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Chapter 1

Introduction

An important milestone in the history of semiconductors is the invention of a point-contact
transistor in 1947 by John Bardeen and Walter Brattain of Bell Laboratories. In the following
year, William Shockley invented the junction transistor and marked the arrival of the transistor
era [93]. The semiconductor industry grew rapidly following the invention of transistors and in
1959, the bipolar Integrated Circuit (IC) was invented by Jack Kilby and Robert Noyce of Texas
Instruments [93]. The technologies continued to advance with the advent of large-scale, very
large-scale and ultra large-scale ICs. The capacity of integrated circuits grew rapidly in the last
decades and it became possible to integrate all essential functions of an end-to-end system on
a single chip, commonly referred to as System-on-Chip (SoC). As the semiconductor industry
progressed towards high performance, the application field has expanded vastly, and today, the
electronic components perform billions of highly complex computations with 100% accuracy
requiring only often micro seconds of computation time.

1.1 Growing Complexity of SoCs
Today most electronic components are developed through an SoC design paradigm. That is, a
complete end-to-end system is developed by integrating several individual hardware and soft-
ware blocks. These individual blocks are commonly referred to as design Intellectual Properties
(IPs). The functionalities of an intended system or an IP are designed and validated by highly
skilled engineers with the aid of sophisticated Electronic Design Automation (EDA) tools.

An integral part of the system development flows is design verification [11, 20, 23, 81, 95].
The main objective of verification is to ensure the functional correctness of the design imple-
mentation by detecting all design errors or by proving their absence. Design verification is a
well researched field over the last decades and there are well established verification method-
ologies followed across the industrial design flows [1, 23, 57, 81], which utilize different veri-
fication techniques such as simulation, formal verification or emulation. Design verification is a
resource intense activity and is known to consume more than 50% of the development time [47].

The exponential growth in the complexity of SoCs contributed to an extremely complex
development process. The situation is aggravated by rapidly changing ecosystem as the semi-
conductor industry moves towards Autonomous Vehicles (AV), Internet-of-Things (IoTs) and
smart cities. The design errors that go undetected during verification can have disastrous con-
sequences if they are detected during system operation in the field, especially for safety-critical
domains such as automotive or aerospace. Furthermore, due to the reliance of human lives on

1



1.1. GROWING COMPLEXITY OF SOCS

the electronic devices, the SoCs work with extremely delicate information. As a result, ensuring
the correct functioning and proving the absence of loopholes become the central part of design
validation. Thus, building such SoCs requires sophisticated and proven development processes.
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Figure 1.1: Mean peak number of design and verification engineers in design projects [79]

Despite significant advances made in the field of design verification, there is a notable gap
between the capabilities of the existing verification methods and the verification needs of mod-
ern SoCs. Further, the ecosystem created by the modern SoCs resulted in a demand for develop-
ing large number of complex devices in a short turnaround time, satisfying the decreasing size
of Time-To-Market (TTM) windows. To address short TTM requirements and growing verifi-
cation needs, the number of verification engineers working on a design project has constantly
increased over the last decade as depicted in Fig. 1.1. The chart shows the mean peak number of
design and verification engineers per design project. The mean peak number of engineers doing
verification has increased by 10.6% every year, whereas the mean peak number of engineers
doing design has increased by 2.5%. Additionally, design engineers spend approximately 50%
of their time doing verification. This only shows the rising complexity of designs and the efforts
needed for design verification. However, this trend of increasing the number of resources is not
feasible as the Non-Recurring Engineering (NRE) costs have to be small for the products to be
economically effective.

To cope with the rising complexity of designs, novel verification methods that are highly
effective in detecting design errors are required. In other words, there is a great demand for
effective and productive verification methods to tackle the needs of next generation hardware
designs. This thesis is motivated by the observation that there are opportunities for automating
certain steps of verification such as generating the properties required for formal verification.
Automating property development has the potential to increase the overall verification produc-
tivity. By ensuring the correct-by-construction paradigm, the quality of generated properties can
be improved. Further, code generators are built once and can be reused later for many design
instances. Additionally, the formal verification technique is exhaustive by nature and provides
a high verification quality. However, formal verification is generally seen as a supplementary
technique to simulation. The main reasons are difficulty in developing “good properties” from
design specifications, required expertise to apply formal methods, and the absence of effective
formal verification methodologies. This thesis attempts to propose novel formal verification
strategies for effective verification of hardware designs with generated properties.

2



1.2. FUNCTIONAL VERIFICATION IN INDUSTRIAL PRACTICE

1.2 Functional Verification in Industrial Practice
In today’s development flows, the designs are validated at various development stages [20]. An
IP or an SoC undergoes different types of verification such as functional verification, timing
analysis, performance evaluation, safety verification, etc. In particular, the designs are first ver-
ified with respect to the implemented functions before they are manufactured. This process is
commonly referred to as pre-silicon verification. Pre-silicon verification is the major resource
intense activity that takes place at the Register Transfer Level (RTL). Pre-silicon verification
provides high observability and controllability compared to post-silicon validation, which is
performed after a chip is manufactured. This thesis focuses on pre-silicon verification tech-
niques and methods.

In current industrial settings, IPs are developed individually and are assembled together to
realize the required functionalities of an SoC. The individual IPs are developed such that they
follow a standard communication protocol to interact or communicate with other IPs in the
system. In the context of SoCs, the verification follows two separate flows, one for verifying
the correct functionality of individual IPs (“module verification”) and another for the integrated
system (“integration verification”). In other words, an individual IP is verified separately to
ensure that an IP on its own behaves as expected. Next, the IPs are integrated to an SoC model
and a so-called system-level verification is performed targeting the interaction between inter-
connected IPs. Due to the complexity of today’s IPs, both verification flows are significantly
complex consuming on an average 50% to 70% of the overall development cycle.

Although different verification techniques exist in practice, the industrial verification flows
largely rely on simulation-based methods. Formal verification is often used as a supplementary
technique to simulation, employed for specific use cases such as connectivity verification or
reachability analysis of coverage holes remaining after simulation runs. In some cases, formal
verification is also used as a bug hunting engine to search for corner case bugs that may have
escaped simulation. This thesis proposes novel verification strategies based on formal verifica-
tion. A detailed outline on the state of the art in formal verification is provided in Chapter 2.
An overview on simulation and emulation-based verification is provided in the following.

1.2.1 Simulation-based Methods
In state-of-the-art industrial flows, simulation is the primary choice for SoC verification mainly
because, compared to other techniques, simulation-based methods scale better with the design
size. To address the growing complexity of designs to be verified, the industrial verification
flows have adopted standard verification methodologies [1, 57, 48, 60]. Universal Verification
Methodology (UVM) has become the de-facto standard simulation-based methodology cur-
rently followed in the industry. UVM has been developed by a consortium that includes major
EDA vendors and chip manufacturing companies. UVM succeeds previous methodologies such
as Open Verification Methodology (OVM) and e-Reuse Methodology (eRM).

In general, the application of simulation-based verification can be segregated to three stages:
verification planning, simulation run or execution and coverage or result analysis. The verifica-
tion progress and the verification sign-off1 are analyzed based on the metrics such as functional
or code coverage collected during the simulation runs.

1Verification sign-off is a milestone in the development cycle, which is reached when the expected results are
achieved by the verification and the DUV is qualified for further steps in the system development flow.

3



1.2. FUNCTIONAL VERIFICATION IN INDUSTRIAL PRACTICE

Verification Planning

For a given Design Under Verification (DUV), a verification plan is created that serves as a road
map for all verification activities to be performed. A verification plan defines “what” functions
of the DUV are verified and “which” strategies are used for verifying a specific function. It
is important to note that the verification plan itself does not include the tests (or test cases),
instead it only specifies the approach that is followed. For a set of functions to be verified, the
verification plan specifies a list of tests that are created. The completion of this list defines the
completion of the verification.

Although a verification plan may exist in different forms such as spreadsheet or a series of
text documents, commercially available simulators provide special support for creating, refining
and maintaining verification plans. The verification plan is also used to measure the verification
progress. The results of simulations runs, i.e., coverage data are collected and mapped back to
the verification plan to visualize the progress of the verification.

Execution

Verification execution forms the substantial part of the manual effort required during the ver-
ification step. It includes test generation, monitoring, checking and coverage collection. The
execution step involves creating a testbench, which instantiates the DUV and provides input
stimuli. The input stimuli are either manually developed or generated by a test generator. The
stimuli are applied to the simulation environment and the behavior of the DUV is monitored
and checked against the expected values. Here, the DUV is treated as a black box, i.e., the ver-
ification is performed by analyzing the response pattern of the DUV for a given input stimuli
pattern without insight into the internals of the design implementation. Further, a testbench may
describe its own behavior model of the function to be verified and compare the response pattern
of the behavior model against the response pattern of DUV during simulation. This behavior
model is often called scoreboard.

Test generation is the most important aspect of simulation-based verification methodologies.
Generation of high quality tests is the pre-requisite for effective verification, i.e., to expose de-
sign errors. Directed and constrained random stimuli are the two types of tests that are typically
employed. In IP verification, constrained random test generation has been widely adopted.
Here, a verification engineer implements test templates that are used in the test generators to
produce tests. The test generation infrastructure is typically reused from one version of an IP
to its next version. In SoC verification, the test generation again uses the constrained random
stimuli approach. However, since the test generation is bound to the use-cases (targeted ap-
plication) of an SoC, the stimuli generation may not be reusable when the use-cases change
between different SoC versions. As a result, the degree of reuse is smaller. The quality of tests
generated is measured by the coverage results collected during the simulation run. As a rule of
thumb, a high quality test generates a scenario that reveals a design error or excites difficult to
hit coverage events. It is often necessary to provide constraints for the random stimuli generator
to guide the test generation, which requires manual intervention and good understanding of the
design implementation as well as potential consequences of constraints.

Also, simulators play an important role in the simulation-based verification environments.
Many commercial simulators exist from different EDA vendors [19, 78, 108]. The simula-
tors are made up of complex software algorithms, which are executed on a workstation. After
reading a testbench that instantiates a DUV, a simulator compiles the source description into

4



1.2. FUNCTIONAL VERIFICATION IN INDUSTRIAL PRACTICE

a simulation model that is then evaluated to produce responses to given input stimuli. The
simulator technologies have constantly improved over the last decades and are driving the per-
formance in simulation-based verification methods. In recent years, more advances are seen in
the capabilities of simulators to handle extremely complex designs and additional feature needs
such as mixed-signal verification, power-aware verification and safety verification.

Coverage Analysis

The verification of a DUV by simulation is complete when all the inputs are exhaustively cov-
ered by the stimuli. However, exhaustive simulation even for designs of moderate size is not
realistic as it requires significant manual efforts, huge computation resources and weeks of sim-
ulation runs. To work around this shortcoming, different metrics are defined which guide the
verification engineer in deciding whether the DUV is analyzed for a reasonable combination
of input stimuli that are expected to exercise all design functionalities at least once. That is, to
measure the progress of verification with simulation, coverage metrics are collected during sim-
ulation runs. Metrics such as functional coverage and structural/code coverage are collected
for quantifying the design functionalities that have been exercised during simulation runs.

Functional coverage metric shows which functions of the design are exercised by the input
stimuli. As a result, measuring the functional coverage is specific to the functions implemented
by the design. During simulation runs, when the test case that was written to verify a certain
design function is triggered by the stimuli, the functional coverage point — that is created
during the verification planning stage — is marked as covered. When a simulation regression
run is complete, the reached functional coverage is analyzed and the regression runs are repeated
until the expected coverage numbers are met.

Structural or code coverage metric is a quantitative measure of the RTL code that has been
exercised during simulation. Code coverage in turn is measured as the sum of line coverage,
FSM coverage, expression coverage, block coverage, toggle coverage and branch coverage.
Each of these code coverage metrics considers a specific aspect of the RTL code written to
realize the required functionalities. Code coverage provides a useful feedback on the exercised
RTL code during simulation runs and requires no manual efforts. However, 100% code cov-
erage does not imply a complete verification. Instead it only suggests that 100% of the RTL
statements have been executed at least once during simulation.

Both functional and code coverage metrics are analyzed after the completion of simulation
regression runs. When the expected coverage numbers are not met, the simulation regression is
re-run with different seeds set for the random stimuli generator. It is also practiced that directed
stimuli are enforced on the DUV to cover specific parts of RTL code or functionality during
simulation. This step requires additional manual efforts and is typically used only as a last
resort to meet the expected coverage numbers. It is important to note that coverage metrics
followed in simulation-based verification are quantitative in nature and do not guarantee a high
quality verification. As a consequence, the quality of verified designs depends on the type of
test cases implemented to verify the design functionalities.

1.2.2 Emulation

Verification using emulation or FPGA prototyping is seen as the bridge between pre-silicon
verification and post-silicon validation. In emulation, the RTL model of the DUV is mapped
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1.3. MOTIVATION AND ENVISIONED APPROACH

to a programmable architecture such as FPGA or specialized emulators and accelerators [3,
44, 121]. The emulation platform is much faster compared to RTL simulators. However, the
observability and controllability are limited during emulation. That is, only a select set of pre-
defined RTL signals can be traced during emulation. This prevents from sufficient coverage
analysis. Further, it is necessary to regenerate the FPGA bit-streams when there is a require-
ment for tracing different set of RTL signals. Although recent advancements within FPGA
technology address some of the shortcomings of the technique, the observability remains an
issue in emulation platforms [20].

1.2.3 Formal Verification

Formal verification is another pre-silicon verification technique that is gaining industry accep-
tance in the last decade. Formal verification has traditionally suffered from tool scalability and
user friendliness, and was limited to a small range of applications. In recent years, significant
advances are seen both in terms of scalability to much larger designs and usability of formal ver-
ification solutions [19, 54, 78, 81, 85, 119]. Advances in Satisfiability (SAT) solvers and SAT
Modulo Theories (SMT) are driving this paradigm shift [13, 75, 41, 118]. Further, commer-
cial formal tools have improved debugging features and offer predefined verification solutions
such as connectivity verification, control and status register verification or security path verifi-
cation [85, 19, 108, 78]. For these type of use cases, explicit development of properties is not
needed as the tools automate the verification tasks from metadata description provided to the
tool.

1.3 Motivation and Envisioned Approach
Regardless of the advancements made in the domain of formal verification, the industrial veri-
fication flows still largely rely on simulation-based methods [20, 47, 52]. A major hurdle to the
widespread adoption of formal verification has been the required expertise to apply the tech-
nique effectively on real life designs. First, a set of properties that capture the intent of the
design is required to verify the DUV. These properties are mostly developed manually from
specifications of the DUV. Developing a set of properties from design specifications that com-
pletely verify the DUV is a known complex problem. Next, the set of properties are evaluated
in a formal verification tool to determine the correctness of the DUV with respect to its design
specifications. During this step, it is important to ensure that the properties converge with an
outcome i.e., pass or fail and do not result in false positives. Obtaining a convergence of all
the properties is not straightforward and may require state space reduction techniques depend-
ing on the specifics of the DUV. Furthermore, ensuring the absence of false positives requires
high formal verification expertise. Therefore, in addition to a set of properties, a suitable and
effective formal verification strategy is needed to completely analyze the DUV.

A series of functional verification surveys conducted in [47, 79] reveal that at least 50%
of the design projects require 2 spins before production. The study also shows that the major
cause of respins is the functional flaws in the RTL design. Respins are highly expensive both
in terms of time and resources, and may have huge economic impact on the product. A chart
is shown in Fig. 1.2 that depicts the root causes of functional flaws in design projects. The
x-axis shows different root causes, while the y-axis shows the percentage of design projects
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Figure 1.2: Root cause of functional flaws [79]

that are affected by the specific type of functional flaw. In 70% of the design projects, the
functional flaws originated from design errors. These type of design errors can be attributed
to the incorrect specification interpretation by the design engineers. The chart also shows that,
50% of the projects are affected by flaws due to changing specifications and 50% of the projects
are affected by incomplete or incorrect specifications.

The numbers shown in Fig. 1.2 point to a very important drawback of the design flows,
which is the usage of informal specifications to describe the functionalities of a design. Infor-
mal specifications are ambiguous and incomplete, and are the main source of functional flaws.
Developing properties from informal specifications can lead to a set of incomplete or incorrect
properties and eventually leads to low verification quality. Further, manual coding of proper-
ties requires substantial rework when the specifications of the DUV change constantly causing
difficulties in maintaining the workflow.

1.3.1 Requirements for a “Good Property Set”

The manual coding of properties shall be replaced with an automated flow for developing prop-
erties. The property generation helps to improve the verification productivity, enables reuse
and, more importantly, addresses constant changes in specifications. Since a set of properties
are crucial for the application of formal verification methods, a set of requirements for a “good”
property set is outlined in the following.

R1: A property shall be generated from formal specifications

• The specifications of a design shall be translated to formal specification models. Further,
the formal specification models shall be complete w.r.t. the informal specifications. Fi-
nally, the properties shall be generated from formal specification models. This increases
specification–property consistency and reduces the effort for rewriting properties in case
of specification changes.
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R2: A generated property shall be precise and complete w.r.t. each specification item

• For each specification item in the formal specification model, a property shall be gen-
erated. The generated property shall be precise and capture a specific behavior of the
design. In other words, the generated property shall not cover more than one behavior of
the design. This enables backtracing from properties to formal specifications and reduces,
in most cases, proof complexity for the formal proof engines.

R3: A set of properties shall capture all specification items

• A set of properties shall be generated from the formal specification models such that they
capture the complete behavior of a design. In other words, a set of generated properties
shall be complete w.r.t. the design specifications. This guarantees the complete verifica-
tion of the design.

R4: A set of properties shall be traceable from the specification items

• In Requirement-Driven Development Flows (RDDF), every feature of the design and its
corresponding property developed to verify the feature shall be traceable from design
specifications or requirements. Therefore, a set of properties generated from formal spec-
ification models shall carry a specification tag such that they can be tracked back to their
specification items. This fulfills the quality requirement for example, for safety-critical
designs.

R5: The property generation flow shall obey the 4-Eyes Principle

• A fundamental requirement of hardware design flows is to separate the design develop-
ment from design verification tasks. This rule is commonly referred to as 4-Eyes Principle
(4EP). According to this rule the design and verification tasks shall be carried out by two
different engineers (4 eyes). 4EP is necessary to avoid design errors resulting from similar
mistakes in both design and verification code.

• In frameworks that automate the generation of both RTL and verification code (properties,
testcases, etc.), the generation flows must take separate paths to the target code from the
specifications. Ensuring 4EP reduces the probability of masking of design bugs.

R6: The property generation shall support multiple property languages

• Commercial formal verification tools support different property description languages
such as SystemVerilog Assertions (SVA), Property Specification Language (PSL) and In-
Terval Language (ITL). To support various needs such as legacy code and special feature
support by different formal tools, the properties generation shall be supported for multi-
ple property languages. This allows to use the formal verification tool and methodology
best suited for a specific problem.

R7: A generated set of properties must support different verification techniques

• The properties can be employed in different verification techniques such as simulation,
formal verification and emulation. However, the properties for different techniques may
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slightly vary. For example, in formal verification, due to its exhaustive nature additional
constraints are needed to enforce legal signal behavior. Such explicit constraints are not
necessary in simulation-based verification as the properties are evaluated only for certain
input stimuli that are triggered in the testbench. Therefore, to enable high reusability
the properties shall be generated such that they are applicable in different verification
techniques. An example use-case is to use the properties in a simulation environment if
the formal tool does not converge.

R8: A set of properties shall be human-readable

• The properties capture a certain design intent and are evaluated against the design imple-
mentation with a chosen verification technique in a chosen EDA tool. An important as-
pect of design verification is debugging the property failures. For facilitating easy debug,
the generated properties shall be human-readable. Further, the readability of properties
ensures reuse of properties for different design instances and eases property debug when
needed.

1.3.2 Envisioned Approach
As illustrated in Fig. 1.2, the informal specifications and manual coding are the major source
of functional flaws. They are also the main drawbacks to the effective application of formal
verification on real-life designs. Several requirements for a “good” property set are outlined
in the previous section. Considering these requirements for a property set and the need for a
formal verification strategy suitable for the DUV, an approach is envisioned in Fig. 1.3 that is
addressed in this thesis.

Informal 
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of Generated 
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Tool
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Generator

Formal 

Verification 
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Figure 1.3: Envisioned approach
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In the envisioned approach shown in Fig. 1.3, the first step is to capture the informal specifi-
cations in formal models. Formal specifications avoid ambiguity and define the intended func-
tions of a design with clear semantics. These formal specification models are used as the single
source for developing properties. Due to the diverse nature of designs, different specification
modeling methods are supported.

Manual coding of properties is replaced with an automatic property generator such that the
changes in the specification are automatically incorporated in the generated properties. Addi-
tionally, the generation framework improves the overall verification productivity, ensures the
specification to property consistency and enables high degree of reusability. The specification
modeling facilitates simpler definition of code generators such that only a small effort is re-
quired to define the properties for a given DUV. For this purpose, the specification modeling
supports different types of design implementation and offers a suitable specification modeling
technique (for example, structural or state transition notations).

Finally, the generated set of properties is complete with respect to the formal specifications
and is used in a formal verification tool to exhaustively verify the DUV.

1.3.3 Thesis Overview
The remainder of this thesis comprises seven chapters which are organized as follows. In Chap-
ter 2, an overview on the state-of-the-art in formal verification is provided. Relevant formalisms
for bounded and unbounded model checking are also introduced. As this thesis proposes a prop-
erty generation flow, relevant background details on a metamodel-based automation framework
is outlined in Chapter 3. The contributions of this thesis are presented from Chapter 4 and
onwards.

The property generation framework adopts the Model-Driven Architecture (MDA) princi-
ples for developing code generators and considers all requirements of a “good” property set.
These aspects of the property generation are elaborated in Chapter 4.

A suitable formal verification strategy or methodology is required to effectively apply for-
mal verification on various designs. In Chapter 5, formal verification of pipelined processors
is considered. A formal verification method called C-S2QED for complete verification of pro-
cessor cores is proposed. A completeness proof for the proposed approach based on Complete
Interval Property Checking (C-IPC) is discussed in detail.

In Chapter 6, the applicability and effectiveness of the property generation is demonstrated
by generating a compete set of properties for various industry-strength designs. We describe
how the generation flow has been applied to verify RISC-V ( [117]) processor core variants
with the proposed processor verification method C-S2QED. Further, different aspects of ap-
plying the property generation to other industry-strength designs such as AHB-to-APB bridge,
programmable interrupt controller and bus matrices are elaborated. The results are tabulated
and observations from the experimental results are discussed.

A summary of the work concludes the main contributions of the thesis in Chapter 7. During
the course of this work, a novel approach for formally verifying error detection and correction
codes has been proposed. Further, an approach to extract the control signals of a processor
decoder using formal verification tools has been proposed. For both approaches, the property
generation flow developed during this doctoral work is applied to improve the overall produc-
tivity and quality. These approaches describe other applications of property generation beyond
C-S2QED. The published papers are listed in Appendix E.
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Chapter 2

Formal Verification Techniques

A brief outline to the formal verification in industrial practice is provided in Section 1.2.3.
This thesis shows how the model-driven software development can be leveraged for automatic
generation of properties for effective application of formal methods. In addition, this thesis
shows how the principles of S2QED together with the property generation can be used to reduce
the manual efforts required to “completely” verify a processor core. A detailed overview of the
formal verification techniques is outlined in the following sections.

2.1 Introduction
Formal verification can be defined as a process of checking the correctness of a design imple-
mentation against the design specification using mathematical theories. A specific behavior of
the design is captured in a temporal formula and the temporal formula is checked exhaustively
on the mathematical model of the design for all legal input values. In industrial practice, com-
mercial formal verification tools support languages which have an extended syntax to simplify
the definition of temporal formulas. The temporal formulas are manually derived from speci-
fications and are commonly referred to as properties. When the mathematical model does not
hold for the temporal formula, an appropriate error trace (also called a counterexample) is pro-
vided. When the model holds for the formula, it proves that the design behaves as described by
the specifications. Formal verification techniques can be broadly classified into Theorem Prov-
ing, Equivalence Checking and Model Checking. Fig. 2.1 shows the categorization of formal
techniques.

2.2 Theorem Proving
Theorem Proving is a sub-field of formal verification that deals with the mechanization of for-
mal reasoning following the laws of logic. In theorem proving, the system is represented as
a set of mathematical definitions using the laws of mathematical logic. The desired or ex-
pected properties of the system are derived as theorems that conform to the mathematical def-
initions. Theorem provers use first-order and higher-order logic provers to validate the system
behavior [114]. Some of the well known theorem provers based on higher-order logic are
HOL− 4 [80], PV S [86] and ISABELLE/HOL [88]. Examples for theorem provers based on
first-order logic are ACL2 [62] and ISABELLE/FOL [88]. First-order logic is considered as the
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most expressible logic which is semi-decidable. Any logic that is more expressive than first-
order logic is not decidable. For practical usage of first-order logic for hardware verification, it
is necessary to model the time (for sequential circuits) using natural numbers. However, first-
order logic lacks mechanisms to provide complete formalisms for natural numbers [65]. Higher-
order logics have been demonstrated for their applicability for hardware verification [63, 89].
Since the validity of higher-order logics is undecidable, the proof systems are interactive in na-
ture and are typically employed as proof assistants. As a result, although theorem provers can
be used for verifying reactive digital systems, due to their lack of complete automated methods,
they are used in combination with other formal techniques.

2.3 Equivalence Checking

Equivalence Checking or Formal Equivalence Checking (FEC) can be defined as determining
the equivalence of two model representations using mathematical reasoning. The model rep-
resentations can be derived from the same design with two different platforms (e.g., VHDL
or Verilog), at different abstraction levels (e.g., RTL or gate level) or from two different de-
signs expected to produce the same set of outputs at all time points. Combinatorial equivalence
checking and sequential equivalence checking are two FEC types that are commonly used in
the industry [99].

The combinatorial equivalence checking is used to compare two versions of the same design
(or circuit) at different abstraction levels, for example, to determine whether the synthesized
net-list is equivalent to its RTL description [67, 17, 85, 19, 78]. In Combinational equiva-
lence checking, the equivalent state variables of the two different circuits are identified by state
matching1 and checked for equivalence. The state matching procedure involves collecting all
state variables into one equivalence class, proving non-equivalence of some state variables and
splitting equivalence classes accordingly. For proving the non-equivalence of state variables,
different approaches based on satisfiability (SAT), automatic test pattern generation (ATPG),
binary decision diagram (BDD) and structural and logic simulation are used. The BDD-based

1State matching is a process of identifying equivalent state variables, also known as latch mapping.
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approaches do not scale well for large designs. The SAT-based approaches for equivalence
checking are considered hard due to huge re-convergent fan-out structures [68].

The designs that are expected to be equivalent display structural similarities. This key aspect
of designs is exploited in early approaches that included identifying equivalent points, partition-
ing the circuits and treating these points as primary inputs. However, partitioning the circuits
and treating internal nodes as primary inputs may result in false failures. A new approach to
detect and exploit internal equivalence by using the ATPG methods is proposed without intro-
ducing the cut-points in [67]. This approach, called HANNIBAL, nullified the problem of false
failures and established an effective and efficient approach for formal (combinational) equiv-
alence checking. This work inspired further improvements [69, 107] on the approach and led
to a wide acceptance of combinational equivalence checking on the industrial designs. Today
combinational equivalence checking is widely used in the industrial practice. It is helpful in
finding unexpected behaviors after the synthesis process, for example, deviation due to critical
path optimizations.

The sequential equivalence checking is used to determine if two models generate the same
set of outputs at all time points for an equivalent set of inputs. The sequential equivalence does
not require the internal nodes of the designs to be equivalent. This type of equivalence checks
are explored for determining if a set of properties determine the correct values for the outputs
of a design for all time points [81].

2.4 Model Checking

Model checking, also known as property checking is an algorithmic way of proving that a se-
quential system’s behavior conforms to its specification. Model checking is the primary tech-
nique used by the FV tools to analyze the behavior of a design implementation. A model
checker verifies the validity of a system’s implementation with respect to its specifications by
checking the validity of temporal formulas on the mathematical model of the implementation.

Definition 1 [Model Checking]:
Let us consider a sequential system M with a finite set of states S . Let φ be a temporal formula
capturing an expected behavior of the system M . Model checking is defined as an algorithmic
way of proving or disproving if M models φ, i.e., M |= φ.

For verifying the validity of design implementation against the design specification, a model
checker requires the following ingredients [68, 65]:

1. a mathematical model of the implementation with appropriate expressiveness,
2. a suitable specification language to define an expected design behavior, and
3. an effective proof method (algorithm).
The type of model checking where all reachable states of a design are explicitly repre-

sented is called explicit model checking [65, 55]. Explicit model checking is practically not
feasible for designs of moderate to high complexity due to state space explosion. In symbolic
model checking, reachable states of a system are implicitly represented using Boolean func-
tions [76, 65]. Symbolic model checking applies binary decision diagrams (BDD)-based and
satisfiability (SAT)-based proof methods to determine the validity of a design’s behavior w.r.t.
the specification.
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2.4.1 Modeling Hardware Behavior

Sequential circuits (or designs) are composed of logic gates and storage elements such as flip-
flops, registers or RAMs. The presence of storage elements introduces a temporal relationship
between the input and output signals. That is, at an arbitrary time point t, the values of out-
put signals not only depend on the input signals at t, but also on the previous input signal
values (time points < t). As a result, Boolean functions are insufficient to model the behav-
ior of sequential circuits. For modeling the sequential behavior of hardware designs different
formalisms for automata are used.

Definition 2 [Finite automaton]:
A finite automaton M is a 6-tuple M := (S ,Si,I ,O,δ,λ), where

• S is a finite set of states,
• Si ⊆ S is a set of non-empty initial states,
• I is a finite set of input symbols,
• O is a finite set of output symbols,
• δ is a state transition function with δ : S × I 7→ S ,
• λ is an output function with λ : S × I 7→ O.

A finite automaton is also known as a finite state machine (FSM), a Mealy automaton or a
transductor. Temporal structures are another formalism used to model the behavior of hardware
designs. Temporal structures are also referred to as Kripke structures and are typically used to
describe the temporal logic expressions [64].

Definition 3 [Kripke structure]:
A Kripke structure is a quintuple K := (S ,Si,R ,A ,L), where

• S is a finite set of states.
• Si ⊆ S is a set of non-empty initial states,
• R is a transition relation R ⊆ S ×S such that R is left-total, i.e., ∀s ∈ S ∃ s′ such that
(s,s′) ∈ R .

• A is a set of Boolean atomic formulas that are formulated in terms of the input and output
signals of the design.

• L is a labeling or valuation function L : s 7→ 2A . An atomic formula a ∈ A has value
true in a state s ∈ S if s ∈ L(a).

A Kripke structure can be seen as a state transition graph in which reachable states represent
the nodes and state transitions represent the edges of the graph. A Kripke structure does not
include input and output alphabets of a system, instead it includes a labeling function L , which
defines for each state s ∈ S a set of atomic formulas As ∈ A that are valid in the state s (L : s 7→
As ∈ A , where As = {a | s 7→ a = true}).

2.4.2 Temporal Logics and Proof Methods

To describe the behavior of sequential circuits over a finite time interval, it is essential to model
the “time interval”. In the context of hardware digital designs, discrete time can be modeled in
two different ways: linear time and branching time. In linear time model there exists exactly
one successor time point for each time point. In contrast, branching time model allows more
than one successor time points for an arbitrary time point. Although linear model is well suited
to model physical time, the branching model is appropriate to capture computations in which
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different execution traces are selected at a certain time point. Linear time can be considered as
a special case of branching time [65].

The discrete time model is formalized by temporal structures. Temporal structures can
be based on Kripke structures defined in Section 2.4.1. A temporal structure is a graph with
nodes S (set of states with Si ⊆ S as the set of initial states), where the edges are defined by
R (transition relation). The labeling function L labels the nodes with atomic formulas which
are valid for the corresponding nodes. Beginning from a starting state s0 ∈ Si, a temporal
structure is traversed according to the successor states given by the transition function R . The
outcome of this computation is an infinite branching tree with the starting state s0 as the root,
called computation tree. Computation Tree Logic (CTL) and Linear Time Logic (LTL) are two
commonly used temporal languages for capturing specific behavior of sequential circuits over
a finite time interval.

Computation Tree Logic

The temporal language Computation Tree Logic (CTL) was first proposed with an accompany-
ing proof method in [42]. In computation tree logic, the propositional operators are extended
with modal operators “always" (A) and “exists" (E). These modal operators are used in combi-
nation with the temporal operators: X (next), G (globally), F (finally), U (until) and W (weak
until) to express the behavior of sequential circuits over time.
Definition 4 [CTL Syntax]:
Let us consider a set of atomic formulas A . A CTL formula φ is a state formula, syntactically
defined as follows:

• If φ ∈ A , then φ is a state formula,
• If φ1 and φ2 are state formulas, then ¬φ1, ¬φ2, φ1 ∨ φ2, φ1 ∧ φ2, EXφ1, EXφ2, EGφ1,

EGφ2, EFφ1, EFφ2, AXφ1, AXφ2, AGφ1, AGφ2, AFφ1, AFφ2, E(φ1Uφ2), E(φ1Wφ2),
A(φ1Wφ2) are also state formulas.

Definition 5 [CTL Semantics]:
The semantics of CTL are defined as follows: Let K := (S ,Si,R ,A ,L) be a Kripke structure,
s ∈ S be a state, a ∈ A be an atomic formula, φ1 and φ2 be state formulas over A , then K ,s |= φ

denote that φ holds in state s of structure K .
• s |= φ ⇐⇒ φ ∈ L(s) i f φ ∈ A
• s |= ¬φ ⇐⇒ s 6|= φ

• s |= φ1∨φ2 ⇐⇒(s |= φ1) or (s |= φ2)
• s |= φ1∧φ2 ⇐⇒(s |= φ1) and (s |= φ2)
• s |= EXφ1 ⇐⇒ there exists a state s′ ∈ S such that (s,s′) ∈ R and s′ |= φ1
• s0 |= EGφ1 ⇐⇒ there exists an infinite path (s0,s1, . . .) such that ∀ i≥ 0,si |= φ1
• s0 |= E(φ1Uφ2) ⇐⇒ there exists an infinite path (s0,s1, . . .) and i≥ 0 such that
∀ 0≤ j ≤ i, s j |= φ1 and si |= φ2

• EFφ1 ≡ E(true U φ1)
• E(φ1 W φ2) ≡ E(φ1Uφ2)∨EGφ2
• AFφ1 ≡ ¬EG¬φ1
• AXφ1 ≡ ¬EX¬φ1
• AGφ1 ≡ ¬EF¬φ1
• E(φ1 U φ2) ≡ ¬E(¬φ1U¬φ1∧ ¬φ2)∧AFφ2
• E(φ1 U φ2) ≡ A(φ1Uφ2)∨AGφ1
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Linear Temporal Logic

The temporal language linear temporal logic was proposed with an accompanying proof method
[96]. In contrast to CTL (branching time logics), the semantics of LTL is given by considering
non-branching paths [43]. LTL defines a set of temporal operators to express the behavior of
sequential circuits over time : X (next), G (globally), F (finally), U (until), W (weak until) and
R (release).

Definition 6 [LTL Syntax]:
Let us consider a set of atomic formulas A . The syntax of an LTL formula is defined as follows:

• Every atomic formula φ ∈ A is an LTL formula.
• If φ1 and φ2 are LTL formulas, then ¬φ1, ¬φ2, φ1∨φ2, φ1∧φ2, Xφ1, Xφ2, Gφ1, Gφ2, Fφ1,

Fφ2, (φ1Uφ2), (φ1Wφ2) and (φ1Rφ2) are also LTL formulas.

In contrast to CTL, the semantics of LTL is defined with regard to paths, i.e., the underlying
model of time in LTL is linear. An LTL formula φ is valid, if for all linear structures K , it holds
that K ,s |= φ. Similarly, an LTL formula φ is satisfiable, if there exists a structure K such that
K ,s |= φ holds. That is, every structure K with K ,s |= φ is a model of φ.

Definition 7 [LTL Semantics]:
The semantics of LTL are defined as follows: let K be a given Kripke structure, φ1 and φ2 be
LTL formulas, πi := (si,si+1, . . .) be an infinite path, a ∈ A be an atomic formula, and let π |= φ

denote that the LTL formula φ is satisfied by path π.
• πi |= a ⇐⇒ si ∈ L(a)
• πi |= ¬φ1 ⇐⇒ πi 6|= φ1
• πi |= (φ1∨φ2)⇐⇒ (πi |= φ1) or (πi |= φ2)
• πi |= Xφ1 ⇐⇒ πi+1 |= φ1
• πi |= (φ1Uφ2) ⇐⇒ there exists j ≥ i such that πi |= φ2 and ∀i≤ k ≤ j,πk |= φ1
• Fφ1 ≡ trueUφ1
• Gφ1 ≡ ¬(F¬φ1)
• (φ1Wφ2) ≡ (φ1Uφ2)∨Gφ1
• (φ1Rφ2) ≡ (φ2Wφ2)∧φ1

The standard property specification languages (e.g., PSL, SVA, ITL) supported by commer-
cial FV tools can be mapped to the formal temporal languages like CTL or LTL [85, 78, 19].
The languages supported for industrial applications have extended syntax to simplify the defi-
nition of design specifications.

Proof Methods

Different proof methods have been proposed to exhaustively verify whether the temporal formu-
las are satisfiable on the sequential design’s model. CTL model checking, LTL model checking,
symbolic model checking, bounded model checking and interval property checking are some of
the well established proof methods [43, 42, 96, 81]. As the number of state bits in the design’s
model grow, the proof complexity grows exponentially. As a result LTL- and CTL-based proof
methods suffer from the state space explosion problem [65]. However, bounded model checking
and interval property checking methods have shown their feasibility even for very large designs.
Although both methods extensively apply SAT-based techniques, binary decision diagrams still
find their usage in reachability analysis. To facilitate better understanding, we first provide a
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basic outline on the working principles of binary decision diagrams and satisfiability theories.
Afterwards, bounded model checking and interval property checking methods are described.

2.4.3 Binary Decision Diagrams
Binary Decision Diagrams (BDDs) are directed, cyclic graphs with one root node and one or
two terminal nodes. A BDD is an ordered BDD (OBDD) if variables respect the given linear
ordering on all paths (x1 < x2 < x3, where x1,x2,x3 are variables of a design) as shown in
Fig. 2.2a. An ordered BDD may contain isomorphic graphs (Fig. 2.2a) and/or redundant nodes
(Fig. 2.2b). A reduced OBDD is obtained by removing isomorphic sub-graphs and redundant
nodes as shown in Fig. 2.2c. ROBDDs are canonical (unique), compact and easy to manipulate.

x1

x3x3 x3 x3

0 0 0 11010

x2 x2 isomorphic 
graphs 

(a) Isomorphic sub-graphs

x3 x3

0 1

x1

x2 x2

Redundant 
nodes  

(b) Redundant nodes

x1

x2

x3

0 1

(c) Reduced - OBDD

Figure 2.2: Reduction of a decision tree to ROBDD

A model checker begins the search by creating a state space BDD for the initial state such
that all variables can attain symbolic values unless restricted by the constraints. All reachable
states from the initial state are computed using system transitions. The process of finding the
next reachable state continues until a fixed point is reached where no additional states are added
to the state BDD. At this stage, a specific behavior of the system captured in a temporal formula
is checked. When a violation is found, the model checker works backwards from the violating
point to the initial state and creates a counterexample. A model checker may also run into a
scenario where it cannot produce any concrete result due to computational explosion. Such
results occur when the BDDs generated occupy all available memory.

Although the BDDs provide a means for fully checking whether the system’s implementa-
tion conforms to the specified behavior, there are limitations associated with large designs. As
the number of variables increase in a Boolean function, their OBDD representation grows poly-
nomially which results in requiring more memory to store the BDDs. A better variable ordering
can reduce the required memory to store BDDs. However, for larger designs the reduction due
to better variable ordering is insignificant and still requires more computation resources.

2.4.4 Boolean Satisfiability
An alternative approach to BDDs are Satisfiability (SAT)-based approaches. The SAT problem
is to find a set of values for a given set of variables in a Boolean function such that the Boolean
function evaluates to ‘true’.
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Let us consider an example to understand how a SAT solver works. Consider a premise
description where a, b and c are variables of a digital circuit:

implementation = ¬((¬a∧ c)∨ (a∧¬b)) (2.1)

requirement = ((¬a∧¬c)∨ (b∧ c)) (2.2)

The objective of the implementation is to meet the requirement as specified by the clause.
The implication operator ( =⇒ ) is used to express the required behavior as follows:

¬((¬a∧ c)∨ (a∧¬b)) =⇒ ((¬a∧¬c)∨ (b∧ c)) (2.3)

The implication definition p =⇒ q can be written in a disjunctive normal form (DNF) as
¬p

∨
q. Hence, the implication expression in Eqn. 2.3 can be re-written as follows:

((¬a∧ c)∨ (a∧¬b))∨ ((¬a∧¬c)∨ (b∧ c)) (2.4)

In order to prove that the implementation meets the requirement, it is sufficient to prove
that the negation of the expression in Eqn. 2.4 does not evaluate to ‘true’ for any assignment
of values to the variables. The DNF expression (¬p∨ q) can be reformulated in a conjunctive
normal form (CNF) (¬(¬p∨q)→ p∧¬q). The Eqn. 2.4 is re-written in CNF as follows:

(a∨¬c)∧ (¬a∨b)∧ (a∨ c)∧ (¬b∨¬c) (2.5)

The SAT problem is to find a set of assignments for the variables a, b and c, such that the
CNF expression in Eqn. 2.5 evaluates to ‘true’ or to prove that no such assignments exists. If
there is no assignment exists such that the expression in Eqn. 2.5 evaluates to ‘true’, it is proven
that the implementation meets the specified requirement. In general, an arbitrary expression is
satisfiable if there exists an assignment to variables such that the expression evaluates to ‘true’,
otherwise the expression is unsatisfiable. As the number of variables grow, the time required to
solve the problem grows exponentially. However, several efficient SAT solver algorithms and
subsequent improvements have been proposed that are applicable to large real-life designs and
require reasonable computation resources [26, 58, 8, 83].

2.4.5 Bounded Model Checking
As the design size grows in terms of number of state bits, the corresponding design model M
also grows, leading to the “state space explosion” problem in model checking. State space
explosion is a scenario in which the proof complexity becomes high such that a conclusive
outcome cannot be obtained with practical computation resources (memory or CPU time). To
address this problem, Bounded model checking (BMC) leverages the power of model check-
ing with satisfiability solving [23]. BMC explores the state space much faster and for some
particular problems offers large performance improvement over other approaches.

A standard sequential design model is shown in Figure 2.3 with I as a set of input signals
and O as a set of output signals. The transition function δ computes the next state (δ : S × I 7→
S ). The output function λ computes the output signal values as a function of input and current
state (λ : S ×I 7→ O). In other words, the combinational part of the design computes the output
signal values, while the state elements i.e., the registers, store the current state of the design.
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Figure 2.3: Sequential design model
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Figure 2.4: BMC iterative design model for a bound depth of k

In case of BMC, a temporal formula is built to describe an expected behavior over a finite time
interval. The sequential design model is unrolled for the length of the time interval (number
of clock cycles). The temporal formula is constructed as a Boolean expression in terms of
the design variable instances in the different time frames of the unrolling. Figure 2.4 shows a
bounded design model that has been unrolled for a length of k from the starting state s0. The
iterative design model is constructed by concatenating k copies of combinational logic for δ

(transition function) and λ (output function). The next state calculated by the combinational
logic representing one cycle is then connected to the current state of the logic representing the
successor cycle. In this way, the sequential design is represented as a combinational logic in
which the state of the design at a certain time point t is represented as a Boolean vector st .

Properties are written to specify enabling conditions, i.e., an antecedent, and to capture
correspondingly reached states, i.e., a consequent. On this bounded model the property can be
mapped to a Boolean satisfiability problem where the inputs are taken as free variables if they
are not constrained by the antecedent of the property. The proof of the property succeeds if
the negated property cannot be satisfied. When a property does not hold on the design model
M , a trace is created by backtracking and a counterexample is provided. Otherwise, BMC
only proves the property for k clock cycles. A property is proven for all reachable states, if a
value for length k is chosen that is larger than the sequential depth. The sequential depth can
be defined as the minimum number of iterations or clock cycles required to reach all reachable
states. Selecting values for k that are larger than sequential depth is not always practical as it
may lead to a point where the model checker can no longer determine if the requirements are
satisfied for given value of k.

The results obtained from bounded model checking are useful to determine if a certain
behavior of the design is valid for a given depth k. Counterexamples to bounded proofs indicate
bugs. However, to make a clear statement on the absence of unspecified behavior by the designs,
unbounded proofs are required. Unbounded proofs are proofs that are globally valid and are not
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restricted to a bounded time interval.

2.4.6 Interval Property Checking

Interval Property Checking (IPC) is a SAT-based model checking technique that provides un-
bounded proofs for a class of properties called interval properties [81, 112, 111]. In case of
interval properties, the temporal formula or the property is captured in an implication format
such that both assumptions and commitments of a property are described over a finite time
interval. Although IPC is based on a bounded circuit model like BMC, the proof results are
globally valid on the reachable state space because they are based on a symbolic initial state, as
discussed below.
Definition 8 [Interval Property]:
An interval property φ is a LTL formula of the form G(A =⇒ C), where A (assumptions) and C
(commitments) are sequence predicates that describe the behavior of a design over a finite time
interval.
Definition 9 [Sequence Predicate]:
A sequence predicate is a LTL formula in which the only temporal operator that is allowed is
the next operator X.

In practice, interval properties are also referred to as operation properties, since the intention
of an interval property is to capture a specific operation of the design in a finite sequence of
behavior over a finite time interval. A set of interval properties for a design can be built to
capture every operation performed by the design. The complete set of interval properties is
described in more detail in Section 2.5.

The computation model of the interval property checking is similar to the BMC computation
model (cf. Sec. 2.4.5) except that there is no assumption on the starting or initial state. This
allows the SAT solver to consider any state as the starting state during satisfiability solving.
As a result, if the negation of a certain property is unsatisfiable (i.e., the property holds on the
design implementation), the property is valid for any starting state. In other words, the property
holds unbounded on the design and globally valid for all reachable states starting from any state.

Combinational circuit

(δ0, λ0)

It

Combinational circuit

(δ1, λ1)

Combinational circuit

(δk, λk)

It+1Ot

st

It+kOt+1 Ot+k+1

st+1
st+2 st+k+1

Boolean function to represent temporal formula (property, P) P = 1?

...

Figure 2.5: IPC iterative design model for a bound depth of k

Figure 2.5 shows the unrolling of a sequential design for a depth of k in interval property
checking. The starting state in Figure 2.5, st , and the input variables It , It+1 . . . It+k are free
variables unless constrained by the assumption of the property. The SAT solver checks if there
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exists an assignment to variables such that the negation of the property (¬ P) exists. If ¬ P is
unsatisfiable, then the property P holds on the iterated design model, globally.

Although the interval property checking provides globally valid proofs, since the proof starts
from a symbolic initial state, it is necessary to validate the outcome of the proof. This is because,
since the starting or the initial state is not constrained, the initial state could be an unreachable
state. As a result, “false negatives” (or spurious counterexamples) may be encountered in which
the counterexamples show behaviors that are not valid within the scope of a design’s specifica-
tion. Spurious counterexamples resulting from choosing unreachable states as the starting state
can be excluded by manual analysis of the counterexamples. The Verification Engineer can add
the reachability information in the form of assumptions or constraints. However, such an ap-
proach may also lead to valid states being excluded. An induction-based approach is proposed
in [109], which uses automated methods to exclude the “false negatives” resulting from un-
reachable starting states. The proposed method uses mathematical induction, where a bounded
proof for k clock cycles after reset is used as a induction base case to generate invariants. The
induction base case in an induction-based property checking is a proof of A =⇒ C over the
first k periods after reset. The induction step is proven by adding an additional assumption
that A =⇒ C (i.e., induction base) holds on the design. With this approach the manual ef-
forts required to exclude spurious counterexamples is reduced in some cases and in most cases,
completely nullified.

Note that in IPC, “false positives” cannot occur, since the proof results are valid for any
reachable starting state2. Therefore, the proof model of IPC can be termed as “pessimistic” or
“conservative”.

2.5 Complete Property Set
In the existing industrial verification flows, coverage is one of the key metrics used for the
verification sign-off. As outlined in Chapter 1, in simulation-based verification setups, two
types of coverage metrics are collected: functional coverage and structural (or code) coverage.
However, “coverage” in formal verification setups takes a different perspective. This is due to
the fundamental difference in the verification model of the techniques.

In formal verification, every property is evaluated exhaustively against the design imple-
mentation as described in the previous sections. Here, the term “exhaustive” expresses that the
design is analyzed for all possible “input combinations” excluded only by cases specified by
the requirements. For every property, the formal tool computes the “cone of influence” (COI)
in the design implementation. The COI is the result of the dependency analysis of a property,
which includes logic functions, primary inputs, and internal variables of the design [120, 99].
A coarse coverage collection mechanism includes all RTL code lines that are part of the COI
of a property as “covered”. For a given design implementation, a cumulative aggregation of
the RTL code lines covered by a set of properties (that HOLD for the design implementation)
are considered as “covered”. Additionally, the formal tools implement different abstraction and
mutation techniques to determine only the part of the COI of a property that is needed to prove
or disprove the property [85, 19, 78].

Although the coverage collected as described above can give useful feedback on the part of

2False positives are positive (pass/hold) outcomes of the property proof even when the implemented design’s
behavior violates the specification.
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the RTL code that is analyzed by a set of properties, it does not make a clear statement on the
presence or the absence of design bugs. In other words, this type of approach is insufficient to
ensure that there are no gaps in the property set. As a result, the responsibility of ensuring the
“completeness” of a property set relies on the expertise of the Verification Engineer.

A formal approach for developing a complete property set and measuring the completeness
with a set of completeness checks has been proposed [81, 14, 16, 111]. This methodology
termed as Complete Interval Property Checking (C-IPC) provides a formal “completeness cri-
terion” for a set of operation properties. The property generation flow presented in this thesis
adapts the principles of C-IPC for generating a complete set of properties from design specifi-
cations. Further, the processor verification method proposed in this thesis benchmarks C-IPC
to argue the completeness of the presented approach. We provide an overview of C-IPC in the
following.

2.5.1 Complete Interval Property Checking

In Section 2.4.6, we outlined the principles of interval property checking. Interval property
checking uses a specific type of properties called interval or operation properties and estab-
lishes an unbounded proof. A sequential design’s behavior can be captured in terms of oper-
ations. An operation is defined as a set of finite sequences of state transitions between two
“important”states such that only “unimportant”states are visited in between. Each operation
performed by the design fulfills a specific requirement. Therefore, a set of operations in which
each operation spans a finite time interval can be conceptualized to completely capture a de-
sign’s behavior. For each operation, an interval or operation property is developed such that
the collective sum of properties “completely” capture the output behavior of the design as a
function of input signals.

A formal definition of an operation is given as follows [111]:

Definition 10 [Operation]:
Let P be an interval property with P := G(A =⇒ C), where A is the assumption and C is the
commitment of the property P. An operation O is a sequence predicate of finite length l in a
Kripke structure K characterized by the pair (P, l) such that property P holds on the Kripke
Structure K , i.e., P �K .

In the pair (P, l), l represents the time interval between the starting time point (tPstart ) of
assumption A and the ending time point (tPend ) of the commitment C, i.e., l = tPend − tPstart . In
other words, l is the length of the operation in terms of clock cycles.

For a given sequential design, a set of properties P = (P1,P2, . . .) are created such that each
property is mapped to its corresponding operation in a set of operations OP = (OP1,OP2, . . .).
Each operation starts and ends in certain important states in the design. These states are referred
to as conceptual states. An important state corresponds to one or more concrete states and each
concrete state can only belong to one important state. Operational properties are supposed to
be chained in the sense that the end state of one operation is the start state of the succeeding
operation. These operations (transitions between conceptual states) can be viewed to form a
conceptual state machine (CSM). The CSM is a finite automaton describing the sequencing
of operations and is close to the specification. These states may not be concrete states in the
design implementation, instead can be captured as Boolean predicates from the variables (or
signals) of the design. Let t1

Pstart
be the starting time point of the assumption and t1

Pend
be the
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ending time point of the commitment of the property P1. Let t2
Pstart

be the starting time point
of the assumption and t2

Pend
be the ending time point of the commitment of the property P2. At

time point t1
Pstart

, the design is assumed to be in a conceptual state from which the operation
OP1 starts. At time point t1

Pend
, the design is in a conceptual state in which the operation OP1 is

expected to end. The ending state of the operation OP1 and the starting state of the operation
OP2 are the same, i.e., t1

Pend
= t2

Pstart
. Here, P2 is the successor property of P1 as the operation

OP2 succeeds operation OP1. A set of properties are developed as described such that they
collectively capture all the operations performed by the design.

2.5.2 Completeness Criterion

For a property set to be complete, the properties must capture the values of output signals and
other important states of the design at all time points. That is, the output sequences of a design
need to be determined by a set of properties according to the determination requirements. The
determination requirements are specifications of signals that describe which signals must be
determined and at what time points. A signal is determined, if its value is specified by a set of
properties at all time points. These signals should be determined as a function of input signals
and other determined signals (internal and output signals) of the design [81, 22].
Definition 11 [Complete Property Set]:
A property set V = {P1,P2, . . . ,Pn} is complete, if two arbitrary state machines satisfying all
properties in the set are sequentially equivalent with respect to the determination requirements.

The Verification Engineer makes a property set complete by ensuring that every possible
operation is covered by an operational property and that all outputs and other signals referred to
in the determination requirements are uniquely specified at every time point by the operational
properties. Completeness of a set of properties can be checked automatically, and independent
of a design. For a complete set of operational IPC properties, a global sequential equivalence
check as in [22] which may be computationally complex is not needed. Instead, complete-
ness can be established inductively by considering all pairs (Pi,Pj) of properties describing
an operation OPi and a direct successor operation OPj and performing a set of completeness
checks [14, 81].

2.5.3 Completeness Checks

The proof of completeness for a set of properties is obtained by conducting four checks that are
each performed on the property set: a case split test, a successor test, a determination test and a
reset test, which are described below.

A) Case Split Test: The case split test checks that all paths between the important states are
covered by at least one property. In other words, it checks that at the ending important
state of each operation, for every possible input combination, there exists at least one
operational property which determines the next important state. This ensures that there is
no input scenario missed in the property set.

B) Successor Test: The successor test checks for every operation, whether the successor
operation is uniquely determined. For every pair of predecessor/successor operations in
the property graph, the execution of successor operation must be uniquely determined by
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the predecessor. Passing successor and case split tests ensures that there exists a unique
chain of operations for every input trace.

C) Determination Test: The determination test checks whether a set of operation properties
uniquely determine the outputs of a circuit (or other signals in determination require-
ments, e.g., general purpose registers in processors) at all time points.

D) Reset Test: The above three tests form an inductive proof that if an operation deter-
mines its ending important state and outputs, then there exists a successor operation that
will uniquely determine the next important state and outputs. The validity of this induc-
tive reasoning depends on the reset state (i.e., the induction base). The reset test checks
whether the reset traverses the system deterministically to a unique important state and it
fulfills its determination requirements.
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Chapter 3

Automated Code Generation Techniques

One of the major productivity improvement methods widely applied in industrial practice is
automatic code generation. Code generation bridges the semantic gap between an abstract
description and target code, and helps to streamline the development flows. When the abstract
description is a formalized specification, code generation also provides a means of traceability
from the specification items to the implemented code. The automated property generation flow
developed as part of this thesis adapts a software development methodology for code generation
called Model Driven Architecture (MDA) [110, 102, 84]. The adaption of MDA for property
generation is implemented within an existing metamodel-based automation framework [39].
To facilitate the understanding of the property generation flow in Chapter 4, an overview on
fundamental concepts of the metamodel-based automation and MDA principles are outlined in
the subsequent sections.

3.1 Metamodeling
The term “meta” is derived from the Greek language, which means “after” or “beyond“. A
model is used to represent a system at a certain abstraction level. Similarly, a metamodel is
used to define the structure of a model and the relation between the constituents of a model.
Metamodels go beyond models and represent models of models.
Definition 12 [Model]:
A model is a mathematical or logical representation of a circuit, a system or an entity, according
to the rules of a specific modeling language. A model m ∈M is a tuple,

m = (n,O,MM) (3.1)

where, M is a set of all models, n is the name of the model m and belongs to a set of all names
N, O is the set of objects in the model m, and MM is the definition of the model m. That is, MM
is the metamodel which defines the structure, rules and constituents of the model m.

The term meta also emphasizes a hierarchy between models and metamodels. That is,
models are instances of metamodels as the circuit (or entity/system) are instances of models.
Fig. 3.1 graphically depicts the hierarchical relation between a circuit, a model and a meta-
model. In otherwords, metamodels define the set of rules model artifacts adhere to and allow to
group and classify them with similar characteristics. Metamodeling is a term used to describe
a methodology where abstract models and model instances are used to achieve a specific goal,
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Metamodel

Model

Circuit

conforms to

characterized by

Figure 3.1: Hierarchy between a metamodel, a model and a circuit

for example, code automation. Metamodeling assists the automation as it provides a formal-
ization of the models and a structure for code generation. A high degree of productivity can
be achieved through automated transformations of a model into a target view such as code or
documentation.
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Figure 3.2: UML class diagram showing an example of metamodel and a model instance

In Figure 3.2, a metamodel definition (left) and a model instance (right) are shown. The
metamodel definition is created to model a simple instruction set architecture (ISA) and is
shown as a Unified Markup Language (UML) class diagram, created with a graphical software
tool. The root node of the metamodel is called MetaISA and has 4 attributes. These attributes
are Name, InstrWidth, Op1_bit_pos and Op2_bit_pos. InstrWidth denotes the width of the in-
struction word, whereas Op1_bit_pos and Op2_bit_pos denote the bit positions of the operands
1 and 2, respectively. Each attribute has a pre-defined type (e.g., string or int) and an associated
multiplicity value, which determines the acceptable number of attribute instances. The class
MetaISA has a composition relation to the class Instruction with a multiplicity of 1..? (one to
many).

The Instruction class has its own set of attributes, which define the high level properties
of an instruction. From the metamodel definition one or more model instances can be created
that adhere to the rules and relations set by the metamodel. An example of a model instance is
shown which includes specific values to the attributes of the respective class definitions. The
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example instance shown models a simple_risc ISA and has an instruction width of 8 bits. Bit
positions 7-to-5 and 4-to-3 carry the operand values, and bit positions 1-to-0 denote the opcode.
The corresponding attribute values for the individual Instruction classes are as shown.

The metamodel describes in general how to model an ISA, a model instance describes one
instance of such an ISA. This instance meets the constraints imposed by the metamodel: It has
exactly one root node and several instructions. Furthermore, the individual artifacts have valid
values assigned to their attributes, which is also a requirement imposed by the metamodel.

3.2 Metamodel-based Code Automation

The metamodel-based methodology offers a huge potential for high productivity automation.
The definition of a metamodel precisely describes how the model looks and determines how it
can be accessed and processed with a metamodeling framework. The metamodeling framework
can provide the ability to read and write models based on their metamodel definition. More
importantly, the frameworks can be used to provide an interface between the data and models
based on the metamodel definition.

Glue 

Logic

Python-based Mako 

template engine

Model

View

(Target code)

Templates

Requirements &

Specification

Generated framework based on metamodel definition

Reader

APIs

Input spec

Manually written

Writer

Metamodel 

definition

instance of

Flow of data within 

the framework

Figure 3.3: Metamodel-based automation framework

At Infineon, a metamodel-based code generation framework is heavily used to reduce the
Non-Recurring Engineering (NRE) costs [38, 40, 39]. Figure 3.3 illustrates the typical gener-
ation flow within the framework and describes the role of metamodel in the flow. To utilize
metamodeling for a certain task, a metamodel (shown as Metamodel definition in Figure 3.3)
needs to be defined from a given set of requirements and specification. This is done with a
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UML modeling tool, the output of which is the metamodel description. The metamodel defini-
tion plays a central role in the flow as a Python-based infrastructure is generated targeting the
objects, their attributes and relations between the objects set by the metamodel definition. The
infrastructure provides a graphical user interface (GUI) to allow the User to create model in-
stances by filling in with the data. Further, input/output plugins and input/output extensions are
generated to allow reading-in and writing-out the default and modified metamodel instances.

At run-time, the models are read into the metamodeling framework with a Reader. The
reader is auto-generated for certain input formats such as SQL databases, XML or other struc-
tured markups. Once the models are read into the framework, Glue Logic (written in Python)
may be used to modify the model. The framework provides in-built readers for known input
formats such as XML, XLS, CSV. At this point the model is accessible through the Python
Application Program Interfaces (APIs).

After creating a model object (Model in Figure 3.3) inside the framework, the control is
passed to the template engine. Mako templates, the Python template library, are used to map
the data captured in the models to produce the required target code. There are in-built templates
in the framework, also called as “writers”, that support dumping the model data in a pre-defined
format such as XML, CSV or XLS. The main purpose of writers - whether automatically gen-
erated or manually written- is to automatically generate target code or documentation from
models.

Figure 3.3 shows the most important and most commonly used output mechanism for this
purpose: a template engine. Template engines are tools that generate target code from a tem-
plate file and input data [6]. Templates are output documents that contain placeholders which
embed certain content into the output document. Moreover, the model content can also be
examined, altered and processed, generating new view-specific content for insertion into the
templates. It is important to note here that it is possible and feasible to use the same Metamodel
and reader, and develop several different sets of templates to generate different views (e.g.,
generated C-code as one view and HTML documentation as the other).

The metamodeling framework has been successfully employed for achieving higher pro-
ductivity on several design tasks [38, 40, 39]. For overall chip design, productivity has been
increased by up to 60% and by up to 95% for individual design tasks.

3.2.1 Challenges in Developing Code Generators
Although the described metamodeling framework has resulted in a high degree of automation
for specific design tasks, there are shortcomings of this approach. For automating certain design
tasks, a huge semantic gap must be bridged between the specification and the target code. In the
framework described, the APIs, the reader and the writer are provided for a given metamodel.

When the created metamodel is close to the specification, the effort needed to develop the
reader is minimum and complex manual annotations to the specification are not needed. This
in turn shifts the work to the template development. As the templates need to cover any model
instance of the metamodel, the development of the templates becomes increasingly difficult.
This requires a large amount of complex code to examine the model and make decisions based
on it. In particular the development of complex templates is not developer-friendly due to
limited programming features and results in higher manual effort.

When the created metamodel is close to the view/target code, the development effort for
template files reduces considerably. However the automation process is decoupled from the
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specification, which requires more effort to develop the reader and glue logic. In order to realize
a high degree of automation and to develop reusable code generators, the created framework
needs to be close to the specification.

Due to the above challenges in developing the code generators, a new solution is desired
with the following features:

• a framework shall be generated which is close to both the specification and the target code
• more than one metamodel is required to allow the generation of APIs, readers and writers

customized to different goals
• the generated framework shall be reusable

3.3 Model Driven Architecture for Code Automation

The Object Management Group (OMG) proposed the idea of MDA as an approach for using
models in software development to address the productivity gap that also burdens the software
development. The MDA principle was proposed to help reducing complexity, lower costs and
fostering re-usability. A “model” has well-defined semantics and is an abstracted version of the
intended system [77, 110, 71, 70]. MDA emphasizes the use of modeling techniques to increase
the level of abstraction and productivity during the implementation of software and hardware
systems. There are three main models involved in MDA, namely Computation Independent
Model (CIM), Platform Independent Model (PIM) and Platform Specific Model (PSM). The
idea of MDA captured as Y-chart [71] is illustrated in the Figure 3.4. These models are involved
in model-to-model transformations in which the resulting model is a less abstracted model of
the intended system.

PSM 

PM PIM 

CIM 

Spec 

View 

Figure 3.4: MDA pictured as Y-Chart from [71]

CIM The Computation Independent Model is the first model layer which is close to the busi-
ness concept. The requirements and specifications of a specific business concept are
captured in this model. As the name suggests, CIM focuses on the high-level details of
the system without considering the structure and processing of the intended system. The
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CIM is always closer to the specification and less dependent on actual implementation
details than the PIM.

PIM A Platform Independent Model is the result of transformation of the CIM with additional
details. PIM describes functionality and behavior of an implementation. The behavior
is already described using the semantics of the target implementation at a high level of
abstraction. This description is however independent of the targeted platform (e.g., a
programming language, development and runtime environment).

PSM A Platform-specific Model adds the utilized platform to the PIM. PSM is closest to the
target code and from this model, the view is generated. It therefore includes how the
computation is performed on the given platform.

Figure 3.4 shows the dependency between the models in a Y-Chart. In addition to the afore-
mentioned models, this figure also shows a Platform Model (PM), which contains the details
of the target platform. The term “platform” is used to refer to the computing infrastructure on
which generated target code can run. A platform for example defines libraries, APIs and the OS
the generated view code compiles and executes on (e.g., FPGA). A sequence of model-to-model
transformations are chained together to finally generate the view.

The MDA principle for code generation has been adapted for both RTL and property gen-
eration. The detailed description of the property generation is provided in the Chapter 4. The
RTL generation following the MDA approach is not implemented as part of this thesis. A brief
overview of the RTL generation is described in the next section.

3.4 MDA Applied to RTL Generation

The model-driven approach for hardware generation is explored by extending the metamodeling
framework with MDA concepts [97, 36]. Figure 3.5 shows the MDA adaption for digital hard-
ware generation. Similar to the MDA definition, the RTL generation flow uses multiple model
layers as shown. The model layers are named as Model-of-Things (MoTs), Model-of-Design
(MoD) and Model-of-View (MoV).

Typically the requirements of a hardware design are written in an informal language. The
top most model layer, MoT layer, includes translating the informal specifications in formal
specification models. This layer corresponds to the CIM layer in the OMG’s MDA description.
For a given set of specification items, one or more metamodels are constructed to capture the
correct constituents or things of the intended design. That is, MoT layer defines things, their
attributes and the relations to the intended functionality. For example, Figure 3.2 shows the
metamodel of a SW/HW interface circuit. The instances of these metamodels are Model-of-
Things, which carry the specific values and relationships for the attributes of the metamodel.

After collecting the requirements of an intended design in the formalized models, the MoTs
are transformed into a design model called Model-of-Design. This layer corresponds to PIM
layer of the OMG’s MDA definition. The transformations are implemented in Python, in which
the microarchitecture of the intended design is defined. These transformations are referred to
as templates of design (ToD) since they describe the blue print of the circuitry. ToDs allow
the designer to completely focus on effectively defining the architecture of the intended design
since the MoD is independent of the simulation and synthesis artifacts. A metamodel called
“MetaRTL” is created such that the metamodel is an abstract definition of any arbitrary dig-
ital design. In other words, MoD is an instance of the metamodel MetaRTL. Based on this
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Figure 3.5: MDA applied to hardware generation

metamodel, the automation framework provides an extended set of APIs to simplify the ToD
coding [50].

The view model or Model-of-View (MoV) corresponds to the PSM since it is the least ab-
stract model with a straightforward mapping to the target view. Here, the MoD is transformed
into a platform model where the platform-specific details are appended to the model. The avail-
ability of multiple target view models (for example, vhdl view model or verilog view model)
allows the design to be generated in a required HDL.
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Chapter 4

Model-driven Property Generation

This chapter describes leveraging the concepts of Model-Driven Architecture (MDA) intro-
duced for software engineering [110, 71] for property generation in the hardware domain. For
this purpose, the essential concepts of MDA are transferred to the domain of hardware design
verification. We first discuss the challenges of building code generators for properties, and
later, provide an overview of the property generation framework, which addresses the outlined
challenges. A mechanism for annotating or binding the design implementation details in the
generated properties such that the design and property generation flows obey the 4-eyes prin-
ciple is also presented. Different approaches for modeling design specifications to facilitate a
high degree of automation are elaborated and a relation of the work to existing approaches is
discussed.

4.1 Challenges for Property Generation
Although the properties are an effective means of representing the design intent, property devel-
opment poses several challenges. Interpreting the informal specification, manually developing
properties for large designs, maintaining them and changing properties due to regular specifica-
tion changes are error-prone, time tedious and not scalable. Automatic generation of properties
addresses these challenges and effectively improves the overall productivity. However, the au-
tomatic generation of properties also faces several challenges. We outline the challenges in
this section and detail how the implemented generation flow tackles these challenges in later
sections.

The challenges for property generation are classified based on commonly agreed concepts
in state-of-the-art digital verification. We classify them into the following two categories:

1. Ensuring the quality of generated properties.
2. Binding the design details and obeying 4-eyes principle in generation flows.

4.1.1 Ensuring the Quality of Generated Properties
When a property is evaluated in a formal verification (FV) tool to verify a specific behavior of
the design, the outcome is either a pass or a fail. A failure is either due to a bug in the design
implementation (true negative) or due to an incomplete property formulation (false negative).
The FV tool provides a counterexample (CEX) to debug the failing property. For better debug
and to exclude false negatives, the properties need to be concise, compact and correct.
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Challenge 1 [Informal specifications]:
A common practice in the industry is to compose the requirements of an intended design in
an informal/natural language (English, German, etc.). Informal specifications are often vague,
ambiguous, badly structured, incomplete or incorrect. Developing properties from the informal
specifications is tedious and error prone. For example, consider the following text extracted
from an official RISC-V ISA release [117, page 14-15].

Example “RV32I defines several arithmetic R-type operations. All operations read the
rs1 and rs2 registers as source operands and write the result into register rd. The f unct7
and f unct3 fields select the type of operation. ADD and SUB instructions perform addition
and subtraction respectively. Overflows are ignored and the low XLEN bits of results are
written to the destination".

The example text describes the ADD (addition) and SUB (subtraction) instructions of Integer
Register-Register Operations. The resultant of an addition remains unchanged (commutative
law) irrespective of the order of operands (rs1 + rs2 == rs2 + rs1). However in case of sub-
traction, the resultant depends on the order of operands (rs1 - rs2 != rs2 - rs1). From the
exemplified text, there is no clear semantics to define the order of operands, which can lead to
mis-interpretations and possibly to logic bugs.

Further, the inductive nature of informal specifications bears the risk of missing important
scenarios. In addition, the lack of formal semantics prevents from code automation. There-
fore, a pre-requisite for the automatic generation of high quality properties is to transform the
informal specifications to formal specifications.
Challenge 2 [Effort for creating formal specifications]:
Formal specifications have the following features:

1. Clearly and completely describe the expected behavior.
2. Avoid ambiguity, thus avoiding mis-interpretation.
3. Support code automation due to the availability of clear semantics.
4. Support for traceability i.e., the generated code can be traced back to the specification

items.
Formal specifications need to provide an abstract view of the system. They shall not include

any details that constrain the implementation choices. Although the formal specifications help
to avoid ambiguity and enable automation, the effort required for building formal specifications
can be significant. Also, the degree of automation depends on the expressiveness of the formal
specification. Even for simple designs, building formal specification takes considerable effort
and time [65]. Therefore, a supporting infrastructure is needed such that the creation of formal
specifications requires significantly less manual efforts.
Challenge 3 [Completion criterion for a set of properties]:
A FV tool exhaustively verifies the design for each property considering all input combinations.
However, the properties typically use an implication operator such that the property is evalu-
ated only under certain trigger conditions. In addition, some properties can be proven only
under specific input scenarios to avoid unrealistic behavior of the design implementation. A
major problem in complex designs is to identify all corner case scenarios, which require prior
anticipation before the respective properties are developed to validate such scenarios.

The factors outlined so far lead us to the following questions: How do we develop properties
to verify every design function? Are there “gaps” in the property set? Is every output signal of
the design determined for all input combinations and at all time points?
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To answer the above questions, a comprehensive mechanism is needed such that the opera-
tions or functions of a design are captured in a control flow graph like format or a conceptual
state machine [81]. In addition, a mapping should be created between the specified design oper-
ation and the generated properties to verify all documented features of a design implementation.
This ensures that every design operation is verified by at-least one property.

4.1.2 Binding Design Details and Obeying the 4-Eyes Principle

Different verification approaches have been applied for validating the design implementations
such as black-box, white-box or grey-box [120]. The selection of a suitable approach relies on
many factors such as design type, design complexity or verification objective.

Challenge 4 [Binding design details]:
A significant benefit of the properties is that they can be used across all verification techniques
such as simulation, formal verification and emulation.

In the black-box approach, the verification environment is unaware of the internal details
of the design and typically deployed to verify the top-level behaviors. Properties for such an
approach need to include only the top-level port details. However, this approach is not ideal for
formal verification as the technique requires internal design details to avoid false negatives and
also to speed-up the property proof. In the white-box approach, the verification environment
has complete access to internal details of the design. This approach may dilute the verification
quality since the verification environment is close to design implementation. Also, further
changes in the design requires significant amount of rework to modify the properties.

The grey-box approach balances the requirements of internal details and provides a con-
trolled access to the internal signals of the design. A challenge for property generation is: how
to get the necessary internal signals details into the generation framework? This is because, the
properties are to be generated from the formal specifications only and at this level the design
internal signals are not available. As a result, a mechanism is required to encode the generated
properties with the necessary design details.

Challenge 5 [Obeying 4-eyes principle (4EP)]:
A key objective of the functional verification is to ensure that the RTL implementation meets
the specified behavior. To achieve this, the verification environment (testcases or properties)
needs to ensure that the design implementation specifics are not copied directly in the testcases
or properties. Otherwise, it may lead to false positives and there is a high risk of bug escapes.
Therefore, the state-of-the-art functional verification flows need to follow strict guidelines guar-
anteeing the verification quality.

A fundamental requirement of the hardware design flows is to obey the 4-eyes principle.
4EP, also referred to as 2-person rule, is a well-known control mechanism followed widely in
the decision making process for critical applications or operations. In hardware design flows,
4EP requires that the design and verification processes follow separate paths. Similarly, frame-
works that automate both the design and verification tasks must follow separate flows in order
to avoid common bugs due to the inherent flaws in the automation framework.
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4.2 Model-driven Architecture for Property Generation
To verify the functional correctness of an RTL implementation, properties are developed from
specifications of the intended design. These properties are written in a certain property specifi-
cation language such as SVA or ITL, and are verified in a FV tool against the RTL implemen-
tation. The property languages have specific syntax and semantics associated with them. In
order to generate the properties from the specifications, a large semantic gap must be bridged
between the specifications and the properties. Building property generators directly from the
specifications using template-based approach leads to complex development of code generators
as outlined in the Section 3.2.

The Object Management Group®(OMG) proposed a software development methodology
called Model-Driven Architecture®(MDA) for developing code generators [71, 102, 84]. In
the proposed MDA approach, the software development follows a model-driven approach in
which the data is captured in different model layers. These model layers represent different
abstraction levels as outlined in Section 3.3. Adapting MDA for property generation within the
metamodel-based framework is described in the following.
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Transformation (.py)
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Figure 4.1: Model driven generation of properties

The adaption of model driven approach for automatic generation of properties is illustrated
in Fig. 4.1. The flow conceptually follows the OMG’S MDA proposal but introduces new
terms for various hardware-related models. The generation flow consists of three viewpoints of
abstraction layers defined by MDA from top (high abstraction level) to bottom (low abstraction
level). Each model-to-model transformation step adds additional details to a higher abstraction
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model to build a lower abstraction model. The three model layers of the approach are:
1. MoT Layer: Corresponds to CIM in OMG’s MDA description (cf. Section 3.3)
2. MoP Layer: Corresponds to PIM in OMG’s MDA description (cf. Section 3.3)
3. MoV Layer: Corresponds to PSM in OMG’s MDA description (cf. Section 3.3)

4.2.1 Model-of-Things Layer

The intention of the Model-of-Things (MoT) layer is to formally collect the data from informal
specifications. These models are called “Model-of-Things" to indicate the purpose of specifi-
cation models, which is to represent the abstract behavior and characteristics of specific “struc-
tures” or “components” or “things”. As per the original MDA definition, MoTs are computation
independent models, i.e., high-level details such as system configurations and intended behav-
iors are considered but not necessarily the implementation details. Here, the implementation
details refer to the microarchitecture specifics of the design. Irrelevant details are ignored and
the behavior is generalized to central features and characteristics. Therefore, the implementa-
tion choices are not constrained by the formalized specifications.

As shown in Fig. 4.1, there may be several specifications (SpecA, SpecB), e.g., for each
interface and the design item itself. Metamodel definitions (Metamodel A, Metamodel B) de-
scribe objects (=things), object attributes and the relationships between the objects of respec-
tive specification items. These metamodels are used to capture the design domain. An example
metamodel created to model a simple ISA is shown in Fig. 3.2. For every metamodel definition,
an infrastructure is generated by the automation framework as described in Section 3.2.

Instances of metamodels (Model A, Model B) are then created, for example, by using a
GUI tool provided by the underlying framework. This step is manual and the engineer needs
to ensure that the correct values for all object attributes are populated in the model instances.
Wherever structured information is found in the specification, it is parsed to create parts of the
model and to reduce the manual effort. That is, when the specification items are available in a
structured format, for example spreadsheets or CSV files, readers from the framework are used
to extract the data and populate the models. The MoTs have a well defined structure within the
automation framework, enabling the automatic model transformations to extract required data.

The translation of informal specifications to formal specification models addresses Chal-
lenge 1. Also, the effective utilization of the underlying automation framework reduces the
overall manual efforts needed to create the formalized models, there by addressing Challenge 2.
Different modeling paradigms introduced for formalizing the design specifications are dis-
cussed in Section 4.6.

4.2.2 Model-of-Property Layer

The MoTs are transformed into less abstract models called Model-of-Properties (MoPs). The
model-to-model transformation involving MoTs and MoPs forms the central part of the gen-
eration flow. These transformations are coded in a Python-based Domain Specific Language
(DSL) and are referred to as Templates-of-Properties (ToPs). They are called templates, since
they reflect the structure of properties in a generic way. As illustrated in Fig. 4.1, ToPs extract
the information from MoTs and define the MoP instances. The structure and semantics of the
MoP instances are defined by the metamodel MetaProp.
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Figure 4.2: MetaProp – modeling the structure of an abstract temporal trace (simplified)

MetaProp Metamodel

Fig. 4.2 shows a simplified version of MetaProp, the metamodel definition of the Model-of-
Property. It defines how the property structure is described in the MoP. The domain of the
metamodel is the creation of an abstract temporal trace. A temporal trace describes the behavior
of a sequential design over a time interval. Based on this notion, the metamodel definition is
created.

The rootnode of the metamodel is MetaProp which has a composition relation to the class
Property. The class Property composites of ExpressionOpt, which is an “option class” for all
the operators. Variable, Literal, AND, NOT and OR represent a subset of all the primitive
operators supported. An option class is a mechanism of enabling polymorphism within the au-
tomation framework. A list of all operators supported in the flow is tabulated in Appendix C.
The Timepoint operator is a special operator used to insert time (or clock) delays in the expres-
sion trace. The option class ExpressionOpt takes any operator as its arguments. All primitive
operators including the Timepoint operator can accept any expression as an argument. For the
MetaProp metamodel, the framework provides an infrastructure (readers, writers, APIs). These
API functions are utilized effectively to simplify the ToP coding.

Templates-of-Properties

The main purpose of ToPs is to extract information from the MoTs and to create MoP instances.
The MoP instances represent a set of expected behaviors to be satisfied by the RTL implementa-
tion. The coding of ToPs is extensively aided by the APIs created for the MetaProp metamodel.
Together with the underlying Python languages, these APIs form a highly flexible DSL for
model transformations. Since the MoTs are created with an intention to allow various microar-
chitecture alternatives, ToPs are implemented to generate the property models for any supported
microarchitecture. For various microarchitecture alternatives, the ToPs are easily adapted with
minimal manual effort.

A half-adder circuit shown in Fig. 4.3 is considered for illustrating a ToP example. The
results of an addition (sum and carry) are saved to register elements.
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Figure 4.3: Half-adder circuit

1 def define_half_adder_mop(self, parent=metaprop):
2 self.metaprop = MetaProp()
3 sum_exp = XOR(’in0’,’in1’)
4 carry_exp = AND(’in0’,’in1’)
5 mop_sum = self.metaprop.addProperty(Name=’ha_sum’,
6 Expression=IMPLY(’en’, DELAY(1, EQ(’q0’, PAST(sum_exp)))))
7 mop_carry = self.metaprop.addProperty(Name=’ha_carry’,
8 Expression=IMPLY(’en’, DELAY(1, EQ(’q1’, PAST(carry_exp)))))

Figure 4.4: Code snippet of an example ToP

The ToP description for creating property models for a half-adder circuit is listed in Fig. 4.4.
The Python function define_half_adder_mop() is executed to create the MoP instances. Vari-
ables sum_exp and carry_exp hold the expression traces for sum and carry outputs, respectively.
These expressions are defined using the operators XOR and AND. In the next lines, the MoPs
are defined by adding the instances of attributes Name and Expression. The variable mop_sum
holds the MoP for sum in which the expression trace in sum_exp is extended by using the oper-
ators IMPLY EQ, PAST and DELAY. The operator DELAY is an alias for the Timepoint operator
and is used to insert delays of one or more clock cycles in the expression tree. The Delay op-
erator accepts two arguments in which the first argument specifies the number of clock cycle
delays. The operator PAST is an extended temporal operator, which is used to sample the values
of the argument in the previous clock cycle. In the end, mop_sum models the property that shall
be satisfied by the output port q1 in Fig. 4.3. Similarly, mop_carry models the property that
shall be satisfied by the output port q0 in Fig. 4.3.

Fig. 4.5 shows the property models created for the sum and carry outputs respectively. The
operators are denoted by the nodes and the edges represent the arguments of the operators. The
IMPLY operator is the root node of the expression tree, which takes exactly two arguments. For
any operator, the arguments can either be an expression or a terminal node such as a Variable
or a Literal. These MoP instances are platform independent, i.e., they do not contain artifacts
of any specific property specification languages. Therefore, the MoPs can be mapped to any
property specification language in the view layer.

Temporal Semantics for MoP

A definition of the MoP is provided by describing its temporal semantics. The temporal trace
represented by the MoP can be interpreted in a discrete linear model of time. In temporal logic,
the temporal trace or formula is validated against a formal model. The validation is performed
over an infinite path of the formal model [65]. Temporal logic provides a convenient formalism
to define properties for reactive systems. In order to define the semantics for MoP, we need a
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Figure 4.5: Expression trees of the MoP instances

notion of sequence of states with each point in time having an unique successor, based on a
linear time model. Therefore the semantics of MoP are defined by mapping them to the linear
temporal logic (cf. Section 2.4.2) as exemplified in the following.

For the circuit shown in Fig. 4.3, two MoP instances have been defined by the ToP. The
temporal formula for the MoP defined for the sum output is given by:

G(¬en∨ ((in0⊕ in1)→ Xq0)) (4.1)

where, G and X are temporal operators globally and next respectively. Similarly, the temporal
formula for the MoP defined for the carry output is given by:

G(¬en∨ ((in0∧ in1)→ Xq1)) (4.2)

4.2.3 Model-of-View Layer
The Model-of-View (MoV) layer forms the final and least abstract model layer of our adaption
of MDA for property generation. In the MoV layer, the MoPs defined in the previous layer are
mapped to a specific property specification language to generate the properties. Since the MoPs
are platform language independent, they can be mapped to any property specification language.
The generation flow supports the SVA [2] and ITL [85] property specification languages.

The approach taken in the MoV layer allows the developer to think about the views that
need to be generated instead of focusing on the formatting and indentation of the generated
views. The formatting and indentation are specified independent of the MoV. In this approach,
it is also possible to modify the formatting and indentation without modifying the mapping of
MoPs to MoV.

The detailed view generation process is illustrated in Fig. 4.6. The main component of
the view generation step is View Language Description (VLD). The VLD is created for each
target language supported by the generation flow (e.g., VLD for SVA). The goal of the VLD
is to define the structure and syntax of the target language. VLD is close to the Extended
Back-Naur Form (EBNF) and describes the rules of the formal language [98]. The VLD is
utilized to generate the majority of the necessary MoV layer components as shown in Fig. 4.6.
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The Metamodel (MetaView in Fig. 4.1) of the Model-of-View is built based on the VLD. The
metamodeling framework provides the APIs which are used to read and write Model-of-View
instances. Furthermore, the view generation step, i.e., building the target views from MoV
instances is completely automated. Based on the VLD, a transformation code is generated
which is based on the tree traversal. The steps are repeated for all supported property languages.

1 Poperty ::= `Property ` <PropertyName> `;\n`

2 [PropertyBody]

3 `endproperty`

4 PropertyBody ::= [TriggerCondition] |

5 [DisableCondition] |

6 <PropertyExpressionTrace>

7 TriggerCondition ::= $indent(`\t`)$`

8                      (@`<Edge> <ClockPort>`)\n`

9 DisableCondition ::= $indent(`\t`)$`

10                     (disable iff`<DisableExpressionTrace>`)\n`

Figure 4.7: Snippet of View language description of SVA property

View Language Description

Fig. 4.7 shows a simplified snippet of the VLD used for generating the properties in SystemVer-
ilog Assertions language. The similarity between the VLD and the formal EBNF description
of SVA is apparent. The VLD description consists of a list of production rules, where each of
those rules in turn consist of a set of terminal or non-terminal symbols. As mentioned earlier,
the EBNF of a certain language describes the formal grammar of the language and consists of a
set of rules for distinguishing grammatically correct code from incorrect code. The VLD, in ad-
dition to describing the formal grammar with a set of rules, also provides other utility functions
in the generation flow.

In order to facilitate the automatic generation of the metamodel of the MoV instances, sev-
eral formalisms are introduced in the VLD. For every production rule in the VLD, a class is
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added to the metamodel. In Fig. 4.7, Property, PropertyBody, TriggerCondition and Disable-
Condition are the production rules. The rules inside ‘[. . . ]’ symbol are non-terminal rules and
the rules inside ‘<. . . >’ symbol are terminal rules. For every non-terminal symbol in a rule,
an association relation is added to the class. For every terminal symbol in a rule, an attribute
is added to the class. More details of the metamodel generation from the VLD description is
outlined in [98].

The VLD is also used to define the indentation and for formatting the target code. A simple
approach to formatting the target code is inserting terminal strings containing white spaces into
the VLD. However, this approach cannot handle indentation correctly as many production rules
can occur at different levels of indentation. For example, a line break may be required after the
time point operator and the time point operator itself can occur at any level of the expression
trace. To handle such scenarios, formatting directives are utilized. These directives are directly
introduced into the view language description. Their handling is implemented as Python code
and work by post-processing code that has been generated. A set of predefined directives are
used for correct indentation of the target code, line breaks at certain line widths and correct
alignment of neighboring lines. For example, $indent(‘\t‘)$ in Fig. 4.7 in line 7 ensures an
additional indent for the clock trigger declaration for the property.

4.3 Binding Design Details by Obeying 4-eyes Principle

A critical aspect of assertion-based verification is that the properties need to be bound to the
design implementation. Further as outlined in Challenge 4 (cf. Section 4.1), formal verifica-
tion takes a grey-box verification approach and requires some of the design’s internal signal
details. The existing property specification languages use different mechanisms to accomplish
the binding of properties to the design blocks. In ITL, the generated properties are automati-
cally mapped to the design module, requiring the properties encoding correct RTL signals with
correct hierarchy [85]. In SVA, there are 2 different ways to accomplish the binding [2]:

1. Declare the properties in a separate module, instantiate this module in the design module
where the properties are required and pass the property variables into the module via
ports. However, this method requires modification to the design module.

2. Using the “bind” construct: the module holding the properties can be directly bound to
the top-level or any design module with the bind construct.

The encoding of design details for property generation ensuring that the 4-eyes principle is
obeyed is described in the following.

The property generation flow complements the RTL generation flow outlined in Section 3.4.
With the RTL and property generation flows, OMG’s model-driven software development prin-
ciples have been adapted for hardware design and verification domain. A practical methodol-
ogy for automating the generation of RTL and property files from specifications is illustrated in
Fig. 4.8. In Fig. 4.8, the RTL generation flow is shown on the left, while the property genera-
tion is shown on the right side. Both the RTL and property generation flows start with the same
models, i.e., formal specification models compiled from the informal specifications. After the
MoT layer, the generation flows take separate paths as required by the 4EP.

The immediate step in the RTL flow is to transform the MoTs — realized by coding ToDs
— into a Model-of-Design (cf. Section 3.4). The Model-of-Design contains all the necessary
details of an intended design in a language-independent representation. At this stage, the prop-

44



4.3. BINDING DESIGN DETAILS BY OBEYING 4-EYES PRINCIPLE

MoV 

Layer

MoT 

Layer

MoP 

Layer

Spec A Spec B

MetamodelA MetamodelB

instance

Model A Model B

Transformation (.py)

instance
MoP1

MoPn

MetaPROP

Transformation (.py)

instance
MetaView

MoV1

MoVn

Property files (.sv/.vhi) View

files

instance

Transformation (.py)

instance

MetaRTL

Transformation (.py)

instance

MetaView

RTL files (.vhd/.vlog)

Model of Design

VHDL Model

Model of Binding

. .

Transformation
MoPx

MoVx

Transformation (.py) Transformation (.py)

Binding

Figure 4.8: Generation of RTL and properties by obeying 4-eyes principle

erty models could also be derived from the same transformation step. Such a generation step is
not ideal and disobeys the 4EP. This is because errors introduced during the ToD transformation
step are propagated to both the RTL and properties (so called common mode errors). For exam-
ple, an AND logic may be transformed as an OR logic due to a bug in the transformation code
that is used for both, MoD and MoP. Further, in addition to the transformation errors, errors may
also occur due to the bugs in generation flows. In such cases, the errors may not be identified
by the verification step as both RTL and properties carry the incorrect logic. In order to exclude
such errors, the RTL and property generation take separate flows as shown in Fig. 4.8.

Therefore, the overall generation framework for automating the digital design development
has been split into two separate flows. In order to realize the binding of RTL signals with
minimal manual efforts, an intermediate Model-of-Binding (MoB) is utilized. Similar to other
models, the structure and constituents of the Model-of-Binding are defined by the metamodel
Metabind.

The Metabind metamodel definition is shown as an UML class diagram in Fig. 4.9. The
metamodel mainly consists of two parts: component details (Class Component) and property
module details (Class PropertyModule). The rootnode has a composition relation to both the
classes. A component (RTL block/module) can be a top module and is composed of zero-to-
many sub-components and multiple ports. A property module has multiple variables (Class
Variable) encoded in properties. A property module can be bound to the top RTL module or to
a sub-module in the hierarchy. Additionally, each variable has a reference to a port signal of a
component (association relation RTLPort) as shown in Fig. 4.9.
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Figure 4.9: UML class diagram representing metamodel of binding

As shown Fig. 4.8, MoD is a component tree that contains the microarchitecture imple-
mentation of an intended design (cf. Section 3.4). Hence, MoB is automatically populated by
iterating through the MoD components. Further, the generated MoB is appended with a list
of variables, which are used to define the property models in ToP. The above steps are auto-
matically accomplished by utilizing the infrastructure generated for MetaRTL and Metabind
metamodels. After this step, for each variable used in the ToP, a port signal of a component
is referred. For cases where a specific RTL port signal is not available, a Boolean expression
is defined using the RTL signals as symbols. The Boolean expression is constructed with port
signals as the symbols.

For every variable defined in the ToP, a macro definition is created such that a macro call
returns the corresponding RTL signal. This improves the readability of the view files and addi-
tionally addresses any change in the RTL description (i.e., changes in the MoD due to changes
in the transformation step). Additionally, the properties are bound to the RTL module which
will be specified in the Model-of-Binding.

4.4 Modeling Design Specifications for Property Generation
In the previous sections, a model-driven property generation flow has been introduced. A major
goal of the proposed flow is to establish an automatic flow to target code from design specifica-
tions. Typically, the benefits of a generation flow are quantified in terms of productivity gains,
i.e., the overall time saved when compared with the manual property development. The ap-
proach proposes to model the design specifications in formalized models with clear semantics.
A Python-based DSL for properties is utilized, which forms the substantial part of the flow. It
is used to transform the formalized specification models to property models. The DSL is fur-
ther optimized for describing property traces with extended APIs generated from metamodel
definitions [50].

Modeling of design specifications becomes significant as it defines the amount of effort that
is spent on developing ToPs. To this end, effective modeling of design specification takes a cen-
tral role such that the generation framework is efficiently utilized and the efforts for developing
ToPs are reduced. In the subsequent sections, we discuss the modeling of combinational and
sequential design specifications for property generation.
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4.5 Generation of Properties for Combinational Designs
Hardware designs in which the behavior of output signals depend only on the input signal values
are referred to as combinational designs. At any given time point t, the output signals depend
only on the values of input signals. A generic block diagram of a combinational design is shown
in Fig. 4.10.

Combinational design

(λ: I →O)

...

...

output sequence

... ...
t..................t+k

input sequence

... ...
t..................t+k

Figure 4.10: Block diagram of a generic combinational design

Definition 13 [Combinational function]:
Consider a combinational design M . Let {i1, i2, · · · in} ∈ I and {o1,o2, · · ·on} ∈ O be the input
and output symbols, respectively. Let λ be the output function of the combinational logic. The
output symbol O is a function of the input symbol I , i.e., λ : I 7→ O.
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(inheritance)

Figure 4.11: MetaExpression: metamodel definition to model combinational logic function

Combinational designs are composed of logic gates (AND, OR, NOT,· · · ) which are assem-
bled in a required layout to produce a specific (often complex) logic function. The function of
a combinational design can be specified using Boolean expressions, truth-tables or logic dia-
grams. Logic diagrams in turn can be represented as Boolean expressions. The specifications
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that are available in structured formats (e.g., truth-tables) are automatically parsed by the read-
ers provided by the automation framework (cf. Section 3.2). ToPs are implemented to extract
the data from these tables and to generate the properties in a required pattern.

4.5.1 MetaExpression

For specifications available in informal formats, it is necessary to capture the data in models
for enabling property generation. In order to model the combinational logic or Boolean Ex-
pressions, a metamodel called MetaExpression is developed as shown in Fig. 4.11. The shown
metamodel defines the structure of a combinational logic expression in a generic way. The root
node of the metamodel is MetaExpression, which holds a composition relation to the class Ex-
pressionOpt. ExpressionOpt is an option class which takes the form of its argument operator.
All primitive operators such as LAND, LOR, NOT, etc. (all operators are not shown in Fig. 4.11
for reasons of simplicity) are supported by the MetaExpression metamodel. The class Operator
defines the generic attributes for all operators. All operators except Literal and Variable hold
a generalization (or inheritance) relation with the class Operator. In other words, all operators
except Literal and Variable inherit the attributes of the class Operator. Further, the MetaEx-
pression metamodel supports compositional operators such as HWPLUS or MUX to simplify
the logic function definitions. Each primitive operator — except Literal and Variable which are
terminal operators — accept other operators as arguments. That is, each operator has a compo-
sition relation to the class ExpressionOpt. This allows to capture the specification items in the
form an expression tree.

The expression metamodel is used as an external reference to define the type of attributes
in other metamodel definitions. This is possible within the underlying automation framework,
which allows advanced features such as model merging, model difference and model modifica-
tion (cf. Section 3.2).

4.5.2 Illustrative Example: ECC Encoder

We consider an Error Correction Code (ECC) encoder as an example to illustrate the specifi-
cation modeling of combinational designs. ECCs are utilized for detecting and correcting bit
errors in safety-critical designs [31]. The ECC encoder is used to generate redundant bits for
the input data vector.

A metamodel definition created to model the abstract characteristics of an ECC encoder is
shown in Fig. 4.12. In Fig. 4.12 (a), the class Encoder defines attributes to capture the width
of data and parity bits of the encoder. This class has a composition relation to the class P_bit,
which includes an attribute to define the logic for parity computation. The attribute logic is of
type Expression and the structure of the Expression type is defined by the metamodel definition
shown in Fig. 4.11. Utilizing the features of the automation framework, the two metamodel
definitions are merged. The resulting metamodel definition used to describe an ECC encoder
model is shown in Fig. 4.12 (b).

The model instances are created with specific values for data and parity widths. Further,
the logic expression for parity bit computation is captured in the form of a Boolean expres-
sion following a specific encoding mechanism. The ToPs are then implemented such that the
properties are generated for any model instance of the ECC encoder. First, the ToPs extract the
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Figure 4.12: Modeling ECC encoder specifications

characteristics of the ECC encoder. Then the logic expression for parity computation is mapped
to a property model, such that a property is generated for each output parity bit of the encoder.

4.6 Generation of Properties for Sequential Designs
Combinational designs do not contain state elements to store the design state. The output func-
tion of such designs (λ : I 7→ O) depends only on the values of input signals at an arbitrary
time point t. In contrast, sequential designs use state elements (registers/flip-flops) to store the
design state. Sequential designs contain both combinational logic and state elements to realize
the required functionality as shown in Fig. 4.13. The state elements introduce the temporal
relationship between the input and output signals. The behavior of a sequential design can be
described by discrete and deterministic Finite State Machines (FSMs) [65, 111]. The usage of
state charts for modeling system behavior at transaction level has been explored in [46].
Definition 14 [Finite State Machine]:
A finite state machine M is a 6-tuple M := (S ,Si,I ,O,δ,λ).

• S is a finite set of states,
• Si ∈ S is a non-empty set of initial states,
• I is a finite set of input symbols,
• O is a finite set of output symbols,
• δ is a state transition function with δ : S × I 7→ S , and
• λ is a output function with λ : S × I 7→ O.
The described FSM models the sequential behavior of a design as a Mealy state machine.
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Figure 4.13: Block diagram of a generic sequential design

In a Mealy machine, the outputs are a function of both inputs and present state of the design.
In case of a Moore state machine, the outputs are a function of present state of the design only,
given by λ : S 7→ O.

State machines can also be used to model the specifications of sequential designs from
which the properties can be automated. However, the formalism lacks the time annotation
required for property generation. Let us consider an example for illustration.
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(a) Trace (signal behavior)
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¬𝑖𝑛0 ⋁ ¬𝑖𝑛1

(b) State diagram

Figure 4.14: Signal behavior and state transition diagram of a sequential design example

Example Let us consider a sequential design with two input signals in0 and in1, one
state bit z, encoding two states s0 := ¬z and s1 := z, and one output signal out. The input
and output signal behaviors are illustrated in the waveform diagram shown in Fig. 4.14(a).
The design uses an asynchronous active-high reset signal rst and is sensitive to the positive
(or rising) edge of the clock signal clk. After releasing the reset signal, the design enters
the initial state s0. The output signal out is high only when the design is in the state
s = s0. The design transitions between states s0 and s1 when both the input signals are
high (in0 ∧ in1), delayed by one clock cycle. In other cases, the design remains in the
same state.
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For the example sequential design, the state machine is defined as M := (S ,Si,I ,O,δ,λ),
where S := {s0,s1} is the set of states with the initial state Si = {s0}, I := 2{in0,in1} and O :=
2{out} are the input and output alphabets, respectively, δ is the transition function with δ :=
S× I 7→ S , and λ is the output function with λ := S 7→O. The state transition graph of the FSM
is shown in Fig. 4.14(b). The state transitions from the state diagram are given by:

δrst := rst → ¬z
δs0s0:= ¬rst ∧ (¬in0∨¬in1)∧¬z→ ¬z
δs0s1:= ¬rst ∧ (in0∧ in1)∧¬z → z
δs1s0:= ¬rst ∧ (in0∧ in1)∧ z → ¬z
δs1s1:= ¬rst ∧ (¬in0∨¬in1)∧ z → z

(4.3)

After modeling the behavior of an example design in a state machine, the properties can
be automatically generated from the behavior model. Let us consider a property generated for
the state transition δs0s1 . Its LTL equivalent is shown in Eqn. 4.4. The LTL formula fails on
the example design when evaluated in a FV tool due to the missing timing information. This
is because the design changes to the next state s1 from the current state s0 only on the second
rising clock edge (due to delayed transition). The timing information is not explicitly included
in the state machine model of the example design.

G(¬rst ∧¬z∧ in0∧ in1→ z) (4.4)

A valid LTL formula for the state transitions should also include the timing information as
shown in Eqn. 4.5. In the shown LTL formula, X2 represents the delay of two clock cycles
before the expected state transition can be asserted on the state variable z.

G(¬rst ∧¬z∧ in0∧ in1→ X2z) (4.5)

4.6.1 Trace-based Approach using Finite State Machine Notations
For a given design, a set of properties are developed such that each property captures a spe-
cific behavior over a finite time interval. The behavior of signals over a finite time interval is
referred to as a “trace”. A trace defines specific values for signals at every time point within
the specified time interval. We can say that a trace starts in an arbitrary important state and,
after traversing through a finite number of unimportant states, reaches another important state.
A property can be built to model a specific trace and a set of properties can be built to model
all traces of a design. In the context of C-IPC (cf. Section 2.5), a trace or a set of traces can be
equated to an operation of the design.

For the purpose of property generation with precise timing information, we utilize the notion
of traces to model the sequential behavior. Further, FSM-like notation is used to define the trace
structure.
Definition 15 [Trace Structure]:
A trace structure is a state transition system T := (S ,Si,I ,O,δl,λl,θ), where

• S is a finite set of states,
• Si ∈ S is a non-empty initial state set,
• I is an input alphabet (finite set of input symbols),
• O is an output alphabet (finite set of output symbols),
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• δl is a state transition function with δl : S × I 7→ S ,
• λl is the output function with λl : S × I 7→ O, and
• θ is the trace function.
In the state transition function δl : S × I 7→ S , the superscript l (δl) denotes that it requires

l clock cycles for the system to change from the current state to the next state. Similarly, in the
output function λl : S × I → O, the superscript l (λl) denotes that it requires l clock cycles for
the system for computing the output signals.
Definition 16 [Trace function]:
A trace function θ of a trace structure T is a quadruple θ:= (ss, se, ∆, Λ).

• ss ∈ S is the state from which the trace begins at an arbitrary time point t,
• se ∈ S is the ending state of the trace,
• ∆ is the sequence of state transitions with ∆ = 〈ss, . . . ,se〉,
• Λ is the sequence of output evaluations with Λ = 〈os, . . . ,oe〉, where os and oe are the set

of output symbols values when the design is in state ss and se, respectively.
A sequence of state transitions ∆ of a trace function θ begins from the starting state of the

trace (ss) and ends in an ending state se. Similarly, the sequence of output evaluations Λ of a
trace function θ starts in ss and ends in se.

With the extended state transition function δl , the state transitions for the example design
shown in Fig. 4.14(b) are given by:

δ1
rst := rst → X1 ¬z

δ1
s0s0

:= ¬rst ∧ (¬in0∨¬in1)∧¬z→ X1 ¬z
δ1

s0s1
:= ¬rst ∧ (in0∧ in1)∧¬z → X2 z

δ1
s1s0

:= ¬rst ∧ (in0∧ in1)∧ z → X2 ¬z
δ1

s1s1
:= ¬rst ∧ (¬in0∨¬in1)∧ z → X1 z

(4.6)

The traces for the sample design are formulated as follows:

θrst := (−,s0,δ
1
rst ,λ

1
rst) := rst → X1 (¬z∧out)

θs0s0 := (s0,s0,δ
1
s0s0

,λ1
s0s0

) := ¬rst ∧ (¬in0∨¬in1)∧¬z→ X1 (¬z∧out)
θs0z1 := (s0,s1,δ

1
s0s1

,λ1
s0s1

) := ¬rst ∧ (in0∧ in1)∧¬z → X2 (z∧¬out)
θs1z0 := (s1,s0,δ

1
s1s0

,λ1
s1s0

) := ¬rst ∧ (in0∧ in1)∧ z → X2 (¬z∧out)
θs1z1 := (s1,s1,δ

1
s1s1

,λ1
s1s1

) := ¬rst ∧ (¬in0∨¬in1)∧ z → X1 (z∧¬out)

(4.7)

The reformulated LTL formula from the trace function θz0z1 is given by Eqn. 4.8. The
LTL formula correctly captures the signal values of the sample design and holds on the design
implementation when evaluated in the FV tool.

G(¬rst ∧¬z∧ in0∧ in1→ X2 (z∧¬out)) (4.8)

With the trace-based approach modeling the sequential designs using FSM-like notations,
we bridge the missing time annotation between the specification items and the generated prop-
erties. Due to the presence of accurate time information in the formalized specification items,
developing ToPs (described in Section 4.2.2) becomes straightforward. The focus is shifted
to annotating temporal behavior of design alternatives. This in turn reduces the manual effort
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for property generation. In the following sections, we introduce the metamodel definition and
illustrate the trace-based approach for pipelined processors implementing RISC based ISAs.

Metamodel for trace-based approach using FSM notations

A metamodel definition is developed to model the specifications of a sequential design based on
trace-based approach using FSM like notations. The metamodel definition is shown in Fig. 4.15
as a UML class diagram with MetaSTS as the root node.
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Figure 4.15: Metamodel definition for trace-based approach using FSM notations

The root node MetaSTS, which stands for meta state transition system, has a composition
relation to the class StateTransitionGraph with multiplicity ∗, i.e., 0, 1 or more. This allows
to create more than one transition graph definition for a given design. For example, in case of
processor cores, multiple state transition graphs are needed to model the behavior of different
instruction classes such as register-arithmetic, load-store, control-flow.

Each StateTransitionGraph has arbitrary number of states (class State) and state transitions
(class Transition). A state can be an initial state (attribute Init) or a final (attribute Final) state of
the transition graph. A state definition may not be an explicit hardware state, but can be captured
as a sequence predicate. That is, a CNF clause of signals (including state bits) can be captured as
a state of the design. For this purpose, the class state has an attribute called Expression to model
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the state as a Boolean predicate. The type of attribute Expression is defined by the metamodel
definition shown in Fig. 4.11. By utilizing the features of the automation framework, i.e., by
utilizing the external referencing mechanism, a composition relation is added from the class
State to the class ExpressionOpt in the MetaExpression metamodel definition. The attribute
Encoding is used when an explicit state encoding is available in the design. Each state may
have one or more incoming and outgoing transitions and these are denoted by the association
relations Incoming and Outgoing, respectively. It should be noted that only important states
are given a state definition and the unimportant states that a trace visits before reaching another
important state are captured as part of the transition, as explained below.

Each transition has a name, a source state (association relation Source [0..1]) from which
the transition originates, and a sink state (association relation Sink [1]) in which the transition
terminates. In case of an initial transition (e.g., reset), it is possible not to have a source state and
for this reason the Source association has a multiplicity of 0..1 (zero or one). The transition class
defines the attribute Length to specify the number of clock cycles required for the transition.

The Transition class has composition relation to classes Guard, Event and Action. The Ex-
pression attribute of the class Guard models the Boolean expression under which a specific
transition can take place. In other words, the transition takes place only when the guard ex-
pression evaluates to “true”. Similarly, the Expression attribute of the class Event models the
events which trigger the transition. Finally, the Expression attribute of the class Action models
the actions performed by the design after the transition has been triggered. The type of the
Expression attribute is defined by the metamodel shown in Fig. 4.11, similar to the Expression
attribute of the class State.

The expression metamodel shown in Fig. 4.11 models the Boolean expressions including
sequence predicates (cf. Section 2.5). However, the guard conditions and the actions of a tran-
sition are required to model the (unimportant) state transitions over a finite time frame. In order
to model a trace that visits unimportant states, the next operator (X l) is added to the metamodel
definition of MetaExpression shown in Fig. 4.11. In particular, the next operator is added sim-
ilar to other primitive operators. The next operator is a pair next(E, l) which adds a temporal
shift of the Boolean expression E by l clock cycles.

The metamodel definition shown in Fig. 4.15 enables to completely model the behavior of
sequential designs such that the transitions, guard conditions, events and actions are embedded
with the precise time information. Model instances of the metamodel are built to specify the
sequential behavior in terms of traces. A property model (Model-of-Property) is created for
each trace and a set of properties are generated covering all the trace definitions in the model
instance.

4.6.2 Modeling ISAs and Processor Microarchitecture Behavior

The execution semantics of a processor core or central processing unit (CPU) are described
by an instruction set architecture (ISA) manual [53, 117, 5, 100]. An ISA describes the pro-
grammer’s model of a CPU and serves as the interface between hardware design and software
program. The ISA defines the size of an instruction word, types of instructions and differ-
ent instruction formats. Instruction set architectures can be broadly classified into CISC and
RISC. CISC is an acronym for complex instruction set computer and emphasizes on the hard-
ware design. The main idea of CISC is to define a set of complex instructions such that each
instruction performs a series of operations and requires several clock cycles for completion.
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RISC, which stands for reduced instruction set computer, emphasizes on the software and de-
fines a set of simple instructions such that each instruction performs a specific operation and
requires one clock cycle for completion. Since CISC uses complex instructions that perform
multiple operations, the size of the program is small, but involves complex decoding logic in
the processor implementation. On the other hand, RISC involves a simple and uniform hard-
ware implementation, and requires a comparably larger program size. Further, RISC operations
are straightforward to be mapped from high-level languages such as C or C++, where many
CISC operations are only partially supported by compilers. Both CISC and RISC architectures
have their own set of advantages and disadvantages [12]. Due to the simple and uniform hard-
ware implementation and sophisticated compiler technology, RISC ISAs have gained a wider
adoption.

The microarchitectural implementation of RISC processors typically follows a pipelined ar-
chitecture. The pipelined architecture improves the program throughput and enables to apply
higher clock frequencies. Depending on various requirements and trade-offs (e.g., area and
speed), a specific number of pipeline stages are considered for a processor implementation. As
elaborated in Section 4.2.1, the central idea of the MoT layer is to capture informal specifica-
tions in a formal model such that the implementation choices are not constrained. A combined
formal model of ISA and pipelined behavior of a processor restricts the MoT layer to a specific
architecture. Therefore, it is essential that the formal model of a processor does not constrain
the microarchitectural alternatives (e.g., 3-stage pipeline or 5-stage pipeline). However, for ef-
ficient property generation, the microarchitectural behavior of a processor with precise timing
information needs to be captured in a formal model. To address this, modeling of processor
cores is done in 2 stages.

1. Untimed model: Model an ISA with all the necessary information for a processor imple-
mentation such that the implementation choices are not constrained.

2. Timed model: Extend the untimed model with precise timing information introduced by
the pipelined architecture of processor cores. Further, the timed model is flexible and
enables to model different microarchitecture alternatives of a processor.

MetaRISC: Metamodel for RISC-based ISAs

A metamodel definition for modeling RISC-based ISAs1 is introduced in the following. The
metamodel definition is shown in Fig. 4.16 as a UML class diagram. Typically, an ISA describes
the size of an instruction word and a set of instructions. Each instruction has a predefined
encoding which identifies the instruction class such as control flow, register arithmetic, load-
store. Additionally, each instruction performs a specific operation and updates one or more
architectural states of the processor upon completion. Execution of an instruction sequence (a
program) can be interrupted by certain events called exceptions, which occur either internal or
external to the processor core. To represent these characteristics the metamodel consists of four
main components: 1) architectural states, 2) encoding tree, 3) instructions and 4) exceptions.
The metamodel captures these 4 components with a composition relation from the root node
MetaRISC to each component.

Architectural States: A processor implementation consists of several architectural states
such as general purpose register file, program counter, control and status registers. Further, a

1The introduced metamodel definition is also applicable to model CISC-based ISAs. However, it may require
more manual effort as the instruction encoding and behavior description are not uniformly describable.
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Figure 4.16: MetaRISC: metamodel definition for RISC-based ISAs

processor core interacts with the data memory through load-store instructions. Therefore, data
memory is added as an external architectural state element (not shown in Fig. 4.16). To rep-
resent these important state elements, a composition relation is added from the root node to
the class ObjectProperties. The class ObjectProperties has its own set of attributes to spec-
ify various properties of the state elements. An ObjectProperties instance is defined for each
architectural state element with the corresponding attribute values.

Encoding Tree: As the name suggests, the encoding tree builds a tree structure to deter-
mine the format and parameters of an instruction word. The root node MetaRISC has a com-
position relation called EncodingRoot to the class RangeNode. The RangeNode class has an
attribute called BitSelect, which is used to select specific bit positions of an instruction word.
The RangeNode class has a composition relation to the class Opt, which has an attribute (Value)
to specify the corresponding values for the bit positions. The Opt and RangeNode classes have
recursive composition relations to each other, which helps to build a tree structure to capture
the required format of an instruction word. Further, the root node has a set of parameters (class
Parameter) and parameter encoding (class ParameterEncoding) which define the operand bit
positions of the instruction word.

The encoding tree provides a high level of flexibility both in the way instruction sets can
be described and in the types of instruction sets that can be captured. It is possible to describe
any irregular instruction set (e.g., CISC type) with variable instruction width. The encoding
tree also provides an option to build one single tree for all aspects of instruction decoding. That
is, the tree provides sufficient information to decode instructions and to identify instruction
parameters required for the property generation.

Instructions: An ISA has a set of instructions and instruction extensions. For example,
the fifth iteration of RISC ISA [117] proposes several extensions to the 32-bit base-integer in-
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struction set (RV32I) such as 16-bit compressed instruction extension, multiplier and division
extension, 64-bit instruction extension and more. To capture this, the root node has a composi-
tion relation to the classes Instruction and Extension with multiplicity [1..*]. Each instruction
belongs to a specific extension in the ISA. This is captured via an association relation between
the classes Instruction and Extension. Each instruction has a Name, a Mnemonic and an attribute
(Active) to specify whether the instruction is supported in a specific microarchitecture.

The behavior of an instruction is described as a set of changes the instruction triggers in the
architectural state of the CPU. For every piece of state that is influenced, the Instruction instance
has one InstructionBehavior child. For example, an ADD instruction performs an addition of
the operands and stores the result in the general purpose register file. The program counter
value is also incremented to the next instruction address. To capture the behaviors in the form
of an expression tree, the class InstructionBehavior has an attribute called DataFlowExpression,
whose type is defined by the metamodel definition shown in Fig. 4.11. Each operation of the
instruction influences an architectural state of the design. To specify this, an association relation
is added to the ObjectProperties class.

Exceptions: Exceptions are special events that may occur during the course of a program’s
execution. Exceptions can be termed as unexpected events that interrupt the program execution
flow. For example, when the decoder encounters an instruction word that has not been defined
by the ISA, the processor rectifies this anomaly by executing a predefined exception service
routine. Exception events follow a similar execution semantics as instructions. When an excep-
tion is triggered, a set of predefined operations are performed and respective architectural states
are updated.

The MetaRISC metamodel enables to define a set of possible exception events. The class
Exception defines a set of attributes to describe various properties of an exception. The attribute
Synchronous is used to indicate the triggering mechanism of an exception. The attributes Excep-
tionCode and Priority are used to assign a specific code and a priority value for each exception.
The Active attribute is used to indicate the support for an exception event in the microarchitec-
ture. Some exceptions are always associated with specific instruction execution. For example,
the divide-by-zero exception can only occur with operations that utilize the divider circuit.
Similarly, data memory access fault exceptions can occur during the execution of load-store
instructions. Therefore, to indicate this type of relation, an association relation is added be-
tween the class Exception and class Opt which also holds an association relation to the specific
instruction.

The model instances of the metamodel definition shown in Fig. 4.16 are created by filling
the details of a specific ISA. The model instances of the MetaRISC metamodel are models of
the processor cores without any timing annotation or constraints and do not restrict the mi-
croarchitectural choices. For the RTL generation, the flow outlined in Section 3.4 is used to
define various architecture alternatives, in which the Templates of Design (ToD) describe the
microarchitecture blue-prints [98].

Trace-based Approach for Modeling Pipelined Architectures of Processors

A model instance created as described in the previous section includes all details of an ISA
required for a processor implementation. However, the details are not sufficient for property
generation as the microarchitectural implementation of a processor core may utilize different
pipelined architecture alternatives to improve the program throughput [87]. The pipelined ar-
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chitecture introduces a deeper sequential behavior for each instruction execution. For example
in a 5 stage pipeline architecture, instead of one clock cycle latency, it may take 5 or more
clock cycles for an instruction to complete. Therefore, for the purpose of property generation, a
timed model of the processor core is required to precisely model the behavior of an instruction
execution.

The notion of “traces” introduced in Section 4.6.1 is utilized to model the behavior of an
instruction execution in a pipelined processor. In Fig. 4.15, a metamodel definition for modeling
a state transition system based on the notion of traces has been introduced. A processor core is a
state transition system, in which a group of instructions belonging to a certain instruction class
exhibit similar behaviors except that they perform a specific dataflow operation depending on
the opcode value (e.g., addition or subtraction). For example, ADD and SUB instructions belong
to the same instruction class in RISC-V ISA [117] and only differ in the dataflow operation they
perform, i.e., addition and subtraction of operands. A set of state transition graphs are created
such that the operations of all the instructions supported by the processor core are modeled.

The model instances of the metamodel shown in Fig. 4.15 can be created using the GUI pro-
vided by the automation framework (cf. Section 3.2). Alternatively, the model instances can be
defined in a program utilizing the APIs and plugins provided by the automation framework. For
processor cores, the latter approach is more suited as it enables flexibility to define model in-
stances based on the number of pipeline stages and other configurable parameters (e.g., support
for different instruction extensions).

A pseudocode snippet is shown in Fig. 4.17 for extracting the ISA details and to define state
transition graphs for each instruction class2 for a processor core implementing a RISC-based
ISA. A model instance of the MetaRISC metamodel (Fig. 4.16) is passed as an argument to the
procedure ST G_DEFINIT IONS. The procedure definition accepts the default length of state
transitions as another argument, and returns a list of state transition graphs.

A graphical representation of the combined state transition graphs defined for a 5-stage pro-
cessor is shown in Fig. 4.18. In a 5-stage pipeline, each instruction traverses different pipeline
stages modifying the corresponding signals based on its instruction encoding and specified op-
eration. The graphical representation captures the behavior of different instructions classes of a
typical RISC-based ISA.

For each instruction class, a state transition graph is initialized as shown in line 4. An
initialized state transition graph models the behavior of all instructions belonging to a certain
instruction class. A state object i f (instruction-fetch) is added to the state transition graph. The
state object i f is defined by a Boolean expression expression_ f etch (line 7), which represents
a state of the processor when a new instruction is fetched. Lines 8 and 9 show the addition
of two state transitions i f _reset and i f _i f to the state transition graph with the corresponding
attributes. For example, the state transition i f _i f has state object i f as both source and sink
states, and a transition length of one clock cycle (de f _len).

Similarly, lines 11-14 and 16-19 show the addition of state objects (id, ex) and state tran-
sitions (i f _id, id_ex) relevant to the processor pipelines instruction-decode and instruction-
execute, respectively. During state transitions, the processor performs one or more operations
and the expected signal behaviors are captured as action expressions (action_expression_i f _id,
action_expression_id_ex). The state objects i f , id and ex are common to all instruction classes.
However, state objects mem (memory-access) and wb (write-back) are specific to certain in-

2It should be noted that a state transition graph is used to define the traces. And this does not necessarily have
the behavior of an FSM.
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1: procedure STG_DEFINITIONS(isa_model_ins,de f _len)
2: transition_graphs← { /0}
3: for each inst_type ∈ isa_model_ins.get_types() do
4: stg = isa_model_ins.addStateTransitionGraph(inst_type.getName())
5:
6: i f = stg.addState() //instruction fetch
7: i f .insert(expression_ f etch)
8: reset_i f = stg.addTransition(′reset ′, /0, i f ,de f _len)
9: i f _i f = stg.addTransition(′wait ′, i f , i f ,de f _len)

10:
11: id = stg.addState() //instruction decode
12: id.insert(expression_decode)
13: i f _id = stg.addTransition(′i f 2id′, i f , id,de f _len)
14: i f _id.insert(action_expression_i f _id)
15:
16: ex = stg.addState() //instruction execute
17: ex.insert(expression_execute)
18: id_ex = stg.addTransition(′id2ex′, id,ex,de f _len)
19: id_ex.insert(action_expression_id_ex)
20:
21: if inst_type = (branch|| jump) then
22: ex_i f = stg.addTransition(′ jump′,ex, i f ,de f _len)
23: else
24: if inst_type = (load||store) then
25: mem = stg.addState() //memory-access
26: mem.insert(expression_mem_access)
27: ex_mem = stg.addTransition(′ex2mem′,ex,mem,de f _len)
28: mem_mem = stg.addTransition(′wait ′,mem,mem,de f _len)
29: if inst_type = store then
30: mem_i f = stg.addTransition(′mem2i f ′,mem, i f ,de f _len)
31: else
32: wb = stg.addState() //write back
33: wb.insert(expression_write_back)
34: if inst_type = load then
35: mem_wb = stg.addTransition(′mem2wb′,mem,wb,de f _len)
36: else
37: ex_wb = stg.addTransition(′ex2wb′,ex,wb,de f _len)
38: ex_wb.insert(action_expression_ex_wb)
39: wb_i f = stg.addTransition(′wb2i f ′,wb, i f ,de f _len)
40: transition_graphs.insert(stg)
41: return transition_graphs

Figure 4.17: Pseudocode for defining state transition graphs

struction classes. For example, instructions that belong to branch or jump instruction class are
not expected to perform any operations in memory-access and write-back pipeline stages. Ac-
cordingly, lines 21-39 show the conditional definition of state and state transition objects based
on the instruction class.

An important aspect of modeling the design specifications is to allow architecture alterna-
tives. Towards this end, the transitions are created such that the number of clock cycles required
to transition from one state to another is configurable. This is achieved by setting the Length
attribute of the class Transition in Fig. 4.15. A state transition graph for a 3-stage pipeline is
shown in Fig. 4.19. Here, the state definitions from 5-stage pipeline are preserved and com-
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Figure 4.18: State transition graph for a 5-stage pipeline processor
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Figure 4.19: State transition graph for a 3-stage pipeline processor

bined to form composite state definitions. For example, the length of the transition trn_if_id is
set to zero and the states fetch and decode are combined to form a composite state fetch_decode.
Similarly, other state definitions are merged based on the length of the transitions. The required
combination of state and transition definitions are extracted automatically by transforming the
existing expression definitions based on the target architecture. The correct behavior is pre-
served due to the dataflow semantics of the expression.

4.6.3 Coverage Perspective
A mechanism is needed to validate that all specification items are considered by a set of prop-
erties and that all functionalities of a design under verification (DUV) are verified by a set of
properties. In Section 2.5, a completeness criterion for a set of properties is elaborated. Such a
completeness mechanism is not applicable for purely combinational designs due to the absence
of state elements (cf. Section 4.5). A notion of operations and transition from one important
state to the next important state cannot be conceptualized for combinatorial designs. However,
the case-split test from completeness checks (cf. Section 2.5) can be used to validate that all
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input combinations are considered by a set of properties. For ensuring that the DUV is fully
verified, a property is generated for each specification item. In other words, a set of properties
are generated targeting all output signals. Additionally, tracing of API calls while generating
properties ensures that every specification item is covered at-least once.

For sequential designs, the completeness criterion described in Section 2.5 is followed. First
the sequential behavior of a circuit is modeled as a trace structure. A trace function of a trace
structure can be equated to an “operation” of the C-IPC methodology defined in Section 2.5
(cd. 10). On the same notion, a conceptual state machine (CSM) can be derived from a trace
structure. After modeling the design specifications as a trace structure, ToPs are setup to gener-
ate the properties following the C-IPC methodology. A set of operation properties are generated
for a trace structure such that each property captures a specific trace of the design. By using
the C-IPC methodology it can be proven that no verification holes has been left. Otherwise, the
specification items are incomplete and must be extended.

Additionally, to ensure that all specification items are considered for property generation,
function calls to retrieve specification items are traced. So it is ensured that every specification
item is covered by at-least one property model. The completeness strategy for processor cores
differs from those of typical sequential designs (e.g., serial-peripheral interface bus). This is
because in processor cores, multiple operations may be simultaneously active at a certain time
point, whereas most sequential designs perform only one operation at a specific time point.
A completeness strategy for processor cores following C-IPC methodology is outlined in Sec-
tion 5.3. We introduce a new processor verification methodology by property generation and
S2QED, and formulate a completeness strategy in Sections 5.5.2 and 5.5.5. For typical sequen-
tial designs, we provide a full overview of the property generation flow including specification
modeling, generation of properties and subsequent completeness analysis and validate it in a
real life design in Section 6.2.1.

4.7 Related work: Property Generation
Property generation approaches for functional verification of hardware designs have been ex-
plored before. It is interesting to compare the existing works to the property generation flow
proposed in this work. The related works for property generation can be classified to three
categories as described in the following.

4.7.1 Automated Formal Apps

Commercial formal verification tools provide pre-packaged solutions commonly referred to
as “formal apps” [85, 19, 78, 108]. Some well known examples are connectivity verification
app, control and status register verification app, security path verification app, fault injection
and detection app, etc. The formal apps take the metadata information as input and produce
properties for a given use case. For example in connectivity verification, the connections at an
SoC level or at block level are captured in a metadata format such as comma separated values
(CSV), IP-XACT or extensible markup language (XML). The properties are generated from the
metadata information and are used to verify that the blocks or IPs are connected according to the
specifications. Similarly in other use cases, the DUV is verified with the generated properties
to ensure that the DUV conforms to the metadata description.
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The formal apps offered by the commercial tools address specific use cases where the veri-
fication intent is limited and the specification details are available in a metadata format. These
formal apps do not address the main use case, where the properties need to be developed from
informal specifications. In many cases, the significant (manual) effort is needed to develop the
metadata information required for formal apps.

4.7.2 Generation from Simulation Data and Static RTL Analysis
A number of approaches exist that generate/extract properties from the data collected during
simulation runs [115, 101, 51, 92, 25, 122]. Although these approaches differ in their imple-
mentation mechanism, they use simulation test cases to generate and dump data required for
automatic extraction of assertions. The proposed techniques use data mining, static analysis
of the RTL and machine learning algorithms to generate candidate assertions. The candidate
assertions are derived from the temporal traces created during simulation runs. These candi-
date assertions may also include incorrect assertions and hence, need revision in a formal or
simulation tool to eliminate the spurious assertions.

Assertions generated from such mechanisms may not be well suited for comprehensive
design verification. Building extensive/exhaustive set of test cases for simulation runs is not
realistic (due to large and complex designs) and hence, the available simulation database may
not cover the entire design space. Thus, the generated assertions are incomplete, insufficient
and can only be used to supplement the simulation based verification. The use cases include
coverage closure, documentation and bug hunting.

A static approach is proposed in [122], in which the assertions are generated by adopting
an RTL automatic test pattern generation (ATPG) algorithm. A set of assertions is generated
for each output signal and only a minimal set required for covering the complete design space
are considered. Even though the approach can be used to obtain 100% design space coverage,
potential bug escapes are possible as the assertions are not generated from specifications.

In [123], a technique is proposed in which the assertions are generated from natural speci-
fications by performing semantic analysis of the sentences. The approach parses sentences and
examines the syntactic parse tree to locate subtrees that are associated with important specifi-
cation clauses. Although this approach creates more interest, the applicability and scalability to
real life designs is questionable.

4.7.3 Generation Following the Property-Driven Development Paradigm
In [113, 73], a design methodology called “Property-Driven Design” (PDD) is proposed. In
PDD, the system-level specifications are captured in an abstract system model and this system
model is used as the golden reference for further design steps. In other words, PDD attempts to
shift the design focus from RTL to the system level by establishing a sound abstraction between
RTL and system-level descriptions.

In PDD, a set of operation properties and RTL templates are generated from an abstract
system model. In the next step (refinement step), the design engineer adds microarchitectural
details to the generated RTL templates. During this refinement activity, the generated operation
properties are appended with cycle- and bit-accurate details. After the refinement step, an RTL
design and a set of operation properties that are formally proven to hold on the RTL design are
realized.
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The PDD method builds upon path predicate abstraction to establish a sound abstraction
between the RTL and the system-level description. The advantage of the PDD paradigm is to
obtain a formally verified design at lower costs when compared to conventional design flows
with property checking.

In contrast to the generation flow presented in this thesis, PDD is a design paradigm that
aims to shift the design focus from RTL to the system level. Similar to the work presented
in this thesis, the PDD method starts from abstract system specifications. Considering only
the property generation part of PDD, both methods aim to improve the overall verification
productivity by generating a complete set of properties. The main difference is the stage at
which cycle- and bit- accurate details are added. In the generation flow of this thesis, these
details are captured as part of the formal specification models. In case of PDD, these details are
added as part of the refinement activity.
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Chapter 5

Formal Verification of Processor Cores

Property generation by following the principles of model-driven software development is pre-
sented in Chapter 4. The generation flow partially addresses the growing productivity gap in
design verification domain due to the constant increase in complexity of designs. The generated
properties are used to verify design implementations in a formal verification (FV) tool.

Although the combination of automatic property generation and FV provides an efficient
methodology to design verification, they do not address other major concerns. 1) FV (with
brute-force approach) often runs into complexity issues due to the complex nature of designs
i.e., large or sequentially deep designs. 2) FV requires high expertise and in-depth design
knowledge to ensure that all design functionalities are effectively analyzed. 3) The specifica-
tion of a design may not cover the complete behavior of the intended system. Even though
the specification items of individual design components may be completely and correctly spec-
ified, the interaction between the components may not be completely specified, leaving room
for undocumented design behaviors. These undocumented behaviors lead to ambiguity when
dealing with counterexamples. While some counterexamples show design behaviors that can be
ignored as acceptable behaviors within the scope of the design application, others reveal behav-
iors that must be avoided in the implementation. To address these concerns, effective strategies
are required to realize the benefits of property generation and formal verification.

In the subsequent sections of this chapter, formal verification of processor cores is explored.
In particular, formal verification of processors including both simple and superscalar pipelined
processor cores is discussed1.

The specifications of processor cores are described by instruction set architecture (ISA)
manuals. An ISA describes the programmer’s model of a processor by specifying a set of in-
structions to be supported by the processor core and by defining the semantics of an instruction
execution [53, 106, 117]. For example, an ISA describes the size of an instruction word and
assigns specific meaning to different bit positions such that, upon encountering a specific in-
struction word, the processor core performs a set of pre-defined operations. While some ISAs
specify the microarchitecture of the processor cores, most ISAs enable design engineers to im-
plement custom microarchitectures. For example, RISC-V ISA is the 5th iteration in the RISC
based ISAs [117] and allows design engineers to customize the microarchitecture implemen-
tations. This paves the way for design engineers to customize the implementation to realize
non-functional requirements such as safety, throughput, timing, chip area, power consumption

1Simple pipelined processors contain only one pipeline, whereas superscalar processors include two or more
pipelines.
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and more.
Design engineers typically employ techniques such as pipelining, branch prediction or spec-

ulative execution, parallel processing, out-of-order execution, scoreboard, caching, etc. to cus-
tomize the processor core implementation for different applications [87]. As a result, ensuring
the correct implementation of an instruction set in a given microarchitecture poses an enor-
mous verification challenge. Adding only a subset of the optimization techniques increases the
verification complexity by many folds.

A number of approaches for formal verification of processor cores have been proposed
[18, 10, 15, 59, 91, 7]. To briefly summarize, these techniques require high manual effort and
high verification expertise in applying formal methods. Additionally, the methods in [18, 10,
59, 91] do not present a complete verification strategy and as a result, can only be used as
bug hunting techniques. Recently, two processor verification methods named Symbolic Quick
Error Detection (SQED) [104] and Symbolic initial state Symbolic Quick Error Detection
(S2QED) [45] have been proposed. Both SQED and S2QED are highly effective in detecting
difficult to find bugs, but do not provide a complete verification solution for processor cores. In
the following these methods are elaborated and, subsequently, a complete processor verification
solution based on S2QED is proposed.

The chapter is structured as follows: a motivating example is discussed in Section 5.1 to
illustrate the complexity posed by processor verification. Different types of logic bugs in pro-
cessor implementations are discussed in Section 5.2, with examples. A well established crite-
rion for complete processor verification based on C-IPC is elaborated in Section 5.3. A brief
background on SQED and an extension to the technique with symbolic initial states with IPC
is described in Section 5.4. In Section 5.5, a complete processor verification method by ex-
tending the principles of S2QED is proposed. The extensions for covering exception handlers
and superscalar processor verification are elaborated in Sections 5.5.3 and 5.5.4, respectively.
Completeness of the proposed approach for processor verification is discussed in Section 5.5.5.
A summary of the related processor verification methods and their comparison to the method
proposed in this thesis is outlined in Section 5.6.

5.1 Motivating Example

Consider a 5-stage pipelined processor implementation shown in Fig. 5.1. Let us assume that
the processor core supports arithmetic, logical, branch/jump and load-store instructions. The
processor core follows a Harvard architecture by implementing separate instruction and data
memory interfaces.

An instruction that is fetched from the instruction memory is decoded by the Decoder to
determine the operation to be performed by the core. Depending on the instruction word’s
encoding and pre-defined operation, one or more program-visible states of the processor core
are modified. For an add instruction, the ALU is utilized in the execute stage to compute the sum
of the operands. Similarly for a branch instruction, the Branch Control unit is utilized in the
execute stage to determine the fetch address of the next instruction. For load-store instructions,
the memory address is computed during the execute stage and the value from memory is read
in the memory-access stage. The Increment unit in the execute stage is used to increment the
contents of source register for load-store instructions. The increment operation is performed
after computing the effective memory address. The Register File is updated in the write-back
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Figure 5.1: Block diagram of a 5-stage pipelined processor ([87])

stage with the results of an instruction execution.
Due to overlapping execution of instructions in a pipelined architecture, dependency scenar-

ios such as read-after-write (RAW), write-after-write (WAW) or write-after-read (WAR) hazards
may occur. A pipelined processor core implements units such as Pipeline stall unit and For-
ward unit to handle such dependencies. During load-store instructions, it is possible that the
data memory requests the core to insert wait states when the data is not ready to be delivered or
accepted.

1: mv R4, #0024 // [R4] = #0024
2: mv R3, #0004 // [R3] = #0004
3: ld R4, [R4+], #0100 // [R4] = DMEM[#0124] and [R4] = [R4] + #0004
4: add R2, R4, R3 // [R2] = [R4] + [R3]

Figure 5.2: Instruction sequence executed by the processor (shown in Fig. 5.1)

Let us consider an instruction sequence shown in Fig. 5.2. The instructions in lines 1-2
move the constant values #0024 and #0004 to registers R4 and R3, respectively. The instruction
in line 3 loads a value from data memory to the destination register (R4) and post-increments
the contents of the source register by #0004. The addresss of the memory location is computed
by adding the contents of source register (R4) and an immediate value (#0124). The instruction
in line 4 is an add instruction that adds the contents of source registers (R4, R3) and stores the
result in a destination register (R2). When the add instruction is in the decode stage, the ld
instruction is in the execute stage. Due to a RAW hazard between the add and ld instructions
(R4 is destination of ld and source of add), decoding of the add instruction is stalled for as
many clock cycles as the data is not available from memory.

It should be noted that both destination and source registers of the instruction in line 3 is R4.
In such a scenario, since it is architecturally not possible to update the same register with two
different values, the specification gives priority to the value from data memory. Therefore, the
incremented value of R4 shall be ignored and the value from memory shall be written to the
Register File. However due to a bug in the processor, although the read value from memory is
written to the Register File, a wrong value (from post-increment) is put into the Forward Unit
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to be forwarded to the add instruction.
The bug occurs due to an incorrect implementation of hazard detection and forwarding

units. The bug results in a wrong value being written to the Register File and may corrupt the
execution of an entire program. These types of bugs occur only when a specific sequence of
instructions is executed. In order to detect such bugs, properties shall be written such that the
formal tool is free to exercise every possible instruction execution scenario. To come up with a
set of properties that activate all bugs in a processor core requires high manual effort and high
verification expertise with traditional approaches.

5.2 Design Errors in Processor Cores
The microarchitecture of a processor core implementing an ISA is typically verified at the
Register-Transfer Level (RTL). The RTL implementation of the processor needs to conform to
the ISA and the microarchitecture specifications must be free of design errors. Design errors in
hardware, often called “bugs” or “logic bugs”, lead to incorrect behavior of the implementation
in certain scenarios. The design errors may occur during the instruction execution, where the
implemented behavior deviates from the specified behavior.
Definition 17 [Error Scenario]:
In the context of processor designs, an error is a deviation of the implementation’s behavior
from its specification, in a certain error scenario. An error scenario consists of (1) an instruction
in which the error becomes observable in an architectural state, (2) the instruction’s operands,
and, (3) its program context, i.e., the sequence of previously executed instructions.

An error scenario activates a logic bug in the processor core and results in a deviation
from the specified behavior. In a processor core, logic bugs can be categorized into single-
instruction bugs or multiple-instruction bugs. Our categorization is based on the assumption
that the processor implementation consists of at-least 2 or more pipeline stages, a valid assump-
tion for modern processor cores. In case of single-cycle implementation of processor cores,
only single-instruction bugs can occur since multiple-instruction bugs require overlapping of
instruction executions.
Definition 18 [Single-instruction bug]:
A bug is a single-instruction bug if there exists (1) an instruction opcode and (2) a set of
operands such that the execution of the instruction leads to an error in all program contexts,
i.e., independently of all previously executed instructions.

Example An instruction sequence is shown in Fig. 5.3 to illustrate a single-instruction
bug. The instructions in the first four lines move the constant values to respective registers.
The instructions in line 5 and line 6 perform the addition (ADD) operation. Both operands
of the ADD instruction in line 6 are zeros. The result of this instruction execution is
#FFFF, while the expected result is #0000 (zero). Error scenario: a logic bug is activated
when both operands of an ADD instruction are zero. The error is observable in the register
file after the result has been committed. The bug is observable at every instance when
both the operands of the ADD instruction are zero. From this illustration it is clear that the
program context is not relevant for single-instruction bugs.

Definition 19 [Multiple-instruction bug]:
A bug is a multiple-instruction bug if it is not a single-instruction bug and if there exists (1) an
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1: MOV R1, #4 // -> REGFILE[R1] = 4
2: MOV R2, #2 // -> REGFILE[R2] = 2
3: MOV R3, #0 // -> REGFILE[R3] = 0
4: MOV R4, #0 // -> REGFILE[R4] = 0
5: ADD R5, R1, R2 // -> REGFILE[R5] = 6
6: ADD R6, R3, R4 // -> REGFILE[R6] = #FFFF

Figure 5.3: Example of a single-instruction bugs

instruction opcode, (2) a set of operands, and, (3) a program context such that the execution of
the instruction leads to an error.

A multiple-instruction bug requires error scenarios consisting of specific instruction se-
quences that set up the microarchitecture of the processor such that the bug is activated. In
contrast to a single-instruction bug, there are program contexts in which a multiple-instruction
bug is not activated. In case of a processor core with only one pipeline, multiple-instruction
bugs occur within the context of one pipeline. We refer to these bugs as intra-pipeline multiple-
instruction bugs. An example for an intra-pipeline multiple-instruction bug is presented in the
following.

Example Consider the instruction sequence shown in Fig. 5.4. A logic bug is acti-
vated when an ADD instruction (line 2) is executed immediately after a MAC (multiply-
accumulate) instruction such that there is a Read-After-Write (RAW) data hazard between
the instructions. The MAC instruction has a latency of 3 clock cycles and, for forwarding
the correct value, the pipeline has to stall for 2 clock cycles before executing the ADD
instruction. However, due to wrong hazard detection logic, the stall signal is high for only
one clock cycle and a wrong value is forwarded to the ADD instruction. The bug leads to
an error in an observable register (e.g., R2) after the result of the ADD instruction has been
committed. However, the same bug is not activated when the ADD instruction (line 5)
is preceded by any instruction (e.g., NOP) such that there is no RAW data hazard. The
implementation’s behavior only deviates from the specification when a specific sequence
of instructions is executed. Therefore, the program context is relevant for intra-pipeline
multiple-instruction bugs.

1: MAC R4, R3, R6, #123 // bug activation - step 1
2: ADD R2, R3, R4 // bug occurs: pipeline stalls for only one cycle,

// wrong forwarding of R4
3: NOP // bug not activated
4: NOP // bug not activated
5: ADD R2, R3, R4 // ADD executed without error

Figure 5.4: Example of an intra-pipeline multiple-instruction bug

In superscalar processors, instructions are executed simultaneously in two or more pipelines.
Different pipelines are configured to execute specific classes of instructions [105, 21]. For
example, instructions that perform integer operations are executed by the integer pipeline and
all memory (load-store) instructions are executed by the load-store pipeline. The instruction
stream is pre-decoded before the instructions are issued to specific pipelines. Intra-pipeline
multiple-instruction bugs discussed above for simple pipelines occur in superscalar processors
in the context of one isolated pipeline. Additionally, in superscalar processors with 2 or more
parallel pipelines, logic bugs can also occur due to the incorrect implementation of the logic that
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controls the data dependency between instructions executed in different pipelines. We refer to
these bugs as inter-pipeline multiple-instruction bugs to imply that the error scenario is caused
between different pipelines.

Example Consider an instruction sequence shown in Fig. 5.5. The load-word (LW) in-
struction precedes the ADD instruction in the program. The LW instruction is executed by
the load-store pipeline, whereas the ADD instruction is executed by the integer pipeline. A
logic bug is activated when there is a RAW data hazard between the instructions. The bug
leads to an error in an observable register (e.g., R2) after the result of the ADD instruction
has been committed. However, the same bug is not activated when the ADD instruction
(line 4) is preceded by any instruction (e.g., AND) that is executed by the integer pipeline.
The correct value (e.g., R3) is forwarded to the ADD instruction from the results of AND
instruction within the integer pipeline.

1: LW R4, R3, #1 // bug activation - step 1
2: ADD R2, R3, R4 // bug occurs: wrong forwarding of R4
3: AND R3, R3, R1 // bug not activated
4: ADD R2, R3, R4 // ADD executed without error

Figure 5.5: Example of an inter-pipeline multiple-instruction bug

A multiple-instruction bug may not necessarily lead to an incorrect architectural state after
the program has completed executing. Instead, it may affect the overall performance of the
program by unnecessarily inserting stalls in the pipeline. These type of bugs are referred to
as performance bugs in the context of this thesis. They occur due to the incorrect logic that
wrongly computes the data dependency between successive instructions and incurs stalls in the
pipeline. Although such error scenarios cause delays and impact the overall performance of the
processor, they do not result in an incorrect architectural state of the processor.

Example Consider the instruction sequence shown in Fig. 5.6. A logic bug is activated
when an ADD instruction (line 2) is executed immediately after a LW instruction such
that there is a RAW data hazard (register R0) between the instructions. Here, the LW
instruction loads a value from the data memory to the register R0. Typically, the register R0
is hardwired to zero, and any instruction issuing a write to R0 is either dropped or ignored.
In such a scenario, the ADD instruction does need to wait until the data value is available
from the memory. However, the incorrect hazard detection unit detects a dependency
between the two instructions and issues a stall. The same bug is not activated when the
ADD instruction (line 4) is preceded by any instruction when there is no RAW data hazard.

1: LW R0, R3, #1 // bug activation - step 1
2: ADD R2, R0, R4 // bug occurs: unnecessary stalling of pipeline
3: LW R5, R0, #1 // bug not activated
4: ADD R4, R0, R3 // bug does not occur: no stalling of pipeline

Figure 5.6: Example of a multiple-instruction (performance) bug
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5.3 Completeness Criteria for Processor Verification
A major goal in formal processor verification is to fully analyze the microarchitectural imple-
mentation with a complete set of properties. A completeness criterion for a set of properties
is outlined in Section 2.5. Processor verification can also follow the notion of Complete Inter-
val Property Checking (C-IPC). In contrast to controller-based designs, processors are typically
implemented following a pipelined architecture. In controller-based designs, at an arbitrary
timepoint t, one specific operation is active depending on the architectural state of the design.
In case of pipelined processors, several operations are performed simultaneously such that dif-
ferent operations overlap by several clock cycles. In the example shown in Fig. 5.6, when the
ADD instruction is in the decode stage, the LW instruction may be in the execute stage depend-
ing on the pipeline architecture. In a 5-stage pipeline, these two instructions are simultaneously
active for 4 clock cycles. In pipelined processor implementations, each instruction execution
can be considered an operation, which is preceded and succeeded by other instructions. Thus,
an operational property in a pipeline captures the execution of a single instruction independent
of preceding and succeeding instructions.

ADDreset JUMP LOAD...ready_for_next

_instruction

Figure 5.7: Conceptual State Machine of a pipelined processor

A conceptual state machine (CSM) can be constructed as shown in Fig. 5.7 for illustrat-
ing the operations in a processor core. Each operation starts and ends in a state in which
the processor is ready for a new instruction. The state machine is trivial with the only state
ready_for_next_instruction, with all transitions starting and ending in this state and reset lead-
ing to this state.

For determining the completeness of a set of properties, several tests are used in C-IPC
which are also applicable to processor verification.

1. Successor test: In case of pipelined processors, the successor operation overlaps with
the predecessor operation. This is due to interleaving of instructions in the pipeline.
Consequently, there is no possibility of reaching a non-unique important state after the
execution of an operation. As a result, proving the successor test is trivial which checks
every operation is succeeded by another operation and that the sequence of operations are
correctly captured [81].

2. Determination test: For the determination test, a property set needs to determine the val-
ues of program-visible states and outputs signals at every clock cycle. The determination
test ensures that all important architectural states and outputs of the processor core are
uniquely determined for every instruction execution. Formulating the determination re-
quirements and proving the determination test for a processor core is similar to other
designs.

3. Case-split test: In a processor core every instruction is encoded in an unique opcode. The
case-split test for processor verification ensures that every instruction is uniquely covered
by at least one property. The case-split test also ensures that for each instruction, the
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execution of the next instruction is covered by at least one property. Since the case-split
test considers every possible instruction word, it also considers illegal opcodes. Typically,
all illegal opcode words are handled similarly in a processor implementation. A property
must be implemented to cover the behavior of the processor when an illegal opcode is
encountered.

4. Reset test: The processor core starts executing instructions immediately after the reset.
In other words, the processor core enters the state ready_for_next_instruction after the
release of reset signal. Since there is only one unique state, proving the reset test simply
checks that the reset moves the processor to a unique important state.

These checks inductively prove that a complete property set uniquely describes the behavior of
a processor for every instruction, in every possible program context (since every sequence of
instructions is covered by a chain of operations). As a result, the set of properties verifies the
correct execution of every instruction for every possible program context.

5.4 Symbolic Quick Error Detection
Symbolic Quick Error Detection originated from the principles of Quick Error Detection (QED)
tests. QED is a post-silicon validation mechanism which detects and localizes errors with a
quick turn-around time [72]. QED performs a set of systematic transformations of existing
post-silicon validation tests into a new family of QED tests. The main advantage of QED
over other post-silicon validation methods is that QED reduces the error detection latency, i.e.,
the time elapsed between the activation of a bug and the detection of an observable failure,
by several orders of magnitude. Symbolic Quick Error Detection (SQED) is a formal verifi-
cation technique originally proposed to find short error traces during post-silicon validation.
Among several transformations, Error Detection using Duplicated Instructions for Validation
(EDDI-V) [104] is used to target bugs in the processor core.

5.4.1 Background
Quick Error Detection: EDDI-V targets bugs in a processor by frequently checking the re-
sults of original instructions against the results of duplicated instructions created by EDDI-V.
EDDI-V partitions the register file into two halves, with a unique one-to-one mapping between
the registers in the two halves (e.g., R0 and R16, R1 and R17, etc.). For every load, store,
arithmetic, logical, shift, or move instruction in the original test, EDDI-V creates a duplicate
instruction using the duplicate registers. The execution starts from a QED-consistent registers
state.
Definition 20 [QED-consistent registers]:
For a given processor with N registers, a QED-consistent register state is defined by the follow-
ing equation:

qed_consistent_registers =
∧

a∈{0..(N/2)−1}
Ra = Ra′ (5.1)

where, Ra and Ra′ are the original and (corresponding) duplicate registers, respectively.
The results of original instruction execution are committed to the first half of the register

file, while the results of duplicate instruction execution are committed to the second register
file half. Both instruction streams execute in the same order but are intertwined. To compare
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intermediate results from both instruction streams, the transformation inserts frequent QED-
consistency checks. A mismatch in any consistency check indicates an error (i.e., the QED test
fails).

1: MOV R0, #0 // initialize R0 = 0
2: MOV R1, #1 // initialize R1 = 1
3: MOV R2, #2 // initialize R2 = 2
4: MOV R3, #3 // initialize R3 = 3
5: MOV R4, #4 // initialize R4 = 4
6: MOV R5, #5 // initialize R5 = 5
7: ADD R1, R2, R3 // R1 <- R2 + R3
8: SUB R4, R5, R1 // R4 <- R5 - R1
9: ADD R4, R2, R4 // R4 <- R2 + R4

Figure 5.8: Quick Error Detection: original instruction sequence

1: MOV R0, #0 // initialize R0 = 0
2: MOV R1, #1 // initialize R1 = 1
3: MOV R2, #2 // initialize R2 = 2
4: MOV R3, #3 // initialize R3 = 3
5: MOV R4, #4 // initialize R4 = 4
6: MOV R5, #5 // initialize R5 = 5
7: MOV R16, #0 // initialize R16 = 0
8: MOV R17, #1 // initialize R17 = 1
9: MOV R18, #2 // initialize R18 = 2

10: MOV R19, #3 // initialize R19 = 3
11: MOV R20, #4 // initialize R20 = 4
12: MOV R21, #5 // initialize R21 = 5
13: ADD R1, R2, R3 // R1 <- R2 + R3
14: SUB R4, R5, R1 // R4 <- R5 - R1
15: ADD R4, R2, R4 // R4 <- R2 + R4
16: ADD R17, R18, R19 // R1 <- R2 + R3
17: SUB R20, R21, R17 // R4 <- R5 - R6
18: ADD R20, R18, R20 // R20 <- R18 + R20
19: CMP R4, 20 // compare corresponding register values
20: BNE qed_test_fail // branch taken =⇒ bug detected

Figure 5.9: Quick Error Detection: instruction sequence with EDDI-V transformation

An example (original) instruction sequence is shown in Fig. 5.8. The original instruction se-
quence is converted to a QED test using EDDI-V transformations as shown in Fig. 5.9. Initially
the duplicate registers (second half) are also initialized with the same values as the first half of
the register file. The initialization is important to ensure that the sequence starts from a “QED-
consistent register state”. After executing the EDDI-V instruction stream, the corresponding
register values are compared according to Eq. 5.1. When the execution of the branch-if-not-
equal BNE instruction returns true, an error is detected.

Symbolic Quick Error Detection: In order to adapt QED for pre-silicon verification,
SQED uses a BMC proof method for logic bug detection and localization. The BMC tool
searches the space of all possible QED tests (within its bound).

The computation model of SQED for BMC is illustrated in Fig. 5.10. The computation
model includes two modes, original mode and duplicate mode,that are used in series to form a
QED test from an instruction sequence fetched by the processor. The processor core (shown as
CPU in Fig. 5.10) is instrumented with a QED module, which is conceptually placed between
the fetch and decode stages of the pipeline. The role of the QED module is to buffer the
instructions considered by the BMC tool during the original mode, and to direct the BMC tool
to execute the same but transformed instructions in the duplicate mode, in the same order. In

73



5.4. SYMBOLIC QUICK ERROR DETECTION

CPU

instr_orig1

CPU CPU

S0 S1 S2

CPU

instr_dup1

CPU CPU

S4 S5 S6

instr_dup2 instr_dup3

instr_orig2 instr_orig3

S3

S3

original mode

duplicate mode

Figure 5.10: Computation model of SQED for Bounded Model Checking

Fig. 5.10, the processor core is unrolled for three iterations each in both original and duplicate
mode. That is, the model is unrolled for a QED test of length three. While the BMC tool can
consider any sequence of instructions in the original mode, the initial state S0 is a fixed state
from which the design unrolling starts (cf. Section 2.4.5).

The property provided to BMC is derived from the check that would detect the error during
a QED test, for example using the EDDI-V transform. At the end of duplicated sequence, i.e.,
after executing the EDDI-V instruction sequence, the QED module raises a flag (qed_ready)
to indicate that the BMC tool can compare the two register halves for consistency. The flag
qed_ready is high, when the design state is expected to be QED-consistent in a bug free im-
plementation. As a result, the BMC tool attempts to find a counterexample to the following
property:

qed_ready =⇒ qed_consistent_registers (5.2)

where qed_consistent_registers represents the state given by the Eq. 5.1. The BMC tool checks
this property for all EDDI-V QED tests within its bound, but only after a complete original and
duplicate sequence of instructions have executed.

5.4.2 Extending SQED with Interval Property Checking
In Section 2.4.5, the computation model of BMC and the proof method is outlined. BMC starts
unrolling the design from a fixed starting state and searches through the design state space to
find a design state that violates the property formulation. When a counterexample could not be
found, BMC has proven that the design fulfills the property for a given depth of k.

Experiments on real designs have shown that SQED with a BMC tool can identify hard-to-
find bugs [104, 72]. However, since SQED uses BMC to search for failing QED tests, it cannot
make a clear (unbounded) statement on the absence of QED tests that could fail. Consequently,
failing QED tests that can be detected only if started from a specific starting state — which the
BMC tool didn’t consider — cannot be found.

To make a concrete statement about the absence of a failing QED test, SQED is extended
with the interval property checking (IPC) proof method. IPC is a SAT-based model checking
technique that provides unbounded proofs (cf. Section 2.4.6). The computation model of SQED
with interval property checking is shown in Fig. 5.11. The main difference to the BMC-based
approach is the state from which the unrolling of the design starts. In case of BMC, the starting
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Figure 5.11: Computation model of SQED for Interval Property Checking

state (S0 in Fig. 5.10) is the initial state (e.g., reset state) of the design. In IPC, the solver con-
siders all states (St in Fig. 5.11) such that the assumption part of the property holds for the state.
In other words, the starting state St is symbolic. In order to avoid spurious counterexamples (or
false negatives), IPC uses induction-based techniques to generate invariants from the reset state.

assume:
at t: qed_ready;

prove:
at t: qed_consistent_registers();

Figure 5.12: SQED property in ITL style

At an arbitrary time point t, the IPC solver chooses a QED test to execute on the processor
with a symbolic starting state St . When the QED module raises the flag qed_ready, the IPC
solver attempts to find a counterexample to the property shown in Eq. 5.2. The property is
written as an interval property in Fig. 5.12. Without further constraints on the starting state St ,
the property fails for the following reasons: (1) the starting state may not be a QED-consistent
state; (2) the starting state may include active instructions in the pipeline that were issued before
the timepoint t. Therefore, without additional constraints on starting state the solver returns with
spurious counterexamples for the property shown in Fig. 5.12.

assume:
at t: qed_consistent_registers();
at t: flushed_pipeline();
at t + k: qed_ready;

prove:
at t + k: qed_consistent_registers();

Figure 5.13: SQED property in ITL style with additional constraints

To meaningfully extend SQED with IPC, additional constraints are needed on the starting
state St . First, the state St needs to be a QED-consistent state, and second, at t there should not be
any active instruction in the pipeline. The extended SQED property with additional constraints
is shown in Fig. 5.13. The constraint qed_consistent_registers() at t restricts the starting state
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to a QED-consistent state, while the constraint flushed_pipeline() ensures that the pipeline is
in a clean state and there are no active instructions in the pipeline. The solver then attempts
to check the QED-consistency when the QED module raises the qed_ready flag at an arbitrary
time point t + k, where k is the length of the QED test in terms of number of instructions.

5.4.3 Observations on SQED
The IPC-based extension to SQED ensures that any QED test that can fail in the state space of
a processor core is detected by the SQED property shown in Fig. 5.13. However, for making
a clear statement on the absence of a failing QED test, the SQED property should pass on the
computation model shown in Fig. 5.11. The IPC-based extension to SQED was applied on
an industrial automotive micro-controller [103] and a RISC-V processor core with 5 pipeline
stages. In the case of the RISC-V core, the solver was able to reach a depth of k = 12 after 60
hours of proof runtime, where k is the number of sequential unrollings of the design. Similarly
on the micro-controller core, the solver was able to reach a depth of k = 12 after 24 hours of
proof runtime. Although SQED presents an effective method for detecting hard-to-find bugs,
there are shortcomings of the SQED method.

1. SQED cannot detect all design errors in processor cores: SQED finds a certain class of
multiple-instruction bugs that result in a QED-inconsistent state (cf. Section 5.2), but
fails to prove their absence. Further, SQED fails to detect single-instruction bugs as these
bugs affect both original and duplicate modes identically and do not result in a QED-
inconsistent state.

2. Computation model of SQED increases the complexity: The computation models of
SQED for BMC and IPC-based proof methods are depicted in Fig. 5.10 and Fig. 5.11,
respectively. The design unrolling is shown for a QED test consisting of three instruc-
tions. For such a a QED test of three instructions, the design is unrolled for six iterations
(original and duplicate mode). In general, the sequential depth of the design is doubled
for finding failing QED tests. High sequential depth coupled with the complexity of pro-
cessor cores hits the state space explosion problem for formal tools. As a consequence, it
is not possible to prove the absence of logic bugs with SQED in this case as well.

5.5 Complete-S2QED for Processor Verification
In order to provide a valid statement on the absence of failing QED tests, Symbolic initial
state Symbolic Quick Error Detection (S2QED) is proposed [45]. S2QED is different to the
IPC based extension to SQED presented in Section 5.4.2. S2QED proposes a new computation
model in order to minimize the complexity for the solvers by reducing the number of design
unrollings. In the subsequent sections, a complete processor verification methodology with
S2QED and property generation is presented.

5.5.1 Background: SQED with Symbolic Initial States
S2QED attempts to address the complexity issue of SQED by modifying the computation
model. The main source of complexity in SQED is the verification model in which the processor
design is unrolled in a serial manner. In S2QED, the processor under verification is duplicated
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into two identical instances that are unrolled in parallel. That is, the computational model of
S2QED consists of two identical and independent instances of the processor design which ex-
ecute instructions in parallel. At an arbitrary time point t, both instances are constrained to
execute the same instruction. S2QED proves that every instruction executes independently of
previous pending instructions in the pipeline, i.e., independently of its program context.
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Figure 5.14: S2QED Computational model

Fig. 5.14 shows the computational model of S2QED in which the two CPU instances (CPU 1

and CPU 2) of the same processor are unrolled for a time window as large as the upper bound
of the execution time of an instruction in the pipeline. In case of SQED, the QED-consistent
state is defined for two halves of the same register file (cf. Section 5.3). In contrast, the QED-
consistent state in the S2QED computation model is defined with respect to the register files
of two independent but identical CPU instances. For a processor with N registers, a QED-
consistent register state is characterized by the named logic expression:

qed_consistent_registers :=
N−1∧
i=0

(
Ri

cpu1 = Ri
cpu2
)

(5.3)

This expression is a Boolean predicate that can be implemented as a macro in the property
language of the verification tool. It represents an architectural state in which the register files
of both CPU instances have identical contents.
Definition 21 [QED consistency]:
In the S2QED computational model, the two CPU instances are QED-consistent at a time
point t, if the corresponding architectural state elements of both instances at time point t hold
the same values.

assume:
at tIF: cpu2_fetched_instr() = cpu1_fetched_instr();
during [tIF+1, tWB]: cpu1_fetched_instr() = NOP;
at tIF: cpu1_state() = S1

t ;
at tWB: qed_consistent_registers();

prove:
at tWB+1: qed_consistent_registers();

Figure 5.15: S2QED property (in ITL style)

Consider an S2QED computational model, in which Rcpu1 and Rcpu2 represent the general
purpose register files of CPU 1 and CPU 2, respectively. Fig. 5.15 shows the S2QED property
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that is to be proven on this model. The property specifies that if two independent CPU in-
stances fetch the same instruction and the register files are consistent with each other before
the write-back (the macro qed_consistent_registers() specifies this consistency), then the two
CPU instances must be QED-consistent also after the write-back, independently of the pipeline
context. The CPU 1 instance is constrained to start from a flushed-pipeline state S1

t and fetches
only NOPs in the time frames for t > 1. A flushed-pipeline state S1

t is forced on the CPU 1

instance by letting it execute only NOPs for as many time frames before time point t as there
are pipeline stages. This results in a significant reduction of proof complexity and excludes any
false counterexample to the property that can result from an inconsistent pipeline register. The
CPU 2 instance is left unconstrained to start from a symbolic initial state S2

t and is allowed to
execute an arbitrary sequence of instructions for the time frames t > 1. In this computational
model, the SAT solver compares the scenario 1, where the Instruction Under Verification (IUV)
is executed in a flushed-pipeline context, with all scenarios 2 where the IUV is executed in an
arbitrary context including the ones where bugs are activated and propagated.

5.5.2 Extending S2QED for Completeness

The S2QED property shown in Fig. 5.15 can detect all functional bugs resulting in a QED-
inconsistent state [45]. In other words, the instruction execution is verified to be independent of
the program context (or previously fetched and executed instructions). As a result, the property
covers multiple-instruction bugs that result in a QED-inconsistent state. However, the method
does not prove the absence of logic bugs in a processor core. For example, single-instruction
bugs can be masked due to the fact that “common-mode” bugs like a bug in the data path of
the ALU have the same effect on both CPU instances and may not lead to a QED-inconsistent
state. Further, certain kinds of multiple-instruction bugs such as performance bugs and other
bugs that do not result in QED inconsistency are not detected. As a result, the S2QED method
can be used to detect a certain class of processor bugs, but S2QED alone cannot guarantee the
functional correctness of a processor core.

The S2QED approach is extended such that it detects all logic bugs in a processor includ-
ing single-instruction bugs. We define the completeness of the approach with respect to the
C-IPC-based complete processor verification criterion described in Sec. 5.3. With the extended
approach, a complete processor verification can be achieved with substantially less manual
effort when compared to traditional C-IPC. This is possible since S2QED “automatically” ex-
plores all possible program contexts so that only a much simpler property set is needed to cover
all logic bugs in the processor.

For detecting all logic bugs in a processor, a set of S2QED properties are generated such
that each property represents the correct execution of instructions of a certain instruction class.
For instance, an extended S2QED property is developed for each instruction class such as
“register-type”, “memory”, “control flow”. The extended S2QED property is shown in Fig. 5.16
for register-type instructions considering a 5-stage RISC processor. This is denoted by in-
str_register_type() in the assumption part. At time point tIF, the same instruction under verifi-
cation (IUV) is fetched by both the CPU instances, CPU 1 and CPU 2 (Fig. 5.14). Similar to
the original S2QED property we assume that (i) CPU 1 starts from a flushed pipeline state S1

t ,
(ii) it fetches only NOPs after the time point tIF and (iii) the previous instruction execution has
resulted in a QED-consistent state. The macro ready_for_next_instruction() describes the state
(cf. Fig. 5.16) of the CPU 1 and CPU 2 pipelines, when they are ready for the next instruction.
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assume:
at tIF: cpu2_fetched_instr() = cpu1_fetched_instr();
at tIF: cpu1_state() = S1

t ;
during [tIF+1, tWB]: cpu1_fetched_instr() = NOP;
at tID: ready_for_next_instruction();
at tID: instr_register_type();
at tWB: qed_consistent_registers();

prove:
at tEX: ready_for_next_instruction();
at tWB +1: qed_consistent_registers();
at tWB +1: cpu1_reg_value( reg_addr @ tID ) =

expected_value( funct_type @ tID );

Figure 5.16: Extended S2QED property for Register-type instructions (in ITL style)

At time point tID, both pipelines begin processing the IUV. Due to the pipelined architecture
of processors, the next instruction may be decoded already in the next clock cycle when there
are no data hazards with the previous instruction. That is, at time point tEX the next instruction
is considered for execution. In terms of executing the IUV, the conceptual starting and end-
ing states of the operation are assumed at tID and tEX, even though the processing of the IUV
continues for several more clock cycles (until tWB).

At time point tWB +1, one clock cycle after the results of an instruction execution are com-
mitted, the QED consistency (macro qed_consistent_registers()) and the expected values of the
instruction execution (macro expected_value(funct_type @ tID)) are checked. The check for
QED consistency ensures that any logic bug resulting from dependencies between instructions
are detected. This in turn proves that each instruction executes independently of its program
context in a bug-free pipeline. The macro expected_value(funct_type @ tID) ensures that each
instruction of the register-type instruction class executes as described by the ISA. These checks
ensure that any logic bug in a processor is found by the new extended S2QED property.

The macro expected_value ( funct_type @ tID) checks the correctness of results of the in-
struction execution in the CPU 1 instance, for the following reason: Since the CPU 1 instance
fetches NOPs before and after the time point tIF, the complex instruction interleaving scenar-
ios such as forwarding or control transfers do not need to be considered. These scenarios are,
instead, covered by checking QED consistency between the CPU instances. This leads to a
simplification of the property and its generation from an ISA model (cf. Section 6.1). Also,
checking QED consistency ensures that the CPU 2 instance completes with the same, expected
results. The property shown detects all logic bugs with respect to the execution of register type
instructions. Similarly, an S2QED property is developed for each instruction class of the ISA.

5.5.3 Extending S2QED for Exception Handling Verification

In the context of processor designs, the execution of a program can be interrupted by unex-
pected events called exceptions. We call those exceptions that are triggered by events external
to the processor core (e.g., reset power, timer request, etc.) as asynchronous exceptions. Asyn-
chronous exceptions are also called interrupts and are caused when an external device requests
a service from the processor core. Synchronous exceptions are those that are caused due to un-
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expected events within the processor core. For example, a synchronous exception is triggered
when the processor core encounters an undefined2 instruction word or when an arithmetic over-
flow occurs in the ALU. In order to resolve an exception event, the current program execution
is suspended and a pre-defined exception service routine is executed. After completing the
execution of a service routine the suspended program execution is resumed.

In addition to the general purpose register file, processor cores also implement one or more
control and status registers (CSRs) to store the status information of the exception events. In
addition to exception events, CSRs may be used to store the status of peripheral components.
Similar to the general purpose register file, we define the consistency for CSRs. For a processor
with N CSRs, a QED-consistent CSR state is characterized by the named logic expression:

qed_consistent_csrs :=
N−1∧
i=0

(
CSRi

cpu1= CSRi
cpu2
)

(5.4)

This expression is a Boolean predicate that can be captured as a macro in the property language
of the verification tool. It represents architectural states in which the corresponding CSRs of
both CPU instances have identical contents.

When an exception occurs, following actions are performed by the processor core in a pre-
defined order specified by the architectural specifications:

• Store the cause of the exception in a dedicated CSR.
• Complete the execution of all or certain active instructions (e.g., instructions in execute,

memory and write-back stages) in the pipeline at the time point when the exception oc-
curs.

• Store the return program counter (PC) value in a dedicated CSR, i.e., address of the
instruction word from where the program resumes execution after servicing the exception.
Additionally, the architectural state of the processor, for example, contents of the general
purpose register file are stored on the stack.

• Move the PC to the first instruction address of the exception service routine, which may
be also stored in a CSR.

The extended S2QED property shown in Fig. 5.16 for register-type instructions is proven
assuming that the execution of IUV is not interrupted by an exception. Therefore, behavior
of the processor core when the IUV is interrupted by an exception requires to be proven sep-
arately. Due to pipelining, exceptions can occur simultaneously at different pipeline stages.
For instance, at an arbitrary time point t, two or more exceptions can be activated by different
instructions at different pipeline stages of their execution. For example, at an arbitrary time
point t, a divide (DIV) instruction in the execute-stage causes a divide-by-zero exception, while
the load-word (LW) instruction causes a memory access fault3 exception in the memory-access
stage. Consequently, for exception handling verification, the S2QED computation model of
Fig. 5.14 is used without modifications.

For verifying the correct implementation of the processor pipelining to execute instructions
as specified by the ISA, an S2QED property set is developed (cf. Fig. 5.16). Similarly, for
detecting logic bugs associated with the exception handling, a set of S2QED properties are
developed such that each property represents the correct response of the processor core for an

2Undefined instruction words are also referred to as illegal instructions.
3A memory access fault occurs when the processor core attempts to access an invalid or a prohibited memory

address.
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assume:
at tIF: cpu2_fetched_instr() = cpu1_fetched_instr();
at tIF: cpu2_pc() = cpu1_pc();
at tIF: cpu1_state() = S1

t ;
during [tIF +1, tWB]: cpu1_fetched_instr() = NOP;
at tID: ready_for_next_instruction();
at tEX: cpu2_exception_type() = cpu1_exception_type();
at tWB: qed_consistent_registers();
at tWB: qed_consistent_csrs();

prove:
at tEX: ready_for_next_instruction();
at tWB +1: qed_consistent_registers();
at tWB +1: qed_consistent_csrs();
at tWB +1: cpu1_rpc_value() = cpu1_pc @ tIF;
at tWB +1: cpu1_epc_value() = exception_pc(exception_type @ tEX);
at tWB +1: cpu1_csr_cause() = exception_cause(exception_type @ tEX);

Figure 5.17: S2QED property for exception events at execute stage (in ITL style)

exception event that occurs in a certain pipeline stage. In other words, an S2QED property is
developed for exception events at each pipeline stage such as fetch, decode, execute, memory-
access. An S2QED property is shown in Fig. 5.17, which represents the correct response of the
processor core for exception events at "execute" stage. At time point tIF, both CPU instances
fetch the same instruction that causes an exception at the execute stage and have the same PC
value (cpu2_pc() and cpu1_pc()). The CPU 1 instance is in a flushed pipeline state S1

t at tIF

and fetches only NOPs for time points t > tIF. At tEX, it is assumed that both CPU instances
cause the same type of exception that are represented by the macros cpu2_exception_type() and
cpu1_exception_type(). Similar to the QED-consistency of register files, it is also assumed that
the previous instructions resulted in a QED-consistent CSR state (qed_consistent_csrs()) at tWB.

At time point tWB, the IUV that caused the exception at execute stage reaches write-back
stage and the CSRs are updated with status information. At time point tWB+1, one clock cycle
after the CSRs have been updated, the QED consistency of register files and CSRs, and the
expected values of the exception event are checked. The check for the QED consistency ensures
that any logic bug associated with the sequence of instructions is detected. The checks for
the expected values of the exception event (macros cpu1_rpc_value(), cpu1_epc_value() and
cpu1_csr_cause()) ensures that the processor implements the exception handling as specified
by the architectural specification. cpu1_rpc_value() captures the CSR value that stores the
return PC value and cpu1_epc_value() captures the CSR value that stores the exception PC
of the current exception event. Similarly, cpu1_csr_cause() captures the CSR that stores the
exception id of the current exception. The combined checks for QED consistency and expected
values ensure that all logic bugs associated with the exception handling are detected by a set of
S2QED properties.

5.5.4 Extending S2QED for Superscalar Processor Verification
In the previous two sections, we outlined the extended S2QED property for simple pipelined
processors targeting both instruction and exception behaviors. A set of S2QED properties com-
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pletely verify a processor implementation targeting both single- and multiple-instruction bugs.
As described in Section. 5.2, only intra-pipeline multiple-instruction bugs can occur in simple
processor implementations. Inter-pipeline multiple-instruction logic bugs occur in processors
with multiple pipelines. In the following, an extended S2QED property for superscalar proces-
sors is described.

Superscalar processors implement multiple pipelines, and, as a result, execute more than
one instruction per clock cycle. Each pipeline in a superscalar processor is optimized to exe-
cute a specific class of instructions. During the execution of a program, the instruction stream
is pre-decoded and the instructions are assigned/issued to specific pipelines according to their
instruction encoding. At an arbitrary time point t, each pipeline is issued an appropriate in-
struction and the instructions are executed in parallel by different pipelines [105, 21]. Due to
the concurrent nature of instruction execution across pipelines, various scenarios such as data
hazards (e.g., RAW, WAW), resource conflicts, branches and exceptions become relevant. De-
pending on the microarchitectural specifications, each pipeline updates the register file or other
target architectural states (e.g., PC, CSR) in a specified order. As a result, in addition to logic
bugs within the same pipeline, the bugs can also occur due to the incorrect logic that controls
the dependency between different pipelines. We refer to the latter type of bugs as inter-pipeline
multiple-instruction bugs (cf. Section 5.2).

CPU1,P1

CPU1,P2

CPU1,P3

IUV

NOP

S1t

CPU1,P1

CPU1,P2

CPU1,P3

NOP

..

S1t+1

CPU1,P1

CPU1,P2

CPU1,P3

NOP

..

S1t+2

CPU1,P1

CPU1,P2

CPU1,P3

NOP

.

.

S1t+n

.....

CPU2,P1

CPU2,P2

CPU2,P3

IUV

I2t

S2t

CPU2,P1

CPU2,P2

CPU2,P3

IGt+1

..

S2t+1

CPU2,P1

CPU2,P2

CPU2,P3

IGt+2

..

S2t+2

CPU2,P1

CPU2,P2

CPU2,P3

IGt+n

.

.

S2t+n

.....

I3t

Figure 5.18: S2QED Computational model for superscalar processors

The basic idea of the computation model of S2QED shown in Fig. 5.14 is also applicable to
superscalar processors. Fig. 5.18 shows the computation model of S2QED with modifications
required for superscalar processors. We consider a superscalar processor with three pipelines
P1,P2 and P3 for illustrative purposes. However, the method presented here is applicable to
superscalar processors with arbitrary number of pipelines. Two identical instances of the same
superscalar processor are unrolled for a time window as large as the upper bound of the exe-
cution time of an instruction in the pipelines. Let I1

t , I2
t and I3

t be the instructions issued at an
arbitrary time point t to the pipelines P1,P2 and P3, respectively. An instruction group IGt is the
combination of instructions issued to different pipelines at time point t, i.e., IGt = (I1

t &I2
t &I3

t ),
where ‘&’ is the concatenation operator. Typically, the superscalar processors include two types
of general-purpose register files, data register file and address register file. While the data reg-
ister file is used to store the results of arithmetic operations, the address register file is used to
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store the addresses of the load-store operations. Let DRcpu1 and DRcpu2 be the data register
files of CPU 1 and CPU 2 instances, respectively. Similarly, ARcpu1 and ARcpu2 be the address
register files of CPU 1 and CPU 2 instances, respectively. For a processor with N data regis-
ters and M address registers, the QED-consistent register states are characterized by the logic
expressions Eq. 5.5 and Eq. 5.6, respectively.

qed_consistent_data_registers :=
N−1∧
i=0

(
DRi

cpu1 = DRi
cpu2
)

(5.5)

qed_consistent_address_registers :=
M−1∧
i=0

(
ARi

cpu1 = ARi
cpu2
)

(5.6)

For detecting all logic bugs in a superscalar processor, a set of S2QED properties are de-
veloped such that each property captures the correct execution of instructions of a specific
instruction class. In case of superscalar processors, a set of instructions belonging to a certain
instruction class are always executed by a specific pipeline. For example, data-register arith-
metic type instructions are always executed by pipeline P1, load-store instructions are executed
by pipeline P2 and branch instructions are executed by pipeline P3. The S2QED property for
data-register arithmetic type instruction class is shown in Fig. 5.19.

assume:
at tIF: cpu2_p1_fetched_instr() = cpu1_p1_fetched_instr();
at tIF: cpu1_p2_instr() = NOP;
at tIF: cpu1_p3_instr() = NOP;
at tIF: cpu1_state() = S1

t ;
during [tIF+1, tWB]: cpu1_ig() = IG_NOP;
at tID: ready_for_next_instruction();
at tID: instr_data_register_arith_type();
at tWB: qed_consistent_data_registers();
at tWB: qed_consistent_address_registers();

prove:
at tEX: ready_for_next_instruction();
at tWB +1: qed_consistent_data_registers();
at tWB +1: qed_consistent_address_registers();
at tWB +1: cpu1_dreg_value(reg_addr@tID) = expected_value(funct_type@tID);

Figure 5.19: S2QED property for data-register arithmetic type instructions (in ITL style)

Assume clauses: At time point tIF, both CPU instances fetch the same IUV on pipeline
P1. In a buggy pipeline implementation, the IUV is the instruction that propagates the logic
bug into an observable architectural state (e.g., data register). At tIF, when both CPU in-
stances fetch the same instruction group, bugs that result from the incorrect handling of de-
pendency between different pipelines are masked. That is, inter-pipeline multiple-instruction
bugs that result from the dependency between instructions of the same instruction group will
be masked. Therefore, CPU 1 fetches NOPs on pipelines P2 and P3, and CPU 2 fetches ar-
bitrary instructions I2

t and I3
t on pipelines P2 and P3, respectively. At tIF, CPU 1 instance is
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in a flushed pipeline state S1
t , i.e., there are no active instructions in any of the pipelines4.

CPU 2 starts from a symbolic state S2
t , which indicates that prior to the time point tIF, CPU 2

instance executes an instruction sequence that activates a logic bug. Between time points tIF

and tWB, CPU 1 fetches only NOPs on all pipelines (IG_NOP). For time points t > tIF, CPU 2

instance fetches arbitrary instructions (IGt+1, IGt+2, · · · ). Further, the previous instruction is
assumed to have executed resulting in a QED-consistent state (qed_consistent_data_registers()
and qed_consistent_address_registers()). The macro instr_data_register_arith_type() indicates
that the IUV belongs to the data-register arithmetic type instruction class.

Prove clauses: The macro ready_for_next_instruction() defines the state of the CPU 1 and
CPU 2 pipelines, when they are ready for the next instruction. Due to pipelining of pro-
cessors, the next instruction is considered in the next clock cycle if there are no data haz-
ards scenarios. That is, at time point tEX next instruction is considered for execution (macro
ready_for_next_instruction()). At time point tWB + 1, one clock cycle after the results of an
instruction execution have been committed, the QED consistency for both data and address reg-
isters are checked (qed_consistent_data_registers() and qed_consistent_address_registers()).
Multiple-instruction logic bugs are detected by the check for QED-consistency. The check for
the expected values of the instruction execution (expected_value(funct_type @ tID)) ensures that
each instruction of the data-register arithmetic type instruction class executes as described by
the ISA and all single-instruction logic bugs are caught. These checks ensure that any logic bug
in a processor that is associated with the execution of data-register arithmetic type instructions
is found by the S2QED property.

Extensions for accommodating WAW Hazard or OoO Write-Back

In superscalar processors, write-after-write (WAW) hazards and out-of-order (OoO) write-backs
are a common occurrence. The WAW hazard is a scenario in which the results of the later
instruction (e.g., It+1 issued at t +1) are committed before the results of the earlier instruction
(e.g., It issued at t) such that both instructions update the same target register. Similarly, in
case of out-of-order execution, it is possible that an instruction commits its results before the
completion of its preceding instructions. To accommodate these scenarios, the S2QED property
shown in Fig. 5.20 extends the property shown in Fig. 5.19.

Example In the computation model shown in Fig. 5.18, let us assume that the instruc-
tion issued to pipeline P1 is the oldest instruction, followed by the instruction on P2 and
the instruction on P3 which is the latest instruction. At time point tIF, the pipelines P1 and
P2 of CPU 2 instance fetch instructions I1

tIF
and I2

tIF
such that they have the same destination

register (rd_p1 = rd_p2). Since the instruction on pipeline P2 succeeds the instruction
on P1, the results of the instruction on pipeline P1 are inhibited from being written to
the register file at tWB. Instead, the results of the instruction on P2 are committed to the
register file at I1

tWB
. A WAW hazard does not occur on the CPU 1 instance as it fetches a

NOP on P2 at tIF. In this scenario, the property shown in Fig. 5.19 fails since the results of
the IUV execution are not committed on the CPU 2 instance, but the results of the IUV are
committed to the register file on CPU 1 instance.

4Note that CPU 1 instance is free to execute any sequence of instructions before reaching a flushed pipeline
state at tIF
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assume:
at tIF: cpu2_p1_fetched_instr() = cpu1_p1_fetched_instr();
at tIF: cpu1_p2_instr() = NOP;
at tIF: cpu1_p3_instr() = NOP;
at tIF: cpu1_state() = S1

t ;
during [tIF+1, tWB]: cpu1_ig() = IG_NOP;
at tID: ready_for_next_instruction();
at tID: instr_data_register_arith_type();
at tWB: qed_consistent_data_registers();
at tWB: qed_consistent_address_registers();

prove:
at tEX: ready_for_next_instruction();
at tWB: if (waw_valid or ooo_valid) then

(cpu1_p1_dreg_wr_data = cpu2_p1_dreg_wr_data) and
(cpu1_p1_dreg_wr_data = expected_value( funct_type@tID))

end if;
at tWB +1: if (not(waw_valid or ooo_valid) then

qed_consistent_data_registers() and
qed_consistent_address_registers() and
(cpu1_dreg_value(reg_addr@tID) = expected_value( funct_type@tID))

end if;

Figure 5.20: S2QED property for data-register arithmetic type instructions considering Write-
after-Write and Out-of-Order scenarios (in ITL style)

The S2QED property extended for accommodating WAW hazard and OoO write-back sce-
narios is shown in Fig. 5.20. In particular, the “prove” part of the property needs to be mod-
ified. In scenarios where WAW hazards and OoO write-backs are applicable in the processor
implementation (waw_valid and ooo_valid), the consistency of the write data on both CPU
instances is checked at time point tWB (cpu1_p1_dreg_wr_data and cpu2_p1_dreg_wr_data).
In addition, the expected value of the instruction execution is checked on the CPU 1 instance
(expected_value(funct_type@tID)). When WAW hazards and OoO write-backs are not applica-
ble, the QED consistency for both data and address registers are checked at time point tWB +1,
similar to the property shown in Fig. 5.19.

5.5.5 Completeness Analysis for a set of S2QED properties

Typically, ISAs describe a set of instruction classes with each instruction class consisting of
several instructions. In the previous section, it is shown how an extended S2QED property
can be used to ensure the correct implementation of every instruction belonging to a certain
instruction class. A set of extended S2QED properties cover the complete behavior of a proces-
sor implementation. The completeness of the approach according to the completeness criterion
described in Sec. 2.5.1 is discussed in the following.

An operational property P is a property written in the form of an implication A =⇒ C,
where the antecedent A is a set of assumptions and the consequent C is a set of commitments.
An assumption or a commitment is an LTL formula, where the only temporal operator allowed
is X . Such a formula can be mapped to a finite unrolling of a transition structure (cf. the
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computational model for S2QED, Fig. 5.14). In the following, we use the notation next(A, l) to
denote a “temporal shift” of the formula A by l clock cycles, i.e., next(A, l) := X lA. This adds
a temporal offset l to all time points referred to in the formula A.

Case-split test

Let a set of important states be given by the commitments {CP1,CP2,CP3, . . .} of the proper-
ties {P1,P2,P3, . . .} for an arbitrary design. Then, for every important state reached in an opera-
tion or property P1, it is checked whether the disjunction of the assumptions {AQ1,AQ2,AQ3, . . .}
of all successor properties {Q1,Q2,Q3, . . .} completely covers the commitment CP1 , i.e., for ev-
ery path starting in a substate of the important state CP1 there exists an operation property Q1
whose assumption AQ1 describes the path. Fig. 5.21 shows a path in which the assumption AQ j

of the property Q j (successor) covers the commitment CPi of the property Pi (predecessor). Let
{AQ1,AQ2, . . .} be the set of assumptions of the successor properties, then the case-split test
checks whether

CP1 → next((AQ1 ∨AQ2 ∨AQ3 ∨ ....), lP1) (5.7)

where lP1 is the length of the property P1, i.e., the number of clock cycles between the start-
ing and the ending state of property P1 (cf. Fig. 5.21). The next operator aligns the starting
(important) state of property Q1 (or Q2 or Q3. . . ) with the ending state of property P1.

tstart_i Property Pi tend_i 

tstart_ j Property Q j tend_ j 

Cpi

CQ jAQ j

APi

l p = tend_i - tstart_i important state

Figure 5.21: Interleaving of Property Pi and Q j for case-split test

In a processor pipeline, all operations begin and end in the same state as depicted in Fig. 5.7.
This is mainly due to the nature of the pipeline which, in principle, considers a new instruction
at every clock cycle. With a set of extended S2QED properties for a processor, instructions
are grouped into properties according to the instruction classes, i.e., a total of n properties to
consider if the processor core supports n instruction classes. Let us assume that the only im-
portant state in a processor execution is given by the commitments {CP1,CP2,CP3, . . .} of the
S2QED properties {P1,P2,P3, . . .}, where P1 is an S2QED property for a specific instruction
class (e.g., register-type). For the only important state reached during an instruction execution,
it is checked whether the disjunction of the assumptions {AQ1,AQ2, AQ3 , . . .} of all the succes-
sor properties {Q1,Q2,Q3, . . .} completely covers the commitment CP1 . Let {A2

Q1
,A2

Q2
,A2

Q3
, · · ·}

and {A1
Q1
,A1

Q2
,A1

Q3
, · · ·} be the assumptions of the successor properties on the CPU 2 and CPU 1

instances, respectively. In order to prove that all successor properties {Q1,Q2,Q3, . . .} com-
pletely cover the commitment CP1 of property P1, it is necessary to prove:

CP1 → next( ( (A1
Q1
∧A2

Q1
)∨ (A1

Q2
∧A2

Q2
)∨ (A1

Q3
∧A2

Q3
)∨·· ·), lP1) (5.8)

Assuming that the S2QED property set holds on the computational model (cf. Fig. 5.14),
it is proven that the result of every operation is consistent between the two CPU instances,
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regardless of the predecessor operations. Therefore, it is sufficient to prove the case-split test
on one of the CPU instances. In other words, in order to prove the case-split test, every possible
instruction sequence can be considered on the CPU 2 instance. The case-split test for S2QED is
reduced to:

CP1 → next((A2
Q1
∨A2

Q2
∨A2

Q3
∨·· ·), lP1) (5.9)

When the case split test passes, it ensures that for every possible instruction sequence of the
processor there exists a chain of properties that is executed. If this test passes it means that every
(cycle-accurate) execution trace of the processor can be partitioned into finite non-overlapping
segments of behavior such that each segment is described by a property of the property set. In
other words, every execution trace is “covered” by a sequence of operation properties.

The case-split test is easy to satisfy for a set of S2QED properties. For a processor that
implements n instruction classes, we have n S2QED properties. By ensuring the correctness of
the conditions that capture the opcode of the instruction classes (e.g., instr_register_type() in
Fig. 5.16), the case-split can be easily proven for a set of S2QED properties.

Successor Test

The successor test for a general property suite checks for every predecessor/successor pair
(Pi,Q j) of properties whether the assumption AQ j of property Q j depends solely on inputs
and on signals determined by the predecessor property Pi. This is checked in a SAT instance
created in the following way: The set of signals mentioned in the properties Pi and Q j are du-
plicated. The first set of signals is used to describe executions of an operation Pi followed by
operation Q j and the second set describes operation Pi followed by an operation not being Q j,
while both sets receive the same input. Let A′Pi

, C′Pi
and A′Q j

be the assumption and commit-
ment of property Pi and the assumption of property Q j, respectively, expressed in the copied
signals. Further, let D be the set of determination requirements specifying that for every signal
mentioned in the determination requirement, the value is the same between the two sets. The
successor test checks the following implication on the SAT instance (with the same input values
in each time frame):

APi ∧CPi ∧A′Pi
∧C′Pi

∧D∧next(AQ j)→ next(A′Q j
) (5.10)

If this implication does not hold, then there exists an input sequence such that operation Pi is
executed and the assumption of property Q j may hold or may not hold, depending on the other
signals mentioned in the properties. This is the case if the assumption AQ j was written such
that it depends on some undetermined variable, i.e., a variable that is not marked or computed
as “determined” by Pi. For the case of processor verification, such a situation is hard to create,
especially if the properties are generated automatically. All properties of an instruction class
share the same set of assumptions, except for the assumption on the fetched instruction opcode
that defines the operation performed by the instruction. Each property Pi must determine the
architectural state that is evaluated by the assumption of successor property Q j. The successor
test can only fail if that is not the case, i.e., the predecessor property Pi does not fully describe
the architectural state that is produced by the instruction specified in Pi. This implies that the
successive behavior is ambiguous.
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Determination Test

The determination tests are performed to check if a property set uniquely determines the values
of all important states and output signals of a design at all time points. The determination test
checks whether each property Q j fulfills its determination requirements provided the predeces-
sor operation Pi, in turn, fulfilled its determination requirements. The determination require-
ments are specifications of signals that describe which signals must be determined and at what
time points (cf. Section 2.5). The determination test creates a SAT instance that is satisfied if a
determination requirement is violated, i.e., if a signal or an important state required to be deter-
mined by the property Q j is actually not a function of the variables determined by Pi and/or of
inputs during the operation Q j. Similar to the successor test, the set of signals mentioned in the
properties Pi and Q j is duplicated in order to describe two executions. In both executions, Q j
is followed by Pi and the same input sequences are applied. Again, also, the state variables that
are assumed to be determined are given the same values in both executions in the time points
specified by the guards of the determination requirements. Let DPi and DQ j be the determination
requirements of property Pi and Q j, respectively. The determination test checks the following
implication on the SAT instance (with the same input sequences applied in both executions):

APi ∧CPi ∧A′Pi
∧C′Pi

∧DPi → next(DQ j , lPi) (5.11)

If this implication does not hold, then there exists an instruction sequence and sequences of
other signals mentioned in the properties such that Q is executed after P but signals that are sup-
posed to be determined may have different values in different executions. An S2QED property
for a specific instruction class captures the unique values for all output signals on the CPU 1

instance through expected_value(funct_type @ tID) (see Fig. 5.16). Further, since S2QED prop-
erties are interleaved such that a new operation may occur in the pipeline at every clock cycle,
the output signals and the architectural states are determined at every clock cycle. The QED
consistency check (qed_consistent_registers()) on the CPU 1 and CPU 2 instances ensures that
the output values of CPU 2 instance are consistent with the outputs of the CPU 1 instance.

Reset Test

Case-split, successor and determination tests described above form an inductive proof in which
a set of operational properties P uniquely determine the states in which the design traverses and
the sequence of output signals values. The starting state of this inductive proof is the state from
which the design starts executing instructions. The reset test checks whether the reset can be
applied deterministically and whether the reset state satisfies the determination requirements.
In other words, after the reset, a processor comes to a state from which it starts executing
instructions and at this time point all important states and output signals of the processor are
determined.

In addition to a set of extended S2QED properties set, a reset property is created which
checks whether the reset brings the processor to an important state and all the output signals
have specified values. After the reset, the pipelines are empty in a processor as the first in-
struction is yet to be fetched. This means that the decode stage is empty which implies that no
instruction can start executing right after the reset. A clock cycle delay is added to the reset
operation such that the release of reset brings the processor to an important state (cf. Fig. 5.7).
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5.5.6 Complete - S2QED

A set of extended S2QED properties fulfilling the completeness criterion is referred to as
Complete-S2QED (C-S2QED). Based on the successor test, determination test, reset test and
S2QED-adapted case-split test, following theorem is formulated.

Theorem 1 [C-S2QED detects all logic bugs in a processor]:
Given a set of S2QED properties V = {P1, P2, . . . , Pn} in which Pi is the property for a specific
instruction class, created for a given ISA, as described in Sec. 5.5.2. If the property set fulfills
the completeness criterion for S2QED, then it detects all logic bugs in the ISA implementation
of a processor core.

Proof. Assume that there is a logic bug in the processor. The logic bug can be a single-
instruction bug or a multiple-instruction bug.

• If the bug is a single-instruction bug, it means that there is an erroneous instruction
that produces a wrong result in any program context. The wrong result is observable
even if it is executed in a flushed pipeline. Because the property set passes the case-
split test and the successor test, there exists an S2QED property targeting the instruc-
tion. Since the property set passes the determination test, there exists a sub-predicate
expected_value( funct_type) which is called by the commitment of the property and which
verifies the computation result of the instruction. According to this sub-predicate, the
property fails for the expected architectural state in the CPU 1 instance.

• If the bug is a multiple-instruction bug, two cases have to be distinguished: (1) The bug
is activated in a flushed-pipeline context. Then, the bug will be detected in the same
way as described above for the single-instruction bug. (2) The bug is not activated in
a flushed-pipeline context. Then, there exists a specific program context that activates
the bug. Because the property set passes the case-split test and the successor test, there
exists a unique sequence of operation properties covering the program context, i.e., the
sequence of instructions in the pipeline. Hence, there exists an S2QED property that
covers the program context in the CPU 2 instance of the model and has the instruction
exposing the bug as the IUV. Because the property set passes the determination test, the
sub-predicate qed_consistent_registers() determines the full architectural state including
the state variables exposing the bug. Since the bug is not activated in the CPU 1 instance,
it is detected as an inconsistency between CPU 1 and CPU 2 architectural states.

5.6 Related work: Processor Verification

Functional verification of processors has gathered a lot of interest both in academia and industry.
This high-level of interest started with the discovery of a functional bug (famously known as
FDIV bug) in the early Intel Pentium processors [90]. Thereafter, the processor verification has
been well researched employing different verification techniques. Although simulation remains
the primary verification technique employed in the industry, simulation-based methods cannot
guarantee an exhaustive verification of processor implementations. Due to this shortcoming of
simulation-based methods, formal methods have been accepted as the preferred techniques for
processor verification.
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Several formal verification approaches have been proposed to verify processor cores. A
summary of the most related works [18, 59, 24, 10, 15, 66, 91, 7] is provided in the following:

Burch and Jones et.al proposed an approach for verifying control logic of pipelined proces-
sors and showed that the formal methods are scalable to industrial microprocessors [18, 59].
The approach abstracts the datapath logic to reduce the complexity for formal analysis. The
main idea of the approach is to compare the pipelined implementation to an architectural de-
scription by using an efficient validity checker for a logic of uninterpreted functions with equal-
ity. The uninterpreted functions are used to represent arithmetic and logic operations, without
detailing the functionality. This approach of abstracting the datapath logic to reduce the com-
plexity inspired other works [24, 10], which used symbolic model checkers to compare the
processor implementations to the architectural description. These approaches showed for the
first time that the formal verification is applicable on industrial processor designs. However, the
proposed methods targeted only a specific class logic bugs in the processor and did not offer a
complete processor verification strategy. Moreover, developing the architectural description of
the processor implementation and the refinement mapping between implementation and speci-
fication requires significant manual effort.

In [91], a formal processor verification approach is presented which employs generation of
properties from an executable ISA specification. This approach uses bounded model checking
as its proof method and compares the results of instruction execution in the processor imple-
mentation with the results obtained from executable specifications by considering the same
instruction sequence. Being based on bounded proofs and not covering all corner cases of in-
struction execution, this work contributes to efficient bug hunting but cannot prove the absence
of processor bugs.

The works proposed in [15, 66, 7] follow the complete processor verification strategy out-
lined in Section 5.3. Bormann et.al used an industrial microcontroller to demonstrate the pro-
cessor verification with a complete set of properties developed following the C-IPC method-
ology [16]. The approach used C-IPC principles to determine the gaps in the property set,
thus ensuring a high design quality. Developing a complete set of properties and passing the
completeness checks, however, requires a large amount of manual work and high expertise.

In [66], formal verification of processors with a complete set of properties is proposed, in
which the properties are generated from an architectural description of the processor. Similarly
in [7], the authors generated a complete set of properties for processor verification from semi-
formal specifications. The generation of properties is fixed to the specific microarchitecture
and as a result, requires substantial rework when migrating to a new processor architecture. and
also, when the processor is extended to support additional ISA extensions.
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Chapter 6

Evaluation on Real Designs

Chapter 4 proposes modeling of design specifications in formal models and subsequent property
generation hereof following the principles of model-driven architecture. Chapter 5 proposes
a complete processor verification method called C-S2QED. It requires low implementation
effort and detects all logic bugs in processor core implementations. For efficient verification
of processor cores, C-S2QED properties are generated from a formal ISA model following the
model-driven property generation flow. It can be concluded that for efficient formal verification
of hardware designs, a combination of property generation coupled with a suitable verification
strategy that fits the design under verification (DUV) is required.

In this chapter, different formal strategies applied on various real-life designs are elabo-
rated. In Section 6.1, formal verification of a RISC-V processor core is considered. Here, the
C-S2QED method has been employed with generated properties to further improve the veri-
fication productivity. In Section 6.2, formal verification of several peripheral designs is con-
sidered. Specifications of peripheral designs such as AHB-to-APB bridge and programmable
interrupt controller that are sequential in nature are modeled in a state-transition-like formalism.
The details of specification modeling in this formalism and subsequent property generation are
elaborated in Sections 6.2.1 and 6.2.2. Further, in Section 6.2.3, generation of properties for
a bus matrix design which is combinatorial in nature is considered and discussed in detail. A
summary of the experimental results in Section 6.2.4 concludes the chapter.

6.1 Formal Verification of a RISC-V processor core
For demonstrating the effectiveness and applicability of our property generation flow and the
C-S2QED method to real-life designs, the proposed approaches are applied to verify RISC-
V [117]-based processor core variants. RISC-V is an open source instruction set architecture
(ISA) that targets both embedded 32-bit devices and larger 64-bit or 128-bit devices. The RISC-
V ISA is split into a user-level ISA and a privileged ISA. The privileged ISA specifies instruc-
tions and registers that are relevant when creating a system with an operating system. The
user-level ISA is divided into a base ISA and several standardized extensions. The base ISA
is denoted as RV32I. With addition of extensions, the acronym string is appended with specific
characters denoting the corresponding extension. For example, RV32IC refers to the base ISA
extended with the compressed instruction set. In the following, generation of C-S2QED proper-
ties for user-level RISC-V processor core variants is summarized and experimental results are
discussed.
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Figure 6.1: Property generation flow for processor cores

The property generation flow for processor cores starts with formalizing an informal ISA in
untimed formal models as shown in Fig. 6.1. An untimed model of an ISA is a model instance
of the MetaRISC metamodel previously introduced in Chapter 4 (cf. Fig. 4.6.2). In Fig. 6.1,
Model I1, Model I2 and Model I3 are model instances of the MetaRISC metamodel and rep-
resent different instruction set extensions from RISC-V ISA. In order to enable architectural
alternatives, these model instances are microarchitecture-independent and capture the details of
an ISA such as instruction encoding, instruction behavior and target objects of each instruction
with clear semantics. For RTL development, the RTL generation flow introduced in Section 3.4
consumes these models and defines microarchitecture blueprints based on high-level configu-
ration parameters.

Due to pipelined implementation of processor cores, the information available in model
instances Model I1, Model I2 and Model I3 are not sufficient for property generation. This
is because these model instances do not include timing information of instruction execution
in the pipeline, which is needed to prove the functional correctness of the processor pipeline
implementation. Therefore, model instances of MetaRISC metamodel are extended with timing
information by modeling the instruction execution in state transition graphs (STGs) or traces as
elaborated in Section 4.6.2. A metamodel definition called MetaSTS is utilized to facilitate the
creation and extension of STGs as shown in Fig. 6.1. A set of STGs are created such that each
STG represents the behavior of all instructions belonging to a certain instruction class (e.g.,
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load, store, branch, etc.). A code snippet for creating STG definitions is shown in Fig. 4.17.
After modeling the specifications of a processor implementation in formal models, the next

step is to define property models. The main task of this layer is to transform the specification
models to property models (cf. Section 4.2.2). The transformation script, which is written in
Python, performs two major tasks. First, for each path in the state transition graph in the spec-
ification model, it creates a base property model. Next, the property model is appended with
clauses required to generate a C-S2QED property set. The definition of property models is fa-
cilitated by the APIs provided by the automation framework for the MetaProp metamodel. The
transformation in the bottom layer, metamodel MetaView in Fig. 6.1, maps each property model
to a corresponding view model and generates the property in the specified target language, such
as SVA or ITL (cf. Section 4.2).

assume:
at tIF: cpu1_fetch_valid();
at tIF: cpu2_fetched_instr() = cpu1_fetched_instr();
at tIF: cpu1_state() = S1

t ;
during [tIF+1, tWB]: cpu1_fetched_instr() = NOP;
at tID: instr_load_type();
at tID: ready_for_next_instruction();
at tWB: qed_consistent_registers();

prove:
at tEX: ready_for_next_instruction();
at tEX: cpu1_mem_rd_addr = expected_mem_rd_addr();
at tEX: cpu1_mem_rd_en();
at tEX: cpu1_mem_rd_access_size() =

expected_mem_rd_access_size( funct_type @ tID);
at tWB +1: cpu1_reg_value( reg_addr @ tID) =

expected_mem_rd_value( funct_type @ tID);
at tWB +1: qed_consistent_registers();

Figure 6.2: Generated C-S2QED property for Load-type instructions (in ITL style)

In the context of generating properties following the C-S2QED method, the STGs are
mapped to the CPU 1 instance and additional clauses are generated targeting both CPU 1 and
CPU 2 instances. A C-S2QED property generated for load-type instructions is shown in Fig. 6.2.
At time point tIF, an assumption is made that a new instruction is fetched by the fetch unit
(clause cpu1_fetch_valid()). Further at time point tID, clauses ready_for_next_instruction() and
instr_load_type() assume that the instruction word is valid and belongs to the load-type instruc-
tion class. The clauses shown in green color represent the assumptions needed for the C-S2QED
approach (cf. Section 5.5).

In the prove section, the clause ready_for_next_instruction() at time point tEX specifies that
the next instruction is decoded in the pipeline. This is because, as the instruction under veri-
fication (IUV) moves from the decode stage to the execute stage, the instruction fetched after
the IUV has to move from the fetch stage to the decode stage. At time point tEX, clauses ex-
pected_mem_rd_addr(), cpu1_mem_rd_en() and expected_mem_rd_access_size( funct_type @
tID) capture the expected values of data memory interface signals. These clauses are generated
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from the instruction behavior that is captured in the model instances of the MetaRISC meta-
model (e.g., Model1). At time point tWB +1, the clause expected_mem_rd_value( funct_type @
tID) captures the read value from data memory when it is expected to be visible in the register
file. Additionally at tWB +1, both CPU instances are expected to be consistent. This is captured
by the clause qed_consistent_registers().

In a traditional IPC-based processor verification approach without C-S2QED the clauses
shown in green color are not needed. Then, however, when compared to C-S2QED, the transfor-
mation script in the intermediate layer is more complex and requires more manual development
effort. The reason is that the macro generation needs to consider different special scenarios
such as forwarding, stalling, exception, etc., so that more microarchitectural details need to be
considered in the transformation script. This requires deep understanding of the pipeline imple-
mentation and prior anticipation of instruction sequences that would lead to an error scenario
(cf. Section 5.2). In contrast, in the C-S2QED approach, the clauses or macros are generated
targeting the CPU 1 instance which is in a flushed pipeline at time point tIF and fetches only
NOPs after time point tIF. As a result, the macros that need to be generated do not need to
consider microarchitecture details (e.g., forwarding logic). This simplifies the transformation
step and reduces the effort required in developing the transformation code to create property
models.

6.1.1 Experimental Results
A set of C-S2QED properties are generated for verifying RISC-V processor core variants. The
RTL generation flow introduced in Section 3.4 is used to generate various architectural alter-
natives of the processor core. The generation flow for RISC-V cores is built in a highly con-
figurable manner such that different standardized ISA extensions, number of pipeline stages,
memory interface protocols and support for exception handling are selected from high-level
configuration parameters. The RISC-V core implements a Harvard architecture with separate
program and data memory interfaces. The processor-memory interface can be configured to
implement an Advanced High-performance Bus (AHB) protocol or a simple bus protocol. The
core supports different standard extensions in addition to the base ISA and supports nested
exception handling of both synchronous and asynchronous exceptions.

Table 6.1: Bug Detection Results

SIC S2QED C-S2QED

Finds single-instruction bugs yes no yes
Finds multiple-instruction bugs yes yes yes

Effort for base instr. set (person days) 10+6 - 10+2

Runtime (with bugs) < 30 s < 60 s < 30 s
Runtime (without bugs) 27 min 6 min 18 min

CEX length ([min, max] instructions) [1, 5] [2, 5] [1, 5]

The processor core has been previously verified with a complete set of properties generated
using the property generation flow described in Sec. 4.2. However, this verification approach
shown as Spec Implemented Correctly (SIC) in Tab. 6.1, is based on conventional C-IPC [15,
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113]. 18 logic bugs comprising both single-instruction bugs and multiple-instruction bugs were
found during verification. All detected logic bugs have been injected to the RTL for verification
with the C-S2QED approach. For property checking, the commercial formal verification tool
OneSpin 360 DV-Verify is used on an Intel® Xeon® E5-2690 v3 @2.6GHz with 32 GB RAM.

All 18 logic bugs that were previously detected by the SIC method are also detected by
C-S2QED properties within 30 s of computation time. Additionally, two error scenarios were
detected by the C-S2QED properties. The reported errors are activated in a flushed-pipeline
context, in which the failing properties identified unnecessary stalling of the pipeline. This
type of bugs is referred to as performance bugs within the scope of this thesis (cf. Section 5.2).
As the CPU 1 instance is fetching NOPs before and after the time point tIF, the results of the
instruction (fetched at tIF) execution are expected at specific time points. Because of this, any
unnecessary stalls (which result in performance loss) associated with any instruction class are
identified by the C-S2QED property set.

Tab. 6.1 summarizes the C-S2QED experiments (last column) and compares them with other
approaches applied to verify the RISC-V core. It should be noted that a processor core support-
ing only the RV32I base ISA is considered for the comparison. Columns 1 and 2 correspond to
SIC and the original S2QED method [45], respectively. Rows 1 and 2 report on the categories of
bugs the different approaches were able to detect. Row 3 shows the manual effort required for
property generation and for formal verification setup. It required 10 person days for developing
metamodel definition, creating a model instance for base ISA and for defining state transition
graphs, which is applicable to both SIC and C-S2QED methods. The SIC method requires 6
person days of effort for defining property traces, whereas it took 2 person days for creating
property traces following the C-S2QED method. “Runtime” refers to the computation time
spent to detect a bug (row 4) or to prove its absence (row 5). In case of a bug being reported by
the formal tool, the length of the counterexample (CEX) is reported for each method in row 6.

Table 6.2: Results: Property generation

ISA support #LoC-MoT #LoC-ToP #LoC-ITL #properties effort

RV32I (base ISA) 700 370 2280 12 12 person days

RV32IM +00 +00 2380 12 +0 person days

RV32IMC +50 +100 5520 38 +5 person days

RV32IMCX +00 +20 5800 39 +3 person days

RV32IMCXZicsr +30 +20 6070 40 +1 person days

Tab. 6.2 shows a quantitative analysis of C-S2QED property generation for RISC-V cores
supporting different ISA extensions (column 1) in addition to the base ISA. Column 2 shows the
lines of code (LoC) in Python for extracting the details of instructions from the model instances
of the MetaRISC metamodel and for defining STGs for different instruction classes. The LoC
in Python-based DSL required to define property models is shown in column 3 and the LoC of
generated properties in ITL syntax is shown in column 4. The number of properties generated
and the effort required for property generation is shown in columns 5 and 6, respectively.

Row 1 shows the initial effort required to setup the property generation for base ISA i.e.,
RV32I. The effort includes creation of the MetaRISC model instances, definition of STGs and
definition of property models. From row 2 onwards, only additional LoC and effort required to
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support added ISA extensions are shown. It should be noted that no additional effort is required
for RV32IM (row 2), i.e., support for the multiply extension on top of the base ISA. This is
because instructions in the M (Multiply and Division) extension belong to the Integer Register-
Register instruction class from RV32I. 5 person days of additional effort are needed to generate
the C-S2QED properties supporting the compressed (C) instruction set extension (RV32IMC).
Little effort is required to add the support for custom (X) and control and status register (Zicsr)
instruction extensions (rows 4 and 5).

6.1.2 Observations
The following observations are made from the experimental results of verifying RISC-V pro-
cessor core variants with the C-S2QED method:

Observation 1

A complete set of C-S2QED properties can detect all logic bugs in a processor, irrespective of
their context in the program within a reasonable amount of time. The length of the counterex-
ample is of significant importance to identify the root cause of a bug as it corresponds to the
number of instructions that need to be executed to trigger a certain bug scenario. C-S2QED
significantly reduces the debugging time due to short counterexamples. The minimum coun-
terexample length for a C-S2QED property is 1 instruction, when a single-instruction bug is
detected.

Observation 2

C-S2QED requires no modification in the RTL code of the design and it has no restriction on
the type of instructions it can consider. Developing the C-S2QED property for each instruction
class is straightforward and, by employing a generation flow, the manual effort for various
extensions in an ISA is low.

Observation 3

The property generation flow significantly reduces the manual effort required to develop a com-
plete set of properties. When the microarchitecture supports additional ISA extensions, the
effort required for generating new properties to support the added extensions is minimal. The
extensions are straightforward to implement. This, in turn, improves the overall verification
productivity as well.

6.2 Peripheral Verification
In this section, modeling the behavior of peripheral design blocks using one or more state tran-
sition graphs is discussed. Due to the diverse nature of peripheral designs, different modeling
approaches are required for an efficient property generation such that a set of properties com-
pletely captures the behavior of a design under verification (DUV). For example, the behavior
of an AHB-to-APB bridge can be captured with a single state transition graph, whereas the
behavior of a programmable interrupt controller that is connected to multiple interrupt sources
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requires multiple state transition graphs to efficiently capture the complete behavior. For prop-
erty generation, designs that are combinational in nature (e.g., AHB bus matrix) do not require
state transition graphs to capture the design behavior1. Instead, structural models are more fa-
vorable to capture the specification details for effective property generation. In the following,
several example designs are used to show different approaches employed for efficient formal
verification with generated properties.

6.2.1 AHB-to-APB Bridge
The Advanced High-performance Bus (AHB) is a bus protocol introduced as part of the Ad-
vanced Micro-Controller Bus Architecture (AMBA) by ARM® [4]. AMBA consists of a set of
standardized interconnect specifications that describe communication protocols between vari-
ous functional blocks in an SoC. AHB is used for connecting functional blocks that require high
communication bandwidth (e.g., processor core, on-chip RAM, direct memory access (DMA),
external memory interface, etc.). These functional blocks are commonly referred to as con-
trollers (previously referred to as “masters” blocks) and responders (previously referred to as
“slave blocks”). An AHB may be connected to multiple controllers and responders. AHB uses
a pipeline (address phase and data phase) architecture to facilitate high performance communi-
cation between interconnected functional blocks.

On the other hand, some peripheral components (e.g., UART, timer, SPI, IO devices, etc.)
operate at lower communication bandwidth. The Advanced Peripheral Bus (APB) is used to es-
tablish communication between such functional blocks. The APB uses a simple non-pipelined
architecture for communication and does not support some features of AHB (e.g., burst trans-
fers). To establish communication between processing blocks such as a processor core or a
DMA with the peripheral blocks, an AHB-to-APB bridge is needed to synchronize the time
domains of the high-speed AHB bus with the low-speed peripheral blocks.

Modeling an AHB-to-APB Bridge in a State Transition Graph

The behavior of an AHB-to-APB bridge is typically specified as a control state machine [4].
Therefore, the approach proposed in Section 4.6 where the specified behavior of a sequential
design is modeled in a state transition graph for property generation can be applied in a straight-
forward manner. Every operation performed by an AHB-to-APB bridge is captured as a state
transition. Hereof, properties are generated targeting each state transition path such that a set of
properties capture the complete behavior of the bridge.

A code snippet for modeling the specification of an AHB-to-APB bridge in a state transition
graph is shown in Fig. 6.3. A model instance of the metamodel shown in Fig. 4.15 is created
to facilitate the creation of a state transition graph. Line 4 in the code snippet creates an object
instance of the class MetaSTS (cf. Fig. 4.15). Line 7 adds a state transition graph object to
the model instance. Lines 10-15 show different state definitions created for an AHB-to-APB
bridge: idle, sel, read, write, read-wait, write-wait. Lines 18-24 show the definition of expres-
sion variables that are used as Action expressions of corresponding state transitions. Line 28
shows the definition of the initial transition (reset_idle transition) with idle state as the sink
state. It should be noted that the reset_idle transition has no source state. Line 29 shows the

1It should be noted that the designs that include sequential elements such as registers or flip-flops can be
considered as highly combinatorial when the sequential depth of the design is a few clock cycles (e.g., <3)
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1 class Ahb_2_Apb(object):
2 def _init__(self, api):
3 #−− Declare a model instance of the metamodel MetaSTS
4 self.sts_instance = MetaSTS(Name="Root_STS")
5
6 #−− Add a state transition graph child
7 self.ahb2apb_stg = self.sts_instance.addStateTransitionGraph("AHB2APB_Bridge_stg")
8
9 #−− States of the Ahb−2−Apb bridge

10 idle = self.ahb2apb_stg.addState(Name=’idle’, Encoding=self.getEncoding(0,3), Init =True)
11 sel = self.ahb2apb_stg.addState(Name=’sel’, Encoding=self.getEncoding(1,3))
12 write = self.ahb2apb_stg.addState(Name=’write’, Encoding=self.getEncoding(2,3))
13 read = self.ahb2apb_stg.addState(Name=’read’, Encoding=self.getEncoding(3,3))
14 wr_wait = self.ahb2apb_stg.addState(Name=’write_wait’, Encoding=self.getEncoding(4,3))
15 rd_wait = self.ahb2apb_stg.addState(Name=’read_wait’, Encoding=self.getEncoding(5,3))
16
17 #−− Expected signal description for different states
18 common_outs = EQ(clk,pclk), EQ(pslverr,hresp)
19 sate_idle_outputs = LAND(common_outs, NOT(psel), NOT(penable), NOT(busy), NOT(pwrite), hready)
20 sate_sel_outputs = LAND(common_outs, psel, NOT(penable), busy, NOT(pwrite), NOT(hready))
21 sate_write_outputs = LAND(common_outs, psel, penable, busy, pwrite, hready)
22 sate_read_outputs = LAND(common_outs, psel, penable, busy, NOT(pwrite), hready)
23 sate_wr_wait_outputs = LAND(common_outs, psel, penable, busy, pwrite, NOT(hready))
24 sate_rd_wait_outputs = LAND(common_outs, psel, penable, busy, NOT(pwrite), NOT(hready))
25
26 #−− Declare transitions − positional arguments : Name, SourceRef, SinkRef, Length
27 ## Transition reset−idle
28 reset_idle = self.ahb2apb_stg.addTransition(’reset_idle’, None, idle, 1)
29 reset_idle.createTrigger(Expression=’reset_sequence’)
30 reset_idle.createAction(Expression=state_idle_outputs)
31
32 #−−Transition idle−idle
33 idle_idle = self.ahb2apb_stg.addTransition(’idle_idle’, idle, idle, 1)
34 idle_idle.createTrigger(Expression=LOR(LTEQ(htrans,1),NOT(hsel)))
35 idle_idle.createAction(Expression=state_idle_outputs)
36
37 #−−Transition idle−sel
38 idle_sel = self.ahb2apb_stg.addTransition(’idle_sel’, idle, sel, 1)
39 idle_sel.createTrigger(Expression=LAND(GT(htrans,1), hsel))
40 idle_sel.createAction(Expression=state_sel_outputs)
41 ...remaining transitions are defined in similar manner...

Figure 6.3: Code snippet for defining a state transition graph for AHB-to-APB bridge

Trigger expression for reset transition, which is the reset sequence of the design. Line 30 shows
the Actions of the reset transition i.e., expected signal behavior at state idle. State transition
definitions for idle_idle and idle_sel that have idle state as their source state are shown in lines
32-40. Both state transitions are defined with Length of 1, which means that they require one
clock cycle for transiting from source state to the sink state. Similarly, other state transition
definitions are added to the state transition graph.

A graphical representation of the state transition graph of an AHB-to-APB bridge is shown
in Fig. 6.4. All state transitions are shown with their respective trigger conditions and num-
ber of clock cycles required for the state transitions (Length). As mentioned in the previous
paragraph, the design starts in the idle state and remains in idle until there is a transaction
request (htrans 6 1∨ hsel) from the AHB master. When the AHB master initiates a transac-
tion (htrans > 1∧ hsel) the design transitions to state sel and remains in that state until the
slave device is ready (¬pready). When the addressed slave device is ready (pready) to accept
a transaction request, the design transitions to state read (¬hwrite) or to state write (hwrite)
depending on the type of transaction request. From state read, the design transitions to state
read-wait when the slave device is busy (¬pready). Otherwise, the design transitions to state
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Figure 6.4: State transition graph of AHB-to-APB bridge (each state transition is shown with
the Trigger (as a Boolean predicate) and Length attribute values)

sel when there is an incoming transaction request (hsel ∧ htrans > 1∧ pready) or to state idle
if there is no request ((¬hsel ∨ htrans 6 1)∧ pready) from the AHB master. Similarly, when
there is a write transaction request the design transitions through states write, write-wait, sel
and idle depending on signal values at specific time points.

Property Generation and Experimental Results

The state transition graph created for capturing the behavior of an AHB-to-APB bridge consists
of 6 state definitions and 17 state transitions. In order to cover the complete behavior of the
design with a set of properties, an operational property is generated for each transition following
the notion of Complete-Interval Property Checking (C-IPC) (cf. Section 2.5). As presented in
Section 4.2, Template-of-Properties are used to extract the details from formal specification
models and to define the property models.

A code snippet of the Template-of-Properties for the AHB-to-APB bridge is shown in
Fig. 6.5. Line 4 shows the definition of a Python method that is used to define property models.
In line 6, the name for the property module is set followed by a definition of clock and reset in
lines 7-8, respectively. Line 9 defines an object instance of the class Ahb_2_Apb (cf. Fig. 6.3)
and line 10 shows the extraction of the state transition graph of the AHB-to-APB bridge. Lines
13-28 show the creation of a property model for each state transition in the state transition
graph. For each transition, the source state (line 14) of the transition is combined with the event
expression (line 20) that triggered the transition to form the antecedent expression (line 22) of
the property model. Similarly, the sink state (line 15) of the transition is combined with the
action expression (line 21) to form the consequent expression (line 23) of the property model.
The consequent expression is shifted by l clock cycles where l is length of the transition. This
is achieved by the DELAY operator which is an alias for the next (X) operator (cf. Section 4.6).
Lines 27-28 create a property model instance with corresponding attributes (name, expression,
type, reset and clock) and the instance is added to the metaProp instance.
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1 import MetaProp_api as mp
2 from ahb_2_apb_sts import *
3
4 def ahb2apb_mop(api, metaProp):
5 if api is not None:
6 metaProp.setName(’ahb2apb_prop’)
7 self.Clk = Clock(clk, ’Rise’)
8 self.Rst = Reset(rst, ’Low’)
9 ahb2apb_sts = Ahb_2_Apb()

10 stg = ahb2apb_sts.getSTG()
11
12 # Define a Model of Property (MoP)for each transition/operation
13 for transition in stg.getTransitions():
14 src_state = transition.getSourceRef()
15 snk_state = transition.getSinkRef()
16 if transition.getName() == ’reset_idle’:
17 self.Rst = None
18 snk_state = None
19 # Extract the expressions from MoT
20 trn_event = transition.getEvent().getExpression()
21 trn_action = transition.getAction().getExpression()
22 expr_antecedent = LAND(src_state, trn_event)
23 expr_consequent = LAND(snk_state, trn_action)
24 # Add a property instance to metaProp instance
25 expr_antecedent = expr_antecedent.mapExpression(mp)
26 expr_consequent = DELAY(transition.getLength(), expr_consequent.mapExpression(mp))
27 prop = metaProp.addProp(Name=transition.getName(), Type= ’assert’,
28 Expression=IMPLY(expr_antecedent,expr_consequent), Reset=self.Rst, Clock=self.Clk)

Figure 6.5: Code snippet of Templates-of-Property for AHB-to-APB bridge

From a C-IPC point of view, each transition relates to an operation and for each operation,
source and sink states represent the conceptual or important states. Therefore, a state transition
graph can be equated to a conceptual state machine proposed in C-IPC [81]. For proving the
completeness of property set, a property graph is generated from the state transition graph defi-
nition. A property graph is a tree like structure that captures all possible sequence of transitions
starting from the reset transition. Additionally, the property set must pass the determination
requirements of the design. In other words, a complete property set must determine the values
of all important states and output signals of the design at all time points. Towards this end,
determination requirements are developed considering all important state elements and output
signals of the design and it is checked if the generated property set satisfies these determination
requirements.

Table 6.3: Results: Property generation and formal runs

#LoC-MoT #LoC-ToP #LoC-ITL #Properties #Bugs Runtime Effort

170 28 440 17 2 4 min 2 person days

Tab. 6.3 shows a quantitative analysis of the property generation and formal property run.
For property checking, the commercial formal verification tool OneSpin 360 DV-Verify is used
on an Intel® Xeon® E5-2690 v3 @2.6GHz with 32 GB RAM. Column 1 shows the Lines of
Code (LoC) in Python required to capture the behavior of the AHB-to-APB bridge in a state
transition graph. Column 2 shows the LoC in Python DSL needed to define the property models
(shown in Fig. 6.5). A total of 17 properties (#Properties) have been generated with 440 LoC
in ITL (#LoC-ITL). With the generated set of properties 2 logic bugs are found in the DUV.
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A complete set of properties generated (in ITL) for the AHB-to-APB bridge is listed in Ap-
pendix D. The formal property run and completeness check took 4 minutes of runtime to reach
convergence (Runtime). It required only 2 person days (Effort) to develop the state transition
graph and for setting up the subsequent property generation.

6.2.2 Programmable Interrupt Controller
A Programmable Interrupt Controller (PIC) is an integral part of any CPU subsystem. An
interrupt controller is mainly used to provide an interface between external Input/Output (I/O)
devices and a processor unit. For example, when a timer device counts to its maximum value,
it may initiate a service request to the interrupt controller. Service requests are referred to as
interrupts, which are external events that occur asynchronously to the instruction execution of
a processor core. The interrupt controller monitors such requests from one or more external
devices and sets an interrupt request (IRQ) signal to the processor core. An interrupt controller
may use a priority-based mechanism to resolve simultaneous service requests from multiple
devices. The steps taken to formally verify a programmable interrupt controller by applying the
techniques proposed in Chapter 4 are described in the following.

Modeling PICs is done in two steps. First, an untimed model is created as an instance of
the metamodel definition capturing the high-level characteristics of a PIC. However, this model
does not describe the time-accurate behavior of the design as it would restrict the implementa-
tion choices. Therefore, the untimed model of a PIC is extended with precise timing information
by modeling the behavior of each interrupt source in a state transition graph.

Metamodel Definition of PIC

The metamodel definition of PICs is shown in Fig. 6.6. The rootNode of metamodel MetaPIC
has three child nodes Host, InterruptSource and InterruptController with multiplicities 1, 1..∗
and 1, respectively. The InterruptController class has generic attributes to define the properties
of an interrupt controller design. It defines the attributes that are applicable to all the inter-
rupt sources. As an interrupt controller may support one-to-many (multiplicity 1..∗) interrupt
sources the attributes of InterruptSource class are defined separately for each interrupt source.

PriorityResolution : PriorityType[1] = Static

PriorityGrouping: bool[1] = False

IRQDisable: bool[1] = False

DynamicEdgeType: bool[1] = False

AddressSuffixWidth: int[1] = 32

HandlingType: InterruptHandlingType[1] = NonVectorized

NestedInterruptHandling: bool[1] = False

InterruptController

1..*

Name: string [1]

Maskable: bool[1] = True

RequestEdgeType: EdgeType[1] = RisingEdge

Priority: int[1] = 0

GroupPriority: int[0..1] = 0

ContextSwitch_in_HW: bool[1] = False

InterruptSource

Name:string[0..1]

MetaPIC

rootNode

1

Name: string [1]

Host

1

RisingEdge : EdgeType

FallingEdge : EdgeType

HighLevelEdge : EdgeType

LowLevelEdge : EdgeType

BothEdge : EdgeType

<<enum>>

EdgeType

Static : PriorityType

Dynamic : PriorityType

FirmwareResolved: PriorityType

<<enum>>

PriorityType

NonVectorized: InterruptHandlingType

VectorizedBusAccess: InterruptHandlingType

VectorizedDirectAccess: InterruptHandlingType

<<enum>>

InterruptHandlingType

: composition

: association

Figure 6.6: Metamodel definition of a programmable interrupt controller
Attributes of the InterruptController class are described as follows: The PriorityResolution

attribute belongs to a type defined by an enum class PriorityType and indicates the priority res-
olution mechanism to be implemented by an interrupt controller design. The default value for
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this attribute is set to Static which infers that the priorities of interrupt sources are pre-defined.
PriorityGrouping is an attribute of Boolean type and indicates if a set of interrupt sources be-
long to a certain priority value. If this attribute is set to False, the GroupPriority attribute of
the InterruptSource class becomes obsolete. The IRQDisable attribute is of Boolean type and
indicates whether the interrupt controller is allowed to enable or disable interrupt sources upon
a transaction from the processor core (by the software program). Attribute DynamicEdgeType
indicates whether the edge (rising or falling) on which the interrupt request is notified can be
set dynamically. If this attribute is set to True, a register bitfield is used to dynamically set the
edge of an interrupt request to which the interrupt channel is sensitive to. AddressSuffixWidth
is an integer value that indicates the address size of the interrupt device (e.g., timer). The Han-
dlingType attribute determines the type of interrupt handling mechanism such as vectorized or
non-vectorized. NestedInterruptHandling is a Boolean attribute that indicates whether the in-
terrupt controller supports pre-emption of a low-priority interrupt when a high-priority interrupt
request is received.

The attributes of the InterruptSource class are described as follows: Each interrupt source
has a name defined by the Name attribute. Maskable is a Boolean attribute which indicates
whether a request from an interrupt source is maskable. When this attribute is set to True, a reg-
ister bitfield in the interrupt controller design is used to indicate whether a request is serviced
or masked at a certain timepoint t. The attribute RequestEdgeType belongs to a type defined
by an enum class EdgeType and has a default value of RisingEdge. It describes how an in-
terrupt request from an external device is recognized by the interrupt controller. The Priority
attribute is an integer values that indicates the priority of that interrupt source. GroupPriority
is also an integer value that indicates the group priority of the interrupt source. Two or more
interrupt sources may belong to the same group priority. The group priority value is considered
before the individual priority value when resolving simultaneous interrupt requests from multi-
ple sources. The ContextSwitch attribute is used to indicate whether the context switching logic
is implemented by the hardware or by the software.

Hardware Implementation Overview

A model instance of the MetaPIC metamodel is created with specific values for each attribute
and represents an abstract model of the features implemented by an interrupt controller. The
RTL generation (cf. Section 3.4) of interrupt controller is built such that it takes any model
instance and generates a corresponding hardware design.

Interrupt controller

Detection 

logic

Prioritazation 

logic

Signaling 

logic

...

cpu_out_ack

cpu_out_irq_end

irq_src_1

irq_src_2

irq_src_n

Bus 

Interface

cpu_in_irq

Figure 6.7: Block diagram of programmable interrupt controller
The top-level block diagram of a PIC is shown in Fig. 6.7. A programmable interrupt con-

troller consists of three main logic blocks: detection, prioritization and signaling. As the name
suggests, the Detection logic is responsible for identifying the interrupt requests from differ-
ent sources (irq_src_1, irq_src_1, . . . irq_src_n). The Prioritization logic handles simultaneous
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interrupt requests and also computes the logic for preemption of an ongoing interrupt service
routine. The Signaling logic communicates with the CPU to raise interrupt requests. The Bus
interface circuit is used for the transactions with the CPU. For example, the CPU may initiate a
transaction through the bus to enable or disable certain interrupt sources.

The state of an interrupt source is monitored by utilizing two register bitfields: pending and
active. When an interrupt source raises a request, the pending bitfield is set and an interrupt
request signal (cpu_in_irq) is sent to the CPU, provided no other requests are pending. When
the CPU acknowledges (cpu_out_ack) the request, the active bitfield is set. After receiving an
acknowledgment, the PIC passes the address of an interrupt service routine (ISR) to the CPU
and the CPU jumps to the address and executes the specified ISR.

Modeling Interrupt Behavior in a State Transition Graph

A set of properties is generated such that they completely capture the behavior of an interrupt
controller design. Towards this end, the behavior of an interrupt controller is modeled in a
state transition graph. For each interrupt source request, a state transition graph is created by
considering its pending and active register bitfields as the state bits. For each interrupt request,
there are three possible reachable states:

• State idle := {pending-register = 0, active-register = 0}
• State pending := {pending-register = 1, active-register = 0}
• State active := {pending-register = 1, active-register = 1}
A state transition graph can be created for an entire interrupt controller by considering the

pending and active bits of all sources. However, such a state transition graph leads to a high
number of state definitions and transitions, and results in a complex formulation of the state
transition graph. To illustrate, let us consider an interrupt controller that is connected to three
interrupt sources (n = 3). This implies that there are 3 pending and 3 active register bitfields
in the design. The state variable s for n interrupt sources can be realized by concatenating all
pending and active registers as follows:

s = {active1,active2,active3, pending1, pending2, pending3} (6.1)

In general, for an interrupt controller that is connected to n peripheral devices, there are 2(2∗n)

(two register bits for each interrupt source) possible state definitions. However, for computing
the number of reachable states, we have to consider the following conditions: 1) only one
interrupt source can be in state active at any given time point and, 2) an interrupt source can be
in state active only if it was in state pending before. Further, the priority of individual interrupt
sources has to be considered for computing the reachable states. After removing all unreachable
state definitions, the number of reachable states for an interrupt controller that is connected to
n interrupt sources is given by 2(n+1)−1.

In order to cover every possible operation performed by the design, a property shall be
generated for each state transition. For an interrupt controller supporting three external devices,
there are 30 possible transitions. When the number of interrupt sources increases, the number of
state definitions and state transitions increase exponentially leading to a complex state transition
graph. Properties generated from such a state transition graph are not user-friendly as they
encode state information of all interrupt sources in every property.

To avoid a single but complex definition of the state transition graph, separate but identical
state transition graphs are created for each interrupt source. This state transition graph is shown
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Figure 6.8: State transition graph of an interrupt source (each state transition is shown with the
Trigger (as a Boolean predicate) and Length attribute values)

in Fig. 6.8. State encoding for each interrupt source is formed by combining the pending and
active register fields. As mentioned earlier, each interrupt source request has three reachable
states as shown in Fig. 6.8. The number of clock cycles taken for each state transition is also
shown (Length = 1).

The state idle is an initial state reached initially through the reset transition. An interrupt
source remains in state idle as long as there is no service request from an interrupt source
(int_src_x_high = 0). When there is an interrupt request from a source (int_src_x_high =
1) the state of the interrupt request transitions to state pending. If the CPU is not serving
any other interrupt requests and if no other higher-priority interrupt requests are pending, the
state of the interrupt request transitions to state active when the interrupt controller receives an
acknowledge (cpu_int_ack) from the CPU. The state of the interrupt request remains in state
active until the completion of its ISR, unless it is preempted by a higher-priority interrupt which
causes the state of an interrupt request to become pending. Note that the transition is marked in
dotted lines to indicate that the transition from state active to state pending is not possible for
the highest-priority interrupt source. The state of the interrupt request becomes idle when the
corresponding ISR has been completed (int_ended) by the CPU.

Property Generation and Experimental Results

To model the behavior of each interrupt source, a state transition graph is created that consists
of 3 state definitions and 8 state transitions as described above. For capturing the complete
behavior of an interrupt controller, operational properties are generated following the C-IPC
notion presented in Section 2.5. Similar to the AHB-to-APB bridge, a template-of-properties
is developed to extract the architectural characteristics and behavioral details of each interrupt
source and to define the property models.

Tab. 6.4 shows the results of property generation and formal verification of multiple in-
stances of the interrupt controller connected to different number of interrupt sources. For prop-
erty checking, the commercial formal verification tool OneSpin 360 DV-Verify is used on an
Intel® Xeon® E5-2690 v3 @2.6GHz with 32 GB RAM. The state transition graphs have to be
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Table 6.4: Results: Property generation and formal runs

#LoC-MoT #LoC-ToP Effort #Sources #LoC-SVA #Properties Runtime

450 250 12 per. days 3 500 25 3.5 min

- - - 4 612 32 4 min

- - - 5 745 39 6 min

- - - 6 890 46 6 min

- - - 7 1050 53 12 min

- - - 7* 3960 60 40 min

defined considering different architectural choices of an interrupt controller (e.g., static or dy-
namic priority). Column 1 (#LoC-MoT) indicates the LoC in Python needed to define the state
transition graphs in a configurable manner. Column 2 shows the LoC in Python-based DSL for
defining property traces. The effort required to define state transition graphs and property traces
is only one time effort and is shown in column 3.

The number of interrupt sources connected to the interrupt controller is shown in column 4.
LoC in SVA and the number of generated properties are shown in columns 5 and 6, respec-
tively. Runtime of properties including the completeness checks is shown in column 7. Rows
represent the corresponding numbers for interrupt controller connected to different number of
interrupt sources. It is important to note that #LoC-MoT, #LoC-ToP and Effort are shown only
for row 2 to indicate that the MoT and ToP are implemented once and re-used for all variants
of the interrupt controller. As a result, additional effort is not needed for property generation of
subsequent interrupt controller instances.

Rows 2-6 show the numbers for interrupt controllers that are configured to use a static (pre-
defined) priority mechanism to resolve simultaneous service requests from different interrupt
sources. Row 7 shows the numbers in which an interrupt controller is configured to use a
dynamic priority mechanism for resolving simultaneous requests. Dynamic priority means that
the priority of individual interrupt sources can be modified by the software program during
runtime. As a result, additional properties are generated to verify the dynamic priority values
of interrupt sources. As a consequence, the runtime of the properties also increases. Note that
the ToP is configured to define the property models considering all possible MoT instances.
Therefore, no extra effort is needed for generating additional properties required for verifying
the dynamic priority feature. The shown results demonstrate the reusability and subsequent
productivity gain of the property generation flow.

6.2.3 Bus Matrix

A bus matrix is a commonly found component in multi-master multi-slave designs and provides
a platform to connect multiple masters to multiple slave devices. Based on the access request
from master devices, the bus matrix determines the bus master that obtains access to a bus slave,
and connects control and data signals between them. In the following, modeling specifications
of bus matrices in a structural model and subsequent property generation is discussed.
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Metamodel Definition of Bus Matrix

The metamodel definition of a bus matrix is shown as a UML class diagram in Fig. 6.9. The
metamodel definition captures the high-level characteristics of the bus matrix. Root node of the
metamodel is MetaBusMatrix which defines name, data width, address width and arbitration
policy as its attributes. The type of Arbitration attribute is defined by an enum class Prior-
ityResolution and has the default value Static. It specifies the type of arbitration mechanism
implemented by the bus matrix to resolve simultaneous access requests to a specific bus slave
from two or more bus masters.

Name:string[0..1]

DataWidth: int[1] = 32

AddressWidth: int[1] = 32

Arbitration: PriorityResolution[1] = static

MetaBusMatrix

rootNode

1..*

AddressBase : int[1] = 0

AddressRange : int[1] = 1

SlaveInterface

SlaveIf

Priority : int[1] = 0

MasterInterfaceMasterIf

1..*

IfName: string [1]

Prefix : string[1]

CommonInterface

Static : PriorityResolution

RoundRobin : PriorityResolution

<<enum>>

PriorityResolution

: composition

: inheritance/

generalization

Figure 6.9: Metamodel definition of a bus matrix

Class MetaBusMatrix holds a composition relation to classes MasterInterface and SlaveIn-
terface. The multiplicity of the composition relation is set to 1..∗, which indicates that there can
be multiple bus masters and slave device connected to the bus matrix. Both MasterInterface and
SlaveInterface classes inherit the attributes (IfName, Prefix) of parent class CommonInterface.
The MasterInterface class defines an attribute Priority to attach a priority value to every bus
master. The SlaveInterface class defines as its attributes base address (AddressBase) and range
of address space (AddressRange).

Hardware Implementation Overview

Model instances of the metamodel definition are created by filling the specific values for various
attributes shown in Fig. 6.9. The RTL generation flow outlined in Section 3.4 takes any model
instance as the input and generates a corresponding RTL design.

A model instance is created for an AHB bus matrix with two master and seven slave in-
terfaces. AHB matrix provides an interconnection between multiple AHB masters and multi-
ple AHB slave devices. A simplified top-level block diagram of the AHB matrix is shown in
Fig. 6.10. Ports of both the masters are prefixed with “m_” (e.g., m_cpu_HADDR) while the
ports of slave devices are prefixed with “s_” (e.g., s_dmem_HRDATA). Both data and address
width are set to 32 bits and a static arbitration policy is selected for resolving simultaneous
accesses.

From a functional point of view, an AHB matrix has three stages: an input stage, a decode
stage and an output stage. The input stage receives a transaction request from a master device
and stores the incoming transaction when the addressed slave device is not free. The decode
stage generates the select signal to the slave devices based on the transaction request from a
master device during the address phase of the transaction. During the data phase, incoming
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AHB BusMatrix
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Figure 6.10: Block diagram of an AHB matrix with 2 master and 7 slave interfaces

response signals from slave devices are connected back to the appropriate master device inter-
face. The output stage selects control, address and data signals from the input stage. It also
determines when to switch between input ports in the input stage.

Property Generation and Experimental Results

The metamodel definition shown in Fig. 6.9 enables a high degree of configurability in building
bus matrices connected to multiple master and slave devices. The function of a bus matrix
is highly combinatorial in nature and the model instances of the shown metamodel capture
the required specification details of a bus matrix needed for property generation. As a result,
modeling the behavior of a bus matrix in a state transition graph is not beneficial.

Following the property generation flow (cf. Section 4) the specifications details of a bus
matrix are extracted from the model instance of the metamodel MetaBusMatrix in Template-
of-Properties. Property models are defined targeting each master and its connection to all slave
devices.

A simplified ToP code snippet is shown in Fig. 6.11, where the property models for access
requests are defined. Lines 1-21 show a Python function which returns expression variables
req_expression and ack_expression. Transaction requests from a bus master to a bus slave are
captured in req_expression, wheras the response or the expected behavior of a slave device is
captured in ack_expression. Lines 24-39 show a Python function that defines access request
property models from each bus master to every bus slave. Lines 24 and 25 extract the details
of master and slave devices from the MoT. Line 27 shows a for loop that iterates over all the
bus masters. For the highest-priority master the property model has to be different as it gains
access to the bus slave over other masters that request the access simultaneously (shown in lines
28-33). Lines 34-39 show the definition of property models for low-priority masters in which
an additional constraint is added such that the higher-priority masters do not issue a read or
write request (high_prio_master_idle).

Tab. 6.5 shows the quantitative results of the property generation and formal verification
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1 def req_expression(m,i,s,j):
2 req_expression = LAND(LAND(GTEQ(m.getName()+’HADDR’, s.getAddressBase()),
3 LT(m.getName()+’HADDR’, s.getAddressBase()+s.getAddressRange())),
4 GTEQ(m.getName()+’HTRANS’,1),
5 EQ(s.getName()+’HREADY’,1),
6 s.getName()+str(s[j])+’is_idle’,
7 DELAY([1,wait_window],EQ(s.getName()+’HREADY’,1)))
8 ack_expression = LAND(m.getName()+str(m[i])+’is_busy’,
9 EQ(m.getName()+’granted’, 1),

10 EQ(m.getName()+’HRDATA’, s.getName()+’HRDATA’),
11 EQ(m.getName()+’HREADY’, 1),
12 EQ(m.getName()+’HRESP’, s.getName()+’HRESP’),
13 EQ(m.getName()+’HADDR’, s.getName()+’HADDR’),
14 EQ(m.getName()+’HBURST’, s.getName()+’HBURST’),
15 EQ(m.getName()+’HMASTLOCK’,s.getName()+’HMASTLOCK’),
16 EQ(m.getName()+’HSEL’, 1),
17 EQ(m.getName()+’HSIZE’, s.getName()+’HSIZE’),
18 EQ(m.getName()+’HTRANS’, s.getName()+’HTRANS’),
19 EQ(m.getName()+’HWDATA’, s.getName()+’HWDATA’),
20 EQ(m.getName()+’HWRITE’, s.getName()+’HWRITE’))
21 return [req_expression,ack_expression]
22
23 def access_request(mot, metaprop):
24 bus_masters = mot.getMasterIfs()
25 bus_slaves = mot.getSlaveIfs()
26 #define property models for all bus masters targeting transaction requests to each slave
27 for i,m in enumerate(bus_masters):
28 if m.getPriority() == 0:#highest priority master
29 for j,s in enumerate(bus_slaves):
30 antecedent = req_expression(m,i,s,j)[0]
31 consequent = ack_expression(m,i,s,j)[1]
32 metaprop.addProp(Name=m.getName()+’trans_req_prop’, Expression=IMPLY(antecedent,consequent),
33 Type=’assert’, Clock=Clk, Reset=Rst)
34 else:# low priority masters
35 for j,s in enumerate(bus_slaves):
36 antecedent = LAND(higr_prio_masters_idle(m,i),req_expression(m,i,s,j)[0])
37 consequent = ack_expression(m,i,s,j)[1]
38 metaprop.addProp(Name=m.getName()+’trans_req__prop’, Expression=IMPLY(antecedent,consequent),
39 Type=’assert’, Clock=Clk, Reset=Rst)

Figure 6.11: Code snippet of Templates-of-Property for AHB matrix

Table 6.5: Results: Property generation and formal runs

#LoC-ToP Effort #Master #Slave #LoC-SVA #Properties Runtime Coverage

200 4 days 2 4 560 22 2 min 100%

– – 3 4 820 31 3.5 min 100%

– – 3 6 1190 45 5 min 100%

– – 4 7 1815 67 7 min 100%

runs. For property checking, the commercial formal verification tool OneSpin 360 DV-Verify
is used on an Intel® Xeon® E5-2690 v3 @2.6GHz with 32 GB RAM. Column 1 shows the LoC
in Python DSL needed to define property models. It required 4 person days (Effort) to develop
the metamodel definition, model instances, Template-of-Properties and to obtain a convergence
of the properties. Column 3 and 4 show the number of master and slave devices, respectively.
In the table, the rows show the results for different numbers of master and slave instances. It
should be noted that the ToP is developed only once such that it is applicable to any number
of master and slave instances. For an AHB matrix with 2 master and 4 slave devices, 22 prop-
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erties (column 6) with 560 LoC in SVA (column 5) are generated to completely verify the bus
matrix. Columns 7 shows the property runtime of the generated properties. In contrast to the
designs that are sequential in nature (e.g., PIC or AHB-to-APB), the coverage strategy taken
for combinatorial designs such as the AHB matrix is different. It is necessary to ensure that all
expected connections between the master and slave interfaces exist and that a set of properties
verifies the required conditions under which the data is transmitted through these connections.
An useful metric available after the property runs is code coverage. Code coverage is a measure
of which RTL code lines are analyzed during the property runs. A cumulative collection of
code coverage of all the properties can be used to ensure that the entire design implementation
is evaluated. Towards this end, for AHB matrix 100% (column 8) of the RTL code coverage is
achieved indicating that a set of properties fully evaluated the design implementation.

6.2.4 Summary and Observations

In addition to the designs discussed in this chapter, the proposed specification modeling and
property generation approaches have been applied to several other design blocks. These design
blocks include a timer with multiple timer channels, HW/SW interface registers, communi-
cation peripherals such as UART (Universal Asynchronous Receiver Transmitter), I2C (Inter-
Integrated Circuit) and safety-relevant components such as CRC (Cyclic Redundancy Check),
and ECC (Error Correction Code) circuits. The following observations are made from the ap-
plication of property generation techniques to several real-life design blocks.

Observation: Productivity and Reusability

The proposed modeling and generation approaches simplify the verification of digital design
blocks by automating the property development. For measuring the effectiveness of the gener-
ation flow, LoC gain can be used as an useful metric. For the case of RISC-V processor cores,
a total of 1290 LoC in Python were required to generate 6070 LoC in ITL, resulting in a LoC
gain of 4.6 (cf. Tab. 6.2). LoC in Python include both specification modeling using state transi-
tion notation and property model definitions. Moreover, the generation flow can be extended to
support any added instruction extension with a small manual effort.

The PIC design can be configured to enable different combinations of features (cf. Sec-
tion 6.2.2). This allows for a high degree of flexibility and the property generation is set up
considering all combinations of parameters. The property generation for a PIC design with
dynamic priority results in a LoC gain of 5 (cf. Tab. 6.4, row 7). For the case of the AHB-
to-APB bridge, the configuration space is low and the LoC gain is 2 (cf. Tab. 6.3). Similar
to the PIC design, the AHB bus matrix can be configured to interconnect multiple master and
multiple slave devices. For a bus matrix with 4 master and 7 slave interfaces, a LoC gain of 9
is achieved. Moreover, the property generation is configurable such that any instance of a bus
matrix connected to any numbers of master and slave devices can be described.

As the generation is set up considering all combination of configuration space (e.g., mi-
croarchitectural choices and different values for object attributes in the metamodel definitions),
the LoC gain factor and the reusability factors are high. Overall, a high productivity gain is
achieved with the proposed specification modeling and property generation approaches.
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Observation: Effectiveness and Quality

The proposed property generation approach considers different specification modeling tech-
niques based on the nature of design. A state transition notation is used to capture the sequential
behavior (e.g., PIC and AHB-to-APB bridge), whereas the combinatorial behavior (e.g., AHB
matrix) is captured with structural models. This helps to simplify the definition of property
models and allows to generate the properties that are effective on the respective designs.

The quality of a design implementation is often measured by the type of bugs detected
and the coverage achieved during the verification. For designs of sequential nature, a set of
generated properties satisfy the completeness criterion according to C-IPC (cf. Section 2.5)
and detected several difficult-to-find bugs. For the combinational type of designs 100% code
coverage is achieved through a set of generated properties.
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Chapter 7

Summary of Contributions

The novel solutions proposed and developed in this thesis along with the key findings have been
pre-published in several scientific conferences [27, 33, 28, 35, 103, 29, 50, 30, 32]. The intro-
duced concepts and methods have been applied to several industrial designs with the courtesy
of Infineon Technologies AG. A summary of the contributions is provided in the following.

In this thesis, the software development principles of Model-Driven Architecture have been
adopted for developing a generation flow for properties. The taken approach for property gen-
eration introduces three models, namely the Model-of-Things, the Model-of-Property, and the
Model-of-View. Each model belongs to a distinct model layer in the generation flow and each
model layer addresses a specific concern of the property generation. The separation of con-
cerns through model layers ensures modular flow development, and enables uncomplicated
enhancements and feature extensions. The properties are generated through a series of model-
to-model transformations between these model layers [27, 33, 28]. Python is used as the
domain-specific language for describing the intermediate transformations. A metamodel-based
automation framework is utilized to generate an infrastructure that facilitates the description of
transformations. The APIs that form the central part of the infrastructure are generated from
the metamodel definitions of the models mentioned before. The generated APIs are further ex-
tended with domain-specific APIs to significantly reduce the effort required for developing the
transformations [35, 50]. The property generation solution developed in this thesis is termed
as “MetaProp”. The various aspects of introduced models and model transformations are dis-
cussed in Chapter 4.

A key aspect of the property generation flow is the translation of informal specifications to
formal specification models. Due to the diverse nature of hardware designs, the methodology
includes different modeling paradigms to formalize the specifications. The metamodel Meta-
Expression provides features to describe the behavior of combinational designs in the form of
expression trees and dataflow expressions. The MetaExpression metamodel is modular in na-
ture and can be integrated into other metamodel definitions that capture the specification level
configurations of the design. For modeling the behavior of sequential designs, a formalism us-
ing finite state machine-like notations for traces is introduced. The metamodel MetaSTS defines
this formalism. The MetaSTS metamodel enables to define the behavior of sequential designs
with annotated timing information for transitions between important states. Annotation is also
used to map abstract states in the Model-of-Things to the Model-of-Property and, finally, to the
design implementation. Such an annotation or binding mechanism enables Model-of-Properties
to be applicable on a variety of design implementations [28, 29, 32].
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Another important contribution of this thesis is a complete processor verification method-
ology, which is based on the aforementioned generation approach. The introduced methods
for specification modeling are employed to formalize the ISA and the behavior of instructions
within the processor pipelines. However, it requires substantial manual efforts and in-depth
knowledge of the microarchitectural details of the processor implementation to describe the
transformations that define the Model-of-Properties. The prime reason for this requirement is
the overlapped execution of instructions within the pipelined architectures of processors and
the numerous internal and external pipeline stall scenarios. For a complete processor veri-
fication, a set of generated properties must consider all combinations of instruction overlap-
ping coupled with all scenarios of pipeline stalls. In retrospect, the Model-of-Properties —
from which the properties are generated — are required to consider all combinations of the
aforementioned scenarios. To address these aspects, the C-S2QED method — an extension of
the S2QED method — has been developed to completely verify a processor. The C-S2QED
method is also applicable to exceptions within the processor pipelines and superscalar pipeline
architectures. The C-S2QED method detects all functional bugs in a processor implementation
and requires significantly less manual efforts compared to state-of-the-art processor verification
methods [103, 30]. The different aspects of processor verification with the C-S2QED method
are discussed in Chapter 5. The completeness hypothesis of the C-S2QED method based on
the completeness criterion defined by C-IPC [81] and a completeness proof are also part of this
thesis (cf. section 5.5.5). The property generation flow has been leveraged to generate a set of
C-S2QED properties to further enhance the effectiveness of the methodology.

Copyright © Infineon Technologies AG 2019. All rights reserved. 6September 2019
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Figure 7.1: Layout of the “Rival” chip

The applicability and effectiveness of the introduced modeling paradigms and developed
methods have been demonstrated with the formal verification of several industry strength de-
signs. Numerous logic bugs including the bugs that are typically regarded as difficult to find
have been detected during the formal verification with generated properties. Fig. 7.1 shows the
layout of the “Rival” SoC, where most of the IPs including the RISC-V core and excluding
the legacy IPs have been formally verified only with the proposed methods in this thesis. The
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Rival SoC is used in the powertrain and safety automotive applications. The manufactured chip
works “first time right” and no logic bug has been detected during the post-manufacturing tests.

Various architectural alternatives of the RISC-V based processor designs are verified with
the generated C-S2QED properties. The property generation is built in a configurable man-
ner such that any changes in microarchitecture of the processor — that may be caused by the
changes in specifications — are implicitly covered by the generation flow. Thus, additional
manual efforts are not required and the functional flaws due to the changes in specifications are
neutralized. Furthermore, the proposed methods have also been applied to communication pro-
tocol IPs, bus bridges, interrupt controllers and safety-relevant designs. The various aspects of
formally verifying the mentioned designs together with the results are discussed in Chapter 6.

In summary, the scientific contributions of this thesis are enumerated as follows:

• Principles of Model-Driven Architecture have been applied to achieve a quantum leap in
the verification productivity of hardware designs.

• Novel modeling paradigms are introduced to formalize the hardware design specifica-
tions. Especially, a new FSM-based notation for traces formalizes the implicit design
know-how.

• An automatic annotation mechanism is introduced to generate properties for various ar-
chitecture alternatives of a design without additional overhead.

• A complete processor verification methodology called C-S2QED is introduced, which is
also applicable to exceptions and superscalar architectures. The methodology has been
proven to detect all functional bugs in a processor.

• The property generation is also applicable on communication and house-keeping IPs.

• The introduced methods are applicable on wide variety of designs including safety-critical
IPs such as error correction and cyclic redundancy designs (cf. appendix E).

• The applicability of the introduced modeling paradigms and the property generation flow
is industry-strength.

In future, the work shall be extended to support formal verification of designs realized with
automatic design transformations [9]. Design transformations are a set of rules that are applied
on an intermediate design model to achieve specific functional and/or non-functional design
changes. The property generation solution developed in this thesis shall be extended to formally
verify the expected changes in the design behavior. Further, applicability of the C-S2QED
method for non-core designs with pipeline architectures — for example, bus protocols that use
pipelined transaction phases — shall be explored.
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Kapitel 8

Deutsche Zusammenfassung

Die exponentielle Zunahme der Komplexität moderner System-on-Chips (SoCs) trägt zu ei-
nem äußerst komplexen Entwurfsprozess bei. Das Feststellen der funktionalen Korrektheit von
Hardware-Entwürfen (Designs) ist essentiell, um sicherzustellen, dass alle Designfehler gefun-
den werden, bevor der Chip gefertigt wird. Alle während des Verifikationsprozesses nicht ent-
deckten Designfehler können gravierende Folgen haben, wenn sie erst während der Anwendung
entdeckt werden. Das gilt insbesondere in sicherheitskritischen Bereichen, wie im Automobil-
bereich oder der Luftfahrt. Trotz bedeutsamer Fortschritte bei der Verifikation, insbesondere im
Bereich von Entwurfsverifikation, hinken die Fähigkeiten und Kapazitäten existierender Verifi-
kationsmethoden den Bedürfnissen moderner SoCs hinterher. Um mit der steigenden Komple-
xität der Designs schritthalten zu können, sind neue Verifikationmethoden nötig, die die Desi-
gnfehler wirksam entdecken können. Formale Verfahren sind hierbei hinsichtlich ihrer Gründ-
lichkeit überlegen und garantieren eine hohe Designqualität. Die formalen Verifikationsmetho-
den haben sich, trotz der anfänglichen Probleme mit der Skalierbarkeit bei größeren Designs,
über die letzten Jahre weiterentwickelt und sind dadurch auch auf größere Entwürfe anwendbar
geworden. Nichtsdestotrotz werden formale Methoden noch selten in der Industrie genutzt, hier
werden häufig Simulationsmethoden bevorzugt. Die größten Schwierigkeiten bereiten hierbei
das Entwickeln von “guten Properties” für die Designspezifikationen, fehlende Expertise für die
Anwendung von formalen Verfahren und die Verfügbarkeit effektiver Verifikationsprozesse.

Die Motivation dieser Arbeit ist begründet in der Beobachtung, dass Produktivität und Qua-
lität der Verifikation von Designs durch die Automatisierung von Properties für den formalen
Verifikationsprozess gesteigert werden. Darüber hinaus schlägt diese Arbeit neue Verifikations-
strategien für die effektive Verifikation von Hardware mit generierten Properties vor, speziell
mit einem Fokus auf die formale Verifikation von Prozessorkernen.

8.1 Modellgetriebene Generierung von Eigenschaften

Formale Eigenschaften (Properties) werden von der Spezifikation in einer Weise abgeleitet,
welche die Intention des Designs erfasst, und werden anschließend von einem formalen Veri-
fikationstool benutzt, um die in einer bestimmen Hardwarebeschreibungssprache erstellte Im-
plementierung zu verifizieren. Eine automatische Generierung von Eigenschaften muss den fol-
genden Anforderungen an einen “guten Satz von Eigenschaften” (Property-Set) genügen:

• Properties sollen aus einer formalen Spezifikationen generiert werden.
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• Generierte Properties sollen korrekt und vollständig sein im Hinblick auf die Spezifikati-
onsobjekte.

• Ein Set von Properties sollte alle Spezifikationsobjekte abbilden.
• Ein Set von Properties sollte zu seinen Spezifikationsobjekten rückverfolgbar sein.
• Der Generierungsprozess von Properties sollte das 4-Augen-Prinzip befolgen.
• Ein generiertes Set von Properties sollte verschiedene Verifikationsverfahren unterstüt-

zen.
• Ein Set von Properties sollte in einer für Menschen lesbaren Form formuliert sein.
Ein möglicher Ansatz ist das vorlagen-basierte Verfahren. Dabei kann die Übersetzung von

der Spezifikation zu Properties anhand einer Vorlagen-Bibliothek realisiert werden, wie es zum
Beispiel die Mako Vorlage-Bibliothek für Python ist. Nichtsdestotrotz ist solch ein vorlagen-
basiertes Verfahren nur auf eine kleine Untermenge von Designs anwendbar. Um die Nachteile
des vorlagen-basierten Verfahrens auszugleichen und die oben gennanten Anforderungen zu
erfüllen wurde die modellgetriebene Generierung von Properties entwickelt. Dieses Verfahren
adaptiert die Model-Getriebene Architektur (MGA) für Codegenerierung aus der Object Ma-
nagement Group (OMG). Der Prozess folgt konzeptionell OMG’s MGA Vorschlag, führt aber
zusätzlich neue Begriffe für verschiedene hardwarebezogene Modelle ein. Die eingeführten
Modelle sind Model-der-Dinge, Model-der-Eigenschaften und Model-der-Sicht. Jedes Model
gehört zu einer bestimmten Model-Ebene im Generierungssprozess. Jede Model-Ebene bezieht
sich auf eine spezifische Aufgabe in der Propertygenerierung. Die Aufgabentrennung durch die
Model-Ebenen garantiert eine modulare Prozessentwicklung, und gestattet eine unkomplizier-
te Weiterentwicklung und Erweiterung der Funktionalitäten. Die Properties werden durch eine
Abfolge von Model-zu-Model Transformationen zwischen diesen Model-Ebenen generiert. Py-
thon wird als domainspezifische Sprache für die Beschreibung der Zwischentransformationen
genutzt.

Für die Generierung der Infrastruktur, die das Beschreibung von Transformationen verein-
facht, wird ein Metamodel-basiertes Automatisierungsframework angewendet. Die Program-
mierschnittstelle, die den zentralen Teil der Infrastruktur bildet, wird aus den Metamodel-
Definitionen der obengenannten Modellen generiert. Die generierte Programmierschnittstelle
wird erweitert durch eine domain-spezifische Programmierschnittstelle, um den Aufwand für
die Entwicklung der Transformationen zu reduzieren. Die in dieser Thesis entwickelte Gene-
rierungslösung von Properties wird “MetaProp” genannt.

Ein wesentlicher Aspekt des Generierungsprozesses von Properties ist die Übersetzung von
informellen Spezifikationen in formale Spezifikationsmodelle. Aufgrund der Verschiedenartig-
keit von Hardwareentwürfen stellt das Verfahren unterschiedliche Modellierungsparadigmen
für das Formalisieren der Spezifikationenbereit. Das sogenannte “MetaExpression” Metamo-
dell bietet Unterstützung zur Beschreibung des Verhaltens von kombinatorischen Designs in
Form von Expression-bäumen und Dataflow-Ausdrücken. Das MetaExpression Metamodel ist
modularer Natur und kann in anderen Metamodelsbeschreibungen integriert werden, die die
Konfiguration des Designs auf Spezifikationsebene beschreiben. Für die Modellierung des Ver-
haltens von sequentiellen Designs wird ein Formalismus für Traces eingeführt, dessen Notation
verwandt mit der endlicher Automaten ist. Das Metamodel gennant “MetaSTS” beschreibt die-
sen Formalismus. Das MetaSTS Metamodel erlaubt die Definition des Verhaltens sequentieller
Designs, mithilfe annotierter Timing-Informationen für die jeweiligen Übergänge zwischen re-
levanten Zuständen. Diese Annotationen werden auch benutzt, um die abstrahierten Zustände
im Model-der-Dinge auf das Model-der-Eigenschaften und schließlich auf die Entwurfsimple-
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mentierung abzubilden. Solche Annotationen oder Verbindungsmechanismen erlauben es, das
Model-der-Eigenschaften auf unterschiedlichen Entwurfsimplementierungen anzuwenden.

8.2 Prozessorverifizierung durch C-S2QED
Die Propertygenerierung für formale Verifikation von Hardware-Entwürfen liefert ein effizien-
tes und effektives Verfahren für Entwurfverifikation. Nichtsdestotrotz ist formale Verifikation
von Prozessorkernen eine enorme Herausforderung. Die Mikroarchitektur von Prozessorkernen
ist optimiert für Leistung, Fläche, Timing, Energieverbrauch, Exceptionbehandlung, etc. Auf-
grund dieser Optimierungen ist sowohl ein erheblicher manueller Aufwand zu treiben, als sind
auch tiefgehende Kenntnisse über mikroarchitekturelle Details vonnöten, um die Transforma-
tionen, die das Model-der-Eigenschaften definieren, zu beschreiben. Der Hauptgrund für diese
Problematik ist die überschneidende Ausführung von Instruktionen innerhalb der gepipelineten
Architekturen von Prozessoren und zahlreiche interne und externe Pipeline Stall Szenarien.

Um formale Verifikation auch von Prozessorkernen zu ermöglichen, schlägt diese Arbeit
ein vollständiges Verfahren für die Prozessorverifikation vor, das auf der obengenannten Ge-
nerierung basiert. Das eingeführte Verfahren für die Modellierung der Spezifikation wird für
die Formalisierung der Instruktion-Set-Architektur (ISA) und das Verhalten von Instruktionen
innerhalb der Prozessorpipeline angewendet. Für die vollständige Verifikation des Prozessors
muss ein Set von generierten Properties alle Kombinationen von Instruktionen und alle Szenari-
en von Pipeline Stalls betrachten. Um das zu ermöglichen, muss das Model-der-Eigenschaften,
aus dem die Properties generiert werden und die das erwartete zeitliche Verhalten des Designs,
alle oben genannten Kombinationen von Instruktionen in allen möglichen Pipeline-Szenarien
modellieren. Hierbei ist Verifikationsexpertise vonnöten, damit sichergestellt wrid, dass durch
die generierten Properties keine ungewollten Einschränkungen des Entwurfsraums entstehen.
Um diese Herausforderungen zu bewältigen, wurde das C-S2QED Verfahren, eine Erweite-
rung des S2QED Verfahrens, zur vollständigen Verifikation eines Prozessors entwickelt. Das
C-S2QED Verfahren ist sowohl für Ausnahmebehandlung (Exception Handling) innerhalb der
Prozessorpipeline als auch für Superskalare Pipeline Architekturen geeignet. Es findet alle funk-
tionalen Fehler in einer Prozessorimplementierung und erfordert deutlich weniger Aufwand im
Vergleich zu bestehenden Prozessorverifikationsverfahren. Die Garantie der vollständigen Ve-
rifikation für das C-S2QED-Verfahren basiert auf dem Vollständigkeitkriterium von C-IPC, ei-
ner bereits industriell eingesetzten vollständigen formalen Verifikationsmethodik. Sowohl das
C-S2QED-Verfahren als auch der Beweis seiner Vollständigkeit sind wesentliche Beiträge der
vorliegenden Arbeit. Die Effektivität des Verfahrens und die Produktivität bei der Verifikation
wird durch die automatische Generierung von C-S2QED-Properties erheblich gesteigert.

8.3 Anwendung auf Industriedesigns
Die Anwendbarkeit und Effektivität der eingeführten Modellierungsparadigmen und entwickel-
ten Verfahren wurden anhand der formalen Verifikation mehrerer industrieller Designs bewie-
sen. Zahlreiche logische Fehler, einschließlich vieler Fehler, die bekanntermaßen schwer zu
entdecken sind, konnten während des formalen Verifikationprozesses mit generierten Proper-
ties gefunden werden. Abbildung 8.1 zeigt das Layout des “Rival” SoC. Die Mehrzahl der
gezeigten IPs einschließlich des RISC-V-Kerns, ohne die legacy IPs, wurden ausschließlich mit
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dem in dieser Arbeit vorgeschlagenen Verfahren verifiziert. Der Rival SoC wird in Powertrain
und Safety Automotive Anwendungen eingesetzt. Der gefertigte Chip funktionierte “first time
right”, ohne dass ein logischer Fehler bei post-Fertigungs-Tests gefunden wurde.

Copyright © Infineon Technologies AG 2019. All rights reserved. 6September 2019

Test Chip SoC implementation  
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logic)
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CpuCore 0.16 mm^2 ~ 

25k NAND gates

Abbildung 8.1: Layout des Rival chip

Unterschiedliche architekturelle Alternativen von RISC-V-basierten Prozessorentwürfen w-
urden mit den generierten C-S2QED Properties verifiziert. Die Propertygenerierung ist konfigu-
rierbar, so dass Änderungen in der Mikroarchitektur des Prozessors, verursacht von Änderungen
der Spezifikation, automatisch vom Generierungsprozess abgedeckt sind. Dadurch sind keine
weiteren manuellen Eingriffe notwendig. Neben der Verifikation von Prozessorkernen wurden
die vorgeschlagenen Verfahren auch auf Communication Protocol IPs, Bus Bridges, Interrupt
Controller und sicherheitsrelevante Designs angewendet.

8.4 Fazit
Die wissenschaftlichen Beiträge dieser Arbeit lassen sich folgendermaßen zusammenfassen:
Die Prinzipien der Model-getriebenen Architektur wurden angewendet, um die Verifikation-
produktivität von Hardware Designs zu steigern. Gleichzeitig erreicht man durch die neuen
Verfahren eine hohe Qualität der verifizierten Designs, aufgrund der Vollständigkeit der forma-
len Verifikation. Neue Modellierungsparadigmen wurden eingeführt, um die Hardware Design
Spezifikationen zu formalisieren. Hervorzuheben ist eine neue FSM-basierte Notation für Tra-
ces, die das implizite Design Know-How formalisiert. Ein automatischer Annotationsmecha-
nismus wurde eingeführt, um Properties für unterschiedliche Designarchitektur-Alternativen
ohne zusätzlichen Aufwand zu generieren. Ein vollständiges Verifikationsverfahren, nämlich
C-S2QED, wurde eingeführt. Dieses behandelt sowohl Exceptions als auch Superskalare Ar-
chitekturen. Für das C-S2QED Verfahren wurde gezeigt, dass es alle funktionalen Fehler in
einem Prozessor findet. Die Propertygenerierung ist zusätzlich auch auf Communication und
House-Keeping IPs anwendbar. Die eingeführten Verfahren können auf unterschiedlichste De-
signs angewendet werden, einschließlich sicherheitsrelevante IPs, sowie Fehlerkorrektur- und
CRC-Designs. Die Anwendbarkeit der eingeführten Modellierungparadigmen und die Proper-
tygenerierung sind auf industriellem Niveau.
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Appendix A

List of symbols

Symbol Description
M logical model of a system/design

MM metamodel or definition of a model

O finite set of objects in the model

M mathematical model of a system/de-
sign in a model checker

S finite set of states

Si finite set of initial states

I finite set of input symbols

O finite set of output symbols

δ transition function

λ output function

K a Kripke structure

A finite set of atomic formulas

R transition relation

L evaluation function

T a trace structure

∆ sequence of state transitions

Λ sequence of output evaluations

θ trace function

A modal operator always

E modal operator exists
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G temporal operator globally

F temporal operator finally

U temporal operator until

W temporal operator weak until

X temporal operator next

R temporal operator release

φ a temporal formula

π path in a linear time model

130



Appendix B

List of Notations

Notation Example Description
|= M |= φ M models φ

6|= M 6|= φ M does not model φ (or) M models ¬φ

7→ S 7→ O S maps to O

:= λ := S 7→ O λ is defined by S 7→ O

≡ φ1 ≡ φ2 φ1 equivalent to φ2

> x > y x greater than y

≥ x≥ y x is greater than or equal to y

< x < y x is less than y

≤ x≤ y x is less than or equal to y

∧ a∧b logical conjunction, a∧b is true, iff a = true and
b = true

∨ a∨b logical disjunction, a∨ b is true, iff a = true or
b = true

¬ ¬a negation, if a is true then ¬a is false

=⇒ p =⇒ q implies, if p is true then q is true

⊆ Si ⊆ S subset or equal to

⇐⇒ s |= ¬φ⇐⇒ s 6|= φ s models ¬ φ if and only if s does not model φ

∈ s ∈ S s exists in set S
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Appendix C

Supported Operators in
Model-of-Property

Operator Type

Out = NOT(arg1=I) I = expression : bit, vector
Out = expression : bit, vector

Out = CABS(arg1=I) I = expression : bit, vector
Out = expression : bit, vector

Out = CUMINUS(arg1=I) I = expression : bit, vector
Out = expression : bit, vector

Out = SLICE(arg1=Is, arg2=Ia, arg3=Ib) Is = expression : bit, vector
Ia = variable : number
Ib = variable : number
Out = expression : bit, vector

Out = INDEX(arg1=Is, arg2=Iidx) Is = expression : bit, vector
Iidx = variable : number
Out = literal : {0,1}

Out = REVERSE(arg1=I) I = expression : bit, vector
Out = expression : bit, vector

Out = HEAD(arg1=Is, arg2=Ival) Is = expression : bit, vector
Ival = variable : number
Out = expression : bit, vector

Out = TAIL(arg1=Is, arg2=Ival) Is = expression : bit, vector
Ival = variable : number
Out = expression : bit, vector

Out = ROR(arg1=I) I = expression : bit, vector
Out = literal : {0,1}

Out = RAND(arg1=I) I = expression : bit, vector
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Out = literal : {0,1}

Out = RNAND(arg1=I) I = expression : bit, vector
Out = literal : {0,1}

Out = RNOR(arg1=I) I = expression : bit, vector
Out = literal : {0,1}

Out = RXOR(arg1=I) I = expression : bit, vector
Out = literal : {0,1}

Out = RXNOR(arg1=I) I = expression : bit, vector
Out = literal : {0,1}

Out = BAND(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = BNAND(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = BOR(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = BNOR(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = BXOR(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = BXNOR(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = LAND(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = literal : {0,1}

Out = LNAND(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = literal : {0,1}

Out = LOR(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = literal : {0,1}

Out = LNOR(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = literal : {0,1}
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Out = LXOR(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = literal : {0,1}

Out = LXNOR(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = literal : {0,1}

Out = CPLUS(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = CMINUS(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = CMULT(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = HWMUL(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = CDIV(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = CMOD(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = CREM(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = SIGNEDCAST(arg1=I) I = expression : bit, vector
Out = expression : bit, vector

Out = UNSIGNEDCAST(arg1=I) I = expression : bit, vector
Out = expression : bit, vector

Out = UNSIGNEDCONV(arg1=I) I = expression : bit, vector
Out = expression : bit, vector

Out = SIGNEDCONV(arg1=I) I = expression : bit, vector
Out = expression : bit, vector

Out = HWPLUS(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = RSL(arg1=Is, arg2=Inr) Is = expression : bit, vector
Inr = variable : number
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Out = expression : bit, vector

Out = RSA(arg1=Is, arg2=Inr) Is = expression : bit, vector
Inr = variable : number
Out = expression : bit, vector

Out = LS(arg1=Is, arg2=Inr) Is = expression : bit, vector
Inr = variable : number
Out = expression : bit, vector

Out = CONCAT(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = MUX(arg1=Isel , arg2=Ia, arg3=Ib) Isel = literal : {0,1}
Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

Out = ISNEG(arg1=I) I = expression : bit, vector
Out = literal : {0,1}

Out = ISPOS(arg1=I) I = expression : bit, vector
Out = literal : {0,1}

Out = LT(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = literal : {0,1}

Out = LTEQ(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = literal : {0,1}

Out = GT(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = literal : {0,1}

Out = GTEQ(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = literal : {0,1}

Out = EQ(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = literal : {0,1}

Out = NEQ(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = literal : {0,1}

Out = HWMINUS(arg1=Ia, arg2=Ib) Ia = expression : bit, vector
Ib = expression : bit, vector
Out = expression : bit, vector

136



Appendix D

Generated Properties for AHB-to-APB
bridge

1 =========================================================================================
2 PROPERTIES START HERE
3 =========================================================================================
4 property transition_reset is
5 local trigger:rose(clk);
6
7 assume:
8 reset_sequence;
9 prove:

10 at t + 0: (comp_ahb2apb_fsm/state = "000") and
11 (psel = 0) and
12 (penable = 0) and
13 (comp_ahb2apb_fsm/busy = 0) and
14 (pwrite = 0) and
15 (comp_ahb2apb_fsm/hready = 1) and
16 (clk = pclk) and
17 (pslverr = HRESP) and
18 (pwdata = 0) and
19 (paddr = 0) and
20 (comp_ahb2apb_fsm/hwrite = 0) and
21 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata));
22 right_hook: t + 0;
23 end property;
24 −−=========================================================================================
25
26 property transition_idle_idle is
27 local trigger:rose(clk);
28 disable iff:(rst);
29
30 assume:
31 at t: (comp_ahb2apb_fsm/state = "000") and
32 ((HTRANS <= 1) or (HSEL = 0));
33 prove:
34 at t + 1: (comp_ahb2apb_fsm/state = "000") and
35 (psel = 0) and
36 (penable = 0) and
37 (comp_ahb2apb_fsm/busy = 0) and
38 (pwrite = 0) and
39 (comp_ahb2apb_fsm/hready = 1) and
40 (clk = pclk) and
41 (pslverr = HRESP) and
42 (paddr = prev(paddr)) and
43 (pwdata = prev(pwdata)) and
44 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata));
45 right_hook: t + 1;
46 end property;
47 −−=========================================================================================
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48
49 property transition_idle_sel is
50 local trigger:rose(clk);
51 disable iff:(rst);
52
53 assume:
54 at t: (comp_ahb2apb_fsm/state = "000") and
55 (HTRANS > 1) and
56 (HSEL = 1);
57 prove:
58 at t + 1: (comp_ahb2apb_fsm/state = "001") and
59 (clk = pclk) and
60 (pslverr = HRESP) and
61 (psel = 1) and
62 (penable = 0) and
63 (comp_ahb2apb_fsm/busy = 1) and
64 (pwrite = 0) and
65 (comp_ahb2apb_fsm/hready = 0) and
66 (paddr = prev(paddr)) and
67 ((comp_ahb2apb_fsm/hwrite = 1) or (comp_ahb2apb_fsm/hwrite = 0)) and
68 (pwdata = prev(pwdata)) and
69 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata));
70 right_hook: t + 1;
71 end property;
72 −−=========================================================================================
73
74 property transition_sel_read is
75 local trigger:rose(clk);
76 disable iff:(rst);
77
78 assume:
79 at t: (comp_ahb2apb_fsm/state = "001") and
80 (comp_ahb2apb_fsm/hwrite = 0) and
81 (pready = 1);
82 prove:
83 at t + 1: (comp_ahb2apb_fsm/state = "011") and
84 (clk = pclk) and
85 (pslverr = HRESP) and
86 (psel = 1) and
87 (penable = 1) and
88 (comp_ahb2apb_fsm/busy = 1) and
89 (pwrite = 0) and
90 (comp_ahb2apb_fsm/hready = 1) and
91 (paddr = (0 & prev((HADDR(15 downto 1))))) and
92 (comp_ahb2apb_fsm/hwrite = prev(comp_ahb2apb_fsm/hwrite)) and
93 (pwdata = prev(pwdata)) and
94 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata));
95 right_hook: t + 1;
96 end property;
97 −−=========================================================================================
98
99 property transition_sel_write is

100 local trigger:rose(clk);
101 disable iff:(rst);
102
103 assume:
104 at t: (comp_ahb2apb_fsm/state = "001") and
105 (comp_ahb2apb_fsm/hwrite = 1) and
106 (pready = 1);
107 prove:
108 at t + 1: (comp_ahb2apb_fsm/state = "010") and
109 (clk = pclk) and
110 (pslverr = HRESP) and
111 (psel = 1) and
112 (penable = 1) and
113 (comp_ahb2apb_fsm/busy = 1) and
114 (pwrite = 1) and
115 (comp_ahb2apb_fsm/hready = 1) and
116 (paddr = (0 & prev((HADDR(15 downto 1))))) and
117 (comp_ahb2apb_fsm/hwrite = prev(comp_ahb2apb_fsm/hwrite)) and
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118 (pwdata = prev(pwdata)) and
119 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata));
120 right_hook: t + 1;
121 end property;
122 −−=========================================================================================
123
124 property transition_sel_sel is
125 local trigger:rose(clk);
126 disable iff:(rst);
127
128 assume:
129 at t: (comp_ahb2apb_fsm/state = "001") and
130 (pready = 0) and
131 ((comp_ahb2apb_fsm/hwrite = 1) or (comp_ahb2apb_fsm/hwrite = 0));
132 prove:
133 at t + 1: (comp_ahb2apb_fsm/state = "001") and
134 (clk = pclk) and
135 (pslverr = HRESP) and
136 (psel = 1) and
137 (penable = 0) and
138 (comp_ahb2apb_fsm/busy = 1) and
139 (pwrite = 0) and
140 (comp_ahb2apb_fsm/hready = 0) and
141 (paddr = (0 & prev((HADDR(15 downto 1))))) and
142 (pwdata = prev(pwdata)) and
143 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata));
144 right_hook: t + 1;
145 end property;
146 −−=========================================================================================
147
148 property transition_read_idle is
149 local trigger:rose(clk);
150 disable iff:(rst);
151
152 assume:
153 at t: (comp_ahb2apb_fsm/state = "011") and
154 (pready = 1) and
155 ((HSEL = 0) or (HTRANS <= 1));
156 prove:
157 at t + 1: (comp_ahb2apb_fsm/state = "000") and
158 (clk = pclk) and
159 (pslverr = HRESP) and
160 (psel = 0) and
161 (penable = 0) and
162 (comp_ahb2apb_fsm/busy = 0) and
163 (pwrite = 0) and
164 (comp_ahb2apb_fsm/hready = 1) and
165 (paddr = prev(paddr)) and
166 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata)) a
167 (pwdata = prev(pwdata));
168 right_hook: t + 1;
169 end property;
170 −−=========================================================================================
171
172 property transition_write_idle is
173 local trigger:rose(clk);
174 disable iff:(rst);
175
176 assume:
177 at t: (comp_ahb2apb_fsm/state = "010") and
178 (pready = 1) and
179 ((HTRANS <= 1) or (HSEL = 0));
180 prove:
181 at t + 1: (comp_ahb2apb_fsm/state = "000") and
182 (clk = pclk) and
183 (pslverr = HRESP) and
184 (psel = 0) and
185 (penable = 0) and
186 (comp_ahb2apb_fsm/busy = 0) and
187 (pwrite = 0) and
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188 (comp_ahb2apb_fsm/hready = 1) and
189 (paddr = prev(paddr)) and
190 (pwdata = prev((HWDATA(15 downto 0)))) and
191 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata));
192 right_hook: t + 1;
193 end property;
194 −−=========================================================================================
195
196 property transition_read_sel is
197 local trigger:rose(clk);
198 disable iff:(rst);
199
200 assume:
201 at t: (comp_ahb2apb_fsm/state = "011") and
202 (pready = 1) and
203 (HTRANS > 1) and
204 (HSEL = 1);
205 prove:
206 at t + 1: (comp_ahb2apb_fsm/state = "001") and
207 (clk = pclk) and
208 (pslverr = HRESP) and
209 (psel = 1) and
210 (penable = 0) and
211 (comp_ahb2apb_fsm/busy = 1) and
212 (pwrite = 0) and
213 (comp_ahb2apb_fsm/hready = 0) and
214 ((comp_ahb2apb_fsm/hwrite = 1) or (comp_ahb2apb_fsm/hwrite = 0)) and
215 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata)) a
216 (paddr = prev(paddr)) and
217 (pwdata = prev(pwdata));
218 right_hook: t + 1;
219 end property;
220 −−=========================================================================================
221
222 property transition_write_sel is
223 local trigger:rose(clk);
224 disable iff:(rst);
225
226 assume:
227 at t: (comp_ahb2apb_fsm/state = "010") and
228 (HTRANS > 1) and
229 (HSEL = 1) and
230 (pready = 1);
231 prove:
232 at t + 1: (comp_ahb2apb_fsm/state = "001") and
233 (clk = pclk) and
234 (pslverr = HRESP) and
235 (psel = 1) and
236 (penable = 0) and
237 (comp_ahb2apb_fsm/busy = 1) and
238 (pwrite = 0) and
239 (comp_ahb2apb_fsm/hready = 0) and
240 (paddr = prev(paddr)) and
241 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata)) a
242 (pwdata = prev((HWDATA(15 downto 0)))) and
243 ((comp_ahb2apb_fsm/hwrite = 1) or (comp_ahb2apb_fsm/hwrite = 0));
244 right_hook: t + 1;
245 end property;
246 −−=========================================================================================
247
248 property transition_write_wait is
249 local trigger:rose(clk);
250 disable iff:(rst);
251
252 assume:
253 at t: (comp_ahb2apb_fsm/state = "010") and
254 (pready = 0);
255 prove:
256 at t + 1: (comp_ahb2apb_fsm/state = "100") and
257 (clk = pclk) and
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258 (pslverr = HRESP) and
259 (psel = 1) and
260 (penable = 1) and
261 (comp_ahb2apb_fsm/busy = 1) and
262 (pwrite = 1) and
263 (comp_ahb2apb_fsm/hready = 0) and
264 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata)) a
265 (paddr = prev(paddr)) and
266 (pwdata = prev((HWDATA(15 downto 0))));
267 right_hook: t + 1;
268 end property;
269 −−=========================================================================================
270
271 property transition_wr_wait_wr_wait is
272 local trigger:rose(clk);
273 disable iff:(rst);
274
275 assume:
276 at t: (comp_ahb2apb_fsm/state = "100") and
277 (pready = 0);
278 prove:
279 at t + 1: (comp_ahb2apb_fsm/state = "100") and
280 (clk = pclk) and
281 (pslverr = HRESP) and
282 (psel = 1) and
283 (penable = 1) and
284 (comp_ahb2apb_fsm/busy = 1) and
285 (pwrite = 1) and
286 (comp_ahb2apb_fsm/hready = 0) and
287 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata)) a
288 (paddr = prev(paddr)) and
289 (pwdata = prev(pwdata));
290 right_hook: t + 1;
291 end property;
292 −−=========================================================================================
293
294 property transition_wr_wait_idle is
295 local trigger:rose(clk);
296 disable iff:(rst);
297
298 assume:
299 at t: (comp_ahb2apb_fsm/state = "100") and
300 (pready = 1) and
301 ((HTRANS <= 1) or (HSEL = 0));
302 prove:
303 at t + 1: (comp_ahb2apb_fsm/state = "000") and
304 (clk = pclk) and
305 (pslverr = HRESP) and
306 (psel = 0) and
307 (penable = 0) and
308 (comp_ahb2apb_fsm/busy = 0) and
309 (pwrite = 0) and
310 (comp_ahb2apb_fsm/hready = 1) and
311 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata)) a
312 (paddr = prev(paddr)) and
313 (pwdata = prev(pwdata));
314 right_hook: t + 1;
315 end property;
316 −−=========================================================================================
317
318 property transition_wr_wait_sel is
319 local trigger:rose(clk);
320 disable iff:(rst);
321
322 assume:
323 at t: (comp_ahb2apb_fsm/state = "100") and
324 (HTRANS > 1) and
325 (HSEL = 1) and
326 (pready = 1);
327 prove:
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328 at t + 1: (comp_ahb2apb_fsm/state = "001") and
329 (clk = pclk) and
330 (pslverr = HRESP) and
331 (psel = 1) and
332 (penable = 0) and
333 (comp_ahb2apb_fsm/busy = 1) and
334 (pwrite = 0) and
335 (comp_ahb2apb_fsm/hready = 0) and
336 (paddr = prev(paddr)) and
337 ((comp_ahb2apb_fsm/hwrite = 1) or (comp_ahb2apb_fsm/hwrite = 0)) and
338 (pwdata = prev(pwdata)) and
339 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata));
340 right_hook: t + 1;
341 end property;
342 −−=========================================================================================
343
344 property transition_read_wait is
345 local trigger:rose(clk);
346 disable iff:(rst);
347
348 assume:
349 at t: (comp_ahb2apb_fsm/state = "011") and
350 (pready = 0);
351 prove:
352 at t + 1: (comp_ahb2apb_fsm/state = "101") and
353 (clk = pclk) and
354 (pslverr = HRESP) and
355 (psel = 1) and
356 (penable = 1) and
357 (comp_ahb2apb_fsm/busy = 1) and
358 (pwrite = 0) and
359 (comp_ahb2apb_fsm/hready = 0) and
360 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata)) a
361 (paddr = prev(paddr)) and
362 (pwdata = prev(pwdata));
363 right_hook: t + 1;
364 end property;
365 −−=========================================================================================
366
367 property transition_rd_wait_rd_wait is
368 local trigger:rose(clk);
369 disable iff:(rst);
370
371 assume:
372 at t: (comp_ahb2apb_fsm/state = "101") and
373 (pready = 0);
374 prove:
375 at t + 1: (comp_ahb2apb_fsm/state = "101") and
376 (clk = pclk) and
377 (pslverr = HRESP) and
378 (psel = 1) and
379 (penable = 1) and
380 (comp_ahb2apb_fsm/busy = 1) and
381 (pwrite = 0) and
382 (comp_ahb2apb_fsm/hready = 0) and
383 (paddr = prev(paddr)) and
384 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata)) a
385 (pwdata = prev(pwdata));
386 right_hook: t + 1;
387 end property;
388 −−=========================================================================================
389
390 property transition_rd_wait_idle is
391 local trigger:rose(clk);
392 disable iff:(rst);
393
394 assume:
395 at t: (comp_ahb2apb_fsm/state = "101") and
396 (pready = 1) and
397 ((HTRANS <= 1) or (HSEL = 0));
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398 prove:
399 at t + 1: (comp_ahb2apb_fsm/state = "000") and
400 (clk = pclk) and
401 (pslverr = HRESP) and
402 (psel = 0) and
403 (penable = 0) and
404 (comp_ahb2apb_fsm/busy = 0) and
405 (pwrite = 0) and
406 (comp_ahb2apb_fsm/hready = 1) and
407 (paddr = prev(paddr)) and
408 (pwdata = prev(pwdata)) and
409 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata));
410 right_hook: t + 1;
411 end property;
412 −−=========================================================================================
413
414 property transition_rd_wait_sel is
415 local trigger:rose(clk);
416 disable iff:(rst);
417
418 assume:
419 at t: (comp_ahb2apb_fsm/state = "101") and
420 (HTRANS > 1) and
421 (HSEL = 1) and
422 (pready = 1);
423 prove:
424 at t + 1: (comp_ahb2apb_fsm/state = "001") and
425 (clk = pclk) and
426 (pslverr = HRESP) and
427 (psel = 1) and
428 (penable = 0) and
429 (comp_ahb2apb_fsm/busy = 1) and
430 (pwrite = 0) and
431 (comp_ahb2apb_fsm/hready = 0) and
432 (paddr = prev(paddr)) and
433 ((comp_ahb2apb_fsm/hwrite = 1) or (comp_ahb2apb_fsm/hwrite = 0)) and
434 (pwdata = prev(pwdata)) and
435 (HRDATA = ((0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0) & prdata));
436 right_hook: t + 1;
437 end property;
438 −−=========================================================================================
439 −− PROPERTIES END HERE
440 −−=========================================================================================
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Appendix E

Papers in the Scope of the Thesis

During the course of this doctoral work, a novel approach for formally verifying error detection
and correction codes has been proposed. The approach was successfully applied to several
real life designs that are used in safety critical applications. Further, an approach to extract
control signals of a processor decoder using formal verification tools has been proposed. For
both approaches, the property generation flow developed during this doctoral work is applied to
improve the overall productivity and quality. The published papers of the proposed approaches
are listed in the following.

E.1 Formal Verification by The Book: Error Detection and
Correction Codes

Abstract: We present an approach to exhaustively verify the correctness of Error Correction
Code designs using formal methods. The proposed approach exploits the linearity of Syndrome
Generators to prove that the detection and correction of bit errors depends only on the erroneous
bit positions, and not on the original data vector. By proving the linearity property, the input
analysis space for error detection and correction properties is significantly reduced by a factor
of 2n, where n is the width of data vector. As a result, the proof runtimes of the properties
are also reduced. For example, the proof runtime of a 3 bit error detection/correction property
requires less than 2 hours for passing on a 256 bit Error Correction Code design in a commercial
formal verification tool. The approach has been successfully applied to multiple instances of
Error Correction Code designs implemented across several safety-critical automotive system-
on-chips. An in-house property generation tool has been employed to foster re-usability and
verification productivity. Results show that the proof runtime of the properties leveraging the
linearity feature decreases by a factor of 50, and scales proportionally with the width of the data
vector and detection and correction capability of the codes.

E.1.1 Introduction
Safety-critical automotive applications have stringent requirements for functional safety and re-
liability. The devices used in safety-critical applications need to ensure that the basic function-
alities of the device are unaffected, even during the deviation from normal working conditions
(e.g., magnetic interference, radiation errors, temperature fluctuations, electrical transients, heat
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dissipation, etc.). To fulfill these requirements, devices used in safety-critical applications are
equipped with additional hardware and software functions, and redundant memory elements.
Error Detection and Correction Codes (ECCs) are one such safety mechanism that is widely
implemented in memory and register file interfaces to safeguard memory elements against soft
errors. Soft errors are errors in logic or data that are caused by radiation, electrical glitches or
electro-magnetic interference during the lifespan of a device [82, 61].

ISO 26262, the functional safety standard for automotive products, requires that all features
pertaining to safety be rigorously verified. However, the functional verification of ECC cir-
cuits poses a formidable challenge. To illustrate, consider the ECC circuit implemented in the
program flash interface of an automotive SoC shown in Fig. E.1.

ECC 

Decoder

ECC 

Encoder

dec_data_in

(255:0)

dec_ecc_in

(21:0)

data_out(255:0)

ecc_out(21:0)

err_3_out
err_det_out

err_2_out
err_1_out

rd_data

data_in

(255:0)

ecc_out

(21:0)

wr_datadata_in

(255:0)

addr

(18:0)
wr_en
rd_en

Program 

Flash

Figure E.1: ECC block in program flash interface

The ECC block shown in Fig. E.1 is a Double-Error Correct and Triple-Error Detect -
DECTED module. During a write transfer (wr_en=1), the input data bits (data_in) are encoded
in additional ECC bits (ecc_out) following a specific encoding algorithm (e.g., Reed Solomon
encoding) [49]. The resulting concatenated codeword wr_data is written to the program flash
memory. Soft errors may occur during the operation of a device, resulting in a corrupted code-
word (non-codeword). When a read transfer (rd_en=1) takes place, the non-codeword is passed
through the ECC decoder. The decoder computes the error syndrome of the non-codeword and
sets the respective error flags depending on the number of bit errors. If there are no bit errors,
or if the number of bit errors is within the correctable range, the bit errors are corrected and the
data_out carries the original data value.

Exhaustive verification of ECC circuits requires to consider every possible input and bit
error combinations. The ECC circuit shown in Fig. E.1 has an astronomically high number
of input combinations (2256) and an exhaustive analysis covering the entire input space is im-
possible. In addition, the input stimuli require to consider an exhaustive set of error injections
depending on the detection and correction capability of the circuit. For example, the number of
bit error combinations for the ECC circuit shown is given by the Eqn. E.1.Because of the huge
analysis space (input and error combinations), simulation-based methods including post-silicon
debug are inapplicable for the problem of ECC circuits.(

278
3

)
+

(
278
2

)
+

(
278
1

)
≈ 3.58∗106 (E.1)

On the other hand, formal verification (FV) is inherently exhaustive and checks the design
behavior against all possible legal input combinations [23, 81]. The requirements of an ECC
circuit can be captured in a set of properties. However, the formal engines which implement
systematic SAT solving or graph-based canonical representations of the logic with Binary De-
cision Diagrams (BDD) often run into complexity issues due to the huge analysis space. As a
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result, for the type of ECC circuits shown in Fig. E.1 the full proof within a reasonable amount
of time cannot be expected.

Although FV tools run into complexity issues when the analysis space is huge, they are
well suited to prove the underlying mathematical properties implemented by the RTL designs
[119, 65]. ECC decoders implement Syndrome Generators to identify the bit positions with an
error. The output of a syndrome generator is used to set the corresponding error flags and to
correct the data vector. Syndrome generators exhibit the characteristics of a linear algebraic
function. The input to a syndrome generator, possibly a non-codeword, can be expressed as the
sum of a codeword and an error word. The output of the generator is the superposition of the
syndromes of both components, i.e., the syndrome of the codeword (which is necessarily zero)
and the syndrome of the error word. Hence, proving the linearity of syndrome generators proves
that the syndrome output depends only on the erroneous bit positions and not on the input data
vector. Once the linearity of the syndrome generator is proven, the properties capturing the
detection and correction capabilities of the circuit are proven by assuming a fixed, arbitrarily
chosen data vector.

The approach has been successfully applied to multiple ECC designs implemented across
several safety-critical automotive SoCs. The proposed approach together with the automated
generation of properties yielded high verification quality and productivity. The property run-
times are at least 50 times faster on big ECC designs (width of data vector > 64 bits). Further,
following the approach we are able to achieve convergence (full proof) of properties on a 256 bit
ECC design (Fig. E.1) within 2 hours of computation time using a commercial FV tool. Previ-
ously, these properties failed to converge after 100 hours of computation time.

The remaining part of the paper is structured as follows: Section E.1.2 provides a brief
overview of the existing approaches for ECC verification. Section E.1.3 describes the working
of ECC designs and the linearity of syndrome generators. Section E.1.5 describes how the
linearity property of syndrome generators can be used to prove the correctness of ECC designs
using formal methods. Section E.1.6 describes the automatic generation of properties using
an in-house property automation tool. Application of the presented approach on several ECC
designs and the property runtimes are detailed in Section E.1.7. A brief summary of the work
in Section E.1.8 completes the paper.

E.1.2 Related Work

ECC designs are typically verified by following the current industry standards for pre-silicon
verification, simulation and formal methods. A UVM-based approach for verifying ECC cir-
cuits is proposed in [116]. The approach uses assertions to validate the detection and correction
behaviors in a coverage-driven verification methodology. For small ECC designs of low data
width (< 10 bits), simulation methods can provide the required coverage. However for ECC de-
signs of moderate to large size, simulation-based methods, including both software simulation
and hardware-assisted simulation, are inapplicable.

Techniques that use formal methods to validate the correct design of ECC circuits have been
proposed. For ECC designs of moderate size (data width < 32 bits), FV tools provide exhaustive
analysis and require a permissible amount of computation resources. In [34], an approach is
proposed to formally verify large ECC designs with automatically generated properties. The
properties are constructed in such a way that only a small window of the data vector (e.g., 16 of
256 bits) is left unconstrained while the rest of the data bits are constrained to a fixed value and
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assumed to be bit error free. Following the approach, when the size of unconstrained data vector
window is increased (data width > 32 bits), the FV tools run into known complexity issues of
memory and runtime. Although such approaches provide better coverage than simulation-based
methods, they do not provide exhaustive analysis covering all input and bit error combinations.

In [74], a verification technique that is encapsulated in a reasoning tool called ‘BLUEV-
ERI’ is proposed to verify large ECC designs. The tool is specifically applicable for the logic
implementations defined over Galois fields to establish the correctness against mathematical
specifications. The design to be verified and a check file containing a set of legal input values
and the expected values for certain signals in the design are provided as inputs to the tool. The
tool then employs custom-built algorithms to prove the correctness of the logic implementation.
A similar approach is proposed in [56] which uses abstract interpretation theory to validate the
ECC codes. Although these approaches are applicable to much larger ECC designs, they re-
quire extensive knowledge of the design implementation, require more manual effort and are
limited to the respective toolchains.

The approach presented in this paper is independent of any specific toolchain and can be
realized using any FV tool. The approach makes use of a succinct quality of the formal engines
to prove the underlying mathematical reasoning of ECC circuits. The properties are simple and
straightforward to develop and can be automated from high-level requirements.

E.1.3 Error Correction Codes

Error Correction Codes were primarily created to ensure reliable data transmission over unre-
liable noisy communication channels. In recent years, in order to safeguard against soft errors
and to guarantee a tolerable level of risk, ECC circuits found their usage in safety-critical au-
tomotive chips to monitor the data corruption in memory systems. ECC designs consist of two
stages: ECC encoding and ECC decoding (as shown in Fig.E.1).

ECC Encoder and Decoder

The function of an ECC encoder is to encode the data bits with additional check bits. The
resulting codeword which is formed by combining the data bits and check bits (or parity bits)
is written to the memory. Several encoding schemes are available for computing the check bits
and a specific encoding scheme is selected based on the width of data bits, the bit error rate
(BER), the minimum Hamming distance of the code and the error detection efficiency. The
Hamming distance is the number of bit changes between two valid codewords. The minimum
Hamming distance of the encoding scheme decides the number of bit errors that can be detected
and corrected. Hamming codes, Hsiao Codes, Reed-Solomon Codes and Bose-Chaudhuri-
Hocquenghem Codes are commonly used encoding schemes for memory elements [49, 94].

The function of an ECC decoder is to decode the codeword read from memory and to take
required actions depending on the number of bit errors. The block diagram of a typical ECC
decoder is shown in Fig. E.2. The diagram shows an extended DECTED decoder from Fig. E.1
(DECTED = double-error correction / triple-error detection). The Syndrome Generator com-
putes the error syndrome (syn_out) for the incoming data vector (rd_data). The syndrome gen-
eration is based on the encoding scheme used to generate the check bits. The error syndrome
output identifies the bit positions with an error. The Error Detection unit sets the correspond-
ing error flags (err_1_out, err_2_out, err_3_out, err_det_out) and the Error Correction unit
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Figure E.2: Block diagram of a DECTED decoder

corrects the corrupted bits based on the syndrome output.

E.1.4 Linearity of Syndrome Generators

The output of syndrome generators is independent of the codeword and depends only on the bit
error positions. In mathematical terms, the syndrome generators implement a Linear Function.
A linear function preserves additivity, i.e., it satisfies the following rule:

f (x)+ f (y) = f (x+ y) . . . . . . . . . (E.2)

where x,y are arbitrary vector spaces in the field M. A linear function preserves the vector
addition and scalar multiplication irrespective of the vector spaces and the scalar value.

We consider Hamming codes for illustrating the linear property of the syndrome generators.
Let c be a codeword of width n, formed by combining k data bits and (n− k) parity bits. We
call the set C of all codewords an [n,k] Hamming code over the field M. Let us consider
a [7,4] Hamming code with an additional parity bit for the detection of double-bit errors such
that its Hamming distance is 3. Besides detecting double-bit errors, such a code is capable of
correcting single-bit errors. Let d be the word being decoded. The syndrome of the word d is
computed according to Eq. E.3.

syn(d) = H ·dT . . . . . . . . . (E.3)

where H is the parity check matrix of order (n− k)× k. The parity check matrix is chosen
in accordance with the ECC encoder. Vector addition and matrix multiplication in the field M
are linear operations based on modulo-2 arithmetic. Let the parity check matrix for the [7,4]
Hamming code be given by:

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 . . . . . . . . . (E.4)

Let us assume that c = 0101010 is the original codeword written to the memory. When there
is no bit error, the data read is equal to the original codeword i.e., d = c. The syndrome of the
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codeword c (no error) is given by:

syn(c) = H ·cT =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 ·


0
1
0
1
0
1
0


=

0
0
0

 =⇒ a null vector . . . . . . . . . (E.5)

Let d = 0101110 be a corrupted word (non-codeword), namely codeword c with bit 5 flipped.
The syndrome of this non-codeword is given by:

syn(d) = H ·dT =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 ·


0
1
0
1
1
1
0


=

1
0
1

 =⇒ error in 5th bit

. . . . . . . . . (E.6)
Since vector addition is a linear operation in modulo-2 arithmetic, the non-codeword can be
written as the sum of the error-free codeword and the error vector (e) i.e., d = c + e. For
d = 0101110, the error vector e = 0000100. The syndrome of e can be computed as:

syn(e) = H · eT =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 ·


0
0
0
0
1
0
0


=

1
0
1

 . . . . . . . . . (E.7)

Because of linearity, syn(d) = syn(c+e) = syn(c)+syn(e). By construction of the parity check
matrix, the syndrome of a codeword c is always zero: syn(c) = 0. Hence, the syndrome of an
erroneous non-codeword d depends only on the error word:

syn(d) = syn(c+ e) = syn(c)+ syn(e) = syn(e) . . . . . . . . . (E.8)

E.1.5 Exploiting the Linearity of Syndrome Generator for FV
For ECC designs of moderate size (data width < 32 bits), modern FV tools provide full proof
within a reasonable amount of runtime. However, FV tools still suffer from complexity issues
for large ECC designs due to reasons outlined in Section E.1.1. In Section E.1.3, we presented
the linearity property of the syndrome generators. Since FV tools are best suited to prove the
underlying mathematical reasoning implemented by the RTL designs, the characteristics of a
syndrome generator can be captured in properties and proven in a FV tool. Once these properties
are proven, the properties capturing the detection and correction ability of the ECC designs
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can be proven by assuming a fixed, arbitrarily chosen data vector. Exploiting the specifics
of syndrome generator characteristics drastically reduces the analysis space for FV tools as
demonstrated in the following.

FV environment setup for ECC

ECC 

Decoder

ECC 

Encoder

dec_data_in

(255:0)

dec_ecc_in

(21:0)

data_out(255:0)

ecc_out(21:0)

err_3_out
err_det_out

err_2_out
err_1_out

rd_data

(277:0)

data_in

(255:0)

ecc_out

(21:0)

wr_data

(277:0)

data_in

(255:0)

Wrapper

Inject bit errors 

through formal 

assumptions

Figure E.3: Formal Verification setup for DECTED ECC design

A general setup for ECC circuit verification with formal methods is depicted in Fig. E.3. As
the functionality of the program flash interface (from Fig. E.1) is irrelevant for the correct func-
tioning of the combinatorial ECC logic, a verification wrapper is used that instantiates only the
ECC encoder and decoder components. The encoder’s output (wr_data) and the decoder’s input
(rd_data) are wired through to the wrapper’s interface as shown. The bit errors are assumed
referring to the encoder output and the decoder input to specify all possible error scenarios to
be handled by the ECC logic.

ECC properties without considering the linearity

“Brute-force” properties capturing the double-bit error detection and correction behavior are
shown in Fig. E.4a and Fig. E.4b, respectively. The properties shown do not consider the
linearity characteristics of the syndrome generator. Since FV tools are inherently exhaustive
in nature, these properties encompass 2256×

(278
2

)
(input and double-bit error) combinations.

Due to the huge analysis space, the full proof for these properties cannot be expected within
a reasonable amount of time. During our experiments, the commercial FV tool ran out of
available computation memory after 100 hours of computation time.

1 property double_biterr_detect;
2 $countones(wr_data ^ rd_data)==2
3 |->
4 err_2_out && err_det_out &&
5 !err_1_out && !err_3_out;
6 endproperty

(a) Property for double-bit error detection

1 property double_biterr_correct;
2 $countones(wr_data ^ rd_data)==2
3 |->
4 data_out == data_in;
5 endproperty

(b) Property for double-bit error correction

Figure E.4: Properties to detect and correct double-bit errors (in SVA) (without considering the
linearity characteristic)
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ECC properties with linearity

As described earlier, the characteristics of the syndrome generator can be captured as properties
and proven in a FV tool. The property shown in Fig. E.5a captures the value of syndrome output
when there is no error in the codewords. Here syn_outis the output of the syndrome generator
as shown in Fig. E.2. The property shown in Fig. E.5b captures the linear characteristic of the
syndrome generator. Syn(x) is the RTL function that returns the syndrome vector (syn_out)
for an arbitrary word x. The XOR (∧) operator computes the bitwise modulo-2 addition. Once
these properties are validated in a FV tool, the following inferences are established:

• The syndrome output for an error-free codeword is always a null vector.
• The syndrome generator implements a linear algebraic function. As a result, the syn-

drome generator preserves the modulo-2 addition operation irrespective of the value of
the data vector.

1 property syndrome_err_free_code;
2 wr_data == rd_data
3 |->
4 syn_out == 0;
5 endproperty

(a) Property for syndrome output of an error-free
codeword

1 property linearity_syndrome_gen;
2 Syn(x) ^ Syn(y) == Syn(x ^ y);
3 endproperty
4 //x, y are arbitrary words of same width

5 //‘^’ operator performs bitwise addition

(b) Property for linearity of syndrome generator

Figure E.5: Properties capturing the characteristics of a syndrome generator (in SVA)

Once the properties shown in Fig. E.5 are proven, the remaining properties are verified under
the assumption of an arbitrarily chosen, fixed data vector as shown in Fig. E.6. The property
shown in Fig. E.6a captures double-bit error detect behavior with a fixed data vector (previously
shown in Fig. E.4a). Because of assuming a fixed data vector, the input combinations are
effectively reduced from 2256 to 1. The number of double-bit error combinations that a FV tool
has to consider remains unchanged at

(278
2

)
= 38503. Similarly, the double-bit error correct

property is also proven by assuming an arbitrarily chosen data vector as shown in Fig. E.6b.

1 property double_bit_error_detect;
2 data_in == 256’h234FDBE76B23ABF &&
3 $countones(wr_data ^ rd_data) == 2
4 |->
5 err_2_out && err_det_out &&
6 !err_1_out && !err_3_out;
7 endproperty

(a) Property for double-bit error detection

1 property double_biterror_correct;
2 data_in ==256’h5346BEAC72643BFD &&
3 $countones(wr_data ^ rd_data) ==2
4 |->
5 data_out == data_in;
6 endproperty

(b) Property for double-bit error correction

Figure E.6: Properties to detect and correct double-bit errors (in SVA)

Coverage perspective

The presented verification approach is compositional and fully validates the correctness of the
ECC encoder, the syndrome generator and the error detection and correction logic. For the
syndrome generator as a core component of ECC circuitry, we prove the linearity property as
shown in Fig. E.5b. This property exercises the syndrome generator with its full input space
as x, y are arbitrary words. The property in Fig. E.5a verifies the encoder and the syndrome
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generator in a chain. The properties Fig. E.5a and Fig. E.5b together prove that the output
of the syndrome generator is a function of the XOR difference between rd_data and wr_data,
because wr_data is a codeword for which syn_out=0, and rd_data may be a non-codeword with
some bits flipped from the original codeword.

After proving the properties in Fig. E.5, the correctness of error correction/detection logic
is proven based on the Fig. E.3 design. We have to consider the full input space for which
the design behavior is specified. For Fig. E.3 this space does not contain all the combinations
of rd_data and wr_data, because the design specification cares only about the situations when
errors can be corrected/detected (here, up to 2/3 bit errors, respectively). Hence, the total input
space is given by all situations when the Hamming distance (HD) between rd_data and wr_data

is 0, 1, 2 or 3, i.e., the XOR difference between them has 0..3 ones.
Fig. E.6 shows the properties for the case HD = 2, for a specific data input data_in of the

encoder. Since these properties do not specify/constrain which bit positions are erroneous, the
FV tool enumerates all possible bit error combinations

(278
2

)
such that HD = 2. These properties

prove that the syndrome generator drives the error detection and correction blocks such that they
produce correct output, for the specific data input data_in of the encoder. When both properties
have been proven for all four HD cases then all possible syn_out values have been generated
and possible error detection/correction cases have been covered. This is independent of the
specific data input data_in of the encoder.

Implicitly, this experiment also completes verification of the encoder that generates wr_data.
We prove that decoding the codewords produced by the encoder recover the original data and/or
detect/correct any corruption within the specified detection/correction range. As a result there
is no need to separately prove the correctness of the ECC encoder.

E.1.6 Automated Property Generation

Property development is one of the major steps in the application of formal methods for design
verification. The quality of properties is of great importance to ensure the complete coverage of
design functionalities. The proposed approach of proving the specifics of a syndrome generator
makes the properties for the class of ECC circuits straightforward to develop. Although differ-
ent ECC designs implement different encoding/decoding schemes for error detection and cor-
rection, the properties required to verify the features of ECC designs remain similar. Therefore,
an in-house property generation tool has been employed to foster re-usability and verification
productivity.

At Infineon, an automation framework based on metamodeling has been widely used for
code generation. The framework has been deployed for more than 100 applications and is the
source of a high productivity benefit. The framework uses Unified Markup Language (UML)
class diagrams for model definition and Python as the generation language. The framework is
not only used for RTL generation but also for the automatic generation of properties [28]. The
generation flow, which follows the idea of separating the generation steps into multiple layers,
is depicted in Fig. E.7.

The first layer is the specification layer, which focuses on capturing the informal speci-
fications in formal specification models. High-level details such as system configurations and
intended behaviors of the design are considered. A model definition (metamodel) developed for
ECC designs is shown in Fig. E.8a. The metamodel shown (as UML class diagram) captures
the requirements of an ECC design. The ECCBlock contains an Encode unit which captures the
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Specification
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Figure E.7: Property generation flow

specifics of an encoder. The ErrorDetection unit captures the detection and correction capa-
bility of the ECC implementation. From this metamodel different instances can be created for
different ECC implementations. An instance created for the ECC block (Fig. E.1) implemented
in the program flash interface is shown in Fig. E.8b.

Encode 

DATA_WIDTH : int [1] 
ADDR_WIDTH : int [1] 
CHECK_BIT_WIDTH : int [1] 
MIN_HAMMING_DIST : int [1] 

ECCBlock 

 

Name : string [1] 
Parent : string [0..1] 

ErrorDetection 

DETECT_BITS : int [1..*] 
CORRECT_BITS : int [1..*]  
EnCorrection : bool [1] = True 
 

MetaECC 
Name : string [1] 

 

rootNode 

 

1 1

1

(a) Specification model for ECC designs

1 <?xml version="1.0" encoding="UTF−8"?>
2 <MetaECC>
3 <Name>Flash−Bus−Interface</Name>
4 <ECCBlock>
5 <Name>ECC_block</Name>
6 <Parent>Program−Flash</Parent>
7 <Encode>
8 <DATA_WIDTH>256</DATA_WIDTH>
9 <ADDR_WIDTH>19</ADDR_WIDTH>

10 <CHECK_BIT_WIDTH>22</CHECK_BIT_WIDTH>
11 <MIN_HAMMING_DIST>6</MIN_HAMMING_DIST>
12 </Encode>
13 <ErrorDetection>
14 <DETECT_BITS>1</DETECT_BITS>
15 <DETECT_BITS>2</DETECT_BITS>
16 <DETECT_BITS>3</DETECT_BITS>
17 <CORRECT_BITS>1</CORRECT_BITS>
18 <CORRECT_BITS>2</CORRECT_BITS>
19 <EnCorrection>True</EnCorrection>
20 </ErrorDetection>
21 </ECCBlock>
22 </MetaECC>
23

(b) Specification instance for ECC block in PFlash
interface

Figure E.8: Capturing informal specifications in formal specification model

In the intermediate property layer, the Templates of Properties (ToP) extract the expected
behavior of the intended design from specification models and define a property model for each
specification item [28]. A property model is a temporal expression trace. The ToP are written in
Python, which extract specification details of an encoder (data width, check-bit width, minimum
Hamming distance) and decoder (detect-bits, correct-bits) blocks. ToP are implemented such
that the property models are defined based on the values of various attributes. For example, the
correction property models are defined only if the attribute EnCorrection is True. Finally in the
view layer, the property models are mapped to a specific property description language (e.g.,
SVA) to generate the properties. The properties shown in Fig. E.4, Fig. E.5 and Fig. E.6 are
generated by the presented generation flow.

E.1.7 Application on Real Designs
The presented approach has been applied to multiple instances of the ECC circuits implemented
in several automotive designs. Our experiments are carried out on 3 different SoCs that are used
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in safety-critical automotive applications. SoC-1 is the central part of an MCU platform which
is used in powertrain applications (including electric and hybrid vehicles) as well as safety
applications (such as steering, braking, airbags and advanced driver assistance systems). SoC-2
is also a part of the MCU platform, which enables the electrification of powertrain functions in
electric vehicles. SoC-3 is a Lidar sensor used in highly automated driver assistance systems.

Design information

Design information about exemplary ECC circuits implemented in the different SoCs is tabu-
lated in Table E.1. Column 2 shows the type of interface where the ECC module is employed.
Columns 3 and 4 show the width of data bits and check bits, respectively. Columns 5 and 6
depict the error detection and correction requirements of the respective ECC modules. The
number of logic gates of each ECC implementation is shown in column 7. Since the ECC
circuits are combinatorial in nature, the logic gates count represents the complexity for formal
analysis.

Table E.1: ECC instances in different SoCs: Design information

ECC instance Data bits Check bits Error detection Error correction #Logic Gates

PF-ECC 256 22 1,2,3 bit errors 1,2 bit errors 247k

DF-ECC 64 22 1,2,3,4 bit errors 1,2,3 bit errors 40.2k

DM-ECC 26 6 1,2 bit errors 1 bit error 1.95k

RF-ECC 16 6 1,2 bit errors 1 bit error 1.2k

FV setup and property runtimes

The FV setup for the PF-ECC circuit is shown in Fig. E.3. A similar FV setup is used for
the remaining ECC modules. For the property development, we used the property generation
tool outlined in Section E.1.6. Templates of Properties are set up once for the ECC metamodel
and reused for all the ECC instances. To setup the initial property generation flow for PF-
ECC design, it required 3 person-days of effort. For a new ECC design instance, creating the
metamodel instance (Fig. E.8b), generating the properties and setting up the regression flow
requires one person-day of effort.

The PF-ECC had been previously verified with manually developed properties. Since the
linearity characteristics of the syndrome generator had not been considered, complex properties
were developed, in which only a small window of the data vector was allowed to be symbolic.
The remaining data bits were constrained to a fixed value and assumed to be error-free. This
approach is similar to the approach followed in [34]. Overall, the initial property development,
setting up the FV setup and refining the properties to attain a full proof required 4 person-months
of effort.

The proof runtimes of the ECC properties for 4 different designs are tabulated in Table E.2.
For the property evaluation, we used the commercial FV tool OneSpin 360® DV-Verify on an
Intel® Xeon® E5-2690 v3 @2.6GHz with 32GB RAM. Column 2 shows the proof runtimes
of the ECC properties where the data vector is allowed to be symbolic (e.g., Fig. E.4). With
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Table E.2: Proof runtimes for FV of ECC circuits in different SoCs

ECC instance Proof runtime Proof runtime Proof runtime with linearity,
without linearity with linearity induction-based

PF-ECC Given up after 100 hours 08:54:55 3:03:46

DF-ECC Given up after 100 hours 06:55:17 –

DM-ECC 00:01:40 00:00:10 –

RF-ECC 00:04:40 00:01:10 –
The proof runtimes shown are for the complete property suite (in the format hh:mm:ss)

this approach, for PF-ECC and DF-ECC, the FV tool ran out of computation resources after
100 hours of runtime. Column 3 shows the proof runtimes of the complete property suite
following the linearity approach. The property suite also includes the properties (shown in
Fig. E.5) that validate the characteristics of the syndrome generator.

Further runtime improvements

In induction-based property checking, a certain operation of the design is separated into 2 or
more small operations (sub-operation) and is proven as separate properties (e.g., induction base,
induction step). These properties are compiled such that a set of properties capture the complete
behavior of an operation [119, 81]. The consequent of the preceding property (e.g., ending
state of the sub-operation-1) is part of the antecedent of the succeeding property (e.g., starting
state of sub-operation-2). For PF-ECC design, we implemented a similar technique. Since the
linearity of the syndrome generator is already proven with a separate property (Fig. E.5b), the
expression Syn(x)∧ Syn(y) = Syn(x∧ y) is added to the antecedent of the remaining detection
and correction properties. With this enhancement, the proof runtimes are further reduced. The
proof runtime for PF-ECC properties with further improvements are shown in column 4 of
Table E.2. Overall, the property runtimes for large ECC designs are significantly reduced using
the linearity approach. The FV tool requires 1:43:20 (h:mm:ss) to provide a full proof for the
triple-bit error detect property on PF-ECC design.

Observations

The following observations are drawn from the results obtained by the application of the pro-
posed method on real designs.

Observation 1: The proposed approach of first proving the linearity of the syndrome gener-
ator and then proving the remaining properties by assuming a fixed, arbitrarily chosen data vec-
tor significantly reduces the property runtimes. On large ECC designs the properties that were
previously unable to converge after 100 hours of computation time, converge within 2 hours
of computation time, thus providing a significant runtime improvement (at-least 50X on large
ECC designs). The proposed approach provides a complete coverage for bit error detection and
correction behavior of the ECC circuits and provides a high verification quality.

Observation 2: The proposed approach simplifies a set of properties needed to verify an
ECC design. Due to the similarity of bit error detection and correction properties, the prop-
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erties can be automated for different instances of ECC designs. The property automation tool
simplified the property development, enabled the reuse of generation flow for multiple ECC
instances and improved the overall verification productivity.

Observation 3: The proposed approach in the paper makes a well-defined contribution to
the formal verification of data transformation blocks. Designs that perform data transforma-
tion are generally considered as hard to verify with formal methods. The vast input analysis
space of data transformation blocks increases the complexity for FV tools. However, a major
class of data transformation designs implement specific polynomials (e.g., noise generators,
MPEG encoders, MPEG decoders, etc.) to perform the data transformation. When the under-
lying transformation algorithm (e.g., a polynomial multiplication) has characteristics that are
independent of the input data, the properties of the transformation algorithm can be separately
proven, as demonstrated in this paper for syndrome generators. This is possible since the formal
engines can better abstract the properties capturing the mathematical reasoning of the designs.
Afterwards, the remaining properties of the design are proven by assuming a fixed, arbitrarily
chosen data word. This approach decomposes the design structurally based on mathematical
properties and runs the restricted formal proofs on the design blocks without compromising full
coverage. The restrictions on the formal proofs exploit the mathematical property and reduce
the search complexity, but still exercise the full design space so that there is no verification gap.

E.1.8 Summary
We presented an approach to exploit the specifics of the underlying algebra implemented by the
ECC designs using formal methods. The approach exploits the linearity of the Syndrome Gen-
erator to establish that the detection and correction of bit errors depends only on the erroneous
bit positions and not on the input data word. Proving the linearity feature enables a significant
reduction of the analysis space for formal tools. Results show a significant improvement in
the property proof runtimes. The ECC properties that were previously unable to converge after
long proof runtimes, now converge within few hours of computation time. A high verification
productivity has been achieved by combining the approach with automatic property generation.
The effort was reduced from months to days. The proposed approach is applicable to all design
blocks that implement data transformation such that the transformation is independent of the
input data.
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E.2 Synthesis of Decoder Tables using Formal Verification
Tools

Abstract— This paper discusses a use case of formal verification tools in automating the im-
plementation of RTL modules. In detail, classical hardware design tasks involve constructing
a micro-architecture and a control unit that makes the design functional. Traditionally, these
control units are built by analyzing the micro-architecture implementation and the intended
function. In this work, we introduce a novel approach for automatic synthesis of control sig-
nals for a given micro-architecture. Our approach uses formal methods to automatically derive
a working control unit and/or decoder for a certain micro-architecture. For this purpose, the
properties (SystemVerilog Assertions) developed for design verification are re-used with minor
refinement. To show the applicability of our approach for real-life designs, we develop a RISC
five-stage pipeline micro-architecture and automatically derive the instruction decoder. Our
method saves a significant amount of work (i.e. manually tailoring units), allows to focus on
the micro-architecture design and makes it easy to analyze various ISA alternatives, accelerators
and architecture alternatives.

E.2.1 Introduction
Even though the effectiveness of formal verification tools for design analysis is well-known,
to the best of our knowledge, formal verification tools are not widely applied for the same. In
addition to design verification tasks (full-proof, bug-hunting, coverage analysis), formal verifi-
cation tools are leveraged for several design related tasks such as automatic linting, reachability
analysis, etc. In addition, the tools can be utilized for examining the design behavior. In this
paper, we discuss the usage of formal tools for generation of control unit.

The first step in a hardware implementation is the definition of a micro-architecture as an
implementation template (e.g. pipelines for CPUs, FIR filters, (programmable) FSMs). These
templates are, in a second implementation step, equipped with necessary control signals so
that the overall design provides the required functionality (i.e. the correct behavior of specific
signals at specific points in time). Since the method involves trial and error approach, this is
an elaborate and error prone task. Hence, we developed an approach to automatically derive
decoder tables by utilizing formal verification tools.

For simple control-data-path architectures, the generation of both data-path and control unit
can be automated by using high-level synthesis tools. This approach however maps to simple
data-path control architecture and does not support other architectures. The technique proposed
in this paper can be used for synthesizing control signals for all types of control-data-path
micro-architectures.

For explaining and proving our approach, we synthesize a control unit, i.e. an instruction
decoder, of a processor implementing the RiscV [117] open source Instruction Set Architecture
(ISA). RiscV is becoming widely visible and is being labeled as the next standard open archi-
tecture for industry implementations. Hence, we consider a pipeline implementation of RiscV
ISA as the test vehicle. RiscV ISA specifies various extensions spanning from RV32I base in-
teger instruction set to standard extension for decimal floating-point and many other. The part
that must be adopted for different extensions of the ISAs is mainly the look-up-table1 in the

1Look-up-tables are generally used to replace run-time computation with simpler array indexing operations and
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instruction decoder, which drives the control signals. These control signals are different for
different instruction encoding and provide the required functionality of each instruction. The
interface of the decoder look-up-table is shown in Fig. E.9 illustrating the complexity of the
table.

Inst[31:0] Instruction 
Decoder 

ctrl_reg_wr_en 

ctrl_branch_link_instr 

ctrl_alu_op[3:0] 

ctrl_mem_wr_en 

ctrl_alu_param_sel[2:0] 

ctrl_mem_rd_en 

ctrl_branch_condition_sel[2:0] 

ctrl_branch_condition_signed 

ctrl_mem_access_size[3:0] 

ctrl_mem_sign_ext 

ctrl_csr-wr_en 

ctrl_irqret 

rs1_addr[4:0] 

rs2_addr[4:0] 

reg_wr_addr[4:0] 

imm[31:0] 

id_irq 

ctrl_reg_wr_sel[1:0] 

Figure E.9: Block view of Instruction Decoder

We first generated the RTL micro architecture design of the 5-stage pipeline CPU of RiscV
ISA with an empty look-up-table. Next, we generate a set of properties for each instruction of
the selected ISA that capture required micro-architecture behavior. The RTL and properties are
generated using a meta-modeling framework following Object Management Group’s (OMG)
Model-Driven-Architecture (MDA) idea for code generation [70]. These generated properties
are then used with cover directive in a formal verification tool to generate an execution trace
and to extract the control signals hereof.

One of the major advantage our technique is reduction in turn-around time for late changes
in the decoders due to extension and changes in the specification. The properties generated
for extracting control signals can be re-used for design verification with minimal changes. As
a result, our approach reduces considerable efforts for design verification. In addition, our
approach provides maximum benefit when used in a design flow methodology proposed in
[113]. The methodology follows the principle of correct-by-construction and proposes parallel
development of both verification IP and the RTL design.

The rest of the paper is organized as follows. Section E.2.2 provides a discussion on deriving
control signals using simulation techniques and manual analysis. Section E.2.3 elaborates our
approach of automatic derivation of control signals. In section E.2.4, we provide an overview of
the generation framework, property generation and their suitability to the proposed approach.
A section on brief summary of the work completes the paper.

provide significant performance benefits.
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E.2.2 State of the Art
Manual Coding

For typical digital design problems, a set of micro-architectural patterns is available. Usually,
one of these patterns is implemented and some control signals are provided to program or make
the micro-architecture configurable. Functional verification then automatically checks that the
micro-architecture meets the specified requirements.

In order to derive the control or configuration signals, the design engineer manually com-
bines his understanding of the requirements and his knowledge of the implemented micro-
architecture. For example, given the understanding of a certain CPU instruction and the knowl-
edge of the micro-architecture, the control signals are manually set. However, this step is often
repetitive and requires deep knowledge of the micro-architecture.

Synthesis using Simulation Technique

While generating a 5-stage implementation of the RiscV ([37]), a simulation-based method was
developed to generate the look-up-table. This method identifies the necessary control signals for
each instruction using a trial-and-error approach. For this purpose, we generated a test-bench
to check the required functional behavior from a formal ISA definition. For each instruction,
the set of possible control signals was exhaustively simulated against the test-bench. When the
test-bench did not report an error, a control vector was found so that our micro-architecture
behaves correctly. Even for the most minimalist micro-architectures and simple instruction
sets, repeating this process for all instructions takes many hours to complete. This can be
accelerated by parallel simulations (e.g. one for each instruction). The effort required however
still increases exponentially with the number of control bits required for a data-path architecture.
A simulation-based technique for complex, real-world micro-architectures is thus not feasible.

E.2.3 Automated Generation of Decoder tables
Approach

The proposed approach for utilizing formal verification tools to derive control signals in an au-
tomated manner is depicted in Fig. E.10. Starting point is the micro-architecture template of the
intended hardware system and the set of properties that are drawn from the specification (ex:
ISA). A property is written/generated to verify the intended behavior of a particular operation
(ex: ADD instruction) such that necessary signals of the micro-architecture template are cap-
tured. The properties are encoded in SVA following a coding style that should be supported by
almost all commercial formal verification tools.

1 2016-09-08   restricted Copyright © Infineon Technologies AG 2016. All rights reserved. 
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The set of properties and the microarchitecture with the empty look-up-table (microarchi-
tecture template) are then applied to the formal tool. Due to the nature of formal verification2,
the tool is expected to provide a counter-example (CEX) if the properties are evaluated with
ASSERT directive. This is due to the empty look-up-table in the micro-architecture. However,
formal tools also provide a witness trace that demonstrates a scenario in which all signals attain
the required values. Hence, the properties are evaluated with the COVER directive3. COVER
witness traces are an optimistic approximation of all possible scenarios satisfying the property
sequence. Due to this, the generated property for a specific operation must be encoded to in-
struct the formal tool to prohibit other operations which partly have the same results. A detailed
example is provided in section E.2.4. The witness traces are investigated to extract necessary
control signals and fed into the look-up-table generator. This task is automated by setting up
scripts that parse the log files and generate control signal values required by the look-up gen-
erator. The look-up-generator then fills the micro-architecture template with necessary control
signals.

The mechanism of encoding properties to select and exclude operations requires more ef-
fort if the properties are manually implemented. However, the complexity increased in coding
properties to select and exclude operations can be mitigated by adopting automatic property
generation approach. In addition, automatic code generation flow is simplified by transforming
informal specifications into formal specifications. Generating properties from formal specifica-
tion avoids ambiguity and enables simpler code generators. The approach taken for automating
property generation is briefly outlined in section E.2.4. Nevertheless, the proposed method for
automatic derivation of control signals is independent of any property generation flow and the
method is applicable to nearly any control decoder design.

E.2.4 Application
We applied the technique described in section E.2.3 to the automated generation of instruction
decoder look-up-tables of various micro-architectures supporting the RiscV RV32I Base Inte-
ger Instruction Set [117, page 27]. Fig. E.11 shows a well known template of a 5-stage CPU
with the below part depicting our approach for generating control signals. As already men-
tioned in the previous section, in order to implement the properties with mechanism to exclude
operations, we employed an automated code generation approach. The following subsections
describe our code generation framework, property generation and derivation of control signals
for an instruction decoder using cover properties.

Meta-modeling framework for code generation

At Infineon, a meta-modeling framework based on Python and Mako templates is widely used
for code generation. This meta-modeling framework for efficient code generation is deployed
for more than 100 applications and is the source of high productivity benefit [38, 37]. The
framework is currently being enhanced by splitting the generation flow into different layers
following the vision of OMG’S Model Driven Architecture approach for code generation [36].

2Formal methods provide exhaustive proof spanning all (legal) input combinations i.e., a property is verified
against the design for all possible input combinations.

3The COVER directive instructs the verification tool to search for an example trace obeying the property se-
quence during analysis.
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Figure E.11: 5-stage pipeline template according to [87] and look-up-table generation

The flow involves creation of a series of models in which the preceding model is an abstracted
version of the current model. The code generation flow is split into following steps:

• In the first step, the specifications and requirements of the intended hardware design are
transformed into an abstract model called Model-of-Things (MoTs). The MoT corre-
sponds to computational-independent model (CIM) in the original MDA definition [70].
The implementation details are intentionally left-out from these abstract models to allow
architectural alternative exploration. That is, the MoTs contain information of “what shall
be implemented?” and abstracts away the information of “how shall be implemented?”.
For example, an abstract model is built to represent the RiscV ISA.

• Next, the abstract descriptions are transformed into an intermediate model that con-
tains hardware implementation (micro-architecture) details. This layer corresponds to
the platform-independent model (PIM) in the original MDA definition [70]. For property
generation, these concrete models hold the intended property trace.

• Finally, these intermediate models are mapped onto the corresponding target code using
Mako templates or using an additional intermediate model, which we call model-of-view
(MoV). This MoV corresponds to the platform-specific model (PSM) in the original MDA
definition [70].

The aforementioned meta-modeling framework is used for the generation of both, the CPU
implementation and the properties. We first built the 5-stage pipeline RiscV processor using a
model-driven flow mentioned above and elaborated in [36].

Generation of Properties

The generation of properties follows the MDA approach and is outlined in [33]. To facilitate
the understanding of this paper, we provide a brief summary in the following.

Fig.E.12 shows the property generation flow following the MDA approach. As mentioned
earlier, the first step is to convert specifications into abstract models which are called as Model-
of-Things. These abstract models are a formalized version of informal specifications and do not
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Figure E.12: Property generation flow

include implementation details. For RiscV ISA, we create an abstract model called ‘MetaRisc’
that contains instruction encoding, abstract instruction behavior, and several objects such as
register files, program counter, memory, etc..

The translation from abstract models (MoTs) into a more concrete model is performed in
Templates-of-Property (ToP). These Templates-of-Properties are used to aggregate the infor-
mation from MoTs and define the trace for the properties. The property trace information is
captured in a model called Model-of-Property (MoP). The definition of the property trace is
aided by the underlying automation framework. In addition, ToPs also need information of the
design implementation (hierarchical and input/output port names of blocks/sub-blocks). This
information is either derived directly from the RTL files or from the Model-of-Design (MoD)
if the design is generated following the MDA approach outlined in [36].

Model-of-Property is a platform independent way of specifying property traces and is the
main model of our property generation flow. Finally, the MoP is mapped to Templates-of-
View (ToV) to provide the properties in a property language of available tools. The generation
framework is built to address multiple languages such as SVA, ITL or PSL.

Cover Properties

For the 5-stage pipeline CPU of RiscV ISA, we generate the properties using the MDA flow
described in previous paragraphs. ToPs are used to unparse the abstract RiscV ISA model
(MetaRisc) and construct the property trace for all instruction encoding types (R-Type, I-
Type. . . ). Hence for each instruction encoding type, a property trace is defined and re-used
for all instructions of the particular encoding type. A property is generated for each instruction,
such that it captures the required values4 for several signals along the pipeline over a period of
4 - 5 clock cycles.

The property suite and the CPU design with an empty look-up-table in the instruction de-
coder are applied to the formal verification tool. It is important to make sure that while searching
for control signals of a specific instruction, other operations are excluded. That is, the property
generated to capture the control signals for one instruction performing a ‘specific operation’

4We cover only those values needed to verify correct behavior
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must exclude all ‘other operations’. This is because, when a formal verification tool is asked to
provide a witness trace for a property sequence, the witness trace provided by the tool is one of
several possible traces satisfying the property sequence. For example, consider the below ADD
instruction:

ADD R3, R1, R2 (E.9)

The ADD instruction performs the addition of contents of R1 and R2 source registers and stores
the result in the destination register R3 [117]. Now, consider the SLL instruction:

SLL R3, R1, R2 (E.10)

The SLL instruction performs the logical left shift operation on the contents of the source reg-
ister R1 by the shift amount stored in the lower 5 bits of source register R2 and stores the result
in destination register R3 [117]. For both instructions, following trace is true:

if R1 = 1 & R2 = 1 =⇒ R3 = 2 (E.11)

Hence, while searching for witness trace for ADD instruction, the formal tool may provide
the witness trace for an SLL instruction. As a consequence, the property must instruct the
formal verification tool to provide a witness trace valid for the specific instruction only. As
mentioned earlier, our property generation framework allows to specify the property trace in
Python language. Selecting and excluding operations for each instruction is hence a simple and
straightforward task.

A generated property that captures the required signal behavior in the pipeline for ‘R-type,
ADD instruction’ ([117, page 15]) is shown in Fig. E.13. Lines 3 and 4 define the trigger and
reset sequence respectively. Lines 5-11 (antecedent/enabling sequence) assume values for sig-
nals required for the ADD instruction in decode phase. Lines 12-36 (consequent/satisfying se-
quence) capture the expected values for various signals in decode (ID), execute (EX), memory-
access (MEM) and write-back (WB) phases of the pipeline. Lines 14-16 capture correct de-
coding of source/destination register addresses in the decode phase. Lines 18-20 capture the
ADD instruction behavior during execute phase. Lines 21-30 exclude the operations as already
explained in previous paragraphs. Lines 32-36 reflect the pipeline behavior during mem-access
and write-back phases.

If no witness trace can be generated, the given architecture is not capable to fully support
the ISA5 and must be enhanced. If a witness trace is generated by the tool, the expected control
signals for each instruction are extracted and the instruction decoder is generated.

Results and Discussion

We used for our work the formal verification tool OneSpin 360 (Version: 2017_06(38)). The
witness computation time for each property is around one second. The tool (generally a feature
of all commercial formal tools) allows to dump the witness trace information into a text file.
From this text file specific signal values at specific time-points can be extracted. We set-up
a “Lookup Generator” to parse the text log file and extract the control signals in a dictionary
format. The overall witness generation time for all instructions (RISC-V RV32I instruction set)
is less than a minute. Table E.3 shows the generated control signals for R-type instructions.

5Assuming the verification environment is free of over-constraining
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1 //Property for R-type, ’ADD’ instruction with forwarding disabled and with exclusion mechanism
2 property _ADD;
3 @(posedge clk)
4 disable iff(reset)
5 $changed(instr) &&
6 program_counter == ($past(program_counter) + 4) &&
7 instr[6:0] == R_TYPE &&
8 instr[14:12] == FUCNT3 &&
9 instr[31:25] == FUNCT7 &&

10 !forwarding_en &&
11 !branch_en &&
12 |->
13 ##0
14 rs1_addr == instr[19:15] &&
15 rs2_addr == instr[24:20] &&
16 reg_wr_addr == instr[11:7] &&
17 ##1
18 alu_in1 == $past(rs1_data) &&
19 alu_in2 == $past(rs2_data) &&
20 alu_result == alu_in_1 + alu_in2 &&
21 alu_result != 0 &&
22 alu_result != (alu_in1 >> alu_in2[4:0]) &&
23 alu_result != (alu_in1 & alu_in2)) &&
24 alu_result != (alu_in1 << (alu_in2[4:0]))) &&
25 alu_result != (alu_in1 - alu_in2)) &&
26 alu_result != (alu_in1 < alu_in2)) &&
27 $signed(alu_result) != ($signed(alu_in1) >>> (alu_in2[4:0]))&&
28 alu_result != (alu_in1 | alu_in2)) &&
29 alu_result != (alu_in1 ^ alu_in2)) &&
30 $signed(alu_result) != ($signed(alu_in1) < $signed(alu_in2))
31 ##1
32 !data_mem_wr_en
33 ##1
34 reg_wr_data == $past(alu_result,2) &&
35 reg_wr_en &&
36 reg_wr_addr == $past(instr[11:7],3);
37 endproperty
38
39 //Assertion Directive
40 COVER_add_instruction: cover property(_ADD);

Figure E.13: Property (in SVA) to generate control signals for R-Type, ADD instruction

In addition to the automatic derivation of control signals, one major advantage of our ap-
proach is that the same kind of properties can be used to synthesize the control signals for the
instruction decoder and also to validate the micro-architecture. The properties for extracting
control signals are modified in order to exclude operations not specified in the instruction. The
aforementioned generator framework allows flexibility to easily exclude unintended behavior
in the property trace. Existing languages such as SVA and existing tools can be used to provide
the required signals and in turn synthesize the decoder. We used the same generated properties
but without excluding mechanism for verifying the functional behavior of the pipeline for all
instructions in RISC-V RV32I instruction set.

Verification is also done with constrained random simulation which does not cause big over-
head, since such a simulation must be setup for use case verification anyhow. Later is needed
since some behavior can be verified in conjunction with software - e.g. interrupt behavior - only.
Nevertheless, we do not expect to find any bug in relation to ISA definition, since the formal
verification tool guarantees that the architecture provides the expected behavior if the computed
control signals are applied. In comparison to an exhaustive approach based on simulation, the
method scales and is applicable in real-life designs.

165



E.2. SYNTHESIS OF DECODER TABLES USING FORMAL VERIFICATION TOOLS

Table E.3: Generated control signals using the approach depicted in Fig. E.10 (Control signals
for R-Type instructions are shown here)

Inst rf-wr-
en

rf-wr-
sel

br-
link

alu-
op

dm-
wr-en

alu-
par-
sel

dm-
rd-en

br-sel br-
sign

dm-
acc-
size

dm-
sign-
ext

csr-
wr

irq-
ret

AND 1 00 0 0110 0 000 0 000 0 0000 0 0 0

OR 1 00 0 0111 0 000 0 011 0 0000 0 0 0

SLL 1 00 0 0010 0 000 0 011 0 0000 0 0 0

SUB 1 00 0 0001 0 000 0 010 0 0000 0 0 0

ADD 1 00 0 0000 0 000 0 000 0 0000 0 0 0

SRL 1 00 0 0100 0 000 0 011 0 0000 0 0 0

SLTU 1 00 0 1010 0 000 0 011 0 0000 0 0 0

XOR 1 00 0 1000 0 000 0 000 0 0000 0 0 0

SRA 1 00 0 0101 0 000 0 000 0 0000 0 0 0

SLT 1 00 0 1001 0 000 0 011 0 0000 0 0 0

Also, as in traditional design flows the properties are developed once the RTL is ready for
verification. However in [113], Urdahl et al. show that considerable verification efforts can
be reduced by following a “Properties first” approach. The design flow proposes systematic
development of a verification IP concurrently with the design process. The properties are first
designed according to system-level specifications and are refined later in the design process.
Our approach of automatic generation of control signals suits a similar design flow, where
verification and design tasks are carried out concurrently.

E.2.5 Summary
In this paper, we have introduced a novel approach for generating control signals for decoder
tables using formal verification tools. We also showed how the generated properties for control
signals synthesis can be re-used for functional verification of the design with minimal modi-
fications. The technique provides quick turn-around time for changes that relate to extensions
or changes in the decoding structures. To show the applicability of our approach for real-
life designs, we successfully synthesized the control unit for 3-stage, 5-stage pipelined RiscV
CPU. In addition to the instruction decoder table synthesis, the technique can be used to derive
the control signals for micro-architectures that involve a decoding operation to select various
computations/operations based on certain input signals. Further, the technique unfolds a new
direction of application for formal verification tools.
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