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Summary
Controller design for continuous dynamical systems is a core algorithmic problem in the
design of cyber-physical systems (CPS). When the CPS application is safety critical,
additionally we require the controller to have strong correctness guarantees. One approach
for this design problem is to use simpler discrete abstraction of the original continuous
system, on which known reactive synthesis methods can be used to design the controller.
This approach is known as the abstraction-based controller design (ABCD) paradigm.

In this thesis, we build ABCD procedures which are faster and more modular compared
to the state-of-the-art, and can handle problems which were beyond the scope of the
existing techniques.
Usually, existing ABCD approaches use state space discretization for computing the

abstractions, for which the procedures do not scale well for larger systems. Our first
contribution is a multi-layered ABCD algorithm, where we combine coarse abstractions
and lazily computed fine abstractions to improve scalability. So far, we only address
reach-avoid and safety specifications, for which our prototype tool (called Mascot) showed
up to an order of magnitude speedup on standard benchmark examples.
Second, we consider the problem of modular design of sound local controllers for a

network of local discrete abstractions communicating via discrete/boolean variables and
having local specifications. We propose a sound algorithm, where the systems negotiate a
pair of local assume-guarantee contracts, in order to synchronize on a set of non-conflicting
and correct behaviors. As a by-product, we also obtain a set of local controllers for the
systems which ensure simultaneous satisfaction of the local specifications. We show the
effectiveness of the our algorithm using a prototype tool (called Agnes) on a set of discrete
benchmark examples.
Our third contribution is a novel ABCD algorithm for a more expressive model of

nonlinear dynamical systems with stochastic disturbances and ω-regular specifications.
This part has two subparts, which are of significant merits on their own rights. First, we
present an abstraction algorithm for nonlinear stochastic systems using 21/2-player games
(turn-based stochastic graph games). We show that an almost sure winning strategy
in this abstract 21/2-player game gives us a sound controller for the original system for
satisfying the specification with probability one. Second, we present symbolic algorithms
for a seemingly different class of 2-player games with certain environmental fairness
assumptions, which can also be used to efficiently compute winning strategies in the
aforementioned abstract 21/2-player game. Using our prototype tool (Mascot-SDS), we
show that our algorithm significantly outperforms the state-of-the-art implementation on
standard benchmark examples from the literature.
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Zusammenfassung
Ein zentrales algorithmisches Problem beim Entwurf sicherheitskritischer cyber-physikalischer
Systeme (CPS) ist die vollautomatische Synthese von garantiert korrekter Regelsoftware
für Systemkomponenten mit kontinuierlicher Dynamik und diskreten Spezifikationen. Ein
vielversprechender Ansatz um dieses Problem zu lösen ist der sogenannte abstraktions-
basierte Reglerentwurf (engl. Abstraction-Based Control Design (ABCD)). In ABCD
wird die kontinuierliche Systemdynamik zunächst durch diskrete Abstraktionen appro-
ximiert. Auf Basis dieser Abstraktionen wird dann mit Hilfe von Algorithmen aus der
(diskreten) reaktiven Synthese ein korrekter Regler für die gegebene diskrete Spezifikation
synthetisiert, welcher dann in einen Regler für das Orginalproblem verfeinert werden
kann.
In dieser Arbeit befassen wir uns im Wesentlichen mit zwei Unzulänglichkeiten von

ABCD. Zum einen nehmen wir uns der Herausforderungen bei der Skalierbarkeit von
ABCD-Techniken an. Zum anderen erweitern wir ABCD auf ausdrucksstärkere Modelle,
welche immer noch eine Synthese bezüglich ω-regulärer Spezifikationen zulassen. Insbe-
sondere schlagen wir eine neue ABCD-Technik für kontinuierliche nichtlineare dynamische
Systeme mit stochastischen Störungen vor. Unser Beitrag zu Skalierbarkeit und Expressi-
vität von ABCD ist in drei Hauptteile gegliedert.

Unser erster Beitrag ist ein mehrschichtiger ABCD-Algorithmus für verbesserte Skalier-
barkeit. Viele bestehende Ansätze verwenden eine Diskretisierung des Zustandsraums zur
Berechnung der Abstraktion, was einen schwerwiegenden rechnerischen Engpass darstellt.
In unserem mehrschichtigen Ansatz kombinieren wir grobe Abstraktionen und lokal be-
rechnete feine Abstraktionen, um die Skalierbarkeit zu verbessern. Bislang haben wir diese
Methode nur für eingeschränkten Spezifikationsklassen entwickelt, welche in einem Proto-
typ (genannt Mascot) implementiert sind. Im Vergleich zu anderen ABCD-Algorithmen
ist Mascot bei der Reglerberechnung für standardisierte Benchmark-Beispiele bis zu eine
Größenordnung schneller.
Der zweite Beitrag dient ebenfalls der besseren Skalierbarkeit, und schlägt einen Al-

gorithmus für das (diskrete) verteilte reaktive Syntheseproblem vor. Dieser Algorithmus
kann für den skalierbaren und modularen Entwurf lokaler Regler in einem Netzwerk
lokaler diskreter Abstraktionen, die über diskrete/boolesche Variablen kommunizieren
und lokale Spezifikationen haben, verwendet werden. Wir schlagen einen Algorithmus vor,
bei dem die abstrakten Systeme lokal und dezentral Verträge untereinander aushandeln,
und sich damit auf eine Reihe von konfliktfreien und korrekten Verhaltensweisen einigen.
Wir zeigen die Anwendbarkeit unseres Algorithmus anhand eines Prototyps (genannt
Agnes) an einer Reihe von diskreten Benchmark-Beispielen.

Der dritte Beitrag ist, wie bereits erwähnt, ein neuartiger ABCD-Algorithmus für
nichtlinearer dynamischer Systeme mit stochastischen Störungen und ω-regulären Spe-
zifikationen. Dieser Teil hat zwei Unterabschnitte, die für sich genommen von großem
Wert sind. Zuerst stellen wir einen Abstraktionsalgorithmus für nichtlineare stochasti-
sche Systeme unter Verwendung von 21/2-Spieler-Spielen (rundenbasierte stochastische
Graphenspiele) vor. Wir zeigen, dass eine Gewinnstrategie in diesem abstrakten 21/2-
Spieler-Spiel in einen korrekten Regler für das Orginalsystem verfeinert werden kann.
Danach entwickeln wir symbolische Algorithmen für eine scheinbar andere Klasse von 2-
Spieler-Spielen mit bestimmten Fairness-Annahmen. Diese Algorithmen können allerdings
auch zur effizienten Berechnung von Gewinnstrategien in dem oben erwähnten abstrakten
21/2-Spiel verwendet werden. Mit Hilfe unseres Prototyps (Mascot-SDS) zeigen wir, dass
die Kombination beider Algorithmen den Stand der Technik deutlich übertrifft.
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1. Introduction

1.1. Background and Motivation

Throughout the last decade, we have seen great technological advancements in Cyber-
Physical Systems (CPS) research. We have seen accomplishments like self-driving cars
(Reese) and trucks (Kottasová) taking to the road, humanoid robots performing back-flips
(Miller), and drones doing surveillance (Bisht). At the same time, we have also experienced
the catastrophic effects of machines failing to operate safely, thereby putting human lives
at risk. We have seen incidents like autonomous vehicles causing fatal accidents (Price),
aircraft crashes costing hundreds of human lives (Gelles), and industrial robot accidentally
crushing human operator to death (Associated Press).
As a result, providing strong correctness guarantee in modern CPS applications has

become a problem of great importance. The general high-level goal is to formally certify
that the machines only do what they are supposed to do. For instance, we want to certify
that a self-driving car will always brake whenever there is an obstacle in the front, or that
a flight control system will always perform a safe landing maneuver, or that an industrial
robot will never act outside its safe operating protocols, etc.

Modern CPS applications, such as the ones mentioned above, operate through extremely
complex orchestration of many dynamical and software components. In this thesis, we
address the problem of designing verified control software, which is a central aspect in
providing correctness guarantees in CPS.
At the heart of the verified control software design problem lies the core problem

of synthesizing formally verified feedback controllers for nonlinear or hybrid dynamical
systems. At its bare bones, a dynamical system is characterized by a set of states and
inputs whose values change over time. The temporal change of state depends on its
initial value and the input sequence given to the system. (The temporal change is usually
modeled using a differential or a difference equation implicitly.) A (feedback) controller is
a device that looks at the current state of the system and decides which input to pick,
thereby influencing the state of the system in immediate future. The controller synthesis
problem asks to find a controller such that the evolution of the state satisfies some given
specification.

For instance, in a model of an autonomous vehicle, position and velocity will be part of
the state, and throttle and steering angle will be the inputs. A controller for the vehicle
needs to essentially mimic actions of a rational human driver by deciding values for the
inputs based on the current state. A typical controller synthesis problem in this case
could be: find a controller which would drive the vehicle to a selected destination while
avoiding collisions on the road.

1



1. Introduction

Traditionally, controller synthesis would often involve either an iterative trial-and-error
search (as in PID tuning) or solving an optimization problem (as in the LQR problem).
Unfortunately, the traditional approaches turn out to be inadequate for many CPS
applications due to various reasons. First, they have very restricted support for perturbed
nonlinear and hybrid dynamical systems with logical temporal specifications, as needed
by modern CPS applications. Second, for complex and large systems, they either become
infeasible or give up on the strong correctness guarantee.
As a promising alternative, recently, there have been a flurry of automated, correct-

by-construction controller design techniques that on one hand support a broader class of
systems and specifications, and on the other hand give us correct-by-design controllers in
an automated way (Pola et al., 2008; Girard et al., 2010; Tabuada, 2009; Nilsson et al.,
2017; Reissig et al., 2017; Prajna and Jadbabaie, 2004; Wieland and Allgöwer, 2007;
Ravanbakhsh and Sankaranarayanan, 2017; Ames et al., 2019; Yang et al., 2020; Henrion
and Korda, 2014; Chen et al., 2020; Bansal et al., 2017). We1 build on a particular class
of correct-by-construction techniques called abstraction-based controller design (ABCD),
which has found success in many areas of CPS in the last two decades (Tabuada, 2009;
Nilsson et al., 2017; Reissig et al., 2017).
In ABCD, the “classical control” techniques for control of continuous systems are

combined with the automata-theoretic techniques arising out of the control of discrete
systems. The key to this combination is abstraction: a way to discretize and simplify
the continuous dynamics so that one can apply automata-theoretic techniques on the
discretization while maintaining a refinement back to the original continuous system. In
this approach, a time-sampled version of the continuous dynamics, called the concrete
system, is abstracted by a symbolic finite state model, called the abstract system. After
that, automata-theoretic algorithms from reactive synthesis are used to synthesize a
discrete abstract controller on the abstract system for a given temporal logic specification.
The abstract controller can then be transferred to the sought concrete controller for
the original concrete system via a mechanism called refinement. The correctness of the
concrete controller will follow from the correctness of the reactive synthesis algorithms
and a certain feedback refinement relation (FRR) between the concrete and the abstract
system (Reissig et al., 2017).

The basic ideas of ABCD are well understood and supported by several tools—SCOTS,
CoSyMa, Pessoa, Tulip, ROCS, and PFACES, to name a few (Rungger and Zamani, 2016;
Mouelhi et al., 2013; Jr. et al., 2010; Khaled and Zamani, 2019; Li and Liu, 2018;
Wongpiromsarn et al., 2011). Even though very versatile and completely automated,
existing ABCD methods suffer from a huge computational bottleneck caused by the
discrete abstraction, because the size of the abstraction grows exponentially with the
number of state variables of the system. Besides, there is no existing technique that would
satisfactorily solve the problem when the system is subjected to stochastic uncertainty
(modeling uncertainty or external noise) and we want an ω-regular specification to be
satisfied with maximum probability. These are some of the current active research

1Throughout this thesis, the pronoun of choice will be “we” (instead of “I”) as the technical results are
outcome of many fruitful collaborations with my colleagues.
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directions in ABCD.

1.2. Contributions and Future Outlook in a Nutshell

We show that automated and correct-by-construction controller design techniques can be
significantly faster, can be made modular, and can be applied to problems considerably
broader in scope than what was possible before this dissertation. In particular, we develop
new techniques that

(A) substantially improve the computational speed of the existing ABCD techniques by
using multi-layered abstractions,

(B) compute controllers for stochastically perturbed continuous systems (controlled
Markov processes) with guarantees on the minimum probability of satisfaction of
ω-regular specifications,

(C) modularize the design of controllers using assume-guarantee contracts when the
(discrete) abstract system has a certain decomposable structure, and

(D) efficiently synthesize controllers for discrete systems under the effect of a fair adversary.

We implemented our algorithms in several prototype tools, and empirically validated
their effectiveness and improved performance over the state-of-the-art. The multi-layered
ABCD (Part (A)) is implemented in Mascot, which in our experiments performed up to
one order of magnitude faster for synthesis of controllers using ABCD. The stochastic
controller synthesis algorithm (Part (B)) and the fair adversarial synthesis algorithm
(Part (D)) are implemented in Mascot-SDS and Fairsyn respectively, and both perform
significantly faster and significantly more memory-efficient than the state-of-the-art. The
assume-guarantee synthesis algorithm (Part (C)) is implemented in Agnes, using which
we show that distributed synthesis on the discrete systems can be performed within
reasonable amount of time.
It took a number of years for the whole body of research presented in this thesis to

take shape. And during this time, many significant fundamental improvements were
accomplished (Gruber et al., 2017; Liu, 2017; Nilsson et al., 2017; Hussien and Tabuada,
2018; Girard and Gößler, 2020; Dutreix et al., 2020; Majumdar et al., 2020b) and powerful
tools were built (Li and Liu, 2018; Khaled and Zamani, 2019; Lavaei et al., 2020a)
with similar goals as ours. As a result, we have seen correct-by-construction synthesis
procedures being applied more and more in real-life safety-critical applications (Ames
et al., 2015; Yang et al., 2017), (Abate et al., 2020, Sec. 4.3). Yet, there are many
challenges for a wide-scale use, such as scalability that is not yet up to the mark, lack of
runtime adaptability to unexpected situations, lack of support for black-box systems, etc.
We hope that extensions of our work will help overcoming some of these hurdles in future.
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1.3. Intuitive Overview of the Results

In the following, we give an intuitive overview of our contributions. Different parts of our
contributions (A), (B), (C), and (D), as mentioned in Sec. 1.2, are explained in sections
1.3.1, 1.3.3, 1.3.2, and 1.3.4 respectively.

1.3.1. Lazy Multi-Layered ABCD

As our first contribution, we propose a more scalable approach for ABCD. The key
computational bottleneck of the existing ABCD methods is the size of the abstraction,
which grows exponentially with the system dimension. Tackling this state-space explosion
is one of the main open directions of research. In ABCD, usually the abstract system
is computed by first fixing a parameter τ for the sampling time and a parameter η for
the state and the input spaces, and then representing the abstract state space as a set of
finitely many hypercubes, each of diameter η. The success of ABCD depends on the choice
of η and τ . Intuitively, increasing η (and τ)1 results in fewer hypercubes but leads to a
more imprecise abstract transition relation. Thus, one may not be able to find a controller
for the abstract system. On the other hand, decreasing η (and τ) results in a more precise
abstraction and a higher chance of successful controller synthesis. However, the larger
state space can make the synthesis problem computationally intractable. This observation
has led to an extension of ABCD to a multi-layered setting, where the algorithm maintains
several “layers” of abstract systems by picking hypercube partitions of different resolutions.
The resulting abstract controller synthesis procedure tries to find a controller for the
coarsest abstraction whenever feasible, but adaptively considers finer abstractions when
necessary. On a set of standard benchmark examples, we show that our algorithm is up
to an order of magnitude faster compared to the baseline single-layered algorithm.
In the following, we intuitively explain the multi-layered ABCD algorithm using a

simple example depicted in Fig. 1.1; the technical details are in Chap. 4.
We consider the safety and the reach-avoid control problems. In reactive synthesis, these

problems are solved using a maximal and a minimal fixed point computation, respectively
(Maler et al., 1995). In particular, for safety, one starts with the maximal set of safe states
and iteratively shrinks the latter until the remaining set, called the winning state set,
does not change. That is, for all states in the winning state set, there is a control action
which ensures that the system remains within this set for one step. For reachability, one
starts with the set of target states as the winning state set and iteratively enlarges this
set by adding all states which allow the system to surely reach the current winning state
set, until no more states can be added. These differences in the underlying characteristics
of the fixed points require different switching protocols when multiple abstraction layers
are used.
The purpose of Fig. 1.1 is only to convey the basic idea of our algorithms in a visual

and lucid way, without paying attention to the details of the underlying dynamics of
the system. In our example, we use three layers of abstraction S1, S2 and S3 with the

1Usually, τ is increased along with η to reduce non-determinism due to self loops.
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(a) Illustration of lazy ABCD with a safety specification.

1 2 3 4
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(b) Illustration of lazy ABCD with a reach-avoid specification.

Figure 1.1.: An illustration of the lazy ABCD algorithms for safety and reach-avoid
specifications. In both scenarios, the solid black regions are the unsafe states
which need to be avoided. In the reach-avoid problem, the system has to
additionally reach the target (T ) red square at the left of Pic. 1. Both figures
show the sequence of synthesis stages across three abstraction layers: l = 1
(Pics. 4, 7), l = 2 (Pics. 3, 6), and l = 3 (Pics. 2, 5) for safety; and l = 1
(Pics. 4, 5), l = 2 (Pics. 3, 6), and l = 3 (Pics. 2, 7) for reach-avoid. Pic. 8 in
both figures indicate the domains of the resulting controllers with different
granularity: l = 1 (yellow), l = 2 (green), and l = 3 (orange). The red regions
represent winning states, and the dark blue regions represent states added
to the winning states in the present synthesis stage. Cyan regions represent
“potentially losing” states in the safety synthesis. We set the parameter m = 2
for reach-avoid synthesis. The gridded regions in different layers represent
the states where the transitions have been computed; large ungridded space
in l = 2 and l = 1 signifies the computational savings of the lazy abstraction
approach.

parameters (η, τ), (2η, 2τ) and (4η, 4τ). We refer to the steps of Fig. 1.1 as Pic. #.
For the safety control problem in Fig. 1.1a, we assume that a set of unsafe states are

given (the black box in the left of Pic. 1). These need to be avoided by the system.
For lazy ABCD, we first fully compute the abstract transition relation of the coarsest
abstraction S3, and find the states from where the unsafe states can be avoided for at
least one time step of length 4τ (dark blue region in Pic. 2). Normally for a single-layered
algorithm, the complement of the dark blue states would immediately be discarded as
losing states. However, in the multi-layered approach, we treat these states as potentially
losing (cyan regions), and proceed to S2 (Pic. 3) to determine if some of these potentially
losing states can avoid the unsafe states with the help of a more fine-grained controller.

However, we cannot perform any safety analysis on S2 yet as the abstract transitions of
S2 have not been computed. Instead of computing all of them, as in a non-lazy approach,
we only locally explore the outgoing transitions of the potentially losing states in S2.
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Then, we compute the subset of the potentially losing states in S2 that can avoid the
unsafe states for at least one time step (of length 2τ in this case). These states are
represented by the dark blue region in Pic. 3, which get saved from being discarded
as losing states in this iteration. Then we move to S1 with the rest of the potentially
losing states and continue similarly. The remaining potentially losing states at the end of
the computation in S1 are surely losing—relative to the finest abstraction S1—and are
permanently discarded. This concludes one “round” of exploration.
We restart the process from S3. This time, the goal is to avoid reaching the unsafe

states for at least two time steps of available lengths. This is effectively done by inflating
the unsafe region with the discarded states from previous stages (black regions in Pics. 5, 6,
and 7). The procedure stops when the combined winning regions across all layers do not
change for two successive iterations.
In the end, the multi-layered safety controller is obtained as a collection of the safety

controllers synthesized in different abstraction layers in the last round of fixed-point
computations. The resulting safety controller domain is depicted in Pic. 8.

Now consider the reach-avoid control problem in Fig. 1.1b. The target set is shown in
red, and the states to be avoided are shown in black. We start by computing the abstract
transition system completely for the coarsest layer and solve the reachability fixpoint
at this layer (until convergence) using under-approximations of the target and the safe
states. The winning region is marked in blue (Pic. 2); note that the approximation of the
bad states “cuts off” the possibility to reach the winning states from the states on the
right. We store the representation of this winning region in the finest layer as the set Ψ1.
Intuitively, we run the reachability fixpoint until convergence to enlarge the winning

state set as much as possible using large cells. This is in contrast to the previous algorithm
for safety control in which we performed just one iteration at each level. For safety, each
iteration of the fixed-point shrinks the winning state set. Hence, running the safety
fixpoint until convergence would only keep those coarse cells which form an invariant set
by themselves. On the other hand, as we run just one iteration of the safety fixpoint
at a time, hence the coarser layers in future iterations get a chance to benefit from the
winning cells obtained in the finer layers. This allows the use of coarser control actions in
larger parts of the state space (see Fig. 1 in Hsu et al. (2018a) for an illustrative example
of this phenomenon).
To further extend the winning state set Ψ1 for reach-avoid control, we proceed to the

next finer layer l = 2 with the new target region (red) being the projection of Ψ1 to l = 2.
As in safety control, all the safe states in the complement of Ψl are potentially within the
winning state set. The abstract transitions at layer l = 2 have not been computed at this
point. We only compute the abstract transitions for the frontier states: these are all the
cells that might contain layer 2 cells that can reach the current winning region within m
steps (for some parameter m chosen in the implementation). The frontier is indicated for
layer 2 by the small gridded part in Pic. 3.

We continue the backward reachability algorithm on this partially computed transition
system by running the fixpoint algorithm for m steps. The projection of the resulting
states to the finest layer is added to Ψ1. In our example (Pic. 3), we reach a fixed point
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just after one iteration implying that no more layer 2 (or layer 3) cells can be added to
the winning region.

We now move to layer 1, compute a new frontier (the gridded part in Pic. 4), and run
the reachability fixed point on Ψ1 for m steps. We add the resulting winning states to Ψ1

(the blue region in Pic. 4). At this point, we could keep exploring and synthesizing in
layer 1, but in the interest of efficiency we want to give the coarser layers a chance to
progress. This is the reason to only compute m steps of the reachability fixed point in
any one iteration. Unfortunately, for our example, the attempt to go coarser fails as no
new layer 2 cells can be added yet (see Pic. 3). We therefore fall back to layer 1 and make
progress for m more steps (Pic. 5). At this point, the attempt to go coarser is successful
(Pic. 6) as the right side of the small passage was reached.

We continue this movement across layers until synthesis converges in the finest layer. In
Pic. 8, the orange, green and yellow colored regions are the controller domains obtained
using l = 3, l = 2 and l = 1, respectively. Observe that we avoid computing transitions
for a significant portion of layers 1 and 2 (the ungridded space in Pics. 5, 6, respectively).

1.3.2. Stochastic ABCD

Next, we extend (single-layered) ABCD to a class of stochastically perturbed systems
known as controlled Markov processes (CMPs). CMPs evolve over continuous state
space and discrete time, and form a general model for temporal decision making under
stochastic uncertainty. In recent years, the problem of finding or approximating optimal
controllers in CMPs for specifications given in temporal logics or automata has received
a lot of attention. While there is a steady progression towards more expressive models
and properties (Tkachev et al., 2017; Haesaert and Soudjani, 2018; Svorenová et al., 2015;
Dutreix and Coogan, 2019; Majumdar et al., 2020a; Dutreix et al., 2020), a satisfactory
solution that can handle nonlinear models for general ω-regular specifications in a symbolic
way has been open. In this thesis, we make progress towards a solution to this general
problem. We show that the optimal controller synthesis problem for CMPs can be solved
in two steps: In step I, We introduce a novel abstraction using 21/2-player games, whose
solution under-approximates the set of qualitative winning states—called the almost sure
winning region—from which the specification can be satisfied almost surely (i.e. with
probability one). In step II, we address the quantitative aspect, where we show that the
optimal satisfaction probability of the specification can be under-approximated using the
optimal probability of reaching the almost sure winning region; for this part, we can use
existing tools for synthesizing optimal controllers for reachability specifications.

One of the main contributions of this thesis is a novel ABCD procedure to approximate
solution to step I. Just like established ABCD techniques for non-stochastic systems, we
create a finite cover of the continuous state space using hyper-rectangular cover elements.
Each cover element represents one abstract state, and the set of all cover elements form the
state space of the finite abstraction. Our key insight in the abstraction phase is that the
probabilistic disturbances naturally induce a fairness condition on the environment. We
take this observation into account while creating the abstract transition(s). Firstly, like in
regular (non-stochastic) ABCD, during the abstraction process we compute an abstract
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transition relation that over-approximates the continuous transitions. In addition to that,
we also maintain an under-approximation of the continuous transitions simultaneously,
such that an under-approximating transition exists between two abstract states x̂ and
ŷ if from every continuous state in x̂, the probability of reaching ŷ in one step is above
some uniform positive threshold. Intuitively, if there is an under-approximating abstract
transition between x̂ and ŷ, then that transition will be eventually taken with probability
one if x̂ is visited infinitely many times (probabilistic fairness).
This insight gets captured within the abstract 21/2-player game. We show that, for

parity specifications, an almost sure winning controller for the abstract game can be
mapped back to an almost sure winning controller for the original CMP. Since every
ω-regular language can be represented using a canonical parity automaton, we obtain
an ABCD procedure for CMPs with ω-regular control specifications. Part (I) of our
ABCD procedure is symbolic, because the 21/2-player game can be solved using symbolic
fixpoints; see the technical details of our proposed symbolic algorithm for 21/2-player
games in Chap. 5.

We have implemented step I of our approach and evaluated it on the nonlinear model of
a perturbed bistable switch from the literature. We show empirically that the lower bound
on the winning region computed by our approach is precise, by comparing against an over-
approximation of the qualitative winning region. Moreover, our symbolic implementation
outperforms a recently proposed tool for solving this problem by a large margin. In fact,
in many cases the existing tool crashed after consuming too much memory on a standard
laptop, whereas our tool consumed small amount of memory and produced results within
reasonable amount of time.

1.3.3. Assume-Guarantee Distributed Synthesis

We propose a modular solution to the distributed reactive synthesis problem of two systems
connected in feedback and having local temporal specifications. In our setting, each of
the two systems has its own private states and can partially observe the states of the
other system. The dynamics of each system depends on its own state, control action,
the observations of the other system, and the input from the environment. We want to
synthesize local controllers for each system—those that pick control actions solely based
on locally available information—such that each system satisfies its own local specification.
We use assume-guarantee contracts to decompose the overall synthesis problem into local
synthesis subproblems: Each system makes an assumption on the temporal behavior of
the other system, and in return, in addition to satisfying its local specification, provides
a guarantee on its own temporal behavior. The contracts are called compatible if the
guarantee of each system implies the assumption made by the other system. It can
be shown that compatible contracts result in simultaneous satisfaction of all the local
specifications, leading to a solution of the distributed synthesis problem. We propose
a negotiation procedure, where the two systems negotiate a pair of compatible assume-
guarantee contracts among themselves. At the heart of our negotiation procedure lies
the computation of minimally restrictive environment assumptions in reactive synthesis,
which was proposed by Chatterjee et al. (2008). We explain the negotiation algorithm
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using a simple mutual exclusion-style distributed synthesis problem; technical details can
be found in Chap. 6.
Suppose we have a distributed architecture with two finite-state synchronous systems
S0 and S1, where each system requires to transmit a single data packet through a shared
bus within a certain deadline. Assume that sending each data packet takes one time unit
for the bus. There is no handshaking involved in the transmission process: whenever a
system wants to send the packet, it simply needs to write it at the sending end of the bus.
However, if both systems write their data packets exactly at the same instant, the bus
turns down the send request from both of the systems to avoid data corruption. When a
send request is turned down by the bus, the systems can attempt to resend the failed
data packet in the future. Clearly, if S0 and S1 keeps trying to send their packets all the
time, they will never succeed.

The distributed synthesis problem involving S0 and S1 asks to compute local controllers
for the two systems, which decide when to send their packets based on locally available
information only. For instance, a possible solution in this case will be S0 only writing
in the even cycles while assuming that S1 only writes in the odd cycles, and dually S1

only writing in the odd cycles while assuming that S0 only writes in the even cycles.
Such type of synchronizations can be formalized using assume-guarantee contracts, where
each system makes an assumption on the temporal behavior of the other system, and in
exchange, provides a guarantee on its own behavior. If the systems have strategies to
enforce their local specifications along with their guarantees under the hypothesis that
the other system respects the assumptions, and moreover the guarantee of each system
implies the assumption used by the other system, one can prove that the entire closed-loop
system, using the synthesized strategies, satisfies all local specifications.
We propose an algorithm where the systems negotiate assume-guarantee contracts

so that the specifications are fulfilled. Our algorithm is sound but necessarily incom-
plete, because this problem of distributed synthesis is known to be undecidable for the
communication architecture that we consider (Pnueli and Rosner, 1990).

In the following we explain our algorithm on the packet sending problem involving S0

and S1. Figure 1.2 shows the structure of one system Si in a guarded command language.
The other system is similar. Each system has state variables (separate copies of s and t)
that it reads and writes, external variables from the environment that it can read (env),
and output variables that it writes and that provide its visible state to the environment
(out). The external variables provide the visible state of the rest of the system—a system
does not control their values. Additionally, the system has a number of input actions
(wait and wr) it can use to determine how its state is updated.

A state maps the state variables to values. Initially, the state is (idle, 4): the system
has 4 steps to send the packet. The transitions map the current state, current values of
external variables, and current choice of control inputs to new values of the state variables.
For example, when the state is idle, picking the wait input action keeps the state idle
but decreases t ; picking the wr input action changes the state to write and also decreases
t . The output variable is a function of the state; it is visible to other systems.

Intuitively, the system moves from idle to writing and then to done, once it successfully
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state var s ∈ {idle,writing , done},
t ∈ {1, 2, 3, 4}

external var env ∈ {idle, busy}
output var out ∈ {idle, busy}
input action U = {wait ,wr}

init s = idle, t = 4
transition
[] s = idle

wait−−−→ s ′ = idle ∧ t ′ = t − 1

[] s = idle
wr−−→ s ′ = writing ∧ t ′ = t − 1

[] s = writing ∧ t ≥ 2 ∧ env = idle
wr−−→ s ′ = done

[] s = writing ∧ t ≥ 2 ∧ env = busy
wr−−→ s ′ = writing ∧ t ′ = t − 1

output out = busy if s = writing and idle otherwise

Figure 1.2.: The packet sender system. Our example has two such systems running
synchronously in parallel.

sends the packet. However, if the bus is busy, it may fail to send the packet by the
deadline. Each system wants to eventually successfully write its data packet. In terms
of state variables, and using linear temporal logic (LTL) notation, the specification is
♦(s = done).

We are looking for a distributed solution to the problem: each system must run a local
controller that only sees the state of the system and the history of external inputs that it
receives. Thus, we cannot simply take the product of the individual state spaces and run
a reactive synthesis algorithm for the conjunction of the local specifications.
Let us first point out the issues with the naïve approach of assuming the worst-case

and the best-case behaviors from the other systems.

Worst-Case Environment. Suppose we try to find a controller for each system,
independently of the other. Unfortunately, we realize that there is no local controller
without any assumptions on the behavior of the other system: in the worst case, the other
system could be writing in all cycles, and our system will never be able to send its packet.

Assume the Specification of the Environment. Clearly, a “worst-case” behavior is
too pessimistic. At least, the other system must satisfy its own specification. What if we
assumed that the behavior of the other system is constrained by its own specification?
Unfortunately, this is still not sufficient in our example: if we only know that the other
system eventually does not write to the bus, we could still try to write in the same cycle.
Moreover, both systems could end up waiting for each other.

Assumptions, Guarantees, and Negotiations. As already pointed out, an intuitive
solution to the problem is that one system promises to write only in even cycles and the
other only in odd cycles. Then, the first system can make progress towards its writing: it
waits until the next even cycle and writes.

Our contribution is to show how we can automatically come up with such assume-
guarantee pairs. In real life, whenever two entities, people or organizations, with their
own sets of interests need to make an agreement for a peaceful co-existence, a negotiation
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process is called for. Accordingly, we call our algorithm to iteratively compute assume-
guarantee pairs a negotiation. We will use the above motivating example to give an
informal description of our solution method.

The negotiation is an iterative procedure. Initially, we make no assumptions about the
other system and check if perhaps each system can satisfy its specification no matter how
the other one behaves; if so, we are done. On the other hand, if a system cannot satisfy
its specification even while assuming full cooperation of the others, we can stop—certainly
we shall not find any implementation in this case.

Otherwise, we proceed by finding an environment assumption: a minimal restriction on
the behavior of the other system that enables our system to satisfy its specification.

Let us look at the negotiation from the perspective of system S0. For example, assuming
t = 4, S0 would find an assumption A0 = (busy1 + idle1) · (busy1 + idle1) · idleω1 , which
states that system S1 does not transmit after the second cycle. Under this assumption,
S0 can satisfy its specification: simply send the packet after the second cycle.

Next, we check if system S1 can indeed satisfy its own specification while additionally
guaranteeing the assumption A0 of system S0. We check this by defining the guarantee
G1 as the projection of A0 to the output variables of S1 and seeing if S1 has a winning
strategy in the game 3done ∧G1. Unfortunately, since system S1 makes no assumptions
(its current assumption is “true”), it cannot fulfill this specification. We find a tighter
environment assumption that S0 must ensure in order for S1 to win; it is the language
A1 = (busy0 + idle0) · idle0 · (busy0 + idle0)ω, which states that system S0 does not
transmit in the second cycle.
In general, given a system’s current assumption Ai and guarantee Gi, we check if it

has a strategy to fulfill its specification Φi = 3done under the contract (Ai, Gi). If not,
we find a new assumption and update the other system’s guarantee, which starts a new
round of negotiation.
We show this process is sound: if both systems can win the above game, then the

current assumptions and guarantees form an assume-guarantee decomposition, and we
can “read off” a distributed controller implementation. In our example, the negotiation
terminates in the second round and outputs these final assumptions and guarantees:

A0 = (busy1 + idle1) · (busy1 + idle1) · idleω1 (1.1)
G0 = (busy0 + idle0) · idle0 · (busy0 + idle0)ω (1.2)
A1 = (busy0 + idle0) · idle0 · (busy0 + idle0)ω (1.3)
G1 = (busy1 + idle1) · (busy1 + idle1) · idleω1 (1.4)

We have built a prototype tool called Agnes that implements the negotiation algorithm.
Using Agnes, we have empirically demonstrated the effectiveness of our proposed algorithm
on two numerical examples.

1.3.4. Symbolic Algorithms for Fair Adversarial Games

Our second contribution in the discrete reactive synthesis domain is a symbolic algorithm
for solving 2-player graph games under a fairness assumption on the environment. 2-player
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graph games are at the heart of many core problems in the synthesis of correct-by-
construction hardware, software, and cyber-physical systems. In fact, through a series of
reductions, the reactive synthesis problem for ω-regular specifications reduces to finding
winning strategies in 2-player graph games. In practice, it is often the case that no
solution exists to a given synthesis problem, but for “uninteresting” reasons. For example,
consider synthesizing a mutual exclusion protocol from a specification that requires (1)
that at most one of two processes can be in the critical section at any time and (2)
that a process wishing to enter the critical section is eventually allowed to do so. As
stated, there may not be a feasible solution to the problem because a process within
the critical section may decide to stay there forever. Fairness assumptions rule out such
uninteresting conditions by constraining the possible behaviors of the environment. The
updated winning condition under fairness is of the form

Fairness Assumption ⇒ ω-regular Specification. (1.5)

We consider a particular form of fairness, called the strong transition fairness (Queille
and Sifakis, 1983; Francez, 1986; Baier and Katoen, 2008), which naturally models
many practical instances of fairness like processes eventually leaving critical section, fair
scheduling of threads, etc. A strong transition fairness assumption can be modeled by a
set of live environment transitions in the underlying two-player game graph. Whenever
the source vertex of a live transition is visited infinitely often, the transition will be taken
infinitely often by the environment. We call the resulting game a fair adversarial game.
Unfortunately, despite the widespread prevalence of strong transition fairness, current
symbolic algorithms for solving games do not take advantage of their special structure
in the winning condition (1.5) and no algorithm better than those for general (Streett)
liveness conditions is known. We propose symbolic fixpoint algorithms for Rabin and
several other ω-regular fair adversarial games, which are significantly faster compared to
the naïve treatment of the live edges using regular Streett condition. Our fixpoints are
obtained through simple syntactic transformations of the regular fixpoint algorithms for
2-player games without strong transition fairness assumption. Since 21/2-player games
are special instances of fair adversarial games, so, as a byproduct, we obtain direct
symbolic algorithms for solving 21/2-player games which are significantly faster than the
state-of-the-art approaches.

In the following, we give an intuitive overview of fair adversarial games and our algorithm
for solving such games; the details are in Chap. 7.

Consider a game between 2 players, called Player 0 and Player 1, played on the graph
shown in Fig. 1.3: The game starts by placing a token on one of the vertices, called the
initial vertex. When the token is on a circular vertex, Player 0 moves the token to one
of the successors. Similarly, when the token is on a rectangular vertex, Player 1 moves
the token to one of the successors. The dotted edge (v1, v3) is a live edge, and the strong
transition fairness condition states: If the vertex v1 is visited infinitely many times then
Player 1 must take the edge (v1, v3) infinitely many times. Suppose the winning condition
for Player 0 is to make the token eventually reach vertex v3. Then Player 0 wins the fair
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v0

v1

v2

v3

Figure 1.3.: An example of a 2-player fair adversarial game graph. The circular vertices are
controlled by Player 0, and the rectangular ones are controlled by Player 1.
The edge (v1, v3) (dotted) is the live edge.

adversarial game if the following conditional winning condition is satisfied:

Strong transition fairness ⇒ eventually reach v3.

As already mentioned before, in practice, fairness assumptions like the one above help us
rule out “uninteresting” reasons for which no solution to the game exists. For the game in
Fig. 1.3, without the fairness assumption on the live edge (v1, v3), no winning strategy
exists for Player 0 when the initial vertex is v0. (Because Player 1 would be able to
prevent the token from reaching v3, by sending it back to v0, each time the token is in
either v1 or v2.) However, Player 0 can win the fair adversarial game simply by moving
the token to v1 each time the token comes back to v0, just because eventually Player 1
needs to take the live edge (v1, v3) as per the strong transition fairness assumption.

This class of games, with strong transition fairness assumptions on Player 1 edges, are
called (2-player) fair adversarial games. In this thesis, we present a symbolic algorithm
for computing winning regions and winning strategies for fair adversarial games. We
show a surprising syntactic transformation that modifies well-known symbolic fixpoint
algorithms for solving two-player games on graphs without fairness assumptions, such
that the modified fixed point solves the game for the winning condition (1.5) whenever
the given fairness assumption can be specified as strong transition fairness. To appreciate
the simplicity of our modification, let us consider the well-known fixpoint algorithms for
Büchi and co-Büchi games—particular classes of Rabin games—given by the following
µ-calculus formulas:

Büchi: νY. µX. (G ∩ Cpre(Y )) ∪ (Cpre(X)) ,
Co-Büchi: µX. νY. (G ∪ Cpre(X)) ∩ (Cpre(Y )) .

where Cpre(·) denotes the controllable predecessor operator and G denotes the set of goal
states that should be visited recurrently. In the presence of strong transition fairness, the
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new algorithms become

Büchi: νY. µX. (G ∩ Cpre(Y )) ∪ (Apre(Y,X)) ,
Co-Büchi: νW. µX. νY. (G ∪Apre(W,X)) ∩ (Cpre(Y )) .

The only syntactic change (highlighted in blue) we make is to substitute the controllable
predecessor for the µ variable X by a new almost sure predecessor operator Apre(Y,X)
incorporating also the previous ν variable Y ; if the fixpoint starts with a µ variable (with
no previous ν variable), like for co-Büchi games, we introduce one additional ν variable in
the front. For the general class of Rabin specifications, with a more involved fixpoint and
with arbitrarily high nesting depth depending on the number of Rabin pairs, we need to
perform this substitution for every such Cpre(·) operator for every µ variable.

In a nutshell, our results show that one can solve games under strong transition fairness
assumptions on environment behaviors while retaining the algorithmic characteristics of
known symbolic fixpoint algorithms when fairness assumptions are not considered. We
prove the correctness of our syntactic fixpoint transformation for solving Rabin games
(Rabin, 1969; Piterman and Pnueli, 2006) and generalized Rabin games. Further, we
also show its correctness for Reachability, Safety, (generalized) Büchi, (generalized) co-
Büchi, Rabin-chain, parity (Emerson and Jutla, 1991; Maler et al., 1995), and GR(1)
games (Piterman et al., 2006) as special cases. Moreover, through a simple reduction, we
obtain a direct symbolic algorithm for almost sure winning in 21/2-player games, which
is significantly faster than the state-of-the-art. While our proofs are subtle, symbolic
implementations of our algorithms require very small changes to existing code. Moreover,
our empirical evaluation demonstrates that our new algorithm can be multiple orders of
magnitude more efficient than previous algorithms.
We have implemented our algorithms in a synthesis engine based on BDDs (Binary

Decision Diagrams). We show on a set of synthetic and real benchmarks that our algorithm
is scalable, parallelizable, and outperforms previous algorithms by orders of magnitude.

1.4. Organization of the Contents

In Fig. 1.4, we show a dependency graph between various parts of the thesis. In Chap. 2,
we introduce the basic notation and summarize various concepts related to temporal
logics and graph games. All the other chapters use concepts which are defined in Chap. 2.
Chap. 3, Chap. 4, and Chap. 5 form the Part I of this thesis, dealing with the abstraction
aspect of the ABCD procedure: In Chap. 3, we recapitulate the basic concepts of ABCD;
most of the results in this chapter uses the feedback refinement relations-based ABCD
(Reissig et al., 2017). In Chap. 4, we present our work on lazy multi-layered abstractions,
and in Chap. 5, we present our work on ABCD for controlled Markov processes. Chap. 6
and Chap. 7 form the Part II of this thesis, dealing with our contributions in reactive
synthesis towards better scalability: In Chap. 6, we present our negotiation algorithm
for the distributed reactive synthesis problem, and in Chap. 7, we present the symbolic
algorithmic solution of fair adversarial games.
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1.4. Organization of the Contents

Chap. 2

Chap. 3Chap. 5

Chap. 6

Chap. 7
Sec. 3.5.1Sec. 5.3.2

Chap. 4

Figure 1.4.: A dependency graph between the chapters. A solid arrow from a node p to a
node q means understanding p is necessary for understanding q. A dashed
arrow from a node p to a node q means p is used in q, but p can be treated
as a blackbox without much sacrifice in understanding.
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2. Preliminaries: Temporal Logics,
21/2-Player Games

We introduce general mathematical notation and concepts related to temporal logics and
turn-based graph games, which will be used abundantly in the thesis.
Primarily, we will use temporal logics to specify properties of systems, and we will

restrict ourselves to only linear temporal logic and certain fragments of it.
We will use two types of turn-based graph games. The first one is called 21/2-player

games, and will model interaction between two adversarial agents in the presence of
probabilistic environment. The second one is called 2-player games, which is a particular
restricted subclass of 21/2-player games, and will model the interaction between two
adversarial agents only (no probabilistic environment). These games will emerge as
abstractions of CPS synthesis problems, and their solution procedures will serve as the
algorithmic basis for correct-by-construction controller synthesis for CPS.

2.1. Notation

Numbers and intervals. We use the symbols N, R, R≥0, R>0, Z, and Z>0 to denote the
sets of natural numbers including zero, reals, non-negative reals, positive reals, integers,
and positive integers, respectively. Given a, b ∈ R such that a ≤ b, we denote by [a, b] a
closed interval and define [a; b] = [a, b] ∩ Z as its discrete counterpart. Given a, b ∈ Rn,
we denote by ai and bi their i-th element and write Ja, bK for the closed hyper-interval
Rn ∩ ([a1, b1]× . . .× [an, bn]). We define the relations <,≤,≥, > on a, b component-wise.
Sets. Given a set A, we use |A| to denote the cardinality of A. For any set A ⊆ U defined
on the universe U , we use the notation A to denote the complement of A.
Probability space. For any set A, a sigma-algebra on A comprises subsets of A as events
that includes A itself and is closed under complement and countable unions. We consider
a probability space (Ω,FΩ, PΩ), where Ω is the sample space, FΩ is a sigma-algebra on Ω,
and PΩ is a probability measure that assigns probabilities to events. An ((S,FS)-valued)
random variable X is a measurable function of the form X : (Ω,FΩ)→ (S,FS), where S
is the codomain of X and FS is a sigma-algebra on S. Any random variable X induces a
probability measure on its space (S,FS) as P ({A}) = PΩ{X−1(A)} for any A ∈ FS . We
often directly discuss the probability measure on (S,FS) without explicitly mentioning
the underlying probability space (Ω,FΩ, PΩ) and the function X itself.
Let A be a finite set. A probability distribution over A is a probability measure on

the space (A, 2A). We use the notation dist(A) to denote the set of all probability
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distributions on A. Given any distribution f ∈ dist(A), we define the support of f as:
supp f := {a ∈ A | f(a) > 0}. For any given element a ∈ A, the Dirac delta distribution
on a is denoted as δa ∈ dist(A), and is defined as:

δa(x) :=

{
1 x = a

0 x 6= a.

Borel space. A topological space S is called a Borel space if it is homeomorphic to
a Borel subset of a Polish space (i.e., a separable and completely metrizable space).
Examples of a Borel space are the Euclidean spaces Rn, its Borel subsets endowed with a
subspace topology, as well as hybrid spaces. Any Borel space S is assumed to be endowed
with a Borel sigma-algebra (i.e., the one generated by the open sets in the topology),
which is denoted by B(S). We say that a map f : S → Y is measurable whenever it is
Borel measurable.
Sequences and languages. For an alphabet Σ, we write Σ∗, Σ+, and Σω for the sets of
finite words, non-empty finite words, and infinite words over Σ, respectively. We define
Σ∞ = Σ∗ ∪ Σω. For w ∈ Σ∗, we write |w| for the length of Σ; the length of w ∈ Σω is
∞. We define dom(w) = [0; |w| − 1] if w ∈ Σ∗, and dom(w) = N if w ∈ Σω. We denote
by dom+(w) = dom(w) \ {0} the positive domain of w. For k ∈ dom(w) we sometimes
(when the symbols in the sequence are not made explicit) write wk for the k-th symbol of
w and w|[0;k] for the restriction of w to the domain [0; k]. If Σ = A×B, the projection of
w ∈ Σ∞ on A is denoted by projA(w). Given two words u ∈ Σ∗ and v ∈ Σ∞, we write
uv to denote the concatenation of u and v. (Note that if u is allowed to be an infinite
word, then uv is not well-defined.) The empty word is denoted using ε, and for any given
word u ∈ Σ∞, εu = u, and for any given word u ∈ Σ∗, uε = u. Moreover, given two
languages M ⊆ Σ∗ and N ⊆ Σ∞, we write MN to denote the concatenation of M and N ,
i.e. MN = {uv | u ∈M ∧ v ∈ N}, and write Mω to denote the concatenation of infinitely
many copies of M .
We define the prefix relation on words over an alphabet Σ as u ≤ w if there exists v

such that uv = w. Note that w can be an ω-word. We extend the notion to languages: the
prefix of a language L, written pref(L), is the set {w ∈ Σ∗ | ∃u ∈ L . w ≤ u}. A language
L is prefix-closed if, whenever w ∈ L and u < w, then u ∈ L. Given a (∗-)language
L ⊆ Σ∗, we define the limit lim(L) of L as the ω-language

{u ∈ Σω | ∃ infinitely many n such that u[0;n] ∈ L}.

Thus, an infinite word belongs to the limit of a ∗-language L iff infinitely many of its
prefixes belong to L. If L is prefix-closed, this implies that an infinite word belongs to
lim(L) iff all its finite prefixes belongs to L. An (ω-)language L is a safety language if
L = lim(pref(L)) and a liveness language if pref(L) = Σ∗.
Functions and relations. Given two sets A and B, f : A→ 2B and f : A→B denote a
set-valued and ordinary functions, respectively. The function f is called total if f maps
every point in A to some point in 2B (or B for ordinary f); otherwise f is called partial.
When f is partial, for every a ∈ A either f(a) is in 2B (or B for ordinary f) or f(a) is
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undefined. We identify set-valued functions with their respective binary relation over
A× B, i.e., (a, b) ∈ f iff b ∈ f(a). The inverse function f−1 : B→ 2A is defined via its
respective binary relation: f−1(b) = {a ∈ A | b ∈ f(a)}. For the sets A, B, and C, and
for the functions f : A→B and g : B→C, the composition of f and g is the function
f ◦ g : A→C, defined as: f ◦ g(a) = f(g(a)).
Let X be a set and R ⊆ X × Y be a relation. For simplicity, let us assume that

dom(R) := {x ∈ X | ∃y ∈ Y . (x, y) ∈ R} = X. For any given x ∈ X, we use the notation
R(x) to denote the set {y ∈ Y | (x, y) ∈ R}. We extend this notation to sets: For any
given Z ⊆ X, we use the notation R(Z) to denote the set ∪z∈ZR(z). The inverse relation
of R is the relation R−1 ⊆ Y ×X defined as R−1 := {(y, x) | (x, y) ∈ R}.
The identity function, the one mapping every element to itself, is denoted by id.

2.2. Temporal Logics

Throughout this thesis, we will use various different logical formalisms to express properties
of systems. We summarize them in the following. The semantics of all the properties will
be interpreted over sets of infinite words of a given finite alphabet Σ.

2.2.1. Linear Temporal Logic

Linear Temporal Logic (LTL) was introduced by Gabbay et al. (1980) as an extension
of the propositional logic by the temporal operators “next” and “until,” denoted by the
symbols “©” and “ U” respectively. The semantics of various LTL formulas, which are to
be introduced in the following, are illustrated in Fig. 2.1 in Page 22.

Definition 2.1 (Linear Temporal Logic) Let Σ be any alphabet and AP ⊆ 2Σ be a
set of atomic propositions. An LTL formula ϕ over AP has the following syntax:

ϕ ::= true | p | ¬ϕ | ϕ1 ∧ ϕ2 | © ϕ | ϕ1 Uϕ2, p ∈ AP ,

where ϕ1 and ϕ2 are also LTL formulas.

The boolean disjunction operator “∨” and the truth value “false” can be derived from
the basic syntax in the usual way: ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ¬ϕ2) and false := ¬true. We
also use the well-known derived temporal operators “eventually,” “always,” and “release,”
denoted respectively by “♦,” “�,” and “ R,” and defined as ♦ϕ := true Uϕ, �ϕ := ¬♦¬ϕ,
and ϕ1 Rϕ2 := ¬(¬ϕ1 U¬ϕ2).
The semantics of an LTL formula ϕ are defined over the set of infinite words over Σ.

Let w ∈ Σω be an infinite word over the alphabet Σ. The satisfaction of ϕ by w, written
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as w |= ϕ, is defined inductively as follows:

w |= true,

w |= p if w0 ∈ p,
w |= ¬ϕ if w 6|= ϕ,

w |= ϕ1 ∧ ϕ2 if w |= ϕ1 and w |= ϕ2,

w |=©ϕ if w|[1;∞) |= ϕ,

w |= ϕ1 Uϕ2 if ∃t ∈ [0;∞) · w|[t;∞) |= ϕ2 and ∀t′ ∈ [0; t) · w|[t′,∞) |= ϕ1.

The set of every infinite word over Σ satisfying ϕ is denoted as 〈[ϕ]〉Σ, i.e.
〈[ϕ]〉Σ := {w ∈ Σω | w |= ϕ}.
Notational convention for bounded-horizon LTL property. We adopt a notational
convention for expressing bounded-horizon temporal behaviors in LTL. Let k ∈ N be a
nonnegative integer. We use the notation ©k and U≤k to respectively denote the k-step
next operator and the k-step bounded until operator, which are shorthand notation for
the following expanded formulas:

©kψ ≡ ©© . . . 〈k times 〉ψ
ψ1 U≤kψ2 ≡ (ψ1 Uψ2) ∧

∨
l∈[0;k]©lψ2.

The bounded eventually, the bounded always, and the bounded release operators are
defined as ♦≤kψ = true U≤kψ =

∨
l∈[0;k]©lψ, �≤kψ = ¬♦≤k¬ψ =

∧
l∈[0;k]©lψ, and

ψ1 R≤kψ2 = ¬(¬ψ1 U≤k¬ψ2).

The positive normal form. An LTL formula is in Positive Normal Form (PNF) if
all the negation symbols “¬” appear only adjacent to the atomic propositions. Every
arbitrary LTL formula ϕ can be transformed into an equivalent and canonical LTL-formula
in PNF by pushing the negations through the boolean and the temporal operators using
the following rewrite rules (Baier and Katoen, 2008, Sec. 5.1.5, pp. 258):

¬true  false
¬¬ϕ  ϕ
¬(ϕ1 ∧ ϕ2)  ¬ϕ1 ∨ ¬ϕ2

¬© ϕ  ©¬ϕ
¬(ϕ1 Uϕ2)  ¬ϕ1 R¬ϕ2

The size of the transformed formula is O (|ϕ|), where |ϕ| is the size of the original formula
ϕ (Baier and Katoen, 2008, Thm. 5.24).

2.2.2. A Next Operator-Free Fragment of LTL

While dealing with continuous-time systems, the notion of the next operator will turn
out to be ill-defined. For such systems, we will consider the next operator-free fragment
of LTL—denoted as LTL\©—that disallows the use of the next operator.
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Definition 2.2 (The LTL\© fragment of LTL) The syntax of any formula in LTL\©
is given as:

ϕ ::= true | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 Uϕ2, p ∈ AP ,

where ϕ1 and ϕ2 are also LTL\© formulas.

The semantics of LTL\© are directly inherited from the semantics of LTL.

2.2.3. Regular Properties

Fix an alphabet Σ and let AP ⊆ 2Σ be a set of atomic propositions. A property ϕ is called
regular if its semantics, i.e. the set of (finite) words that satisfies ϕ, represent a regular
language. The two regular properties which we will consider often are the reach-avoid
and the safety properties, both of which are fragments of LTL. The reach-avoid property
holds true in a sequence over Σ if a given target proposition is met before a given unsafe
proposition holds true. The safety property holds true if a given unsafe proposition never
holds true, or dually if a given safe proposition always holds true.

Definition 2.3 (Reach-Avoid Property) A reach-avoid property ψ involves two pred-
icates T ,O ∈ 2Σ, and in LTL it is written as ψ := ¬O UT . The semantics can be derived
from the semantics of LTL formulas in Sec. 2.2.1, which can be written down as follows:

〈[¬O UT ]〉Σ := {w ∈ Σ∗ | ∃k ∈ dom(w) . wk ∈ T ∧ ∀k′ < k . wk
′
/∈ O}.

Definition 2.4 (Safety Property) A safety property ψ involves a single predicate
B ∈ 2Σ, and in LTL it is written as ψ := �B. The semantics can be derived from the
semantics of LTL formulas in Sec. 2.2.1, which can be written down as follows:

〈[�B]〉Σ := {w ∈ Σ∗ | ∀k ∈ N . wk ∈ O}.

2.2.4. ω-Regular Properties

We introduce several ω-regular acceptance conditions for formally specifying properties
of systems. Traditionally these acceptance conditions are used in ω-automata, with
finitely many states and a transition relation. We will always assume that the underlying
automata structure has already been incorporated within the system under consideration,
possibly through a synchronous product construction.

In the following, we use the symbols “∈even ” and “∈odd ” to denote memberships in the
set of even and odd integers within a given set of integers: For example, for a given set of
natural numbers M ⊆ N, the notation n ∈even M is equivalent to n ∈M ∩ {0, 2, 4, . . .},
and the notation n ∈odd M is equivalent to n ∈ M ∩ {1, 3, 5, . . .}. Let Σ be a finite
alphabet. We define the operator Rec: Σω → 2Σ that maps every infinite word over Σ to
the set of infinitely recurring symbols on that sequence: Rec(w) := {σ ∈ Σ | ∀i ∈ N . ∃j >
i . wj = σ}.
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. . . |= p
p p p p

. . . 6|= p
p p p

. . . |=©p
p p p p

. . . 6|=©p
p p p

. . . |= pUq
p p p p p p p q

. . . 6|= pU≤3q
p p p p p p p q

. . . 6|= (pUq)
p p p p p p q

. . . |= ¬pUq
(reach-avoid)

q

. . . |= �p (safety)
p p p p p p p p p p p

. . . |=©2�p
p p p p p p p p p

. . . |= �♦p (Büchi). . . . . . . . . . . . . . .
p p p p p

. . . |= Parity(P). . . . . . . . . . . . . . .
B1 B1 B1B2 B2

. . . 6|= Parity(P). . . . . . . . . . . . . . .
B1 B1 B1B0 B0

. . . |= Rabin(R). . . . . . . . . . . . . . .
G1 G1 G1 G1R1

Figure 2.1.: Illustration of the semantics of various Linear Temporal Logic formulas on
infinite words.
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Definition 2.5 (Büchi Properties) Consider an alphabet Σ. A Büchi property can
be expressed using an LTL formula of the form �♦B for some atomic proposition B ⊆ Σ.
The semantics can be derived from the semantics of LTL formulas in Sec. 2.2.1, and can
be written down as:

〈[�♦B]〉Σ := {w ∈ Σω | Rec(w) ∩B 6= ∅}. (2.1)

Intuitively, the Büchi property holds along an infinite word if certain atomic proposition
B holds true infinitely often.

Definition 2.6 (Parity Properties) Consider a set of atomic propositions
P = {B0, B1, . . . , B2k} whose elements partition the alphabet Σ. The corresponding
parity property Parity(P) can be expressed using the following LTL formula:

Parity(P) :=
∧

i∈odd [1;2k]


�♦Bi →

∨

j∈even [i+1;2k]

�♦Bj


 . (2.2)

We say that a symbol σ ∈ Σ has priority i if σ ∈ Bi. The even priority sets are all Bi-s
with even i and the odd priority sets are all Bi-s with odd i. The semantics can be derived
from the semantics of LTL formulas in Sec. 2.2.1, and can be written down as:

〈[Parity(P)]〉Σ := {w ∈ Σω | max({i | Rec(w) ∩Bi 6= ∅}) = even}. (2.3)

Intuitively, for a given set of priority sets P , the parity property holds along an infinite
word if the largest infinitely occurring priority is even.

Definition 2.7 (Rabin Properties) Consider a set of atomic propositions
G1, R1, . . . , Gk, Rk ∈ 2Σ. Each pair 〈Gi, Ri〉 for i ∈ [1; k] is called a Rabin pair, and we
denote the set of Rabin pairs as R := {〈G1, R1〉 , . . . , 〈Gk, Rk〉}. The corresponding Rabin
property Rabin(R) can be expressed using the following LTL formula:

Rabin(R) :=
∨

i∈[1;k]

(�♦Gi ∧ ♦�¬Ri) . (2.4)

The semantics can be derived from the semantics of LTL formulas in Sec. 2.2.1, and can
be written down as:

〈[Rabin(R)]〉Σ := {w ∈ Σω | ∃i ∈ [1; k] . Rec(w) ∩Gi 6= ∅ ∧ Rec(w) ∩Ri = ∅}. (2.5)

Intuitively, for a given set of Rabin pairs {〈Gi, Ri〉}i∈[1;k], the Rabin property holds
along an infinite word if there exists an index i for which the proposition Gi holds infinitely
often and the proposition Ri holds only finitely often.
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2.3. Games on Finite Graphs

At the heart of all the synthesis algorithms, that we present later in this thesis, lie
finite graph games. There are various forms of finite graph games in the literature.
For our purpose, we summarize the traditional 21/2-player games, also known as simple
(turn-based) stochastic games, played between Player 0, Player 1, and a third player
representing environmental randomness and being treated as a “half player.” Parallel to
this, we introduce 2-player turn-based games as special cases of the 21/2-player games.
The first ingredient for formalization of 21/2-player games is the underlying arena or

the game graph, that is defined as follows:

Definition 2.8 (21/2-player game graphs) A 21/2-player game graph is a tuple G =
〈V, V0, V1, Vr, E〉 where

(i) V is a finite set of vertices,

(ii) V0, V1, and Vr are subsets of V which form a partition of V , i.e. V0, V1, and Vr are
pairwise disjoint and V0 ∪ V1 ∪ Vr = V , and

(iii) E ⊆ V × V is the set of directed edges.

The vertices in V0 and V1 are respectively called the Player 0 vertices and the Player 1
vertices, and the edges originating in a Player 0 vertex and a Player 1 vertex are
respectively called Player 0 edges and Player 1 edges. The vertices in Vr are called
random vertices and the edges originating in a random vertex are called random edges.
The set of all random edges is denoted by Er := E(Vr).

A 2-player game graph on the other hand is a special case of the 21/2-player game graph
that does not have any random vertex in it:

Definition 2.9 (2-player game graphs) A 21/2-player game graph with no random
vertices (i.e. Vr = ∅) is called a 2-player game graph. We simply omit Vr in this case and
represent the game graph as the tuple G = 〈V, V0, V1, E〉.

The second ingredient for formalization of both 21/2-player games and 2-player games is
the winning condition for Player 0, which is the set of valid infinite sequences of vertices
visited in G.

Definition 2.10 (Winning Conditions) A winning condition ϕ for Player 0 in a game
graph G is an LTL formula over a set of atomic propositions over the alphabet V .

Unless otherwise mentioned, we will use the convention that the given winning condition
is a winning condition for Player 0.

Finally, we define the 21/2-player game and the 2-player game as pairs of the respective
game graphs together with some winning conditions:
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Definition 2.11 (21/2-Player Game and 2-Player Game) A 21/2-player game is a
pair 〈G, ϕ〉 of a 21/2-player game graph G and a winning condition ϕ for G. A 2-player
game is a pair 〈G, ϕ〉 of a 2-player game graph G and a winning condition ϕ for G.

The games are played as follows: The game starts from an arbitrary initial vertex ; we
implicitly assume that every vertex in the game graph can be an initial vertex. Then in
every step, the player controlling the current vertex chooses a successor and the game
moves to this successor vertex in the next step. The choice of the successors from the
random vertices is performed uniformly at random, wheres the choice by Player 0 and
Player 1 are governed by strategies.

Definition 2.12 (Strategies) Let G = 〈V, V0, V1, Vr, E〉 be a 21/2-player game graph.
A strategy of Player 0 is a function π0 : V ∗V0 → V with the constraint π0(wv) ∈ E(v)
for every wv ∈ V ∗V0. Likewise, a strategy of Player 1 is a function π1 : V ∗V1 → V with
the constraint π1(wv) ∈ E(v) for every wv ∈ V ∗V1. We denote the set of strategies of
Player 0 and Player 1 on the game graph G by Π0(G) and Π1(G), respectively.

Of special interest is the class of memoryless strategies for Player 0 and Player 1: a
strategy π0 of Player 0 is memoryless if for every w1v, w2v ∈ V ∗V0, we have π0(w1v) =
π0(w2v). We use the notation ΠDM

i (G) to denote the set of all deterministic memoryless
strategies of Player i. Observe that ΠDM

i (G) ⊆ Πi(G).

Whenever the underlying game graph is clear from the context, we simply write Πi

and ΠDM
i for the set of strategies and the set of deterministic memoryless strategies of

Player i.
In general strategies of Player 0 and Player 1 can be randomized, meaning the choice

of the next state can be based on a probability distribution on the possible successors. In
contrast, we only use deterministic strategies, since it is known that randomized strategies
are no more powerful than deterministic ones for 21/2-player Büchi, parity, and Rabin
games (Chatterjee et al., 2003, 2005).

Definition 2.13 (Plays) Consider an infinite sequence of vertices ρ = v0v1v2 . . . ∈ V ω.
The sequence ρ is called a play over G starting at the vertex v0 if for every i ∈ N0, we
have vi ∈ V and (vi, vi+1) ∈ E. A play is finite if it is of the form v0v1 . . . vn for some
finite n ∈ N0.

In our convention for denoting vertices, superscripts (ranging over N0) will denote the
position of a vertex within a given play, whereas subscripts, either 0, 1, or r, will denote
the membership of a vertex in the sets V0, V1, or Vr respectively.

Let π0 and π1 be a given pair of strategies of Player 0 and Player 1, respectively, and
let v0 be a given initial vertex. An infinite play ρ = v0v1 . . . complies to π0 and π1 if for
every finite prefix ρ|[0;n] = v0v1 . . . vn of ρ, the next vertex vn+1 in the play ρ is obtained
using the following rules: (a) If vn ∈ V0 then vn+1 = π0(v0 . . . vn), (b) if vn ∈ V1 then
vn+1 = π1(v0 . . . vn), and (c) if vn ∈ Vr then vn+1 is chosen uniformly at random from
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the set E(vn). The random choice in the random vertices induce a probability measure
P π0,π1

v0 on the sample space of plays.1

For a 2-player game graph G, for any given pair of strategies π0 and π1 and for any
given initial vertex v0, the resulting play is unique.

Let 〈G, ϕ〉 be a 21/2-player game where G = 〈V, V0, V1, Vr, E〉 is a 21/2-player game graph
and ϕ is a winning condition. Let us denote the event that the plays of G satisfies ϕ using
the symbol G |= ϕ. For a given initial vertex v0 ∈ V and for a given pair of strategies
π0 and π1 of Player 0 and Player 1, we denote the probability of the occurrence of the
event G |= ϕ by P π0,π1

v0 (G |= ϕ).
In this thesis, we will be interested only in the qualitative analysis of 21/2-player games,

which deal with the following two modes of winning: (a) The game is sure winning for
Player 0 if she can satisfy the specification on every compliant play for every (adversarial)
Player 1 strategy, and (b) the game is almost sure winning for Player 0 if she can satisfy
the specification with probability one against every (adversarial) Player 1 strategy. In
the following, we formalize the objects associated to the two winning modes.

Definition 2.14 (Sure Winning Region) Let G = 〈V, V0, V1, Vr, E〉 be a 21/2-player
game graph and ϕ be a winning condition. A vertex v ∈ V is called sure winning for
Player 0 if there exists a Player 0 strategy π0 ∈ Π0, such that for every Player 1 strategy
π1 ∈ Π1, every play starting at v and complying to π0 and π1 is in ψ. The strategy π0 is
called the sure winning strategy from the vertex v. The sure winning region of Player 0
is the set of every sure winning vertices of Player 0, and is denoted as Wsure(G, ϕ), or
just Wsure if the game 〈G, ϕ〉 is clear from the context. The sure winning region and the
sure winning strategy of Player 1 can be defined analogously.

Definition 2.15 (Almost Sure Winning Region) Let G = 〈V, V0, V1, Vr, E〉 be a
21/2-player game graph and ϕ be a winning condition. A vertex v ∈ V is called al-
most sure winning for Player 0 if

supπ0∈Π0
infπ1∈Π1 P

π0,π1
v (G |= ϕ) = 1. (2.6)

The strategy π0 is called the almost sure winning strategy from the vertex v. The almost
sure winning region of Player 0 is the set of every almost sure winning vertices of Player 0,
and is denoted as Wa.s.(G, ϕ), or just Wa.s. if the game 〈G, ϕ〉 is clear from the context.
The almost sure winning region and the sure winning strategy of Player 1 can be defined
analogously.

It follows from the definition that the notion of almost sure winning is weaker than the
notion of sure winning: Wa.s.(G, ϕ) ⊆ Wsure(G, ϕ) for every G and ϕ. Additionally, when
G is a 2-player game graph or when ϕ is a safety winning condition, the two notions of
winning coincide: Wa.s.(G, ϕ) =Wsure(G, ϕ).

1The unique measure Pπ0,π1

v0
is obtained through Carathéodory’s extension theorem by extending the

pre-measure on every infinite extension—called the cylinder set—of every finite play; see (Baier and
Katoen, 2008, pp. 757) for details.
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v0

v1

v2

v3

Figure 2.2.: An example of a 21/2-player game graph. The Player 0 vertices (V0) are in
circles, the Player 1 vertices (V1) are in squares, and the random vertices
(Vr) are in diamond, respectively. The random edges (i.e. the ones originating
from the random vertices) are represented using dotted arrows. We will use
this same convention while depicting 21/2-game graphs throughout this thesis.

Example 2.1 We illustrate a 21/2-player game graph G in Fig. 2.2. Consider the game
〈G,♦v3〉, where the winning condition requires Player 0 to eventually reach vertex v3. A
strategy for Player 0 decides the next state from the only Player 0 vertex v0 whenever
the game reaches v0. Here are some examples of Player 0 strategies, given any finite play
ρ ⊆ V ∗v0:

• πa0(ρ) = v1 for all ρ,

• πb0(ρ) = v2 for all ρ,

• πc0(ρ) = v1 if there are odd number of v0 in ρ, and πc0(ρ) = v2 if there are even
number of v0 in ρ,

• πd0(ρ) = v1 if v1 appeared i-times in ρ and v2 appeared exactly 2i-times in ρ,

• . . .

The strategies πa0 and πb0 are memoryless, πc0 requires one bit of memory (the memory bit
gets flipped every time v0 is seen), and πd0 requires infinite memory (to keep track of the
ever growing sequence (20, 21, 22, . . .) of “trigger points” when v1 will be chosen from v0).
It can be shown that except for the strategy πb0 all the three other strategies are almost
sure winning strategies for Player 0 from every vertex in the game graph G. In other
words, the almost sure winning region Wa.s. is the entire set of vertices. The strategy πb0
is not almost sure winning from the vertex v0, because there exists a Player 1 strategy π1

with π1(ρ) = v0 for every finite run ρ ending in v2, such that P π
b
0,π1

v0 (G |= ♦v3) = 0. On
the other hand, the only sure winning vertex is the trivial one v3, because no matter what
strategy Player 0 picks, there will always be an infinite play (possibly with probability 0)
that never reaches v3.
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Of special interests are the parity and the Rabin games, because every other ω-regular
games can be transformed into a parity or a Rabin game by taking synchronous product of
the game graph with the parity or the Rabin automaton accepting the original ω-regular
specification (similar to the construction in the book by Gradel and Thomas (2002, Proof
of Thm. 2.7, pp. 28)). It can be shown that a sure/almost sure winning strategy in the
transformed game can be mapped back to a (possibly memory-dependent) sure/almost
sure winning strategy in the original game.
A 21/2-player game 〈G, ϕ〉 is called a Borel game if ϕ is any Borel winning condition,

which is a family of winning conditions subsuming every winning conditions used in this
thesis.

Proposition 2.1 (Determinacy for sure winning) Every vertex of a 2-player Borel
game is sure winning for one of the two players (Martin, 1975). For 2-player parity
games, both the players have deterministic memoryless sure winning strategies (Emerson
and Jutla, 1991). For 2-player Rabin games, Player 0 has deterministic memoryless sure
winning strategies and Player 1 has deterministic finite-memory sure winning strategies
(Gurevich and Harrington, 1982; Emerson and Jutla, 1988).

21/2-player games, on the other hand, have no determinacy for sure winning, though we
can state a similar theorem in terms of the almost sure winning mode. For this we need
to introduce the dual of almost sure winning, called positive winning. Given a 21/2-player
game, a vertex v is positive winning for Player 0 if Player 0 has a strategy π0 such that

supπ0∈Π0
infπ1∈Π1 P

π0,π1
v (G |= ϕ) > 0. (2.7)

Proposition 2.2 (Determinacy for almost sure winning) Every vertex of a 21/2-
player Borel game is either almost sure winning for one of the players, or is positive
winning for the other player (Martin, 1998). For 21/2-player parity games, both the players
have deterministic memoryless almost sure winning strategies (Chatterjee et al., 2003).
For 21/2-player Rabin games, Player 0 has deterministic memoryless almost sure winning
strategies (Chatterjee et al., 2005).

2.4. Symbolic Fixpoint Algorithms for Computation of Sure
Winning Regions

We use the µ-calculus (Kozen, 1983) as a convenient logical notation used to define
a symbolic algorithm (i.e., an algorithm that manipulates sets of states rather then
individual states) for computing a set of states with a particular property over a given
game graph G = 〈V, V0, V1, Vr, E〉. Let pre : 2V → 2V be a function mapping every set of
vertices to another set of vertices; we call the function pre a set transformer. In addition,
pre is a monotone set transformer if it is monotonic with respect to set inclusion, i.e. for
every U,U ′ ⊆ V with U ⊆ U ′, we have pre(U) ⊆ pre(U ′). The formulas of the µ-calculus,
interpreted over a 2-player game graph G, are given by the grammar

ϕ ::= p | X | ϕ ∪ ϕ | ϕ ∩ ϕ | pre(ϕ) | µX.ϕ | νX.ϕ
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S

Cpre(S)

Figure 2.3.: Illustration of the Cpre operator.

where p ranges over subsets of V , X ranges over a set of formal variables, pre is any
monotone set transformer, and µ and ν denote, respectively, the least and the greatest
fixed point of the functional defined as X 7→ ϕ(X). Since the operations ∪, ∩, and the set
transformers pre are all monotonic, the fixed points are guaranteed to exist. A µ-calculus
formula evaluates to a set of states over G, and the set can be computed by induction
over the structure of the formula, where the fixed points are evaluated by iteration. We
omit the (standard) semantics of formulas (see Kozen (1983)).
Let 〈G, ψ〉 be a 21/2-player game. Our goal is to develop symbolic fixpoint algorithms

to characterize the sure winning region of the game 〈G, ψ〉. As a first step, given
G = 〈V, V0, V1, Vr, E〉, we define the required monotonic set transformers. We define the
existential, two types of universal, and controllable predecessor operators as follows. For
S ⊆ V , we have

Pre∃0(S) := {v ∈ V0 | E(v) ∩ S 6= ∅}, (2.8a)

Pre∀1(S) := {v ∈ V1 | E(v) ⊆ S}, (2.8b)

Pre∀r (S) := {v ∈ Vr | E(v) ⊆ S}, and (2.8c)

Cpre(S) := Pre∃0(S) ∪ Pre∀1(S) ∪ Pre∀r (S). (2.8d)

Intuitively, the controllable predecessor operator Cpre(S) computes the set of all states
that can be controlled by Player 0 to stay in S after one step regardless of the strategy of
Player 1 and regardless of the probabilistic choices made in the random vertices. When
G is a 2-player game graph, then Cpre(S) = Pre∃0(S) ∪ Pre∀1(S).

2.4.1. Bounded-Horizon Reach-Avoid Games

Suppose k ∈ N is a nonnegative time bound and ϕ = S U≤kT is a bounded-horizon
reach-avoid specification for given safe states S ⊆ X and target states T ⊆ X . Then the
winning region Wsure for the 21/2-player game 〈G, ϕ〉 is given by W k, where W k can be
computed using the following algorithm:
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1: W 0 ← ∅
2: repeat for l = 0, 1, . . . do
3: W l+1 ← T ∪

(
Cpre(W l) ∩ S

)

4: until l = k
5: Wsure ←W k

An optimal memoryless winning strategy π∗0 ∈ ΠDM
0 can be extracted by stitching together

the choices made by the Cpre operator in each iteration. For every v ∈W k∩V0, π∗0(v) = v′

where (i) if v ∈ T then v′ is any arbitrary vertex in E(v) and (ii) if v ∈ W k \ T then
v′ ∈W i∗ where i∗ = min{i | v ∈W i \ T} − 1. Intuitively, the index i∗ is a distance-like
metric that represents the maximum number of steps it would take for Player 0 to reach
T from a given vertex v ∈W i∗ , if it uses the optimal strategy π∗0. The optimal strategy
π∗0 ensures that this distance is decreased at every step. Thus, for every vertex in the set
W k \W k−1, i.e. when i∗ = k, it will take at most k steps for the optimal strategy π∗0 to
make the game reach the target T .

2.4.2. Reach-Avoid Games

Suppose ϕ = S UT is a reach-avoid specification for given safe states S ⊆ V and target
states T ⊆ V . The winning region Wsure of 〈G, ϕ〉 can be computed by repeating the loop
for the bounded-horizon reach-avoid game until convergence (the difference is highlighted
using the blue box):

1: W 0 ← ∅
2: repeat for l = 0, 1, . . . do
3: W l+1 ← T ∪

(
Cpre(W l) ∩ S

)

4: until W l = W l+1

5: Wsure ←W l

The above algorithm is illustrated in Fig. 2.4b. The special case when the set S equals V ,
known as the reachability game, is illustrated in Fig. 2.4a. Note that for the bounded
horizon reach-avoid games, we will simply need to terminate the fixpoint iteration after
the given bound k. For instance, the green vertices in the third figure give us the winning
region for the winning condition S U≤2T .

The algorithm for reach-avoid games can be alternatively represented using the following
µ-calculus expression:

Wsure = µX . T ∪ (Cpre(X) ∩ S) . (2.9)

By using the monotonicity property of the fixpoint expression in (2.9) and the finiteness
of the set of vertices V , it can be shown that the sequence {W l} converges within finite
number of steps. The winning strategy for Player 0 can be extracted the same way as
described for the bounded-horizon case above.
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(a) Reachability game (specification: ♦T ), i.e. reach-avoid game with no obstacles, where the target set T equals
the vertex with double circle.

(b) Reach-avoid game (specification: ¬OUT ), where the obstacle set O equals the vertex in red and the target
set T equals the vertex with double circle.

(c) Safety game (winning condition: �B), where the safe set B equals vertices not in red.

(d) Büchi game (winning condition: �♦B), where the target set B equals the vertices in double circles. The
states inside the blue background constitute the current value of the outer-fixpoint variable.

Figure 2.4.: Illustration of the steps in the iterative symbolic computation of sure
winning regions for various 21/2-player games. In all the diagrams, the
vertices in green represent the current value of the respective fixpoint vari-
able.
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2.4.3. Safety Games

Suppose ϕ = �S is a safety specification for given safe states S ⊆ V . The winning
region Wsure for the 2-player game 〈G, ϕ〉 can be computed using the following iterative
procedure:

1: W 0 ← V
2: repeat for l = 0, 1, . . . do
3: W l+1 ← S ∩ Cpre(W l)
4: until W l = W l+1

5: Wsure ←W l

The above algorithm is illustrated in Fig. 2.4c. It can be alternatively expressed using
the following µ-calculus expression:

Wsure = νY . S ∩ Cpre(Y ). (2.10)

By using the monotonicity property of the fixpoint expression in (2.10) and the finiteness
of the set of vertices V , it can be shown that the sequence {W l} converges in finite
number of steps. An optimal memoryless strategy π∗0 ∈ ΠDM

0 can be extracted fromWsure

by assigning to every v ∈ Wsure a successor in Wsure , i.e. π∗0(v) = v′ ∈ E(v) ∩Wsure .

2.4.4. Büchi Games

Suppose ϕ = �♦B is a Büchi specification for a given set of target states B ⊆ V . For
l ∈ N, let W l be a set of vertices and Y l be a function mapping a set of vertices to another
set of vertices. The winning region Wsure for the 2-player game 〈G, ϕ〉 can be computed
using the following algorithm:

1: W 0 ← V
2: repeat for l = 0, 1, . . . do
3: Y 0 ← ∅
4: repeat for j = 0, 1, . . . do
5: Y j+1 ←

(
B ∩ Cpre(W l)

)
∪ Cpre

(
Y j
)

6: until Y j = Y j+1

7: W l+1 ← Y j

8: until W l = W l+1

9: Wsure ←W l

The above algorithm is illustrated in Fig. 2.4d. It can be equivalently expressed using the
following µ-calculus expression:

Wsure = νW . µY . (B ∩ Cpre(W )) ∪ Cpre(Y ). (2.11)

By using the monotonicity property of the fixpoint expression in (2.10) and the finiteness
of the set of vertices V , it can be shown that (1) for a given W l, the sequence {Y j}
converges in finite number of steps, and (2) the sequence {W l} converges in finite number
of steps. An optimal memoryless strategy π∗0 ∈ ΠDM

0 can be extracted from Wsure by
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assigning to every v ∈ Wsure ∩ B a successor in Wsure , i.e. π∗0(v) = v′ ∈ E(v) ∩Wsure ,
and to every v ∈ Wsure \B a successor that reduces the distance to Wsure ∩B by 1 step
(similar to the bounded-horizon reach-avoid game).

2.4.5. Parity Games

Let P = {B0, B1, . . . , B2k} be a set of atomic propositions, representing priorities, and
Parity(P) be the respective parity condition. The parity game can be solved using the
following 2k-nested iterative procedure:

1: Y 0
2k ← V

2: repeat for l2k = 0, 1, . . . do
3: X0

2k−1 ← ∅
4: repeat for l2k−1 = 0, 1, . . . do

...
5: Y 0

2 ← V
6: repeat for l2 = 0, 1, . . . do
7: X0

1 ← ∅
8: repeat for l1 = 0, 1, . . . do
9: X l1+1

1 ← (C1 ∩ Cpre(X l1
1 )) ∪ (C2 ∩

Cpre(Y l2
2 )) ∪ (C3 ∩ Cpre(X l3

3 )) . . . ∪ (C2k ∩ Cpre(Y l2k
2k ))

10: until X l1
1 = X l1+1

1

11: Y l2+1
2 ← X l1+1

1

12: until Y l2
2 = Y l2+1

2
...

13: until X l2k−1

2k−1 = X
l2k−1+1
2k−1

14: Y 2k
2k ← X

l2k−1

2k−1

15: until Y 2k
2k = Y 2k+1

2k

16: Wsure ← Y 2k
2k

The above algorithm can be equivalently expressed using the following µ-calculus expres-
sion:

Wsure =νY2k. µX2k−1 . . . νY2. µX1. (2.12)
(C1 ∩ Cpre(X1)) ∪ (C2 ∩ Cpre(Y2)) ∪ (C3 ∩ Cpre(X3)) . . . ∪ (C2k ∩ Cpre(Y2k)).

The extraction of winning strategies for parity games has been considered by Bruse
et al. (2014), and is much more involved than the procedure for reachability, safety, and
Büchi games. Their algorithm works as follows. During the fixpoint computation, for
every vertex that is added in the winning region, they store a winning move together with
the time stamp of the iteration count at which it was added to the winning region. After
the fixed point is reached, they perform a post-analysis of all the stored information, and

33



2. Preliminaries: Temporal Logics, 21/2-Player Games

construct a memoryless winning strategy. Their algorithm has been implemented in the
tool PGSolver1, along with some optimization heuristics.

2.4.6. Rabin Games

Let G1, R1, . . . , Gk, Rk ∈ 2Σ be a set of atomic propositions over the alphabet Σ, and
Rabin(R) be the corresponding Rabin specification. The sure winning region for the
Rabin game 〈G,Rabin(R)〉 can be computed using the following recursive procedure
(Piterman and Pnueli, 2006):

Func Rabin_main(Pairs)
1: Z0 ← ∅
2: repeat for i = 0, 1, . . . do
3: p1← Cpre(Zi)
4: Zi+1 ← Rabin(Pairs, true, p1)
5: until Zi = Zi+1

6: Wsure ← Zi

7: return Wsure

Func Rabin(Pairs, seqnr , right)
1: U ← ∅
2: for p = 1, 2, . . . , k do
3: newPairs ← pairs \ 〈Gp, Rp〉
4: Y 0 ← V
5: repeat for i = 0, 1, . . . do
6: p2← right ∪

(
seqnr ∩Rp ∩Gp ∩ Cpre(Y i)

)

7: X0 ← ∅
8: repeat for j = 0, 1, . . . do
9: p3← p2 ∪

(
seqnr ∩Rp ∩ Cpre(Xj)

)

10: if newSet is empty then
11: Xj+1 ← p3
12: else
13: Xj+1 ← Rabin(newPairs, seqnr ∩Rp, p3)
14: end if
15: until Xj = Xj+1

16: Y i+1 ← Xj

17: until Y i = Y i+1

18: U ← U ∪ Y i

19: end for
20: return U

The above algorithm can be equivalently expressed using the following µ-calculus
formula:

1https://github.com/tcsprojects/pgsolver
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νYp0 .µXp0 .
⋃

p1∈P
νYp1 .µXp1 .

⋃

p2∈P\{p1}

νYp2 .µXp2 . . . .
⋃

pk∈P\{p1,...,pk−1}

νYpk .µXpk .




k⋃

j=0

Cpj


 ,

(2.13a)

where Cpj :=
(⋂j

i=0Rpi

)
∩
[(
Gpj ∩ Cpre(Ypj )

)
∪
(
Cpre(Xpj )

)]
, (2.13b)

Piterman and Pnueli (2006) presented the strategy extraction procedure from the sure
winning region in Rabin games. Their algorithm assigns a vector valued rank to every
vertex in Wsure , containing a priority ordering over the Rabin pairs and a vector of the
worst possible numbers of steps until visits to the Gi sets (while avoiding the Ri sets that
belong to Rabin pairs with lower priority according to the priority order). The winning
strategy is constructed by assigning to every winning Player 0 vertex the successor with
the minimum rank (according to lexicographic order).

2.5. Conclusion

We summarized several different fragments of LTL, which will be mainly used to specify
linear time behavioral properties for various types of CPS models (continuous-time control
systems, transition systems, etc.) in the rest of thesis. We defined the LTL formulas
over some given finite alphabet. Later, when we use LTL formulas as properties of CPS
models, the alphabet will be same as the set of “states” of the particular model.
We also discussed two types of finite graph games, namely 21/2-player games and

2-player games. For each type of game, we introduced the sure winning and the almost
sure winning mode for the protagonist Player 0. (For 2-player games the two winning
modes coincide.) The game is sure winning for Player 0 from a certain initial vertex if
Player 0 has a strategy that is winning against every strategy of Player 1. The game is
almost sure winning for Player 0 from a certain initial vertex if Player 1 has a strategy
that is winning with probability 1 against every strategy of Player 1. Computation of sure
winning vertices and strategies can be performed using known fixpoint algorithms that we
summarized in this chapter. Computation of almost sure winning vertices and strategies
can be performed using our novel fixpoint algorithms presented in Chap. 7. All these
fixpoint algorithms will form the algorithmic basis for the core correct-by-construction
synthesis questions discussed in the rest of the thesis.
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3. Abstraction-Based Controller
Design (ABCD) for Dynamical
Systems

Part I of this thesis deals with building sound discrete abstractions of continuous dynamical
systems for designing correct-by-construction-controllers. There are now a variety of such
abstraction-based controller design (ABCD) methods in the literature (Girard and Pappas,
2007; Pola et al., 2008; Girard et al., 2010; Girard, 2012; Nilsson et al., 2017; Reissig
et al., 2017). The general work-flow in all these ABCD methods is as follows: First, a
time-sampled version of the continuous dynamics of the open-loop system (the concrete
system) is abstracted by a symbolic finite state model (the abstract system). Second,
automata-theoretic algorithms from finite-state reactive synthesis are used to synthesize a
discrete controller on the abstract system for a given temporal logic specification. Finally,
provided certain simulation relation holds between the concrete and abstract systems,
the abstract controller can be refined back to a controller for the concrete system. The
main differences between the existing approaches from the literature are in the type of
concrete system that they can handle, the type of simulation relation they use between
the concrete and the abstract systems, and the mechanism they use accordingly to build
the abstract system; a survey of the existing approaches can be found at the end of this
chapter.

In this chapter, we discuss a recent ABCD approach using feedback refinement relations
(FRR) between the concrete and abstract systems (Reissig et al., 2017). One of the main
advantages of FRR-based ABCD is that the refinement procedure becomes extremely
simple and almost immediate. Moreover, it supports a very broad category of nonlinear
systems without requiring any stability assumptions, unlike many other approaches in
the literature.

For ensuring FRR between the concrete and abstract systems, the latter is computed by
first fixing a parameter τ for the sample time and a parameter η for the state and input
spaces, and then representing the abstract state space as a set of hypercubes, each of
diameter η. The hypercubes partition the continuous concrete state space. The abstract
transition relation adds a transition between two hypercubes iff there exists some state in
the first hypercube which can reach some state of the second by following the original
dynamics for time τ . This results in a transition system that over-approximates the effect
of the original dynamics on the abstract state space.
The FRR-based ABCD approach was first implemented in the tool called SCOTS

(Rungger and Zamani, 2016), and later was used in our tools Mascot and Mascot-SDS.
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3.1. Continuous-Time Control Systems

Definition 3.1 (Continuous-Time Control Systems) A control system
S = 〈X ,U ,W, f〉 consists of a state space X = Rn, a non-empty input space U ⊆ Rm, a
disturbance space W = J−w,wK such that w ∈ Rn≥0, and a nonlinear differential inclusion

dξ(t)

dt
∈ f(ξ(t), u(t)) +W, (3.1)

where f(·, u) fulfills the usual conditions for existence and uniqueness of solution of the
differential equation dξ(t)

dt = f(ξ(t), u(t)). (For example, a sufficient condition for existence
and uniqueness is that f(·, u) is locally Lipschitz continuous for all u ∈ U .)

A system S defines a perturbed continuous-time nonlinear system, and w is a component-
wise bound on perturbations to its dynamics.

Given a continuous control input function µ : R≥0 → U which maps every t ∈ R≥0 to a
control input in µ(t) ∈ U , a solution of the inclusion in (3.1) is an absolutely continuous
function ξ : R≥0 → X that fulfills (3.1) for almost every t ∈ R≥0. For such a µ and ξ, we
call the pair 〈ξ, µ〉 a trajectory and call ξ a path of S. Observe that when w = 0, W is a
singleton set, and we have a unique trajectory for a given µ. On the other hand when
w > 0, we have many different trajectories for a given µ.

Definition 3.2 (Controller, Closed-Loop, and Closed-Loop Behavior) Let S =
〈X ,U ,W, f〉 be a continuous-time control system. A controller for S is a function
C : X → U . The closed-loop formed by interconnecting C in feedback with S is itself a
control system Scl =

〈
X , {α},W, f cl

〉
where α is a dummy control input symbol and

f cl(x, α) ≡ f(x, C(x)) for every x ∈ X . The closed-loop behavior B(Scl) is the set of all
paths of the closed-loop system Scl.

3.2. The Control Problem

A control problem is the problem of computing the best-possible controller for a continuous-
time control system such that a given LTL\© specification is fulfilled. To state the problem
precisely, we first need to generalize the semantics of an LTL\© formula from the discrete
sequences of alphabet symbols to continuous signals. Suppose ϕ is an LTL\© formula
(see Sec. 2.2.1 and Sec. 2.2.2 for the syntax) over a finite alphabet Σ and w : R≥0 → Σ
is a continuous function mapping every time point t ∈ R≥0 to a symbol in the alphabet
Σ. Let us generalize the projection operator over w as follows: For any continuous time
range [t, t′) ⊆ R≥0, w|[t,t′) is a continuous function w′ : [t, t′)→ Σ such that w′(s) := w(s)
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for every s ∈ [t, t′). The continuous-time semantics are defined as follows:

w |= true,

w |= p if w(0) ∈ p,
w |= ¬ϕ if w 6|= ϕ,

w |= ϕ1 ∧ ϕ2 if w |= ϕ1 and w |= ϕ2,

w |= ϕ1 Uϕ2 if ∃t ∈ [0,∞) · w|[t,∞) |= ϕ2 and ∀t′ ∈ [0, t) · w|[t′,∞) |= ϕ1.

The set of all the continuous functions satisfying ϕ is denoted as {[ϕ]} i.e. {[ϕ]} :=
{w : R≥0 → Σ | w |= ϕ}.

Definition 3.3 (Control Problem and Optimal Controller) Let S = 〈X ,U ,W, f〉
be a continuous-time control system. For a given LTL\© formula ϕ over a finite set of
atomic propositions AP that is a set of set of states of S (i.e. AP ⊂ 2X ), the pair 〈S, ϕ〉
is called a control problem. The formula ϕ is called the control specification or simply
specification. An optimal controller C for the control problem 〈S, ϕ〉 is a controller such
that the following hold:

(A) every closed-loop path satisfies ϕ, i.e. B(Scl) ⊆ 〈[ϕ]〉X , and

(B) for every other controller C′ that satisfies (A), we have dom(C′) ⊆ dom(C).

Optimal controller for a given control problem is not unique, and we use the notation
OptCtrl(S, ϕ) to denote the set of all optimal controllers for the control problem 〈S, ϕ〉.

Problem 1 (Controller Synthesis for Continuous-Time Control Systems.) Let
S = 〈X ,U ,W, f〉 be a continuous-time control system, AP ⊂ 2X be a finite set of atomic
propositions over the alphabet X , and ϕ be a LTL\© specification over AP . The controller
synthesis problem asks to find an optimal controller C ∈ OptCtrl(S, ϕ) for the control
problem 〈S, ϕ〉.

3.2.1. A Sampled-Time Approximation of The Control Problem

In this thesis, we will approximately solve the above problem by abstracting away to
a discrete time domain through sampling. We will restate our approximate problem
statement after introducing the necessary concepts and the sampled-time abstraction of
the system S.

Definition 3.4 (Transition systems) A transition system T = 〈X ,U ,Y, F,H〉 con-
sists of a state space X , an input space U , an output space Y, and set-valued maps
F : X × U → 2X and H : X × U → 2Y representing the transition function and the output
labeling function, respectively. A transition system T is finite if X , U , and Y are finite. It
is simple if X = Y and H(x, u) = x for all x ∈ X and u ∈ U , and static if X is a singleton.
If T is simple (resp. static) we use the triple T = 〈X ,U , F 〉 (respectively T = 〈U ,Y, H〉
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with H : U → 2Y) for notational convenience. The behavior B(T ) of a transition system
T = 〈X ,U ,Y, F,H〉 is given by the set

{ξ∈X∞ | ∀k∈dom+(ξ) . ξk∈
⋃
u∈U F (ξk−1, u)}. (3.2)

Every element in B(T ) is a path of the transition system T .

Like continuous-time control systems, we also define controllers and the associated
concepts for transition systems. Given a simple transition system T = 〈X ,U , F 〉, a
controller (to be precise, a state-feedback controller) C of T is a function C : X → U .
Given a transition system T = 〈X ,U , F 〉 and a controller C, the closed-loop system
formed by interconnecting T and C in feedback is defined by the system T cl =

〈
X ,U , F cl

〉

where1

F cl(x, u) =

{
x′
∣∣∣∣
u ∈ C(x)∧
x′ ∈ F (x, u)

}
. (3.3)

Given a transition system T and a specification ϕ over a set of atomic propositions
AP ⊆ 2X , a control problem is the pair 〈T , ϕ〉. An optimal controller C for the control
problem 〈T , ϕ〉 is a controller C such that the conditions A and B in Def. 3.3 is satisfied
by C. Just like continuous control systems, we use the notation OptCtrl(T , ϕ) denote the
set of optimal controllers for the control problem 〈T , ϕ〉.

Definition 3.5 (Sampled-time abstraction) Given a time sampling parameter τ > 0,
we define by ~S(S, τ) :=

〈
X ,U , ~F

〉
the simple transition system associated with S and τ ,

where

x′ ∈ ~F(x, u)⇔ ∃ξ ∈ Solf (τ, u) . ξ(0) = x ∧ ξ(τ) = x′. (3.4)

The system ~S(S, τ) is called the sampled-time abstraction of S.

The state space of ~S(S, τ) is still infinite; we next define a finite system associated with
S. If the control system S and parameter τ is clear from the context, we omit it in ~S.

Problem 2 (Sampled-Time Approximate Controller Synthesis Problem.) Let
S = 〈X ,U ,W, f〉 be a continuous-time control system, τ > 0 be a sampling parameter,
~S(S, τ) be the sampled-time abstraction, AP ⊂ 2X be a finite set of atomic propositions
over the alphabet X , and ϕ be a LTL\© specification over AP . The sampled-time approxi-
mation of Prob 1 asks to find an optimal controller C ∈ OptCtrl( ~S, ϕ) for the sampled-time
control problem

〈
~S, ϕ

〉
.

1In contrast to the definition used in Reissig et al. (2017), we keep the input used in F cl explicit. This
allows us to apply feedback refinement relations to closed loop systems.
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3.3. Feedback Refinement Relations

We now recall the general procedure of abstraction-based controller synthesis (ABCD)
using the framework of feedback refinement relations (FRR) as introduced by Reissig
et al. (2017).

Definition 3.6 (Feedback refinement relation or FRR) Let Ti = 〈Xi,Ui, Fi〉, i ∈
{1, 2} be two simple transition systems, and suppose U2 ⊆ U1. A feedback refinement
relation (FRR) from T1 to T2 is a total relation Q ⊆ X1×X2 such that for all (x1, x2) ∈ Q,
we have (i) U2(x2) ⊆ U1(x1), and (ii) u ∈ U2(x2)⇒ Q(F1(x1, u)) ⊆ F2(x2, u). We write
T1 4Q T2 if Q is an FRR from T1 to T2.

The specification is also lifted to the level of the abstraction, which is called the abstract
specification (Reissig et al., 2017, Def. VI.2) .

Definition 3.7 (Abstract specification) Let T1 and T2 be two transition systems with
Q being an FRR from T1 to T2, and let ϕ1 be a specification for T1. Then a specification
ϕ2 for T2 will be called an abstract specification (with respect to Q) of ϕ1 if for every
ξ2 ∈ 〈[ϕ2]〉X2 and every ξ1 ∈ X∞1 , (a) implies (b):

(a) For every k ∈ N, (ξk1 , ξ
k
2 ) ∈ Q.

(b) ξ1 ∈ 〈[ϕ1]〉X1 .

If ϕ2 is an abstract specification then we write 〈T1, ϕ1〉 4Q 〈T2, ϕ2〉.

Definition 3.8 (Controller refinement) Let T1 and T2 be two transition systems with
Q being an FRR from T1 to T2, and let C2 be a controller for T2. The refinement of the
controller C2 for T1 is given by the function composition C1 = C2 ◦Q.

As shown by Reissig et al. (2017, Thm. VI.3), the refinement is sound.

Theorem 3.1 (Soundness) Consider two transition systems T1 and T2 with their re-
spective control specifications ϕ1 and ϕ2. Let 〈T1, ϕ1〉 4Q 〈T2, ϕ2〉 for some FRR Q, and
let the abstract controller C2 realizes ψ2 on T2. Then the refined controller C2 ◦Q realizes
ϕ1 on T1.

3.4. Finite Abstraction

The computation of the finite abstraction from the given continuous-time system happens
in two phases: First, we obtain a sampled-time abstraction of the given continuous-time
system, by discretizing the continuous time set using a fixed sampling time. Second,
we obtain a finite abstraction from the sampled-time abstraction, by discretizing the
continuous state space into finitely many partition elements.

The abstraction of continuous-time systems uses a reachable set computation, formalized
using a growth bound on the dynamics in (3.1). Given a positive parameter τ > 0 and

43



3. Abstraction-Based Controller Design (ABCD) for Dynamical Systems

a constant continuous input function µu : [0, τ ] → U which maps every t ∈ [0, τ ] to a
fixed input u ∈ U , a solution of the inclusion in (3.1) on [0, τ ] is an absolutely continuous
function ξ : [0, τ ] → X that fulfills (3.1) for almost every t ∈ [0, τ ]. We collect all such
solutions in the set Solf (τ, u). Given an initial condition x0 ∈ X , the solution to the
unperturbed control system ξ̇ = f(ξ(t), u(t)) associated with (3.1) is unique, and its value
at time t ∈ [0, τ ] is denoted by ζ(t, x0, µ). Given a subset of states X ⊆ X , and a subset
of inputs U ⊆ U such that [0, τ ]×X × U ⊆ dom(ζ), the map βτ : Rn≥0 × U → Rn≥0 is a
growth bound on X and U associated with τ and (3.1) if

∀r, r′ ∈ Rn≥0, u ∈ U . r ≥ r′ =⇒ βτ (r, u) ≥ βτ (r′, u) and

∀ ξ ∈ Solf (τ, u), x0 ∈ X .

ξ(0) ∈ X =⇒ |ξ(τ)− ζ(τ, x0, µ)| ≤ βτ (|ξ(0)− x0|, u).

A cover X̂ of the state space X is a set of non-empty, closed hyper-intervals Ja, bK with
a, b ∈ (R ∪ {±∞})n called cells, such that every x ∈ X belongs to some cell in X̂ . We
adopt the convention that whenever we compare a set of cells X̂ ′ ⊆ X̂ with a set of states
X ′ ⊆ X , we actually refer to the set of states covered by the cells in X ′. For example,
X̂ ′ ⊆ X ′ would actually mean ∪

x̂∈X̂ ′ x̂ ⊆ X
′.

We assume that there exists a compact subset X ′ ⊆ X of the state space, which is
quantized by compact cells, whereas the (unbounded) region covered by X̂ \ X̂ ′ is not of
interest to the control problem and is covered by a finite number of large unbounded cells.
Given a grid parameter η ∈ Rn>0 and X ′ ⊆ X with X ′ = Jα, βK such that β − α = kη

for some k ∈ Zn, the set

ηZn = {c ∈ X ′ | ∃k ∈ Zn.(∀i ∈ [1;n].ci = αi + kiηi − 0.5 ∗ ηi)} (3.5)

defines the center points of cells in X̂ ′ with diameter η, i.e.

x̂ ∈ X̂ ′ ⇒ ∃c ∈ ηZn . x̂ = c+ J−η/2, η/2K. (3.6)

This results in congruent cells which are uniformly aligned on a grid.1 We denote by cx̂
the unique center point of x̂.

Definition 3.9 (Finite abstraction) The simple transition system Ŝ(S, τ, η, βτ ) :=〈
X̂, Û , F̂

〉
is called a finite abstraction of S with the associated parameters τ , η, and

βτ if the following holds: (i) X̂ is a finite cover of X , there exists a non-empty subset
X̂ ′ ⊆ X̂ such that X̂ ′ satisfies (3.6), and βτ is a growth bound on X̂ ′ and Û , (ii) Û is a
finite subset of U , (iii) for all x̂ ∈ X̂ \ X̂ ′ and u ∈ Û , F̂(x̂, u) = ∅, and (iv) for all x̂ ∈ X̂ ′,
x̂′ ∈ X̂, and u ∈ Û , x̂′ ∈ F̂(x̂, u) if and only if

(
ζ(τ, cx̂, u) + J−βτ (

η

2
, u), βτ (

η

2
, u)K

)
∩ x̂′ 6= ∅. (3.7)

1In the original paper by Reissig et al. (2017) and in the standard distribution of their tool SCOTS, the
grid is aligned such that (an extension of) ηZn has a center point that coincides with the origin.
Shifting this grid by η/2 yields our grid alignment.
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•

•

η(1)

η(2) r1

r2

cx̂

ζ(τ, cx̂, u)

3

2

1

A B C D E

Figure 3.1.: Computation of abstract transitions based on growth bound: the
blue box (A1) is the abstract state x̂, the green box is the region(
ζ(τ, cx̂, u) + J−βτ (η2 , u), βτ (η2 , u)K

)
, where we used the notation r1, r2 to

denote the first and the second component of 2βτ (
η
2 , u), and the 4 orange

cells (C1, C2, D1, D2) constitute the set θ̂(x̂, u).

The computation of F̂(x̂, u) has been illustrated in Fig. 3.1. If the control system S
and parameters τ , η, and βτ are clear from the context, we omit them in Ŝ.

Remark 1 (Uniform growth bound) We consider a uniform growth bound for nota-
tional simplicity. However, a uniform growth bound can be too restrictive for systems
whose dynamics vary substantially in different parts of the states. To address this issue,
the more general nonuniform growth bounds have been used in the literature (Weber et al.,
2016). Another use of nonuniform growth bounds is in abstractions which smartly adapt
to local changes in the environment (Bai and Mallik, 2020; Bai et al., 2019).

It was shown by Reissig et al. (2017, Thm. VIII.4) that there is a simple FRR from ~S
to Ŝ:

Theorem 3.2 (FRR from ~S to Ŝ) The relation Q̂ ⊆ X × X̂ defined by (x, x̂) ∈ Q̂ if
and only if x ∈ x̂ is an FRR between ~S and Ŝ, i.e., ~S 4

Q̂
Ŝ.

In view of Thm. 3.2, we can apply ABCD by computing a controller for Ŝ which can
then be refined to a controller for ~S under the pre-conditions of Thm. 3.1.

3.5. The Synthesis Game

Let S be a continuous-time system, ~S(S, τ) and Ŝ(S, τ, η, βτ ) be respectively the sampled-
time abstraction and finite abstraction of S such that ~S 4

Q̂
Ŝ. We consider control

specifications for ~S expressed using LTL formulas. Suppose ϕ is such an LTL formula
defined using a set of atomic propositions AP ⊆ 2X , where X is the state space of ~S. We
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first outline a procedure for computing an abstract LTL specification ϕ̂ on a set of atomic
propositions ÂP ⊆ 2X̂ , where X̂ is the state space of Ŝ. After that, we show how we
can algorithmically compute an optimal controller for the control problem

〈
Ŝ, ϕ̂

〉
, which

will then provide us a (possibly sub-optimal) controller for the control problem
〈
~S, ϕ

〉

through refinement: C ◦ Q̂.

3.5.1. Abstract Specification

Let S = 〈X ,U ,W, f〉 be a continuous-time control system. We assume, without loss of
generality, that the LTL formula ϕ over the alphabet X has been provided in Positive
Normal Form (PNF). (Any non-PNF LTL formula can be transformed into an equivalent
and canonical LTL formula in PNF, see Sec. 2.2.1.) The abstract LTL formula ϕ̂ will
essentially represent the under-approximation of the set of valid words 〈[ϕ]〉X using the
relation Q̂.

First, let us consider specifications that are not parity properties; for parity properties,
the abstraction process is more complicated and we come back to this later. Let ϕ be an
LTL formula and AP ⊂ 2X be a finite set of atomic propositions used in ϕ. Let P ∈ AP
be any arbitrary atomic proposition. Define the under and the over-approximation of P
with the help of the abstract states as in the following:

Under-approximation: P := {x̂ ∈ X̂ | x̂ ⊆ P},

Over-approximation: P := {x̂ ∈ X̂ | x̂ ∩ P 6= ∅}.

The abstract formula ϕ̂, that uses atomic propositions on X̂, is obtained from ϕ as follows:

(a) Every positive literal “P ” is replaced by the positive literal “P ”, and

(b) every negated literal “¬P ” is replaced by the negated literal “¬P ”.

When it is irrelevant which of the above two cases it is, we will simply use P̂ to denote
the new abstract proposition that was introduced in place of P . For instance, the well-
known reach-avoid specification ϕ = ¬O UT , for a set of obstacles O ⊆ X and a set of
targets T ⊆ X , will be transformed into ϕ̂ = ¬ÔUT̂ = ¬OUT ; see Fig. 3.2 for a visual
illustration.
The case of parity specification is a bit more involved, because approximating Bi-s

may cause some abstract state to be included in no or multiple abstract B̂i sets, which
is not permitted as per the definition of parity properties Def. 2.6. Let us take a closer
look. First we convert the parity specification in (2.2) to the following formula in Positive
Normal Form (PNF):

Parity(P) :=
∧

i∈odd [1;2k]


♦�¬Bi ∨

∨

j∈even [i+1;2k]

�♦Bj


 .
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Figure 3.2.: An example reach-avoid specification ¬OUT with its abstract counterpart:
The red quadrilateral represents the obstacle O and the green circle represents
the target T . The abstract specification is given by ¬OUT where O is the
hatched region and T is the dotted region.

If we naïvely replace the “¬Bi” and “Bi” literals using “¬Bi” and “Bi,” we get:

∧

i∈odd [1;2k]


♦�¬Bi ∨

∨

j∈even [i+1;2k]

�♦Bj


 .

The above formula can be alternatively re-written as:

∧

i∈odd [1;2k]


�♦Bi →

∨

j∈even [i+1;2k]

�♦Bj


 . (3.8)

We can express the above formula as a parity property with the set of atomic propositions
P̂ := {B0, B1, B2, B3, . . . , B2k−1, B2k}.

Unfortunately, this naïve approach will not always work: (i) When an abstract state x̂
intersects with multiple even priority sets and no odd priority set, then x̂ does not get
any priority assigned in P̂ , and (ii) when x̂ intersects with multiple odd priority sets, then
x̂ gets conflicting priority assignments (i.e. x̂ gets included in all the intersecting odd
priority sets) in P̂.

To circumvent this issue while maintaining soundness, we define the abstract priorities
in a way that (i) and (ii) are resolved in a disadvantageous way to the controller. For
case (i), we assign x̂ the minimum even priority that intersects with x̂. For case (ii), we
assign x̂ the maximum odd priority that intersects with x̂. We illustrate this in Fig. 3.3.
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B0 B2 B̂0

B0

B1

B3

B̂3

Figure 3.3.: Illustration of construction of abstract priorities for parity specifications. Top
row: When an abstract state x̂ does not intersect with any odd priority set,
then the priority of x̂ in the abstraction is the minimum of the intersecting
even priority sets. Bottom row: When an abstract state x̂ intersects with
odd priority set(s), then the priority of x̂ in the abstraction is the maximum
of the intersecting odd priority sets.

Formally, the abstract priorities are defined as in the following:

i is even: B̂i := Bi ∪
{
x̂ ∈ X̂

∣∣∣∀j ∈odd [1; 2k] . x̂ ∩Bj = ∅ ∧ i = min{l | x̂ ∩Bl 6= ∅}
}
,

i is odd: B̂i := Bi ∪
{
x̂ ∈ X̂

∣∣∣i = max({l ∈odd [1; 2k] | x̂ ∩Bl 6= ∅})
}
.

It follows from a monotonicity argument (Kazemi and Soudjani, 2020, Thm. 5) of PNF
non-parity formulas and a robustness argument for the parity formulas that ϕ̂ is indeed
an abstract specification according to Def. 3.7:

Lemma 3.1
〈
~S, ϕ

〉
4
Q̂

〈
Ŝ, ϕ̂

〉
.

Proof When ϕ is a property other than parity, then the proof is by induction over the
structure of the two LTL formulas ϕ and ϕ̂. From the construction of P and P , it is clear
that P ⊆ P and ¬P ⊆ ¬P . Furthermore, for any pair of subformulas ϕ1, ϕ2 and their
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respective abstractions ϕ̂1, ϕ̂2, the following are true:
〈
~S, ϕ1 ∧ ϕ2

〉
4
Q̂

〈
Ŝ, ϕ̂1 ∧ ϕ̂2

〉
,

〈
~S, ϕ1 ∨ ϕ2

〉
4
Q̂

〈
Ŝ, ϕ̂1 ∨ ϕ̂2

〉
,

〈
~S,©ϕ1

〉
4
Q̂

〈
Ŝ,©ϕ̂1

〉
,

〈
~S, ϕ1 Uϕ2

〉
4
Q̂

〈
Ŝ, ϕ̂1 Uϕ̂2

〉
,

〈
~S, ϕ1 Rϕ2

〉
4
Q̂

〈
Ŝ, ϕ̂1 Rϕ̂2

〉
.

When ϕ is a parity property, then the proof follows by a robustness argument: Suppose
ξ̂ ∈ 〈[ϕ̂]〉X̂ , and let ξ ∈ X∞ be a path of ~S such that for every k ∈ N, (ξk, ξ̂k) ∈ Q. We
argue that ξ ∈ 〈[ϕ]〉X . Recall that as per our notation, Rec(ξ̂) is the set of abstract states
that appear infinitely many times on the run ξ̂. Suppose x̂ ∈ Rec(ξ̂) is the abstract
state with the highest priority among all the states in Rec(ξ̂), which is even according
to our assumption (that ξ̂ ∈ 〈[ϕ̂]〉X̂); let the priority of x̂ be i for some i ∈even [1; 2k].
By our construction of P̂, all the continuous states inside x̂ have either same or higher
even priority than i, which shows that ξ, passing through x̂, has at least i even priority
appearing infinitely often along it. Now let x̂′ ∈ Rec(ξ̂) be an arbitrary abstract state
with odd priority j for some j ∈odd [0; 2k], where j < i according to our assumption (that
ξ̂ ∈ 〈[ϕ̂]〉X̂). By construction of P̂, all the continuous states inside x̂′ have either same
or lower odd priority than j, which shows that ξ, passing through the states in Rec(ξ̂)
infinitely often, has all odd infinitely occurring priorities smaller than i. 2

3.5.2. Abstract 2-Player Game

Suppose Ŝ =
〈
X̂, Û , F̂

〉
is the finite abstraction of a continuous-time system S (the

abstraction parameters are unimportant). For simplicity, we assume that the control
specification ϕ for S is definable using a regular or an ω-regular property from Sec. 2.2.3
and Sec. 2.2.4, specified using predicates over the state space X . Naturally, this will imply
the same for the abstract specification ϕ̂ for Ŝ, specified using the predicates over X̂. The
consequence is that the controller is known to be memoryless in this case.
The more general case is when the specification is provided as an ω-automaton (such

as a parity or a Rabin automaton) with the predicate AP ⊆ X serving as the automaton
alphabet. By taking a synchronized product of this ω-automaton with the system S, we
can obtain a product control system and an ω-regular specification over the product state
space such that every path satisfying the specification is also accepted by the original
ω-automaton, and vice versa. Moreover, a stationary policy for the ω-regular specification
gives a (possibly history-dependent) policy for the original automata-based specification.
Thus, without loss of generality, we assume that an ω-regular specification is already
given using a set of atomic propositions over the state space of the system.
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A1

(A1, u)

C1 C2 D1 D2

Figure 3.4.: Illustration of the construction of the abstract 2-player game graph G for
the abstract transition shown in Fig. 3.1. The vertices in V0 and V1 are
respectively indicated by circle and rectangular nodes.

The abstract 2-player game graph G is obtained by simply separating the control and
the uncertainty aspect in Ŝ, see Fig. 3.4. Whenever Ŝ reaches a state x̂ in Ŝ, the following
two-step game is played in G: There are Player 0-vertices labeled as x̂, from which
Player 0 chooses a control input u ∈ Û , causing a transition to a Player 1-vertex labeled
(x̂, u). From (x̂, u) there are edges to every x̂′ ∈ F̂ (x̂, u), and Player 1 chooses one of the
successors. Formally, G = 〈V, V0, V1, E〉 where

• V = X̂ ∪
(
X̂ × Û

)
,

• V0 = X̂,

• V1 =
(
X̂ × Û

)
, and

• E = (V0 × V1) ∪ {(x̂, û, x̂′) ∈ V1 × V0 | x̂′ ∈ F̂ (x̂, û)}.

Let the abstract specification for Ŝ be ϕ̂, defined using the propositions AP ⊆ 2X̂ .
For the 2-player game G, we can use ϕ as the winning condition by interpreting the
propositions AP over V0 (V0 is same as X̂). Since the vertices in V1 are excluded from AP ,
satisfaction of ϕ̂ is interpreted using only the projections of the plays over the vertices in
V0. Formally, consider the following play ρ over the game graph G:

v0(v0, u2)v1(v1, u1)v2(v2, u2) . . . .

We say ρ is in 〈[ϕ̂]〉V if the subsequence v0v1v2 . . . is in 〈[ϕ̂]〉V0 .
For simplicity and without loss of generality, let us assume that ϕ and ϕ̂ are given as

parity specifications. Recall that memoryless strategies are optimal for sure winning in
2-player parity games (see Prop. 2.1). Suppose ρ0 is a memoryless Player 0 strategy in
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the 2-player game graph G. A refined controller for the finite abstraction Ŝ is a controller
C : X̂ → Û where for every x̂ ∈ X̂, C(x̂) = û if ρ0(x̂) = (x̂, û). The following theorem
states that the refined controller is sound.

Theorem 3.3 (Soundness of the game construction) Let Ŝ be the finite abstrac-
tion of a continuous-time system S, ϕ̂ be an abstract specification for Ŝ, and 〈G, ϕ〉 be the
abstract 2-player game. If π0 is an optimal (sure) winning strategy for Player 0, then the
refined controller for Ŝ is in OptCtrl(Ŝ, ϕ̂).

Proof Let C be the refined controller for Ŝ, and Ŝcl be the closed-loop obtained by
interconnected Ŝ and C in feedback. We need to show that both (A) and (B) in Def. 3.3
are satisfied by C.

(A) Let Wsure be the sure winning region of the game 〈G, ϕ〉, and v0 ∈ Wsure be any
arbitrary vertex. By construction of G and C, for every path ξ in the closed-loop Ŝcl
starting from v0, there is a play ρ = v0(v0, u0)v1(v1, u1) . . . complying to π0 (and
some Player 1 strategy π1) such that the subsequence v0v1 . . . is same as ξ. Since
π0 is a winning strategy of Player 0 from v0, hence for every Player 1 strategy π1,
every play complying to π0 and π1 and starting at v0 is in 〈[ϕ̂]〉V . Hence, ξ ∈ 〈[ϕ̂]〉X̂ .

(B) Let C′ ∈ OptCtrl(Ŝ, ϕ̂) and x̂ ∈ dom(C′). We show that x̂ is in the sure winning region
Wsure of the game 〈G, ϕ〉, i.e. x̂ ∈ dom(π0), which would imply that x̂ ∈ dom(C) due
to the sound refinement property proved in (A). If, for the sake of argument, x̂ were
not in Wsure , then Player 1 would have a strategy π1 such that the play complying
to π0 and π1 and starting from x̂ would not be in 〈[ϕ̂]〉V . By construction of G, this
would imply existence of a path in the closed loop of Ŝ and C′ starting at x̂ that is
not in 〈[ϕ̂]〉X̂ . This is a contradiction to the existence of such a C′ and x̂ in the first
place. 2

The following corollary shows the ABCD approach for solving Prob. 2: Any optimal
controller for the abstract control problem

〈
Ŝ, ϕ̂

〉
can be refined to an optimal controller

for the sampled-time control problem
〈
~S, ϕ

〉
.

Corollary 3.1 (Soundness of ABCD) Let S be a continuous-time system, ~S be the
sampled-time abstraction, Ŝ be the finite abstraction, ϕ be an ω-regular control specification
for ~S defined using propositions over X , and ϕ̂ be an ω-regular specification for Ŝ over X̂
such that

〈
~S, ϕ

〉
4
Q̂

〈
Ŝ, ϕ̂

〉
. Suppose 〈G, ϕ〉 is the abstract 2-player parity game. If π0

is a winning strategy of Player 0 in the game 〈G, ϕ〉 and C is the corresponding refined
controller for Ŝ, then C ◦ Q̂ ∈ OptCtrl( ~S, ϕ).

Proof Follows from Thm. 3.1 and Thm. 3.3. 2
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3.6. Related Work

There are two broad categories of work, when it comes to correct-by-design controller
synthesis techniques. The first one synthesizes the controller by simplifying the problem
with the help of a simpler abstraction of the given continuous system; the ABCD technique
presented in this thesis work falls in this category. We will discuss the work related to
ABCD techniques in Sec. 3.6.2.

3.6.1. Correct-by-Design Controller Synthesis

The second category of correct-by-design techniques synthesizes the controller directly on
the given continuous system. Most of them deal with safety and reachability specification,
as compared to the more general LTL specifications that we consider here.

One class of techniques in this category searches for certain polynomial functions of the
state of the system, whose existence guarantees the satisfaction of the given specification,
as well as it gives the implementing control strategy (Prajna and Jadbabaie, 2004; Prajna
and Rantzer, 2005; Prajna et al., 2007; Wieland and Allgöwer, 2007; Ravanbakhsh and
Sankaranarayanan, 2017; Ames et al., 2019; Yang et al., 2020). For safety specification,
this function is called control barrier function, and for reachability (infinite horizon)
specifications, it is called control Lyapunov functions. Both the barrier function and
the Lyapunov function can be searched using convex optimization, and for the special
case for polynomial systems, more efficient sum-of-square optimization can be employed.
Unfortunately, no method of this category is known that can handle the general class of
LTL specifications. A deductive approach for combining Lyapunov functions and barrier
functions to do synthesis for more general parity specifications was shown by Dimitrova
and Majumdar (2014); however no means of synthesizing the certificates were provided.
Another class of techniques, which also uses convex programming to solve safety and

reachability control synthesis problem, uses measure theoretic approaches to predict the
evolution of the system trajectories (Korda et al., 2014; Henrion and Korda, 2014; Korda
et al., 2016; Chen et al., 2020). This class also lacks methods for handling the general
LTL specifications.
Finally, there are some techniques which use tools from optimal control to solve the

controller synthesis problem. They reformulate the problem in terms of an equivalent “min-
max” optimization of some appropriate value function. It turns out that the solution of
this optimization problem coincides with the viscosity solution of a Hamilton-Jacobi Isaacs
(HJI) partial differential equation (PDE). One can then solve the HJI PDE numerically
to find an approximate solution of the controller synthesis problem. Unfortunately, the
numerical solution requires discretization of the state space making it suffer from the curse
of dimensionality, similar to the ABCD-based approaches; besides, no known method for
handling LTL specifications exists. Recently, Bansal et al. (2017) presented an extensive
survey of different variations of this method.
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3.6.2. Abstraction-Based Controller Design

The original techniques for abstraction-based control relied on ε-alternating bisimulation
relations (Girard and Pappas, 2007; Girard, 2012; Pola et al., 2008; Girard et al., 2010).
These relations, when they exist, allow proving an “if and only if” result: a controller can
be synthesized in the abstraction iff one exists in the original system. Nilsson et al. (2017)
proposed an abstraction that captures progress properties in the continuous dynamics,
which helps the synthesis algorithm to rule out spurious cycles introduced during the
abstraction process. The notion of feedback refinement relations (FRR) was introduced
by Reissig et al. (2017), and strengthened the notion of alternating simualtion relations
(Alur et al., 1998) to the setting of continuous control. The same paper shows how to
compute growth bounds for a non-linear system—this is the basis for the SCOTS (Rungger
and Zamani, 2016) and MASCOT tools. Very recently, ABCD was extended for synthesis of
output feedback controllers instead of state feedback controllers (Majumdar et al., 2020b).
Many academic tools were built (Rungger and Zamani, 2016; Jr. et al., 2010; Roy

et al., 2011; Li and Liu, 2018; Mouelhi et al., 2013; Khaled and Zamani, 2019) and many
practical controller synthesis problems were solved (Ames et al., 2015; Meyer et al., 2019;
Zonetti et al., 2019; Nilsson et al., 2016; Yang et al., 2017; Coogan et al., 2016) using
ABCD in recent years.

The automata-theoretic underpinnings of ABCD use algorithms for reactive synthesis
for ω-regular specifications (Emerson and Jutla, 1991; Thomas, 1995; Maler et al., 1995).

3.7. Conclusion

We revisited the FRR-based ABCD algorithm in this chapter. We saw how a continuous-
time dynamical system can be abstracted to a finite transition system using discretization
of time, states, and inputs, and using a growth bound on the dynamics to over-approximate
the sampled-time transitions. Later, the abstract finite transition system was used to
construct an abstract 2-player game. A sure winning strategy for Player 0 in the
constructed game can be refined into a sound sampled-time controller for the original
system.
In the next two chapters, we extend this ABCD algorithm in two different directions.

First, in Chap. 4, we address the poor scalability issue of FRR-based ABCD, caused by
the brute-force discretization of the dynamics. We will see how we can use a multi-layered
abstractions to make this approach more scalable, without sacrificing the quality of the
synthesized controller.
Next, in Chap. 5, we will introduce our novel ABCD approach for a particular class

of stochastic dynamical systems, called controlled Markov processes (CMP). CMPs
can effectively model continuous-state sampled-time dynamical systems subjected to
stochastic noise. We will show how we can synthesize controllers for CMPs to maximize
the probability of satisfaction of a given parity specification.
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4. Lazy Multi-Layered Controller
Synthesis

In Chap. 3, we revisited the established Abstraction-Based Controller Design (ABCD)
approach for synthesizing correct-by-construction controller for continuous-time dynamical
systems. One of the bottlenecks of ABCD has been scalability, which stems from the
exponential blowup caused by the discretization process in the abstraction stage. One
way to improve the scalability is to use coarser discretization (i.e. larger abstract states),
which reduces the size of the abstract systems. However, the coarser the discretization is,
the higher is the chance of getting an empty controller domain as the outcome, due to
the excessive inaccuracy of the abstraction.

In this chapter, we address this trade-off between scalability and controller domain size.
We present our lazy multi-layered ABCD algorithm for continuous non-stochastic systems
and reach-avoid and safety specifications. The idea is simple: Instead of having one
uniformly coarse abstraction, we will maintain multiple partially explored abstractions
of varying coarseness; say the abstractions are indexed with the numbers [1;L] (1 is the
finest), where L is the number of abstractions. The explorations of the abstractions
happen in a purely need-based fashion, where we first try to perform synthesis using
the coarser abstractions as much as possible, and lazily switch to the finer ones only
when necessary. As a result, we obtain a more scalable ABCD algorithm, that returns
a controller with the same domain as the one that we would obtain by performed a
single-layered ABCD solely on layer 1 (i.e. the finest layer). Our exposition in this chapter
follows our prior work (Hsu et al., 2018b,a).

4.1. Preliminaries of Multi-Layered ABCD

4.1.1. Multi-Layered Systems

Recall that for single-layered ABCD in Chap. 3, we used the abstraction parameters τ
and η to denote the sampling time and the size of the abstract grid cells respectively.
Now we use the parameters τl and ηl to denote the respective τ and η in abstraction
layer l. Given a grid parameter η, a time sampling parameter τ , and L ∈ Z>0, define
ηl = 2l−1η and τl = 2l−1τ . Our method is applicable to grid parameters defined by η1 = η

and ηl+1 = γηl for l ∈ [1;L − 1] and γ ∈ {2k | k ∈ N}, and sampling times τl = α(l)τ
where α : [1;L]→ R is a monotonically increasing function. For notational simplicity, we
restrict our attention to γ = 2 and α(l) = 2l−1.
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Fix a continuous-time system S = 〈X ,U ,W, f〉 and a non-empty subset X ′ ⊆ X with
X ′ = Jα, βK, such that β−α = kηL for some k ∈ Zn. For each l ∈ [1;L], we define the grid
ηlZn and the cover X̂ ′l as in (3.5) and (3.6), respectively, by substituting η with ηl. For the
single-layered ABCD, we defined the sampled-time abstraction and the finite abstraction of
a continuous-time system in Def. 3.5 and Def. 3.9 respectively. In the case of multi-layered
abstractions, we obtain a sequence of sampled-time abstractions { ~Sl(S, τl)}l∈[1;L] and a
sequence of finite abstractions {Ŝl(S, τl, ηl, βτl)}l∈[1;L]. For simplicity, we assume that all
layers use the same continuous and abstract input spaces U and Û ⊆ U , respectively. If
S, τl, ηl, and βτl are clear from the context, we use ~Sl and Ŝl as short forms of ~Sl(S, τl)
and Ŝl(S, τl, ηl, βτl), respectively.
It trivially follows from our construction that, for all l ∈ [1;L], we have ~Sl 4Q̂l Ŝl,

where Q̂l ⊆ X × X̂l is the FRR induced by X̂l. The set of relations {Q̂l}l∈[1;L] induces
transformers R̂ll′ ⊆ X̂l × X̂l′ for l, l′ ∈ [1;L] between abstract states of different layers
such that

x̂ ∈ R̂ll′(x̂′) ⇐⇒ x̂ ∈ Q̂l(Q̂−1
l′ (x̂′)). (4.1)

Given the sequence of finite abstractions {Ŝl}l∈[1;L] with Ŝl =
〈
X̂l, Û , F̂l

〉
, we can use

R̂ll′ to define the multi-layered finite abstraction Ŝ =
〈
X̂, Û , F̂

〉
, where X̂ =

⋃
l∈[1;L] X̂l

and
F̂(x̂, û) =

⋃
l∈[1;L] R̂ll′(F̂l′(x̂, û)) (4.2)

for all x̂ ∈ X̂l′ , l′ ∈ [1;L], and û ∈ Û . Intuitively, Ŝ is a non-deterministic system; for
every state x̂ ∈ X̂l′ and input û ∈ Û , transitions to states of all layers are possible. That
is, x̂′ ∈ F̂(x̂, û) if there exists an x̂′′ ∈ X̂l′ such that x̂′′ ∈ F̂l′(x̂, û) and x̂′ ∈ R̂ll′(x̂′′) for
some l ∈ [1;L].
Similarly, given the sequence of sampled-time abstractions { ~Sl}l∈[1;L] with ~Sl =

(Xl,U , ~Fl), we define a multi-layered sampled-time abstraction
−→
S =

〈
X ,U , ~F

〉
such

that
~F(x, u) =

⋃
l∈[1;L]

~Fl(x, u) (4.3)

for all x ∈ X and u ∈ U . Again,
−→
S is a non-deterministic system; in every state x ∈ X

transitions of any duration τl, l ∈ [1;L] can be chosen, which correspond to some ~Fl(x, u).
The behaviors B(Ŝ) and B(

−→
S ) are defined according to Def. 3.4.

Remark 2 Even though we have ~Sl 4Q̂l Ŝl for all l ∈ [1;L], each relation is evaluated for

a different sampling time τl. Therefore, the relations R̂ll′ cannot define an FRR between
Ŝl and Ŝl′ using Def. 3.6.

Given that τl = 2l−1τ , a natural extension of FRR seems to be that, for any (x̂l+1, x̂l) ∈
R̂(l+1)l, it holds that

û ∈ Û =⇒ R̂(l+1)l(F̂l(F̂l(x̂l, û), û)) ⊆ F̂l+1(x̂l+1, û). (4.4)
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4.1. Preliminaries of Multi-Layered ABCD

That is, we would expect that states x̂l ∈ X̂l and x̂l+1 ∈ X̂l+1 related via R̂(l+1)l remain
related when the l-th layer transition function is applied to x̂l twice for τl (resulting in a
duration 2τl = τl+1) and when the l + 1-th layer transition function is only applied once
to x̂l+1 (also resulting in a duration τl+1). While this seems intuitive, we can prove that
(4.4) does not hold in general. This is because applying the l-th layer transition function
twice introduces extra approximation error due to the additional reachable set computation
step (as in (3.7)).

4.1.2. Multi-Layered Controllers

In this chapter, we only consider memoryless controllers. Given the multi-layered finite
abstraction Ŝ as in (4.2) and some positive number of controllers P ∈ Z>0, we define a
multi-layered controller C for Ŝ as a set of controllers C = {Cp}p∈[1;P ] such that every
controller Cp corresponds to a unique finite abstraction Ŝlp :

∀p ∈ [1;P ] . ∃!lp ∈ [1;L] . dom(Cp) ⊆ X̂lp , (4.5)

where the symbol “∃!” can be read as “there exists a unique . . ..” From now on, we will
use the suffix lp in the suffix to represent the associated layer index of the p-th controller
Cp. We do not require any connection between P and L. In particular, we allow for layers
to have multiple controllers, i.e., lp = lq for p, q ∈ [1;P ], p 6= q, and no controller at all,
i.e. there might be l ∈ [1;L] such that there exists no p ∈ [1;P ] with lp = l.
Given a multi-layered controller C of Ŝ, we define the quantizer induced by C as the

total function Q : X → 2X̂ such that for all x ∈ X we have x̂ ∈ Q(x) if and only if either
of the following holds:

(i) The abstract state x̂ corresponds to the coarsest abstraction of x with an available
control: There exists a p ∈ [1;P ] such that

x̂ ∈ Q̂lp(x) ∧ x̂ ∈ dom(Cp)

and there exists no other p′ ∈ [1;P ] with lp′ > lp such that

R̂lp′ lp(x̂) ∈ dom(Cp′).

(ii) The abstract state x̂ corresponds to the finest abstraction of x, and there is no
control available for x in any of the abstractions: x̂ ∈ Q̂1(x) and there exists no
p ∈ [1;P ] such that

R̂lp1(x̂) ∈ dom(Cp).

We define img(Q) := {x̂ ∈ X̂ | ∃x ∈ X . x̂ ∈ Q(x)}. Intuitively, Q maps states x ∈ X to
the coarsest abstract state x̂ that is both related to x and in the domain of the controller
C (condition (i)). However, if such an abstract state does not exist, Q maps x to its
related layer l = 1 states (condition (ii)). It should be noted that Q̂l is non-deterministic
for states which lie at the boundary of two cells x̂, x̂′ ∈ X̂l. If such an x happens to be
located at the boundary of controller domains computed for different layers, Q maps x to
two abstract cells within different layers.
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4.1.3. Multi-Layered Closed Loops

Given a multi-layered controller C of a multi-layered abstract system Ŝ, the usual
construction of a closed-loop in Def. 3.2 results in a system which selects the layer l′ of
the next state non-deterministically (due to (4.2)). This will result in a blocking-behavior
of the closed-loop whenever the selected layer does not correspond to a layer currently
admitting a control input.

We therefore propose a different closed-loop definition for multi-layered systems which
restricts available transitions to those connecting states in the image of Q. Formally, the
closed-loop formed by Ŝ and C is defined as the multi-layered finite abstract closed-loop
Ŝcl =

〈
X̂, Û , F̂cl

〉
such that

F̂cl(x̂, û) = {x̂′ | ∃p ∈ [1;P ] . x̂ ∈ img(Q) ∩ X̂lp ∧ û ∈ Cp(x̂) ∧ x̂′ ∈ Λp(x̂, û)} (4.6)

where x̂′ ∈ Λp(x̂, û) if and only if

∃x̂′′ ∈ F̂lp(x̂, û) . x̂′ ∈ Q(Q̂−1
lp

(x̂′′)).

When refining C via Q to a controller for
−→
S , the resulting controller should select

(i) the current input u ∈ Û ⊆ U , and (ii) the duration τl for which this input should be
applied to the underlying continuous system. As Q might map a particular state x ∈ X
to multiple abstract states within different layers, we cannot define the refined controller
as the serial composition C ◦Q in analogy to Def. 3.8. Instead, we directly define the
multi-layered sampled-time abstract closed-loop in analogy to Ŝcl as the discrete-time
system

−→
S cl =

〈
X , Û , ~Fcl

〉
such that

~Fcl(x, û) = {x′ | ∃p ∈ [1;P ] . x̂ ∈ Q(x) ∩ X̂lp ∧ û ∈ Cp(x̂) ∧ x′ ∈ ~Flp(x, û)}. (4.7)

The respective closed-loop behaviors B(Ŝcl) and B(
−→
S cl) can now be defined as in Def. 3.2.

We extend the definition of control problem and optimal controller for both sampled-
time and abstract multi-layered systems in the obvious way. We use the same notation〈−→
S , ϕ

〉
,
〈
Ŝ, ϕ

〉
, OptCtrl

(−→
S , ϕ

)
, and OptCtrl

(
Ŝ, ϕ

)
to denote respectively the sampled-

time and the abstract multi-layered control problems and the set of sampled-time and
the abstract multi-layered optimal controllers.

4.1.4. Multi-Layered Control Problem

Recall that in Prob. 1, we stated the optimal controller synthesis problem for continuous-
time systems. Later, we considered a sampled-time approximation of this problem in
Prob. 2, where we discretized the time domain using a uniform sampling interval. Now
we are dealing with a family of sampled-time abstractions having non-uniform sampling
parameters {τl}. We accordingly restate Prob. 2 as in the following:
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Problem 3 (Multi-layerd Sampled-Time Approximate Controller Synthesis.)
Let S = 〈X ,U ,W, f〉 be a continuous-time control system,

−→
S be a multi-layered sampled-

time abstraction, AP ⊂ 2X be a finite set of atomic propositions over the alphabet X ,
and ϕ be a LTL\© specification over AP . The multi-layered sampled-time approximation

of Prob 1 asks to find an optimal controller C ∈ OptCtrl
(−→
S , ϕ

)
for the multi-layered

sampled-time control problem
〈−→
S , ϕ

〉
.

4.1.5. Soundness

Intuitively, for any two systems S1 and S2, S1 4Q S2 ensures that given a state x1 ∈ X1,
no matter which related state x2 ∈ Q(x1) and enabled control input u ∈ U2(x2) is used,
all resulting states in F1(x1, u) and F2(x2, u) are related via Q. This intuition can be
transferred to the closed-loop systems Ŝcl and

−→
S cl as follows. Intuitively, Ŝcl and

−→
S cl

can generate all closed-loop trajectories without resolving the non-determinism induced
by the set-valued maps Q and Cp. If Q is an FRR from

−→
S cl to Ŝcl, any implementation

resolving this non-determinism in Q and Cp returns a sound closed-loop. This leads us to
the following theorem.

Theorem 4.1 Let C be a multi-layered controller for the abstract multi-layered system
Ŝ, Q be the quantizer induced by C, and

−→
S cl and Ŝcl respectively be the multi-layered

sampled-time and multi-layered finite abstract closed-loop. Then
−→
S cl 4Q Ŝcl.

Proof We prove both conditions for FRR separately.
(i) Show F̂cl(x̂, û) 6= ∅ ⇒ ~Fcl(x, û) 6= ∅: First observe that for any l ∈ [1;L], it follows
from the construction of ~Sl and Ŝl from S that, for any û ∈ Û ⊆ U , x̂ ∈ X̂l, and x ∈ X , it
holds that F̂l(x̂, û) 6= ∅ and ~Fl(x, û) 6= ∅. With this, it follows from (4.6) and the fact that
Q is strict that F̂cl(x̂, û) 6= ∅ iff x̂ ∈ img(Q) ∩ X̂lp and û∈Cp(x̂), implying ~Fcl(x̂, û) 6= ∅
(from (4.7)).
(ii) Pick (x, x̂) ∈ Q and û ∈ U(x̂) and show Q(~Fcl(x, û)) ⊆ F̂cl(x̂, û): first, consider the
case that x̂ ∈ Q̂1(x) and case (ii) in the definition of Q holds. Then F̂cl(x̂, û) = ∅ and
hence U(x̂) = ∅, i.e., the statement trivially holds. Therefore, assume that case (i) of the
definition of Q holds, implying that there exists some p ∈ [1;P ] such that x̂ ∈ Q(x)∩ X̂lp
and x̂ ∈ dom(Cp). This implies û ∈ Cp(x̂) (from part (i)) and therefore x̂′ ∈ Q(~Fcl(x, û))
iff

x̂′ ∈ Q(~Flp(x, û)). (4.8)

Now recall that ~Slp 4Q̂lp Ŝlp , which gives us Q̂lp(~Flp(x, û)) ⊆ F̂lp(x̂, û). With this we see

that (4.8) implies x̂′ ∈ Q(Q̂−1
lp

(F̂lp(x̂, û))) and hence (4.8) implies x̂′ ∈ Λp(x̂, û). With

this, it immediately follows from (4.6) that x̂′ ∈ F̂cl(x̂, û). 2

Using the properties of feedback refinement relations, Thm. 4.1 implies that the usual
soundness property of ABCD stated in Thm. 3.1 can be transferred to the multi-layered
setting. This is summarized by the following corollary.
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Corollary 4.1 Given the preliminaries of Thm. 4.1, let C ∈ OptCtrl(Ŝ, ψ) for a specifi-
cation ψ with associated behavior 〈[ψ]〉X̂ ⊆ B(Ŝ) and 〈[ψ]〉X ⊆ B(

−→
S ). Let ξ ∈ B(

−→
S ) and

ξ̂ ∈ B(Ŝ) be two trajectories such that (i) dom(ξ) = dom(ξ̂), (ii) for all k ∈ dom(ξ1),
(ξ(k), ξ̂(k)) ∈ Q, and (iii) ξ̂ ∈ 〈[ψ]〉X̂ ⇒ ξ ∈ 〈[ψ]〉X . Then B(

−→
S cl)|X ⊆ 〈[ψ]〉X , i.e., the

multi-layered sampled-time abstract closed-loop
−→
S cl defined in (4.7) fulfills specification ψ.

Cor. 4.1 can be interpreted as follows. Consider the control system S at state x0.
This state is mapped by Q to x̂0 ∈ dom(Cp) for some p. Choosing any u0 ∈ Cp(x̂0) and
applying this input for time τlp to S results in a continuous trajectory ξ with x0 = ξ(0)

and x1 = ξ(τlp) ∈ ~Flp(x0, u). Reapplying this procedure leads to an infinite trajectory ξ,
with sampled version ~ξ = x0x1 . . . ∈ B(

−→
S ) and abstract version ξ̂ = x̂0x̂1 . . . ∈ B(Ŝ). As

C ∈ OptCtrl(Ŝ, ψ), condition (iii) in Cor. 4.1 ensures that ~ξ ∈ 〈[ψ]〉X . For reachability,
this implies that ~ξ (and ξ) eventually reaches the target. For safety, this implies that ~ξ
(i.e. sampling instances of ξ) forever remains inside the safe set.

4.2. Multi-Layered Synthesis Algorithms

Our synthesis algorithm of an abstract multi-layered controller C ∈ OptCtrl(Ŝ, ψ) has
three main ingredients. First, we use the usual 2-player game construction (see Sec. 3.5)
from single-layered ABCD to compute the maximal sure winning region (i.e., states which
can be controlled to fulfill the specification) and deduce an abstract controller. Second,
we allow switching between abstraction layers while solving these single-layered synthesis
problems by saving and reloading intermediate results of fixpoint computations from and
to the lowest layer (to be discussed in this section). Third, through the use of frontiers, we
compute abstractions lazily by only computing abstract transitions in parts of the state
space currently explored by the fixpoint algorithm (Sec. 4.3). We prove that frontiers
always over-approximate the set of states possibly added to the winning region in the
corresponding synthesis step.
Let S be a continuous-time system, B ⊆ X be a set of safe states for the safety

specification �B, and O, T ⊆ X be a set of obstacle and target states for the reach-avoid
specification ¬OUT . We present a controller synthesis algorithm which computes a multi-
layered abstract controller C solving the safety and reach-avoid control problems

〈
Ŝ,�B

〉

and
〈
Ŝ,¬OUT

〉
over a sequence of L abstract systems Ŝ := {Ŝl}l∈[1;L]; generalization to

richer LTL specifications has been left as future work. As shown in Sec. 3.5.1, we use
the over and the under-approximations of the atomic propositions B and T to obtain the
abstract specifications in different abstraction layers. The abstract safety specification at
layer l is given by �B̂l and the abstract reach-avoid specification at layer l is given by
¬Ôl UT̂l.

Here, synthesis will perform the iterative computations for safety and bounded horizon
reachability controllers from Sec. 3.5 at each layer, but also switch between abstraction
layers during this computation.
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The core idea that enables switching between layers during successive steps of the
fixed-point iterations are the saving and re-loading of the computed winning states to and
from the lowest layer l = 1 (indicated in green in the subsequently discussed algorithms).
This projection is formalized by the operator

Γ↓ll′(Υl′) =

{
R̂ll′(Υl′), l ≤ l′

{x̂ ∈ X̂l | R̂l′l(x̂) ⊆ Υl′}, l > l′
(4.9)

where l, l′ ∈ [1;L] and Υl′ ⊆ X̂l′ . The operation Γ↓ll′(Υl′) ⊆ X̂l under-approximates a set
Υl′ ⊆ X̂l′ with one in layer l.

As already mentioned, we will use the single-layered ABCD algorithm as a subroutine.
But we cannot treat it as a complete black-box, since we need to perform abstraction and
synthesis in an interleaved fashion. The central ingredient in the synthesis algorithms
is the controllable predecessor operator Cpre, that we defined in (2.8). To achieve more
flexibility and simpler notation, we reinterpret the operator Cpre directly over the state
space of the abstraction, instead of the game graph. For any given layer l and any set
of abstract states Ψ ⊆ X̂l of Ŝl, we define the controllable predecessor operator over the
state space X̂l as:

Cpre Ŝl(Ψ) := {x̂ ∈ X̂l | ∃û ∈ Û . F̂l(x̂, û) ⊆ Ψ}. (4.10)

It is easy to verify that Cpre Ŝl(Ψ) is actually equivalent to dom(C) where

C ∈ OptCtrl
(
Ŝl,©Ψ

)
.

In this section, we shall assume that each F̂l is pre-computed for all abstract states.
(Actually, it suffices to compute F̂l for the safe states only, i.e. for the states B̂l in case of
safety and X̂l \ Ôl in case of reach-avoid.) In Sec. 4.3, we shall compute F̂l lazily.

4.2.1. Safety Specifications

First we consider non-lazy synthesis in this section which assumes that Ŝl is pre-computed
for all states within the safe set in every l ∈ [1;L] before SafeIteration is called.
This can be formalized by a wrapper function EagerSafe(B̂1, L) which first calls
ComputeTransitions(Γ↓l1(B̂1), l) = ComputeTransitions(B̂l, l) (see Alg. 2) for ev-
ery l ∈ [1;L] and then calls SafeIteration(B̂1, ∅, L, ∅).
Due to the monotonic nature of the iterative computation of safe sets, the set Ψ in

Alg. 1 is always a subset of B̂1 (see Lem. 4.1 for a formal proof). This implies that line 1
of Alg. 1 (indicated in gray) will never perform any exploration (as all needed transition
relations are pre-computed) and can therefore be ignored in this section.

When initialized with SafeIteration(B̂1, ∅, L, ∅), Alg. 1 performs the following com-
putations: it starts in layer l = L with an outer recursion count i = 1 (not shown in
Alg. 1) and reduces l, one step at the time, until l = 1 is reached, at which point it
then starts over again from layer L with i = i+ 1 and a new safe set Υ. In every such
iteration i, one step of the safety fixed-point is performed for every layer (Line (2)) and
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Algorithm 1 SafeIteration

Input: Ψ ⊆ X̂1, Υ ⊆ X̂1, l, W
1: ComputeTransitions(Γ↓l1(Ψ) \ Γ↓l1(Υ), l)

2: W ← Cpre Ŝl

(
Γ↓l1(Ψ)

)
∩ Γ↓l1(Ψ)

3: W←W ∪W // store the controller domain, but not moves
4: Υ← Υ ∪ Γ↓1l(W )
5: if l 6= 1 then // go finer
6: 〈Ψ,W〉 ← SafeIteration(Ψ,Υ, l − 1,W)
7: return 〈Ψ,W〉
8: else
9: if Ψ 6= Υ then

10: 〈Ψ,W〉 ← SafeIteration(Υ, ∅, L, ∅) // start new iteration
11: return 〈Ψ,W〉
12: else
13: return 〈Ψ,W〉 // terminate
14: end if
15: end if

the resulting set is stored in the layer 1 map Υ ⊆ X̂1 (Line (4)), whereas Ψ ⊆ X̂1 keeps
the knowledge of the previous iteration. If the finest layer is reached and we have Ψ = Υ,
the algorithm terminates. Let the maximum value of i upon termination be denoted by
N . Otherwise Υ is copied to Ψ, Υ and W are reset to ∅ and SafeIteration starts a
new iteration (see line 10).

After SafeIteration terminates, it returns a multi-layered controller domain W =
{W l}l∈[1;L], with one controller domain per layer (see Line 3 in Alg. 1). The state-feedback
control maps {Cl}l∈[1;L] are computed afterward by choosing one input û ∈ Û for every
x̂ ∈W l such that

û = Cl(x̂) =⇒ F̂l(x̂, û) ⊆ Γ↓l1(Ψ). (4.11)

Note that states encountered for layer l in iteration i are saved to the lowest layer 1
(line 4 of Alg. 1) and “loaded” back to the respective layer l in iteration i+ 1 (line 2 of
Alg. 1). Therefore, a state x̂ ∈ X̂l with l > 1, which was not contained in W as computed
in layer l and iteration i via line 2 of Alg. 1, might still be included in Γ↓l1(Ψ) loaded in
the next iteration i+ 1 when re-computing line 2 for l. This happens if all states x ∈ x̂
were added to Υ by some layer l′ < l in iteration i. This allows the algorithm to “bridge”
regions that require a finer grid and to use layer L in all remaining regions of the state
space. The latter is not true for the multi-layered safety algorithm given by Hsu et al.
(2018b), as shown in Hsu et al. (2018a, Sec. I.A).
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Algorithm 2 ComputeTransitions

Input: Υ ⊆ X̂l, l
1: for x̂ ∈ Υ, û ∈ Û do
2: if F̂l(x̂, û) is undefined then
3: compute F̂l(x̂, û)
4: end if
5: end for

Algorithm 3 ExpandAbstractionm

Input: Υ ⊆ X̂1, l
1: W ′ ← Prem

ÂLl
(Γ↑L1(Υ)) \ Γ↓L1(Υ)

2: W ′′ ← Γ↓lL(W ′)

3: ComputeTransitions(W ′′∩ B̂l, l)

Soundness and Relative Completeness1 Due to the effect described above, the map
W encountered in line 2 for a particular layer l throughout different iterations i might not
be monotonically shrinking. However, the latter is true for layer 1, which is formalized by
the following lemma.

Lemma 4.1 Let Ψ0 := B̂1 and let SafeIteration be called by EagerSafe(B̂1, L),
terminating after N iterations. Further, set Ψi := Υ whenever Alg. 1 reaches line 4 with
l = 1 for the i-th time. Then it holds that Ψi ⊆ Ψi−1, hence Ψi ⊆ B̂1 for all i ≤ N .

Proof Let W i
l be the set computed in line 2 of Alg. 1 in the i-th iteration for l and

observe that W i
l = Cpre Ŝl(Γ

↓
l1(Ψi−1)) ∩ Γ↓l1(Ψi−1) ⊆ Γ↓l1(Ψi−1). Using (4.9) this implies

Γ↓1l(W
i
l ) ⊆ Ψi−1. As Ψi =

⋃
l∈[1;L] Γ↓1l(W

i
l ) we have Ψi ⊆ Ψi−1. 2

This leads to our first main result, showing that EagerSafe(B̂1, L) is sound and
relatively complete.

Theorem 4.2 Let
〈−→
S ,�B

〉
be a multi-layered safety control problem and Ŝ = {Ŝl}l∈[1;L]

be a multi-layered finite-state abstraction. Let 〈ΨN ,W〉 = EagerSafe(B̂1, L), and
C = {C l}l∈[1;L] be as defined in (4.11) for all l ∈ [1;L]. Further, let W be the domain
of the single-layered optimal safety controller for l = 1, i.e. W = dom(C) where C ∈
OptCtrl(Ŝ1,�B̂1). Then C ∈ OptCtrl

(−→
S ,�B

)
and W ⊆ ΨN , i.e. C is sound and

relatively complete with respect to single-layered controller for layer l = 1.

Proof To prove soundness, i.e., C ∈ OptCtrl
(−→
S ,B

)
, we show that for every abstract

trajectory ξ̂ ∈ B(Ŝ) and for every k ∈ dom(ξ̂), Q−1(ξ̂(k)) ⊆ B. Then from Cor. 4.1,
the soundness claim will follow. The claim is true if for all l ∈ [1;L] and x̂ ∈ dom(C l),
it holds that (i) x̂ ∈ B̂l and (ii) there exists û ∈ C l(x̂) such that F̂l(x̂, û) 6= ∅, and
for all x̂′′ ∈ F̂l(x̂, û), Q(Q̂−1

l (x̂′′)) 6= ∅. As in the proof of Lem. 4.1, define W i
l to

be the set computed in line 2 of Alg. 1 in the i-th iteration for l. Lem. 4.1 implies
1Absolute completeness of controller synthesis cannot be guaranteed by ABCS; we therefore provide
completeness relative to the finest layer.
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W i
l ⊆ Γ↓l1(Ψi−1), Ψi−1 ⊆ B̂1 and Γ↓l1(B̂1) = B̂l we have W i

l ⊆ B̂l. Further, line 3 of
Alg. 1 implies dom(C l) = WN

l ⊆ B̂l, proving (i). As ΨN = ΨN−1, line 2 of Alg. 1 implies
dom(C l) = WN

l ⊆ Cpre Ŝl(Γ
↓
l1(ΨN )). Hence there is û such that (4.11) holds (from (4.10)),

implying that F̂l(x̂, û) 6= ∅. It follows from the definition of Q that Q(Q̂−1
l (x̂′′)) 6= ∅.

For completeness, if W 6⊆ ΨN , then there must be a state x̂ ∈W and there must be a
j ∈ [0;N − 1] such that x̂ ∈ Ψj but x̂ /∈ Ψj+1. We perform an induction over j to argue
that this will imply: no matter what control action is chosen, there will be a path of
length at most (j + 1) that will go outside the safe region B̂1. When j = 1, the argument
is trivial: If x̂ gets excluded from Ψ1, then for every control action there must exist a
direct transition to B̂1. Induction hypothesis: Suppose the claim holds for j. Induction
step: Let x̂ ∈ Ψj+1 but x̂ /∈ Ψj+2. The safety fixpoint (see (2.10)) implies that for every
control input û ∈ Û from x̂, there is a transition that goes to some abstract state x̂′

outside Ψj+1. Since x̂′ /∈ Ψj+1, from the induction hypothesis it follows that (for every
control choice) there is an at most (j + 1)-long path that goes outside the safe region
B̂1. Thus, no matter what control action is chosen, there is an at most (j + 2)-long path
starting at x̂ and going to the unsafe region. Since x̂ ∈W as per our initial assumption,
hence we have reached a contradiction. 2

It is important to mention that the algorithm EagerSafe is presented only to make
a smoother transition to the lazy ABCD for safety (to be presented in Sec. 4.3.1). In
practice, EagerSafe itself is of little algorithmic value as it is always slower than the
single layered safety control problem

〈
Ŝ1,�B

〉
on the finest layer, but produces the

same result. This is because in EagerSafe, the fixed-point computation in the finest
layer does not use the coarser layers’ winning domain in any meaningful way. So the
computation in all the layers—except in Ŝ1—goes to waste.

4.2.2. Reach-Avoid Specifications

We consider the computation of an abstract multi-layered reach-avoid controller C ∈
OptCtrl(Ŝ,¬OUT ) by the iterative function ReachIteration in Alg. 4 assuming that
Ŝ is pre-computed. We refer to this scenario by the wrapper function
EagerReachm(T̂1, Ô1, L), calling ReachIterationm with parameters (T̂1, Ô1, L, ∅),
where m ≥ 1 is a tuning parameter whose role will be explained shortly. Assume in
this section that ComputeTransitions and ExpandAbstractionm do not modify
anything (i.e., the gray lines of Alg. 4 are ignored in the execution).

The recursive procedure ReachIterationm in Alg. 4 implements the switching proto-
col informally discussed in Sec. 1.3.1. Lines 1–12 implement the fixed-point computation
at the coarsest layer ŜL by iterating the fixed-point over ŜL until convergence (line 3).
Afterward, ReachIterationm recursively calls itself (line 9) to see if the set of winning
states (W ) can be extended by a lower abstraction layer. Lines 12–28 implement the
fixed-point computations in layers l < L by iterating the fixed-point over Ŝl for m steps
(line 14) for a given fixed parameter m > 0. If the analysis already reaches a fixed point,
then, as in the first case, the algorithm ReachIterationm recursively calls itself (line
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Algorithm 4 ReachIterationm

Input: Υ ⊆ X̂1,Ψ ⊆ X̂1, l, C
1: if l = L then
2: ComputeTransitions(Γ↓l1(Ψ), l)

3: Synthesize C ∈ OptCtrl
(
Ŝl,
(

Γ↓l1(Ψ)
)

U
(

Γ↓l1(Υ)
))

4: C← C ∪ {C}
5: Υ← Υ ∪ Γ↓1l(dom(C)) // save controller domain to Υ
6: if L = 1 then // single-layered reachability
7: return 〈Υ,C〉
8: else // go finer
9: 〈Υ,C〉 ← ReachIterationm (Υ,Ψ, l − 1,C)

10: return 〈Υ,C〉
11: end if
12: else
13: ExpandAbstractionm(Υ, l)

14: Synthesize C ∈ OptCtrl
(
Ŝl,
(

Γ↓l1(Ψ)
)

U≤m
(

Γ↓l1(Υ)
))

15: C← C ∪ {C}
16: Υ← Υ ∪ Γ↓1l(dom(C)) // save controller domain to Υ
17: if Fixed-point is reached in line 14 then
18: if l = 1 then // finest layer reached
19: return 〈Υ,C〉
20: else // go finer
21: 〈Υ,C〉 ← ReachIterationm(Υ,Ψ, l − 1,C)
22: return 〈Υ,C〉
23: end if
24: else // go coarser
25: 〈Υ,C〉 ← ReachIterationm(Υ,Ψ, l + 1,C)
26: return 〈Υ,C〉
27: end if
28: end if

21) to check if further states can be added in a lower layer. If no fixed-point is reached
in line 14, more states could be added in the current layer by running the reach-avoid
synthesis procedure for more than m steps. However, this might not be efficient (see the
example in Sec. 1.3.1). The algorithm therefore attempts to go coarser when recursively
calling itself (line 25) to expand the fixed-point in a coarser layer instead. Intuitively, this
is possible if states added by lower layer fixed-point computations have now “bridged” a
region where precise control was needed and can now be used to enable control in coarser
layers again. This also shows the intuition behind the parameter m. If we set it to m = 1,
the algorithm might attempt to go coarser before this “bridging” is completed. The
parameter m can therefore be used as a tuning parameter to adjust the frequency of such
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attempts and is only needed in layers l < L. The algorithm terminates if a fixed-point is
reached in the lowest layer (line 7 and line 19). In this case the layer 1 winning state set
Υ and the multi-layered controller C is returned.

It was shown in (Hsu et al., 2018b) that this switching protocol ensures that EagerReachm
is sound and complete with respect to layer 1.

Theorem 4.3 Let
〈−→
S ,¬OUT

〉
be a multi-layered reach-avoid control problem and Ŝ =

{Ŝl}l∈[1;L] be a multi-layered finite-state abstraction. Let 〈Υ,C〉 = EagerReachm(T̂1, Ô1, L).
Further, let W be the domain of the single-layered optimal reach-avoid controller for l = 1,
i.e. W = dom(C) where C ∈ OptCtrl(Ŝ1,¬Ô1 UT̂1). Then C ∈ OptCtrl

(−→
S ,¬OUT

)
and

W ⊆ Υ, i.e. C is sound and relatively complete with respect to single-layered controller
for layer l = 1.

Proof To see why EagerReachm is sound, consider the following induction on the
depth of recursive calls d of ReachIterationm. For depth 1 (base case), the single
controller that we get in the set C is sound: this follows from the soundness of single-
layered ABCD (in Alg. 4 Line. 3). Moreover, it is easy to observe that the controller
obtained in depth d+ 1 can enforce a visit (in at most m steps) to the winning region
of the controller obtained in depth d (from Line 9, 21, and 25), implying soundness by
induction.
For completeness, we need to show W ⊆ Υ. We can write Υ as the union of the

single-layered controller domains, denoted as Υd, obtained in every recursion depth d of
ReachIterationm in either line 3 or line 14. That is, if the maximum recursion depth
is D, then Υ =

⋃
d∈[1;D] Υd.

First, it should be noted that for any state x ∈ X for which Q(x) ∩Υd 6= ∅ holds, we
have: If there exists d′ ∈ [1;D] and x̂ ∈ Q(x) ∩ Υd such that R̂ld′ ld(x̂) ∩ Υd′ 6= ∅ then
d′ ≤ d. Hence, the quantizer Q formally defined via a ranking over layers ld in Sec. 4.1.2
is equivalent to a quantizer defined via the ranking induced by the induction depth d.

To see why W ⊆ Υ holds, recall that, for any x ∈ Q̂−1
1 (W ), every trajectory ξ ∈ B( ~Scl1 )

with ξ(0) = x will reach (the projection of) the target T , and that the ReachIterationm
algorithm will eventually reach l = 1. Now assume that ReachIterationm was run
until depth d where l = 1 and let k′ ∈ dom(ξ) be such that for all k > k′ with k ∈ dom(ξ),
ξ(k) ∈

⋃
d′<dQ

−1(Υd′) while this is not true for ξ(k′). Given that ld = 1, we execute the
single-layered synthesis for l = 1 implying that ξ(k′) up to ξ(k′ −m) will be added to the
domain of controller Υd and saved in Υ. As x ∈ Q̂−1

1 (W ), ReachIterationm can only
terminate if Q̂1(ξ(0)) is eventually reached. Therefore, we can apply the above argument
iteratively to prove the statement. 2

4.3. Lazy Exploration Algorithm within Multi-Layered
ABCD

We now consider the case where the multi-layered abstractions Ŝ are computed lazily.
Given the multi-resolution fixed-points discussed in the previous section, this requires
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tightly over-approximating the region of the state space which might be explored by the
reach-avoid or the safety fixpoint in the current layer, called the frontier. Then abstract
transitions are only constructed for frontier states and the currently considered layer l
via Alg. 2. As already discussed in Sec. 1.3.1, the computation of frontier states differs
for safety and reachability objectives.

4.3.1. Safety Specifications

As our main contribution, we now consider the case where the multi-layered abstraction
Ŝ is not pre-computed. This is implemented by LazySafe(B̂1, L) which simply calls
SafeIteration1(B̂1, ∅, L, ∅). With this, line 1 of Alg. 1 is used to explore transitions in
all states in layer l which are (i) not marked unsafe by all layers in the previous iteration,
i.e., are in Γ↓l1(Ψ), but (ii) cannot stay safe for i times-steps in any layer l′ > l, i.e., are
not in Γ↓l1(Υ). In the first iteration of SafeIteration(B̂1, ∅, L, ∅) the set Γ↓l1(Ψ) \Γ↓l1(Υ)

is same as Γ↓1L(B̂1) = B̂L. Hence, for layer L all transitions for states inside the safe set
are pre-computed in the first iteration of Alg. 1. This is in general not true for lower
layers l < L.
To ensure that the lazy exploration of the state space is still sound and relatively

complete, we show in the following lemma that all states which need to be checked for
safety in layer l of iteration i are indeed explored.

Lemma 4.2 Let W i
l and Υi

l (W̃
i
l and Υ̃i

l) denote the set computed in line 2 and 4 of
Alg. 1 called by EagerSafe(B̂1, L) (LazySafe(B̂1, L)) the i-th time for layer l. Then
for all i ∈ [1;N ] and l ∈ [1;L], it holds that

W̃ i
l ⊆W i

l and Υi
l = Υ̃i

l. (4.12)

Proof First observe that the algorithm Alg. 1 (called by EagerSafe(B̂1, L) and
LazySafe(B̂1, L), resp.) starts with i = 1 and l = L. It first decrements l (while
keeping i constant) until l = 1 is reached, and then increments i to i+ 1 and resets l = 1
to l = L. We prove invariance of W and Υ to both steps separately, to show that (4.12)
holds.
First consider the incrementation of i in line 10 of Alg. 1. This implies that Υ and Υ̃

are copied to Ψ and Ψ̃. Hence, given the notation of this lemma, we have Ψi+1
L = Υi

1 and
Ψ̃i+1
L = Υ̃i

1. Given this observation we do an induction over i to show that W̃ i+1
L = W i+1

L

and Υi+1
L = Υ̃i+1

L are true for all i. For i = 1 (base case), Υ1
1 = Υ̃1

1 = B̂1, which in turn
implies W̃ 1

L = W 1
L. For the induction step, observe that the induction hypothesis implies

Υ = Υ̃ and Ψ = Ψ̃ in the right side of line 1-4 of Alg. 1, no matter if Alg. 1 is called by
EagerSafe(B̂1, L) or LazySafe(B̂1, L). This implies W̃ i+1

L = W i+1
L (computed in line

2) and Υi+1
L = Υ̃i+1

L (updated in line 4) whenever the claim holds for i.
Second, we consider decrementing l while keeping i constant. We do an induction

over l by assuming Υi
l+1 = Υ̃i

l+1 and show that this implies W̃ i
l ⊆ W i

l and Υi
l =

Υ̃i
l. Observe that the base case is l + 1 = L, which was established by the induction

67



4. Lazy Multi-Layered Controller Synthesis

over i. For the induction step over l, observe that the induction assumption implies
Γ↓l1(Ψ̃i−1) \ Γ↓l1(Υ̃i

l+1) = Γ↓l1(Ψi−1) \ Γ↓l1(Υi
l+1) and, as Ψi ⊆ B̂1 (from Lem. 4.1), we have

Γ↓l1(Ψi−1) \ Γ↓l1(Υi
l+1) ⊆ Γ↓l1(B̂1). Further, observe that EagerSafe(B̂1, L) explores

Γ↓l1(B̂1) once, while LazySafe(B̂1, L) explores Γ↓l1(Ψi−1) \ Γ↓l1(Υi
l+1) via line 1 of Alg. 1

in every iteration i. This implies that for the computation of W̃ i
l in line 10 of Alg. 1

via (4.10) the transition function F̂l(x̂, û) is computed for a subset of states compared
to the computation of W i

l . With this it immediately follows from (4.10) that W̃ i
l ⊆W i

l .
To show the right side of (4.12), recall that F̂l(x̂, û) is at least computed for the set
Γ↓l1(Ψi−1) \ Γ↓l1(Υi

l+1) via line 1 of Alg. 1 (and possibly for some more states which
were explored in previous iterations) when W̃ i

l is computed. Using (4.10) this implies
that W̃ i

l ⊇
(
Cpre Ŝl(Γ

↓
l1(Ψi−1)) \ Γ↓l1(Υi

l+1)
)
∩ Γ↓l1(Ψi−1) = W i

l \ Γ↓1l(Υ
i
l+1). With this we

have Υi
l = Υi

l+1 ∪ Γ↓1l(W
i
l ) = Υi

l+1 ∪
(

Γ↓1l(W
i
l ) \Ψ′il+1

)
= Υi

l+1 ∪ Γ↓1l

(
W i
l \ Γ↓l1(Υi

l+1)
)
⊆

Ψ′il+1 ∪ Γ↓1l(W̃
i
l ) = Υ̃i

l+1 ∪ Γ↓1l(W̃
i
l ) = Υ̃i

l and Υ̃i
l = Υ̃i

l+1 ∪ Γ↓1l(W̃
i
l ) = Υi

l+1 ∪ Γ↓1l(W̃
i
l ) ⊆

Ψ′il+1 ∪ Γ↓1l(W
i
l ) = Υi

l, which completes the induction step over l. 2

Now as direct consequence of Thm. 4.2 and Lem. 4.2, we present our main result on
the lazy multi-layered safety control:

Theorem 4.4 Let
〈−→
S ,�B

〉
be a multi-layered safety control problem and Ŝ = {Ŝl}l∈[1;L]

be a multi-layered finite-state abstraction. Let 〈ΨN ,C〉 = LazySafe(B̂1, L) such that
C = {C l}l∈[1;L] be defined as in (4.11) for all l ∈ [1;L]. Further, letW be the domain of the
single-layered safety controller for l = 1, i.e. W = dom(C) where C ∈ OptCtrl(Ŝ1,�B).
Then C ∈ OptCtrl(S,B) and W ⊆ ΨN , i.e., C is sound and relatively complete with
respect to the single-layered controller for layer l = 1.

Proof First recall that Lem. 4.2 implies Ψi = Ψ̃i for all i ∈ [1;N ]. Therefore Lem. 4.1
equivalently holds for Ψ̃i and the completeness proof of Thm. 4.2 is equivalent to the one
of Thm. 4.4. For the soundness proof, observe that (4.12) implies Bl = W̃ i

l ⊆ W i
l ⊆ B̂l

and Bl = W̃ i
l ⊆W i

l ⊆ Cpre Ŝl(Γ
↓
l1(ΨN )), from which (i) and (ii) follow. 2

4.3.2. Reach-Avoid Specifications

We now consider the lazy computation of a multi-layered reach-avoid controller C ∈
OptCtrl(Ŝ,¬OUT ). We refer to this scenario by the wrapper function
LazyReachm(T̂1, Ô1, L) which calls ReachIterationm(T̂1, Ô1, L, ∅).

In the first iteration of ReachIterationm we have the same situation as in LazySafe;
given that Ψ = X̂1 \ Ô1, line 2 in Alg. 4 pre-computes all transitions for states inside
the safe set and ComputeTransitions does not perform any computations for layer L
in further iterations. For l < L however, the situation is different. As the reach-avoid
synthesis algorithm is a smallest fixed-point, it iteratively enlarges the set T̂1 (given when
ReachIteration is initialized). Computing transitions for all not yet explored states in
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every iteration would therefore be very wasteful (see the example in Sec. 1.3.1). Therefore,
ExpandAbstractionm determines an over-approximation of the frontier states instead
in the following manner: it computes the predecessors (not controllable predecessors!) of
the already-obtained set Υ optimistically by (i) using (coarse) auxiliary abstractions for
this computation and (ii) applying a cooperative predecessor operator.
This requires a set of auxiliary systems, given by

Â = {ÂLl }Ll=1, ÂLl := Ŝ(S, τl, ηL) =
〈
X̂L, Û , F̂Ll

〉
. (4.13)

The abstract transition function F̂Ll induced by S captures the τl-duration transitions
in the coarsest layer state space X̂L. Using τl instead of τL is important, as τL might
cause “holes” between the computed frontier and the current target Υ which cannot be
bridged by a shorter duration control actions in layer l. This would render LazyReachm
unsound. Also note that in ExpandAbstractionm, we do not restrict attention to the
safe set. This is because R̂l ⊇ R̂L, and when the inequality is strict then the safe states in
layer l which are possibly winning but are covered by an obstacle in layer L (see Fig. 1.1
in Chap. 1) can also be explored.
For Υ ⊆ X̂L and l ∈ [1;L], we define the cooperative predecessor operator

Pre
ÂLl

(Υ) = {x̂ ∈ X̂L | ∃û ∈ Û . F̂Ll (x̂, û) ∩Υ 6= ∅}. (4.14)

in analogy to the controllable predecessor operator in (4.10). We apply the cooperative
predecessor operator m times in ExpandAbstractionm, i.e.,

Pre1
ÂLl

(Υ) = Pre
ÂLl

(Υ) and

Prej+1

ÂLl
(Υ) = Prej

ÂLl
(Υ) ∪ Pre

ÂLl
(Prej

ÂLl
(Υ)). (4.15)

Calling ExpandAbstractionm with parameters Υ ⊆ X̂1 and l < L applies Prem
ÂLl

to
the over-approximation of Υ by abstract states in layer L. This over-approximation is
defined as the dual operator of the under-approximation operator Γ↓ll′ :

Γ↑ll′(Υl′) :=

{
R̂ll′(Υl′), l ≤ l′

{x̂ ∈ X̂l | R̂l′l(x̂) ∩Υl′ 6= ∅}, l > l′
(4.16)

where l, l′ ∈ [1;L] and Υl′ ⊆ X̂l′ . Finally, m controls the size of the frontier set and
determines the maximum progress that can be made in a single backwards synthesis run
in a layer l < L.
It can be shown that all states which might be added to the winning state set in

the current iteration are indeed explored by this frontier construction, implying that
LazyReachm(T̂1, Ô1, L) is sound and complete with respect to layer 1. In other words,
Thm. 4.3 can be transfered from EagerReachm to LazyReachm.
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Theorem 4.5 Let
〈−→
S ,¬OUT

〉
be a multi-layered reach-avoid control problem and Ŝ =

{Ŝl}l∈[1;L] be a multi-layered finite-state abstraction. Let 〈Υ,C〉 = LazyReachm(T̂1, Ô1, L).
Further, let W be the domain of the single-layered optimal reach-avoid controller for l = 1,
i.e. W = dom(C) where C ∈ OptCtrl(Ŝ1,¬Ô1 UT̂1). Then C ∈ OptCtrl

(−→
S ,¬OUT

)
and

W ⊆ Υ, i.e. C is sound and relatively complete with respect to single-layered controller
for layer l = 1.

We prove Thm. 4.5 using a chain of intermediate results. First we state some properties
of Γ↓ll′(·) and Γ↑ll′(·), which follow from their definitions in a straightforward manner. Let
Al′ , Bl′ ⊆ X̂l′ be any two sets. Then
(a) Γ↑ll′(·) = Γ↑lk(Γ

↑
kl′(·)) and Γ↓ll′(·) = Γ↓lk(Γ

↓
kl′(·)) for all k such that

min({l, l′}) ≤ k ≤ max({l, l′}).
(b) Γ↓ll′(·) and Γ↑ll′(·) are monotonic, i.e. Al′ ⊆ Bl′ ⇒ Γ↓ll′(Al′) ⊆ Γ↓ll′(Bl′) and Al′ ⊆ Bl′ ⇒
Γ↑ll′(Al′) ⊆ Γ↑ll′(Bl′).
(c) For l ≤ l′, both Γ↓ll′(·) and Γ↑ll′(·) are closed under union and intersection.
(d) l ≤ l′ ⇒ Γ↓ll′(·) ≡ Γ↑ll′(·)
(e) l ≤ l′ ⇒ Γ↓l′l(Γ

↓
ll′(Al′)) = Γ↑l′l(Γ

↓
ll′(Al′)) = Al′ . Using (d), we additionally have

l ≤ l′ ⇒ Γ↓l′l(Γ
↑
ll′(Al′)) = Γ↑l′l(Γ

↑
ll′(Al′)) = Al′ , i.e., when l ≤ l′, the composition Γ∗l′l ◦ Γ∗ll′

for ∗ ∈ {↑, ↓} is the identity function.
(f) For all x ∈ X, Q̂l′(x) ∈ Al′ ⇒ Q̂l(x) ∈ Γ↑ll′(Al′). Equivalently, for all x̂′ ∈ X̂l′ ,
x̂′ ∈ Al′ ⇒ R̂ll′(x̂

′) ∈ Γ↑ll′(Al′).
(g) For all x ∈ X, Q̂l(x) ∈ Γ↓ll′(Al′) ⇒ Q̂l′(x) ∈ Al′ . Equivalently, for all x̂ ∈ X̂l,
x̂ ∈ Γ↓ll′(Al′)⇒ R̂l′l(x̂) ∈ Al′ .
Using (a)-(f), it immediately follows that

l < l′ : Γ↓ll′(Al′) ⊆ Al ⇒ Al′ ⊆ Γ↑l′l(Al) (4.17a)

l > l′ : Γ↓ll′(Al′) ⊆ Al ⇐ Al′ ⊆ Γ↑l′l(Al) (4.17b)

Always : Γ↓ll′(Al′) ⊇ Al ⇔ Al′ ⊇ Γ↑l′l(Al) (4.17c)

where Al ⊆ X̂l. The implications in (4.17a) and (4.17b) are strict.
The soundness and relative completeness of LazyReachm follows from Thm. 4.3, if

we can ensure that in every iteration of LazyReachm the set of states returned by
ExpandAbstractionm, for which the abstract transition relation is computed, is not
smaller than the set of states subsequently added to Ψ by the m-step reach-avoid fixpoint
in the next iteration (line 14 of Alg. 4). A crucial monotonicity assumption, fulfilled
by our growth bound-based abstractions, is that for any given layer l ∈ [1;L] and any
fixed control input û ∈ Û , the auxiliary transition relation F̂Ll (·, û) over-approximates the
abstract transition relation F̂l(·, û):

Assumption 1 Consider any l ∈ [1;L] and any û ∈ Û . Let Υl ⊆ X̂l and ΥL ⊆ X̂L be
two sets of abstract states such that Υl ⊆ ΥL.1 Then F̂l(Υl, û) ⊆ F̂L(ΥL, û).

1We write Υl ⊆ ΥL with Υl ⊆ X̂l, Υm ⊆ X̂L as short for
⋃
x̂∈Υl

x̂ ⊆
⋃
x̂∈ΥL

x̂.
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We first observe that computing the under-approximation of the m-step coopera-
tive predecessor with respect to the auxiliary system ÂLl of a set ΨL (as used in
ExpandAbstractionm) over-approximates the set obtained by computing the m-step
cooperative predecessor with respect to the abstract system Ŝl for a set Ψl if ΨL over-
approximates Ψl.

Lemma 4.3 Let Ŝ be a multi-layered abstract system and Â be a multi-layered auxiliary
system satisfying Assumption 1, and let Ψl ⊆ X̂l and ΨL ⊆ X̂L for some l < L such that
ΨL ⊇ Γ↑Ll(Ψl). Then Γ↓lL(Pre

ÂLl
(ΨL)) ⊇ PreŜl(Ψl). Furthermore, for all m > 0, it holds

that Γ↓lL(Prem
ÂLl

(ΨL)) ⊇ PremŜl
(Ψl), where PreŜl and PremŜl

for Ŝl are defined analogously

to (4.14) and (4.15), respectively.

Proof (Proof of Lem. 4.3) Fix an abstract control input û ∈ Û . Let x̂ ∈ PreŜl(Ψl),

which by definition (4.14) implies that F̂l(x̂, û) ∩ Ψl 6= ∅. Let ŷ = Γ↑Ll({x̂}). Then by
observing that x̂ ⊆ ŷ, and using Assump. 1, we have F̂l(x̂) ⊆ F̂Ll (ŷ, û), which implies
F̂Ll (ŷ, û) ∩ΨL 6= ∅ (since Ψl ⊆ ΨL). Hence, ŷ ∈ Pre

ÂLl
(ΨL). Moreover, using (4.17c) we

have x̂ ∈ Γ↓lL({ŷ}) which leads to x̂ ∈ Γ↓lL(Pre1
ÂLl

(ΨL)).
The second claim is proven by induction on m. The base case for m = 1 is given by

the first claim proven above. Now assume that Γ↓lL(Prem
ÂLl

(ΨL)) ⊇ PremŜl
(Ψl) holds for

some m > 0. This together with (4.17c) implies:

Prem
ÂLl

(ΨL) ⊇ Γ↑Ll(PremŜl
(Ψl)). (4.18)

Now note that by (4.15), we have Prem+1

ÂLl
(·) = Pre

ÂLl
(Prem

ÂLl
(·)) ∪ Prem

ÂLl
(·) and it holds

that

Γ↓lL(Prem+1

ÂLl
(ΨL))

=Γ↓lL

(
Pre

ÂLl

(
Prem

ÂLl
(ΨL)

)
∪ Prem

ÂLl
(ΨL)

)

=Γ↓lL

(
Pre

ÂLl

(
Prem

ÂLl
(ΨL)

))
∪ Γ↓lL

(
Prem

ÂLl
(ΨL)

)
(4.19)

⊇PreŜl

(
PremŜl

(Ψl)
)
∪ PremŜl

(Ψl) = Prem+1

Ŝl
(Ψl), (4.20)

2

where (4.19) follows from (c) and (4.20) follows by applying the first claim twice: (i) for
the left side of the “∪”, by replacing Ψl and ΨL in the first claim of Lem. 4.3 by PremŜl

(Ψl)

and Prem
ÂLl

(ΨL) respectively, while noting that (4.18) gives the necessary pre-condition,

and (ii) for the right side of the “∪”.

Lem. 4.3 can be used to show that ExpandAbstractionm constructs the transition
function F̂l(x̂, û) for all x̂ (and all û) which are in the winning state set computed by the
m-step reach-avoid fixpoint OptCtrl

(
Ŝl,
(

Γ↓l1(Ψ)
)

U≤m
(

Γ↓l1(Υ)
))

in line 14 of Alg. 4.
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Lemma 4.4 For all l < L, Ψ ⊆ X̂1, and C ∈ OptCtrl
(
Ŝl,
(

Γ↓l1(Ψ)
)

U≤m
(

Γ↓l1(Υ)
))

, it

holds that x̂ ∈ dom(C) \ Γ↓l1(Ψ) implies x̂ ∈W ′′, where W ′′ is returned by the second line
of ExpandAbstractionm(Ψ, l).

Proof Let (i) x̂ ∈ dom(C) and (ii) x̂ /∈ Γ↓l1(Ψ). Then it follows from (i) that

x̂ ∈ dom(C)⇒ x̂ ∈ CpremŜl
(Γ↓l1(Ψ))⇒ x̂ ∈ PremŜl

(Γ↓l1(Ψ)).

Consider the inequality Γ↑L1(Ψ) ⊇ Γ↑Ll(Γ
↓
l1(Ψ)) which can be verified from the properties

(a)-(f). Then Lem. 4.3 and (g) give

x̂ ∈ Γ↓lL(Prem
ÂLl

(Γ↑L1(Ψ)))⇒ R̂Ll(x̂) ∈ Prem
ÂLl

(Γ↑L1(Ψ)).

Now (ii) and (g) gives

R̂Ll(x̂) /∈ Γ↓Ll(Γ
↓
l1(Ψ))⇒ R̂Ll(x̂) /∈ Γ↓L1(Ψ).

Combining the last two observations with (f) and (b) we get

R̂Ll(x̂) ∈ Prem
ÂLl

(Γ↑L1(Ψ)) \ Γ↓L1(Ψ) = W ′

⇒ x̂ ∈ Γ↑lL(W ′)⇒ x̂ ∈ Γ↓lL(W ′) = W ′′. 2

Proof (Proof of Thm. 4.5) With Lem. 4.4, soundness and relative completeness of
LazyReachm directly follows from Thm. 4.3, as shown in the following. We build
the proof on top of Thm. 4.3. We prove two things: that both algorithms termi-
nate after the same depth of recursion D, and that the overall controller domain that
we get from EagerReachm is same as the one that we get from LazyReachm, i.e.
∪d∈[1;D]dom(Cd) = ∪d∈[1;D]dom(Cd), where Cd and Cd are the controllers obtained in
depth d of the algorithms EagerReachm and LazyReachm respectively. (We actu-
ally prove a stronger statement: for all d ∈ [1;D], dom(Cd) = dom(Cd).) Then, since
EagerReachm is sound and complete with respect to the single-layered reach-avoid
ABCD, hence so will be LazyReachm.

The “⊇” direction of the second proof is trivial and is based on two simple observations:
(a) the amount of information of the abstract transition systems Ŝ which is available to
LazyReachm is never greater than the same available to EagerReachm; (b) whenever
LazyReachm invokes ExpandAbstractionm for computing transitions for some set
of abstract states, ExpandAbstractionm returns the full information of the outgoing
transitions for those states to LazyReachm. The second part is crucial, as partial
information of outgoing transitions might possibly lead to false positive states in the
controller domain. Combining these two arguments, we have that for all d ∈ [1;D]
dom(Cd) ⊇ dom(Cd). (We are yet to show that the maximum recursion depth is D for
both the algorithms EagerReachm and LazyReachm.)
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The other direction will be proven by induction on the depth of the recursive calls of
the two algorithms. Let ld and ld be the corresponding layers in depth d of algorithm
LazyReachm and EagerReachm respectively. It is clear that dom(C1) = dom(C1)
and l1 = l1 = L (induction base) since we start with full abstract transition system for
layer L in both cases. Let us assume that for some depth d, dom(Cd

′
) = dom(Cd

′
) and

ld′ = ld′ holds true for all d′ ≤ d (induction hypothesis). Now in LazyReachm, the
check in Line 17 of LazyReachm is fulfilled iff the corresponding check in Line 15 of
EagerReachm (i.e. (Hsu et al., 2018b, Alg. 1)) is fulfilled. This means that ld+1 = ld+1.
This shows by induction that (a) the maximum depth of recursion in LazyReachm and
EagerReachm are the same (call it D), and (b) the concerned layer in each recursive
call is the same for both algorithms.
Now in the beginning of depth d + 1, we have that Ψ = ∪d′≤dΓ↓1ld′dom(Cd

′
) =

∪d′≤dΓ↓1ld′dom(Cd
′
). From now on, let’s call ld+1 = l for simpler notation. Let x̂ ∈ X̂l be

a state which was added in depth d+ 1 in the controller domain dom(Cd+1) for the first
time, i.e. (a) x̂ ∈ dom(Cd+1), and (b) x̂ ∈ Γ↓l1(Ψ) . Then by Lem. 4.4 we have that
x̂ ∈W ′′.
Since ExpandAbstractionm also computes all the outgoing transitions from the

states inW ′′ (Line 3 in Alg. 3), hence full information of the outgoing transitions of all the
states which are added in dom(Cd+1) will be available to the LazyReachm algorithm in
depth d+ 1. In other words given x̂ ∈ X̂l, if there is an m-step controllable path from
x̂ to Ψ in EagerReachm, there will be an m-step controllable path in LazyReachm
as well. Hence x̂ will be added in dom(Cd+1) as well. This proves that for all d ∈ [1;D]
dom(Cd) ⊆ dom(Cd). 2

4.4. Implementation and case study

We have implemented the presented multi-layered controller synthesis algorithms in C++ as
an extension to SCOTS (Rungger and Zamani, 2016). SCOTS is a tool for ABCD using FRR.
It natively supports the fixed-point computations for reachability, safety, and reach-avoid
specifications. Like SCOTS, our implementation uses binary decision diagrams (BDDs);
a set of abstract states X̂ ′ is represented as a BDD over a set of boolean variables. An
assignment of the boolean variables uniquely represents one state x̂ ∈ X̂ ′.

4.4.1. An Efficient Under- and Over-Approximation using BDDs

Key to our lazy multi-layered algorithms is the efficient implementation of the operators
Γ↓ll′ and Γ↑ll′ defined in (4.9) and (4.16) respectively. We observe: since the ratio of η-s
of two adjacent layers is 2 (see Sec. 4.1.1), the BDD variables across different layers
can be allocated to follow a particular pattern (shown in Fig. 4.1 for the simple case
|X̂L| = 2). With this observation, we now describe an efficient BDD implementation for
Γ↓ll′(·) and Γ↑ll′ · assuming an 1D state space; our implementation generalizes to any state
space dimension.
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BDD
variables
in different

layers

{x0} 0 1

{x1, x2} 00 10

{x3, x4, x5} 000 100

Figure 4.1.: Arrangement of BDD variables across different layers for one state dimension
and |X̂L| = 2.

Suppose B is a given BDD defined over the variables {x1, . . . , xp}, the set {y1, . . . , yp}
represents a set of new variables, and JBK[{x1, . . . , xp}/{y1, . . . , yp}] represents the BDD
obtained from B by renaming the variables from {x1, . . . , xp} to {y1, . . . , yp}. Recall that
BDD renaming is linear in the size of the BDD.

LetWl ⊆ X̂l be a set of states in layer l represented by the BDDWl over a set of boolean
variables {bj , bj+1, . . . , bk}. We compute the BDD representations W l+1 = Γ↓(l+1)l(Wl)

and W l−1 = Γ↓(l−1)l(Wl) by simple transformations

W l+1 = J∀bj .WlK[{bj+1, . . . , bk}/{b2j−k, . . . , bj−1}] and
W l−1 = JWlK[{bj , . . . , bk}/{bk+2, . . . , b2k−j+2}],

and the BDD representations W l+1 = Γ↑(l+1)l(Wl) and W l−1 = Γ↑(l−1)l(Wl) by simple
transformations

W l+1 = J∃bj .WlK[{bj+1, . . . , bk}/{b2j−k, . . . , bj−1}] and
W l−1 = JWlK[{bj , . . . , bk}/{bk+2, . . . , b2k−j+2}].

4.4.2. Performance Evaluation

We have implemented our algorithms in the tool called Mascot and we present some brief
evaluation.1

Safety Control Problem for a DC-DC Boost Converter (Hsu et al., 2018a)

We evaluate our safety algorithm on a benchmark DC-DC boost converter example from
the literature (Girard et al., 2010; Mouelhi et al., 2013; Rungger and Zamani, 2016). The
system S is a second order differential inclusion ξ̇(t) ∈ Apξ(t) + b+W with two switching
modes p ∈ {1, 2}, where

b =

[vs
xl
0

]
, A1 =

[
− rl
xl

0

0 − 1
xc

r0
r0+rc

]
, A2 =

[
− 1
xl

(rl + r0rc
r0+rc

) 1
5(− 1

xl
r0

r0+rc
)

5 r0
r0+rc

1
xc

− 1
xc

1
r0+rc

]
,

with r0 = 1, vs = 1, rl = 0.05, rc = 0.5rl, xl = 3, xc = 70 and W = [−0.001, 0.001] ×
[−0.001, 0.001]. A physical and more detailed description of the model can be found in
(Girard et al., 2010). The safety specification that we consider is given by �B, where

1Available at http://mascot.mpi-sws.org/.
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Figure 4.2.: Run-time comparison of LazySafe, EagerSafe, and SCOTS (the single-
layered synthesis using the finest layer) on the DC-DC boost converter
example. L > 4 is not used for EagerSafe since coarser layers fail to
produce a non-empty winning set. The same is true for L > 7 in LazySafe.

B = [1.15, 1.55] × [5.45, 5.85] ⊆ X . We evaluate the performance of our LazySafe
algorithm on this benchmark and compare it to EagerSafe and SCOTS (the single-
layered baseline using the finest layer). For LazySafe and EagerSafe, we vary the
number of layers used. The results are presented in Fig. 4.2. In the experiments, the
finest layer is common, and is parameterized by η1 = [0.0005, 0.0005] and τ1 = 0.0625.
The ratio between the grid parameters and the sampling times of the successive layers is
2.

From Fig. 4.2, we see that LazySafe is significantly faster than both EagerSafe
(and SCOTS) as L increases. The single layered case (L = 1) takes slightly more time
in both LazySafe and EagerSafe due to the extra bookkeeping in the multi-layered
algorithms. In Fig. 4.3, we visualize the domain of the constructed transitions and the
synthesized controllers in each layer for LazySafe(·, 6). The safe set is mostly covered
by cells in the two coarsest layers. This phenomenon is responsible for the computational
savings over LazySafe(·, 1).

Reach-Avoid Control Problem for a Unicycle

We use a nonlinear kinematic system model commonly known as the unicycle model,
specified as

ξ̇1 ∈ u1 cos(ξ3) +W1 ξ̇2 ∈ u1 sin(ξ3) +W2 ξ̇3 = u2

where ξ1 and ξ2 are the state variables representing 2D Cartesian coordinates, ξ3 is a state
variable representing the angular displacement, u1, u2 are control input variables that
influence the linear and angular velocities respectively, and W1, W2 are the perturbation
bounds in the respective dimensions given byW1 = W2 = [−0.05, 0.05]. The perturbations
render this deceptively simple problem computationally intensive. We run controller
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Figure 4.3.: Domain of the computed transitions (union of red and black region) and
the synthesized controllers (black region) for the DC-DC boost converter
example, computed by LazySafe(·, 6).

synthesis experiments for the unicycle inside a two dimensional space with obstacles and
a designated target area, as shown in Fig. 4.4. We use three layers for the multi-layered
algorithms EagerReach and LazyReach. All experiments presented in this subsection
were performed on a Intel Core i5 3.40 GHz processor.

Algorithm Comparison. Table 4.1 shows a comparison between SCOTS (single-layered
algorithm using the finest layer), EagerReach2, and LazyReach2 algorithms. The
projection to the state space of the transitions constructed by LazyReach2 for the finest
abstraction is shown in Fig. 4.4b. The corresponding visualization for EagerReach2

would show all of the uncolored space being covered by red. The savings of LazyReach2

over EagerReach2 can be mostly attributed to this difference.

Varying State Space Complexity. We investigate how the lazy algorithm and the
multi-layered baseline perform with respect to the structure of the state space, achieved
by varying the number of identical obstacles, o, placed in the open area of the state
space. The runtimes for EagerReach2 and LazyReach2 are plotted in Fig. 4.5. We
observe that LazyReach2 runs fast when there are few obstacles by only constructing the
abstraction in the finest layer for the immediate surroundings of those obstacles. By o = 20,
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(a) (b)

Figure 4.4.: (a) Solution of the unicycle reach-avoid problem by LazyReach2. (b)
Cells of the finest layer (l = 1) for which transitions were computed during
LazyReach2 are marked in red. For EagerReach2, all uncolored cells
would also be red.

SCOTS EagerReach2 LazyReach2

Abstraction 2590 2628 588
Synthesis 818 73 21

Total 3408 2701 609
(126%) (100%) (22.5%)

Table 4.1.: Comparison of running times (in seconds) of reachability algorithms on the
perturbed unicycle system.

LazyReach2 explores the entire state space in the finest layer, and its performance is
slightly worse than that of EagerReach2 (due to additional bookkeeping). The general
decreasing trend in the abstraction construction runtime for EagerReach2 is because
transitions outgoing from obstacle states are not computed.

4.5. Related Work (for Scalable ABCD)

Most ABCD techniques in the literature relies on a state-space discretization to be able
to handle the general LTL specifications. Notable exceptions are the discretization-free
approaches which use control input sequences as abstract states (Corronc et al., 2013;
Zamani et al., 2015; Girard and Gößler, 2020); unfortunately, their method only works
for stable systems.
There are two broad categories of techniques for addressing the scalability issues in

discretization-based ABCD approaches: The first type employs faster numerical methods
for computing the abstraction (Coogan and Arcak, 2015), and the second one tries to
limit the size of the abstraction. Our lazy approach (Hsu et al., 2019, 2018a) falls in the
second category and is orthogonal to the first category.
Among the ones attempting to get a smaller abstraction, there are two subcategories:

The first one uses some known structural property of the system such as sparse dependence

77



4. Lazy Multi-Layered Controller Synthesis

0 2 4 6 8 10 12 14 16 18 20
0

400

800

1,200

1,600

2,000

2,400

2,800

3,200

Number of obstacles o

R
un

ti
m
e
(s
)

LazyReach abstraction EagerReach abstraction
LazyReach synthesis EagerReach synthesis
LazyReach total EagerReach total

Figure 4.5.: Runtime with increasing number of obstacles

of variables (Gruber et al., 2017), compositionality (Mallik et al., 2018, 2017; Saoud et al.,
2020, 2018b), monotonicity (Kim et al., 2017), etc. The second one uses the specification
as a guide for the abstraction process, and only computes those parts of the abstraction
which are necessary for a successful synthesis (Hussien and Tabuada, 2018; Cámara et al.,
2011b; Girard and Gößler, 2020; Nilsson et al., 2017; Dutreix et al., 2020). Our lazy
multilayered (Hsu et al., 2019, 2018a) approach falls in this second subcategory and is
orthogonal to the first subcategory. Compared to our technique, the other ones either
assume stability (Cámara et al., 2011b; Dutreix et al., 2020), performs lazy exploration of
inputs instead of states (and thus orthogonal) (Hussien and Tabuada, 2018), or provides
a less optimal solution for the safety specifications (Nilsson et al., 2017).

Our exposition in this chapter follows our work on lazy multi-layered ABCD (Hsu et al.,
2018b,a).

ABCD continues to be an active research direction, with new results targeting the
expressivity and scalability of the method. Over the years, the curse of dimensionality has
proven to be the main computational bottleneck for application of ABCD in real-world
problems. As the number of system variables increases, the discretization step produces
exponentially many states or inputs. There have been many heuristic approaches in the
past which have dealt with this scalability issue for ABCD. Broadly, they can be classified
into two categories: the first uses the system specification to limit the computational
effort, and the second uses the system dynamic model to do the same. Our multi-layered
ABCD technique falls in the first category.

Multi-layered algorithms were proposed by Girard et al. (Cámara et al., 2011b,a)
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(recently revisited in (Girard et al., 2016)) in the special case of safety and reachability
control of unperturbed switched systems (our treatment, in contrast, has a disturbance
controlled by an adversary).
Subsequently, multi-layered ABCD was implemented in a lazy way, by selectively

computing the abstraction of finer layers of abstraction as needed, rather than up front
(Hsu et al., 2018a,c). The idea there is that we start with a fully computed coarsest
layer of abstraction, and locally switch to the finer layers only when the synthesis cannot
progress anymore in the coarser layer. Similar techniques also appeared independently
in the context of multi-resolution abstractions (Nilsson and Ozay, 2014; Bulancea et al.,
2018). An orthogonal approach is to lazily compute the abstraction by only partially
and incrementally reavealing the inputs while computing the transitions (Hussien and
Tabuada, 2018).

The second approach for improving scalability of ABCD is to exploit the structure of
the underlying system model. One notable technique in this category uses the decomposed
structure of a given system to compute local abstractions and controllers (Tazaki and
Imura, 2008; Mallik et al., 2017, 2018). While the decomposition-based technique addresses
systems with many loosely coupled components, there are recent approaches which can
even use the loose coupling between different variables of a monolithic system component
(Gruber et al., 2017). Another example of such a technique is the fast but relatively
imprecise abstraction technique for monotone systems (Kim et al., 2017).

4.6. Conclusion

The known FRR-ABCD algorithm usually performs an uniform state-space discretization
at the time of building the finite abstraction (see Chap. 3). This process leads to an
exponential blow-up in the size of the abstract state space for high-dimensional systems,
causing a huge computational bottleneck. To deal with this issue, we presented our
lazy multi-layered ABCD algorithm for reach-avoid and safety specifications. We create
multiple layers of abstractions of different granularities. Our synthesis algorithm tries to
use the coarsest abstractions as much as possible, and switches to the finer abstractions only
when necessary for that particular synthesis problem. We implemented our algorithms in
the tool Mascot-SDS, using which we demonstrated significant performance improvement
over the baseline single-layered version. We leave the more involved ω-regular specifications
as part of future work.
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5. Abstraction-Based Controller
Design for Controlled Markov
Processes

In Chap. 3, we saw how (discrete-time) controllers can be synthesized for continuous
dynamical systems via Abstraction-Based Controller Design (ABCD). There we used
Feedback Refinement Relations (FRR) to first construct a finite abstraction of the system.
Then we solved an abstract 2-player game that was constructed by separating the control
and the disturbance aspects in the finite abstraction. Finally, the Player 0 winning strategy
from the abstract game was refined to a controller for the sampled-time abstraction of
the given system. It was shown that the obtained controller is sound.
In this chapter, we turn our attention to controller synthesis for continuous-state

discrete-time stochastic dynamical systems, formalized as controlled Markov processes
(CMP). CMPs are control systems with a probabilistic transition function, called the
transition kernel. As a result, for a given controller, we obtain a probability distribution
over the set of resulting paths. The goal of this chapter is to present a novel ABCD
framework for CMPs where we want to satisfy the specification with maximum probability.

5.1. Controlled Markov Processes

Definition 5.1 (Controlled Markov Process (CMP)) A controlled Markov process
(CMP) is a tuple S = 〈X ,U , Ts〉 , where X is a Borel space called the state space, U is a
finite set called the input space, and Ts is a conditional stochastic kernel Ts : B(X )×X ×
U → [0, 1] with B(X ) being the Borel sigma-algebra on the state space and (X ,B(X ))
being the corresponding measurable space. The kernel Ts assigns to any x ∈ X and
u ∈ U a probability measure Ts(·|x, u) on the measurable space (X ,B(X )) so that for any
set A ∈ B(X ), Px,u(A) =

∫
A Ts(ds|x, u), where Px,u denotes the conditional probability

P (·|x, u).

In general, the input space U can be any Borel space and the set of valid inputs can be
state dependent. While our results can be extended to this setting, for ease of exposition,
we consider the special case where U is a finite set and any input can be taken at any
state. This choice is motivated by the digital implementation of controllers with a finite
number of possible actuations.
The evolution of a CMP is as follows. For k ∈ N, let Xk denote the state at the kth

time step and Ak the input chosen at that time. If Xk = x ∈ X and Ak = u ∈ U , then
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the system moves to the next state Xk+1, according to the probability distribution Px,u.
Once the transition into the next state has occurred, a new input is chosen, and the
process is repeated.
Given a CMP S, a finite path of length n+ 1 is a sequence

w = (x0, x1, . . . , xn), n ∈ N,

where xi ∈ X are state coordinates of the path. The space of all paths of length n+ 1 is
denoted X n+1. An infinite path of the CMP S is the sequence w = (x0, x1, x2, . . .), where
xi ∈ X for all i ∈ N. The space of all infinite paths is denoted by X ω. The spaces X n+1

and X ω are endowed with their respective product topologies and are Borel spaces.

Definition 5.2 (Controller and Probability Measure on Paths) Let S be a CMP.
A controller of S is a universally measurable function C : X → U such that at any time step
n ∈ N, the input un is taken to be C(xn) ∈ U . We denote the class of all such controllers
by Π. For a given initial probability measure α : B(X )→ [0, 1] of the CMP S, C induces
a unique probability measure on the canonical sample space of paths (Hernández-Lerma
and Lasserre, 1996), denoted by P Cα with the expectation ECα.

In this thesis, we only deal with deterministic memoryless controllers (also known as
stationary policies), but more general forms of controllers exist in the literature.
In the case when the initial probability measure is supported on a single state x ∈ S,

i.e., α(x) = 1, we write P Cx and ECx in place of P Cα and ECα, respectively. We denote the
set of probability measures on (X ,B(X )) by D.
Given any ω-regular specification ϕ defined using a set of predicates over the state

space X of S, we use the notation S |= ϕ to denote the set of all paths of S which satisfy
ϕ. Thus, P Cα (S |= ϕ) denotes the probability of satisfaction of ϕ by S under the effect of
the controller C, when the initial probability measure is given by α. Often we will use
Linear Temporal Logic (LTL) notation to express ω-regular properties. The syntax and
semantics of LTL can be found in standard literature (Baier and Katoen, 2008).

5.2. The Control Problem

Let S = 〈X ,U , Ts〉 be a CMP and P = 〈B0, B1, . . . , B`〉 be a partition of the alphabet
X where the partition elements B0, . . . , B` are all measurable sets. We are interested
in the maximal probability that the parity specification Parity(P) (see Def. 2.6 for the
definition) can be satisfied by paths of a CMP S starting from a particular state x ∈ X
under stationary controllers.
The set of all infinite paths w ∈ X ω of a CMP S that satisfy the property Parity(P)

is represented as the event S |= Parity(P). The proof of measurability of the event
S |= Parity(P) goes back to the work by Vardi (1985) that provides the proof for
probabilistic finite state programs. The proof for a CMP follows similar principles, using
the observation that S |= Parity(P) can be written as a Boolean combination of events
S |= �♦A, where A is a measurable set, and �♦A is a canonical Gδ set in the Borel
hierarchy.
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It is well-known that every ω-regular specification whose propositions range over
measurable subsets of the state space of a CMP can be modeled as a deterministic parity
automaton (Gradel and Thomas, 2002, Thm. 1.19). By taking a synchronized product
of this parity automaton with the CMP, we can obtain a product CMP and a parity
specification over the product state space such that every path satisfying the parity
specification also satisfies the original ω-regular specification and vice versa. Moreover,
a stationary controller for the parity specification gives a (possibly history-dependent)
controller for the original specification. Thus, without loss of generality, we assume that
an ω-regular objective is already given as a parity condition using a partition of the state
space of the system.

Given a controller C ∈ Π and an initial state x ∈ X , we define the satisfaction probability
and the supremum satisfaction probability as

f(x, C) := P Cx (S |= Parity(P)) and (5.1)

f∗(x) := sup
C∈Π

P Cx (S |= Parity(P)), (5.2)

respectively. An optimal controller for the parity condition is a controller C∗ such that
f∗(x) = f(x, C∗) for all x ∈ X . Note that an optimal controller need not exist, since the
supremum may not be achieved by any controller. Our goal is to study the following
optimal controller synthesis problem.

Problem 4 (Optimal controller Synthesis) Given S and a parity specification
Parity(P), find an optimal controller C∗, if it exists, together with f∗(x) such that
P C
∗

x (S |= Parity(P)) = f∗(x).

While the satisfaction probability (5.1) and the supremum satisfaction probability
(5.2) are both well-defined, we are not aware of any work characterizing necessary or
sufficient conditions for existence of optimal controllers on continuous-space CMPs for
parity specifications. Additionally, we restrict attention to stationary controllers. While it
is possible to define more general classes of controllers, that depend on the entire history
and use randomization over U , we are again unaware of any work that characterizes the
class of controllers that are sufficient for optimal control of CMPs for parity specifications.
For finite-state systems, stationary controllers are sufficient and we restrict attention to
them.
Since we do not yet know whether optimal controllers exist or whether they can be

computed, we focus on providing an approximation procedure to compute a possibly sub-
optimal controller and guaranteed lower bounds on the optimal satisfaction probability.
Our procedure relies on first approximating almost sure winning regions (i.e., where
the specification can be satisfied with probability one), and then solving a reachability
problem as formalized next.

5.2.1. A Two-Stage Approximate Solution

Definition 5.3 (Almost sure winning region) Given a CMP S, a controller C, and
a parity specification Parity(P), the state x ∈ X satisfies the specification almost surely
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if f(x, C) = 1. The almost sure winning region of the controller C is defined as

WinDom(S, C) := {x ∈ X | f(x, C) = 1}. (5.3)

We also define the maximal almost sure winning region as

WinDom∗(S) := {x ∈ X | f∗(x) = 1}. (5.4)

Note that WinDom(S, C) ⊆WinDom∗(S) for any controller C ∈ Π. It is clear by definition
of the winning region that for any controller C, the satisfaction probability P Cx (S |=
Parity(P)) is equal to 1 for any x in the winning region W := WinDom(S, C). The next
theorem states that this satisfaction probability is lower bounded by the probability
of reaching the winning region W for any x 6∈ W . We denote such a reachability by
(S |= ♦W ) := {w = (x0, x1, x2, . . .) | ∃n ∈ N . xn ∈W}.

Theorem 5.1 For any controller C ∈ Π on CMP S, and W := WinDom(S, C), we have

P Cx (S |= Parity(P)) = 1 if x ∈W and
P Cx (S |= Parity(P)) ≥ P Cx (S |= ♦W ) if x /∈W. (5.5)

Intuitively, the inequality in the second part of (5.5) is due to the Parity(P) specification
may be satisfied with positive probability even though the path always stays outside of W .
When the state space is finite (i.e., for finite Markov decision processes), equality holds
(Baier and Katoen, 2008). However, equality need not hold for general CMPs: Majumdar
et al. (2020a) shows an example where the maximal almost sure winning region is empty
even though a Büchi specification is satisfied with positive probability.

Proof (Proof of Thm. 5.1) By the definition of the winning set, we already know that
P ρs (S |= Parity(P)) = 1 for all s ∈ WinDom(S, ρ). Take any s /∈ W := WinDom(S, ρ).
Define τ to be the first time step when the path visits the set W . Note that τ is a random
variable taking values in N ∪ {∞}. We use the law of total probability by making the
event (S |= Parity(P)) conditional on τ . Then we have

P ρs (S |= Parity(P))

=
∞∑

n=0

P ρs (S |= Parity(P) | τ = n)P ρs (τ = n)

+ P ρs (S |= Parity(P) | τ =∞)P ρs (τ =∞)

= Eρs
[
P ρsn(S |= Parity(P) | s1, s2, . . . , sn, τ = n)

]

+ P ρs (S |= Parity(P) ∧ τ =∞)

=∗
∞∑

n=0

P ρs (s1, s2, . . . , sn−1 ∈ S\W, sn ∈W )

+ P ρs (S |= Parity(P) ∧ S |= �S\W )

≥ P ρs (S |= ♦W ).

The equality (*) holds due to sn∈W and P ρsn(S |=Parity(P))=1. 2
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The next theorem establishes that for any controller C, the winning region is an
absorbing set, i.e., paths starting from this set will stay in the set almost surely.

Theorem 5.2 For any controller C, The set W = WinDom(S, C) is an absorbing set,
i.e., Ts(W |x, C(x)) = 1 for all x ∈W . This implies P Cx (S |= ♦X\W ) = 0 for all x ∈W .

The proof of this theorem utilizes the fact that Parity(P) is a long-run property and its
satisfaction is independent of the prefix of a path.

Proof (Proof of Thm. 5.2) For any s ∈W , we have

P ρs (S |= Parity(P))

=

∫

S
P ρs1(S |= Parity(P))Ts(ds1|s, ρ(s))

=

∫

W
Ts(ds1|s, ρ(s)) +

∫

S\W
P ρs1(S |= Parity(P))Ts(ds1|s, ρ(s)).

This means
∫

S\W
(1− P ρs1(S |= Parity(P)))Ts(ds1|s, ρ(s)) = 0⇒

∀ε > 0, P ρs
[
(1−P ρs1(S |= Parity(P)))1S\W (s1) ≥ ε

]
≤ 0

ε
=0,

where the last inequality is a consequence of Markov’s inequality for non-negative random
variables. By taking the union over a monotone positive sequence {εn → 0}, we get

P ρs
[
(1− P ρs1(S |= Parity(P)))1S\W (s1) > 0

]
= 0,

P ρs
[
s1 ∈ S\W and P ρs1(S |= Parity(P)) < 1

]
= 0,

P ρs [s1 ∈ S\W ] = 0. 2

Thm. 5.1 and Thm. 5.2 enable us to decompose the maximization of P Cx (S |= Parity(P))
with respect to controllers C into two sub-problems. First, find a controller that gives the
largest winning region W and employ that controller when the state x ∈W . Then, find
a controller that maximizes the reachability probability P Cx (S |= ♦W ) and employ that
controller as long as x 6∈W .

Computation of the reachability probability has been studied extensively in the literature
for both infinite horizon (Tkachev and Abate, 2012, 2014; Tkachev et al., 2017; Haesaert
and Soudjani, 2018) and finite horizon (Soudjani and Abate, 2013, 2012; Lahijanian et al.,
2015; Kariotoglou et al., 2017; Lesser and Oishi, 2017; Soudjani et al., 2017; Vinod and
Oishi, 2018; Lavaei et al., 2019; Jagtap et al., 2019) using different abstract models and
computational methods. Together with an algorithm that underapproximates the region
of almost sure satisfaction, these approaches can be used to provide a lower bound on the
probability of satisfaction of the parity condition. In the rest of the chapter, we focus on
the following problem (the first half of (5.5)).
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Problem 5 (Approximate Maximal Winning Region) Given S and a parity speci-
fication Parity(P), find a (sub-optimal) controller C ∈ Π, its winning region WinDom(S, C) 6=
∅, and a bound on the volume of the set difference WinDom∗(S)\WinDom(S, C).

In Sec. 5.3-5.5, we provide a solution for Prob. 5 via the paradigm of abstraction-
based controller design. Not surprisingly, we get a tighter (i.e., larger) approximation of
WinDom∗(S) if we use a finer discretization of the state space during the abstraction step.
We also provide an over-approximation of WinDom∗(S), and show closeness of the under-
and over-approximation of WinDom∗(S) in the numerical example provided in Sec. 5.6.

5.3. Abstraction-Based Controller Design

The main result of this chapter is a solution to Prob. 5 via a symbolic algorithm over
abstract 21/2-player games. This is in the same spirit of abstraction-based controller
design (ABCD) for non-stochastic systems as outlined in Chap. 3. The difference is
that in standard ABCD techniques for non-stochastic systems, the abstract game is a
2-player game, where the adversarial Player 1 controls both external disturbances and the
discretization-related nondeterminism. The key insight in our abstraction step is that the
stochastic nature of the underlying CMP allows choosing disturbances in a fair random
way instead of purely adversarially. We model this by introducing an additional random
player (also called the 1/2-player) resulting in a so called 21/2-player game (Condon, 1992;
Chatterjee et al., 2003; Chatterjee and Henzinger, 2012). In the resulting abstract game,
only the effect of the discretization is handled by Player 1 in an adversarial manner. The
random player picks the external disturbance uniformly at random.

In Sec. 5.3.1, we show how a CMP can be abstracted into a 21/2-player game. We defer
the computation of the optimal almost sure winning strategy to Chap. 7. In Sec. 5.3.3,
we show how an almost sure winning strategy in the abstract 21/2-player game is refined,
and that the resulting controller is almost sure winning for the original CMP and its
associated parity specification. This establishes soundness of our ABCD technique to
solve Problem 5.

5.3.1. Abstraction: CMPs to 21/2-Player Games

Given a CMP S = 〈X ,U , Ts〉 and a parity specification Parity(P) for a partition P =
〈B0, B1, . . . , B`〉 of the state space X we construct an abstract 21/2-player game G =
〈V, V0, V1, Vr, E〉 with an abstract parity winning condition Parity(P̂). In the abstract
game, we relax the restriction that P̂ needs to be a partition of the set of vertices V .
In order to ensure that Parity(P̂) is well defined, we impose the restriction that every
infinite play must have infinitely many occurrences of vertices from at least one of the
sets in P. In other words, we require that every set of vertices U ⊆ V for which there is
no i ∈ [1; `] with U ∩Bi 6= ∅ must be “transient” vertices.
State-space abstraction. Like abstraction for non-stochastic systems (Sec. 3.4), we
construct a finite cover over the continuous state space in order to form the abstract state
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space. A cover X̂ of the state space X is a set of non-empty, closed subsets of X—called
the abstract states—such that every x ∈ X belongs to at least one abstract state. The
cover X̂ is called the abstract state space. For the moment, when we present the ABCD
theory for CMPs, we assume that the shape of the abstract states can be anything. Later,
in Sec. 5.4, we will present an abstraction algorithm for which we will require the abstract
states to be hyper-rectangular.

We introduce the abstraction relation Q ⊆ X × X̂ as a relation between the continuous
and the abstract states; formally Q := {(x, x̂) ∈ X × X̂ | x ∈ x̂}. The inverse of the
abstraction relation is called the concretization relation, and is written as Q−1 ⊆ X̂ × X ,
Q−1 := {(x̂, x) ∈ X̂ × X | (x, x̂) ∈ Q}. Syntactically, the abstraction relation Q is same
as the Feedback Refinement Relation (FRR) considered in Chap. 3. However, we will not
use the properties of the FRR in this chapter, and hence we use this different name to
avoid confusion.
Transition abstraction. We also introduce an over- and an under-approximation of the
probabilistic transitions of the CMP S using the non-deterministic abstract transition
functions F : X̂ × U → 2X̂ and F : X̂ × U → 2X̂ with the following properties:

F (x̂, u) ⊇ {x̂′ ∈ X̂ | ∃x ∈ x̂ . Ts(x̂′ | x, u) > 0}, (5.6a)

F (x̂, u) ⊆ {x̂′ ∈ X̂ | ∃ε > 0 . ∀x ∈ x̂ . Ts(x̂′ | x, u) ≥ ε}. (5.6b)

To understand the need for both F and F and the way they are constructed, consider
the following examples. Intuitively, given an abstract state x̂ and an input u, the set F
over-approximates the set of abstract states reachable by probabilistic transitions from x̂
on input u. On the other hand, F under-approximates those abstract states which can
be reached by every state in x̂ with probability bounded away from zero.

Example 5.1 Consider the two CMPs, SA and SB:

SA : s1 s2 s3

x̂1 x̂2

SB : s1 s2 s3

x̂1 x̂2

The circles are concrete states xi, the dashed boxes denote abstract states x̂i, and the
edges denote transitions with positive probability between concrete states xi. Consider
the left abstract state x̂1. Here, the adversary decides which concrete state (i.e., x1 or x2)
the game is in. In both SA and SB , F says that both x̂1 and x̂2 are reachable from x̂1. In
SA, F contains both x̂1 and x̂2, in SB , F is empty. An adversary that plays according to
F is too strong: it can keep playing the self loop in x2, while the stochastic nature of the
CMP ensures that eventually x2 will transition to x3. In order to follow the probabilistic
semantics, we must ensure the adversary picks a distribution whose support contains both
abstract states.

In SA, the probabilistic behavior of the two concrete states x1 and x2 are very different:
x1 stays in x̂1 with probability one and x2 stays in x̂1 or moves probabilistically to x̂2.
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To ensure correct behavior, we look at possible supports of distributions induced by the
dynamics: these are the possible subsets of abstract states between F and F . Here, the
game either stays in x̂1 or (eventually) moves to x̂2 and, in our reduction, we force the
adversary to commit to one of the two options. 2

The parameter ε states that there is a uniform lower bound on transition probabilities
for all states in an abstract state. This ensures that, provided x̂ is visited infinitely often
and u is applied infinitely often from x̂, then x̂′ will be reached almost surely from x̂.
In the absence of a uniform lower bound, this property need not hold for infinite state
systems; for example, if the probability goes to zero, the probability of escaping x̂ can be
strictly less than one.

While it is difficult to compute F and F in general, they can be approximated for the
important subclass of stochastic dynamical systems with affine disturbances; we outline
this approximation procedure later in Sec. 5.4.
Abstract 21/2-player game graph. Given the abstract state space X̂ and the over and
under-approximations of the transition functions F and F , we are ready to construct the
abstract 21/2-player game graph induced by a CMP.

Definition 5.4 Let S = 〈X ,U , Ts〉 be a given CMP, X̂ be the abstract state space, and
F and F be the abstract transition functions as defined in (5.6). Then the induced
abstract 21/2-player game graph G = 〈V, V0, V1, Vr, E〉 is defined as:

• V0 = X̂ and V1 = X̂ × U ;

• Vr =
⋃
v1∈V1

Vr(v1), where
Vr(v1) :={vr⊆X̂ | F (v1)⊆vr⊆F (v1), 1≤|vr| ≤ |F (v1)|+1};

• and it holds that

◦ for all v0 ∈ V0, E(v0) = {(v0, u) | u ∈ U}
◦ for all v1 ∈ V1, E(v1) = Vr(v1), and
◦ for all vr ∈ Vr, E(vr) = {v0 ∈ V0 | v0 ∈ vr}.

Note that Vr(v1) contains non-empty subsets of X̂ that includes all the abstract states
in F (v1) and possibly include only one additional element from F (v1). The construction
is illustrated in Fig. 5.1.
In the reduced game, Player 0 models the controller, Player 1 models the effect of

discretization of the state space of S, and the random edges from the states in Vr model
the stochastic nature of the transitions of S. Intuitively, the game graph in Def. 5.4
captures the following interplay which is illustrated in Fig. 5.1: At every time step, the
controller for S has to choose a control input u ∈ U based on the current vertex x̂ of
G. Since the controller is oblivious to the precise continuous state x ∈ X of S, hence u
is required to be an optimal choice for every continuous state x ∈ x̂. This requirement
is materialized by introducing a fictitious adversary (i.e. Player 1) who, given x̂ and u,
picks a continuous state x ∈ x̂ from which the control input u is to be applied. Now, we
know that no matter what continuous state x is chosen by Player 1, Ts(F (x̂, u) | x, u) > ε
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4

3

2

1

A B C D A2

(A2, u)

{C2, C3}
{C1, C2, C3}

{C2, C3, C4}

C1 C2 C3 C4

Figure 5.1.: Illustration of the construction of the abstract 21/2-player game (right) from a
continuous-state CMP (left). The state space of the CMP is discretized into
rectangular abstract states A1, . . . , D3; F (A2, u) = {C2, C3} (intersecting
the green region), and F (A2, u) = {C1, C2, C3, C4} (intersecting orange
region). V0, V1 and Vr are indicated by circle, rectangular and diamond-
shaped vertices. Random vertices are dashed.

holds for some ε > 0. This explains why every successor of the (x̂, u) ∈ V1 states contains
the set of vertices F (x̂, u). Moreover, depending on which exact x ∈ x̂ Player 1 chooses,
with positive probability the system might go to some state in F (x̂, u) \ F (x̂, u). This is
materialized by adding every state in F (x̂, u) \ F (x̂, u) at a time to the successors of the
states in V1 (see Def. 5.4). Finally, we assume that the successor from every state in Vr
is chosen uniformly at random (indicated by dotted edges in Def. 5.4). Later, it will be
evident that the exact probability values are never used for obtaining the almost sure
winning region, and so we could have chosen any other probability distribution.
Abstract parity winning condition. To conclude the abstraction of a given CMP S
and its parity specification Parity(P) with the set of priorities P = 〈B0, . . . , B`〉, we have
to formally translate the priority sets Bi over subsets of states of the CMP into a set
of priorities P̂ =

〈
B̂0, . . . , B̂`

〉
partitioning the vertices of the abstract 21/2-player game

graph G. To this end, we use the same method from Sec. 3.5.1 to assign priorities to the
set of Player 0 vertices V0 (i.e. the abstract states x̂). Let P̂ =

〈
B̂0, . . . , B̂`

〉
be the set

of abstract priorities. Clearly, the set P̂ does not partition the set of vertices V , unlike
our formalization of parity winning condition in Def. 2.6. Indeed, we implicitly assign an
“undefined” color “−” to all vertices V1 ∪ Vr. Thereby, we only interpret the given parity
winning condition over a projection of a play to its Player 0 vertices. Formally, a play ρ
over the abstract game graph G starting from a vertex x0 ∈ V0 is of the form:

ρ = x0, (x0, u0), ({x0,0, . . . , x0,i0}), x1, (x1, u1), ({x1,0, . . . , x1,i1}), . . .

where xk ∈ {xk,0, . . . , xk,ik} for all k ∈ N. The projection of the play ρ to the player
0 states is defined as ProjV0

(ρ) = x0, x1, . . .. Let ϕ be an ω-regular winning condition
defined using a set of predicates over V0. We use the convention that (G |= ϕ) will denote
the set of every infinite play ρ of G, for any arbitrary pair of strategies of Player 0 and
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Player 1, such that ProjV0
(ρ) satisfies ϕ. This convention is well-defined because every

infinite play of G will have infinitely many occurrences of vertices from V0 in it: This
follows from the strict alternation of the vertices in V0, V1, and Vr, as per Def. 5.4.

5.3.2. Abstract Controller Synthesis

So far we have seen how the 21/2-player parity game
〈
G,Parity(P̂)

〉
is constructed from

the CMP S and the specification Parity(P) according to Def. 5.4 and Sec. 3.5.1. Next,
we need to solve the game

〈
G,Parity(P̂)

〉
to compute the almost sure winning states

and the associated almost sure winning strategy of Player 0. This can be performed
using the efficient symbolic fixpoint algorithm presented in Sec. 7. Our symbolic fixpoint
exploits the intrinsic fairness properties of the random edges: If a random vertex is
visited infinitely often then every random edge will be taken infinitely often. We take
the existing fixpoints for 2-player games, and transform them by embedding this fairness
property. The resulting novel fixpoints compute the almost sure winning region and the
almost sure winning strategy for the 2.5-player games, while retaining the computational
aspects of the original 2-player fixpoint algorithms. The outcome of the synthesis step is
a deterministic memoryless strategy for Player 0.

5.3.3. Controller Refinement

Suppose that the abstract 21/2-player parity game
〈
G,Parity(P̂)

〉
constructed from the

CMP S via Def. 5.4 and Sec. 3.5.1 has been solved as discussed in Sec. 5.3.2. Hence,
we know the almost sure winning region and the associated deterministic memoryless
strategy π0 ∈ ΠDM for Player 0. We refine π0 to a controller C ∈ Π for the CMP S as
follows.

Definition 5.5 (Controller refinement) Let S be a CMP with parity specification
Parity(P) and

〈
G, P̂

〉
its induced finite 21/2-player parity game with deterministic memo-

ryless almost sure Player 0 winning strategy π0 ∈ ΠDM. Then a controller C ∈ Π is called
the refinement of π0 iff for every x ∈ X , if x ∈ x̂ for some x̂ ∈ X̂ , and if π0(x̂) = (x̂, u) ∈ V1

for some u ∈ U , then C(x) := u.

With the completion of this last step of our ABCD method for stochastic nonlinear
systems we can finally state our main theorem providing a solution to Problem 5, which
we prove in Sec. 5.5.

Theorem 5.3 (Solution of Problem 5) Let S be a CMP and Parity(P) be a given
parity specification. Let

〈
G,Parity(P̂)

〉
be the abstract 21/2-player game defined in Def. 5.4.

Suppose, a vertex x̂ ∈ V0 is almost sure winning for Player 0 in the game
〈
G,Parity(P̂)

〉
,

and π0 ∈ ΠDM is the corresponding Player 0 winning strategy. Then the refinement C of
π0 ensures that x̂ ⊆WinDom(S, C).
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Remark 3 (Quality of the Approximation) An over-approximation of the optimal
almost sure winning domain WinDom∗(S) of S with respect to Parity(P) can be computed
via
〈
G,Parity(P̂)

〉
as well. To obtain an over-approximation, we solve this abstract game

cooperatively. That is, we let player Player 0 choose both its own moves and the moves of
Player 1 to win almost surely with respect to Parity(P̂). We use this over-approximation
to check the quality of the under-approximation in Sec. 5.6.

5.4. Computation of the Abstract Transition Functions

We have outlined the ABCD method for synthesis of controllers for CMPs with ω-regular
specifications. The introduced abstraction uses the abstract transition functions F and F
(defined in (5.6)), which we so far assumed to be magically known. In the following, we
present an algorithm for computing F and F for the special class of nonlinear stochastic
dynamical systems with affine stochastic noise.

The stochastic dynamical system. A stochastic dynamical system is expressed using
a tuple ∆ = 〈X ,U , f, tw〉, where X ⊂ Rn is the state space, U is a finite input space,
f : X × U → X is the nominal dynamics, and tw : Rn → R≥0 is the density function of
the stochastic noise. The state evolution of ∆ is described as

xk+1 = f(xk, uk) + ςk, k ∈ N, (5.7)

where xk ∈ X and uk ∈ U are states and inputs for each k ∈ N, and (ς0, ς1, . . .) is assumed
to be a sequence of independent and identically distributed (i.i.d.) random variables with
density function tw representing a stochastic disturbance.
One can construct a CMP S = 〈X ,U , Ts〉 over states X and inputs U from (5.7)

by noticing that for any given state xk and input uk at time k, the next state is a
random variable defined as a function of ςk. In particular, the stochastic transition kernel
Ts(·|xk, uk) can be computed as Ts(A | x, u) =

∫
A tw(x′ − f(x, u))dx′ for all A ∈ B(X )

(Kallenberg, 2002).
For the construction of the abstraction we assume that tw(·) is piecewise continuous and

has a bounded support D ⊂ Rn (the set of points in Rn on which tw is strictly positive),
and f(·, u) is continuous for all u ∈ U .

The abstraction. We assume that X = X ′∪{φ}, where X ′ is a compact hyper-rectangular
working region of the system and φ is a sink state representing the complement of X ′. The
disturbance has a compact support D ⊂ Rn. Let X̂ ′ be a hyper-rectangular partition of X ′.
The overall abstract state space is X̂ = X̂ ′ ∪ {φ}. Given an abstract state x̂ = Ja, bK ∈ X̂ ′
and a control input u ∈ U , we denote the approximate nominal reachable set of S by
Φ(x̂, u) such that

Φ(x̂, u) ⊇
⋃

s∈cl(x̂)

f(s, u), (5.8)

where cl(x̂) is the closure of the set x̂. Note that Φ(x̂, u) can be computed using any
reachability analysis method for deterministic dynamical systems (Coogan and Arcak,
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2015; Dang and Testylier, 2012); further details on this follow in Sec. 5.4.1. Define the
functions S1, S2 : X̂ × U → 2R

n such that

S1 : (x̂, u) 7→ D ⊕ Φ(x̂, u) and (5.9)
S2 : (x̂, u) 7→ D 	 (−Φ(x̂, u)), (5.10)

where D ⊇ D is any over-approximation of the support of disturbance D and D ⊆ D is
any compact under-approximation of D. The operators ⊕ and 	 are Minkowski sum and
Minkowski difference of two sets, respectively, and the minus sign in (−Φ(x̂, u)) is applied
to all elements.

Theorem 5.4 Let ∆ = 〈X ,U , f, tw〉 be a dynamical system and S = 〈S,U , Ts〉 be the
CMP induced by S. Define F and F as below:

F (x̂, u) := {x̂′ ∈ X̂ | (x̂′ 6= φ)⇒ (x̂′ ∩ S1(x̂, u) 6= ∅)∧
(x̂′ = φ)⇒ (S1(x̂, u) 6⊆ X ′)}, (5.11)

F (x̂, u) := {x̂′ ∈ X̂ | (x̂′ 6= φ)⇒ (λ(x̂′ ∩ S2(x̂, u)) > 0)∧
(x̂′ = φ)⇒ λ(S2(x̂, u)\S ′) > 0}, (5.12)

where λ(·) gives the Lebesgue measure (volume) of a set. Then F and F satisfy the
conditions in (5.6), which are restated here for convenience:

A : F (x̂, u) ⊇ {x̂′ ∈ X̂ | ∃x ∈ x̂ . Ts(x̂′ | x, u) > 0},

B : F (x̂, u) ⊆ {x̂′ ∈ X̂ | ∃ε > 0 . ∀x ∈ x̂ . Ts(x̂′ | x, u) ≥ ε}.

Proof For inequality A, consider any pair of abstract states x̂, x̂′ ∈ X̂ ′ and input u ∈ U
and there exists x ∈ x̂, Ts(x̂′ | x, u) > 0. We show that x̂′ ∈ F (x̂, u):

∫

x̂′
tw(x′ − f(x, u))dx′ > 0⇒

∫

x̂′	{f(x,u)}
tw(w)dw > 0

⇒ (x̂′ 	 {f(x, u)}) ∩D 6= ∅
⇒ ∃w ∈ D,∃x′ ∈ x̂′ such that w = x′ − f(x, u)

⇒ ∃w ∈ D,∃x′ ∈ x̂′ such that x′ = f(x, u) + w.

At the same time we know that f(x, u) ∈ Φ(x̂, u) since x ∈ x̂. Then,

x′ ∈ S1(x̂, u)⇒ x̂′ ∩ S1(x̂, u) 6= ∅ ⇒ x̂′ ∈ F (x̂, u).

A similar reasoning holds for the case of x̂′ = φ.

For inequality B, take x̂ ∈ X̂ ′, input u ∈ U , and x̂′ ∈ F (x̂, u) such that x̂′ 6= ∅. Then
λ(x̂′ ∩ S2(x̂, u)) > 0 according to (5.12). For any x′ ∈ x̂′ ∩ S2(x̂, u), we have

x′ ∈ S2(x̂, u)⇒ {x′} ⊕ (−Φ(x̂, u)) ⊆ D
⇒ x′ − f(x, u) ⊆ D ∀x ∈ cl(x̂)

⇒ Ts(x̂
′ | x, u) ≥

∫

x̂′∩S2(x̂,u)
tw(x′ − f(x, u))dx′ > 0 2
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x̂
d1

d1
d2

d2

Figure 5.2.: Illustration of abstraction computation: given the abstract state x̂ (filled
with grey) and some control input u, first the nominal reachable set is over-
approximated (black rectangle). Next, the sets S1 (blue rectangle) and S2

(red rectangle) are computed. Finally, the images of the transition functions F
(filled with yellow) and F (filled with green) are the abstract states intersecting
with S1 and S2 respectively.

The right-hand side is strictly positive since the integrand is strictly positive and the
domain of integration has a positive measure. It is also assumed that f is continuous and
tw piecewise continuous. Therefore, we have a positive function over the compact domain
cl(x̂), which will have a positive minimum:

∃ε > 0 . ∀x ∈ cl(x̂) . Ts(x̂
′ | x, u) ≥ ε ⇒ x̂′ ∈ F (x̂, u).

The abstraction procedure can be summarized as follows: first compute the approximate
nominal reachable set Φ(x̂, u) in (5.8), then take the Minkowski sum and difference for
S1, S2 in (5.9)-(5.10), and finally compute the transition relations (5.12)-(5.11). Fig. 5.2
illustrates the abstraction procedure for a 2-d system and when D is of the form [−d1, d1]×
[−d2, d2].

5.4.1. Computation for Mixed-Monotone Systems

If the function f(·, u) is mixed-monotone for every u ∈ U and the partition sets are
hyper-rectangles, then the nominal reachable set Φ(x̂, u) can be computed particularly
efficiently. We recall the definition of mixed-monotonicity (Coogan and Arcak, 2015).

Definition 5.6 Let g : X → X be a function, and ≤X be an order relation on X induced
by positive cones. The function g is called mixed-monotone with respect to ≤X (or
simply mixed-monotone if ≤X is obvious from the context) if there exists a function
h : X × X → X—called the decomposition function—with the following properties:

1. ∀x ∈ X . h(x, x) = g(x),

2. ∀x1, x2, y ∈ X . (x1 ≤X x2)⇒ (h(x1, y) ≤X h(x2, y)), and
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3. ∀x, y1, y2 ∈ X . (y1 ≤X y2)⇒ (h(x, y2) ≤X h(x, y1)).

Intuitively, a mixed-monotone function can be decomposed into an increasing and
a decreasing component. This phenomenon can be seen from the definition of the
decomposition function. The following proposition (Coogan and Arcak, 2015, Thm. 1)
shows a fast over-approximation method of the image of a rectangular set under a
mixed-monotone function.

Proposition 5.1 Let g be a mixed-monotone function with the decomposition function
h, and Ja, bK ⊆ X be any hyper-rectangle. The image of Ja, bK under g can be over-
approximated as Jh(a, b), h(b, a)K.

For mixed-monotone f(·, u) with decomposition function hu, the function Φ(x̂, u) can
be computed using Prop. 5.1 as Φ(x̂, u) = Jhu(a, b), hu(b, a)K for x̂ = Ja, bK.

5.5. Proof of Theorem 5.3

Proof outline. To prove Thm. 5.3, we first decompose both the original and the abstract
parity specifications Parity(P) and Parity(P̂) into a combination of more manageable
safety and reachability sub-parts. That is, for every state reachable by a finite play in
S and for every odd priority i, we consider a local safety specification ψS and a local
reachability specification ψR defined by

ψS := �¬


 ⋃

j∈odd [i,`]

Bj


 and ψR := ♦

(
ψS ∨

∨
j∈even [i+1;`]Bj

)
. (5.13)

Intuitively, ψR requires that every time an odd priority—say Bi—is visited in S, eventually
either Bi and higher odd priorities should never occur or an even priority Bj with j > i

should occur, almost surely. Similarly, for the abstract 21/2-player parity game
〈
G, P̂

〉
we

consider the local safety winning condition ψ̂S and a local reachability winning condition
ψ̂R defined by

ψ̂S := �¬


 ⋃

j∈odd [i,`]

B̂j


 and ψ̂R := ♦

(
ψ̂S ∨

∨
j∈even [i+1;`] B̂j

)
. (5.14)

While the above decomposition needs to be established both for G and for S, the
directions of the respective proof differ. For S we show that if ψR holds for a state
reachable by a finite path over S, then the original specification Parity(P) is satisfied by
a continuation of the path using the refined controller C (Step 1). For G we show that if
Parity(P̂) is satisfied, then ψ̂R holds for every state visited by a play compatible with the
almost sure winning strategy π0 in

〈
G, P̂

〉
(Step 2). Further, we show that satisfaction

of ψ̂S (resp. ψ̂R) in G implies satisfaction of ψS (resp. ψR) in S (Step 3-5). With this,
we have all ingredients to prove Thm. 5.3 (Step 6).
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Step 1: Decomposition of Parity(P). We prove a sufficient condition for satisfaction
of Parity(P) in S if ψR holds.

Lemma 5.1 Let S be a CMP, Parity(P) be a parity specification, x0 ∈ X be a given
initial state, and C be a controller. Suppose the following holds for every finite path
(x0, . . . , xn) ∈ X n+1 of S and every i ∈odd [1; `]:

xn ∈ Bi ⇒ P Cxn (S |= ψR) = 1. (5.15)

Then P Cx0(S |= Parity(P)) = 1.

Proof (Proof of Lem. 5.1) Define for any arbitrary i ∈odd [1; `] the event Ei := (S |=
ψi) with the specification ψi :=

(∨
j∈odd [i;`]�♦Bj→

∨
j∈even [i+1;`]�♦Bj

)
. We want to

show that P Cx0(S |= Parity(P)) = P Cx0 (
⋂
iEi) = 1. We prove this by showing P Cx0(Ei) = 0

for every i ∈odd [1; `]. Once we show this, the result follows according to the standard
inequalities:

P Cx0 (
⋂
iEi) = 1− P Cx0

(⋃
iEi
)
≥ 1−

∑
i P
C
x0

(
Ei
)

= 1

where P Cx0(Ei) = P Cx0 ((S |= ∨j�♦Bj) ∩ (S |= ∧k♦�¬Bk))

with i ∈odd [1; `], j ∈odd [i; `], and k ∈even [i + 1; `]. Define the random variable τ to
be the largest time instance when the trajectory visits one of the sets Bk. Also define
τ ′ > τ to be the first time instance after τ when the trajectory visits one of the sets Bj
again. Note that for any trajectory satisfying ∨j�♦Bj and ∧k♦�¬Bk, both τ and τ ′ are
well-defined and bounded. According to the assumption (5.15), we have

P Cx0(Ei | τ ′ = n,x0, x1, · · · , xn)

= P Cxn ((S |= ∨j�♦Bj) ∩ (S |= ∧k♦�¬Bj)) = 0.

By taking the expectation with respect to the condition (τ ′, x0, · · · , xn), we conclude
that P Cx0(Ei) = ECx0

[
P Cx0(Ei | τ ′ = n, x0, x1, · · · , xn)

]
= ECx0 [0] = 0, i.e., Ei has a zero

probability. 2

Step 2: Decomposition of Parity(P̂). We present a necessary condition for satisfaction
of Parity(P̂) in G if ψ̂R holds.

Lemma 5.2 Let
〈
G, P̂

〉
be a 21/2-player parity game, and v0 be a given vertex of G.

Suppose π∗0 ∈ ΠDM
0 is a Player 0 strategy such that infπ1∈Π1 P

π∗0 ,π1

v0 (G |= Parity(P̂)) = 1.
Then given every finite play v0 . . . vn ∈ V ∗ such that there exists a Player 1 strategy
π1 ∈ Π1 with P π

∗
0 ,π1

v0 (G |= v0 . . . vn) > 0, the following holds for every i ∈odd [1; `]:

vn ∈ B̂i ⇒ inf
π1∈Π1

P
π∗0 ,π1

vn

(
G |= ♦ψ̂R

)
= 1. (5.16)

The only new factor in Eq. (5.16) is the presence of the adversarial effect of the Player 1
strategies.
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Proof It follows from the definition of the parity winning condition in (2.2) that a vertex
v0 ∈ V is almost sure winning using the strategy π∗0 if the following condition is fulfilled:

infπ1∈Π1 P
π∗0 ,π1

v0

(
G |=

∧
i∈odd [1;`]�

(
B̂i ⇒ ♦ψ̂R

))
= 1. (5.17)

From the semantics of LTL, (5.17) implies:

infπ1∈Π1 P
π∗0 ,π1

v0

(
G |=

∧
i ∀m ∈ N . (vm ∈ B̂i)⇒ ♦ψ̂R

)
= 1, (5.18)

with i ∈odd [1; `]. We show that (5.18) implies for every finite play v0 . . . vn ∈ V ∗,
occurring with a positive probability p1 > 0 for some strategy of Player 1, (5.16) holds.
Suppose, for contradiction’s sake, there exists some i ∈odd [1; `] such that vn ∈ B̂i and
(5.16) does not hold, i.e., infπ1∈Π1 P

π∗0 ,π1

vn

(
G |= ♦ψ̂R

)
< 1, implying existence of some

0 < p2 ≤ 1 with supπ1∈Π1
P
π∗0 ,π1

vn

(
G 6|= ♦ψ̂R

)
= p2. This results in satisfaction of the

parity winning condition with a probability of at most (1 − p1 · p2) < 1, contradicting
(5.18). 2

Step 3: Refinement of ψ̂S to ψS. Let U ⊆ X be a given set of states of S, and U ⊆ X̂
be the under-approximation of U in the abstract state space X̂, defined as:

U := {x̂ ∈ X̂ | x̂ ⊆ U}. (5.19)

We show that almost sure safety with respect to a given set U in G implies the same with
respect to the set U in S; this will later be used to infer ψ̂S ⇒ ψS .

Proposition 5.2 Let S be a CMP and G be a finite 21/2-player game graph as defined
in Def. 5.4. Suppose U ⊆ X is a given set of states of S, U ⊆ V0 is the under-
approximation of U using the set of Player 0 vertices of G, and assume that there is
a Player 0 vertex v ∈ U for which there is a strategy π0 ∈ ΠDM

0 of Player 0 such that
infπ1∈Π1 P

π0,π1
v (G |= �U) = 1. Then the refinement C of π0 ensures that for every state

x ∈ v, P Cx (S |= �U) = 1.

Proof It is known that for safety properties, almost sure satisfaction coincides with sure
satisfaction, i.e., infπ1∈Π1 P

π0,π1
v (G |= �U) = 1 if and only if for every strategy π1 ∈ Π1,

every infinite play of G stays inside U at all time (de Alfaro and Henzinger, 2000). In
other words, there must be a controlled invariant set W inside U for the strategy π0,
and v ∈ W . This controlled invariant set can be obtained by considering the 2-player
game, obtained from G by removing all the random vertices, and redirecting the outgoing
transitions of a given Player 1 vertex v′ ∈ V1 to the Player 0 vertices within the set
F (v′, π0(v′)) ⊆ V0. Since F (v′, π0(v′)) over-approximates the set of all the continuous
states reachable from v′ using the input π0(v′), hence if Player 0 can fulfill �U using the
strategy π0(v′), then C can fulfill �Q−1(U) from every state x ∈ v′ in S. (This follows
from the standard arguments in abstraction-based control using over-approximation based
abstractions (Reissig et al., 2017).) Since U is an under-approximation of U , hence
Q−1(U) ⊆ U , which implies that Player 0 can also fulfill �U using the refined controller
C. 2
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Step 4: Refinement for ψ̂R to ψR. Let U ⊆ X be a set of states of S, and U ⊆ X̂ be
the under-approximation of U using the abstract state space X̂, as per the definition in
(5.19). We show that almost sure reachability with respect to the Player 0 vertices U in
G implies the same with respect to the set U in S; this will be used to infer ψ̂R ⇒ ψR.
Suppose π0 ∈ ΠDM

0 is some strategy of Player 0 in the game 〈G,♦U〉. We introduce
a ranking function r : V0 → N ∪ {∞} as a certificate for almost sure satisfaction of the
winning condition ♦U . The ranking function r is defined inductively as follows:

r(v) =





0 v ∈ U,
∞ infπ1∈Π1 P

π0,π1
v (G |= ♦U) < 1,

i+ 1 min{n ∈ N | infπ1∈Π1 P
π0,π1
v (G |=©r−1(n)) > 0} = i

∧ infπ1∈Π1 P
π0,π1
v (G 6|=©r−1(∞)) = 1.

(5.20)

Note that every vertex v ∈ V gets a rank: If r(v) 6=∞, then infπ1∈Π1 P
π0,π1
v (G |= ♦U) =

1 by definition of r. In this case, there must exist some path to U , i.e., infπ1∈Π1 P
π0,π1
v (G 6|=

©r−1(∞)) = 1 must be true, and moreover infπ1∈Π1 P
π0,π1
v (G |= ©r−1(n)) > 0 will be

true for some n. Thus, r(v) = n+ 1.
From the ranking function r(·) defined in (5.20), it is clear that infπ1∈Π1 P

π0,π1
v (G |=

♦U) = 1 implies r(v) 6= ∞. We first identify some local structural properties of the
abstract transition functions F and F evaluated on some abstract states with finite
ranking.

Lemma 5.3 Suppose π0 ∈ ΠDM
0 is some strategy of Player 0. For every v ∈ V0 with

r(v) = i 6=∞, i > 0, both F (v, π0(v)) ∩ r−1(∞) = ∅ and either of the following holds:

1. F (v, π0(v)) ∩ r−1(i− 1) 6= ∅, or

2. F (v, π0(v)) = ∅ and F (v, π0(v)) ⊆ r−1(i− 1).

Proof Firstly, F (v, π0(v))∩r−1(∞) = ∅ should always hold as otherwise Player 1 would
have a strategy to reach a state in r−1(∞) with nonzero probability in the next step.
Suppose (2) does not hold, implying either (a) F (v, π0(v)) 6= ∅, or (b) the existence

of a vertex v′ ∈ F (v, π0(v)) with r(v′) 6= i − 1. Then F (v, π0(v)) ∩ r−1(i − 1) 6= ∅
must hold, as otherwise, for case (a) and (b) Player 1 would have strategies π1 with
π1(v, π0(v)) = (F (v, π0(v))) and π1(v, π0(v)) = (F (v, π0(v)) ∪ {v′}) respectively, such
that P π0,π1

v (G |=©r−1(i− 1)) = 0.
On the other hand, suppose (1) does not hold. Then F (v, π0(v)) = ∅ must be true,

as otherwise Player 1 would have a strategy π1 with π1(v, π0(v)) = (F (v, π0(v))) such
that P π0,π1

v (G |= ©r−1(i − 1)) = 0. Moreover, F (v, π0(v)) ⊆ r−1(i − 1) must also be
true, as otherwise there would exist a vertex v′ ∈ F (v, π0(v)) with r(v′) 6= i − 1, and
Player 1 would have a strategy π1 with π1(v, π0(v)) = (F (v, π0(v)) ∪ {v′}) = ({v′}) such
that P π0,π1

v (G |=©r−1(i− 1)) = 0. 2

The following lemma establishes soundness of the reduction with respect to reachability
specifications.
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Proposition 5.3 Let S be a CMP and G be a finite 21/2-player game graph as defined in
Def. 5.4. Suppose there is a Player 0 vertex v ∈ V0 in G and a set of vertices U ⊆ V0,
which is a an under-approximation of the set of states U ⊆ X of S. If π0 ∈ ΠDM

0 is a
Player 0 strategy with infπ1∈Π1 P

π0,π1
v (G |= ♦U) = 1, then the refinement C ∈ Π of π0

ensures that for every state x ∈ v, P Cx (S |= ♦U) = 1.

Proof It follows from the definition of the ranking function in (5.20) that the set of
almost sure winning vertices for the winning condition ♦U is given by all the vertices
with finite rank. We show that for every vertex v with a finite rank, the refinement C ∈ Π
of π0 ensures that from every state x ∈ v, P Cx (S |= ♦U) = 1.
First, trajectories starting from any state x ∈ v with r(v) 6=∞ never go to the region

Q−1(r−1(∞)). This follows from the identity F (v, π0(v)) ∩ r−1(∞) = ∅ in Lem. 5.3 and
because F (v, π0(v)) is an overapproximation of the one step reachable set from the states
within vertex v. Hence, every infinite trajectory of S starting at x will visit the states in
X \Q−1(r−1(∞)) infinitely often.

The rest of the proof shows that if a trajectory visits the states X \Q−1(r−1(∞)∪r−1(0))
infinitely often, then the trajectory will almost surely satisfy ♦Q−1(r−1(0)) = ♦Q−1(U),
implying that it will almost surely satisfy ♦U as well (since Q−1(U) ⊆ U). The proof
is by induction over the largest rank assigned by r. For the base case, let the largest
rank assigned by r be 2. We show that every state x ∈ X starting from inside a vertex v
with r(v) = 1 or r(v) = 2 will almost surely reach Q−1(U), i.e., P Cx (S |= �Q−1(r−1(1) ∪
r−1(2))) = 0. Note that the events {♦�Q−1(r−1(2))} and {�♦Q−1(r−1(1))} form a
partition of the event of {�Q−1(r−1(1) ∪ r−1(2))}. Therefore,

P Cx (S |= �Q−1(r−1(1) ∪ r−1(2)))

= P Cx (S |= �Q−1(r−1(1) ∪ r−1(2)) ∧ ♦�Q−1(r−1(2)))

+ P Cx (S |= �Q−1(r−1(1) ∪ r−1(2)) ∧�♦Q−1(r−1(1))).

The first term is upper bounded by P Cx (S |= ♦�Q−1(r−1(2))) which is zero, because
P Cx (S |= �Q−1(r−1(2))) =

∏∞
n=1(1 − ε)n = 0, where ε is the lower bound probability

of transitions used in the definition of F . The second term is also zero because the
event requires the number of transitions from Q−1(r−1(1)) to be infinite. To see this, let
in = (i0, i1, . . . , in) be the first (n+ 1) time instances that a trajectory visits Q−1(r−1(1)).
Then,

P Cx (S |= �Q−1(r−1(1) ∪ r−1(2)) ∧�♦Q−1(r−1(1))) =
∑

in

P Cx (S |= �Q−1(r−1(1) ∪ r−1(2)) ∧�♦Q−1(r−1(1)) | in)P Cx (in)

≤
∑

in

(1− ε)nP Cx (in) = (1− ε)n.

The last inequality is due to either Cond. (1) or Cond. (2) of Lem. 5.3 applied to the
vertices in v ∈ r−1(1). Note that this inequality holds for any n. By taking the limit
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when n goes to infinity, we have that this second term is also zero. Hence the base case is
established.
For the induction hypothesis, assume that the claim holds when the maximum rank

assigned by the function r is i. Then for the induction step, i.e., when the maximum
rank is i+ 1, we can follow same argument, as we did for the states with rank 2 in the
base case, to show that every infinite trajectory inside X \ Q−1(r−1(∞) ∪ r−1(0)) will
never get trapped inside Q−1(r−1(i+ 1)), which will mean that the trajectory will visit
the states in X \Q−1(r−1(∞)∪ r−1(0)∪ r−1(i+ 1)) infinitely often. Then it follows from
the induction hypothesis that the trajectories will reach Q−1(U) almost surely. 2

Step 5: Refinement of runs. We show that every finite path in S can be mapped to
a positive probability finite play in G; this will be used to establish a bridge from the
universal quantification over finite paths in S to the existential quantification over finite
plays in G.

Lemma 5.4 Let S be a CMP, G be the abstract game graph as defined in Def. 5.4,
π0 ∈ ΠDM

0 be an arbitrary Player 0 strategy in the game G, and x ∈ X be a state of S.
Suppose C ∈ Π is the refinement of π0. Then for every finite trajectory x0 . . . xn ∈ X ∗ of
S in the support of the distribution P Cx0, there exists a Player 1 strategy π1 ∈ Π1 such
that P π0,π1

x̂0 (G |= x̂0 . . . x̂n) > 0, where x̂i = Q(xi) for every i ∈ [0;n].

Proof The initial state x0 ∈ x̂0, and for every 0 ≤ i < n, from the definition of F it
follows that x̂i+1 ∈ F (x̂i, π0(x̂i)). Thus, from every Player 1 vertex (x̂i, π0(x̂i)), there
is a successor vertex in Vr whose successor is x̂i+1. Hence, for every 0 ≤ i < n, there is
some move of Player 1 which causes a transition to x̂i+1 with some positive probability
pi. Then P π0,π1

x̂0 (G |= x̂0 . . . x̂n) =
∏n−1
i=0 p

i > 0. 2

Step 6: The final assembly of the proof. Finally, we finish the proof of Thm. 5.3 by
stitching everything together. It is known that memoryless strategies suffice for winning
almost surely in 21/2-player parity games (Zielonka, 2004). Let π∗0 ∈ ΠDM

0 be the witness
strategy of Player 0 to almost surely win from the vertex x̂∗ in the game

〈
G,Parity(P̂)

〉
,

and C∗ be the refinement of π∗0. We claim that x̂∗ ⊆WinDom(S, C∗).
We will show that for every finite path of S starting within x̂∗ and ending in some

odd priority state Bi, at one point either Bi and any higher odd priority states will
not be visited any more, or a state of higher even priority will be visited eventually.
Then the claim will follow from Lem. 5.1. We know from Lem. 5.4 that existence of
a finite path x0 . . . xn of S implies existence of an abstract play x̂0 . . . x̂n such that
supπ1∈Π1

P π0,π1

x̂0 (G |= x̂0 . . . x̂n) > 0. Moreover, by construction of P̂, if xn ∈ Bi with an
odd i then x̂n ∈ B̂j with odd j and j ≥ i. Since π∗0 is an almost sure winning strategy,
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hence, by using Lem. 5.2, we know that the following holds:

inf
π1∈Π1

P
π∗0 ,π1

x̂n



G |= ♦



�¬


 ⋃

j∈odd [i;`]

B̂j




︸ ︷︷ ︸
E

∨

F︷ ︸︸ ︷
∪j∈even [i+1;`]B̂j







= 1. (5.21)

By construction of P̂ , the set of verticesE is an over-approximation of the set
(⋃

j∈odd [i;`]Bj

)
,

and so the negation of E is an under-approximation of the latter. From Prop. 5.2, we can
infer that the set of abstract states from which the winning condition �¬E is satisfied
(almost) surely using the strategy π∗0 is an under-approximation of the set of continuous
states from which the winning condition �¬

(⋃
j∈odd [i;`]Bj

)
is satisfied almost surely

using the controller C∗. Furthermore, by construction of P̂, the set of vertices F is an
under-approximation of the set ∪j∈even [i+1;`]Bj . From all of these observations, together
with Prop. 5.3 and Lem. 5.1, we can infer Thm. 5.3.

5.6. Numerical Examples

5.6.1. 2-Dimensional Bistable Switch

We consider the controller synthesis problems for a two-dimensional stochastic bistable
switch with a couple of different parity specifications; the examples have been adopted,
mutatis mutandis, from the work of Dutreix et al. (2020). The dynamics of the system is
modeled by the following difference equations:

xk+1
1 = xk1 +

(
−a · xk1 + xk2

)
· τ + uk1 + ςk1 (5.22)

xk+1
2 = xk2 +

( (
xk1
)2

(
xk1
)2

+ 1
− b · xk2

)
· τ + uk2 + ςk2 , (5.23)

where x1, x2 are the state variables, u1, u2 are the control inputs, a, b are constant
parameters, τ is the sampling time, and ς1, ς2 are stochastic noises. We assume that the
domain of the state variables is [0.0, 4.0]× [0.0, 4.0], and we saturate the state trajectories
at the boundary of the domain. We consider a finite set of values for both of the control
inputs: for every k, uk1, uk2 ∈ {−0.05, 0.0, 0.05}. The values of the constants are given
by: a = 1.3, b = 0.25, and τ = 0.05. Finally, we assume that the stochastic noise
samples (ςk1 , ς

k
2 ) are drawn from a piecewise continuous density function with the support

D = [−0.4,−0.2]× [−0.4,−0.2].1

1Dutreix et al. (2020) considered the density function to be given by truncated Gaussian distribution
with support D. In our work, we disregard the shape of the distribution because we restrict the focus
to only the qualitative satisfaction of the specification.
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(a) The state predicates.
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¬A,A
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¬A

(b) Parity automaton for ϕ1; the
prioritized partition is P =
〈∅, {q2, q3, q4}, {q0, q1}〉. ¬A
stands for any element in
{{}, B,C,D}.

q0start q1

q3q2 q4

q5 q6

{}, A

B
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B

{}, A

CD

{}, A,D
B

C {}, A,D

B

C

{}, A,B,C

D

{}, A,B,C,D {}, A,B,C,D

(c) Parity automaton for ϕ2; the prioritized partition is P =
〈{q0, q2, q4}, {q1, q3, q5, q6}〉.

Figure 5.3.: The state predicates and the parity specifications.

Let A,B,C,D be sets of states, as shown in Fig. 5.3a. We are interested in synthesizing
the almost sure winning controllers for the above system for the following two LTL
specifications:

ϕ1 := � ((¬A ∧©A)→ (©©A ∧©©©A)) ,

ϕ2 := (�♦B → ♦C) ∧ (♦D → �¬C) .

The specifications ϕ1 and ϕ2 can be represented using the parity automata 1 shown in
Fig. 5.3b and 5.3c. Firstly, for each of the two specifications, we compute a product
with the system model. Secondly, we apply the algorithm from Chap. 7 on the product
system to solve the synthesis problem. Both of these steps have been implemented on the
open-source tool Mascot-SDS (Majumdar et al., 2020a). By symbolically encoding the
abstract 21/2-player game using BDD-s, and by using sophisticated acceleration techniques
for solving symbolic fixpoint algorithms from the literature (Long et al., 1994; Piterman
and Pnueli, 2006), we achieve significant improvement in performance, in comparison

1Dutreix et al. (2020) modeled ϕ1 and ϕ2 using Rabin automata, and we transformed them into
(language-) equivalent parity automata to match our setup.
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with the implementation of the enumerative algorithm of Dutreix et al. (2020) in the tool
called StochasticSynthesis.1

The tool StochasticSynthesis has a couple of additional features compared to our im-
plementation in Mascot-SDS. Firstly, it performs an adaptive abstraction refinement
procedure for achieving better computational efficiency over uniform abstractions. This
is an orthogonal optimization tool that is known to be effective in discretization-based
approaches for controller synthesis (Soudjani and Abate, 2013; Cámara et al., 2011a,b;
Nilsson et al., 2017; Hsu et al., 2018b), and we expect that our uniform abstraction-based
synthesis procedure will benefit further from this in the future. Secondly, Stochastic-
Synthesis also addresses the quantitative aspect of the synthesis problem, which is to
maximize the probability of satisfying the given specification. In all our experiments, we
disabled this second feature of StochasticSynthesis, since the quantitative part is not our
main algorithmic contribution.
We performed all the experiments on a Macbook Pro (2015) laptop equipped with a

2.7 GHz Intel Core i5 processor and a 16 GB RAM.
We performed two sets of experiments to compare the performance of Mascot-SDS

and StochasticSynthesis, one with the adaptive refinement feature of StochasticSynthesis
disabled and one with the same enabled. The results have been summarized in Tab. 5.1,
Fig. 5.4, and Fig. 5.5. All the experiments empirically show that the approximation
error reduces with finer discretization. We highlight the other main findings in the
following: (A) When the abstraction-refinement feature of StochasticSynthesis was disabled,
Mascot-SDS outperformed StochasticSynthesis by a large margin. In fact, for some
levels of discretization, StochasticSynthesis crashed due to memory limitation, whereas
Mascot-SDS consumed quite manageable amount of memory and synthesized controllers
within reasonable amount of time. (B) Even when the abstraction-refinement feature
of StochasticSynthesis was enabled, for achieving the same level of approximation error,
Mascot-SDS was significantly faster for ϕ1 and was competitive for ϕ2, and consumed
much less memory for both ϕ1 and ϕ2: For ϕ1, at one point Mascot-SDS was more
than 150 times faster and consumed around 150 times lesser memory. These findings
demonstrate the superior capabilities of our symbolic solution approach, which can be
potentially further improved by using adaptive refinement techniques.

5.6.2. 3-Dimensional Vehicle

We consider the controller synthesis problem for a mobile robot, modeled using the
sampled-time version of perturbed Dubins vehicle (Majumdar et al., 2020a). The system
has three state variables, denoted as x1, x2, and x3, and representing respectively the
position along the X-coordinate, the position along the Y-coordinate, and the steering
angle. The vehicle moves with a constant forward velocity V (maintained by, e.g., a low
level cruise control system), which is set to 1 unit in this example. The single control
input u is responsible for moving the steering wheel, and thus changing the direction of

1Repository: https://github.com/gtfactslab/
StochasticSynthesis,
commit nr.: 888b9dcf67369a732b8c225d790bd3343e4442e5
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(a) Specification ϕ1
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Figure 5.4.: Performance comparison between Mascot-SDS and StochasticSynthesis (abbre-
viated as SS) (Coogan and Arcak, 2015) when the latter was allowed to use
its inbuilt abstraction refinement process for better performance. The different
points on the plots were obtained by running Mascot-SDS using different
sizes of abstract states, and running SS using different numbers of refinement
stages.
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5.6. Numerical Examples
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(a) ϕ1 using StochasticSynthesis (b) ϕ1 using Mascot-SDS.
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(c) ϕ2 using StochasticSynthesis. (d) ϕ2 using Mascot-SDS.

Figure 5.5.: Visualization of the under-approximations—in green—and the over-
approximations—in yellow and green, combined—of the almost sure win-
ning regions for the specifications ϕ1 and ϕ2 as computed using the tools
Mascot-SDS and StochasticSynthesis; in red are the complements of the over-
approximations. For Mascot-SDS, the abstract states were chosen of the size
1/32× 1/32. For StochasticSynthesis, initially the abstracts states were chosen
of the size 1× 1, and then the tool was made to execute 14 refinement steps
to improve the approximation of the solution. 105
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Figure 5.6.: Vehicle state space annotated with the location of the office, the kitchen, and
the door.

the movement. The sampled-time dynamics for all k ∈ N and for all inputs uk 6= 0 is
given as follows:

xk+1
1 = xk1 +

V

uk

[
sin(xk3 + ukτ)− sin(xk3)

]
+ ςk1

xk+1
2 = xk2 −

V

uk

[
cos(xk3 + ukτ)− cos(xk3)

]
+ ςk2

xk+1
3 = xk3 + ukτ + ςk3 ;

when uk = 0 then the dynamics can be obtained by taking limit uk → 0 in the right hand
side of the above equations. for all k ∈ N with uk = 0. The sampling time is τ = 0.1 sec
and (ςk1 , ς

k
2 , ς

k
3 ) is a collection of stochastic noise samples drawn from a piecewise continuous

density function with the support D = [−0.06, 0.06]× [−0.06, 0.06]× [−0.06, 0.06]. We
assume that the states of the vehicle moves inside the domain [−0.6, 0.96]× [−1.2, 1.98]×
[−π, π].

Fig. 5.6 shows the state space of the robot with various annotations for certain sets of
states. The specification is provided using the following atomic propositions: 1. A0 ↔
Door is open,
2. G0 ↔ Robot inside office,
3. G1 ↔ Robot inside kitchen, and
4. Crash ↔ Robot hits the door when it is closed. There is a safety requirement that
the robot should never hit the closed door, i.e., �¬Crash. The rest of the specification is
provided in an implication form. We assume that the following property is satisfied by
the environment:

(a) the door opens infinitely often, i.e., �♦A0,

(b) whenever the door is open, it remains open until the robot reaches the kitchen, i.e.,
� (A0 → (A0UG1)).

If the environment satisfies the above, then the robot has to fulfill the following:

(a) The robot serves the request infinitely often, i.e., �♦G0, and
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5.7. Related Work

Size of abstract states
Volume

of
the gap

Computation time

Abstraction Over-
approximation

Under-
approximation

0.1× 0.1× 0.1 6.6 < 1m 9m 31m
0.08× 0.08× 0.08 4.8 2m 84m 4h
0.06× 0.06× 0.06 4.5 7m 102m 9h

Table 5.2.: Performance evaluation of our method on the Dubins vehicle: Col. 1 shows
the size of abstract states, Col. 2 shows the volume of the difference between
the over and the under-approximation, and Col. 3, 4, and 5 respectively show
the computation time for the 21/2-player game, computation time for the
over-approximation, and computation time for the under-approximation of
the winning region.

(b) the robot goes to the kitchen infinitely often, i.e., �♦G1.

The overall specification for the robot can be summarized as:

�¬Crash
∧ (�♦A0 ∧� (A0 → (A0UG1))→ �♦G0 ∧�♦G1) .

(5.24)

The specification in (5.24) can be modeled as a 3-color parity automaton.We computed
the synchronous product of the parity automaton and the vehicle’s dynamics model.
We used the infrastructure of Mascot-SDS (Majumdar et al., 2020a) to compute a

21/2-player game and to synthesize an almost sure winning controller for the product
system. We performed the experiments on a computer with 3.3GHz Intel Xeon E5 v2
processor and 256 GB RAM. We used three different levels of discretization for the
abstract state space for computing the 21/2-player game. The results are summarized in
Tab. 5.2. We would like to highlight two key facts which came out of the experiments:
(a) In all three cases, when we treated the noise in the worst case fashion, the synthesis
process failed to provide us any controller, and (b) as we decreased the size of the abstract
states (i.e., finer abstraction), the gap between the over and the under-approximation of
the controller domain got monotonically smaller, which empirically confirms the intuition
that the quality of the controller improves with finer abstraction.
We also visualize a couple of different simulations with the obtained controller in

Figs. 5.7a–5.7b. We empirically show that whenever the assumption A0 continues to hold
recurrently, the G0 and G1 also hold recurrently. In contrary, when A0 does not hold
persistently, G0 and G1 also does not hold persistently. This empirically validates our
claim that the synthesized controller is sound.

5.7. Related Work

There are many extensions of ABCD to stochastic systems (Zamani et al., 2013, 2014,
2015; Haesaert et al., 2017; Lahijanian et al., 2015; Svorenová et al., 2015). Several tools
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5. Abstraction-Based Controller Design for Controlled Markov Processes

(a) (b)

Figure 5.7.: The figures in the top and the bottom row respectively show the trajectories
of the states x1 and x2 with respect to time. The green regions show when
the assumption A0 was satisfied, and the red and blue plot markers show
when the guarantees G0 and G1 were satisfied respectively.
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5.8. Conclusion

were also developed for such systems (Soudjani et al., 2015; Lavaei et al., 2020a).
Unfortunately, most of the existing methods can only properly handle finite horizon

specifications, such as bounded time reachability or bounded time safety. Notable
exceptions are the papers by Svorenová et al. (2015) and by Dutreix et al. (2020): The
paper by Svorenová et al. (2015) only considered stochastic linear systems (as opposed
to nonlinear systems in our setting) and GR(1) specifications, a subclass of the LTL
specifications. The paper by Dutreix et al. (2020), which came after our paper (Majumdar
et al., 2020a), considers nonlinear systems and the more general class of ω-regular
specifications as us. An important advantage of our method as compared to theirs is the
symbolic nature of our algorithm for a substantial part of the synthesis process. (Recall
that we compute the almost sure winning region using symbolic algorithm and the rest
using the existing non-symbolic algorithms.)

5.8. Conclusion

In this chapter, we considered the problem of synthesizing an optimal controller for a
CMP so that a given parity specification is satisfied with maximum probability. We
showed that ABCD can be used to approximately solve the problem with a guaranteed
lower-bound on the satisfaction probability. Our solution approach is to break the problem
into two parts, a qualitative part followed by a quantitative part. The qualitative part
requires computing an under-approximation of the maximal almost sure winning region
W , along with the respective controller. The quantitative part requires solving an optimal
reachability problem to the set W , along with the respective controller. While there are
known algorithms for solving the quantitative part, we propose a novel symbolic ABCD
algorithm for solving the qualitative part. For this, we discretize the state space of the
CMP to build an abstract 21/2-player game, and we show that an almost sure winning
strategy for the abstract game can be refined back to an almost sure winning controller
for the original CMP. We implement the ABCD algorithm for the qualitative part in the
tool called Mascot-SDS, where for the abstract synthesis of the 21/2-player game, we use
an efficient algorithm that will be presented in Chap. 7. We compared our tool with an
independently developed contemporary tool solving the same problem, and showed that
on a comparable set-up, our tool significantly outperforms the other one. Integration of
the quantitative part in Mascot-SDS has been left out for future research.
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6. Assume-Guarantee Distributed
Synthesis

Part II of this thesis considers synthesis of controllers using discrete system models.
In this chapter, we consider the well-known distributed reactive synthesis problem

(Pnueli and Rosner, 1990). Suppose there are two finite transition systems which are
connected in feedback, are subjected to external disturbances, and have to satisfy a
pair of local temporal specifications. The distributed reactive synthesis problem asks
to compute local controllers for each system such that both the local specifications are
satisfied simultaneously. As we already discussed in the motivating example in Sec. 1.3.3,
the main challenge of distributed synthesis is how to account for the feedback from the
other system in a way that is permissive enough to give us a controller, yet restrictive
enough to be able to provide soundness guarantees against every possible behavior of the
other system.

The advantage of distributed synthesis over monolithic synthesis is that it is modular,
meaning the controller of each system can be synthesized (partly) in isolation and in
parallel. Modularity is a crucial aspect of designing large scale systems, where designing
a monolithic centralized controller for the entire network may be infeasible. Moreover,
modularity offers easy maintenance of such systems, in the sense that replacement of one
system may be possible without readjusting the controllers of the other systems.

In this chapter, we show how two systems connected in feedback can negotiate a pair of
assume-guarantee contracts, such that satisfaction of the contracts will ensure satisfaction
of their local specifications. The negotiation procedure is a sound but incomplete solution
to the otherwise undecidable distributed synthesis problem.

6.1. Assume-Guarantee Decompositions

6.1.1. Systems

In this chapter, we model systems as finite transition systems (see Def. 3.4), although we
use a slightly different formalism having explicitly modeled disturbances and designated
initial states. A system S = 〈X , xin,U ,W, F,Y, H〉 consists of a finite state space X , an
initial state xin ∈ X , a finite control input space U , a finite disturbance input space W
that can be expressed as the cartesian product of a finite internal disturbance input space
W int and a finite external disturbance input space Wext (i.e. W =W int ×Wext), a total
transition function F : X ×W × U → X , a finite output space Y, and an output labeling
function H : X → Y.
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6. Assume-Guarantee Distributed Synthesis

We make the control and the disturbance inputs explicit in the runs of a system. A
run of a system is an infinite sequence ξ = {(xi, wi, ui)}i∈N ∈ (X × U ×W)ω such that
F (xi, wi, ui) = xi+1 for each i ∈ N. Sometime, for convenience, we express a run using

the notation x0 w0,u0

−−−→ x1 w1,u1

−−−→ x2 w2,u2

−−−→ . . .. Unless otherwise mentioned, we will always
assume that a run starts at the initial state, i.e., x0 = xin. The output of the run is
the sequence H(x0)H(x1) . . ., which maps states to their output labels. Intuitively, first,
the set of state variables are set to the initial value x0. In each subsequent step, first
an arbitrary environment input from W is picked, and then a control input from U is
picked. The transition relation determines the new state, and the output labeling function
determines the new output based on the new state.

For the run ξ, recall that we write projX (ξ) for the sequence x0x1 . . . ∈ X ω, projW(ξ)
for w0w1 . . . ∈ Wω, and for the decomposition W int ×Wext =W, we write projWint(ξ)
and projWext(ξ) for projWint(w0w1 . . .) ∈ W intω and projWext(w0w1 . . .) ∈ Wextω re-
spectively. We slightly abuse the notation and additionally write projY(ξ) for
H(x0)H(x1) . . . ∈ Yω.

Let S0 and S1 be two systems; assume X0, X1, Y0, and Y1 are all disjoint. We require
that Y0 ⊆ W int

1 and Y1 ⊆ W int
0 , which enables the two systems to interact among

themselves using their outputs. We define the parallel composition S0 ‖ S1 (see Fig. 6.1)
as the system 〈X , xin,U ,W, F,Y, H〉, where X = X0×X1, xin = (xin0, xin1), U = U0×U1,
W = Wext

0 × Wext
1 , and Y = Y0 × Y1 such that H((x0, x1)) = (H0(x0), H1(x1)) and

F ((x0, x1), (w0, w1), (u0, u1)) = (x′0, x
′
1) iff F0(x0, (H1(x1), w0), u0) = x′0 and

F1(x1, (H0(x0), w1), u1) = x′1.

A run ξ of S0 ‖ S1 is a sequence

x0 w0,(u0
0,u

0
1)

−−−−−−→ x1 → . . .

where for each i ≥ 0, we have xi ∈ X , wi ∈ W , ui0 ∈ U0, ui1 ∈ U1, such that x0 = xin and
for each i ≥ 0, we have δ(xi, wi, (ui0, ui1)) = xi+1. Intuitively, the two systems S0 and S1

run synchronously in parallel. The state of the composed system is a pair of states of
each system. In each step, an environment selects a disturbance input from the set W.
Each system sees its disturbance input, which consists of the external disturbance input
from the environment as well as the internal disturbance input that is part of the output
of the other system, picks a control input, and updates its state based on its transition
function.

Since all the disturbances inW of S0 ‖ S1 are from the environment, hence projW(ξ) =
projWext(ξ) for every run ξ of S0 ‖ S1. On the other hand, for i ∈ {0, 1}, we use the
operator projWint

i
(ξ) to denote the sequence of internal disturbance inputs fed to system

Si, i.e. projWint
i

(ξ) = projY1−i(ξ). We also use the operator projWint
i

(·) on sequences of
states x0x1 . . . ∈ X ω: projWint

i
(x0x1 . . .) = projY1−i(x

0x1 . . .).
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6.1. Assume-Guarantee Decompositions

Env

S0

x0 ∈ X0
u0

S1

x1 ∈ X1
u1

w0 ∈ Wext
0

w1 ∈ Wext
1

H0(x0) ∈ Wint
1H1(x1) ∈ Wint

0

Figure 6.1.: A composition S0 ‖ S1

6.1.2. Distributed Realizability

Specifications and Realizability. A specification for a system is a language ψ ⊆
(X ×W)ω that describes the correct runs; a run x0 w0,u0

−−−→ x1 → . . . satisfies a specification
ψ if (x0, w0)(x1, w1) . . . ∈ ψ. A local specification is a language ψ ⊆ X ω. A run satisfies
a local specification ψ if it satisfies the specification {(x0, w0)(x1, w1) . . . ∈ (X ×W)ω |
x0x1 . . . ∈ ψ}.
A strategy for a system is a function π : (X ×W)+ → U . Likewise, an environment

strategy is a function π′ : (X ×W)∗ × X → W. A run x0 w0,u0

−−−→ x1 → . . . is compliant
with π and/or π′ if for each i ≥ 0, we have ui = π(x0, w0, . . . , xi, wi) and/or wi =
π′(x0, w0, . . . , xi−1, wi−1, xi). We denote by ξ(π, π′) the unique run compliant with π and
π′. Unless stated otherwise, a compliant run must start from x0 = xin.
A system S can realize a specification ψ (or ψ is realizable by S) if there is a system

strategy π, called the realization strategy for ψ, such that for all runs ξ compliant with π
it holds that projX×W(ξ) ∈ ψ. Intuitively, we model the realizability of a specification
as a two-player game between the system and the environment; the system can realize
a specification if it has a realization strategy such that no matter how the environment
plays, the resulting run belongs to the language of the specification.
We sometime use Linear Temporal Logic (see Sec. 2.2.1) notation to express local

specifications over some finite alphabet AP ∈ 2X . Recall that, given an atomic proposition
B ⊆ X , we write �B (safety: “always B”), ♦B (reachability: “eventually B”), and �♦B
(Büchi “eventually always B”) to denote respectively the sets {x0x1 . . . | ∀i ≥ 0 . xi ∈ B} ⊆
X ω, {x0x1 . . . | ∃i ≥ 0 . xi ∈ B} ⊆ X ω, and {x0x1 . . . | ∀i ≥ 0 . ∃j ≥ i . xj ∈ B} ⊆ X ω.
See Sec. 2.2.1 for more detailed description of syntax and semantics of LTL.
Distributed Realizability. Now consider a composition S0 ‖ S1. Suppose ψ0 ⊆ X ω0
and ψ1 ⊆ X ω1 are local specifications defined on the state variables of each system. One
can define realization for the composition S0 ‖ S1 by considering a game between the
composed system and the environment. However, such a centralized realization strategy
may require coordination, e.g., to know the states of the two systems at some point.
Instead, we want the realization strategies to be distributed : each component S0 and S1

should be able to pick their control inputs based solely on the local history of valuations
to state variables and their own disturbance inputs.
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6. Assume-Guarantee Distributed Synthesis

We model the distributed synthesis problem as a game (of incomplete information)
between three players: system S0, system S1, and the environment. The game starts
from the initial state xin of S0 ‖ S1. In each step of the game, first, the environment
picks external disturbance in W, and then the systems S0 and S1 independently and
simultaneously pick control inputs and the game proceeds to the next state.

We require that the strategies of system S0 and system S1 only depend on the history
visible to them. Thus, we define a strategy of system Si, i ∈ {0, 1}, to be a function of
the form (Xi ×Wi)

+ → Ui. Fixing strategies π0, π1, and π′ of systems S0, S1, and the
environment, respectively, yields a unique run ξ(π0, π1, π

′) of the system S0 ‖ S1.
The distributed synthesis problem 〈S0, ψ0, S1, ψ1〉 for the composition S0 ‖ S1 with local

specifications ψ0 ⊆ X ω0 and ψ1 ⊆ X ω1 asks if there exist strategies π0 : (X0 ×W0)+ → U0

and π1 : (X1 × W1)+ → U1 such that for all strategies π′ : (X × W)∗ × X → W, we
have that projX0

(ξ(π0, π1, π
′)) ∈ ψ0 and projX1

(ξ(π0, π1, π
′)) ∈ ψ1. In that case, we say

S0 ‖ S1 can realize the distributed synthesis problem.
Clearly, if S0 and S1 can each realize the local specifications ψ0 and ψ1 respectively,

then S0 ‖ S1 can also realize the distributed synthesis problem. This is because the
strategies do not make any assumptions on the behavior of the other system. However,
it is possible that S0 and S1 do not each realize their specifications but they realize the
distributed synthesis problem; for example, one system can use an assumption about the
behavior of the other.

Unfortunately, the distributed synthesis problem is undecidable in general (Pnueli and
Rosner, 1990). We summarize the discussion in the following proposition.

Proposition 6.1 (1) If for i ∈ {0, 1}, the system Si realizes ψi then the composition
S0 ‖ S1 realizes the distributed synthesis problem 〈S0, ψ0, S1, ψ1〉. (2) (Pnueli and Rosner,
1990) The distributed synthesis problem is undecidable.

We introduce some notation. For i ∈ {0, 1}, we define the realizable region, denoted as
〈〈Si〉〉ψi, as the largest subset of Xi such that for all states x ∈ 〈〈Si〉〉ψi there exists a run
ξ compliant with a realization strategy π of ψi that visits x. Now consider a composition
S0 ‖ S1. We say system Si can maybe-realize ψi (or ψi is maybe-realizable by Si) if there
is a pair of (possibly co-ordinated) strategies π0, π1, called the joint realization strategy,
such that for all strategies π′ it holds that projXi(ξ(π0, π1, π

′)) ∈ ψi. We define the
maybe-realizable region, denoted as 〈〈S0, S1〉〉ψi, as the largest subset of Xi such that for
all states in x ∈ 〈〈Si〉〉ψi there exists a run ξ compliant with a joint realization strategy
π0, π1 of ψi that visits x. We also define the surely unrealizable region as the complement
of the maybe-realizable region.

6.1.3. Assume-Guarantee Contracts

Given a system S, an assume-guarantee contract—a contract in short—is a pair 〈A,G〉 of
safety languages called the assumption A ⊆ W intω and the guarantee G ⊆ X ω.
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Definition 6.1 Let S be a system, and 〈A,G〉 be a contract. Then S can realize 〈A,G〉
if and only if there exists a system strategy π, such that for all k > 0 and for all finite

runs r ≡ x0 w0,u0

−−−→ x1 → . . . xk compliant with π, either of the following holds:
(a) projX (r) ∈ pref(G),
(b) there exists 0 ≤ l < k such that projWint(r)|[0;l] /∈ pref(A).
That is, a violation of G is preceded by a violation of A. The respective strategy π is
called a realization strategy for 〈A,G〉.

For a contract 〈A,G〉 and specification ψ, we say S can realize ψ under contract 〈A,G〉,
written S can realize the specification 〈A� ψ �G〉, if there exists a strategy of S that
is both a realization strategy for the contract 〈A,G〉 and a realization strategy for the
specification (A ⇒ ψ). The maybe-realizability and sure unrealizability of a contract
〈A,G〉 and the specification 〈A� ψ �G〉 are defined analogously.

Definition 6.2 Consider a system composition S0 ‖ S1. Let 〈A0, G0〉 and 〈A1, G1〉 be
a pair of contracts for respectively S0 and S1 such that ∅ ( Ai ⊆ W int

i
ω

= Yω1−i and
∅ ( Gi ⊆ X ωi . Then the contracts 〈A0, G0〉 and 〈A1, G1〉 are compatible if the following
conditions are met for both i ∈ {0, 1}:
(a) Gi ⊆ H−1

i (A1−i), and (b) Si realizes 〈Ai, Gi〉.

The composition of compatible contracts satisfies the following claim, motivated by
Chandy and Misra (1988); Alur and Henzinger (1999); McMillan (1999); Namjoshi and
Trefler (2010); Saoud et al. (2018a); Ozay et al. (2011):

Theorem 6.1 [Assume Guarantee Decomposition] Let 〈S0, ψ0, S1, ψ1〉 be the input
to a distributed synthesis problem. Let 〈A0, G0〉 and 〈A1, G1〉 be a pair of compatible
contracts of S0 and S1 respectively. If S0 can realize ψ0 under 〈A0, G0〉 and S1 can realize
ψ1 under 〈A1, G1〉, then S0 ‖ S1 can realize the distributed synthesis problem.

Proof We use the following notation. For a given run ξ ≡ x0 w0,u0

−−−→ x1 → . . . xk
wk,uk−−−−→

xk+1 → . . . and for a given k ≥ 0, we write prefk(ξ) for the prefix of the run x0 w0,u0

−−−→
x1 w1,u1

−−−→ . . .
wk−1,uk−1

−−−−−−−→ xk of length k.
I First, observe that a compatible contract implies that there exist two strategies π0 and
π1 which fulfill the conditions in Def. 6.1 for the individual systems S0 and S1. Let, for

some strategy of the external environment, ξ ≡ x0 w0,(u0
0,u

0
1)

−−−−−−→ x1 → . . . be a run of S0 ‖ S1

that is compliant with both π0 and π1. First, for both i ∈ {0, 1}, we prove by induction
that for every k, projXi(prefk(ξ)) ∈ pref(Gi); then because Gi is a safety language, it
will be established that projXi(ξ) ∈ Gi.
. The base case: For k = 0, projXi(prefk(ξ)) = xini, and we see that Cond. (a) in Def. 6.1
must hold. (Cond. (b) can not be true since l cannot be negative.)
. Induction step: Fix a k ≥ 0 such that projXi(prefk(ξ)) ∈ pref(Gi) for both i ∈ {0, 1}.
That is, Cond. (a) in Def. 6.1 holds. We show that the same is true for k + 1. We obtain
the following chain of implications: From the assumption we have projXi(prefk(ξ)) ∈
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pref(Gi). With this, it follows from Def. 6.2 (a) that projYi(prefk(ξ)) ∈ pref(A1−i).
This implies that for all 0 ≤ l < k + 1, projYi(pref l(ξ)) ∈ pref(A1−i). This in turn
implies that Cond. (b) in Def. 6.1 does not hold for prefk+1(ξ) for both i ∈ {0, 1}.
Therefore, Cond. (a) must hold, which proves the induction step. I With this we get
projXi(prefk(ξ)) ∈ pref(Gi) for any k ∈ N . As Gi is a safety language, this implies
projXi(ξ) ∈ Gi. Then it follows from Def. 6.2 (a) that projYi(ξ) ∈ A1−i.
I Both systems Si can additionally realize their specification Φi under the given contract
if there exist strategies π0 and π1 which renders both contracts compatible (implying
projYi(ξ) ∈ A1−i over all its compliant traces from above) and additionally ensuring
that Φi holds on all traces on which Ai holds. As the latter is always true, we see that
projXi(ξ) ∈ Φi for both i ∈ {0, 1} . 2

6.2. The Negotiation Process

Our goal is to iteratively compute a pair of compatible contracts. Our procedure will be
sound : if it returns contracts 〈A0, G0〉 and 〈A1, G1〉, we shall be certain that the premises
of Thm. 6.1 hold. However, since the distributed synthesis problem is undecidable, we
may not find compatible contracts.
The iterative computation progresses in rounds. Initially (round 0), the assumptions

A0, A1 and the guarantees G0, G1 allow all behaviors. In each round, S0 and S1 check if
each can realize the specification 〈Ai � ψi �Gi〉. If so, the iteration ends, and we return
the current assumptions and guarantees. On the other hand, if either system surely
cannot realize its respective contract, then there is no point continuing and the process
stops with failure. If none of the above happens, the negotiation process continues and
the systems take turns to refine their assumptions and guarantees.
The key step in refining the assumptions and guarantees requires finding a sufficient

assumption on the other system that enables realization of the current specification. In
principle, this assumption should also be maximally permissive to offer maximal freedom
to the other system. We first define maximally permissive sufficient assumptions, and
then use this definition to formalize the negotiation procedure. At the same time, we
also demonstrate that maximal permissiveness comes with its own technical challenges
and lack of practicality. So in the end, we resort to a more practical and non-maximally
permissive assumption, and show how to compute them.

6.2.1. Maximally Permissive Sufficient Assumption

We fix an input 〈S0, ψ0, S1, ψ1〉. A language L ⊆ Yω1−i is a maximally permissive sufficient
assumption—simply assumption in short—for ψi if (1) L is sufficient, i.e., Si can realize
(L ⇒ ψi) and (2) L is maximally permissive, i.e., Si cannot realize (L′ ⇒ ψi) for any
proper superset L′ ) L.

Intuitively, an assumption is a sufficient restriction on the other system: Si can realize
its specification provided the other system always produces outputs belonging to the
assumption. Moreover, the assumption is maximal in that no proper superset is sufficient
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x1start x2

v2

v1

v1, v2

S0

Figure 6.2.: A simple game

for Si to realize its specification: this ensures we restrict the other system in the least
pervasive way.

If Si can already realize ψi on its own, then the assumption is all of Yω1−i. If Si surely
cannot realize ψi, then ∅ is a maximal assumption. The maximality constraint rules out
“trivial” solutions such as L = ∅ in other cases.

Example 6.1 Consider system S0 in Fig. 6.2. We assume U0 is a singleton, and so
we have omitted it from the figure. There is a single system strategy π that picks
the singleton action at each state. The internal disturbance input has values {v1, v2}.
Consider the specification 23x2, that requires the state x2 to be visited infinitely often.
The system cannot realize this property if from some point on, the environment keeps
playing v1 when the state is x1. Thus, a maximally permissive sufficient assumption
is L1 = ((v∗1(v2(v1 + v2))∗)∗v2)ω. A sufficient assumption is L2 = (v1v2)ω, which is not
maximally permissive because L1 ) L2.

The following example suggests that maximally permissive sufficient assumptions are
not unique.

Example 6.2 Consider a system with two control inputs H and T and two disturbance
inputs, also called H and T . From the initial state xin, the control inputs H and T take
the system to two different states h and t, respectively. Once at h or t, the state returns
to xin only if the environment plays H or T , respectively, but otherwise the state goes
to bad and subsequently stays there no matter what input or action is chosen. Consider
the specification 2¬bad . Since the system does not know what the environment will
play next, the specification is not realizable. However, any singleton ω-language is a
maximally permissive sufficient assumption. Thus, there are infinitely many incomparable
assumptions, and they even may not be ω-regular.

Maximality is useful to ensure non-trivial assumptions but, as Ex. 6.2 shows, this
may lead to unbounded iterations through strategies and counter-strategies. Moreover,
a maximal assumption might leave the system with only a single available realization
strategy (Chatterjee et al., 2008). To mitigate these two issues, we consider an under-
approximation of maximal assumptions. Note that strengthening an assumption retains
realizability. A sufficient assumption L for ψ is called universally maximally permissive,
if (1) L is a sufficient assumption, and (2) L is the intersection of every maximally
permissive assumption. Universally maximal assumptions give up completeness—∅ is
the only universally maximal assumption in Ex. 6.2—but bound the search space of
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assumptions because it is unique. Moreover, it gives maximal freedom to the system in
choosing from all possible realization strategies.
Procedure FindAssumptions. For the moment, we assume the following: there is a
procedure FindAssumptions that given a system S, a specification ψ, and safe ω-languages
〈A,G〉, returns a safe sufficient assumption for the specification 〈A� ψ �G〉. We expect
that the assumption gives as much freedom to the other system as possible. We shall
discuss implementations of FindAssumptions subsequently.

6.2.2. Negotiation

As mentioned earlier, the iterative computation of contracts proceeds in rounds, called
negotiation. We call the overall iterative algorithmNegotiate, and the steps are summarized
in Alg. 5. Initially (round 0), the existing assumptions A0, A1 and the guarantees G0, G1

allow all behaviors:

A
(0)
0 = Yω1 , G

(0)
0 = X ω0 , A

(0)
1 = Yω0 , G

(0)
1 = X ω1 .

Suppose we have constructed A(r)
i , G

(r)
i for i ∈ {0, 1} in round r. Let us look at round

r + 1.
In round r + 1, if either system Si surely cannot realize the specification G(r)

i ∩ ψi, we
can give up with failure—certainly, we shall not find a refinement that works. In this
case Alg. 5 returns DoesNotExist. On the other hand, if both systems can realize their
specification under the current contracts

〈
A

(r)
i , G

(r)
i

〉
, we have converged and we can stop

and return the current contracts.
If the above conditions do not hold, we first pick the assumption L from

FindAssumptions
(
S0,
〈
A

(r)
0 , G

(r)
0

〉
, ψ0

)
, and if L is non-trivial then update the assump-

tions and guarantees as follows:

A
(r+1)
0 := A

(r)
0 ∩ L, G

(r+1)
1 := G

(r)
1 ∩H

−1
1 (L). (6.1)

Then, we pick the additional sufficient assumption L′ from
FindAssumptions

(
S1,
〈
A

(r)
1 , G

(r+1)
1

〉
, ψ1

)
, and if L′ is non-trivial then update the as-

sumptions and guarantees as follows:

A
(r+1)
1 := A

(r)
1 ∩ L

′, G
(r+1)
0 := G

(r)
0 ∩H

−1
0 (L′). (6.2)

We move to the next round with these new contracts. Note that, at the end of every
round, Alg. 5 either fails to find a contract and returns DoesNotExist, or else it obtains
the sets A(r)

0 , A(r)
1 , G(r)

0 , and G(r)
1 which are all nonempty as required by Def. 6.2.

We are ready to state our main theorem on Negotiate.

Theorem 6.2 If Negotiate(S0, ψ0, S1, ψ1) returns contracts (A0, G0), (A1, G1), then
the contracts (A0, G0) and (A1, G1) are compatible, and moreover each Si can realize
〈Ai � ψi �Gi〉 for i ∈ {0, 1}.
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Algorithm 5 Negotiate

Input: 〈S0, ψ0, S1, ψ1〉
Output: A0, G0, A1, G1 or DoesNotExist

1: A
(0)
0 ← Yω1 , G

(0)
0 ← X ω0 , A(0)

1 ← Yω0 , G
(0)
1 ← X ω1

2: for r = 0, 1, 2, . . . do
3: if Si can realize 〈A(r)

i � ψi �G
(r)
i 〉 for both i ∈ {0, 1} then

4: return A
(r)
0 , G

(r)
0 , A

(r)
1 , G

(r)
1

5: end if
6: if Si surely cannot realize 〈A(r)

i � ψi �G
(r)
i 〉 for either of i ∈ {0, 1} then

7: return DoesNotExist
8: end if
9: L← FindAssumptions

(
S0,
〈
A

(r)
0 , G

(r)
0

〉
, ψ0

)

10: A
(r+1)
0 := A

(r)
0 ∩ L, G

(r+1)
1 := G

(r)
1 ∩H

−1
1 (L)

11: L′ ← FindAssumptions
(
S1,
〈
A

(r)
1 , G

(r+1)
1

〉
, ψ1

)

12: A
(r+1)
1 := A

(r)
1 ∩ L′, G

(r+1)
0 := G

(r)
0 ∩H

−1
0 (L′)

13: end for

Proof (Proof of Thm. 6.2) We show that both the conditions of Def. 6.2 are met:
Cond. a follows by induction over the round indices r and by the construction of the
assumptions and guarantees in each round. (Actually, we maintain the invariant G(r)

i =

H−1
i (A

(r)
1−i) at each round r, which is stronger than Cond. a.) Cond. b follows from the

condition on successful termination. 2

6.2.3. Implementing FindAssumptions

We now describe the algorithm FindAssumptions to compute a safe under-approximation
of the universally maximally permissive sufficient assumption. For algorithmic effectiveness,
we only find assumptions and guarantees which are safe ω-regular languages (compared to
safe ω-languages as per Def. 6.1). This restriction allows us to implement FindAssumptions
by using operations on finite structures. Our algorithm uses as subroutines both the
(non-distributed) realizability algorithm from Pnueli and Rosner (1989); Maler et al.
(1995); Thomas (1995) and the algorithm to compute environment assumptions from
Chatterjee et al. (2008).
Subroutine I: Centralized Reactive Synthesis. The following theorem (summarizing
Pnueli and Rosner (1989); Thomas (1995)) outlines a method that can be used for solving
a reactive synthesis problem in the presence of assume-guarantee contracts. Given a
system S, a natural number d > 0, and a mapping c : X → {0, . . . , d} that maps each
state to a priority, recall that a parity objective Ψ(c) states that the minimum priority
visited infinitely often is even.

Theorem 6.3 Let S = 〈X , xin,U ,W, F,Y, H〉 be a system, and W =W int×Wext where
W int is a set of internal disturbance inputs under the control of another system S′. Given
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a pair of ω-regular languages A ⊆ W intω and G ⊆ X ω, and an ω-regular specification
Φ ⊆ X ω, there is an effectively constructible system S̃ = (X̃, x̃in, U,W, δ̃, Y, h̃), a number
d ≥ 0, and a parity specification Ψ(c) for a mapping c : X̃ → {0, . . . , d}, such that the
following hold:

(i) System S̃ can realize Ψ(c) if and only if system S can realize 〈A� Φ �G〉.

(ii) System S̃ can maybe-realize Ψ(c) in the composition S̃ ‖ S′ if and only if system S
can maybe-realize 〈A� Φ �G〉 in the composition S ‖ S′.

(iii) There is a mapping from the set of memoryless realization strategies of the form
π̃ : X̃ → U of S̃ to the set of realization strategies of S.

(iv) There is a mapping from the set of memoryless joint realization strategies of the
form π̃ : X̃ → U × V of S̃ and S′ to the set of joint realization strategies of S and
S′.

The system S̃ is essentially the product of the original system with a deterministic
parity automaton for the specification 〈A� Φ �G〉 (see, e.g., Chatterjee et al. (2008)).
Recall that parity specifications have memoryless realization strategies, and each strategy
of S̃ can be converted to a strategy (possibly using memory) for the original system.
Subroutine II: Finding Environment Assumptions. The second subroutine is the
method of Chatterjee et al. (2008) to compute a minimal set of sufficient environment
assumptions for satisfaction of a given omega-regular specification. At a high-level,
their algorithm imposes safety and liveness restriction on sets of environment behaviors
which help the system to realize its specification. The safety restrictions, here called
safe-sufficient restrictions, require that certain environment actions be never applied at
certain system states. The liveness restrictions, here called live-sufficient restrictions,
require that certain environment actions be repeatedly taken if certain system states are
repeatedly visited (strong liveness property). We formalize these in the following.

Fix a system composition S0 ‖ S1. First, we formalize safe-sufficient and live-sufficient
restrictions with respect to system S0, with the understanding that similar results can be
obtained for S1 just by changing the indices. Recall that we assumed W int

0 = Y1, and so
in the remaining portion of this section we use them interchangeably. Let Φ ⊆ (X0)ω be
a local parity specification for S0.

A set of pairs Es ⊆ X0 × Y1 is a safe-sufficient restriction on S1 for Φ if there exists a
strategy π : X0 ×W0 → U of S0 such that for every joint counter-strategy π′ : X0 →W0

of S1 and the environment, the resulting run ξ(π, π′) ≡ x0 w0,u0

−−−→ x1 w1,u1

−−−→ x2 w2,u2

−−−→ . . .
satisfies the following: either (a) there exists a i ≥ 0 with (xi,projY1

(wi)) ∈ Es, or (b)
for all i ≥ 0, xi ∈ 〈〈S0, S1〉〉Φ. A safe-sufficient restriction Es is unfair if there is a run
ξ and there is a pair (x, y) ∈ Es such that at some time instant j, projX0

(ξ)j = x and
projY1

(ξ)j = y, and yet ξ ∈ ψ. A safe-sufficient restriction is fair if it is not unfair, and
moreover it is minimal if no other safe-sufficient restriction of smaller size exists.
A set of pairs El ⊆ X0 × Y1 is a live-sufficient restriction on S1 for Φ if there exists

a strategy π : X0 → U of S0 such that for every joint counter-strategy π′ : X0 → W0
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of S1 and the environment, the resulting run ξ(π, π′) satisfies the following: either (a)
there exists a pair (x, y) ∈ El such that in the run ξ(π, π′), x appears infinitely often but
after some finite time step, y never immediately follows x, or (b) projX0

(ξ(π, π′)) ∈ Φ.
A live-sufficient restriction El is called minimal if no other live-sufficient restriction of
smaller size exists. A live-sufficient restriction El is called locally minimal if no strict
subset of El is itself a live-sufficient restriction.

The restrictions Es and El for Φ induce a safety assumption ΨEs ⊆ Yω1 and a liveness
assumption ΨEl ⊆ Yω1 on the output behavior of the system S1 respectively. The set
ΨEs is the set of all infinite output words y ∈ Yω1 of S1 such that there exists a run ξ
with y = projY1

(ξ), and for all i ≥ 0, (xi, yi) /∈ Es. The set ΨEl is the set of all infinite
output words y ∈ Yω1 of S1 such that there exists a run ξ with y = projY1

(ξ), and for all
(xi, yi) ∈ El, either xi appears finitely often in ξ or (xi, wi) appears infinitely often in ξ.

The important observations about ΨEs and ΨEl are summarized in the following
theorem.

Theorem 6.4 (Chatterjee et al., 2008) For a system composition S0 ‖ S1, the following
assertions hold:

1. If S0 can maybe-realize Φ, then there exists a unique minimal fair safe-sufficient
restriction Es on S1.

2. If (a) Φ is a reachability, safety, or Büchi specification and (b) S0 can realize the
specification �〈〈S0, S1〉〉Φ, then if there exists a sufficient assumption Ψ 6= ∅ for Φ,
then there exists a live-sufficient restriction El on S1.

3. Let Φ0 ⊆ X ω0 be a parity specification, and Es, El be respectively the safe-sufficient
and the live-sufficient restrictions on S1 for Φ. If Ψ = ΨEs ∩ΨEl 6= ∅, then Ψ is a
sufficient assumption for Φ.

4. The unique minimal fair safe-sufficient restriction Es can be computed in polyno-
mial time for parity objective Φ, whereas computation of a minimal live-sufficient
restriction El is NP-hard already for Büchi specifications. There is a polynomial
time algorithm for finding a locally minimal live-sufficient restriction El for parity
specifications.

Implementation. Consider a call to FindAssumptions with input Si, Ai, Gi, and Φi.
The procedure first checks if Si can realize the specification 〈Ai � Φi �Gi〉. If so, it
returns the set of all output strings of C1−i: all environment behaviors are allowed.
Otherwise, using Theorem 6.4, FindAssumptions computes the minimal fair safe-

sufficient restriction Es and a locally minimal live-sufficient restriction El for the winning
condition 〈true � Φi �Gi〉. The reason we replaced Ai with true in this case is to avoid
the trivial case when Si realizes 〈Ai � Φi �Gi〉 with the contradictory assumption that
demands Ai be violated.
Next, FindAssumptions under-approximates the liveness assumption ΨEl by a safety

language ΨEl→s as outlined in the following. First we introduce some notation. For the
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live-sufficient restriction El and for a given state x ∈ Xi, we use the notation El(x) to
denote the set {y ∈ Yi | (x, y) ∈ El}. We assume that the elements of the set El has been
assigned some index, and we use the notation El(x)i to denote the i-th element of the
set El(x). We use the notation |El(x)| to denote the cardinality of the set El(x). The
set ΨEl→s is the set of all output words w ∈ Yω1−i produced by C1−i which satisfy the
following: (a) there exists a run ξ (for some set of strategies) of Si with w = projY1−i(ξ),
and (b) for all x ∈ dom(El), every j-th occurrence of x in the projection projXi(ξ)
should be immediately followed by El(x)k where k = j mod |El(x)|. The procedure
FindAssumptions returns the safety language ΨEs ∩ΨEl→s .

In the following theorem, we formally state the properties of the procedure FindAssumptions .

Theorem 6.5 Let the language returned by the procedure FindAssumptions(S,A,G,Φ)
be Ψ. The following assertions hold:

1. The language Ψ is a sufficient assumption for the specification 〈A� Φ �G〉.

2. When 〈true � Φ �G〉 is a safety language, Ψ is a universally maximally permissive
and sufficient assumption for the specification 〈true � Φ �G〉.

Proof (1) Suppose FindAssumptions returns the language Ψ := ΨEs ∩ ΨEl→s . Let
Ψ′ := ΨEs ∩ΨEl . First we show that Ψ is a sufficient assumption for the specification
〈true � Φ �G〉. By Thm. 6.4.3, we have that Ψ′ is a sufficient assumption for realizing
the specification 〈true � Φ �G〉. We show that ΨEl→s ⊆ ΨEl , which would imply that
Ψ ⊆ Ψ′, which in turn would establish that Ψ is also a sufficient assumption. For every
valid run ξ of the underlying game graph belonging to the set ΨEl→s , for every visit of
a state s ∈ dom(El), the environment chooses edges from El in a round-robin fashion.
This trivially implies that the strong fairness condition in ΨEl is satisfied by ξ, and hence
ξ ∈ ΨEl . This proves the claim ΨEl→s ⊆ ΨEl , and it is established that Ψ is a sufficient
assumption for 〈true � Φ �G〉.
Now we show that Ψ is also a sufficient assumption for the specification 〈A� Φ �G〉.

There are either of the following two ways that 〈A� Φ �G〉 can be satisfied by the
system:
(i) The specification Φ ∧G ≡ 〈true � Φ �G〉 always holds.
(ii) There exists a finite run r ≡ x0 w0,u0

−−−→ x1 → . . . xk compliant with π, such that
projX (r) ∈ pref(G), and projWint(r) /∈ pref(A).
This shows that 〈A� Φ �G〉 is a weakening of the specification 〈true � Φ �G〉 for any
∅ ( A ⊆ W int

i
ω. Since the component can realize Ψ⇒ 〈true � Φ �G〉, hence it can also

realize Ψ⇒ 〈A� Φ �G〉. Thus, Ψ is indeed a sufficient assumption for the specification
〈A� Φ �G〉.
(2) When 〈true � Φ �G〉 is a safety language, then El = ∅ and as a result Ψ = ΨEs . The
rest follows from the fact that Es is the minimal fair safe-sufficient restriction . 2

Note that, due to the non-uniqueness of the locally minimal live-sufficient restriction
and the non-uniqueness of the ordering that we impose on the elements of the set El(x)
for every x, the assumption computed by FindAssumptions is in general not unique.
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Nevertheless, owing to the finiteness of the systems there are only finitely many possible
ways to choose both of these, and as a result the number of assumptions is also finite.
This creates the possibility of extending our basic negotiation procedure to backtrack and
retry with a different set of assumptions upon failure. Naturally, this finitely branching
negotiation procedure will be relatively more “complete” than the non-branching procedure
Negotiate. However, for a cleaner exposition of the main theory and as a first step, in
this paper we only focus on the non-branching version with a focus on “soundness”, and
plan to work in future on the branching version with a focus on “relative completeness”.

6.3. Implementation and Approximations

We have built a prototype C++-based tool called Agnes that implements the negotiation
algorithm. Agnes is freely available at https://github.com/kmallik/Agnes. The name
Agnes stands for Assume-Guarantee NEgotiation for distributed Synthesis. Agnes
accepts descriptions of the systems and the local specifications in a list representation (list
of states, list of transitions, etc.) given as text files. At the moment, the tool only supports
safety and deterministic Büchi conditions as local specifications. If the negotiation is
successful, Agnes outputs contracts where the guarantees (same as assumptions of the
other systems) are modeled as finite automata, also stored using a list representation or
in DOT format for visualization.
We have implemented a number of heuristics on top the general algorithm for better

performance. We describe the main ones below.

6.3.1. Pattern-based Under-approximation of Assumptions

Because the construction of Thm. 6.3 depends on the sizes of these automata, we now dis-
cuss a heuristic that tries to find small automata. Observe that if C realizes 〈A� ψ �G〉,
then it also realizes 〈A′ � ψ �G〉 for any A′ ⊆ A. Thus, we heuristically find stronger
assumptions that can be implemented by smaller automata. The intuition behind our
heuristic is that we assume bad behaviors of the environment (those that do not satisfy
the safety assumption) can be identified by a set of short unsafe suffixes: as long as the
environment does not produce these short suffixes, the assumption continues to hold. It
is inspired by the notion of l-completeness in control (Moor et al., 2002), which abstracts
a system by only tracking the states visited in the last l steps.

Our heuristic works as follows. First, we note that, because the assumption is a safety
language, the FindAssumptions procedure returns a universal Büchi automaton over
words for a prefix-closed ω-language. Since the language is prefix-closed, the automaton
has a single rejecting sink state, and all other states are accepting. We can dualize this
automaton to get a non-deterministic Büchi automaton for the negation of the language.
In the negation, the sink state is the only accepting state. Let us call this automaton A.
Given A and a (user-supplied) parameter k, we now construct an automaton B that

accepts a superset of the language of A. The automaton B keeps all states of A that
have some path of length at most k to the unique accepting state and merges all
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states for which the shortest path to the accepting state is greater than k. Formally,
QB = {q ∈ QA | ∃ path from q to the accepting state of length ≤ k} ∪ {r}, for a new
state r. Consider a mapping λ : QA → QB that maps the subset QB \ {r} identically
to itself and maps every other state to r. The transitions of B consist of transitions
(λ(q), a, λ(q′)) for each transition (q, a, q′) in A. The initial and final states of B are the
map of the initial and final states of A under λ.

Clearly, the number of states in B is less than or equal to that of A and L(A) ⊆ L(B).
Finally, we dualize B to get back a universal Büchi automaton that accepts the new
assumption which is contained in the original assumption.
While this heuristic that the bad environment behaviors can be identified by short

suffixes might not work in general, it worked well in our examples.

6.3.2. Büchi Specifications

We now present an optimization that is orthogonal to the one presented in Sec. 6.3.1.
Recall that the procedure FindAssumptions requires computation of locally minimal live-
sufficient restriction, for which we used the algorithm proposed by Chatterjee et al. (2008).
Here we present a greedy algorithm for the same purpose, but for the special case when the
specification of the system C̃ in Thm. 6.3 can be represented as a Büchi condition �♦B
for some B ⊆ X̃ . Already for this case, computing the minimal live-sufficient restriction
is NP-hard (Chatterjee et al., 2008, Thm. 11). The algorithm presented by Chatterjee
et al. (2008) to compute a locally minimal live-sufficient restriction takes O(n6) time,
where n is the size of the state space. Our greedy algorithm runs in time O(n3).

We introduce some notation before presenting our algorithm. Fix a composition S0 ‖ S1

and a specification 〈A0 � ψ0 �G0〉 for the system S0. Consider a Büchi specification
�♦B for some B ⊆ X̃0, where X̃0 is the state space of the product system C̃0 as defined
in Thm. 6.3. Let El be a live-sufficient restriction, and AssumeFair(El,�♦B) be the set
of infinite sequences of states x0x1 . . . such that there exists a strategy π of S0 and a
joint strategy π′ of S1 and the environment such that projX̃0

(ξ(π, π′)) = x0x1 . . . and
x0 = x̃in0, and moreover either (a) there exists a pair (x,w) ∈ El such that in the run
ξ(π, π′), x appears infinitely often but after some finite time step, w never immediately
follows x, or (b) projX̃0

(ξ(π, π′)) ∈ Φ.
Alg. 6 uses a greedy algorithm to compute a live-sufficient restriction El: the algorithm

progressively expands the realizable region for ♦B by greedily adding all the favorable
restrictions on S1 to El whenever needed.
The heuristic does not generalize to other ω-regular specifications. Recall that in

µ-calculus notation, the Büchi fixpoint is written as follows (see Sec. 2.4.4):

Z∗ = νZ . µY . (B ∩ Cpre(Z)) ∪ Cpre(Y ),

where Cpre: 2X → 2X is the controllable predecessor operator, and Z∗ is the final Büchi
winning region. In Alg. 6, we exploited the fact that when S1 co-operates with S0, Z∗ is
a priori known to be the set 〈〈S0, S1〉〉�♦B. Then the problem gets simplified to finding
a locally minimal live-sufficient restriction El such that S0 can (independently) realize
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Algorithm 6 Compute a live-sufficient restriction El
Input: System S0 in the composition S0 ‖ S1, Büchi states B ⊆ X0

Output: A live-sufficient restriction El on S1, or DoesNotExist
1: if xin0 /∈ 〈〈S0, S1〉〉�♦B then
2: return DoesNotExist
3: end if
4: Target ← B ∩ 〈〈S0, S1〉〉�♦B
5: WinDom ← 〈〈S0〉〉♦Target
6: El ← ∅
7: while AssumeFair(El,�♦B) is not realizable do

8: El ← El ∪





(x, y) ∈ (X0 × Y1)

∣∣∣∣∣∣∣∣

x /∈WinDom ∧ ∃u ∈ U0 . ∀w ∈ Wext
0 .

F0(x, (y, w), u) ∈WinDom
∧ ∃y′ ∈ Y1 . ∀u ∈ U0 . ∃w ∈ Wext

0 .
F0(x, (y′, w), u) /∈WinDom





9: Target ←WinDom ∪ dom(El)
10: WinDom ← 〈〈S0〉〉♦Target
11: end while
12: return El

the conditional reachability problem AssumeFair(El,♦(Cpre(Z∗) ∩ B)). We solve this
problem by iterating through a growing sequence of El, where in each iteration we add
those environment behaviors to El which would immediately help to grow the winning
region for ♦(Cpre(Z∗) ∩B). While this heuristic works well for the Büchi specification,
it will not work so well for every other ω-regular specification. Already for co-Büchi
specifications, where the order of the “µ” and “ν” iterations gets reversed, this heuristic is
not suitable.

6.4. Experimental Evaluation

6.4.1. Notation

Before summarizing the experimental results, let us introduce some notation. Given a
system Si and a contract 〈Ai, Gi〉, we use |Gi| to represent the size of the state space of
the universal Büchi automaton which accepts the language Gi. We use the parameter k
to represent the user-supplied parameter used to determine the level of minimization used
for minimizing the size of the contracts (see Sec. 6.3.1): we start with k = 1 and then keep
increasing the value of k until a pair of compatible contracts is found, or until a point when
we realize that increasing k any more would not change the outcome, whichever happens
earlier. We use the status flag S and F to represent these two situations respectively.
Indeed, it was found while inspecting the examples that the cases with status F do
not have a contract that can be represented using a safe under-approximation of the
universally maximally permissive assumptions. We put a cross mark (“×”) for the entries
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Table 6.1.: Experimental evaluation of the distributed packet sending problem.

l0, p0, t0 l1, p1, t1 |X0| |X1|
No pattern-based opt Pattern-based optimization (Sec. 6.3.1)

k = 1 k = 2 k = 3 k = 4 k = 5
time(s) status time(s) status time(s) status time(s)status time(s)status time(s)status
|G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1|

(1, 1, 1) (0, 1, 1) 5 3
<
0.001

F 0.001 F

× × × ×

(1, 1, 2) (0, 1, 1) 7 3
0.001 S 0.001 S
2 4 2 2

(1, 1, 2) (1, 1, 3) 7 9
0.004 S 0.001 F

<
0.001

F 0.003 S

5 4 2 2 2 3 4 4

(2, 2, 4) (1, 1, 3) 35 9
0.018 S

<
0.001

F 0.001 F 0.010 S

5 8 2 2 2 5 4 6

(2, 2, 5) (1, 1, 3) 43 9
0.112 S 0.002 F 0.002 F 0.027 S
8 11 2 2 2 5 4 6

(2, 2, 5) (2, 2, 5) 43 43
0.085 S 0.001 F 0.002 F 0.003 F 0.066 S
6 11 2 2 2 5 2 6 5 11

(3, 3, 14)(2, 2, 8) 255 67
18.996 S 0.006 F 0.007 F 0.011 F 0.312 S
40 99 2 2 2 6 2 16 5 17

(4, 3, 14)(3, 2, 8) 339 99
42.254 S 0.007 F 0.010 F 0.023 F 0.027 F 14.967 S
47 129 2 2 2 6 2 22 2 23 18 129

|G0| and |G1| in all the failed cases as they are irrelevant.
The experimental results are going to be summarized in Table 6.1 and Table 6.2. The

key highlight in the tables is that the pattern-based minimization of the assumptions
(see Sec. 6.3.1) turns out to be extremely beneficial while performing the negotiation. In
the table, the red cells show the computation time when this optimization was disabled,
whereas the blue cells show the computation time for the smallest value of k for which
the negotiation was successful. It can be observed that as the systems’ state spaces get
larger, the saving gets higher. Also, observe the difference in the sizes of the contracts:
when this optimization is disabled, the contract sizes (given by |G0| and |G1|) tend to be
much higher.

6.4.2. A Distributed Packet Sending Problem

Our first example is a parameterized and scaled up version of the distributed packet sending
problem introduced in Sec. 1.3.3. The parameters for the system Si with i ∈ {0, 1} are
given by: 1. Number of packets to be sent li, 2. maximum delay between two consecutive
packet transmissions pi, and 3. the overall time limit to send all the packets ti. Essentially
the only difference with the additional parameters li and pi is that there are two additional
counters in the state space to keep track of the respective constraints. In addition to the
state done, there is one more special sink state called excessive-delay to mark the event
that the elapsed time between two consecutive transmissions exceeded the allowed bound
pi. Then the local specification ψi for each system can be formalized as ♦(s = done).
Table 6.1 summarizes the experimental results.
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Table 6.2.: Experimental evaluation of the tandem queuing network example.

t0 p, t1 |X0| |X1|
No pattern-based opt Pattern-based optimization (Sec. 6.3.1)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
time(s) status time(s)statustime(s)statustime(s)statustime(s)statustime(s)statustime(s)statustime(s)status
|G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1| |G0| |G1|

3 (1, 1) 8 4
0.055 S 0.002 F 0.002 F 0.006 F 0.055 S
15 6 2 2 2 3 5 4 15 6

3 (2, 1) 8 6
0.073 S 0.002 F 0.002 F 0.008 F 0.076 S
17 6 2 2 2 3 5 4 17 6

3 (2, 2) 8 8
0.008 F 0.027 F
× × × ×

4 (2, 2) 10 8
0.262 S 0.003 F 0.003 F 0.006 F 0.031 S
32 9 2 2 2 3 2 4 7 5

4 (3, 2) 10 10
0.019 F 0.079 F
× × × ×

5 (3, 2) 12 8
1.076 S 0.003 F 0.003 F 0.007 F 0.013 F 0.065 S
62 13 2 2 2 3 2 4 2 5 9 6

5 (3, 3) 12 12
0.030 F 0.109 F
× × × ×

7 (3, 3) 16 12
1.560 S 0.004 F 0.004 F 0.008 F 0.010 F 0.013 F 1.456 F 0.150 S
13 8 2 2 2 3 2 4 2 5 2 6 48 26 13 8

6.4.3. A Distributed Tandem Queuing Network Problem

Our second example is a tandem queuing network similar to the one by Hermanns et al.
(2003). Suppose there is a shared queue of bounded size. There is a system S0 that
pushes objects to the queue from one end, and there is a system S1 that pops an object
at a time from the other end for processing. System S0 can only sense if the queue is
full or not, has two control actions push and wait0, and produces two outputs busy and
idle0 which represent whether S0 pushed or waited in the last cycle respectively. If the
queue is full then S0 is forced to wait until S1 draws the next object. On the other
hand, system S1 can only sense if the queue is empty or not, has three control actions
draw , wait1, and process , and produces three outputs loaded , idle1, and processing which
represent whether S1 drew an object, waited, or processed an object in the last clock
cycle respectively. If the queue is empty, then S1 is forced to stay idle until an object
appears in the queue. Let p be some given positive parameter. If the queue is not empty,
then S1 can draw an object, in which case it has to perform p number of actions on the
object before being able to draw another one.

Note that none of the processes has the exact information of the size of the queue. As
a result they cannot certainly predict if the queue is going to be full/empty in the next
step just by observing their own and the other component’s output sequences. We model
this uncertainty by introducing an imaginary environment player, who can control when
the queue is full and when it is empty in an unpredictable manner.

Let t0 and t1 be two positive parameters. We introduce two special events for formalizing
the specification: (a) System S0 goes to the shut-down state if it remains idle for t0
consecutive time steps and (b) system S1 goes to the cool -down state if it remains idle for
t1 consecutive time steps. The local specifications ψ0 and ψ1 of S0 and S1 are respectively:
ψ0 = �¬shut-down and ψ1 = �♦cool -down. Table 6.2 summarizes the experimental
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results.

6.5. Related Work

The distributed reactive synthesis problem is known to be undecidable, thanks to the
seminal paper of Pnueli and Rosner (1990). They showed that the problem is decidable
with non-elementary time complexity for certain restricted architecture of the underlying
interconnection topology of the systems. Later, syntactic characterizations of every
decidable architecture was presented in several papers (Finkbeiner and Schewe, 2005;
Kupferman and Vardi, 2001). The architecture that we consider in our work is known to
be undecidable for LTL specification.

Even with a solid theoretical understanding of the problem, unfortunately, the amount
of literature on distributed synthesis is quite sparse. Among notable distributed synthesis
techniques are bounded synthesis (Finkbeiner and Schewe, 2013), in which the existence of
distributed controllers up to a certain size is reduced to a constraint satisfaction problem
in (quantified) Boolean logic, and the work by Alur et al. (2018), where distributed
controllers are synthesized by solving local cooperative synthesis problems followed by
conflict resolution at a global level. In contrast, our approach is modular, thanks to the
modular nature of assume-guarantee proof systems.

6.6. Conclusion

We presented a sound but incomplete procedure for solving the distributed reactive
synthesis problem with two systems connected in feedback. If each system can satisfy
its local specification without any assumption on the other system, then we already
have a solution. Otherwise, our negotiation procedure iteratively searches for a pair of
assume-guarantee contracts, where each system makes progressively stricter assumption
on the other system in order to fulfill the assumption imposed by the other system
together with its own specification. We implemented the negotiation algorithm in our
tool called Agnes, and show its effectiveness on a couple of examples. We only considered
distributed synthesis with two systems, and leave the generalization to more number of
systems for future research.
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7. Symbolic Algorithms for
ω-Regular Games under Strong
Transition Fairness

We present an efficient symbolic algorithm for computing the sure winning region (and
sure winning strategy) in 2-player fair adversarial games with Rabin winning conditions.
Recall that (see Sec. 1.3.4 for an intuitive explanation) fair adversarial games are 2-player
games with a set of Player 1 edges being designated as live edges. The transition fairness
condition assumes that for every live edge, if the source vertex is visited infinitely often,
then Player 1 will choose that edge infinitely many times. For any given ω-regular
specification, the winning condition of Player 0 then gets modified to

Transition Fairness Assumption ⇒ ω-Regular Specification.

Our algorithm for solving fair adversarial Rabin games consists of a surprisingly simple
syntactic transformation of the usual symbolic fixpoint algorithms for solving regular
2-player Rabin games. Using reductions, we also obtain algorithms for various other
ω-regular winning conditions. Furthermore, we also get a direct symbolic algorithm for
computing almost sure winning region in 21/2-player Rabin games, that is provably faster
than the state-of-the-art. We implemented our algorithm in the prototype tool called
Fairsyn, and show that our approach is significantly faster than the existing approaches.
All the proofs of this chapter are included in App. A.

7.1. Fair Adversarial Games

Definition 7.1 (Fair Adversarial Games) A fair adversarial game is a pair
〈
G, E`

〉

where G is a 2-player game and E` is a subset of Player 1 edges (i.e. E` ⊆ (V1 × V ) ∩E)
called the live edges.

We use the notation V ` := dom(E`) to denote the set of Player 1 vertices in the domain
of E`.

Intuitively, the edges in E` represent fairness assumptions on Player 1: for every edge
(v, v′) ∈ E`, if v is visited infinitely often along a play, we expect that the edge (v, v′)
is picked infinitely often by Player 1. I.e., if a vertex v is visited infinitely often, every
outgoing live edge of v is expected to be taken infinitely often.
We write G` =

〈
G, E`

〉
to denote a game graph with live edges, and extend notions

such as plays, strategies, winning conditions, winning region, etc., from game graphs to
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p q

p

q

q′

Figure 7.1.: Two fair adversarial games.

those with live edges. A play π over G` is strongly transition fair if it satisfies the LTL
formula:

α :=
∧

(v,v′)∈E` (�♦v → �♦(v ∧©v′)) . (7.1)

Given G` and a winning condition ϕ, Player 0 wins the fair adversarial game over G` for
the winning condition ϕ from a vertex v0 ∈ V if Player 0 wins the game over G` for the
winning condition α→ ϕ from v0.

We have two interesting observations about fair adversarial games. First, live edges
allow to rule out particular strategies of Player 1, making it easier for Player 0 to win in
certain situations. Consider for example a game graph (Fig. 7.1 (top)) with two vertices
p and q. Vertex p (square) is a Player 1 vertex and vertex q is a Player 0 vertex (circle).
The edge (p, q) is a live edge (dashed). Suppose the specification for Player 0 is ϕ = �♦q.
In the absence of the live edge, Player 0 does not win for this specification from p, because
Player 1 can trap the game in p by always choosing p itself as the successor. In contrast,
Player 0 wins from p in the fair adversarial game, because the assumption on the live
edge (p, q) forces Player 1 to infinitely often choose the transition to q.
Second, fairness assumptions modeled by live edges restrict the strategy choices of

Player 1 less than assuming that Player 1 chooses probabilistically between these edges.
Consider for example a fair adversarial game with one Player 1 vertex p (square) which
has two outgoing live edges to states q and q′ (see Fig. 7.1 (bottom). If Player 1 chooses
randomly between edges (p, q) and (p, q′), every finite sequence of visits to states q and q′

will happen infinitely often with probability one. This is not true in the fair adversarial
game. Here Player 1 is allowed to choose a particular sequence of visits to states q and
q′ (e.g., only qq′qq′qq′qq′ . . .), as long as both are visited infinitely often.

7.2. Fair Adversarial Rabin Games

This section presents our main result on fair adversarial games, which is a symbolic
fixpoint algorithm that computes the winning region of Player 0 in the fair adversarial
game over G` with respect to any ω-regular property formalized as a Rabin winning
condition.
Our new fixpoint algorithm has multiple unique features.

(I) It works directly over G`, without requiring any pre-processing step to reduce G` to a
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“normal” two-player game. This feature allows us to obtain a direct symbolic algorithm
for stochastic games as a by-product (see Sec. 7.4).
(II) Conceptually, our symbolic algorithm is not more complex than the known algorithm
solving Rabin games over “normal” 2-player game graphs by Piterman and Pnueli (2006)
(see Sec. 7.2.3).
(III) Our new fixpoint algorithm is obtained from the known algorithm of Piterman and
Pnueli (2006) by a simple syntactic change (as previewed in (1.6)). We simply replace
all controllable predecessor operators over least fixpoint variables by the almost sure
predecessor operator invoking the preceding maximal fixpoint variable. This makes the
proof of our new fixpoint algorithm conceptually simple (see Sec. 7.2.2).
At a higher level, our syntactic change is a very simple yet efficient transformation to

incorporate environment assumptions expressible by live edges into reactive synthesis
while retaining computational efficiency. Most remarkably, this transformation also works
directly for fixpoint algorithms solving reachability, safety, Büchi, (generalized) co-Büchi,
Rabin-chain and parity games, as these can be formalized as particular instances of a
Rabin game (see Sec. 7.2.4). Moreover, it also works for generalized Büchi and GR(1)
games. However, as these games are particular instances of a generalized Rabin game,
we prove these special cases separately in Sec. 7.3 after formally introducing generalized
Rabin games.

7.2.1. The Symbolic Algorithm

Monotone Set Transformers for Fair Adversarial Games: Our goal is to develop
symbolic fixpoint algorithms to characterize the winning region of a fair adversarial game
over a game graph with live edges. We use similar techniques as the symbolic fixpoint
algorithms used for computing sure winning regions in 2-player games (see Sec. 2.4).

Recall that in Sec. 2.4, we introduced the set transformer Pre∃0 and Pre∀1 as the existential
and a type of universal predecessor operator. (Since we are dealing with 2-player games,
so we ignore the Pre∀r operator for now.) Further, recall that the controllable predecessor
operator Cpre for the 2-player games can be written as Cpre(S) = Pre∃0(S) ∪ Pre∀1(S).
Now we define two additional operators which take advantage of the fairness assumption
on the live edges of G`. Given two sets S, T ⊆ V , we define the live-existential and the
almost sure predecessor operators:

Lpre∃(S) := {v ∈ V ` | E`(v) ∩ S 6= ∅}, and (7.2a)

Apre(S, T ) := Cpre(T ) ∪
(

Lpre∃(T ) ∩ Pre∀1(S)
)
. (7.2b)

Intuitively, the almost sure predecessor operator1 Apre(S, T ) computes the set of all
states that can be controlled by Player 0 to stay in T (via Cpre(T )) as well as all
Player 1 states in V ` that (a) will eventually make progress towards T if Player 1 obeys
its fairness-assumptions encoded in α (via Lpre∃(T )) and (b) will never leave S in the
“meantime” (via Pre∀1(S)). We see that all set transformers are monotonic with respect

1We will justify the naming of this operator later in Rem. 4.
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to set inclusion. Further, Cpre(T ) ⊆ Apre(S, T ) always holds, Cpre(T ) = Apre(S, T ) if
V ` = ∅, and Apre(S, T ) ⊆ Cpre(S) if T ⊆ S; see Lem. A.1 for a proof.

Fair adversarial Rabin Games: We consider Rabin specification over the alphabet V .
Recall that a Rabin winning condition is defined by the set
R = {〈G1, R1〉 , . . . , 〈Gk, Rk〉}, where Gi, Ri ⊆ V for all i ∈ [1; k]. We say that R
has index set P = [1; k]. A play π satisfies the Rabin condition R if π satisfies the LTL
formula

ϕ :=
∨
i∈P

(
32Ri ∧23Gi

)
. (7.3)

We now present our new symbolic fixpoint algorithm to compute the winning region of
Player 0 in the fair adversarial game over G` with respect to a Rabin winning condition
R.

Theorem 7.1 Let G` =
〈
G, E`

〉
be a game graph with live edges and R be a Rabin

condition over G with index set P = [1; k]. Further, let Z∗ denote the fixed point

νYp0 .µXp0 .
⋃

p1∈P
νYp1 .µXp1 .

⋃

p2∈P\{p1}

νYp2 .µXp2 . . . .
⋃

pk∈P\{p1,...,pk−1}

νYpk .µXpk .




k⋃

j=0

Cpj


 ,

(7.4a)

where Cpj :=
(⋂j

i=0Rpi

)
∩
[(
Gpj ∩ Cpre(Ypj )

)
∪
(
Apre(Ypj , Xpj )

)]
, (7.4b)

with1 p0 = 0, Gp0
:= ∅ and Rp0

:= ∅. Then Z∗ is equivalent to the winning region W
of Player 0 in the fair adversarial game over G` for the winning condition ϕ in (7.3).
Moreover, the fixpoint algorithm runs in O(nk+2k!) symbolic steps, and a memoryless
winning strategy for Player 0 can be extracted from it.

7.2.2. Proof Outline

Given a Rabin winning condition over a “normal” 2-player game, Piterman and Pnueli
(2006) provided a symbolic fixpoint algorithm which computes the winning region for
Player 0. The fixpoint algorithm in their paper is almost identical to our fixpoint algorithm
in (7.4): it only differs in the last term of the constructed C-terms in (7.4b). Piterman
and Pnueli (2006) define the term Cpj as

(⋂j
i=0Rpi

)
∩
[(
Gpj ∩ Cpre(Ypj )

)
∪
(
Cpre(Xpj )

)]
.

Intuitively, a single term Cpj computes the set of states that always remain within
Qpj :=

⋂j
i=0Rpi while always re-visiting Gpj . I.e, given the simpler (local) winning

condition
ψ := 2Q ∧23G (7.5)

1The Rabin pair 〈Gp0 , Rp0〉 = 〈∅, ∅〉 in (7.4) is artificially introduced to make the fixpoint representation
more compact. It is not part of R.
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for two sets Q,G ⊆ V , the set

νY. µX. Q ∩ [(G ∩ Cpre(Y )) ∪ (Cpre(X))] (7.6)

is known to define exactly the states of a “normal” 2-player game G from which Player 0
has a strategy to win the game with winning condition ψ Maler et al. (1995). Such games
are typically called Safe Büchi Games. The key insight in the proof of Thm. 7.1 is to
show that the new definition of C-terms in (7.4b) via the new almost sure predecessor
operator Apre actually computes the winning state sets of fair adversarial safe Büchi
games. Subsequently, we generalize this intuition to the fixpoint for the Rabin games.
Fair Adversarial Safe Büchi Games: A fair adversarial safe Büchi game is formalized
in the following theorem.

Theorem 7.2 Let G` =
〈
G, E`

〉
be a game graph with live edges and Q,G ⊆ V be two

state sets over G. Further, let

Z∗ := νY. µX. Q ∩ [(G ∩ Cpre(Y )) ∪ (Apre(Y,X))] . (7.7)

Then Z∗ is equivalent to the winning region of Player 0 in the fair adversarial game over
G` for the winning condition ψ in (7.5). Moreover, the fixpoint algorithm runs in O(n2)
symbolic steps, and a memoryless winning strategy for Player 0 can be extracted from it.

Intuitively, the fixed points in (7.6) and (7.7) consist of two parts: (a) A minimal fixed
point over X which computes (for any fixed value of Y ) the set of states that can reach
the “target state set” T := Q∩G∩Cpre(Y ) while staying inside the safe set Q, and (b) a
maximal fixed point over Y which ensures that the only states considered in the target T
are those that allow to re-visit a state in T while staying in Q.
By comparing (7.6) and (7.7) we see that our syntactic transformation only changes

part (a). Hence, in order to prove Thm. 7.2 it essentially remains to show that this
transformation works for the even simpler safe reachability games.
Fair Adversarial Safe Reachability Games: A safe reachability condition is a tuple
〈T,Q〉 with T,Q ⊆ V and a play π satisfies the safe reachability condition 〈T,Q〉 if π
satisfies the LTL formula

ψ := QU T. (7.8)

A safe reachability game is often called a reach-while-avoid game, where the safe sets are
specified by an unsafe set R := Q that needs to be avoided. Their fair adversarial version
is formalized in the following theorem, proved in App. A.2.2.

Theorem 7.3 Let G` =
〈
G, E`

〉
be a game graph with live edges and 〈T,Q〉 be a safe

reachability winning condition. Further, let

Z∗ := νY. µX. T ∪ (Q ∩Apre(Y,X)). (7.9)

Then Z∗ is equivalent to the winning region of Player 0 in the fair adversarial game over
G` for the winning condition ψ in (7.8). Moreover, the fixpoint algorithm runs in O(n2)
symbolic steps, and a memoryless winning strategy for Player 0 can be extracted from it.
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To gain some intuition on the correctness of Thm. 7.3, let us recall that the fixed-point
for safe reachability games without live edges is given by:

µX. T ∪ (Q ∩ Cpre(X)). (7.10)

Intuitively, the fixed point in (7.10) is initialized with X0 = ∅ and computes a sequence
X0, X1, . . . , Xk of increasing sets until Xk = Xk+1. We say that v has rank r if
v ∈ Xr \Xr−1. All states contained in Xr allow Player 0 to force the play to reach T in
at most r − 1 steps while staying in Q. The corresponding Player 0 strategy ρ0 is known
to be winning w.r.t. (7.8) and along every play π compliant with ρ0, the path π remains
in Q and the rank is always decreasing.

To see why the same strategy is also sound in the fair adversarial safe reachability game
G`, first recall that for vertices v /∈ V ` of G`, the almost sure pre-operator Apre(X,Y )
simplifies to Cpre(X). With this, we see that for every v /∈ V ` a Player 0 winning strategy
ρ̃0 in G` can always force plays to stay in Q and to decrease their rank, similar to ρ0.
With this, we see that plays π which are compliant with such a strategy ρ̃0 and visit a
vertex in V ` only finitely often satisfy (7.8).

The only interesting case for soundness of Thm. 7.3 are therefore plays π that visits
states in V ` infinitely often. However, as the number of vertices is finite, we only have a
finite number of ranks and hence a certain vertex v ∈ V ` with a finite rank r needs to get
visited by π infinitely often. Due to the definition of Apre we however know that only
states v ∈ V ` are contained in Xr if v has an outgoing live edge reaching Xk with k < r.
With this, reaching v infinitely often implies that also a state with rank k s.t. k < r will
get visited infinitely often. As X1 = T we can show by induction that T is eventually
visited along π while π always remains in Q until then.

In order to prove completeness of Thm. 7.3 we need to show that all states in V \ Z∗
are loosing for Player 0. Here, again the reasoning is equivalent to the “normal” safe
reachability game for v /∈ V `. For vertices v ∈ V `, we see that v is not added to Z∗ via
Apre if v /∈ T and either (i) all its outgoing live transitions do not make progress towards
T or, (ii) it has some outgoing edge (not necessarily a live one) that makes it leave Z∗).
One can therefore construct a Player 1 strategy that for (i)-vertices always chooses a
live transition and thereby never makes progress towards T (also if v is visited infinitely
often), and for (ii)-vertices ensures that they are only visited once on plays which remain
in Q. This ensures that (ii)-vertices never make progress towards T via their possibly
existing rank-decreasing live edges.
A detailed soundness and completeness proof of Thm. 7.3 along with the respective

Player 0 and Player 1 strategy construction is provided in App. A.2.2. In addition,
Thm. 7.2 is proven in App. A.2.2 by a reduction to Thm. 7.3 for every iteration over Y .

Example 7.1 (Fair adversarial safe reachability game) We consider a fair adver-
sarial safe reachability game over the game graph depicted in Fig. 7.2 with target vertex
set T = G = {6, 9} and safe vertex set Q = V \ {1}.
We denote by Y m the m-th iteration over the fixpoint variable Y in (7.9), where

Y 0 = V . Further, we denote by Xmi the set computed in the i-th iteration over the
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1 2 3

4 5

6

7

8

9

Figure 7.2.: Fair adversarial game graph discussed in Examples 7.1 and 7.2 with vertex
sets G = {6, 9} (double cycled, green), Q = {1} (red,dotted) and live edges
E` = {(2, 3), (3, 6), (5, 4), (5, 6), (7, 9))} (dashed, blue). Player 0 and Player 1
vertices are indicated by cycles and boxes, respectively.

fixpoint variable X in (7.9) during the computation of Y m where Xm0 = ∅. We further
have Xm1 = T = {6, 9} as Apre(·, ∅) = ∅. Now we compute

X12 = T ∪ (Q ∩Apre(Y 0, X11))

= {6, 9} ∪ (V \ {1} ∩ [Cpre(X11)︸ ︷︷ ︸
{8}

∪ (Lpre∃(X11) ∩ Pre∀1(V ))︸ ︷︷ ︸
{3,5,7}

]) = {5, 6, 7, 8, 9}

(7.11)

We observe that the only vertex added to X via the Cpre term is vertex 8. States {3, 5, 7}
are added due to the existing live edge leading to a target vertex. Here, we note that
vertex 7 is added due to its live edge to vertex 9. The additional requirement Pre∀1(V )
in Apre(Y 0, X11) is trivially satisfied for all vertices at this point as Y 0 = V and can
therefore be ignored. Doing one more iteration over X we see that now vertex 4 gets
added via the Cpre term (as it is a Player 0 vertex that allows progress towards 5) and
vertex 2 is added via the Apre term (as it allows progress to 3 via a live edge). The
iteration over X terminates with Y 1 = X1∗ = V \ {1}.
Re-iterating over X for Y 1 gives X22 = X12 = {5, 6, 7, 8, 9} as before. However, now

vertex 2 does not get added to X23 because vertex 2 has an edge leading to V \ Y 1 = {1}.
Therefore the iteration over X terminates with Y 2 = X2∗ = V \ {1, 2}. When we now
re-iterate over X for Y 2 we see that vertex 3 is not added to X32 any more, as vertex
3 has a transition to V \ Y 2 = {1, 2}. Therefore the iteration over X now terminates
with Y 3 = X3∗ = V \ {1, 2, 3}. Now re-iterating over X does not change the vertex set
anymore and the fixed-point terminates with Y ∗ = Y 3 = V \ {1, 2, 3}.
We note that the fixed-point formula (7.10) for “normal” safe reachability games

terminates after two iterations over X with X∗ = {6, 8, 9}, as vertex 8 is the only vertex
added via the Cpre operator in (7.11). Due to the stricter notion of Cpre requiring that
all outgoing edges of Player 0 vertices make process towards the target, (7.10) does not
require an outer largest fixed-point over Y to “trap” the play in a set of vertices which
allow progress when “waiting long enough”. This “trapping” required in (7.9) via the
outer fixed-point over Y actually fails for vertices 2 and 3 (as they are excluded form the
winning set of (7.9)). Here, Player 1 can enforce to “escape” to the unsafe vertex 1 in
two steps before 2 and 3 are visited infinitely often (which would imply progress towards
6 via the existing live edges).
We see that the winning region in the “normal” game is significantly smaller than
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the winning region for the fair adversarial game, as adding live transitions restricts the
strategy choices of Player 1, making it easier for Player 0 to win the game.

Example 7.2 (Fair adversarial safe Büchi game) We now consider a fair adversar-
ial safe Büchi game over the game graph depicted in Fig. 7.2 with sets G = {6, 9} and
Q = V \ {1}.
We first observe that we can rewrite the fixed-point in (7.7) as

νY. µX. [Q ∩G ∩ Cpre(Y )] ∪ [Q ∩ (Apre(Y,X))] . (7.12)

Using (7.12) we see that for Y 0 = V we can define T 0 := Q ∩G ∩ Cpre(V ) = G = {6, 9}.
Therefore the first iteration over X is equivalent to (7.11) and terminates with Y 1 =
X1∗ = V \ {1}.
Now, however, we need to re-compute T for the next iteration over X and obtain

T 1 = Q ∩G ∩ Cpre(Y 1) = V \ {1} ∩ {6, 9} ∩ V \ {1, 2, 9} = {6}. This re-computation of
T 1 checks which target vertices are re-reachable, as required by the Büchi condition. As
vertex 9 has no outgoing edge it is trivially not re-reachable.

With this, we see that for the next iteration over X we only have one target vertex
T 1 = {6}. If we recall that vertex 7 is added to X22 due to its live edge to 9, we see
that it is now not added anymore. Intuitively, we have to exclude 7 as Player 1 can
always decide to take the live edge towards 9 from 7 (also if 7 only gets visited once), and
therefore prevents to re-visit a target state.
Now, vertices 2 and 3 get eliminated for the same reason as in the safe reachability

game within the second and third iteration over Y . The overall fixed-point computation
therefore terminates with Y ∗ = Y 3 = {4, 5, 6, 8}.

Proof of Thm. 7.1: With Thm. 7.3 and Thm. 7.2 in place, the proof of Thm. 7.1 is
essentially equivalent to the proof of Piterman and Pnueli (2006) while utilizing Thm. 7.3
and Thm. 7.2 at all suitable places. For completeness, we give the full proof of Thm. 7.1,
including the memoryless strategy construction, in App. A.2.3. In addition, we illustrate
the steps of the fixed-point algorithm in (7.4) with a simple fair adversarial Rabin game
(depicted in Fig. A.1 in App. A.1) which has two acceptance pairs in App. A.1.

Remark 4 We remark that the fixpoint (7.9), as well as the Apre operator, are similar
in structure to the solution of almost surely winning states in concurrent reachability
games de Alfaro et al. (1998). In concurrent games, the fixed point captures the largest
set of states in which the game can be trapped while maintaining a positive probability of
reaching the target. In our case, the fixed point captures the largest set of states in which
Player 0 can keep the game while ensuring a visit to the target either directly or through
the live edges. The commonality justifies our notation and terminology for Apre.

7.2.3. Complexity

Complexity Analysis of (7.4): For Rabin games with k Rabin pairs, Piterman and
Pnueli (2006) show a fixpoint formula with alternation depth 2k+1 . Using the accelerated
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v v′ ⇒ v vv′ v′

Figure 7.3.: Left: A live edge (v, v′) in G`. Right: The gadget used to replace (v, v′) in
Ĝ. The vertex named vv′ is a newly added vertex in Ĝ; v belongs to V̂1, vv′

belongs to V̂0, but v′ may belong to either V̂0 or V̂1.

a b c d

Figure 7.4.: Counterexample to the equality of strong transition fairness and strong
fairness (compassion).

fixpoint computation technique of Long et al. (1994), they deduce a bound of O(nk+1k!)
symbolic steps. We show in App. A.3 that this accelerated fixpoint computation can also be
applied to (7.4) yielding a bound of O(nk+2k!) symbolic steps. (The additional complexity
is because of an additional outermost ν-fixpoint.) Thus our algorithm is almost as efficient
as the original algorithm for Rabin games without environment assumptions—independent
of the number of strong transition fairness assumptions!
Comparison with a Naïve Solution: We show a naïve reduction from fair adversarial
Rabin games to usual Rabin games. Suppose G` =

〈
G, E`

〉
is a game graph with live

edges, R = {〈G1, R1〉 , . . . , 〈Gk, Rk〉} is a Rabin winning condition defined over G`, and
ϕ is the corresponding LTL specification as defined in (7.3). Let Ĝ =

〈
V̂ , V̂0, V̂1, Ê

〉
be

a 2-player game graph obtained by just replacing every live edge of G` with a gadget
shown in Fig. 7.3 and explained next. For every live edge (v, v′) ∈ E` we introduce a
new intermediate vertex named vv′ ∈ V̂ , and without loss of generality we assume that
vv′ ∈ V̂0. (We could have equivalently used the convention that vv′ ∈ V̂1.) Then we
replace the edge (v, v′) with a pair of new edges (v, vv′) ∈ Ê and (vv′, v′) ∈ Ê; the rest
remains the same as in G. Assuming that |E`| = l and |V | = n, the number of vertices of
Ĝ is n+ l.
Intuitively, the event of the newly introduced vertices being reached in Ĝ simulates

the event of the corresponding live edge being taken in G`, and vice versa. We are now
ready to transfer the specification α → ϕ to a new Rabin winning condition R̂ for Ĝ.
First observe that α → ϕ is equivalent to ¬α ∨ ϕ, and ¬α can be expressed in LTL as∨

(v,v′)∈E`(�♦{v}∧♦�{vv′}). and is therefore equivalent to the Rabin winning condition
R` := {〈{v}, {vv′}〉 | (v, v′) ∈ E`}. Since Rabin winning conditions are closed under
union, we obtain the new Rabin condition R̂ := R∪R`.

Once Ĝ and R̂ are obtained, one can use the fixpoint algorithm of Piterman and Pnueli
(2006) for “normal” 2-player Rabin games. This whole process yields a symbolic algorithm
for fair adversarial Rabin games with 2(k + l) + 1 alternations of fixpoint operators on a
set of (n + l) vertices that runs in time O((n + l)k+l+1(k + l)!). In contrast, our main
theorem shows that we get a symbolic fixpoint expression with 2(k + 1) alternations that
runs in O(nk+2k!) symbolic steps. In many applications, we expect l = Θ(n), for which
our algorithm is significantly faster.

Remark As already mentioned in the introduction, not all strong fairness assumptions
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(Streett assumptions) can be translated into live edges (see e.g., (Baier and Katoen, 2008,
p.264)). As an example, consider the 2-player game graph depicted in Fig. 7.4. Player 0
and Player 1 vertices are indicated by a circle and a box, respectively. Now consider the
following one-pair Streett assumption

ϕA := 23{a, b, c} → 23{a} = 32{d} ∨23{a}. (7.13)

This fairness assumption states that it is not possible for a game to infinitely stay inside
the set {a, b, c} if Player 0 decides to not transition from b to a anymore from some point
onward. We see that we cannot model this behavior by a fair edge leaving a Player 1
(square) state. If we mark the edge (c, d) live, any fair play will transition to d no matter
if a is visited infinitely often or not. Let us call this fair edge assumption αA. Then we
see that αA → ϕA but not vice versa.

7.2.4. Specialized Rabin Games

This section shows that the known fixpoint algorithms for Rabin chain, Parity, and
Generalized Co-Büchi winning conditions allow for the same “syntactic transfomation”
as in the Rabin case to get the right algoirthm for their fair adversarial version. We
prove these claims by reducing the fixed point in (7.4) to the special cases induced by the
aforementioned winning conditions.
We note that the fixpoint algorithm for fair adversarial Rabin games in (7.4) reduces

to the normal fixed point for Rabin games if E` = ∅. Therefore, our reductions of (7.4)
to fixpoint algorithms for other winning conditions also proves these reductions in the
usual case. We are not aware of such reductions proved elsewhere in the literature.
Fair Adversarial Rabin Chain Games: A Rabin chain winning condition Mostowski
(1984) is a Rabin condition R = {〈G1, R1〉 , . . . , 〈Gk, Rk〉}, with the additional chain
condition

R1 ⊇ R2 ⊇ . . . ⊇ Rk and G1 ⊇ G2 ⊇ . . . ⊇ Gk. (7.14)

Intuitively, the fixpoint algorithm computing Z∗ in (7.4) simplifies to a single permutation
sequence, namely p1 = k, p2 = k − 1, . . ., pk = 1, if (7.14) holds. This is formalized in
the following theorem which is proved in App. A.2.4.

Theorem 7.4 Let G` =
〈
G, E`

〉
be a game graph with live edges and R be a Rabin

condition over G with k pairs for which the chain condition (7.14) holds. Further, let

Z∗ :=νY0. µX0. νYk. µXk. νYk−1. . . . µX1.
⋃k
j=0 C̃j , (7.15a)

where C̃j :=Rj ∩ [(Gj ∩ Cpre(Yj)) ∪Apre(Yj , Xj)] (7.15b)

with Gp0
:= ∅ and Rp0

:= ∅. Then Z∗ is equivalent to the winning region W of Player 0
in the fair adversarial game over G` for the winning condition ϕ in (7.3). Moreover, the
fixpoint algorithm runs in O(nk+2) symbolic steps, and a memoryless winning strategy for
Player 0 can be extracted from it.
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Fair Adversarial Parity Games: A Parity winning condition (Emerson and Jutla,
1989) is defined by a set P = {C1, C2, . . . C2k} of colors, where each Ci ⊆ V is the set of
vertices of G with color i. Further, P partitions the state space, i.e.,

⋃
i∈[1;2k]Ci = V and

Ci ∩ Cj = ∅ for all i, j ∈ [1; 2k] with i 6= j. A play π satisfies the Parity condition P if π
satisfies the LTL formula

ϕ :=
∧
i∈[1;k]

(
�♦C2i−1 →

∨
j∈[i;k]�♦C2j

)
. (7.16)

That is, the maximal color visited infinitely often along π is even. A Parity winning
condition P with 2k colors corresponds to the Rabin chain winning condition

{〈F2, F3〉 , . . . , 〈F2k, ∅〉} s.t. Fi :=
⋃2k
j=iCj , (7.17)

which has k pairs. Due to P forming a partition of the state space one can further simplify
the Rabin chain fixpoint algorithm in (7.15). Interestingly, the resulting fixpoint looks
slightly different from the one we would obtain by a straightforward application of our
syntactic transformation. While the usual fixpoint algorithm for parity games is as in the
following

Z∗ :=νY2k. µX2k−1 . . . νY2. µX1. (7.18)
(C1 ∩ Cpre(X1)) ∪ (C2 ∩ Cpre(Y2)) ∪ (C3 ∩ Cpre(X3)) . . . ∪ (C2k ∩ Cpre(Y2k)),

the fixpoint algorithm for fair adversarial parity games looks slightly different:

Theorem 7.5 Let G` =
〈
G, E`

〉
be a game graph with live edges and P be a Parity

condition over G with 2k colors. Further, let

Z∗ :=νY2k. µX2k−1. . . . νY2. µX1. (7.19)
∪ (C2k ∩ Cpre(Y2k)) ∪ ((C1 ∪ . . . ∪ C2k−1) ∩Apre(Y2k, X2k−1))

∪ . . .

∪ (C4 ∩ Cpre(Y4)) ∪ ((C1 ∪ C2 ∪ C3) ∩Apre(Y4, X3))

∪ (C2 ∩ Cpre(Y2)) ∪ (C1 ∩Apre(Y2, X1)).

Then Z∗ is equivalent to the winning region W of Player 0 in the fair adversarial game
over G` for the winning condition ϕ in (7.16). Moreover, the fixpoint algorithm runs in
O(nk+1) symbolic steps, and a memoryless winning strategy for Player 0 can be extracted
from it.

Apart from the usual differences between (7.18) and (7.19), introduced by our syntactic
transformation, the main difference is that every Apre(Y2i, X2i−1) in (7.19) is intersected
with the union of every vertex with color 2i−1 or smaller, whereas the Apre(Y2i, X2i−1)-s
in (7.18) are intersected with only vertices with color 2i− 1. The intuitive explanation is
that fair adversarial games allow Player 0 more freedom in visiting vertices which do not
directly contribute to winning as long as they are only transient. It turns out that it is
necessary to allow transitions from the vertices with lower colors through Apre(·, ·), as
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otherwise the fixpoint will not capture all the vertices from where it is possible to win the
fair adversarial parity game.
Fair Adversarial (Generalized) Co-Büchi Games: A Co-Büchi winning condition
is defined by a subset A ⊆ V of vertices of G. A play π satisfies the Co-Büchi condition
A if π satisfies

ϕ := ♦�A. (7.20)
A Generalized Co-Büchi winning condition is defined by a set A = {A1, . . . Ar}, where
each Ai ⊆ V is a subset of vertices of G. A play π satisfies the Generalized Co-Büchi
condition A if π satisfies

ϕ :=
∨
a∈[1;r] ♦�Aa. (7.21)

Generalized Co-Büchi winning conditions correspond to a Rabin condition R with r pairs
s.t.

∀j ∈ [1; r] . Rj := Aj and Gj := V. (7.22)

Intuitively, the fact that Gj := V for all j leads to a cancelation of all Apre terms in Cj
and all terms become ordered, i.e., we have Cpj+1 ⊆ Cpj for every permutation sequence
used in (7.4). As we take the union over all Cpj -s in (7.4a), the term Cp1 absorbs all others
for every permutation sequence. Hence, for every permutation sequence we only have two
terms left, one for j = 0 (over the artificially introduced Rabin pairs Gp0 = Rp0 = ∅) and
one for the first choice p1 made in this particular permutation. This is formalized in the
following theorem which is proved in App. A.2.4.

Theorem 7.6 Let G` =
〈
G, E`

〉
be a game graph with live edges and A be a generalized

Co-Büchi winning condition G with r pairs. Further, let

Z∗ :=νY0. µX0.
⋃

a∈[1;r]

νYa. Apre(Y0, X0) ∪ (Aa ∩ Cpre(Ya)). (7.23)

Then Z∗ is equivalent to the winning region W of Player 0 in the fair adversarial game
over G` for the winning condition ϕ in (7.21). Moreover, the fixpoint algorithm runs in
O(rn2) symbolic steps, and a memoryless winning strategy for Player 0 can be extracted
from it.

7.3. Generalized Rabin Games

In this section, we slightly generalize our main result, Thm. 7.1, to fair adversarial
generalized Rabin games. That is, for each Rabin pair, we allow the goal set Gi to be a
set of goal sets Gj = { 1Gj , . . . ,

mjGj}. Then a play fulfills the winning condition if there
exists one generalized Rabin pair 〈Gi, Ri〉 such that the play eventually remains in Ri
and visits all sets lGi infinitely often.

The motivation of this generalization is to show that our syntactic transformation also
works for fair adversarial games with a generalized reactivity winning condition of rank 1
(GR(1) games for short) Piterman et al. (2006). Generalized Rabin games allow us to
see a GR(1) winning condition as a particularly simple instantiation of a Rabin game as
shown in Sec. 7.3.2.
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7.3.1. Fair Adversarial Generalized Rabin Games

Generalized Rabin Conditions: A generalized Rabin condition is defined by a set
R̃ = {〈G1, R1〉 , . . . , 〈Gk, Rk〉} where each Gj = { 1Gj , . . . ,

mjGj} is a finite set s.t.
lGj ⊆ V for all j ∈ [1; k] and all l ∈ [1;mj ]. We say that R̃ has global index set P = [1; k].
A play π satisfies the generalized Rabin condition R̃ if π satisfies the LTL formula

ϕ :=
∨
j∈P

(
32Rj ∧

∧
l∈[1;mj ]

23 lGj

)
. (7.24)

Recalling the discussion of Sec. 7.2.1, we know that the proof of Thm. 7.1 fundamen-
tally relies on the correctness of our transformation for safe Büchi (Thm. 7.2) and safe
reachability (Thm. 7.3) games. Similarly, one needs to prove correctness of our syntactic
transformation for safe generalized Büchi games in the case of generalized Rabin games.
Safe Generalized Büchi Games A safe generalized Büchi condition is defined by a
tuple 〈F c, Q〉 where Q ⊆ V is a set of safe states and F = { 1F, . . . , sF} is a set of goal
sets. A play π satisfies the safe generalized Büchi condition 〈F c, Q〉 if π satisfies the LTL
formula

ϕ := 2Q ∧
∧
l∈[1;s] 23

lF. (7.25)

Now we can apply our syntactic transformation to the usual fixpoint algorithm for solving
safe generalized Büchi games and prove its correctness for all fair adversarial plays. This
is formalized in the next theorem and proved in App. A.2.5.

Theorem 7.7 Let G` =
〈
G, E`

〉
be a game graph with live edges and 〈F c, Q〉 with F =

{ 1F, . . . , sF} a safe generalized Büchi winning condition. Further, let

Z∗ :=νY.
⋂

b∈[1;s]

µ bX. Q ∩
[
( bF ∩ Cpre(Y )) ∪Apre(Y, bX)

]
. (7.26)

Then Z∗ is equivalent to the winning region W of Player 0 in the fair adversarial game
over G` for the winning condition ϕ in (7.25). Moreover, the fixpoint algorithm runs in
O(sn2) symbolic steps, and a finite-memory winning strategy for Player 0 can be extracted
from it.

Intuitively, the proof of Thm. 7.7 reduces to Thm. 7.2 in a similar manner as the proof
of Thm. 7.2 reduces to Thm. 7.3. However, the challenge in proving Thm. 7.7 is to show
that it is indeed sound to use the fixpoint variable Y which is actually the intersection of
fixpoint variables X both within Cpre and Apre. The proof of this correctness essentially
requires to show that upon termination we have Y ∗ = bX∗ for all b ∈ [1; s] (see App. A.2.5
for a formal proof).
The Symbolic Algorithm: By knowing that (7.26) allows to correctly solve safe
generalized Büchi games, we can immediately generalize this observation to Rabin games.
This is formalized in the following theorem which is an immediate consequence of Thm. 7.1
and Thm. 7.7.
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Theorem 7.8 Let G` =
〈
G, E`

〉
be a game graph with live edges and R̃ be a generalized

Rabin condition over G with index set P = [1; k]. Further, let

Z∗ := νY0. µX0.
⋃

p1∈P
νYp1 .

⋂

l1∈[1;mp1 ]

µ l1Xp1 . . . . . . .

⋃

pk∈P\{p1,...,pk−1}

νYpk .
⋂

lk∈[1;mpk ]

µ lkXpk .
k⋃

j=0

ljCpj , (7.27a)

where ljCpj :=
(⋂j

i=0Rpi

)
∩
[(

ljGpj ∩ Cpre(Ypj )
)
∪Apre(Ypj ,

ljXpj )
]

(7.27b)

with1 p0 = 0, Gp0
:= {∅} and Rp0

:= ∅. Then Z∗ is equivalent to the winning region W
of Player 0 in the fair adversarial game over G` for the winning condition ϕ in (7.24).
Moreover, the fixpoint algorithm runs in O(nk+2k!m1 . . .mk) symbolic steps, and yields a
finite-memory winning strategy for Player 0.

The proof of Thm. 7.8 is almost identical to the proof of Thm. 7.1 in App. A.2.3,
when using Thm. 7.7 instead of Thm. 7.2 in all appropriate places. This, yields a finite
memory winning strategy by suitably “stacking” the individual finite-memory strategies
constructed in the proof of Thm. 7.7. (See App. A.2.5 for a complete proof of Thm. 7.8.)

7.3.2. Fair Adversarial GR(1) Games

Within this section, we show how fair adversarial Rabin games can be reduced to fair
adversarial games with GR(1) winning conditions.
GR(1) winning condition: A GR(1) winning condition is defined by two sets A =
{A1, . . ., Ar} and F = {F1, . . ., Fs}, where for every i ∈ [1; r] and j ∈ [1; s], Ai, Fj ⊆ V .
A play π satisfies the GR(1) condition (A,F) if it satisfies the LTL formula

ϕ :=
(∧

a∈[1;r] 23Aa

)
→
(∧

b∈[1;s] 23Fb

)
=
(∨

a∈[1;r] 32Aa

)
∨
(∧

b∈[1;s] 23Fb

)
.

(7.28)

By comparing ϕ in (7.28) with ϕ in (7.24), we see that a GR(1) condition (A,F) can be
transformed into a generalized Rabin condition R̃ with k = r + 1 pairs, such that

∀j ∈ [1; r] . Rj := Aj and Gj := {V }, and (7.29a)
Rk := ∅ and Gk := F . (7.29b)

Fixpoint Algorithm: We first observe that the first r Rabin pairs with trivial goal
sets actually correspond to a generalized Co-Büchi condition (compare (7.22)) which can
be solved by the fixed point in Thm. 7.6 (see Sec. 7.2.4). Intuitively, the fixed point in
Thm. 7.6 only needs to consider single indices form P = [1; r] rather then full permutation
sequences as in Thm. 7.1. By adding the last tuple 〈Gk, Rk〉 to the winning condition, we

1Again, the generalized Rabin pair 〈Gp0 , Rp0〉 in (7.4) is artificially introduced and not part of R̃.
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essentially need to consider two indices in each conjunct of (7.15), i.e., pj (with j ∈ [1; r])
and pk. In principle, we would need to consider both possible orderings of these two
indices (compare (7.27)). However, by inspecting (7.29) we see that the sets corresponding
to these indices always fulfill a (generalized) chain condition (compare (7.14)). That is,
we have Rj ⊇ Rk and V = 1Gj ⊇ bF for any j ∈ [1; r] and b ∈ [1; s]. Hence, we only need
to consider the permutation sequence pkpj (compare (7.15)). Using this insight, along
with some additional simplifications, we indeed yield the fixed point that we would obtain
by simply applying our transformation to the well-known GR(1) fixed point (compare e.g.
Piterman et al. (2006)). This observation is formalized in the next theorem and proved
in App. A.2.5.

Theorem 7.9 Let G` =
〈
G, E`

〉
be a game graph with live edges and (A, F c) a GR(1)

winning condition. Further, let

Z∗ =νYk.
⋂

b∈[1;s]

µ bXk.
⋃

a∈[1;r]

νYa. (Fb ∩ Cpre(Yk)) ∪Apre(Yk,
bXk) ∪ (Aa ∩ Cpre(Ya)).

(7.30)

Then Z∗ is equivalent to the winning region W of Player 0 in the fair adversarial game
over G` for the winning condition ϕ in (7.28). Moreover, the fixpoint algorithm runs
in O(n2rs) symbolic steps, and a finite-memory winning strategy for Player 0 can be
extracted from it.

In particular, the strategy extraction is performed in the same way as by Piterman
et al. (2006) for a “normal” GR(1) game.

7.4. Stochastic Generalized Rabin Games

We present an important application of our fixpoint algorithm in computing the almost
sure winning region in 21/2-player games. For this, we reduce the problem of computing
almost sure winning strategies in 21/2-player generalized Rabin games to the computation
of winning strategies in fair adversarial generalized Rabin games. This yields a direct
symbolic algorithm for solving 21/2-player generalized Rabin games.

Suppose G is a 21/2-player game graph and R̃ is a generalized Rabin winning condition.
To obtain the reduced 2-player game graph, we simply reinterpret the random vertices as
Player 1 vertices and the random edges as live edges. Let us first formalize this notion of
the reduced game graph.

Definition 7.2 (Reduction to 2-player game with live edges) Let G = 〈V, V0, V1, Vr, E〉
be a 21/2-player game graph. Define Derand(G) :=

〈〈
Ṽ , Ṽ0, Ṽ1, Ẽ

〉
, E`

〉
as follows:

• Ṽ = V , Ṽ0 = V0, Ṽ1 = V1 ∪ Vr, Ẽ = E, and E` = Er.

It remains to show that the almost sure winning set of Player 0 in G for the generalized
Rabin winning condition R̃ is the same as the winning set of Player 0 in the fair adversarial
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game over Derand(G) for the winning condition R̃. This is formalized in the following
theorem, which is proved in App. A.2.6. The proof essentially shows that the random
edges of G simulate the live edges of Derand(G), and vice versa.

Theorem 7.10 Let G be a 21/2-player game graph, R̃ be a generalized Rabin condition,
ϕ ⊆ V ω be the corresponding LTL specification (Eq. (7.24)) over the set of vertices V
of G, and Derand(G) be the reduced 2-player game graph. Let W ⊆ Ṽ be the set of all
the vertices from where Player 0 wins the fair adversarial game over Derand(G) for the
winning condition ϕ, and Wa.s. be the almost sure winning set of Player 0 in the game
graph G for the specification ϕ. Then, W = Wa.s.. Moreover, a winning strategy in
Derand(G) is also a winning strategy in G, and vice versa.

The above theorem generalizes (Glabbeek and Höfner, 2019, Thm. 11.1) from liveness
properties to all LTL specifications on 21/2-player games. Together with our symbolic
algorithm for fair adversarial Rabin games, the reduction implies a O(nk+2k!) algorithm
for stochastic Rabin games for a game with n states and k Rabin pairs. This improves
the previous best algorithm from Chatterjee et al. (2005), which reduces the problem to a
normal 2-player game with O(n(k + 1)) states and k + 1 Rabin conditions, and therefore
has a complexity of O

(
(n(k + 1))k+2(k + 1)!

)
.

Remark 5 The idea underlying this section is to replace random edges with live edges to
compute almost sure winning states. We recall again that probabilistic choice is different
from (i.e., stronger than) strong transition fairness studied in this chapter. See Sec. 7.1
for an illustrative example in Fig. 7.1.

7.5. Implementation and Experimental Evaluation

We have developed a C++-based tool Fairsyn, which implements the symbolic fair
adversarial Rabin fixpoint from Eq. (7.4) using BDDs. We developed two versions of
Fairsyn: A single-threaded version using the (single-threaded) CUDD library (Somenzi,
2019), and a multi-threaded version using the (multi-threaded) Sylvan library (van Dijk
and van de Pol, 2015). In addition, Fairsyn implements a modified version of the well-
known acceleration technique for fixpoint computations (Long et al., 1994). The original
acceleration procedure uses excessive memory. We implemented a practical bounded
memory version of the original algorithm that works well in practice; the main idea has
been summarized in Sec. 7.5.1.
To show the effectiveness of our proposed symbolic algorithm for fair adversarial

Rabin games, we performed various experiments with Fairsyn which fall into two different
categories. First, in Sec. 7.5.2, we demonstrate the merits of utilizing parallelization and
acceleration within Fairsyn. Second, in Sec. 7.5.3, we show the practical relevance of our
algorithm by solving two large practical case-studies stemming from the areas of software
engineering and control systems.

The experiments in Sec. 7.5.2 and Sec. 7.5.3 were performed using Sylvan-based Fairsyn
on a computer equipped with a 3 GHz Intel Xeon E7 v2 processor with 48 CPU cores
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and 1.5 TiB RAM. The experiments in Sec. 7.5.3 were performed using CUDD-based
Fairsyn on a Macbook Pro (2015) laptop equipped with a 2.7 GHz Dual-Core Intel Core
i5 processor with 16 GiB RAM.

7.5.1. The Accelerated Fixpoint Algorithm

Consider the fixpoint algorithm in (7.4). In the correctness proof of Thm. 7.1 discussed in
App. A.2.3, we have been remembering so called configuration prefixes δ = p0i0 . . . pj−1ij−1

for some j ≤ k for every fixed-point variable X (see Eq. (A.13)). We denoted by Xij
δpj

the set of states computed in the ij-th iteration of the fixed-point over Xpj after the
fixed-point over Ypj has already terminated within the ij−1-th iteration over Xpj−1 after
the fixed-point over Ypj−1 has terminated in the ij−2-th iteration over Xpj−2 and so forth.

In order to describe the accelerated implementation of (7.4), we do not assume that the
fixed-points over Y -variables have already terminated, but additionally remember their
counters m. This leads to configuration prefixes δ = p0m0i0 . . . pj−1mj−1ij−1 and lets us
define that Xmjij

δpj
is the set of states computed in the ij-th iteration of the fixed-point

over Xpj during the mj-th iteration over Ypj , computing the set Y mj
δpj

and so forth.
Given two configuration prefixes δ = p0m0i0 . . . pj−1mj−1ij−1 and δ′ = p′0m

′
0i
′
0 . . . p

′
j−1m

′
j−1i

′
j−1

we define δ <m δ′ if p0 . . . pj−1 = p′0 . . . p
′
j−1, m0 . . .mj−1 < m′0 . . .m

′
j−1 (using the in-

duced lexicographic order) and i0 . . . ij−1 = i′0 . . . i
′
j−1. We define δ <i δ′ similarly.

Now Piterman and Pnueli (2006) showed, based on a result of Long et al. (1994),
that for every configuration prefix δ = p0m0i0 . . . pj−1mj−1ij−1 the computation of Y 0

δpj

can start from the minimal set Y mj
δ′pj

(instead of the entire set of vertices V ) such that
δ′pjmj <m δpj0. Dually, for every configuration prefix δ = p0m0i0 . . . pj−1mj−1ij−1 the
computation of Xmj0

δpj
can start from the maximal set Xmjij

δ′pj
(instead of the empty set)

such that δ′pjmjij <i δpjmj0.
Further, we see that for the innermost fixpoint, i.e. when j = k, it follows that for every

computation prefix δ , there can be at most n iterations over both Ypk and Xpk , where n
is the total number of vertices. I.e., n different sets Y mk

δpk
and Xmkik

δpk
have to be freshly

computed for each δpk and δpkmk respectively. We see that there are O(nk+1k!) different
such permutation sequences. As the computation of the innermost fixpoint dominates
the computation time, it is shown by Long et al. (1994) that this results in an overall
worst-case computation time of O(n(k+1)+1k!) = O(nk+2k!) (where n is the total number
of vertices and k is the number of Rabin pairs).
Unfortunately, the memory requirement of this acceleration algorithm is enormous.

To see this, observe that in order to warm-start the computation of Y 0
δpj

with δ =
p0m0i0 . . . pj−1mj−1ij−1 we need to store the current minimal set w.r.t. the m-prefix for
every combination of p- and i-prefixes that can occur in δ, which are O(nk+1k!) many.
Similarly, to warm-start the computation of Xmjij

δpj
we need to store the current minimal

set w.r.t. the i-prefix for every combination of p- and m-prefixes that can occur in δ. This
means that the memory required by the algorithm is O(nk+1k!), which is prohibitively
large for large values of n and k.
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We implemented a space-bounded version of the acceleration algorithm, where for any
given parameter M (chosen by the user), we stored only up to M values for each counter.
Whenever the values of all the counters are less than M , we use the regular acceleration
algorithm as outlined above. Otherwise, if any of the counters exceeds M , then we fall
back to the regular initialization procedure of fixpoint algorithms, i.e. depending on
whether it is an Y or an X variable, initialize it with V or ∅ respectively. As a result,
the memory requirement of our accelerated fixpoint algorithm is given by O(Mk+1k!).
This space-bounded acceleration algorithm made our implementation much faster and yet
practically feasible, as has been demonstrated in Sec. 7.5.2 and Sec. 7.5.3.

7.5.2. Performance Evaluation

This section discusses a benchmark suite used to empirically evaluate the merits of the
two important aspects of Fairsyn, namely the parallelization and the acceleration. Our
benchmark suite is build on transition systems taken from the Very Large Transition
Systems (VLTS) benchmark suite (Garavel and Descoubes, 2003). For each chosen
transition system, we randomly generated benchmark instances of fair adversarial Rabin
games with up to 3 Rabin pairs. To transform a given transition systems into a fair
adversarial Rabin game, we labeled (i) 50% of randomly chosen vertices as system vertices,
(ii) the remaining vertices as environment vertices, (iii) up to 5% of randomly selected
environment edges as live edges, and (iv) for every set in R = {〈G1, R1〉 , . . . , 〈Gk, Rk〉}
we randomly selected up to 5% of all vertices to be contained. We have summarized the
relevant details of all the randomly generated instances of the fair adversarial Rabin games
in Table A.1 and Table A.2 in App. A.4. In these examples, the number of vertices were
289–566,639, the number of BDD variables were 9–20, the number of transitions were
1224–3,984,160, and number of live edges were 1–42,757. For all benchmark instances
with more than 4 live edges, the naïve version of Fairsyn which treats live edges as Streett
conditions and transforms them into additional Rabin pairs as discussed in Sec. 7.2.3, did
not terminate after 2 hours.

Merits of parallelization. We ran Fairsyn on 10 different benchmark instances with
1 or 2 Rabin pairs, and varied the number of parallel worker threads used in Fairsyn
between 1–48, while keeping the acceleration enabled. The left scatter plot in Fig. 7.5
plots the computation times with 48 threads (parallel) versus the computation times
with 1 thread (non-parallel). Observe that in almost all the experiments, the parallelized
version outperforms the non-parallelized version (points above the solid red line). In
addition, in many cases the speedup achieved due to the parallelization was more than
one order of magnitude (points above the dashed red line).
A more fine-grained analysis of the benefits of parallelization is shown in Fig. 7.6.(a).

Here computation time (in logarithmic scale) is plotted over the number of worker threads
used. We observe that the saving due to parallelization is more significant for the curves
lying in the top half which correspond to larger examples. This is due to the better
utilization of the available pool of worker threads by the larger examples.

Merits of acceleration. We ran Fairsyn on 10 different benchmark instances with 1–3
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(a) Comparison between the computa-
tion times for the non-parallel (1
worker thread) and parallel (48 worker
threads) version of Fairsyn, with accel-
eration being enabled in both cases.
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(b) Comparison between the computation
times for the non-accelerated and the
accelerated version of Fairsyn, with
parallelization being enabled in both
cases.

Figure 7.5.: Experimental evaluation of various algorithmic optimization on the VLTS
benchmark examples. In both scatter plots, the points on the solid red line
represent the same computation time. The points on the dashed red line
represent an order of magnitude improvement.

Rabin pairs, and varied the acceleration parameter M between 2–15, while the number of
worker threads was fixed to 48. The right scatter plot in Fig. 7.5 plots the computation
times with M = 15 versus the computation times with no acceleration. Observe that
in almost all the experiments, the accelerated version outperformed the non-accelerated
version (points above the solid red line), and in many cases the achieved speedup is close
to an order of magnitude (points near the dashed red line). See Fig. A.2 in App. A.4 for
a zoomed-in version of Fig. 7.5.

A more fine-grained analysis of the benefits of acceleration is shown in Fig. 7.6.(b)–(e).
Here we have plotted the total computation time (Plots (b),(d)) and the initialization
time (Plots (c),(e)) in logarithmic scale over M for benchmark instances with 2 Rabin
pairs (Plots (b),(c)) and 3 Rabin pairs (Plots (d),(e)). Plots for instances with 1 Rabin
pair can be found in Fig. A.3 in App. A.4.
The plotted initialization time is needed by the accelerated algorithm for allocating

memory to store intermediate fixpoint values. We observe that this initialization time
grows exponentially with M , which is due to the O(Mk+1k!) space complexity of the
acceleration algorithm. As a result, the computational savings due to the use of acceleration
get undermined by the high initialization cost for large M . We note that, due to their
random generation, the considered benchmark instances are not well structured. This
results in low iteration numbers over involved fixed-point variables. Due to this, the
allocated memory gets underutilized for large values of M . In the practically relevant
examples discussed in Sec. 7.5.3 the game graph is naturally structured, resulting in a
large number of fixpoint iterations and thereby showing superior performance for larger
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values of M .

7.5.3. Practical Benchmarks

This section shows that Fairsyn is able to efficiently solve two practical case studies stem-
ming from the areas of software engineering (Sec. 7.5.3) and control systems (Sec. 7.5.3).

Code-Aware Resource Management

We consider a case study introduced by Chatterjee et al. (2013). It considers the problem
of synthesizing a code-aware resource manager for a network protocol, i.e., multi-threaded
program running on a single CPU. The task of the resource manager is to grant different
threads access to different shared synchronization resources (mutexes and counting
semaphores). The specification is deadlock freedom across all threads at all time while
assuming a fair scheduler (scheduling every thread always eventually) and fair progress in
every thread (i.e., taking every existing execution branch always eventually). By making
the resource manager code-aware, it can avoid deadlocks by utilizing its knowledge about
the require and release characteristics of all treads for different resources.

Chatterjee et al. (2013) showed that the problem of synthesizing a code-aware resource
manager can be approximated using a 11/2-player game1 generated from the known require
and release characteristics of all threads. We used Fairsyn to synthesize a code-aware
resource manager for this problem, where the live edges model the aforementioned fairness
conditions imposed on the scheduler and the threads.

generator

sender

broadcast

output

delay

to network

Figure 7.7.: Structure of network
protocol.

Motivated by the case study conducted by Chat-
terjee et al. (2013), we consider a network protocol
consisting of 3 threads and 2 queues of bounded ca-
pacity, as depicted in Fig. 7.7. The threads (shown
as oval-shaped nodes) are called generator, sender,
and delay, and the queues (shown as rectangular
nodes) are called broadcast and output. The gen-
erator generates data packets and dispatches them
to either the broadcast queue or the output queue.
Packets from the broadcast queue are added to the
output queue after a random delay, introduced by
the delay thread. The purpose of this delay is to avoid packet collisions during broad-
casting. The packets in the output queue are in transit and get processed by the sender
process. The sender process attempts to transmit packets from the output queue via the
network, and when the transmission fails, it adds the respective data packet back to the
broadcast queue, so that another transmission attempt can be made after a delay. Access
to all queues is protected by mutexes and semaphores. Each queue has one mutex and
two semaphores, one for counting the number of empty places and another for counting
the number of packets present.

1A 11/2-player game is a 21/2-player game without any Player 1 vertices.

150



7.5. Implementation and Experimental Evaluation

1 12 24 36 48

10−2

100

102

Number of threads

C
om

pu
ta
ti
on

ti
m
e
(s
)

(a) Effect of parallelization on computation time, with the
acceleration enabled.
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(b) Effect of variation of the acceleration parameter M on the total computation time and initialization
time (parallelization being enabled) for 2 Rabin pairs.
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(c) Effect of variation of the acceleration parameter M on the total computation time and initialization
time (parallelization being enabled) for 3 Rabin pairs.

Figure 7.6.: Effect of parallelization and the acceleration parameterM on the computation
time. The computation times (Y-axis) is always shown in the logarithmic
scale.
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Broadcast
Queue
Capac-
ity

Output
Queue
Capac-
ity

Number of
Vertices

Number of
Transitions

Number of
Live edges

Number
of BDD
variables

Time
(sec-
onds)

1 1 5,307,840 10,135,300 5,124,100 25 7.38
2 1 21,231,400 40,541,200 20,496,400 27 24.90
3 1 21,414,100 42,080,300 21,265,900 27 28.98
1 2 21,340,800 40,879,100 20,834,300 27 38.26
1 3 21,559,400 42,756,100 21,772,800 27 51.56
2 2 85,363,200 163,516,000 83,337,200 29 133.20
3 2 86,061,400 169,673,000 86,415,400 29 144.28
2 3 86,237,400 171,024,000 87,091,200 29 163.62
3 3 86,870,100 177,181,000 90,169,300 29 203.15

Table 7.1.: Performance of Fairsyn on the code-aware resource management benchmark
experiment.

As discussed by Chatterjee et al. (2013), the outlined network protocol may deadlock
when both queues are full, a transmission via sender fails, and the sender tries to insert
the packet back to the broadcast queue. In this case, due to the output queue being
full, the broadcast queue will not be able to make space for the incoming packet, leading
to a deadlock situation. The correct strategy for the resource manager to prevent this
deadlock is to ensure that the generator never adds packets to the broadcast queue if the
output queue is full.

We used the parallel and accelerated version of Fairsyn with M = 15 to automatically
synthesize the resource manager for the outlined network protocol case study. Indeed,
Fairsyn was successful in discovering the outlined managing strategy. To showcase Fairsyn’s
performance on this case study, we report the number of vertices of the problem instance
and Fairsyn’s computation time to solve it for different queue capacities in Table 7.1; an
extended version of the table with more number of cases has been included in Table A.3 in
App. A.4. In all cases, Fairsyn was able to provide expected strategies within a reasonable
amount of time. Note that treating the live edges as Streett conditions would result in
a game with several million Rabin pairs, making all these examples go far beyond the
scope of any synthesis tool for Rabin games.

Controller Synthesis for Stochastically Perturbed Dynamical Systems

In Chap. 5, we showed how synthesizing almost sure winning controller for controlled
Markov processes (CMP) can be approximately solved by an abstract 21/2-player game.
This abstract 21/2-player game can be directly solved by our fixpoint algorithms for fair
adversarial games, through the reduction shown in Sec. 7.4. These form the basic ABCD
procedure for the qualitative controller synthesis for CMPs, and is implemented in our
tool Mascot-SDS. We summarize the experimental performance evaluation of Mascot-SDS
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in Sec. 5.6. There we show that on different instances of an established case study from
the literature, Mascot-SDS outperforms state-of-the art synthesis techniques by up to 2.5
orders of magnitude.

7.6. Related Work

The idea to consider strong transition fairness as a tractable fragment of strong fairness
(compassion) assumptions is inspired by work on the synthesis of supervisory controllers for
non-terminating processes by Thistle and Malhamé (1998). Here, a fixed-point algorithm
for the general problem (Thistle, 1995) which manipulates Rabin automata, is shown
to significantly simplify under a slightly weaker transition fairness assumption. While
our algorithm shares the underlying intuition behind the simplification of Thistle and
Malhamé (1998), it is syntactically very different due to the symbolic manipulation of
sets of states rather then automata.

Aminof et al. (2004) studied fair CTL and LTL model checking where the fairness
condition is given by a transition fairness with all edges of the transition system live. They
show that CTL model checking under this all-live fairness condition, can be syntactically
transformed to non-fair CTL model checking. A similar transformation is possible for
fair model checking of Büchi, Rabin, and Streett formulas. The correctness of their
transformation is based on reasoning similar to our Apre operator. For example, a state
satisfies the CTL formula ∀3p under fairness iff all paths starting from the state either
eventually visits p or always visits states from which a visit to p is possible.

The fixpoint (7.9), as well as the Apre operator, are similar in structure to the solution
of almost surely winning states in concurrent reachability games (de Alfaro et al., 1998);
see Rem. 4.

For GR(1) winning conditions, Svorenová et al. (2015) presented a symbolic fixpoint
algorithm for stochastic games (which can be modeled using fair adversarial games, see
Sec. 7.4). While one can show that the output of their algorithm coincides with the output
of our newly derived fixpoint algorithm in (7.30), their algorithm is structurally more
involved. On a conceptual level, we feel our insight about simply “swapping” predecessor
operators in the right manner is insightful even if one can also use their algorithm to find
a solution to this problem.

The idea of the simple “predecessor operator swapping trick” shares resemblence with
environmentally-friendly GR(1) synthesis, proposed by Majumdar et al. (2019). There,
the authors show a direct symbolic algorithm to compute Player 0 strategies which do
not win a given GR(1) game vacuously, by rendering the assumptions false. Recall that
in GR(1) specifications, the assumption is represented using deterministic generalized
Büchi conditions, but a direct relationship with transition fairness is not known. Hence,
it is not clear if environmentally-friendly GR(1) synthesis problems can be reduced to fair
adversarial games.

153



7. Symbolic Algorithms for ω-Regular Games under Strong Transition Fairness

7.7. Conclusion

In this chapter, we presented an efficient symbolic fixpoint algorithm for computing the
sure winning region in fair adversarial games with various different ω-regular winning
conditions. Our algorithm is obtained through a simple syntactic transformation of the
predecessor operator in the known algorithms for solving 2-player games. As a by-product,
we also obtain direct symbolic algorithms for computing the almost sure winning region
in 21/2-player games. We implemented our algorithm in the tool called Fairsyn, and
demonstrate significant improvement in performance compared to the state-of-the-art.
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8. Conclusion and Future Outlook
In this thesis, we have presented different correct-by-construction controller synthesis
approaches which are faster, more modular, and support broader classes of problems
compared to the state-of-the-art; following is a summary of the presented content.

Lazy multi-layered ABCD. Chap. 4 shows, using lazily computed multi-layered abstrac-
tions can give us significantly faster ABCD algorithms. The original Feedback
Refinement Relations-based ABCD algorithms would use a single abstraction layer
with uniform granularity. However, this would often require having a fine-grained
abstraction for better precision, at the cost of larger computation time, so that the
abstract synthesis does not return an empty solution. Chap. 4 shows how multiple
abstractions of different granularities can gracefully address the precision versus
computation time tradeoff. In our lazy multi-layered algorithms, during synthesis,
the coarser abstraction layers are used as much as possible, and the finer abstraction
layers are used only when necessary. We implemented this procedure in the tool
Mascot, and on standard benchmarks, our algorithm showed up to one order of
magnitude speedup.

Stochastic ABCD. In Chap. 5, we consider the controller synthesis problem for stochastic
systems with ω-regular specifications. We show that the optimal controller, the one
that maximizes the probability of satisfying the specification from every state, can be
computed through a two-step decomposition. First, we need to compute the optimal
almost sure winning controller that satisfies the specification with probability one
and whose domain, known as the almost sure winning region, is as large as possible.
Second, we need to compute a controller that maximizes the probability of reaching
the almost sure winning region: The maximal reachability probability will give
us a lower bound on the optimal satisfaction probability of the original ω-regular
specification. While the second step can be solved using existing techniques, we
present an ABCD approach to compute an under-approximation of the almost sure
winning region and the associated almost sure winning controller. In our proposed
ABCD approach, we obtain a finite 21/2-player game by discretizing the continuous
state space and abstracting every (discrete-time) probabilistic continuous transition
using a three-step game among the controller, the uncertainty introduced by the
discretization, and the randomness from the noise. We symbolically implement this
stochastic ABCD algorithm in the tool Mascot-SDS, and demonstrate improved
performance over a contemporary tool independently developed around the same
time as ours. The symbolic solution of 21/2-player games has been presented as a
special case of the solution of fair adversarial games studied in Chap. 7.
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8. Conclusion and Future Outlook

Assume-guarantee distribution synthesis. Chap. 6 shows how to do modular synthe-
sis of local controllers for a network of discrete systems, communicating through
discrete/boolean variables. The systems negotiate a set of mutually beneficial
assume-guarantee contracts, whose individual satisfactions will ensure overall satis-
faction of the specifications. Technically speaking, the negotiation is an iterative
procedure, where the systems repeatedly exchange minimal sets of assumptions that
they require for satisfaction of their own specifications as well as the assumptions
made by the other systems in the previous iterations. This gives us a sound, but
incomplete, solution to the distributed synthesis problem, which is known to be
undecidable. We implemented the negotiation algorithm in a prototype tool called
Agnes, using which we showed the effectiveness of our approach on a couple of
distributed synthesis examples.

Fair adversarial 2-player games. Fair adversarial games are 2-player games on finite
graphs with a fairness assumption on the environment transitions. We show that
winning strategy in fair adversarial games can be symbolically computed by intro-
ducing a simple syntactic transformation of the existing algorithms for 2-player
games. The advantages of our algorithm are simplicity and computational per-
formance compared to the state-of-the-art solution techniques. We demonstrate
the benefits using several examples from the literature on controller synthesis (for
stochastic systems), software engineering, and a number of well-established synthetic
benchmarks in formal methods.

Future Work

We addressed several challenges of correct-by-design controller synthesis, but many are
left open. Following is a summary of the problems that may be interesting to pursue as
follow-up of this thesis in future:

Even better scalability. One of the constant focuses of research in this field has remained
scalability. Even though we have seen many improvements, still lot more needs
to be done to be able to automatically handle the vastness of the realistic models
of cyber-physical systems having tens to hundreds of state variables, where the
existing state-of-the-art tools can handle around 10 state variables at most. To be
able to close this gap between reality and practice, not only we should keep building
powerful tools, but also we should develop more compact abstraction methods, and
focus on hierarchical and decentralized techniques.

Liveness assumptions with many components. One of the key components in tackling
scalability issues is the use of system decomposition and using decentralized synthesis
approaches. We have presented a negotiation procedure for mining assume-guarantee
contracts from the local specifications of the system components. However, we used
the restriction that the contracts be made up of only safety properties. In reality,
there are situations, where live contracts would offer much more freedom to the
systems, and the restriction of safe contracts would give no controller.
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Another limitation of our negotiation algorithm is that we only consider a network
of two systems. Generalizing this to arbitrarily many systems will help us arbitrarily
scale the synthesis.

Generalization of transition fairness. In Chap. 7, we considered fair adversarial games,
which are 2-player games with transition fairness assumption on certain live envi-
ronment edges. The main drawback of transition fairness is that it is not preserved
under synchronous product construction, i.e., the synchronization of a pair of live
edges from two systems running in parallel might result in non-live fairness condition
in the product. In reality, there are many real-life examples where such product
construction is sometimes inevitable, before we can use the synthesis algorithm.
So, it will be beneficial to investigate efficient algorithms for more general class of
fairness assumptions which will be preserved under synchronous composition as
well.

Handling unpredictability in real-world situations. When we talk about correct-by-construction
techniques, the soundness of a controller depends on the assumed model of the sys-
tem and the environment. In reality, the models, especially that of the environment,
are not totally predictable. As a result, often we need to assume the worst-case
model of the environment, which in many cases give us empty controller domain. To
address this issue, we need to develop synthesis techniques which can dynamically
adjust itself to unmodeled environmental behaviors at runtime. From the perspec-
tive of the abstraction-based works presented in this thesis, one of the challenges of
a dynamic controller readjustment is that the reactive synthesis algorithms work
best backwards in time. As a result, if any change in the model is detected at
runtime, then the straightforward application of reactive synthesis would require
complete recomputation of the abstraction from that point onward. Needless to say,
this is computationally expensive, making practical usage implausible. We have
done some initial work on a locally adaptive dynamic abstraction recomputation
procedure (Bai et al., 2019), though it assumes that a global worst-case model of
the disturbance is known (even if it is not enforced at all time).

To reason about unverifiable components in the loop. Often, a precise dynamic model
of the system and the environment is either unavailable or is specified using a lan-
guage that has so far limited support for formal reasoning (e.g. Simulink models,
neural network). To tackle this issue, there is a surge of data-driven correct-by-
construction techniques that provide statistical guarantees on the synthesized design
(Hashimoto et al., 2020; Devonport et al., 2021; Salamati et al., 2021b,a; Lavaei
et al., 2020b). The existing techniques use strong assumptions on the dynamics
(Hashimoto et al., 2020; Salamati et al., 2021b), or does not support external
disturbances (Devonport et al., 2021), or allows only a small subset of ω-regular
properties as control specifications (Salamati et al., 2021a; Lavaei et al., 2020b).
This is an active area of research, and further effort is needed in order to arrive at a
satisfactory solution to the problem.
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Appendices





A. Supplementary Material for
Chap. 7

A.1. Example-Computation of the Rabin Fixed-Point

R1 R2 R1

q1 q2 q3 q4

q5 q6 q7

Figure A.1.: Example of a fair adversarial Rabin game with two pairs 〈G1, R1〉 =
〈{q1, q4}, {q2, q5}〉 (G1 and R1 are indicated in green) and 〈G2, R2〉 =
〈{q3}, {q1, q4, q7}〉 (G2 and R2 are indicated in orange), and one live edge
E` = {(q2, q3)} (dashed blue).

Consider the game graph depicted in Fig. A.1, where circles and squares denote Player 0
and Player 1 vertices, respectively. We are given a Rabin condition with two pairs
R = {〈G1, R1〉 , 〈G2, R2〉} s.t.

R1 = {q1, q3, q4, q6, q7} G1 = {q1, q4} R2 = {q2, q3, q5, q6} G2 = {q3}

which are indicated in green and orange, respectively, in Fig. A.1. The only live edge
in the game graph is indicated in dashed blue from q2 to q3. We assert that Player 0
wins from every vertex. However, in the absence of the live edge, she wins only from
{q3, q4, q5, q6, q7}. (This is because Player 1 can force the game to stay forever in q2 from
the remaining states.)

We first flatten the algorithm in (7.4) for two Rabin pairs. This yields the following
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algorithm:

νY0. µX0. (A.1a){
νY1.µX1. νY2.µX2. (A.1b)

Apre(Y0, X0)

∪
(
R1 ∩ [(G1 ∩ Cpre(Y1)) ∪ (Apre(Y1, X1))]

)

∪
(
R1 ∩R2 ∩ [(G2 ∩ Cpre(Y2)) ∪ (Apre(Y2, X2))]

)

∪ νY ′2 .µX ′2. νY ′1 .µX ′1. (A.1c)
Apre(Y0, X0)

∪
(
R2 ∩

[(
G2 ∩ Cpre(Y ′2)

)
∪
(
Apre(Y ′2 , X

′
2)
)])

∪
(
R1 ∩R2 ∩

[(
G1 ∩ Cpre(Y ′1)

)
∪
(
Apre(Y ′1 , X

′
1)
)]) }

We first consider the upper part of (A.1), i.e., the permutation sequence δ = 012
(labeled by (A.1b)). We first recall that the computation is initialized with Y 0

i = V and
X0
i = ∅ and we see from the structure of the game graph that Cpre(V ) = V . Further, we

see from the definition of Apre that Apre(·, ∅) = ∅. So, we have

X1
2 = (R1 ∩G1) ∪ (R1 ∩R2 ∩G2) = {q1, q4} ∪ {q3} = {q1, q3, q4}.

As q6 is the only other state in R1 ∩R2 ∩G2 and q6 does not have an edge to {q1, q3, q4}
the iteration over X2 terminates and we get Y 1

2 = {q1, q3, q4}. As q3 6∈ Cpre(Y 1
2 ) the

last line of the upper part of (A.1) becomes the empty set and we terminate with
Y ∗2 = X∗2 = (R1 ∩ G1) = {q1, q4}. This gives X1

1 = {q1, q4} and resets Y2 and X2 to V
and ∅, respectively. Therefore, we now get

X1
2 = (R1 ∩G1) ∪Apre(Q,X1

1 ) ∪ (R1 ∩R2 ∩G2) = {q1, q4} ∪ {q7} ∪ {q3}.

Now, as q7 ∈ X1
2 , also q6 is added before X2 terminates. This now gives Y 1

2 =
{q1, q3, q4, q6, q7} and hence q3 ∈ Cpre(Y 1

2 ). As there are no other states in R1 ∩
R2 ∩ G2 that can be added to this set, the iteration over X2 terminates and we
get Y 2

2 = {q1, q3, q4, q6, q7}, which also terminates the iteration over Y2, resulting in
X2

1 = {q1, q3, q4, q6, q7}. As there are again no other states inside R1 that could be
added, this iteration over X1 terminates, giving Y 1

1 = {q1, q3, q4, q6, q7}. Now we see
that Cpre(Y 1

1 ) = {q3, q4, q6, q7}. As the exclusion of q1 from Y1 does not influence the
reasoning about {q3, q4, q6, q7} the iteration terminates with Y ∗1 = {q3, q4, q6, q7}.

Now we consider the lower part of (A.1), i.e., the permutation sequence δ = 021 (labeled
by (A.1c)). Here, we get

X ′1
1

= (R2 ∩G2) ∪ (R1 ∩R2 ∩G1) = {q3} ∪ ∅ = {q3}.

For the same reason as before we see again that the last line of the lower part of (A.1)
becomes the empty set and we terminate with Y ′1

∗ = X ′1
∗ = (R2 ∩G2) = {q3}. This gives

X ′2
1 = {q3} and resets Y ′1 and X ′1 to V and ∅, respectively. With this, we now get

X ′1
2

= (R2 ∩G2) ∪Apre(Q,X ′2
1
) ∪ (R1 ∩R2 ∩G1) = {q3} ∪ {q2, q5} ∪ ∅.
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Here, for the first time, the live edge from q2 to q3 comes into play. If this would not
be a live edge, q2 would not be added to X ′1, as in this case the environment could trap
the game in q2, and thereby prevent the second Rabin pair to hold. However, due to
the edge from q2 to q3 being live, we know that the environment will always eventually
transition from q2 to q3. With this, now also q6 is added to X ′1, finally leading to a
termination of the iteration over X ′2 with {q2, q3, q5, q6} and hence Y ′2

1 = {q2, q3, q5, q6}.
As q3 ∈ Cpre(Y ′2

1) the iteration over Y ′2 terminates with Y ′2
∗ = {q2, q3, q5, q6}.

With both the upper and the lower part of (A.1) terminated, we can now take the
union of Y ∗1 = {q3, q4, q6, q7} and Y ′2

∗ = {q2, q3, q5, q6} to get X1
0 = {q2 . . . q7} (reaching

the part of the formula labeled with (A.1a)). After this update of X0 all inner fixpoint
variables (in (A.1b) and (A.1c)) are reset, and the upper and lower expressions in (A.1)
are re-evaluated. As Apre(Q,X1

0 ) = {q2 . . . q7}, we see that every iteration over Xi in
(A.1b) and (A.1c) is essentially initialized with a set containing {q2 . . . q7}. This implies
that q1 will actually remain within Y1, leading to Y ∗1 = V , and with this X2

0 = V . As
this implies Y 1

0 = V = Y 0
0 , the computation terminates with Z∗ = V .

Despite all states being winning, we see that Player 0 has to play appropriately to
enforce winning. Intuitively, from state q5 she must go to q3 and from q6 she has to
consistently either (i) always go to q2 or (ii) always go to q7. If she picks option (i), the
play is won by satisfying the second Rabin pair, i.e., always eventually visiting q3 while
remaining within R2. If she picks option (ii), it is up to the environment whether the game
is won by satisfying the first or the second Rabin pair. Intuitively, if the environment
plays such that either (a) the game eventually remains in q4 or (b) the edges (q4, q3) and
(q3, q6) are taken infinitely often, the game fulfills the first Rabin condition. If, however,
(c), the environment decides to trap the game in q3, the game is won by satisfying the
second Rabin pair. This influence of the environment on the selection of the satisfied
Rabin pair intuitively requires the evaluation of all possible permutation sequences in
the evaluation of the fixpoint algorithm. We will see later that for Rabin pairs which are
ordered by inclusion (corresponding to the special case of a Rabin-chain condition), no
permutation is required.

We comment that the strategy construction outlined in Thm. A.4 provided in App. A.2.3
chooses to enforce a transition from q6 to q7 (see Example A.1 in App. A.2.3 for a detailed
discussion).

A.2. Detailed Proofs

A.2.1. General Lemmas

We first introduce some useful general lemmas.

Lemma A.1 If Y ⊇ X then Cpre(Y ) ∪Apre(Y,X) = Cpre(Y ).
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Proof The claim follows from the following derivation

Cpre(Y ) ∪Apre(Y,X) = Cpre(Y ) ∪ Cpre(X) ∪
(

Lpre∃(X) ∩ Pre∀1(Y )
)

= Cpre(Y ) ∪
(

Lpre∃(X) ∩ Pre∀1(Y )
)

=
(
Cpre(Y ) ∪ Lpre∃(X)

)
∩
(
Cpre(Y ) ∪ Pre∀1(Y )

)

=
(
Cpre(Y ) ∪ Lpre∃(X)

)
∩ Cpre(Y )

= Cpre(Y )

where the second line follows from Cpre(X) ⊆ Cpre(Y ) (as X ⊆ Y ) and the forth line
follows as Cpre(Y ) = Pre∃0(Y ) ∪ Pre∀1(Y ) ⊇ Pre∀1(Y ). 2

Lemma A.2 If Y ⊆ X then Apre(Y,X) = Cpre(X).

Proof The claim follows from the following derivation

Apre(Y,X) = Cpre(X) ∪
(

Lpre∃(X) ∩ Pre∀1(Y )
)

=
(
Cpre(X) ∪ Lpre∃(X)

)
∩
(
Cpre(X) ∪ Pre∀1(Y )

)

=
(
Cpre(X) ∪ Lpre∃(X)

)
∩ Cpre(X)

= Cpre(X)

where the fourth line follows as Cpre(X) = Pre∃0(X) ∪ Pre∀1(X) ⊇ Pre∀1(Y ) as Y ⊆ X. 2

Lemma A.3 Let f(X,Y ) and g(X,Y ) be two functions which are monotone in both
X ⊆ V and Y ⊆ V . Further, let

Za :=νYa. µXa. νYb. µXb. f(Xa, Ya) ∪ g(Xb, Yb)

Zb :=νYa. µXa. νYb. µXb. g(Xa, Ya) ∪ f(Xb, Yb)

Zc :=νYc. µXc. f(Xc, Yc)

Then it holds that
(i) Zc ⊆ Za and
(ii) Zc ⊆ Zb.

If, in addition, g(X,Y ) ⊆ f(X,Y ) for all X,Y ⊆ V , then it holds that
(iii) Za = Zc and
(iv) Zb = Zc.

Proof We prove all claims separately:
I (i) “Zc ⊆ Za” : First, consider a stage of the fixed point evaluation where Ya and Xa

have their initialization value Y 0
a := V and X00

a := ∅ (here, the notation X lk
a refers to the

value of Xa computed in the k’th iteration over Xa using the value for Ya computed in the

178



A.2. Detailed Proofs

l’th iteration over Ya). Then we see that X01
a = Y 00∗

b where Y 00∗
b = f(∅, V )∪g(Y 00∗

b , Y 00∗
b ).

We therefore see that X01
a ⊇ X01

c = f(∅, V ). With this, it follows from the monotonicity
of f and g that Y 01

a = X0∗
a ⊇ X0∗

c = Y 1
c . With this, we see that Xm1

a ⊇ Xm1
c for all

m > 0 and therefore Za = Y ∗a ⊇ Y ∗c = Zc.
I (ii) “Zc ⊆ Zb” : Consider arbitrary values Y m

a and Xmn
a and assume that Yb and Xb

have their initialisation value, i.e., Y mn0
b := V and Xmn00

b := ∅. Then we have

Xmn01
b = g(Xmn

a , Y m
a ) ∪ f(∅, V ) ⊇ X01

c .

Using the same reasoning as in the previous part, we see that this implies Y mn∗
b ⊇ Y ∗c = Zc.

As this holds for anym and n it also holds when the fixed point over Ya and Xa is obtained,
i.e., when we have Za = Y ∗a = Y ∗∗∗b , which proves the statement.
I (iv) “Zc ⊇ Zb” : First, observe that for the initialization values Y 0

a = Y 000
b = V and

X00
a = X0000

b = ∅ we have g(∅, V ) ⊆ f(∅, V ). We therefore have

Y 00∗
b = X00∗∗

b = f(X00∗∗
b , Y 00∗

b ) = Zc

Now it remains to show, that the outer fixed-point cannot add any additional states.
First, observe that X01

a = Y 00∗
b and

X0100
b = g(X01

a , V ) ∪ f(∅, V ) ⊆ f(X01
a , V ) ∪ f(∅, V ) = f(X01

a , V )

Now it follows from the famous acceleration result of Long et al. (1994) that warm-starting
the inner fixed-point computation with X01

a yields the same inner fixed-point. With this,
we see that X0n

a = Zc for all n, implying Y 0
a = X0∗

a = Zc. As Zb = Y ∗a ⊆ Y 0
a , this proves

the claim.
I (iii) “Zc ⊇ Za” : As g(X,Y ) ⊆ f(X,Y ) for all X,Y ⊆ V it follows from the
monotonicity of g and f that

Za ⊆ νYa. µXa. νYb. µXb. f(Xa, Ya) ∪ f(Xb, Yb)

with this, it follows from (iv) that Za ⊆ Zc, what proves the claim. 2

A.2.2. Additional Proofs for Sec. 7.2

Proof of Thm. 7.3

Theorem A.1 (Thm. 7.3 restated for convenience) Let G` =
〈
G, E`

〉
be a game

graph with live edges and 〈T,Q〉 be a safe reachability winning condition. Further, let

Z∗ := νY. µX. T ∪ (Q ∩Apre(Y,X)). (A.2)

Then Z∗ is equivalent to the winning region of Player 0 in the fair adversarial game over
G` for the winning condition ψ in (7.8). Moreover, the fixpoint algorithm runs in O(n2)
symbolic steps, and a memoryless winning strategy for Player 0 can be extracted from it.
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We denote by Y m the m-th iteration over the fixpoint variable Y in (A.2), where
Y 0 = V . Further, we denote by Xmi the set computed in the i-th iteration over the
fixpoint variable X in (A.2) during the computation of Y m where Xm0 = ∅. Then it
follows form (A.2) that

Xm1 = Xm0 ∪ T ∪ (Q ∩Apre(Y m−1, Xm0)) = ∅ ∪ T ∪ (Q ∩Apre(Y m, ∅)) = T,

Xm2 = Xm1 ∪ T ∪ (Q ∩Apre(Y m−1, Xm1)) = T ∪ (Q ∩Apre(Y m−1, Xm1)) ⊇ Xm1,

and therefore, in general,

Xmi+1 = T ∪ (Q ∩Apre(Y m−1, Xmi)) ⊇ Xmi.

With this, the fixed point over X corresponds to the set Xm∗ =
⋃
i>0X

mi = Xmi↑ , where
i↑ is the iteration where the fixed point over Xmi is attained.

Now consider the computation of Y . Here we have Y 0 = V and Y m = Y m−1 ∩Xm∗ ⊆
Y m−1 where equality holds when a fixed point is reached. Hence, in particular we have
Y ∗ = X∗∗ = Z∗. For simplicity we denote X∗i by Xi.
Strategy construction. In order to construct a winning strategy for Player 0 from
(A.2), we construct a ranking over V by choosing

rank(v) = i ⇔ v ∈ Xi \Xi−1 and rank(v) =∞ ⇔ v /∈ Z∗. (A.3)

As X0 = ∅, X1 = T (from above) and Z∗ =
⋃
i>0X

i, it follows that rank(v) = 1 iff v ∈ T
and 1 < rank(v) < ∞ iff v ∈ Z∗ \ T . Using this ranking we define a Player 0 strategy
ρ0 : V0 → V s.t.

ρ0(v) = min
(v,w)∈E

rank(w) . (A.4)

We next show that this player 0 strategy is actually winning w.r.t. ψ (in (7.8)) in every
fair adversarial play over G`.
Soundness. To prove soundness, we need to show Z∗ ⊆ W. That is, we need to show
that for all v ∈ Z∗ there exists a strategy for player 0 s.t. the goal set T is eventually
reached along all live compliant plays π starting at v while staying in Q. We choose ρ0 in
(A.4) and show that the claim holds.

First, it follows from the definition of Apre that for a vertex v ∈ Z∗ exactly one of the
following cases holds:
(a) v ∈ T and hence rank(v) = 1,
(b) v ∈ (V0 ∩ Z∗) \ T , i.e., 1 < rank(v) <∞ and v ∈ Q and there exists a v′ ∈ E(v) with
rank(v′) < rank(v),
(c) v ∈ ((V1 \ V `) ∩ Z∗)) \ T , i.e., 1 < rank(v) < ∞ and v ∈ Q and for all v′ ∈ E(v) it
holds that rank(v′) < rank(v), or
(`) v ∈ (V ` ∩Z∗) \ T , i.e., 1 < rank(v) <∞ and v ∈ Q and there exists a v′ ∈ E`(v) with
rank(v′) < rank(v) and E(v) ⊆ Z∗.
We see that ρ0(v) chooses one existentially quantified edge in (b) vertices. In all other
cases player 1 chooses the successor.
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Further, we see that any play π which starts in π(0) = v ∈ Z∗ and obeys ρ0 has the
property that π(k) ∈ Z∗ \ T implies π(k) ∈ Q and π(k + 1) ∈ Z∗ for all k ≥ 0. This, in
turn, means that for any such state v = π(k) ∈ Z∗ \ T as well as for its successor π(k+ 1)
a rank is defined, i.e., π(k) ∈ Xi for some 0 < i <∞ and exactly one of the cases (b)-(`)
applies. We call a vertex for which case (α) applies, an (α) vertex.

Now observe that the above reasoning implies that whenever an (a) vertex is hit along
a play π the claim holds. We therefore need to show that any play starting in v ∈ Z∗
eventually reaches an (a) vertex. First, consider a play in which no (`) vertex occurs.
Then constantly hitting (b) and (c) vertices always reduces the rank of visited states (as
we assume that π obays ρ0 in (A.4)). As the maximal rank is finite, we see that we must
eventually hit a state with rank 1, which is an (a) state.

Note that the same argument holds when only a finite number of (`) vertices is visited
along π. In this case we know that from some time onward no more (`) vertex occurs.
As the last (`) vertex has a finite rank, there can only be a finite sequence of (b) and (c)
vertices afterwards until finally an (a) vertex is reached.

We are therefore left with showing that on every path with an infinite number of (`)
vertices, eventually an (a) vertex will be reached. We prove this claim by contradiction.
I.e., we show that there cannot exist a path with infinitely many (`) vertices and no (a)
vertex.

We first show that infinitely many (`) vertices and no (a) vertices in π imply that
vertices with rank 2 can only occur finitely often along π.
I Recall that the construction of ρ0 ensures that whenever we visit a state v ∈ V0∩Z∗ with
rank(v) = 2 we will surely visit a state with rank 1 afterwards, implying the occurrence
of a vertex labeled (a). As no (a) labeled vertices are assumed to occur along π, no (b)
vertices with rank(v) = 2 occur along π.
I Now assume that v ∈ V1 ∩ Z∗ with rank(v) = 2. If v is a (c) vertex all successor states
will have rank 1. With the same reasoning as before, this cannot occur.
I Now assume that v ∈ V1 ∩ Z∗ with rank(v) = 2 is labeled with (`). In this case there
surely exists a successor v′ of v s.t. (v, v′) ∈ E` and rank(v′) = 1. But there might also
exist another successor v′′ of v (i.e., (v′′ ∈ E(v)) s.t. rank(v′′) > 1. If there does not
exists such a successor v′′, all successors have rank 1 and we again cannot visit v.
I Now assume that v ∈ V1 ∩ Z∗ with rank(v) = 2, labeled with (`) and there exists a
successor v′′ ∈ E(v) s.t. rank(v′′) > 1. Now let us assume that such a state v is visited
infinitely often along π. As π is a fair adversarial play over G we know that visiting v
infinitely often along π implies that v′ with (v, v′) ∈ E` and rank(v′) = 1 (which surely
exists by the definition of Apre) will also be visited infinitely often along π. This is again
a contradiction to the above hypothesis and implies that such v’s can only be visited
finitely often.
I As V is a finite set, the set of states with rank 2 is finite. Hence, the occurrence of
infinitely many states with rank 2 along π implies that one of the above cases must occur
infinitely often, which gives a contradiction to the above hypothesis. Using the same
arguments, we can inductively show that states with any fixed rank can only occur finitely
often if states with rank 1 (i.e., (a)-labeled vertices) never occur. As the maximal rank is
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finite (due to the finiteness of V ) this contradicts the assumption that π is an infinite
play.

We therefore conclude that along any infinite fair adversarial play π with infinitely
many vertices labeled by (`) we will eventually see a vertex labeled by (a).

Completeness. We now show that the fixpoint in (A.2) is complete, i.e., that every state
in Z∗ := V \ Z∗ is loosing for Player 0. In particular, we show that from every vertex
v ∈ Z∗ Player 1 has a memoryless strategy ρ1 s.t. all fair adversarial plays compliant
with ρ1 satisfy

ψ := ¬ψ = ¬(QUT ) = 2¬T ∨ ¬TU¬Q (A.5)

and are hence loosing for Player 0.

In order to prove the latter claim we fist compute Z∗ := V \ Z∗ by negating the
fixed-point formula in (A.2). For this, we define X∗ := V \X, Y ∗ := V \ Y and use the
negation rule of the µ-calculus, i.e., ¬(µX.f(X)) = νX.V \ f(X) along with common
De-Morgan laws. This results in the following derivation.

Z
∗

= µY . νX. T ∩ (Q ∪ V \Apre(Y,X))

where

V \Apre(Y,X)

= V \
[
Cpre(X) ∪

(
Lpre∃(X) ∩ Pre∀1(Y )

)]

= [V \ Cpre(X)] ∩
[
V \

(
Lpre∃(X) ∩ Pre∀1(Y )

)]

=
[
Pre∃1(X) ∪ Pre∀0(X)

]
∩
[
V0 ∪ (V1 \ V `) ∪

(
V ` \

(
Lpre∃(X) ∩ Pre∀` (Y )

))]

=
[
Pre∃1(X) ∪ Pre∀0(X)

]
∩
[
V0 ∪ (V1 \ V `) ∪

(
Lpre∀(X) ∪ Pre∃` (Y )

)]

= Pre∀0(X) ∪ Pre∃1\`(X) ∪
[
Pre∃1(X) ∩

(
Lpre∀(X) ∪ Pre∃` (Y )

)]

= Pre∀0(X) ∪ Pre∃1\`(X) ∪
[
Pre∃` (X) ∩

(
Lpre∀(X) ∪ Pre∃` (Y )

)]

= Pre∀0(X) ∪ Pre∃1\`(X) ∪ Lpre∀(X) ∪ Pre∃` (Y ).

The last line in the above derivation follows from the observation that Lpre∀(X) ⊆ Pre∃l (X)
and Y ⊆ X for all iterations of the fixed-point. The additionally introduced pre-operators
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are defined in close analogy to (2.8) and (7.2) as follows:

Pre∃1(S) := {v ∈ V1 | E(v) ∩ S 6= ∅},
Pre∀0(S) := {v ∈ V0 | E(v) ⊆ S},

Pre∃1\`(S) := {v ∈ V1 \ V ` | E(v) ∩ S 6= ∅},

Pre∃` (S) := {v ∈ V ` | E(v) ∩ S 6= ∅},
Pre∀` (S) := {v ∈ V ` | E(v) ⊆ S},

Lpre∀(S) := {v ∈ V ` | E`(v) ⊆ S}.

With this, we can conclude that

Z
∗

= µY . νX. T ∩
(
Q ∪ Pre∀0(X) ∪ Pre∃1\`(X) ∪ Lpre∀(X) ∪ Pre∃l (Y )

)
. (A.6)

where T = V \ T and Q = V \Q.
Now denote by Y m the m-th iteration over the fixpoint variable Y in (A.6), where

Y
0

= ∅. Further, we denote by X
mi the set computed in the i-th iteration over the

fixpoint variable X in (A.6) during the computation of Y m where Xm0
= V . After

termination of the inner fixed point over Xmi we have by construction that Y m
= X

m∗

and therefore

Y
m

= T ∩
(
Q ∪ Pre∀0(Y

m
) ∪ Pre∃1\`(Y

m
) ∪ Lpre∀(Y

m
) ∪ Lpre∃(Y

m−1
)
)
. (A.7)

Similar to the soundness proof, we define a ranking over V induced by the iterations of
the smallest fixed-point, which now is Y :

rank(v) = m↔ v ∈ Y m \ Y m−1 and rank(v) =∞ ↔ v /∈ Z∗.

This ranking can now be used to define a memoryless Player 1 strategy ρ1 : V1 → V s.t.

ρ1(v) = min
(v,w)∈E

rank(w) . (A.8)

Towards proving that ρ1 is winning for ψ in (A.5) we first observe that for every vertex
v ∈ Z∗ exactly one of the following cases holds:
(a) v ∈ (V0 ∩ Z

∗ ∩ T ), i.e., rank(v) < ∞ and v ∈ Q or for all v′ ∈ E(v) it holds that
rank(v′) ≤ rank(v),
(b) v ∈ ((V1 \ V `) ∩ Z∗ ∩ T )), i.e., rank(v) <∞ and v ∈ Q or there exists v′ ∈ E(v) s.t.
rank(v′) ≤ rank(v), or
(`∀) v ∈ (V ` ∩ Z∗ ∩ T ) and rank(v) < ∞ and v ∈ Q or for all v′ ∈ E`(v) holds that
rank(v′) ≤ rank(v)
(`∃) v ∈ (V ` ∩ Z∗ ∩ T ) and rank(v) > 1 (and rank(v) <∞), and (`∀) does not hold, but
there exists a v′ ∈ E(v) s.t. rank(v′) < rank(v).

Using this observation, we now show that every fair adversarial play π compliant with
ρ1 satisfies ψ in (A.5), that is, either stays in T forever, or eventually visits Q before
visiting T .
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First, observe that for every node v ∈ Z∗ one of the cases (a),(b),(`∀), or (`∃) holds.
If v is an (a) vertex, we see that either v ∈ Q or for all choices of Player 0 (i.e., for any
Player 0 strategy), the play remains in Z∗ ⊆ T . Further, it is obvious that ρ1 ensures,
that whenever a (b) vertex is seen, the play remains in Z∗ ⊆ T if we do not already have
v ∈ Q. The same is true for (`∀) vertexes.
Now consider a fair adversarial play π that is compliant with ρ1 and π(0) ∈ Z∗ ⊆ T .

Then it follows from the above intuition that for all visits to (a),(b),(`∀) we have two
cases: (i) Either ψ is immediately true on π by visiting Q (and having been in Z∗ ⊆ T
in all previous time steps). In this case the suffix of π is irrelevant, because Player 0
has already lost (by visiting Q without seeing T ). Or (ii) the play remains in Z∗ ⊆ T .
Now observe that this is also true for infinite visits to (a),(b),(`∀) vertexes. As π is fair
adversarial, visiting a (`∀) vertex infinitely often, implies that all live edges are taking
infinitely often, which all ensure that the play remains in Z∗ ⊆ T or is immediately lost
by visiting Q. Therefore, the only interesting case occurs if π visits (`∃) vertexes. If such
a vertex is visited finitely often, ρ1 ensures that the play stays in Z∗ ⊆ T . However, if
they are visited infinitely often, a live edge that leaves Z∗ will also be taken infinitely
often. Hence, in order to ensure that π is loosing for Player 0, we need to show that ρ1

enforces that (`∃) vertexes are only visited finitely often.
To see this, let v be an (`∃) vertex and observe that rank(v) is finite and larger than

1. At the first visit of π to v, ρ1 decreases the rank as it chooses by definition one of
the existentially quantified successors v′ ∈ E`(v) with rank(v′) < rank(v). Now observe
that for all other cases (a),(b),(`∀) either Q is visited and the play is immediately loosing
for Player 0 or the play is kept in Z∗ ⊆ T and the strategy ρ1 never increases the rank.
As every vertex has a unique rank, ρ1 ensures that every (`∃) vertex is visited at most
once along every compliant fair adversarial play that remains in Z∗ ⊆ T . This proves the
claim.

Proof of Thm. 7.2

Theorem A.2 (Thm. 7.2 restated for convenience) Let G` =
〈
G, E`

〉
be a game

graph with live edges and Q,G ⊆ V be two state sets over G. Further, let

Z∗ := νY. µX. Q ∩ [(G ∩ Cpre(Y )) ∪ (Apre(Y,X))] . (A.9)

Then Z∗ is equivalent to the winning region of Player 0 in the fair adversarial game over
G` for the winning condition ψ in (7.5). Moreover, the fixpoint algorithm runs in O(n2)
symbolic steps, and a memoryless winning strategy for Player 0 can be extracted from it.

In order to simplify the proof of Prop. A.2.2, we first prove the following lemma.

Lemma A.4 Let Q,G ⊆ V and

Z∗ :=νY.µX.Q ∩ [(G ∩ Cpre(Y )) ∪Apre(Y,X)] (A.10a)

Z̃∗ :=νỸ .νY.µX.Q ∩
[(
G ∩ Cpre(Ỹ )

)
∪Apre(Y,X)

]
. (A.10b)

Then Z∗ = Z̃∗.
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Proof To prove the claim we consider a third version of the fixed-point equation, namely

Ž∗ := νỸ .νY.µX.Q ∩
[(
G ∩ Cpre(Ỹ )

)
∪ (G ∩ Cpre(Y )) ∪Apre(Y,X)

]
.

Then it immediately follows from the monotonicity of all involved functions that
Z̃∗ ⊆ Ž∗. It further follows from Lem. A.3 (iv) that Z∗ = Ž∗. It therefore remains to
show that Ž∗ ⊆ Z̃∗ to prove the claim. We actually show Ž∗ ⊆ Z̃∗.

Let Ỹ 0 = Y 00 = V . Then it immediately follows that the computation of X00∗ returns
the same set for both fixed-points. It further follows that Y 0n ⊆ Ỹ 0, which implies
(G ∩ Cpre(Y 0n)) ⊆ (G ∩ Cpre(Ỹ 0)) and therefore the set Ỹ 1 coincides for both fixed-
points. Now recall from Long et al. (1994) that warm-starting the inner fixed-point
computation with the largest fixed-point retained from previous values of outer fixed-point
variables, does not change the resulting fixed-point. With this, we can use Y 10 = Ỹ 1 and
observe that this implies that the computation of Ỹ 2 becomes again identical for both
fixed-points. Re-applying this argument until termination shows, that indeed Ž∗ ⊆ Z̃∗.2

With Lem. A.4 in place, we can use (A.10b) instead of (A.9) to prove Thm. 7.2. Further,
let us define Z∗(〈T,Q〉) to be the set of states computed by the fixpoint algorithm in
(7.9). Then we know that upon termination we have

Z̃∗ = Ỹ ∗ = Z∗(
〈
Q ∩G ∩ Cpre(Ỹ ∗), Q

〉
). (A.11)

Now we will use (A.11) to prove soundness and completeness of Thm. 7.2.
Soundness Let us now define T := Q ∩G ∩ Cpre(Ỹ ∗)). Pick any state v ∈ Z̃∗ and the
strategy ρ0 defined as in (A.4) over the sets Xi computed in the last iteration over X
when computing Z∗(〈T,Q〉). Further, let π be an arbitrary fair adversarial play starting
in v and being compliant with ρ0. Then we need to show that π fulfills ψ in (7.5).
Using (A.11) and the fact that v ∈ Z̃∗ we know from Thm. 7.3 that π fulfills QUT .

That is, there exists a k ∈ N s.t. π(i) ∈ Q for all i < k and π(k) ∈ T = Q∩G∩Cpre(Ỹ ∗)).
With this we know that (a) π(k) ∈ Q, (b) π(k) ∈ G and (c) v ∈ Cpre(Ỹ ∗). Now we
have two cases: (c.1) If π(k) ∈ V 1, then it follows from the definition of Cpre that
E(π(k)) ⊆ Ỹ ∗. As Ỹ ∗ = Z̃∗, we know π(k + 1) ∈ Z̃∗. (c.2) If π(k) ∈ V 0 we know that
rank(π(k)) = minv′∈E(π(k)) rank(v′). Now recall that Z̃∗ = Ỹ ∗ = Y ∗ =

⋃
i>0X

i. Hence,
any state with rank 0 < n < ∞ is contained in Z̃∗ and hence, we have π(k + 1) ∈ Z̃∗.
With this, we can successively re-apply Thm. 7.3 to π(k+ 1). This shows that G is visited
infinitely often along π while π always remains within Q.
Completeness Let W ⊆ V be the set of states from which Player 0 has a winning
strategy w.r.t. ψ in (7.5). In order to prove completeness, we need to show that W ⊆ Z∗.
Recall, that for all states v ∈ W there exists a strategy ρ0 s.t. all compliant fair

adversarial plays π fulfill ψ. Now consider the weaker LTL formula ψ̃ := QU(Q ∩G) and
let W̃ be the winning state set for ψ̃. Then we know by construction that ψ̃ holds for π(0)
and for every π(k) ⊆ Q ∩G while π always remains in Q. We can therefore strengthen ψ̃
to ψ̃ := QU(Q ∩G ∩ Cpre(W̃)) and see that still ψ → ψ̃ and therefore W ⊆ W̃.
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Now observe that it follows from Thm. 7.3 that W̃ = Z∗(
〈
Q ∩G ∩ Cpre(W̃), Q

〉
). It

further follows from the monotonicity of the fixed-point that Z̃∗ is the largest set of states
s.t. equality holds in (A.11). We therefore have to conclude that W̃ ⊆ Z̃∗. As we have
shown that W ⊆ W̃, the claim is proved.

A.2.3. Proof of Thm. 7.1

Theorem A.3 (Thm. 7.1 restated for convenience) Let G` =
〈
G, E`

〉
be a game

graph with live edges and R be a Rabin condition over G with index set P = [1; k]. Further,
let

Z∗ := νYp0 .µXp0 .
⋃
p1∈P νYp1 .µXp1 .⋃
p2∈P\{p1} νYp2 .µXp2 .

...
⋃
pk∈P\{p1,...,pk−1} νYpk .µXpk .

[⋃k
j=0 Cpj

]
,

where

Cpj :=

j⋂

i=0

Rpi ∩
[(
Gpj ∩ Cpre(Ypj )

)
∪
(
Apre(Ypj , Xpj )

)]
,

with p0 = 0, Gp0
:= ∅ and Rp0

:= ∅. Then Z∗ is equivalent to the winning region W
of Player 0 in the fair adversarial game over G` for the winning condition ϕ in (7.3).
Moreover, the fixpoint algorithm runs in O(nk+2k!) symbolic steps, and a memoryless
winning strategy for Player 0 can be extracted from it.

This section contains the proof of Thm. 7.1 which is inspired by the proof of Piterman
and Pnueli (2006) for “normal” Rabin games. We first give a construction of a ranking
induced by the fixpoint algorithm in (7.4) in Sec. A.2.3, and use this ranking to define a
memoryless Player 0 strategy. As part of the soundness proof for Thm. 7.1 in Sec. A.2.3,
we then show that this extracted strategy is indeed a winning strategy of Player 0 in the
fair adversarial game over G` w.r.t. ϕ. Further, we show in Sec. A.2.3 that the fixpoint
algorithm in (7.4) is also complete, that is W ⊆ Z∗. Intuitively, completeness shows
that if Z∗ is empty, there indeed exists no live-sufficient winning strategy (with arbitrary
memory) for the given fair adversarial Rabin game. Additional lemmas and proofs can
be found in App. A.2.3. The time complexity of the algorithm is proven separately in
App. A.3.

Strategy Extraction

Our strategy extraction is adapted from the ranking of Piterman and Pnueli (2006,
Sec. 3.1). Recall, that we consider the set of Rabin pairs R = {〈G1, R1〉 , . . . , 〈Gk, Rk〉}
with index set P = {1, . . . , k} and the artificial Rabin pair 〈G0, R0〉 s.t. G0 = R0 = ∅. A
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permutation of the index set P is an one-to-one and onto function from P to P ; as usual,
we write p1 . . . pk to denote the permutation mapping i to pi, for i = 1, . . . , k. We define
Π(P ) to be the set of all permutations over P . The configuration domain of the Rabin
condition R is defined as

D(R) := {p0i0p1i1 . . . pkik | ij ∈ [0;n], p0 = 0, p1 . . . pk ∈ Π(P )} ∪ {∞} (A.13)

where n <∞ is a natural number which is larger then the maximal number of iterations
needed in any instance of the fixed point computation in (7.4) which is known to be finite.
If R is clear from the context, we write D instead of D(R).
Intuition: We first explain the intuition behind the chosen ranking. For this we consider
the definition of ranks for states v ∈ Z∗ in an iterative fashion. First, consider the last
iteration over Xp0 converging to the fixed point Z∗ = Y ∗p0

=
⋃
i0>0X

i0
p0

where X0
p0

:= ∅.
By flattening (7.4) we see that for all i0 > 0 we have

Xi0
p0

= Apre(Y ∗p0
, Xi0−1

p0
) ∪ Ap0i0 (A.14a)

where Ap0i0 collects all remaining terms of the fixpoint algorithm in (7.4) and will be
specified later. For now, we want to assign a “minimal rank” to all states added to Z∗ via
the first term in (A.14a). Let us assume that the right “minimal rank” for these states is

d = p0i0p10 . . . pk0 with p1 < p2 < . . . < pk and i0 > 0.

We assign this rank to v iff v ∈ Apre(Y ∗p0
, Xi0−1

p0
) \Xi0−1

p0
, i.e., if v is not already added

to the fixed point in a previous iteration. The intuition behind this rank choice is that we
want to remember that we have added v to Z∗ in the i0’s computation over Xp0 , which
sets the counter for p0 in d to i0. We keep all other counters at 0 because there is no
actual contribution of terms involving variables Xpi for pi ∈ P for the “adding” of v.
Now recall that

Xi0
p0

=
⋃

p1∈P
Y ∗p1

=
⋃

p1∈P

⋃

i1>0

Xi1
p1
.

Further, we know that

Apre(Y ∗p0
, Xi0−1

p0
) ⊆ Xi1

p1
for all p1 ∈ P and i1 > 0. (A.14b)

Hence, any state added to the fixed point via Xi0
p0

(which is not contained in Xi0−1
p0

) is
either added via Apre(Y ∗p0

, Xi0
p0

) or via any other remaining term within Xi1
p1

for at least
one p1 and i1 > 0. So let us explore the ranking in the latter case.
For this, let us proceed by going over all Xi1

p1
in increasing order over P , i.e, we start

with selecting p1 = 1. Further, we remember that we compute the next iteration over
Xp1 (i.e., Xi1

p1
given Xi1−1

p1
) as part of computing the set Xi0

p0
. I.e., we remember the

computation-prefix δ = p0i0 in the computation of Xi1
p1
. To make δ explicit, we denote

Xi1
p1

by Xi1
δp1

. Now, we again consider the last iteration over Xδp1 converging to the fixed
point Y ∗δp1

(for the currently considered computation-prefix δ). Then we have

Xi1
δp1

=Apre(Y ∗p0
, Xi0−1

p0
)

︸ ︷︷ ︸
=:Sδ

∪Rp1 ∩
[(
Gp1 ∩ Cpre(Y ∗δp1

)
)
∪Apre(Y ∗δp1

, Xi1−1
δp1

)
]

︸ ︷︷ ︸
=:Cδp1i1

∪Aδp1i1 .
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We now want to assign the “minimal rank” to all states that are added to the fixed
point via Cδp1i1 . The immediate choice of this rank is

d = p0i0p1i1p20 . . . pk0 = δp1i1p20 . . . pk0 with p2 < . . . < pk and i0, i1 > 0. (A.14c)

(Note that we do not necessarily have p1 < p2!)
We only want to assign this rank to states that are actually added to the fixed point

via Cδp1i1 , i.e., do not already have a rank assigned. First, all states v ∈ Sδ already have
an assigned rank (as discussed before). Second, for i1 > 1 all states in Cδp1i1−1 have
already an assigned rank. But, third, also all states that have been added by considering
a different Xp̃1 with p̃1 ∈ P being smaller then the currently considered p1 also have an
already assigned rank.

Now consider the ranking choices suggested in (A.14b) and (A.14c). Then we see that
all already assigned ranks are smaller (in terms of the lexicographic order over D) than
the one in (A.14c). To see this, first consider a state v ∈ Sδ. Either, v ∈ Xi0−1

p0
in which

case its 0’th counter is smaller then i0 (i.e., i0 − 1 < i0) or v has been added via Sδ, in
which case the 0’th counter is equivalent but the first counter is 0 and therefore smaller
then i1 in (A.14c) (as, i1 > 0). Now consider a state v ∈ Xp̃1 with p̃1 < p1. In this
case we see that 0’th counter is equivalent but the first permutation index is smaller (as
p̃1 < p1).
We can therefore avoid specifying exactly in which set v should not be contained to

be a newly added state. We can simply collect all possible rank assignments for every
state and then, post-process this set to select the smallest rank in this set. Let us now
generalize this idea to all possible configuration prefixes.

Proposition A.1 Let δ = p0i0 . . . pj−1ij−1 be a configuration prefix, pj ∈ P\{p1, . . . , pj−1}
the next permutation index and ij > 0 a counter for pj. Then the flattening of (7.4) for
this configuration prefix is given by

X
ij
δpj

=Sδ ∪ Cδpjij︸ ︷︷ ︸
Sδpjij

∪Aδpjij (A.15a)

where

Qp0...pa :=

a⋂

b=0

Rpb , (A.15b)

Cδpaia :=
(
Qδpa ∩Gpa ∩ Cpre(Y ∗δpa)

)
∪
(
Qδpa ∩Apre(Y ∗δpa , X

ia−1
δpa

)
)
, (A.15c)

Sp0i0...paia :=
a⋃

b=0

Cp0i0...pbib , (A.15d)

Aδpjij :=
⋃

pj+1∈P\{p1,...,pj}

⋃

ij+1>0

(
X
ij+1

δpjijpj+1
\ Sδpjij

)
(A.15e)

As this flattening follows directly from the structure of the fixpoint algorithm in (7.4)
and the definition of Cpj in (7.4b), the proof is omitted.
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Using the flattening of (7.4) in (A.15) we can define a ranking function induced by
(7.4) as follows.

Definition A.1 Given the premises of Prop. A.1, we define γ := pj+10pj+20 . . . pk0 with
pj+1 < pj+2 < . . . < pk to be the minimal configuration post-fix. Then we define the
rank-set R : V → 2D s.t. (i) ∞ ∈ R(v) for all v ∈ V , and (ii) δpjijγ ∈ R(v) iff v ∈ Sδpjij .
The ranking function rank : V → D is defined s.t. rank : v 7→ min{R(v)}.

Based on the ranking in Def. A.1 we define a memory-less player 0 strategy ρ0, s.t.
ρ0(v) forces progress to a state reachable from v which has minimal rank compared to all
other successors of v. We prove Thm. A.4 in Sec. A.2.3.

Theorem A.4 Given the premises of Prop. A.1, the memoryless player 0 strategy ρ0 :
V 0 ∩ Z∗ → V 1 s.t.

ρ0(v) := min
(v,w)∈E

(rank(w)), (A.16)

is a winning strategy for player 0 in the fair adversarial game over G` w.r.t. ϕ.

Example A.1 Consider the Rabin game depicted in Fig. A.1 and discussed in App. A.1.
Here, the strategy construction outlined in Thm. A.4 enforces a transition from q6 to
q7 and a transition from q5 to q3. This is observed by noting that rank(q2) = 002012
and rank(q7) = 001121 where rank(q7) < rank(q2). In addition, rank(q1) = 011021 and
rank(q3) = 001121, where rank(q3) < rank(q1).

Soundness

We now show why the fixpoint algorithm in (7.4) is sound, i.e., why Z∗ ⊆ W in Thm. 7.1
holds. In addition, we also show that Thm. A.4 holds.

We prove soundness by an induction over the nesting of fixed points in (7.4) from inside
to outside. In particular, we iteratively consider instances of the flattening in (A.15),
starting with j = k as the base case, and doing an induction from “j + 1” to “j”. To this
end, we consider a local winning condition which refers to the current configuration-prefix
δ = p0i0 . . . pj−1ij−1 in (A.15), namely

ψδpj :=




QδpjUSδ
∨ 2Qδpj ∧23Gpj

∨ 2Qδpj ∧
(∨

i∈P\{p0,...,pj}
(
32Ri ∧23Gi

))


 . (A.17)

Further, we denote by Wδpj the set of states for which player 0 wins the fair adversarial
game over G` w.r.t. ψδpj in (A.17).

By recalling that for pj = p0 = 0 we have Qp0 = V , Sε = ∅ and Gp0 = ∅, we see that
for j = 0 the condition in (A.17) simplifies to

ψp0 =
∨

i∈P

(
32Ri ∧23Gi

)
.
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This implies that ψp0 is equivalent to ϕ in (7.3). Given this observation, the proof of
soundness in Thm. 7.1 proceeds by inductively showing that

X
ij
δpj
⊆ Wδpj (A.18)

for any configuration prefix δ, next permutation index pj and counter ij > 0. Thereby,
we ultimately also prove this claim for pj = p0 = 0 where δ is the empty string and
Y ∗p0

=
⋃
i0>0X

i0
p0

coincides with Z∗ in (7.4), which proves the statement.
With this insight the proof of Thm. A.4 as well as the soundness part of Thm. 7.1

reduce to the following proposition.

Proposition A.2 For all j ∈ [0, k], computation-prefixes δ = p0i0 . . . pj−1ij−1, next
permutation index pj ∈ P \ {p0, . . . , pj−1}, counter ij > 0 and state v ∈ Xij

δpj
the strategy

ρ0 in (A.16) wins the fair adversarial game over G` w.r.t. ψδpj in (A.17).

To see why Prop. A.2 holds, we consider the computation of Xij+1
δpj

in (A.15a) and

observe that the states in Xij+1
δpj

can be clustered based on their rank induced via Def. A.1
as follows (see Sec. A.2.3 for a full proof).

Proposition A.3 Given the premisses of Prop. A.2, let

γ = pj+10pj+20 . . . pk0 with pj+1 < pj+2 < . . . < pk, and

γ = pj+1npj+2n . . . pkn with pk < pk−1 < . . . < pj+1

be the minimal and maximal post-fix, respectively. Then, for all v ∈ Xi
δpj

exactly one of
the following cases holds:
(a) v ∈ Sδ and rank(v) ≤ δpj0γ,
(b) v ∈ Qδpj ∩Gpj ∩ Cpre(Y ∗δpj ) and rank(v) = δpj1γ,

(c) v ∈ Qδpj ∩Apre(Y ∗δpj , X
ij−1
δpj

) and rank(v) = δpjijγ s.t. ij > 1, or
(d) v ∈ Aδpjij and there exists γ < γ′ ≤ γ s.t. rank(v) = δpjijγ

′.

Using Prop. A.3 we prove Prop. A.2 by an induction over j.

Proof (Proof of Prop. A.2) Base case: First, for j = k the last line of (A.17)
disappears. Then the proof reduces to Thm. 7.3 and Thm. 7.2 in the following way. First,
we fix all fixpoint variables Y ∗p0...pl

and Xil
p0...pl

for l < j as well as Y ∗δpj . With this, we
see that T := Sδ ∪ (Qδpj ∩Gpj ∩ Cpre(Y ∗δpj )) becomes a fixed set of states and (A.15a)
reduces to

X
ij
δpj

= T ∪ (Qδpj ∩Apre(Y ∗δpj , X
ij−1
δpj

))

where we know that Xij
δpj
⊆ Y ∗δpj . Further, it follows form Prop. A.3 that for all Xij

δpj

the ranking only differs by the ij count. Hence, we can replace ρ0 in (A.16) by the
simpler strategy ρ0 in (A.4) that only consideres the ij count as the rank of states in
Y ∗δpj =

⋃
ij>0X

ij
δpj

. With this it follows from Thm. 7.3 that for any fair adversarial play
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π compliant with ρ0 in (A.16) and starting in Xij
δpj

for some ij ≥ 0 it holds that QδpjUT .
This implies that whenever such a play π eventually reaches a state in Sδ ⊆ T the first
line of (A.17) holds.
Now assume that π does not reach a state in Sδ ⊆ T . Then it reaches a state in

Qδpj ∩Gpj ∩Cpre(Y ∗δpj ) and therefore has a successor state v′ ∈ Y ∗δpj =
⋃
ij>0X

ij
δpj

. Hence,

v′ ∈ Xij
δpj

for some ij ≥ 0. By repeatedly applying this argument we see that π either
eventually reaches a state in Sδ ⊆ T or it remains infinitely in Cδpj ·. In the latter case, it
follows from Thm. 7.2 that the second line of (A.17) holds.

Induction step: For the induction step (from “j + 1” to “j”) we first analyze the
assumption. I.e., we know that for the longer computation prefix δ′ = δpjij and any next
permutation index pj+1 we have that Y ∗δ′pj+1

⊆ Wδ′pj+1
for all pj+1 ∈ P \ {p1, . . . , pj}.

Now recall that (A.15e) implies

Aδpjij =
⋃
pj+1∈P\{p1,...,pj} Y

∗
δ′pj+1

\ Sδpjij

and therefore, we know that for all v ∈ Aδpjij there exists a pj+1 s.t. v ∈ Wδ′pj+1
. That is,

any fair adversarial play starting in v that is compliant with ρ0 in (A.16) fulfills (A.17).
Therefore, whenever a fair adversarial play π starting in Xij

δpj
visits a vertex v ∈ Aδpjij

(i.e., case (d) holds), we know that π could possibly come back to a state v ∈ Sδ′pj+1
=

Sδ ∪ Cδpjij (via the first line of ψδ′pj+1
).

In this case, Prop. A.3 ensures that the ij count of the rank of states always stays
constant while the play stays in Aδpjij . Therefore, one can ignore these finite sequences
of (d) vertices in π while applying the ranking arguments of Thm. 7.3 and Thm. 7.2. I.e.,
we can conclude that in this case either the first or the second line of (A.17) holds for
π. It remains to show that π fulfills the last line of (A.17) if π eventually stays within
Aδpjij forever. First, observe that this is only possible if Sδ is not visited along π. Hence,
we know that Qδpj holds along π until Aδpjij is entered and never left. Further, as Aδpjij
is assumed to be never left after some time k > 0, we know that from that time onward
there exists no pj+1 s.t. Sδ′pj+1

is visited again by π. This implies that for all vertices
π(k′) with k′ > k the last two lines of ψδ′pj+1

(denoted ψ′δ′pj+1
) must be true for at lease

one pj+1. Hence, π fulfills the property

Ψδpj :=2Qδpj ∧3

(∨
pj+1∈P\{p1,...,pj} ψ

′
δ′pj+1

)

︸ ︷︷ ︸
Ψ′δpj

(A.19a)

With this, it remains to show that Ψδpj implies that the last line of (A.17) is true for π.
In particular, we can show that both statements are equivalent, i.e.,

Ψδpj =2Qδpj ∧
∨

pj+1∈P\{p1,...,pj}

(
32Rpj+1 ∧23Gpj+1

)
(A.19b)

Equation (A.19) is proved in Sec. A.2.3. This conclues the proof. 2
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Completeness

We now show why the fixpoint algorithm in (7.4) is complete, i.e., why W ⊆ Z∗ in
Thm. 7.1 holds.

We also prove completeness by an induction over the nesting of fixed points in (7.4)
from inside to outside. In particular, we iteratively consider the fixed points Y ∗δpj and
show that Y ∗δpj ⊆ Wδpj . As ψδpj simplifies to ϕ in (7.3) for pj = p0 = 0, we ultimately
show that W ⊆ Z∗ in Thm. 7.1. With this insight the proof of the completness part of
Thm. 7.1 reduces to the following proposition.

Proposition A.4 For all j ∈ [0, k], computation-prefixes δ = p0i0 . . . pj−1ij−1 and next
permutation index pj ∈ P \ {p0, . . . , pj−1} it holds that Wδpj ⊆ Y ∗δpj .

Proof The proof proceeds by a nested induction over j starting with j = k.

Base case: Recall that for j = k the last line of (A.17) disappears. Hence, for any state
v ∈ Wδpj either the first or the second line of (A.17) holds. Then the proof reduces to
Thm. 7.3 and Thm. 7.2 in the following way.

First, we fix all fixpoint variables Y ∗p0...pl
and Xil

p0...pl
for l < j as well as Y ∗δpj . With

this, we see that T := Sδ ∪ (Qδpj ∩Gpj ∩ Cpre(Y ∗δpj )) becomes a fixed set of states and
(A.15a) reduces to

Y ∗δpj = Z∗(
〈
T,Qδpj

〉
)

where Z∗(〈T,Q〉) is the set of states computed by the fixpoint algorithm in (7.9).
Then it follows from Thm. 7.3 that any state v ∈ V for which there exists a fair

adversarial play π that is winning for the winning condition QδpjUT is contained in Y ∗δpj .
If, indeed the first line of (A.17) holds for π, this ensures that the claim holds.
Now assume that QδpjUT holds for π but Sδ is never reached. Hence, QδpjU(Qδpj ∩

Gpj ∩ Cpre(Y ∗δpj )) holds for π. With this, it follows form Thm. 7.2 that any state v ∈ V
for which there exists a fair adversarial play π for which the second line of (A.17) holds
is contained in Y ∗δpj , proving the claim in this case.

Induction Step: For the induction from “j + 1” to “j” we first analyze the as-
sumption. I.e., we know that for the longer computation prefix δ′ = δpj and any
next permutation index pj+1 we have that Wδ′pj+1

⊆ Y ∗δ′pj+1
. Further, observe that

Ψ′δpj ⊆
⋃
pj+1∈P\{p1,...,pj}Wδ′pj+1

\ Sδpjij by construction. We therefore have

Ψ′δpj ⊆
⋃

pj+1∈P\{p1,...,pj}

Y ∗δ′pj+1
\ Sδpjij = Aδpjij .

With this observation, we see that any fair adversarial play π which fulfills the last line
of (A.17) also fulfills the weaker condition QδpjUAδpjij . Therefore, the claim follows
from the same reasoning as in the base case by re-defining T to T := Sδ ∪ (Qδpj ∩Gpj ∩
Cpre(Y ∗δpj )) ∪ Aδpjij . 2
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Additional Lemmas and Proofs

In this section we provide additional lemmas and proofs to support the proof of Thm. 7.1
and Thm. A.4.

Proof of Prop. A.3

Lemma A.5 Given the premisses of Prop. A.3, it holds for all v ∈ Xij
δpj

that
(i) v ∈ Sδ iff rank(v) ≤ δpj0γ
(ii) v ∈ Xij

δpj
iff rank(v) ≤ δpjijγ

(iii) v ∈ Y ∗δpj iff rank(v) ≤ δpjnγ
(iv) v ∈ Aδpjij iff there exists γ < γ′ ≤ γ s.t. rank(v) = δpjijγ

′

Proof (Proof of Lem. A.5) We prove all claims separately.
(i) It immediately follows from Def. A.1 (i) that δpj0γ ∈ R(v) iff v ∈ Sδ. If it is the
minimal element in R(v) then rank(v) = δpj0γ, if not, there exists a smaller element in
R(v), and then rank(v) < δpj0γ from the definition of rank.
(ii) First, observe, that for j = k it follows from (A.15a) that Xik

δpk
= Sδpkik and

therefore from (i) that v ∈ Xik
δpk

iff rank(v) ≤ δpkik. Now we do an induction, assuming

that for any pj+1 ∈ P \ {p0, . . . , pj} and 0 < ij+1 ≤ n it holds that v ∈ X
ij+1

δpj+1
iff

rank(v) ≤ δ′pj+1ij+1γ′ (where δ′ goes up to index j and γ′ starts only at index j + 2.
Now recall that

X
ij
δpj

=
⋃

pj+1∈P\{p0,...,pj}

Y ∗δpj+1
=

⋃

pj+1∈P\{p0,...,pj}

⋃

ij+1>0

X
ij+1

δpjijpj+1
.

Hence, v ∈ Xij
δpj

iff there exists pj+1 ∈ P \{p0, . . . , pj} and 0 < ij+1 ≤ n s.t. v ∈ Xij+1

δpjijpj+1
.

Now we know that for any choice of pj+1 and ij+1 we have rank(v) ≤ δ′pjijpj+1ij+1γ′.
Now the worst case, in terms of the lexicographic ordering over D is that pj+1 =
max(()P \ {p0, . . . , pj}) and ij+1 = n. Hence, we know that rank(v) ≤ δpjijγ.
(iii) As Y ∗δpj =

⋃
ij>0X

ij
δpj

it follows that there exists 0 < ij ≤ n s.t. v ∈ Xij
δpj

and (from
(ii)) therefore rank(v) ≤ δpjijγ. Again, the worst case is ij = n, giving rank(v) ≤ δpjnγ.
(iv) It follows from (A.15a) that v ∈ Aδpjij iff v ∈ Xij

δpj
\ Sδpjij . Hence, it follows from

(i) and (ii) that rank(v) > δpj0γ and rank(v) ≤ δpjijγ which is true iff there exists
γ < γ′ ≤ γ s.t. rank(v) = δpjijγ

′, which proves the statement. 2

Given these properties of the ranking function, we are ready to prove the suggested
case split in Prop. A.3.

Proof (Proof of Prop. A.3) We call a vertex v ∈ V that fulfills cases (α) in either
Lem. A.5 or Prop. A.3 an (α)-vertex. First, observe that cases (i) and (iv) in Lem. A.5
coincide with cases (a) and (d), respectively, in Prop. A.3. Further, recall that X1

δpj
= ∅.

Therefore, X1
δpj

only contains (a)-,(b)- and (d)-vertices, as Apre(·, ∅) = ∅. Now we know

193



A. Supplementary Material for Chap. 7

from (ii) that for any v ∈ X1
δpj

we have rank(v) ≤ δpj1γ. Now excluding the rankings
for (a)- and (d)-vertices we obtain that (b)-vertices must have rank rank(v) ≤ δpj1γ.
Similarly, for every ij > 1 we know that Xij

δpj
contains (a)-, (b)-, (c)- and (d)- vertices.

Now excluding (a)-, (b)- and (d)- vertices yields rank(v) ≤ δpjijγ for all (c)-vertices. 2

Proof of (A.19)

Given the notation in Sec. A.2.3 we prove that the equality in (A.19) holds.
First recall that

Ψ′δ′pj+1
:=

(
2Qδ′pj+1

∧23Gpj+1

∨ 2Qδ′pj+1
∧
(∨

i∈P̃\j+1

(
32Ri ∧23Gi

))
)
, (A.20)

where P̃\j+1 := P \ {p1, . . . , pj+1}.
For the insertion of (A.20) into (A.19a) we have the following observations. First,

observe that 3(B ∨ C) = 3B ∨ 3C, i.e., we can distribute the eventuality operator
preceding Ψ′δ′pj+1

over both lines. Second, we can re-order the preceeding disjunction
over pj+1 in (A.19a) and the disjunction between the two lines of (A.20). This yields to
the following condition

Ψδpj =2Qδpj ∧
(∨

pj+1∈P̃\j
(3λ1) ∨

∨
pj+1∈P̃\j

(3λ2)
)

=
(
2Qδpj ∧

∨
pj+1∈P̃\j

(3λ1)
)

︸ ︷︷ ︸
=:Ψ1

∨
(
2Qδpj ∧

∨
pj+1∈P̃\j

(3λ2)
)

︸ ︷︷ ︸
=:Ψ2

, (A.21)

where λi denotes the i-th line of the conjunction in (A.20).
Now let us investigate the terms Ψ1 and Ψ2 in (A.21) separately. For Ψ1, observe

that 323A = 23A and 3(2A ∧ 2B) = 32A ∧ 32B. Further we have Qδ′pj+1
=

Qδpj ∧Rj+1 ⊆ Qδpj and hence

Ψ1 =2Qδpj ∧
∨

pj+1∈P̃\j

(
32(Qδpj ∧Rpj+1) ∧23Gpj+1

)

By using the equatlity 32(A ∧B) = 32A ∧32B and the fact that Qδpj is independent
of the choice of pj+1 we get

Ψ1 =2Qδpj ∧32Qδpj ∧
∨

pj+1∈P̃\j

(
32Rpj+1 ∧23Gpj+1

)

=2Qδpj ∧
∨

pj+1∈P̃\j

(
32Rpj+1 ∧23Gpj+1

)
. (A.22)
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To analyze Ψ2 in (A.21), recall that the eventuality operator 3 distributes over dis-
junctions. We can therefore move the inner disjunction over i outside and get

Ψ2 =2Qδpj ∧
∨

pj+1∈P̃\j




∨

i∈P̃\j+1

[
3
(
2Qδ′pj+1

∧
(
32Ri ∧23Gi

))]



Now observe that
(
32Ri ∧23Gi

)
= 3

(
2Ri ∧23Gi

)
and 3(2A ∧3B) = 32A ∧3B.

Additionally using Qδ′pj+1
= Qδpj ∧Rpj+1 ⊆ Qδpj we get

Ψ2 =2Qδpj ∧
∨

pj+1∈P̃\j




∨

i∈P̃\j+1

[
32(Qδpj ∧Rpj+1) ∧

(
32Ri ∧23Gi

)]



Now we can do the same trick as in the simplification of Ψ (see (A.22)) to remove the
Qδpj term inside the disjunction and get

Ψ2 =2Qδpj ∧
∨

pj+1∈P̃\j




∨

i∈P̃\j+1

[
32Rpj+1 ∧

(
32Ri ∧23Gi

)]

 (A.23)

To see how we can simplify (A.23), let us assume that the set P̃\j contains three
elements, e.g., {a, b, c}. Then we can expand (A.23) to

32Ra ∧
(
32Rb ∧23Gb

)

∨ 32Ra ∧
(
32Rc ∧23Gc

)

∨ 32Rb ∧
(
32Ra ∧23Ga

)

∨ 32Rb ∧
(
32Rc ∧23Gc

)

∨ 32Rc ∧
(
32Rb ∧23Gb

)

∨ 32Rc ∧
(
32Ra ∧23Ga

)

Now, we can re-order terms and get
(
32Rb ∧23Gb

)
∧
(
32Ra ∨32Rc

)

∨
(
32Rc ∧23Gc

)
∧
(
32Ra ∨32Rb

)

∨
(
32Ra ∧23Ga

)
∧
(
32Rb ∨32Rc

)

Generalizing this observation, we get the following formula equivalent to (A.23)

Ψ2 = 2Qδpj ∧
∨

pj+1∈P̃\j



(
32Rpj+1 ∧23Gpj+1)

)
∧

∨

j∈P̃\j+1

32Rj


 (A.24)
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Now recall that A ∧B ⇒ A for any choice of A and B. With this one can verify that
Ψ2 ⇒ Ψ1 as the term after the disjuction over pj+1 in (A.24) implies the term after the
disjuction over pj+1 in (A.22). Hence, the set of states which fulfill Ψ1 in (A.22) is always
larger then the set of states which fulfill Ψ2 (A.24)). As both terms are connected by a
conjunction in (A.21), we can ignore Ψ2 in (A.21) and obtain

Ψδpj = Ψ1 = 2Qδpj ∧
∨

pj+1∈P̃\j

(
32Rpj+1 ∧23Gpj+1

)
. (A.25)

This concludes the proof of (A.19) as (A.25) coincides with (A.19b).

A.2.4. Additional Proofs for Sec. 7.2.4

Fair Adversarial Rabin Chain Games

Theorem A.5 (Thm. 7.4 restated for convenience) Let G` =
〈
G, E`

〉
be a game

graph with live edges and R be a Rabin condition over G with k pairs for which the chain
condition (7.14) holds. Further, let

Z∗ := νY0. µX0. νYk. µXk. νYk−1. . . . µX1.
⋃k
j=0 C̃j , (A.26a)

where C̃j := Rj ∩ [(Gj ∩ Cpre(Yj)) ∪Apre(Yj , Xj)]

with Gp0
:= ∅ and Rp0

:= ∅.
Then Z∗ is equivalent to the winning region W of Player 0 in the fair adversarial game

over G` for the winning condition ϕ in (7.3). Moreover, the fixpoint algorithm runs in
O(nk+2) symbolic steps, and a memoryless winning strategy for Player 0 can be extracted
from it.

In this section we prove Thm. 7.4. That is, we prove that for Rabin chain conditions,
the fixpoint computing Z∗ in (7.4) simplifies to the one in (A.26). This is formalized in
the next proposition.

Proposition A.5 Given the premisses of Thm. 7.4 let Z∗ be the fixed point computed
by (7.4) and Z̃∗ the fixed point computed by (A.26). Then Z∗ = Z̃∗.

If Prop. A.5 holds, we imediately see that Thm. 7.4 directly follows from Thm. 7.1. It
therefore remains to prove Prop. A.5.
Similar to the soundness and completeness proof for Thm. 7.1 we prove Prop. A.5 by

an induction over the nesting of fixpoints in (7.4) form inside to outside. Here, however
we do not need to explicitly refer to counters ij as in Prop. 7.4. Hence, we can look at
permutation prefixes instead of configuration prefixes. We have the following proposition.

Proposition A.6 Let P be the index set of the Rabin chain condition R in Thm. 7.4.
Further, for any j ∈ [0; k] let δ := p0p1 . . . pj−1 be a permutation prefix, P̃\δ := P \
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{p0, . . . , pj−1} the reduced index set and q0 := pj ∈ P̃\δ the current permutation index.
Further, define1

Z∗δpj :=νYq0 . µXq0 .⋃
q1∈P̃\δpj

νYq1 . µXq1 .

... ⋃
qn∈P̃\δpj \{q1,...,qn−1} νYqn . µXqn . Sδ ∪ [

⋃n
`=0 Cδq` ] (A.27a)

where n := k − j,

Cδqj := Qδ ∩
⋂̀

i=0

Rqi ∩ [(Gq` ∩ Cpre(Yq`)) ∪ (Apre(Yq` , Xq`))] , (A.27b)

Qδ :=
⋂j
i=0Rpi and Sp0...pj−1

:=
⋃j−1
b=0 Cp0...pb.

Then it holds that

Z∗δpj =νYr0 . µXr0 . νYr1 . µXr1 . . . . νYrn . µXrn . Sδ ∪
[⋃n

`=0 C̃δr`
]
, (A.28a)

where

C̃δr` := Qδpj ∩Rr` ∩ [(Gr` ∩ Cpre(Yr`)) ∪ (Apre(Yr` , Xr`))] (A.28b)

with ri ∈ P̃\δpj for all i ∈ [1;n] such that r1 > r2 > . . . > rn and r0 = q0 = pj.

It should be noted that Prop. A.6 needs to hold for any choice of j and δ. Further, we
have slightly abused notation by not specifying the values of the fixpoint parameters used
within Sδ. This is, however, not relevant for the proof of Prop. A.6 and we should interpret
Sδ as a term computed by an arbitrary choice of the involved fixpoint parameters.

Now, it should be obvious that for the choice j = 0 we get δ = ε and Sδ = ∅. Further,
we see that in this case, we have P̃\δp0

= P which implies that Z∗p0
in (A.27) coincides

with Z∗ in (7.4). Further, as P̃\δp0
= P we must have r1 = k, r2 = k − 1, . . ., rk = 1

and r0 = p0 = 0 to fulfill the requirements on r. Further Qp0 = R0 = Q. Therefore Z∗p0

in (A.28) coincides with Z∗ in (A.26) in this case. Hence, proving Prop. A.6 for any j
(including j = 0), immediately proves Prop. A.5.

In the remainder of this section we prove Prop. A.6 by an induction over j, starting
with j = k as the base case. Now observe that for j = k we have P̃\δpj = ∅ and hence
both (A.27) and (A.28) reduce to a two-nested fixed point over the variables Yq0 , Xq0 and
Yr0 , Xr0 , respectively, where r0 = q0 = pk by definition. Further, we see that Cδq0 = C̃δr0
by definition, which immediately proves the claim of Prop. A.6 for the base case.
In the remainder of this section we prove the induction step from “j” to “j − 1” in a

series of definitions and lemmas.
1Observe that δpj = p0 . . . pj−1pj is itself a permutation prefix.
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Definition A.2 Let P̃ ⊆ N be a set of n indices and β = q1 . . . qn with qi ∈ P̃ and qi 6= qj
for all j 6= i a full permutation sequence of the elements from P̃ . For 1 ≤ j ≤ l ≤ n we
call βjl = qjqj+1 . . . qj a maximal decreasing sub-sequence of β if (i) qj < qj+1 < . . . < ql,
(ii) qj−1 > qj or j = 1, and (iii) ql > ql+1 or l = n.

We see that, by definition, the first maximally decreasing sub-sequences of a permutation
sequence β starts with q1. Intuitively, decreasing sub-sequences allow to immediately
utilize the properties in (7.14) to simplify the fixpoint expression.

Lemma A.6 Let δ, P̃\δ and q0 = pj as in Prop. A.6, β = q1 . . . qn a full permutation
sequence of P̃\δpj and βjl = qjqj+1 . . . qj a maximal decreasing sub-sequence of β. Then

νYqj . µXqj . . . . νYql . µXql .
⋃l
i=j Cδqi = νYqj . µXqj . Cδqj (A.29)

Proof Let α := q0 . . . qj−1 and observe that

Cδqj = Qδα ∩
[(
Rj ∩Gqj ∩ Cpre(Yqj )

)
∪
(
Rj ∩Apre(Yqj , Xqj )

)]

Cδqj+1
= Qδα ∩

[(
Rj ∩Rj+1 ∩Gqj+1 ∩ Cpre(Yqj )

)
∪
(
Rj ∩Rj+1 ∩Apre(Yqj , Xqj )

)]

= Qδα ∩
[(
Rj ∩Gqj+1 ∩ Cpre(Yqj )

)
∪
(
Rj ∩Apre(Yqj , Xqj )

)]
,

where the simplification of Cδqj+1
follows from Rj ⊆ Rj+1 (see (7.14)). So Cδqj and Cδqj+1

really only differ by the Gqj (resp. Gqj+1) term in the first term of the disjunct. As
Gqj ⊇ Gqj+1 (see (7.14)) and all terms in the first part of the disjunct are intersected, we
see that Cδqj ⊇ Cδqj+1

. With this it follows from case (iii) in Lem. A.3 that

νYqj . µXqj .νYqj+1 . µXqj+1 . Cδqj ∪ Cδqj+1
= νYqj . µXqj . Cδqj .

Applying this argument to all i ∈ [j; l] proves the claim. 2

Definition A.3 We say that a permutation sequence β has chain index m if it contains
m maximal decreasing sub-sequences. For β = q1 . . . qn with chain index m we define its
reduction β↓ as β↓ := r1...rm such that rm = qj if βjl is the m’th maximally decreasing
sub-sequence of β.

Lemma A.7 Let δ, P̃\δ and q0 = pj as in Prop. A.6, β = q1 . . . qn a full permutation
sequence of P̃\δpj with chain index m and β↓ := r1...rm. Then

νYq0 . µXq0 . νYq1 . µXq1 . . . . νYqn . µXqn

n⋃

j=0

Cδqj

= νYr0 . µXr0 . νYr1 . µXr1 . . . . νYrm . µXrm

m⋃

l=0

Cδql (A.30)

where q0 = r0 = pj.
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Proof First, observe that by construction we always have r1 = q1. Hence, Qδα in the
proof of Lem. A.6 reduces to Qδq1 in this case. Further, consider r2 = qj and observe that
in this case Qδα = Qδ ∩

⋂j−1
i=0 Rqi = Qδq0 ∩Rq1 = Qδpj ∩Rr1 as q1 . . . qj−1 is a maximal

decreasing sub-sequence by construction. Iteratively re-applying this argument along with
Lem. A.6 for every l ∈ [1,m] therefore proves the claim. 2

Now observe that we can re-apply Lem. A.7 to β↓ and reduce it even more. That means,
β↓ could now again have maximal decreasing sub-sequences and we therefore can reduce
it to (β↓)↓. This might again be reduceable and so forth. We therefore define the maximal
reduced permutation sequence β⇓ = (((β↓)↓) . . .)↓ = r1 . . . rn such that r1 > r2 > . . . rn, i.e.
the chain index of β⇓ is equivalent to its length. With this, we have the following result.

Lemma A.8 Let δ, P̃\δ and q0 = pj as in Prop. A.6, β = q1 . . . qn a full permutation
sequence of P̃\δpj and β⇓ := r1...rm its maximal reduced permutation sequence. Then

νYq0 . µXq0 . νYq1 . µXq1 . . . . νYqn . µXqn

n⋃

j=0

Cδqj

= νYr0 . µXr0 . νYr1 . µXr1 . . . . νYrm . µXrm

m⋃

l=0

C̃δql (A.31)

Proof It follows from the definition of β⇓ and repeatably applying Lem. A.7 that

νYq0 . µXq0 . νYq1 . µXq1 . . . . νYqn . µXqn

n⋃

j=0

Cδqj

= νYr0 . µXr0 . νYr1 . µXr1 . . . . νYrm . µXrm

m⋃

l=0

Cδrl

Now we have by definition that r0 = q0 and r1 = q1 and therefore Cδr0 = C̃δr0 and
Cδr1 = C̃δr1 by definition. Now recall that r1 > r2, hence Rr1 ∩ Rr2 = Rr2 . Iteratively
applying this argument gives Cδrl = C̃δrl for all l ∈ [1, n], what proves the claim. 2

Note that the only full permutation sequence of P̃\δpj with chain index n is the one
where q1 > q2 > . . . > qn, giving β↓ = β⇓ = β. Hence, the sequence r1 . . . rn used in
(A.28) is actually the maximal permutation sequence of P̃\δpj . We see that all other full
permutation sequences γ of P̃\δpj have chain index m such that 1 ≤ m < n. As the C̃
terms in (7.15b) do not depend on the history of permutation sequences from P̃\δpj , we
see that any term constructed for a non-maximal permutation sequence is contained in
the term constructed for the maximal permutation sequence. This is formalized in the
next lemma.
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Lemma A.9 Let δ, P̃\δ and q0 = pj as in Prop. A.6 and let β = r1...rn be the maximal
permutation sequence of P̃\δpj , that its β = β⇓. Further, let γ 6= β be a full permutation
sequence of P̃\δpj such that γ⇓ = s1 . . . sm with m < n. Then

νYr1 . µXr1 . . . . νYrn . µXrn

n⋃

l=1

C̃δrl (A.32)

⊆ νYs1 . µXs1 . . . . νYsm . µXsm

m⋃

l=1

C̃δsl (A.33)

Proof As β is a full permutation sequence of P̃\δpj we know that for any i ∈ [1;m] there
exists one j ∈ [1;n] such that si = rj . Further, as C̃ does not depend on the history of
the permutation sequence β and γ we see that C̃δsi = C̃δrj in this case. As m < n we see
that the first line of (A.33) contains the fixpoint variables and C̃ terms of the second line
of (A.33). We can therefore apply Lem. A.3 (i) and (ii) which immediately proves the
claim. 2

Using this result, we are finally ready to prove the induction step of Prop. A.6.

Proof (Proof of Prop. A.6) Recall that Prop. A.6 trivially holds for j = k which
constitutes the base case of an induction over j. Now let us prove the induction step.
Hence, let us assume that Prop. A.6 holds for j. Now consider “j − 1”, i.e., consider the
permutation prefix δ′ = p0 . . . pj−2 and pick any pj−1 ∈ Pδ′ . By the induction hypothesis,
we know that Prop. A.6 holds for δ = p0 . . . pj−1 and any choice of pj ∈ P̃\δ. That is,
Z∗δpj can be computed using (A.28). With this, the fixpoint algorithm in (A.27) for δ′

and pj−1 simplifies to

Z∗δ′pj−1
= Z∗δ =νYpj−1 . µXpj−1 .

⋃
pj∈P̃\δ

Z∗δpj .

Here, for any choice pj ∈ P̃\δ, the term Z∗δpj is given by (A.28) where r0 = pj and

βpj = r1 . . . rn being the maximal permutation sequence of P̃\δpj . Now observe that for
j > 0 and any choice of pj we see that γ = r0 . . . rn is actually a permutation sequence of
P̃\δ, but not necessarily the maximal one. However, observe that the maximal permutation
sequence β of P̃\δ (that is β = β⇓) is actually defined by β = p̃jβp̃j for p̃j := max(()P̃\δ).
With this, we can apply Lem. A.9 to see that Z∗δpj ⊆ Z

∗
δp̃j

for all pj ∈ P̃\δ. With this we
obtain

Z∗δ′pj−1
= Z∗δ =νYpj−1 . µXpj−1 . Z

∗
δp̃j
.

One can now verify that this allows us to choose r0 = pj−1, r1 = p̃j and r2 . . . rn+1 = βp̃j
and have r1 > r2 > . . . rn+1. Hence, Z∗δ′pj−1

can be written in the form of (A.28), which
proves the statement. 2
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Fair Adversarial Parity Games

We now consider a parity winning condition with a set P = {C1, C2, . . . C2k}, where each
Ci ⊆ V is the set of vertices of G with color i. Further, P partition’s the set of vertices,
i.e.,

⋃
i∈[1,2k]Ci = V and Ci ∩ Cj = ∅ for all i, j ∈ [0, 2k − 1] such that i 6= j.

Theorem A.6 (Thm. 7.5 restated for convenience) Let G` =
〈
G, E`

〉
be a game

graph with live edges and P be a parity condition over G with 2k colors. Further, let

Z∗ :=νY2k. µX2k−1. . . . νY2. µX1. (A.34)
∪ (C2k ∩ Cpre(Y2k)) ∪ ((C1 ∪ . . . ∪ C2k−1) ∩Apre(Y2k, X2k−1))

∪ . . .

∪ (C4 ∩ Cpre(Y4)) ∪ ((C1 ∪ C2 ∪ C3) ∩Apre(Y4, X3))

∪ (C2 ∩ Cpre(Y2)) ∪ (C1 ∩Apre(Y2, X1))

Then Z∗ is equivalent to the winning region W of Player 0 in the fair adversarial game
over G` for the winning condition ϕ in (7.16). Moreover, the fixpoint algorithm runs in
O(nk+1) symbolic steps, and a memoryless winning strategy for Player 0 can be extracted
from it.

Proof A parity winning condition P with 2k colors corresponds to the Rabin chain
winning condition

{〈F2, F3〉 , . . . , 〈F2k, ∅〉} s.t. Fi :=
2k⋃

j=i

Cj , (A.35)

which has k pairs. Translating the Rabin chain condition induced by P in (A.35) into a
Rabin condition as in Thm. 7.1 we get the tuple R = {〈G1, R1〉 , . . . , 〈Gk, Rk〉} such that

Ri =F2i+1 =
⋃2k
j=2i+1Cj (A.36a)

Ri =
⋃2i
j=1Cj (A.36b)

Gi =F2i =
⋃2k
j=2iCj (A.36c)

Ri ∩Gi =C2i (A.36d)

First, observe that R0 = G0 = ∅ have been artificially introduced, and result in
C̃0 = Apre(Y0, X0). Further, as we have assumed that P is such that

⋃
i∈[1,2k]Ci = V , we

can equivalently write

C̃0 =




2k⋃

j=1

Cj


 ∪Apre(Y0, X0) = ((C1 ∪ . . . ∪ C2k) ∩Apre(Y0, X0))
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For j > 0, by using (A.36) we observe that the definition of C̃j in (7.15b) can be written
as

C̃j = (C2j ∩ Cpre(Yj)) ∪
((⋃2j

l=1Cl

)
∩Apre(Yj , Xj)

)

= (C2j ∩ Cpre(Yj)) ∪ (C1 ∩Apre(Yj , Xj)) ∪ . . . ∪ (C2j ∩Apre(Yj , Xj)) .

With this, we obtain the following fixpoint equation

Z∗ :=νY0. µX0. νYk. µXk. . . . νY1. µX1. (A.37)
((C1 ∪ . . . ∪ C2k) ∩Apre(Y0, X0))

∪ (C2k ∩ Cpre(Yk)) ∪ ((C1 ∪ . . . ∪ C2k) ∩Apre(Yk, Xk))

∪ . . .

∪ (C2 ∩ Cpre(Y1)) ∪ ((C1 ∪ C2) ∩Apre(Y1, X1))

Now consider Lem. A.3 and let us define

g(X0, Y0) :=((C1 ∪ . . . ∪ C2k) ∩Apre(Y0, X0))

f(Xk, Yk) := (C2k ∩ Cpre(Yk)) ∪ ((C1 ∪ . . . ∪ C2k) ∩Apre(Yk, Xk)).

It is immediately obvious that g(X,Y ) ⊆ f(X,Y ) for all X and Y . We can therefore
apply Lem. A.3 (iv) and observe that the computation remains unchanged if we remove
the fixpoint varibales X0 and Y0.
Now changing subscripts of iteration variables gives the following FP equation.

Z∗ :=νY2k. µX2k−1. . . . νY2. µX1. (A.38)
∪ (C2k ∩ Cpre(Y2k)) ∪ ((C1 ∪ . . . ∪ C2k) ∩Apre(Y2k, X2k−1))

∪ . . .

∪ (C2 ∩ Cpre(Y2)) ∪ ((C1 ∪ C2) ∩Apre(Y2, X1))

Now we recall from Lem. A.1 and Lem. A.2 that for all j such that k ≥ j ≥ 1 we have

(C2j ∩ Cpre(Yj)) ∪ (C2j ∩Apre(Yj , Xj)) = (C2j ∩ Cpre(Yj)).

This yields

Z∗ :=νY2k. µX2k−1. . . . νY2. µX1. (A.39)
∪ (C2k ∩ Cpre(Y2k)) ∪ ((C1 ∪ . . . ∪ C2k−1) ∩Apre(Y2k, X2k−1))

∪ . . .

∪ (C2 ∩ Cpre(Y2)) ∪ (C1 ∩Apre(Y2, X1)) 2

Remark For the reduction of “normal” Rabin chain games to parity games we would need
to further simplify (A.39) for the special case where all Apre(Y,X) are substituted by with
Cpre(Y ). In this case, however, we observe that in any valid iteration it always holds that
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Xi+1 ⊆ Yi for all even i and Xj+2 ⊆ Xj for all odd j. We can therefore remove all terms
for particular colors that have already appeared in inner fixpoint computations. Doing
this yields the normal fixed-point for parity games presented in (7.18). For fair-adversarial
parity games, this simplification is not possible due to the dependence of Apre on both Y
and X.

Fair Adversarial Generalized Co-Büchi Games

Theorem A.7 (Thm. 7.6 restated for convenience) Let G` =
〈
G, E`

〉
be a game

graph with live edges and A be a generalized Co-Büchi winning condition G with r pairs.
Further, let

Z∗ :=νY0. µX0.
⋃

a∈[1;r]

νYa. Apre(Y0, X0) ∪ (Aa ∩ Cpre(Ya)). (A.40)

Then Z∗ is equivalent to the winning region W of Player 0 in the fair adversarial game
over G` for the winning condition ϕ in (7.21). Moreover, the fixpoint algorithm runs in
O(rn2) symbolic steps, and a memoryless winning strategy for Player 0 can be extracted
from it.

In this section we prove Thm. 7.6. That is, we prove that for generalized Co-Büchi
conditions, the fixpoint computing Z∗ in (7.4) simplifies to the one in (A.40). This is
formalized in the next proposition.

Proposition A.7 Let R = {〈G1, R1〉 , . . . , 〈Gk, Rk〉} be a Rabin condition such that
(7.22) holds. Further let Z∗ be the fixed point computed by (7.4) and Z̃∗ the fixed point
computed by (A.40). Then Z∗ = Z̃∗.

Proof Now consider the flattening of (7.4) in (A.15) for R̃. Then we see that for all
j > 0 we have

Cδpjij :=
(
Qδpj ∩ Cpre(Y ∗δpj )

)
∪
(
Qδpj ∩Apre(Y ∗δpj , X

ij−1
δpj

)
)

= Qδpj ∩
(
Cpre(Y ∗δpj ) ∪Apre(Y ∗δpj , X

ij−1
δpj

)
)

and we always have Xij−1
δpj

⊆ Y ∗δpj . With this, it follows from Lem. A.1 that

Cδpjij = Qδpj ∩ Cpre(Y ∗δpj ) (A.41)

for all δ, pj and ij with j > 0.
Now observe that for δ′ = δpjij and all pj+1 ∈ P \ {p0, . . . , pj} we have

Qδ′pj+1
= Qδpj ∩Rpj+1 ⊆ Qδpj .

It further follows from the structure of the fixed point in (7.4) that

Y ∗δpj =
⋃

ij>0

X
ij
δpj

=
⋃

ij>0

⋃

pj+1∈P\p0,...,pj

Y ∗δ′pj+1
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and therefore
Y ∗δ′pj+1

⊆ Y ∗δpj .

With this we get
Cδ′pj+1ij+1

⊆ Cδpjij
for all δ, pj and ij with j > 0. Then it follows from Lem. A.3 (iii) that for every
permutation sequence δ = p0p1 . . . pk the union over all C′s terms simplifies to two terms,
one for j = 0 and one for j = 1. Using this insight, we see that for the particular Rabin
condition R̃ the fixpoint algorithm in (7.4) simplifies to

νY0. µX0.
⋃

p1∈P
νYp1 . µXp1 . Cp0 ∪ Cp1 . (A.42)

Now recalling that Cp1 simplifies to Aa ∩ Cpre(Ya) for a = p1 (see (A.41)) if (7.22) holds,
and that Cp0 = Apre(Y0, X0) as R0 = Q0 = ∅, we see that (A.42) coincides with (A.40).2

A.2.5. Additional Proofs for Sec. 7.3

Proof of Thm. 7.7

Theorem A.8 (Thm. 7.7 restated for convenience) Let G` =
〈
G, E`

〉
be a game

graph with live edges and 〈F c, Q〉 with F = { 1F, . . . , sF} a safe generalized Büchi winning
condition. Further, let

Z∗ :=νY.
⋂

b∈[1;s]

µ bX. Q ∩
[
( bF ∩ Cpre(Y )) ∪Apre(Y, bX)

]
. (A.43)

Then Z∗ is equivalent to the winning region W of Player 0 in the fair adversarial game
over G` for the winning condition ϕ in (7.25). Moreover, the fixpoint algorithm runs in
O(sn2) symbolic steps, and a finite-memory winning strategy for Player 0 can be extracted
from it.

Our goal is to prove Thm. 7.7 by a reduction to Thm. 7.2 and Thm. 7.3. We therefore
first show that a similar construction of an extended fixed point Z̃ as in (A.10) within the
proof of Thm. 7.2 also works for the generalized case. This is formalized in the following
proposition.

Proposition A.8 Given the premisses of Thm. 7.7, let

Z∗ :=νY.
⋂

b∈[1;s]

µ bX. Q ∩
[
( bF ∩ Cpre(Y )) ∪Apre(Y, bX)

]
(A.44a)

and

Z̃∗ :=νỸ .
⋂

b∈[1;s]

ν bỸ . µ bX̃ . Q ∩
[
( bF ∩ Cpre(Ỹ )) ∪Apre( bỸ , bX̃ )

]
. (A.44b)

Then Z̃∗ = Z∗.
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However, as in (A.44) a conjunction is used to update Y , the proof is not as straight
forward as for (A.10). We first show for both equations (A.44a) and (A.44b) that, upon
termination, we have Y ∗ = bX∗ for all b ∈ [1; s]. Both claims are formalized in Lem. A.10
and Lem. A.11, respectively.

Lemma A.10 Given the premises of Prop. A.8, let bXi be the set computed in the i-th
iteration over the fixpoint variable bX in (A.44a) during the last iteration over Y , i.e.,
Y = Z∗ already. Further, we define bX0 = ∅ and bX∗ :=

⋃
i>0

bXi. Then it holds that
Z∗ = bX∗ for all b ∈ [1; s].

Proof We fix Y = Z∗ and b ⊆ [1; s] and observe from (A.44a) that
bX0 = ( bF ∩ Cpre(Z∗))

and therefore
bX1 = bX0 ∪ ( bF ∩ Cpre(Z∗)) ∪Apre(Z∗, bX0)

= ( bF ∩ Cpre(Z∗)) ∪Apre(Z∗, bX0) ⊇ bX0

With this, we have in general that
bXi+1 = bXi ∪ ( bF ∩ Cpre(Z∗)) ∪Apre(Z∗, bXi)

=( bF ∩ Cpre(Z∗)) ∪Apre(Z∗, bXi)

which implies bXi+1 ⊇ bXi. Hence, bX∗ :=
⋃
i∈[0,imax]

bXi = bXimax , and therefore, in
particular

bX∗ = ( bF ∩ Cpre(Z∗)) ∪Apre(Z∗, bX∗). (A.45)

By recalling that Z∗ =
⋂
b
bX∗ we see that Z∗ ⊆ bX∗.

For the inverse direction, we use the observation Z∗ ⊆ bX∗ together with Lem. A.2
to see that Apre(Z∗, bX∗) = Cpre( bX∗). With this ( bF ∩ Cpre(Z∗)) ⊆ Cpre(Z∗) ⊆
Cpre( bX∗) = Apre(Z∗, bX∗) and hence (A.45) reduces to

bX∗ = Cpre( bX∗) ⊇ Cpre(Z∗).

As the last equality holds for all b ⊆ [1; s] we see that

Z∗ =
⋂

b

bX∗ =
⋂

b

Cpre( bX∗) ⊇ Cpre(Z∗). (A.46)

We can now use (A.46) to proof that Z∗ ⊇ bX∗ also holds. To show this, we pick a vertex
v ∈ bX∗ and prove that v ∈ Z∗. To that end, observe that either (i) v ∈ ( bF∩Cpre(Z∗)) ⊆
Cpre(Z∗) ⊆ Z∗ which immediately proves the statement, or (ii) v ∈ Apre(Z∗, bX∗). If
(ii) holds we again have two cases. Either (a) v ∈ Cpre( bX∗) which implies that there
exists a finite sequence Cpre(Cpre(. . .Cpre( bX1) . . .)) where bX1 = bF ∩ Cpre(Z∗) ⊆
Cpre(Z∗) ⊆ Z∗ and therefore v ∈ Cpre(Cpre(. . .Cpre(Z∗) . . .)) ⊆ Z∗. Finally we could
have (b) that v ∈ Pre∃l (

bX∗) ∩ Pre∀1(Z∗) ⊆ Pre∀1(Z∗) ⊆ Cpre(Z∗) ⊆ Z∗, which again
proves the statement. 2
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Lemma A.11 Given the premises of Prop. A.8, let bY i be the set computed in the i-th
iteration over the fixpoint variable bY in (A.44b) during the last iteration over Y , i.e.,
Y = Z̃∗ already. Further, we define bY 0 = V and bY ∗ :=

⋂
i>0

bY i. Then it holds that
Z̃∗ = bY ∗ for all b ∈ [1; s].

Proof Recall that Z̃∗ =
⋂
b
bY ∗ from the structure of the fixpoint algorithm in (A.44b).

To prove Z̃∗ = bY ∗ for all b ∈ [1; s] it therefore suffices to show that bY ∗ = b′Y ∗ for any
two b, b′ ∈ [1; s] s.t. b 6= b′.

Towards this goal, recall from Thm. 7.3 that bY ∗ is exactly the set of states from which
player 0 can win a fair adversarial reachability game with target bT := bF ∩ Cpre(Z̃∗).
However, every state v ∈ bT allows player 0 to force the game to a state v′ ∈ Z̃∗ =

⋂
b′

b′Y ∗.
Therefore, by definition player 0 has a strategy to reach a state v′ ∈ b′Y ∗ from any state
v ∈ bY ∗ for any b′ ∈ [1; s] s.t. b 6= b′. As, however b′Y ∗ is defined as the winning region of
player 0 w.r.t. the goal set b′T := b′F ∩ Cpre(Z̃∗), we know that there actually exists a
player 0 strategy to drive the game from any v ∈ bY ∗ to b′T , and therefore, by definition
bY ∗ ⊆ b′Y ∗. As this inclusion holds mutually for all b, b′ ∈ [1; s] s.t. b 6= b′ we have that
bY ∗ = b′Y ∗. With this, it immediately follows that Z̃∗ = bY ∗ for all b ∈ [1; s]. 2

With Lem. A.10 and Lem. A.11 in place, it remains to show that the retained fixed-
points are indeed equivalent, which is achieved by the following lemma.

Lemma A.12 Given the premises of Prop. A.8 it holds that
(i) Z∗ 6⊂ Z̃∗, and
(i) Z̃∗ 6⊂ Z∗

Proof We show both claims by contradiction.
I (i) Assume Z∗ ⊂ Z̃∗. As Y 0 = V and Z∗ = Y k for some k > 0 this implies that there
exists an i > 0 s.t. Y i ⊇ Z̃∗ ⊃ Y i+1. As Y i+1 =

⋂
b
bXi∗, this implies the existence of a

b ∈ [1; s] s.t. Z̃∗ ⊃ bXi∗, where

bXi∗ = µ bX.Q ∩
[
( bF ∩ Cpre(Y i)) ∪Apre(Y i, bX)

]

On the other hand,

Z̃∗ = bỸ ∗∗ = bX∗∗∗ = µ bX.Q ∩
[
( bF ∩ Cpre(Z̃∗)) ∪Apre(Z̃∗, bX)

]

As Y i ⊇ Z̃∗ it follows from monotonicity of all involved functions that bXi∗ ⊇ bX∗∗∗

which yields a contradiction.
I (ii) Now we assume Z̃∗ ⊂ Z∗. As Ỹ 0 = V and Z̃∗ = Ỹ k for some k > 0 this implies
that there exists an i > 0 s.t. Ỹ i ⊇ Z∗ ⊃ Ỹ i+1.
As Y i+1 =

⋂
b
bY i∗, this implies the existence of b ∈ [1; s] s.t. Z∗ ⊃ bY i∗. We recall

that
bY i∗ = ν bY.µ bX.Q ∩

[
( bF ∩ Cpre(Ỹ i)) ∪Apre( bY i, bX)

]
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Now observe that bY i0 = V ⊇ Z∗. Hence, for Z∗ ⊃ bY i∗ to be true there must exists a j
s.t. Y ij ⊇ Z∗ ⊃ Y ij+1, where

bY ij+1 = bXij∗ = µ bX.Q ∩
[
( bF ∩ Cpre(Ỹ i)) ∪Apre( bY ij , bX)

]
.

Now it is however easy to see that it follows from monotonicity again that we have
Y ij ⊇ Z̃∗ whenever Y ij ⊇ Z∗, which yields the intended contradiction. 2

Using Prop. A.8 we know that (A.44a) and (A.44b) compute the same set. Hence, we
can use (A.44b) instead of (A.43) to prove Thm. 7.7. This allows us to simply reduce the
proof of Thm. 7.7 to Thm. 7.2 and Thm. 7.3 as formalized below.

Proof (Proof of Thm. 7.7) Soundness & Completeness: Let us define Z∗(〈T,Q〉)
to be the set of states computed by the fixpoint algorithm in (7.9). Then it follows from
(A.44b) that

Z̃∗ = νY.
⋂

b∈[1;s]

Z∗(
〈
Q ∩ bF ∩ Cpre(Y ), Q

〉
).

In particular, it follows from Lem. A.11 that

Z̃∗ = Z∗(
〈
Q ∩ bF ∩ Cpre(Z̃∗), Q

〉
) ∀b ∈ [1; s].

Now let us define bW to be the fair adversarial winning state set for

bψ = 2Q ∧23 bF.

With this, it follows from Thm. 7.2 that Z̃∗ = bW for all b ∈ [1; s]. Therefore, we
obviously have

⋂
b∈[1;s]

bW = Z̃∗. Now let W be the fair adversarial winning set w.r.t.

ψ = 2Q ∧
∧

b∈[1;s]

23( bF ).

(compare (7.24)). Then we always have W ⊆
⋂
b∈[1;s]

bW which immediately implies
W ⊆ Z̃∗. However, as aW = bW for all a, b ∈ [1; s], we know that ψ holds for all v ∈ Z̃∗,
hence Z∗ ⊆ W.
Strategy construction: We can define a rank function for every b as in (A.4) within
the proof of Thm. 7.3 (see App. A.2.2), i.e.,

brank(v) = i iff v ∈ bXi \ bXi−1. (A.47)

Then, we have a different strategy, bρ0, which is defined via (A.4) (see App. A.2.2) using
the corresponding brank function. With this, we define a new strategy ρ which circles
through all possible goal sets in a pre-defined order. That is

ρ0(v, b) =

{
bρ0(v) v /∈ bF
b+ρ0(v) v ∈ bF

(A.48)
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where b+ = b+ 1 if b < s and b+ = 1 if b = s.
The strategy in (A.48) is obviously winning for ψ in (7.24) as every bρ0 is a winning

strategy for bψ (from Thm. 7.2) and upon reaching bF we know that the respective state
v is also contained in Cpre(Z̃∗) where Z̃∗ = b+Y ∗. Now it follows from the definition of
Cpre that Cpre( b+Y ∗) ⊆ b+Y ∗, hence, allowing to apply b+ρ0 upon reaching bF . 2

Proof for Thm. 7.8

Theorem A.9 (Thm. 7.8 restated for convenience) Let G` =
〈
G, E`

〉
be a game

graph with live edges and R̃ be a generalized Rabin condition over G with index set
P = [1; k]. Further, let

Z∗ :=νY0. µX0.⋃

p1∈P
νYp1 .

⋂

l1∈[1;mp1 ]

µ l1Xp1 . (A.49a)

. . .

⋃

pk∈P\{p1,...,pk−1}

νYpk .
⋂

lk∈[1;mpk ]

µ lkXpk .
k⋃

j=0

ljCpj ,

where

ljCpj :=

(
j⋂

i=0

Rpi

)
∩
[(

ljGpj ∩ Cpre(Ypj )
)
∪Apre(Ypj ,

ljXpj )
]

with p0 = 0, Gp0
:= {∅} and Rp0

:= ∅. Then Z∗ is equivalent to the winning region
W of Player 0 in the fair adversarial game over G` for the winning condition ϕ in
(7.24). Moreover, the fixpoint algorithm runs in O(nk+2k!m1 . . .mk) symbolic steps, and
a finite-memory winning strategy for Player 0 can be extracted from it.

We show how the proof of Thm. 7.1 in App. A.2.3 needs to be adapted in order to
prove the generalized version of Thm. 7.1, namely Thm. 7.8, instead.
Strategy Construction: Similar to the finite-memory strategy constructed for gener-
alized Büchi games in App. A.2.5, the strategy for generalized Rabin games needs to
remember the index of all the goal sets currently “chaised” for each permutation index
up to pj . To formalize this, we define the set of full goal chain sequences for a given
generalized Rabin specification R̃ by

Φ(R̃) := {`0`1 . . . `k | `0 = 1, `j ∈ [0;mj ]}. (A.50)

If R̃ is clear from the context we simply write Φ. Given a goal chain prefix φ := `0`1 . . . `j−1

we can now construct a ranking for each such prefix, using the flattening of (A.49) instead
of (7.4). This yields the following proposition which follows from Prop. A.1 by simply
annotating all terms with the goal chain prefix φ.
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Proposition A.9 Let δ = p0i0 . . . pj−1ij−1 be a configuration prefix, φ := `0`1 . . . `j−1

a goal chain prefix, pj ∈ P \ {p1, . . . , pj−1} the next permutation index, `j ∈ [1;mpj ]
the next goal set and ij > 0 a counter for pj. Then the flattening of (A.49) for this
configuration and goal prefix is given by

φ`jX
ij

δ̃pj
= φSδ ∪ `jCδpjij︸ ︷︷ ︸

φ`jSδpjij

∪ φ`jAδpjij (A.51a)

where

Qp0...pa :=
a⋂

b=0

Rpb , (A.51b)

`aCδpaia :=
(
Qδpa ∩ `aGpa ∩ Cpre(Y ∗δpa)

)
∪
(
Qδpa ∩Apre(Y ∗δpa ,

`aXia−1
δpa

)
)

`0...`aSp0i0...paia :=
a⋃

b=0

`bCp0i0...pbib , (A.51c)

φ`iAδpjij :=
⋃
pj+1∈P\{p1,...,pj}

(⋂
`j+1∈[1;mpj+1 ]

(⋃
ij+1>0

(
φ`j`j+1X

ij+1

δpjijpj+1
\ φ`iSδpjij

)))
.

(A.51d)

Again we see that this flattening follows directly from the structure of the fixpoint
algorithm in (A.49) and the definition of ljCpj in (7.27b). Using the flattening of (A.49) in
(A.51) we can define a ranking function for each goal chain prefix φ identical to Def. A.1.
That is, given the premises of Prop. A.9, we define φ`jR : V → 2D̃ s.t. (i)∞ ∈ φ`jR(v) for
all v ∈ V , and (ii) δpjijγ ∈ φ`jR(v) iff v ∈ φ`jSδpjij . The ranking function

φrank : V → D

is then again defined as in Def. A.1 s.t. φrank : v 7→ min{ φR(v)}. Similarly, we can
define a memoryless winning strategy for every fixed goal sequence φ as in (A.16). That
is,

φρ0(v) := min
(v,w)∈E

( φrank(w)). (A.52)

Now, similar to the proof of Thm. 7.7 (see Sec. 7.7) we can “stack” these memoryless
winning strategies to define a new strategy with finite memory which circles through all
possible goal sets in a pre-defined order. That is

ρ0(v, φ`j) :=

{
φ`jρ0(v) v /∈ `jF
φ`+j ρ0(v) v ∈ `jF

(A.53)

where `+j := `j + 1 if `j < mpj and `+j := 1 if `j = mpj .
Using this goal chain dependent ranking function, the proof of soundness and complete-

ness of (A.49) along with the proof that ρ0 in (A.53) is indeed a winning strategy for
player 0 in the fair adversarial generalized Rabin game, follows exactly the same lines as
the proof in App. A.2.3. That is, we iteratively consider instances of the flattening in
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(A.51), starting with j = k as the base case, and doing an induction from “j + 1” to “j”.
To this end, we consider a generalized local winning condition which refers not only to
the current configuration-prefix δ = p0i0 . . . pj−1ij−1 but also to the current goal chain
prefix φ := `0 . . . `j−1. Hence, (A.17) gets modified to

φψδpj :=




QδpjU φSδ
∨ 2Qδpj ∧

∧
`j∈[1;mpj ] 23

`jGpj

∨ 2Qδpj ∧



∨

i∈P̃\j


32Ri ∧

∧

b∈[1;mi]

23 bGi










(A.54)

where P̃\j = P \ {p0, . . . , pj}. With this, it becomes obvious that the proof of soundness,
completness and the winning strategy for Thm. 7.8 follows exactly the same reasoning as
in App. A.2.3 while additionally using Thm. 7.7 to reason about the conjunction over
goal sets.

The only remaining part to be shown concerns the last line of φψδpj . For this, we recall
from App. A.2.3 that the induction step from “j + 1” to “j” relies on the fact that

φ`jΨδpj :=2Qδpj ∧3

(∨
pj+1∈P\{p1,...,pj}

φ′ψ′δ′pj+1

)
(A.55)

is indeed equivalent to the last line of φψδpj , where
φ′ψ′δ′pj+1

denotes the last two lines of
φ′ψδ′pj+1

with φ′ := φ`j and δ′ := δpj .
For (non-generalized) Rabin games this equivalence is proved in App. A.2.3. It can be

seen by inspection within this proof, that using a conjunction over goal sets instead of
a single goal set within the second and third line of φψδpj does not change any step in
the derivation. Therefore, the same derivation can be used in the generalized case and is
therefore omitted. This concludes the proof of Thm. 7.8.

Proof of Thm. 7.9

Theorem A.10 (Thm. 7.9 restated for convenience) Let G` =
〈
G, E`

〉
be a game

graph with live edges and (A, F c) a GR(1) winning condition. Further, let

Z∗ =νYk.
⋂

b∈[1;s]

µ bXk.
⋃

a∈[1;r]

νYa. (Fb ∩ Cpre(Yk)) ∪Apre(Yk,
bXk) ∪ (Aa ∩ Cpre(Ya)).

Then Z∗ is equivalent to the winning region W of Player 0 in the fair adversarial game
over G` for the winning condition ϕ in (7.28). Moreover, the fixpoint algorithm runs
in O(n2rs) symbolic steps, and a finite-memory winning strategy for Player 0 can be
extracted from it.

Within this section we proof Thm. 7.9. That is, we prove that for GR(1) winning
conditions, the fixpoint computing Z∗ in (A.49) simplifies to the one in (7.30). This is
formalized in the next proposition.
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Proposition A.10 Let R̃ be a generalized Rabin condition with k pairs s.t. (7.29) holds
for r := k − 1. Further let Z∗ be the fixed point computed by (A.49) and Z̃∗ the fixed
point computed by (7.30). Then Z∗ = Z̃∗.

If Prop. A.10 holds, we immediately see that Thm. 7.9 directly follows from Thm. 7.8. It
therefore remains to prove that Prop. A.10 holds.

Proof First, consider an arbitrary permutation sequence δ = p0 . . . pk. Then we know
that there exists exactly one j > 0 s.t. pj = k and all other indices come from the set
[1; r]. We can therefore define γ′ = p1 . . . pj+1 and γ′′ = pj+1 . . . pk s.t. pi ∈ [1; r] for all
i 6= j. We note that γ′ = ε if j = 1 and γ′′ = ε if j = k. With this we have δ = p0γ

′pjγ
′′.

By inspecting (7.29) we see that the first r pairs of the generalized Rabin condition
induced by the GR(1) specification actually form a Generalized Co-Büchi condition
(compare (7.22) in Sec. 7.2.4). Hence, given a permutation sequence δ = p0γ

′pjγ
′′ we can

use the same reasoning as in the proof of Thm. 7.6 in App. A.2.4 to see that

Cp1 ⊇ . . . ⊇ Cpj−1 and Cpj+1 ⊇ . . . ⊇ Cpk . (A.56)

Now recall from the proof of Thm. 7.4 in App. A.2.4 that these inclusions allow to
recursively apply Lem. A.3 to delete all C terms which are included in either Cp1 or Cpj+1

along with the fixpoint variables used within these terms (compare Lem. A.6 where now
γ′ and γ′′ are interpreted as decreasing sub-sequences). Applying these simplifications to
(A.49) (in exactly the same manner as these simplifications where applied to (7.4) in the
proof of Thm. 7.4) results in a simpler fixpoint algorithm where all permutation sequences
have the form δ = 0q1kq2 with q1 6= q2 and q1, q2 ∈ [1; r] (here q1 and q2 correspond to p1

and pj+1 in (A.56), and k corresponds to pj).
Now we can inspect (7.29) again to see that Ri ⊇ Rk and Gi ⊇ bGpj for all i ∈ [1; r]

and b ∈ [1; s]. This can be understood as a “generalized Rabin chain condition” (compare
(7.14) in Sec. 7.2.4). Hence, we can apply Lem. A.6 one more time, now to the “decreasing
sub-sequence” q1k within every permutation sequence. Again, utilizing this argument
iteratively in (A.49) yields a simpler fixpoint algorithm which only contains permutation
sequences δ = 0ka with a ∈ [1; r]. This proves that Z∗ is equivalent to the set

νY0. µX0. νYk.
⋂

b∈[1;s]

µ bX0.
⋃

a∈[1;r]

νYa. µXa. Cp0 ∪ bCk ∪ Ca.

Now inserting the simplifications for terms from the generalized Co-Büchi part (see
(A.41) in App. A.2.4) and using R0 = G0 = ∅, we obtain

νY0. µX0. νYk.
⋂

b∈[1;s]

µ bX0.
⋃

a∈[1;r]

νYa.

Apre(Y0, X0) ∪ ( bF ∩ Cpre(Yk)) ∪Apre(Yk,
bXk) ∪ (Aa ∩ Cpre(Ya)).

Now we can apply Lem. A.3 (iii) again to remove the first occurrence of the Apre term
to obtain the same expression as in (7.30). This concludes the proof. 2
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A.2.6. Additional Proofs for Sec. 7.4

Preliminaries

11/2-player game: A special case of 21/2-player game graphs is a Markov Decision Process
(MDP) or 11/2-player game, which is obtained by assuming that every Player 0 vertex
in V0 has only one outgoing edge.1 Analogously to the 21/2-player games, for a given
11/2-player game graph G, we use the notation P ρ1

v0 (G |= ϕ) to denote the probability of
occurrence of the event G |= ϕ when the runs initiate at v0 and when Player 1 uses the
strategy ρ1.
Role of end components in 11/2-player game: Limiting behaviors in a 11/2-player game
can be characterized using the structure of the underlying game graph. We summarize
one key technical argument in the following.
Let G = 〈V, V0, V1, Vr, E〉 be a 11/2-player game graph. A set of vertices U ⊆ V is

called closed if (1) for every v ∈ U ∩ Vr, E(v) ⊆ U , and (2) for every v ∈ U ∩ (V0 ∪ V1),
E(v) ∩ U 6= ∅. A closed set of vertices U induces a subgame graph (V ′, V ′0 , V

′
1 , V

′
r , E

′),
denoted by G ↓ U , which is itself a 11/2-player game graph and is defined as follows:

• V ′ = U ,

• V ′0 = U ∩ V0,

• V ′1 = U ∩ V1,

• V ′r = U ∩ Vr, and

• E′ = E ∩ (U × U).

A set of vertices U ⊂ V of a 11/2-player game graph G is an end component if (a) U is
closed, and (b) the subgame graph G ↓ U is strongly connected.
Denote the set of all end components of G by E ⊂ 2V . The next lemma states that

under every strategy ρ1 (being memoryless or not) of Player 1 in the 11/2-player game,
the set of states visited infinitely often along a play is an end component with probability
one.

Lemma A.13 (De Alfaro, 1997, Thm. 3.2) For every 11/2-player game graph, for every
vertex v ∈ V , and every Player 1 strategy ρ1,

P ρ1
v

(
G |=

∨

U∈E

(
♦�U ∧

∧

u∈U
�♦u

))
= 1. (A.57)

This lemma implies the following corollary, which is motivated by similar claim for
Rabin winning conditions in the literature Chatterjee et al. (2005).

1Alternatively, we could also define 11/2-player game graphs by restricting the outgoing edges from the
Player 1 vertices; our choice is actually tailored for the content of the rest of the section.

212



A.2. Detailed Proofs

Corollary A.1 For a given 11/2-player game, for a given vertex v ∈ V , and for a given
Player 1 strategy ρ1, a generalized Rabin condition R̃ = {〈G1, R1〉 , . . . , 〈Gk, Rk〉} is
satisfied almost surely if and only if for every end component U reachable from v0, there
is a j ∈ {1, 2, . . . , k} such that U ∩Rj = ∅ and for every l ∈ [1;mj ], U ∩ lGj 6= ∅.

Proof of Thm. 7.10

Theorem A.11 (Thm. 7.10 restated for convenience) Let G be a 21/2-player game
graph, R̃ be a generalized Rabin condition, ϕ ⊆ V ω be the corresponding LTL specification
(Eq. (7.24)) over the set of vertices V of G, and Derand(G) be the reduced two-player
game graph. Let W ⊆ Ṽ be the set of all the vertices from where Player 0 wins the
fair adversarial game over Derand(G) for the winning condition ϕ, and Wa.s. be the
almost sure winning set of Player 0 in the game graph G for the specification ϕ. Then,
W =Wa.s.. Moreover, a winning strategy in Derand(G) is also a winning strategy in G,
and vice versa.

We define the fairness constraint on the random edges of G as per Eq. (7.1):

ϕ` := ∧(v,v′)∈Er�♦v → �♦(v ∧©v′).

We first show that W ⊆ Wa.s.. Consider an arbitrary initial vertex v0 ∈ W and an
arbitrary strategy ρ1 of Player 1 in G. Let ρ∗0 be a corresponding winning strategy for
Player 0 from v0 for the fair adversarial game over Derand(G) for the winning condition
ϕ. By definition, ρ∗0 realizes the specification ϕ, whenever the adversary satisfies the
strong fairness condition on the live edges in Derand(G). On the other hand, the live
edges in Derand(G) are exactly the random edges in G. In other words, we already know
that if we apply the same strategy ρ∗0 to G, then infρ1∈R1 P

ρ∗0,ρ1

v0 (G |= ϕ` → ϕ) = 1.
We first show that the random edges Er also satisfy the strong fairness condition ϕ`

almost surely ; actually we show that the probability of violation of ϕ` in G is 0. Consider
the following:

P
ρ∗0,ρ1

v0

(
G |= ¬ϕ`

)
= P

ρ∗0,ρ1

v0


G |= ¬

∧

(v,v′)∈Er

�♦v → �♦(v ∧©v′)




= P
ρ∗0,ρ1

v0


G |=

∨

(v,v′)∈Er

�♦v ∧ ♦�¬(v ∧©v′)




≤
∑

(v,v′)∈Er

P
ρ∗0,ρ1

v0

(
G |= �♦v ∧ ♦�¬(v ∧©v′)

)
.

We show that the right-hand side of the last inequality equals to 0 by proving that for
every (v, v′) ∈ Er,

P
ρ∗0,ρ1

v0

(
G |= �♦v ∧ ♦�¬(v ∧©v′)

)
= 0.

Consider any arbitrary (v, v′) ∈ Er and assume that the probability of taking the edge
(v, v′) from v is p1. Let π be a play on G and (i0, i1, i2, . . .) be the infinite sequence of
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time indices when the vertex v is visited. For every ik, the probability of not visiting v′

for the next l time steps (ik+1 + 1, . . . , ik+l + 1) is given by (1− p)l, which converges to 0
as l approaches ∞. This proves that for every ik, eventually there will be a v′ at (ik + 1)
with probability 1; in other words v′ will be visited infinitely often with probability 1.
Hence, it follows that

∑
(v,v′)∈Er P

ρ∗0,ρ1

v0 (G |= �♦v ∧ ♦�¬(v ∧©v′)) = 0, which in turn

establishes that P ρ
∗
0,ρ1

v0

(
G |= ¬ϕ`

)
= 0.

Now consider the following derivation:

P
ρ∗0,ρ1

v0 (G |= ϕ` → ϕ) = P
ρ∗0,ρ1

v0 (G |= ¬ϕ` ∨ ϕ) ≤ P ρ
∗
0,ρ1

v0 (G |= ¬ϕ`) + P
ρ∗0,ρ1

v0 (G |= ϕ)

= 0 + P
ρ∗0,ρ1

v0 (G |= ϕ) = P
ρ∗0,ρ1

v0 (G |= ϕ).

Since we know that P ρ
∗
0,ρ1

v0 (G |= ϕ` → ϕ) = 1, hence it follows that P ρ
∗
0,ρ1

v0 (G |= ϕ) = 1.
Next, we show that W ⊇Wa.s.. Consider an arbitrary initial vertex v0 ∈ Wa.s.. Let ρ∗0

be a corresponding almost sure winning strategy for Player 0 from v0 in the 21/2-player
game G with the specification ϕ. We show that Player 0 wins the fair adversarial game
over Derand(G) for the winning condition ϕ from vertex v0 using the strategy ρ∗0.
Let ρ1 ∈ R1 be any arbitrary Player 1 strategy in the game Derand(G) such that the

unique resultant play π = (v0, v1, . . .) due to ρ∗0 and ρ1 satisfies the fairness assumption.
We use the notation Inf(π) to denote the set of infinitely occurring vertices along the
play π, i.e., Inf(π) := {w ∈ V | ∀m ∈ N0 . ∃n > m . vn = w}. First we show that (i)
the set of vertices Inf(π) forms an end component in G, and moreover (ii) there exists a
Player 1 strategy ρ′1 in the game G such that P ρ

∗
0,ρ
′
1

v0 (G |= Inf(π)) > 0. Claim (i) follows
by observing the following:

• For all v ∈ Inf(π) ∩ Vr, Vr(v) ⊆ Inf(π), as otherwise in Derand(G) there would be
a vertex in E`(v) and outside Inf(π) which would be visited infinitely many times
due to infinitely many visits to v.

• For every v ∈ Inf(π) ∩ (V0 ∪ V1), E(v) 6= ∅, as otherwise in Derand(G) the play π
would reach a dead-end.

• The subgame graph G ↓ Inf(π) is strongly connected, as otherwise in Derand(G)
there would be two vertices u, v ∈ Inf(π) so that v would not be reachable from u,
contradicting the assumption that both u and v are visited infinitely often by π.

Claim (ii) follows by defining a strategy ρ′1 ≡ ρ1 on G. Now observe that for every edge
(v, v′) chosen by Player 1 from a vertex v ∈ dom(()E`) in Derand(G), there exists a
corresponding positive probability edge (v, v′) in G. Since Inf(π) is entered by π after
finite time steps, hence the Claim (ii) follows.

Now, from Cor. A.1 it follows that there is a j ∈ {1, 2, . . . , k} such that Inf(π)∩Rj = ∅
and for every l ∈ {1, . . . ,mj}, Inf(π) ∩ lGj 6= ∅. Thus the play π satisfies the generalized
Rabin condition R̃. Since this holds for any arbitrary Player 1 strategy, henceW ⊇Wa.s.

and ρ∗ is the corresponding winning strategy for Player 0.
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A.3. The Accelerated Fixpoint Algorithm

Consider the fixpoint algorithm in (7.4). In the correctness proof of Thm. 7.1 discussed in
App. A.2.3, we have been remembering so called configuration prefixes δ = p0i0 . . . pj−1ij−1

for some j ≤ k for every fixed-point variable X (see Eq. (A.13)). We denoted by Xij
δpj

the set of states computed in the ij ’th iteration of the fixed-point over Xpj after the
fixed-point over Ypj has already terminated within the ij−1th iteration over Xpj−1 after
the fixed-point over Ypj−1 has terminated in the ij−2th iteration over Xpj−2 and so forth.

In order to describe the accelerated implementation of (7.4), we do not assume that the
fixed-points over Y -variables have already terminated, but additionally remember their
counters m. This leads to configuration prefixes δ = p0m0i0 . . . pj−1mj−1ij−1 and lets us
define that Xmjij

δpj
is the set of states computed in the ijth iteration of the fixed-point

over Xpj during the mjth iteration over Ypj , computing the set Y mj
δpj

and so forth.
Given two configuration prefixes δ = p0m0i0 . . . pj−1mj−1ij−1 and δ′ = p′0m

′
0i
′
0 . . . p

′
j−1m

′
j−1i

′
j−1

we define δ <m δ′ if p0 . . . pj−1 = p′0 . . . p
′
j−1, m0 . . .mj−1 < m′0 . . .m

′
j−1 (using the in-

duced lexicographic order) and i0 . . . ij−1 = i′0 . . . i
′
j−1. We define δ <i δ′ similarly.

Now Piterman and Pnueli (2006) showed, based on a result of Long et al. (1994),
that for every configuration prefix δ = p0m0i0 . . . pj−1mj−1ij−1 the computation of Y 0

δpj

can start from the minimal set Y mj
δ′pj

(instead of the entire set of vertices V ) such that
δ′pjmj <m δpj0. Dually, for every configuration prefix δ = p0m0i0 . . . pj−1mj−1ij−1 the
computation of Xmj0

δpj
can start from the maximal set Xmjij

δ′pj
(instead of the empty set)

such that δ′pjmjij <i δpjmj0.
Further, we see that for the innermost fixpoint, i.e. when j = k, it follows that for every

computation prefix δ , there can be at most n iterations over both Ypk and Xpk , where n
is the total number of vertices. I.e., n different sets Y mk

δpk
and Xmkik

δpk
have to be freshly

computed for each δpk and δpkmk respectively. We see that there are O(nk+1k!) different
such permutation sequences. As the computation of the innermost fixpoint dominates
the computation time, it is shown by Long et al. (1994) that this results in an overall
worst-case computation time of O(n(k+1)+1k!) = O(nk+2k!) (where n is the total number
of vertices and k is the number of Rabin pairs).
Unfortunately, the memory requirement of this acceleration algorithm is enormous.

To see this, observe that in order to warm-start the computation of Y 0
δpj

with δ =
p0m0i0 . . . pj−1mj−1ij−1 we need to store the current minimal set w.r.t. the m-prefix for
every combination of p- and i-prefixes that can occur in δ, which are O(nk+1k!) many.
Similarly, to warm-start the computation of Xmjij

δpj
we need to store the current minimal

set w.r.t. the i-prefix for every combination of p- and m-prefixes that can occur in δ. This
means that the memory required by the algorithm is O(nk+1k!), which is prohibitively
large for large values of n and k.

We implemented a space-bounded version of the acceleration algorithm, where for any
given parameter M (chosen by the user), we stored only up to M values for each counter.
Whenever the values of all the counters are less than M , we use the regular acceleration
algorithm as outlined above. Otherwise, if any of the counters exceeds M , then we fall
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back to the regular initialization procedure of fixpoint algorithms, i.e. depending on
whether it is an Y or an X variable, initialize it with V or ∅ respectively. As a result,
the memory requirement of our accelerated fixpoint algorithm is given by O(Mk+1k!).
This space-bounded acceleration algorithm made our implementation much faster and yet
practically feasible, as has been demonstrated in Sec. 7.5.
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A.4. Supplementary Results for the Experiments
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Figure A.2.: Zoomed-in version of Fig. 7.5. (Left) Comparison between the computation
times for the non-parallel (1 worker thread) and parallel (48 worker threads)
version of Fairsyn, with acceleration being enabled in both cases. (Right)
Comparison between the computation times for the non-accelerated and the
accelerated version of Fairsyn, with parallelization being enabled in both
cases. (Both) The points on the solid red line represent the same computation
time. The points on the dashed red line represent an order of magnitude
improvement.
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Figure A.3.: (Left) Effect of variation of the acceleration parameter M on the total
computation time (parallelization being enabled) for the VLTS benchmark
examples with 1 Rabin pair. (Right) Effect of variation of the acceleration
parameter M on the initialization time for the VLTS benchmark examples
with 1 Rabin pair. The computation time (Y-axis) in both the plots are
shown in the logarithmic scale.
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Number of
Vertices

Number of
Transitions

Number of
Live Edges

Number of
BDD

Variables
289 1224 17 9
289 1224 25 9
289 1224 13 9

1952 2387 1 11
1952 2387 5 11
1952 2387 25 11
1183 4464 16 11
1183 4464 49 11
1183 4464 9 11
3995 14,552 39 12
3995 14,552 139 12
3995 14,552 153 12
5121 9392 1 13
5121 9392 54 13
5121 9392 73 13
8879 24,411 473 14
8879 24,411 397 14
7119 38,424 626 14
7119 38,424 835 14
7119 38,424 597 14

10,849 56,156 241 14
10,849 56,156 482 14
18,746 73,043 1585 15
18,746 73,043 1729 15
18,746 73,043 575 15
25,216 25,216 137 15
25,216 25,216 595 15
25,216 25,216 373 15
40,006 60,007 1130 16
40,006 60,007 865 16
52,268 292,823 107 16
52,268 292,823 3254 16
65,537 524,293 13,727 17
65,537 524,293 25,229 17
66,929 569,322 23,290 17
66,929 569,322 13,698 17
69,753 359,575 11,071 17
69,753 359,575 5058 17
83,435 259,488 1682 17
83,435 259,488 2707 17
96,878 282,880 6225 18
96,878 282,880 585 18

Table A.1.: Details of the fair adversarial Rabin games randomly generated from the
VLTS benchmark suite. Continued to Table A.2.
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Number of
Vertices

Number of
Transitions

Number of
Live Edges

Number of
BDD

Variables
116,456 364,596 8316 17
116,456 364,596 7774 17
142,471 925,429 19,259 18
142,471 925,429 3304 18
164,865 1,619,200 13,407 18
164,865 1,619,200 24,868 18
166,463 518,976 13,633 18
166,463 518,976 4155 18
214,140 683,205 13,588 18
214,140 683,205 12,113 18
371,804 641,565 3413 19
371,804 641,565 12,151 19
386,496 1,171,870 26,247 19
386,496 1,171,870 17,823 19
566,639 3,984,160 7109 20
566,639 3,984,160 42,757 20

Table A.2.: Continued from Table A.1. Details of the fair adversarial Rabin games
randomly generated from the VLTS benchmark suite.
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Broad.
Queue
Size

Out.
Queue
Size

Number of
Vertices

Number of
Transitions

Number of
Live Edges

Num.
of

BDD
Vari-
ables

Time
(sec-
onds)

1 1 5,307,840 10,135,300 5,124,100 25 7.37
2 1 21,231,400 40,541,200 20,496,400 27 24.90
3 1 21,414,100 42,080,300 21,265,900 27 28.97
1 2 21,340,800 40,879,100 20,834,300 27 38.25
1 3 21,559,400 42,756,100 21,772,800 27 51.55
4 1 84,925,400 162,165,000 81,985,500 29 57.70
5 1 85,295,700 165,243,000 83,524,600 29 65.01
6 1 85,656,300 168,321,000 85,063,700 29 73.19
7 1 86,007,400 171,399,000 86,602,800 29 77.97
1 4 85,363,200 163,516,000 83,337,200 29 92.56
1 5 85,808,000 167,270,000 85,214,200 29 113.18
2 2 85,363,200 163,516,000 83,337,200 29 133.20
1 6 86,237,400 171,024,000 87,091,200 29 135.67
3 2 86,061,400 169,673,000 86,415,400 29 144.27
1 7 86,651,500 174,778,000 88,968,200 29 145.76
8 1 339,702,000 648,659,000 327,942,000 31 149.68
2 3 86,237,400 171,024,000 87,091,200 29 163.62
9 1 340,447,000 654,815,000 331,020,000 31 174.29
10 1 341,183,000 660,972,000 334,098,000 31 197.02
3 3 86,870,100 177,181,000 90,169,300 29 203.15
1 8 341,453,000 654,066,000 333,349,000 31 248.38
1 9 342,350,000 661,574,000 337,103,000 31 283.85
1 10 343,232,000 669,082,000 340,857,000 31 331.78
7 2 345,587,000 691,003,000 351,818,000 31 567.26
4 2 341,453,000 654,066,000 333,349,000 31 710.78
2 4 341,453,000 654,066,000 333,349,000 31 806.74
5 2 342,868,000 666,378,000 339,505,000 31 852.37
6 2 344,246,000 678,691,000 345,661,000 31 936.04
2 5 343,232,000 669,082,000 340,857,000 31 1034.57
4 3 344,950,000 684,098,000 348,365,000 31 1071.52
2 7 346,606,000 699,113,000 355,873,000 31 1111.64
7 3 348,693,000 721,035,000 366,834,000 31 1312.88
2 6 344,950,000 684,098,000 348,365,000 31 1336.35
5 3 346,233,000 696,410,000 354,521,000 31 1351.31
3 4 344,246,000 678,691,000 345,661,000 31 1632.63
6 3 347,480,000 708,723,000 360,677,000 31 1667.54
8 2 1,365,810,000 2,616,260,000 1,333,400,000 33 2478.13
9 2 1,368,660,000 2,640,890,000 1,345,710,000 33 2783.77

Table A.3.: Experimental evaluation for the code-aware resource management case study
(extended table).
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