explainable segmentation of our domain. The goal is to find a
minimal number of segments such that our regression model’s performance
is still as high as for the more elaborate setting. With the use of a user-
and task-guided sensitivity and topological analysis, we were finally able
to evaluate different segmentation results. Further, we enabled the incor-
poration of parameter cross-correlations in the segmentation step. The sen-
sitivity analysis concept showed excellent results for evaluating the input
data’s parameter distribution in domain space. Combining this concept with
an interactive query and post-processing (e.g., variation, topology, or fea-
ture computation) contributes to the high interpretability of the input data
without the sufferings resulting from summarizing values or determining
good representatives. We achieved a smooth link for visual correlation anal-
ysis tasks throughout different scopes by introducing a matrix layout with
queries based on the SPLOM concept for 1-dimensional values. Further, we
enabled the incorporation of post hoc analysis steps into the correlation anal-
ysis pipeline. The screen size is mainly limiting the number of parameters
examined at once. When using a set of representative or summarizing sin-
gle values, the application of dimension reduction steps such as the Principal
Component Analysis showed excellent results while retaining the essential
interpretability using bi-plots. Transferring these to the domain space re-
mains an ongoing challenge.

Applying Video Compression for Reducing File Sizes in Large Ensembles
The post-processing and recombination concept of the Cinema approach ex-
tends the initial focus of mainly storing images in the database by storing
arbitrary visualization or data products. This allows for continually growing
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collections of data with multiple types.
Using video compression to reduce the data size of image-like series fur-
ther showed promising results. The video compressors’ loss-less setting is
of vital interest for many applications and already resulted in three times
smaller data sizes than the commonly used ZLIB compression in the highest
setting. The impact on the series’s ordering is smaller than expected and de-
creases with input’s complexity (e.g., the ordering’s impact nearly vanishes
for streamline-visualizations, while for the relatively smooth geometry in the
assembly use-case, the view-port is the best choice as dominating ordering
axis). Nonetheless, the native video compressors suffer from the exact frame
retrieval bottleneck. For a direct replacement of the raw data with the com-
pressed one, the retrieval and reconstruction time overhead has to be mini-
mal. The native application for the video compressors, retrieving an image
series above a set frame rate, is:

1. maximum demanding for roughly 100-120 frames per second

2. Accepting a delay when jumping to a timestamp

3. Not demanding for an exact timestamp to initial frame position map-
ping (only surjective, but no bijective)

As a consequence, the retrieval rates are too slow for most applications. For
general applicability, the compressed data structure requires adaption for
post hoc processing and visualization demands.

In summary, we could state that our model’s transparency is increased
with our visual analytics guided model deduction approach. We provide a
set of tools to cover the challenges of causality and bias in our models while
retaining fairness and safety in our predictions. This way, we achieve an
explainable and reliable predictive model with consequent visual analytics
application throughout all stages. In future research, we will focus on the
relationship between topology and learned features and their impact on ex-
plainable machine learning models in engineering applications.
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Application Scenarios

A.1 Assembly Simulation for metal sheet parts

A.1.1 Generic Metal Sheet Deformation

We present an example based on the deformation of a simple sheet metal car
body part to show the performance of the proposed method. The chosen sim-
ulation model shows a similar deformation per length ratio like real exterior
car components during assembly. Thus, this example is representative for
real-world use cases. Figure A.1 shows the geometry and used boundaries.
The shown part has dimensions of 50 mm by 30 mm and has a thickness of
0.5mm. The material model is a linear-elastic model with the properties of
steel (E-Modulus of 210GPa and Poisson ratio of 0.3). The boundaries are
shown in the picture as well, two boundaries located opposite each other on
the edges in X-direction, four boundaries in Z-direction on the part surface,
and two boundaries in Y-direction on the same edge. The Y-boundaries are
set to zero to hold the part in place. The other directions are modeled as
displacement load and varied within the tolerance interval of +/- 0.1 mm,
which leads to different shapes the part can take on.

A.1.2 Automotive Engine Hood

For a more application-driven view, a real-world example from the automo-
tive industry was chosen. The geometry is an engine hood. This part has two
hinges, two locks and two buffers as mechanical boundaries attaching the
hood to the chassis, see Figure A.2. A finite element (FE) simulation predicts
deflections during the assembly process of the part. However, the final shape
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FIGURE A.1: Generic sheet metal example. The boundary con-
ditions for the simulations used in this paper are depicted and
labeled. The directions (X, Y and Z) for this part are indicated.

of a material part can vary due to production uncertainties. To deal with un-
certainties and tolerances during the production, the engine hood’s bound-
aries, i.e., hinges, lock and buffers, are adjustable. Adjusting these bound-
aries properly to obtain an acceptable gap and flushness is a challenging task
[133]. A post-assembly measurement induces necessary corrections. The goal
of the proposed method is to find the best set of changes from measured de-
viations, which forms the optimal set of adjustments. The method uses as in-
put an assemble of statistical distributed simulations that cover the solution
space spanned by the available adjustment possibility of each boundary. The
used car hood is an assembly containing seven individual sheet metal parts,
connected by spot welds and different types of adhesives. Based on the CAD
files, a simulation model was created by meshing the geometry with 3D-shell
elements and connecting the assembly considering spot weld, adhesive po-
sitions, and thicknesses of components. The material model is linear-elastic
with an e-modulus of 210Gpa and a Poisson rate of 0.3. Two fixed, external
loads, modeling the gas springs near the hinges with the magnitude of 580N
each, complete the model.
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FIGURE A.2: Sheet metal car body part used in automotive
industry. The used boundaries for the simulation are high-
lighted, with external forces used via gas springs. The coor-

dinate system for this part is shown.
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A.2 Geodynamo - Simulating the emergence of earth’s

magnetic field

This data set is the result from a numerical simulation of the earth’s liquid
outer core based on the effect of the geodynamo. The resulting domain is
covering the whole outer core and is stored in a spherical unstructured grid.
The resulting fields like pressure, temperature, velocity and magnetic field
are characterized by high turbulence and large structures. The main chal-
lenge in this data set is its spherical domain and structures which are mostly
hard to deal with standard approaches for cubic domains. In addition the
time steps are in the order of thousands of years.

A.3 Viscous Fingering

The data set is the result from a simulation of salt dissolving in water. The
domain consists of a cylindrical flow, at the top of the cylinder a solid body
of salt is placed that is dissolved by the water. The resulting fields are the
velocity of the flow and concentration of salt in the water. The data set is
time varying and consists of multiple parameter settings.

A.4 Jet Flow

The jet flow is an artificial unsteady flow simulation resembling the outlet
of a jet engine. It is a well studied example data set for flow visualization
and analysis and has very characteristic features. The resulting fields are the
velocity and the temperature.
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