
Dissertation

Time-Slotted Schedule-based

Channel Sensing in 802.11 Ad-hoc

Networks

Thesis approved by the Department of Computer Science

of the University of Kaiserslautern (TU Kaiserslautern)

for the award of the Doctoral Degree

Doctor of Engineering (Dr. -Ing.)

to

M.Sc. Paulo Fernando Aragao Alves Junior

Date of Defense: September 26, 2022

Dean: Prof. Dr.-Ing. Jens Schmitt

PhD Committee

Chair: Prof. Dr.-Ing. Didier Stricker

Reviewers: Prof. Dr.-Ing. Reinhard Gotzhein

Prof. Dr. Klaus Schneider

D 386

Abstract

The wireless spectrum is already a scarce good, shared by multiple competing technolo-

gies such as Bluetooth, ZigBee and Wi-Fi, and the hunger for tra�c is only increasing.

Due to the heterogeneity of the existing wireless technologies and the real threat that

interference poses to network performance, sophisticated techniques must be developed

to ensure acceptable levels of quality of service.

In this thesis, we present a passive channel sensing scheme based on both energy

and signal detection, that primarily considers the spectrum occupation of foreign tra�c

while allowing for additional complementary information such as the signal-to-noise ra-

tio. The resulting channel quality metric is �rst corrected for the spectrum occupation

of internal transmissions and later aggregated with help of a moving average followed

by an exponential weighted moving average. This aggregation keeps the metric both

su�ciently stable and adaptive to signi�cant changes in channel usage. Moreover, the

channel quality metric is made volatility-aware by penalizing qualities proportionally to

their downward volatility. This yields a conservative metric and allows to di�erentiate

channels with similar aggregated qualities but di�erent volatility behavior.

Our second main contribution is in the form of a schedule-based channel sensing pro-

tocol, in which nodes possess two network interfaces, one for communication and one

for channel sensing. Channel sensing schedules are derived from communication sched-

ules, i.e. channel hopping sequences used for communication, with help of a stochastic

local search-based heuristic that attempts to minimize channel sensing bias, the channel

overlap between both schedules and to maximize overlap fairness. This minimizes the

e�ect of internal transmissions in the resulting channel quality metric, allowing nodes

to derive channel quality primarily based on foreign tra�c in an unbiased manner.

Finally, we propose and implement a stabilization protocol for keeping nodes in an ad-

hoc network tick-synchronized and schedule-consistent w.r.t. a communication schedule.

This stabilization protocol makes use of special messages, namely tick frames for syn-

chronization, channel quality reports for sharing local views of channel conditions and

schedule reports for disseminating the global communication hopping sequence. The

communication schedules are computed by a master node based on an aggregation of

local channel quality views and the re-computation of these schedules is triggered by sig-

ni�cant changes in channel conditions. The resulting protocol is robust against changes

in topology and channel conditions.

iii

Acknowledgements

I would indeed require far more space than this single page to properly express my

gratitude and acknowledge the depth of the generosity of the people who have in myriad

ways positively in�uenced my journey to write this thesis.

First of all, I would to like to thank my PhD supervisor, Prof. Dr. Reinhard Gotzhein

for his ever-present guidance, his many helpful and insightful suggestions as well as

his laser focus attention to details, which not only inspired me, but I hope helped me

become a better researcher and professional. I also would like to thank Prof. Dr.

Klaus Schneider, a person I have always admired for his intellect and teaching skills, for

accepting to review this thesis. In addition, I want to thank Prof. Dr. Didier Stricker

for acting as chair of the PhD Committee and Dr. habil. Bernd Schürmann for making

it possible for me to defend my PhD thesis remotely.

I would like to express my gratitude and appreciation to each of the current and former

AGVS members that I have worked with, for the ever-enriching scienti�c discussions,

but also for helping our research group feel like a second home. In special, I would like

to thank Dr. Markus Engel for creating the seeds for this thesis. It started way back

then, 7 years ago, when as a HiWi I got to help out with his PhD work. Time �ies. I also

would like to thank Ricardo Sabedra and Lucas Hagen for their help with experimental

work and with the implementation and validation of some of the tools developed during

this thesis.

Finally, I'd like to thank my whole family and friends, in special my mother whose

emotional and �nancial support was essential to give me the courage to leave my home

country and complete my studies in Germany, my in-laws who for years have been my

second family and last but not least, I thank my beloved wife, Sophie, for her invaluable

tips regarding all things visual, her encouragement and unwavering support during the

conception of this thesis.

v

Every thing grand is made from a series of ugly little moments. Everything worthwhile

by hours of self-doubt and days of drudgery. All the works by people you and I admire sit

atop a foundation of failures. So whatever your project, whatever your struggle, whatever

your dream, keep toiling. Per aspera, ad astra!

� Pierce Brown, Morning Star

Contents

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Context . 2

1.2 Problem statement . 3

1.3 Our approach . 4

1.3.1 Channel sensing . 4

1.3.2 Channel hopping . 5

1.4 Contributions and outline . 7

2 Channel quality 9

2.1 Basic metric qcbt . 11

2.2 Implementation - qcbt . 13

2.3 Experimental Assessment . 15

2.3.1 Tra�c generator . 16

2.3.2 Airtime calculation . 16

2.3.3 Baseline spectrum occupation and channel selection in 802.11 net-

works . 19

2.3.4 Throughput experiments . 25

2.3.5 Inter-channel interference . 28

2.3.5.1 Channel overlapping and the near-far e�ect 28

2.3.5.2 Experiments . 31

2.4 Correcting qcbt . 40

2.4.1 Correction model for 2.4 GHz . 42

2.4.2 Correction model for 5 GHz . 42

2.5 Aggregating qcbt . 44

2.6 Volatility . 47

2.6.1 Downward Standard Deviation σdsd 48

2.6.2 Average Downward Deviation from the Aggregation σadda 49

2.6.3 Downward Parkinson Historical Volatility σphv 49

2.6.4 Penalty-based channel quality metrics 51

ix

Contents x

2.7 Assessment of quality metrics . 51

2.7.1 Downward Outlier Estimation Error Σe 51

2.7.2 Percentage of Downward Outliers Σp 52

2.7.3 Root Mean squared error Σrmse 52

2.7.4 Assessment . 52

2.7.5 Comparison of penalization schemes 55

2.8 Additional channel quality metrics . 56

2.8.1 Signal-to-Noise Ratio - SNR . 56

2.8.2 Received Signal Strength Indicator - RSSI 61

2.8.3 Channel State Information - CSI 61

2.8.4 Node degree . 62

2.8.4.1 Channel quality metric 63

2.8.4.2 Protection against MAC spoo�ng 65

2.8.5 Optimization of frame overhearing 66

2.9 Combining channel quality metrics . 67

2.10 Summary . 72

3 Sensing schedules 75

3.1 Channel sensing order . 77

3.2 Geometrical model for channel overlap 80

3.3 Construction of high-quality sensing schedules 84

3.3.1 Balanced sensing schedules . 85

3.3.2 Schedule con�icts . 85

3.3.3 Con�ict metric and overlap fairness 88

3.3.4 Basic local search heuristics . 89

3.3.5 Prioritizing overlap fairness over con�ict metric 92

3.4 Performance assessment of heuristics . 93

3.4.1 Terminology . 94

3.4.2 Test set generation . 95

3.4.3 Similarity measures . 96

3.4.4 Results . 97

3.4.5 Test Set 1 - Primary goals . 97

3.4.6 Test set 1 - secondary optimization goals 99

3.4.7 Test set 2 - Primary goals . 101

3.4.8 Test set 2 - Secondary goals . 102

xi Contents

3.4.9 Investigating divergences from optimal solutions 103

3.5 Improving local minima . 105

3.5.1 Random restart . 105

3.5.2 Iterated local search . 106

3.5.3 Implementing randomness . 111

3.5.4 Time complexity . 112

3.5.5 Experimental results . 112

3.5.6 Parameter exploration . 114

3.6 Solution constraints w.r.t. primary con�icts 125

3.7 Matching - a graph theoretical formulation 131

3.7.1 Fundamentals . 131

3.7.2 Finding minimum weight perfect matchings 134

3.7.3 Comparison with our heuristics 140

3.8 Summary . 142

4 Three-Dimensional Stabilization 145

4.1 Foundations . 149

4.1.1 Channels . 149

4.1.2 Graph model and topology . 149

4.1.3 Time-slotted channel hopping . 150

4.1.4 Channel quality metric . 151

4.1.5 Communication schedules . 151

4.1.6 Schedule computation . 152

4.1.7 Schedule quality metric . 154

4.1.8 Heuristic Computation . 156

4.1.9 Channel sensing schedules . 156

4.2 Fast restabilization . 157

4.2.1 Synchronization . 158

4.2.2 Channel quality reports . 162

4.2.3 Aggregation of quality reports . 164

4.2.4 Data dissemination methods . 167

4.2.5 Communication schedule dissemination 170

4.2.6 Optimal and temporary schedules 171

4.2.7 Re-computation of communication schedules 172

4.2.8 Estimating dcomp . 173

Contents xii

4.3 Leader election . 177

4.3.1 Master failure . 177

4.3.2 The voting process . 178

4.3.3 Raft . 179

4.4 Initial stabilization . 180

4.4.1 Initial synchronization . 181

4.4.2 Initial communication schedule 182

4.5 Simulation . 182

4.5.1 Schedule consistency Metrics . 182

4.5.2 Simulation environment . 184

4.5.3 Scope of the simulation . 185

4.5.4 Channel sensing . 185

4.5.5 Physical model of the wireless channel 186

4.5.6 Experiments . 186

4.6 Con�ict-minimal channel orderings for communication schedules 197

4.7 Summary . 199

5 Developed tools 201

5.1 Data logging . 202

5.2 Data visualization . 204

5.3 Tra�c generator . 206

5.3.1 Streams . 206

5.3.2 Con�guration and debugging . 208

5.3.3 Deployment . 209

6 Summary & Future Work 211

6.1 Summary . 212

6.2 Future Work . 214

Bibliography 217

List of Tables

2.1 Airtime calculation of 802.11 broadcast frame on 2.4 GHz with payload

of 1174 bytes and long preamble with total airtime: 9808 µs. 18

2.2 Airtime calculation of 802.11 broadcast frame on 2.4 GHz with payload

of 1174 bytes and short preamble with total airtime: 1844,37 µs. 18

2.3 Airtime calculation of 802.11 broadcast frame on 5 GHz with payload of

1174 bytes with total airtime: 1468,4 µs. 19

2.4 Comparison of estimation error Σe on channel quality data shown in Fig.

2.35 and Fig. 2.36. 53

2.5 Comparison of percentage of downward outliers Σp on channel quality

data shown in Fig. 2.35 and Fig. 2.36. 53

2.6 Comparison of root mean squared error Σrmse of data shown in Fig. 2.35

and Fig. 2.36. 54

3.1 Construction of a balanced con�ict-minimal sensing schedule for C =

{1, 3, 5, 6, 7, 9, 10, 11, 13} and scom = [10, 3, 5, 7, 3, 5]. 91

3.2 Comparison of similarity measures of both opt_con�ict and opt_fairness

compared to complete enumeration. 98

3.3 Comparison of similarity measures of secondary optimization goal results

for opt_con�ict and opt_fairness compared to complete enumeration. . . 100

3.4 Comparison of similarity measures of results for opt_con�ict and opt_fairness

on test set 2 compared to complete enumeration. 101

3.5 Results for overlap fairness delivered by opt_con�ict and con�ict metric

delivered by opt_fairness compared to global optima of test set 2. 103

3.6 Comparison of opt_con�ict and opt_con�ict_ils with nswaps = 2 and

npert ∈ {5, 10, 20}. 116

3.7 Comparison of opt_fairness and opt_fairness_ils with nswaps = 2, npert ∈
{5, 10, 20}. 116

3.8 Comparison of opt_con�ict_ils with npert = 10 and nswaps ∈ {2, 4, 6}. . . 119

3.9 Comparison of opt_fairness_ils with npert = 10 and nswaps ∈ {2, 4, 6}. . . 119

3.10 Comparison of opt_con�ict_ils with npert = 20 and nswaps ∈ {2, 4, 6}. . . 119

3.11 Comparison of opt_con�ict with opt_con�ict_ils and opt_con�ict_ils_best

for npert = 10 and nswaps ∈ {2, 4, 6}. 122

xiii

List of Tables xiv

3.12 Comparison of opt_fairness with opt_fairness_ils and opt_fairness_ils_best

with npert = 10 and nswaps ∈ {2, 4, 6}. 122

3.13 Notation and expressions relevant for proving Theorem 3.6.2. 126

3.14 Notation and equivalences relevant for the proof of Theorem 3.6.3. 129

List of Figures

1.1 Illustration of a channel hopping process where nodes change their op-

erating frequencies according to a given hopping sequence after a �xed

dwell time. 6

2.1 Standard node placement of our testbed. 15 nodes are placed in multiple

rooms along a long corridor. 13

2.2 Illustration of a testbed node. Every transceiver has two antennas, and

antennas of di�erent transceivers are placed at least 24 cm apart. 14

2.3 PLCP for 802.11b with long preamble (128 bits). 17

2.4 PLCP for 802.11b with short preamble (56 bits). 17

2.5 Transmission time in µs associated with a Wi-Fi frame given a bit rate

of 1 Mbps for a payload with 1174 bytes. The shown backo� time is the

average backo� for one transmission retry. 18

2.6 PLCP preamble and header of OFDM PHY. 19

2.7 Box plot showing qcbt on all channels in 2.4 GHz band with dslot = 2min. 20

2.8 100 802.11 routers distributed on the TU Kaiserslautern campus (data

from [WiG] and map obtained from [Ope17]). 21

2.9 802.11 APs on TUK campus using most used channels in the 2.4 GHz

band, i.e. 1, 6 and 11, color coded by red, green and blue respectively. . . 22

2.10 802.11 APs on TUK campus using most used channels in the 5 GHz band,

i.e. 36, 44 and 48, color coded pink, yellow and purple respectively. . . . 23

2.11 Frequency distribution of the observed channels in the devices displayed

in Fig. 2.8 . 23

2.12 Distances between APs within di�erent networks, i.e. with di�erent

SSIDs. We show distances where the same channel was used (on the

left) or any channel combination in the same band (on the right). 24

2.13 Baseline qcbt measurements . 26

2.14 Baseline iPerf throughput measurements. 26

2.15 Measured qcbt with jamming session. 27

2.16 Measured througput of neighbor nodes communication. 27

2.17 Channel quality (qcbt) and achieved throughput (iPerf) on channel 11.

Vertical lines show the start and end of tra�c generation with 25% of

total airtime. 28

xv

List of Figures xvi

2.18 Spectral mask for transmission on 20 MHz channels with 802.11a/g/n/ac.

Power amplitudes are given in dBr, which means dB relative to the max-

imum spectral density of the signal. 29

2.19 20 MHz channels in 2.4 GHz band. 30

2.20 Node placement for the experiments. 31

2.21 qcbt measurements performed on node 1. Vertical lines show the start and

end of tra�c generation on channel 1 with 90% of total airtime. 32

2.22 iPerf3 throughput test node 13 → 1, with tra�c generated on channel 1

with spectrum occupation of 60%. 33

2.23 qcbt measurements performed on on node 13, placed 2 meters apart from

node 1. Vertical lines show the start and end of tra�c generation on

channel 1 with 90% of total airtime. 34

2.24 iPerf3 throughput test node 9 → 13, with tra�c generated on channel 1

with spectrum occupation of 70%. 35

2.25 qcbt measurement on node 9. Vertical lines show the start and end of

tra�c generation on channel 1 with 90% of total airtime. 36

2.26 qcbt measurement on node 13. Vertical lines show the start and end of

tra�c generation on channel 40 with spectrum occupation of 90%. 38

2.27 iPerf3 throughput test node 13 → 1, with tra�c generated on channel 40

with spectrum occupation of 70%. 38

2.28 qcbt measurement on node 1. Vertical lines show the start and end of

tra�c generation on channel 40 with 90% of total airtime. 39

2.29 qcbt measurement on node 9. Vertical lines show the start and end of

tra�c generation on channel 40 with 90% of total airtime. 39

2.30 Vertical lines show start and end of tra�c generation with 60% airtime

on channel 1. 41

2.31 ω?(c, c′) in 2.4 GHz band. 42

2.32 Vertical lines show start and end of tra�c generation with 20% airtime

on channel 36. 43

2.33 ω?(c, c′) in 5 GHz band. 44

2.34 Comparison of raw qcbt and the aggregation qaggr. 46

2.35 Comparison of the three penalized qualities and the raw quality. 53

2.36 Comparison of qcbt, qdsd and qphv. 54

2.37 Comparison of the three penalized qualities with the aggregated quality. . 55

xvii List of Figures

2.38 Foreign node with high Psignal,ext prevents successful transmissions on

internal links due to collisions or CCA. The foreign signal can still be

detected by the sensing node due to the capture e�ect. 58

2.39 qsnr for 30 dBm ≤ SNRfta ≤ 158 dBm. 60

2.40 qdegree for |C| = 13 and τ = 2.5% with varying nseen. 66

2.41 Layers of the Linux network stack. 67

2.42 Comparison of qcbt, qsnr and qcbt,snr computed for more than 25 hours. . 71

2.43 Comparison of qcbt, qsnr and qcbt,snr computed for the �rst 3 hours of the

experiment showing in Fig. 2.42 . 71

3.1 Example of sequential channel sensing with 6 channels, where channels

c1 . . . c5 were sensed as busy, but channel c6 was sensed as idle and is hence

used in the transmission phase for communication. 79

3.2 In our approach, a communication schedule scom is used for hopping to

communication channels (with one transceiver) and a sensing schedule

ssens (with another transceiver) is used for hopping to channels to be

sensed. 80

3.3 Illustration of a channel mask in 802.11 for the 2.4 GHz band. Attenua-

tion requirements are given in dBr (decibel relative to the power spectral

density peak in the signal) . 81

3.4 Illustraton of 802.11 channels in 2.4 GHz band. 81

3.5 Channel overlap between two consecutive channels with 22 MHz of chan-

nel bandwidth. 82

3.6 Illustration of sin(x)
x

shape involved by a channel mask. 83

3.7 Comparison of global optima of con�ict metric and overlap fairness with

local optima delivered by respectively opt_con�ict and opt_fairness. . . 99

3.8 Instances in which absolute di�erence between local and global optima

equals 0.005 or greater. 99

3.9 Results of optimization of secondary goal compared to global optima. . . 101

3.10 Comparison of global optima of con�ict metric and overlap fairness with

local optima delivered by respectively opt_con�ict_ils and opt_fairness

run on test set 2. 102

3.11 Local optima delivered by opt_con�ict and opt_fairness compared to

global optima on test set 2 with absolute di�erence between optima equals

0.005 or higher. 102

List of Figures xviii

3.12 Results of optimization of secondary goal compared to global optima on

test set 2. 103

3.13 Converging from solution constructed by our heuristic to an optimal so-

lution generated by complete enumeration. 105

3.14 Diagram showing the basic idea of the iterated local search. 107

3.15 Iterated local search with embedded opt_con�ict: a constructed solution

s′sens is perturbed to an intermediate state s? from which we can search

for another solution s′′, such that Σconflict(s
′
com, s

′′) < Σconflict(s
′
com, s

′
sens). 108

3.16 Test cases where absolute di�erence in con�ict metric between global and

local optima is 0.005 or higher. As shown, opt_con�ict_ils brings a clear

improvement and has far fewer such cases (about a fourth of the number

of cases for opt_con�ict). 113

3.17 Test cases where absolute di�erence in overlap fairness between global

and local optima is 0.005 or higher. As we can see, opt_fairness_ils has

far fewer such cases (a �fth of the number of cases for opt_fairness). . . . 114

3.18 Test cases in which absolute di�erence between global and local optima of

con�ict metric is is 0.005 or higher. opt_con�ict_ils is run with npert ∈
{5, 10, 20} and nswaps = 2 on test set 1. As shown, the number of test

cases nearly halves when doubling npert. 115

3.19 Comparison of overlap fairness values delivered by complete enumeration

and opt_fairness_ils with npert ∈ {5, 10, 20} and nswaps = 2 on test set 1

on test cases where absolute di�erence between global and local optima is

0.005 or higher. As shown, the number of such cases is more than halved

by doubling npert. 117

3.20 Illustration of the possible e�ects of too strong perturbations, i.e. too

many swaps per perturbation, can lead to an improved local optimum s′′a

but not as good as s′′b . 119

3.21 Comparison of con�ict metric values delivered by opt_con�ict_ils with

nswaps ∈ {2, 4, 6} and npert = 10 on test set 1 with test cases where the

absolute di�erence between global and local optima is 0.005 or higher. . . 120

3.22 Comparison of overlap fairness values delivered by opt_fairness_ils with

nswaps ∈ {2, 4, 6} and npert = 10 on test set 1 where the absolute di�erence

between global and local optima is 0.005 or higher. As shown, increasing

nswaps has lead either to a similar or worse performance. 121

xix List of Figures

3.23 Comparison of basic opt_con�ict_ils and opt_con�ict_ils_best with

nswaps ∈ {2, 4, 6} and npert = 10 with absolute di�erence between local

and global optimal greater or equal to 0.001. 123

3.24 Comparison of basic opt_fairness_ils and opt_fairness_ils_best with

nswaps ∈ {2, 4, 6} and npert = 10 with absolute di�erence between local

and global optimal greater or equal to 0.001. 124

3.25 Illustration showing the mapping between aligned communication and

sensing schedules and a perfect matching. Note that the weight of the

edges are omitted for better visualization. 134

3.26 Illustration of a bipartite graph G with parts A = {c1, c2, c3} and B =

{c6, c7, c8}, where weight of each edge is shown in red. 136

3.27 Illustration of an alternating path composed of edges in perfect matching

M (red edges) and edges not in M (green edges) starting with B1 and

ending with A5. 137

3.28 Illustration of an augmenting path composed of alternating edges in match-

ingM (red edges) and edges not inM (green edges) starting with B1 6∈M
and ending with A5 6∈M . 138

3.29 Graph G = (V,E) and equality graph Gl = (V,El). The dashed edges

are the edges in E that are not in El. 138

3.30 Comparison of opt_con�ict_ils with the Hungarian Method on test set

with 19669 cases where |scom| = |s(0)′
sens| = 13. On the right, we show only

the 77 test cases where the absolute di�erence between global and local

optima is greater than or equals 0.01. This means 99.6% of all test cases

display a di�erence of less than 0.01 in con�ict metric. 141

3.31 Comparison of opt_con�ict_ils with the Hungarian Method on test set

with 1680 cases where |scom| = |s(0)′
sens| = 36. On the right, we show only

the 16 test cases where the absolute di�erence between global and local

optima is greater than or equals 0.005. 142

4.1 Tick o�set between the tick perceived by node vA and the tick perceived

by node vB . 159

4.2 Relevant frame control �elds for implementing BBS with 802.11. The

type �eld is always 1 for control frames and the subtype varies depending

on application, such as 1011 for RTS and 1101 for ACK frames. 161

4.3 Illustration of reports being brought to the master node. Each incoming

edge indicates the delivered report is aggregated at the receiving node. . 164

List of Figures xx

4.4 Hidden stations make it rather problematic for nodes to always use the

best local channel for communication. 169

4.5 nmaxHops = 5 is the estimated maximum distance in hops from a node to

the master node . 176

4.6 Maximum seen hop count piggy-backs on channel reports and yields an

estimate of the depth of the network at the master node 176

4.7 Simpli�ed state machine of leader election. 180

4.8 A huge drop in schedule consistency happens at the beginning of the

simulation and is progressively repaired. 187

4.9 The same drop in schedule consistency as in Fig. 4.8 is repaired almost 100

slots faster doubling the maximum number ndis of disseminated schedule

reports for every nslot slots. 187

4.10 Convergence to Γ = 1 is not always monotonically increasing. 188

4.11 Our stabilization protocol steers towards Γ = 1, but due to excessive

re-computations never reaches it. 189

4.12 Our stabilization protocol is able to make the whole network schedule

consistent for some consecutive slots. 189

4.13 Simulation of our stabilization protocol with throughput variance thresh-

old R1 = 0.03. 190

4.14 Simulation of our stabilization protocol with throughput variance thresh-

old R2 = 0.15. 191

4.15 Simulation of our stabilization protocol with throughput variance thresh-

old R1 = 0.03. 191

4.16 Simulation of our stabilization protocol with throughput variance thresh-

old R2 = 0.15. 192

4.17 Node position allocation with 40 nodes on the bottom row and 10 nodes

on the top row with 10 meters (max. range) between each node (in both

the x and y direction). 193

4.18 Node position allocation with 50 nodes on a single row. Nodes can only

communicate with the direct neighbors to either side. 194

4.19 Simulation of our stabilization protocol with 50 nodes in a line with 10

meters (max. range) between each node. 194

4.20 Simulation of our stabilization protocol with 40 nodes on the bottom row

and 10 nodes on the top row (see Fig. 4.17) 195

4.21 Average tick o�set values with no tick synchronization. 196

xxi List of Figures

4.22 Comparison of average tick o�set values where the channel used for broad-

casting tick frames has channel quality 0.6 (left) and 0.8 (right). 197

4.23 Scenario where N2.scom uses an ordering based on N3.scom. After nadopt
slots, N1.vmaster decides to optimize its channel ordering regarding inter-

ference awareness w.r.t. N2 , even though N1 is longer in operation than

N2. 199

5.1 Experimental data logging and visualization architecture. 202

5.2 Real-time visualization as a line graph. 205

5.3 Real-time visualization in bar form, the green channel is the current best

channel according to the aggregated channel quality. 205

5.4 Stream 1 is periodical, streams 2 and 3 generate frames in a random

manner following a certain chosen distribution. Frames are scheduled to

be sent at a later point when a collision happens, e.g. the second frame

of stream 2 is only set at the �fth slot due to a collision at slot 4. 207

5.5 Json con�guration �le de�ning two streams. 208

5.6 Stream log �le, showing the generation of two beacon frames with a frame

rate of 1 frame per second. 209

5.7 Illustration of a container runtime. 210

5.8 Deployment work�ow with Docker and Ansible. 210

Tra�c increases to exceed the available spectrum.

� Adrian Stephens, technical editor for 802.11n

1
Introduction

Contents

1.1 Context . 2

1.2 Problem statement . 3

1.3 Our approach . 4

1.3.1 Channel sensing . 4

1.3.2 Channel hopping . 5

1.4 Contributions and outline . 7

1

Chapter 1 Introduction 2

1.1 Context

Wireless communication is everywhere. The need for ubiquitous connection has made

IEEE 802.11, also known as Wi-Fi, among other prevailing wireless protocols, a funda-

mental component of modern society. The estimated global economic value of Wi-Fi

in 2021, considering di�erent aspects such as the needs of consumers and industry as

well as the economic impact of the global SARS-CoV-2 pandemic, came in at 3.3 tril-

lion dollars, with a predicted value of 4.9 trillion dollars for 2025 [RKC21]. One study

has pointed out that in Germany alone the time smartphone users spent using Wi-Fi

networks instead of cellular communication technology (e.g. 4G) went from 64.7% to

71.4% during the outbreak of the COVID-19 pandemic [RKC21].

The applications of wireless communication technology are multifaceted and range

from consumer electronics and entertainment to sensor networks in industrial settings.

The number of connected devices increases dramatically every year and with it an in-

satiable hunger for bandwidth and speed. In most countries, Wi-Fi mainly uses two

frequency bands, 2.4 GHz and 5 GHz, originally allocated for Industrial, Scienti�c and

Medical (ISM) applications. These ISM bands face not only competing use cases, but

also competing technologies. In addition to 802.11, the 2.4 GHz band has been over-

crowded for a long time by di�erent wireless protocols, such as Bluetooth, ZigBee as well

as other technologies that emit radiation in the same frequency band, such as microwave

ovens. On the other hand, even though the 5 GHz band still has a lower average spec-

trum occupation than the 2.4 GHz, this situation is changing rapidly. This is mostly

due to an increasing number of Wi-Fi transceivers that support 5 GHz as well as the

approval and adoption of LTE in unlicensed spectrum (LTE-U), which intends to im-

prove coverage in cellular networks by using the 5 GHz band alongside typical cellular

carrier frequencies. In a world with more than 5 billion smartphone users [Sta22], LTE-U

has the potential to provide immense competition for 802.11. Furthermore, spectrum

availability is also one of the main barriers to a broader scale Internet of Things (IoT)

deployment. IoT is a booming business with a world market value estimated at US$ 1.7

trillion for 2021 [BRA20].

3 1.2 Problem statement

1.2 Problem statement

Everyone wants a piece of the spectrum pie. It is hence no surprise that the current

scenario has led to an increasing congestion of the available unlicensed radio spectrum.

Numerous problems are caused by this congestion. First, networks in mutual com-

munication range and using distinct technologies can interfere with each other by using

overlapping channels, but cannot decode foreign frames, which makes coexistence harder.

Second, di�erent medium access control (MAC) schemes might lead to an unfair distri-

bution of the available bandwidth between competing networks. Both factors can result

in substantial throughput reduction, in special for the network using the most polite

protocol. In the worst case, close proximity and incompatible MAC protocols might

lead to no throughput at all for all contending networks.

Communicating e�ectively in such a congested scenario demands sophisticated ap-

proaches. In particular, this need is made most evident in mobile ad-hoc networks,

such as vehicular ad-hoc networks (VANET), in which performance and security are

paramount. Even though an infrastructure-based mode (managed mode) is the most

commonly used mode of operation for 802.11 devices, there are some disadvantages

that come with it. Some of the main disadvantages are limited scalability, restricted

robustness regarding node mobility, and the associated costs of installing the needed in-

frastructure may be neither desirable nor justi�ed, e.g. in disaster networks or in ceratin

residential community networks [ACG04]. In such cases, an ad-hoc mode of operation

or a combination of infrastructureless and infrastructure-based operations seems to be

the most e�cient solution.

As of 2022, most IEEE 802.11-based ad hoc networks are still being developed in

academic environments. Nonetheless, IEEE 802.11 ad-hoc-based systems have a great

potential economic value. One promising application of the technology is helping improve

the connectivity and quality of service in public access networks. Such networks are

already widespread in both developed and developing countries. Brazil, for instance,

has seen an aggressive development in public access Wi-Fi networks in its municipalities.

Current estimates state that nearly 38% of all municipalities in the country o�er free

Wi-Fi services [BRA20]. This is a clear re�ection of the economical situation of the

country, where a large chunk of its population does not have the economic resources to

subscribe to broadband Internet services, relying instead on free municipal access. Cisco

reports that Brazil has over about nine million public Wi-Fi access points (APs) as of

2021, with a projection of 23.8 million by 2023 [RKC21]. And Brazil is not alone in this

Chapter 1 Introduction 4

development. The number of open public Wi-Fi APs has been increasing everywhere in

the world and is already very high in countries such as France (1.2 million), Poland (3.1

million), India (3.7 million) and Mexico (7 million) [RKC21].

Brazilian wireless ISPs, for instance, report that they already observe a bottleneck at

the capacity to serve multiple clients, only being able to handle 50 subscribers per channel

at a time [ACG04]. While each new Wi-Fi standard has brought increasing transmission

rates, transmission power was kept bounded by regulations set up by regulatory bodies

such as ANATEL for Brazil, ETSI for the European Union and the FCC for the United

States. Increasing transmission rates while keeping the transmission power constant

e�ectively lowers transmission range and with it coverage area. A rate of 100 Mbps,

for instance, leads to a coverage area of only a few meters around a given access point

[ACG04]. Since associated costs and space constraints limit the number of access points

that can be placed near each other, a more scalable solution would be to keep the number

of APs low and have these access points act as gateways to the Internet for client nodes

that connect to each other in a multihop ad-hoc network [ACG04].

1.3 Our approach

To deal with this spectrum overcrowding and ensure appropriate quality of service (QoS)

levels, we have following tools at hand: channel sensing and channel hopping. In order

to assess the state of a channel, we need to gather channel quality information, allowing

nodes to select high-quality channels for e�ective communication. Channel selection can

then bootstrap a proactive channel hopping scheme, in which nodes hop to di�erent

channels and use channels with a frequency proportional to their quality.

1.3.1 Channel sensing

The quality of a channel re�ects the expectation on performance to be obtained when

using it for communication. Channel quality is thus a promise of better performance in

the medium (lower latency, less frame loss, higher throughput). If this channel quality

falls below acceptable levels, we might need to use more local resources on a node

e.g. more energy and CPU time due to re-transmissions, as well as global resources

such as channel airtime. In IEEE 802.11 networks, airtime is a precious asset, since

nodes that wish to transmit data, but are within communication range of transmitting

nodes, have to back-o� and wait for a certain time before attempting to transmit again.

5 1.3 Our approach

Using a bad channel is in this way not only detrimental for a single node that has to

resend some frames, but also for the whole set of nodes in its communication range

that have to contend with it for channel access. However, ranking channels according to

channel quality makes it possible not only to give preference to high-quality channels but

also to blacklist channels whose conditions do not hold up to minimal communication

requirements.

In this thesis, we concern ourselves with passive channel sensing, in contrast to active

link quality measurements, such as estimating packet delivery ratio based on acknowl-

edgments. Passive means that the sensing takes place without any energy emission.

To perform sensible channel sensing, the �rst questions to be answered are: which

channel property or properties should be used to gauge the quality of a channel and how

should raw collected data be interpreted and aggregated into a single channel quality

metric for nodes to act upon.

With regards to gathering channel statistics, one possibility would be overhearing

all frames on the medium. This allows a node to measure the quality of a channel

based on the presence of other nodes using the same wireless protocol. However, this

limits the assessment of the channel to networks in communication range using the same

communication technology, and to the set of received signals that can be decoded as a

frame. Since frame decoding alone is insu�cient for a proper channel assessment, a more

adaptable approach should use energy detection, either in isolation or combined with

frame overhearing. Measuring energy levels on the medium enables a node in sensing

range of transmitting nodes not only to label a channel as either idle or busy but also

to quantify the busyness of this channel.

After collecting channel quality raw data, a node needs to aggregate these data in

order to obtain a single channel quality metric. An ideal metric should be accurate,

display acceptable levels of stability while staying adaptive to signi�cant changes in

channel conditions and should be volatility-aware, i.e. yield conservative channel quality

estimates based on downward �uctuations. Furthermore, as di�erent nodes observe

di�erent channel quality conditions, nodes should exchange measured channel qualities

to share their local views.

1.3.2 Channel hopping

In this work, we have following motivating scenario: nodes operate in an ad-hoc wireless

network and exchange data on a common channel for a given dwell time, also called

a time slot, after which they hop to another pre-de�ned channel (see Fig. 1.1). This

Chapter 1 Introduction 6

proactive behavior of vacating a channel and switching to another is called throughout

the literature frequency hopping or channel hopping, the term preferred in this work. A

channel hopping sequence, i.e. the sequence of channels to switch to, is also called a

channel hopping schedule. In further chapters, we will introduce two di�erent types of

Figure 1.1: Illustration of a channel hopping process where nodes change their operating
frequencies according to a given hopping sequence after a �xed dwell time.

schedules, namely a sensing and a communication schedule. For now, it su�ces to say

that nodes switch channels to communicate on, following a communication schedule and

that they use an additional transceiver to simultaneously perform channel sensing on all

available channels in an order de�ned by a sensing schedule. However, in this thesis we do

not handle in detail how communication schedules are computed. For a complete study

on communication schedules, please see [Eng20]. For the sake of simplicity, we might

refer to a channel hopping schedule simply as a schedule unless proper disambiguation

is needed.

While channel quality metrics de�ne what to measure and how, sensing schedules

de�ne when to measure it. As already mentioned, time in our network is divided into

7 1.4 Contributions and outline

time slots. Slots have a �xed duration dslot and each slot de�nes the duration of usage

(or survey) of a single channel.

Regarding the relation between the duration of a slot and the symbol duration, there

are two main types of channel hopping systems: fast frequency hopping (FFH) and slow

frequency hopping (SFH). A symbol is a pulse or waveform that persists on a channel

for a �xed duration. It is the smallest physical resource unit of communication and may

encode several bits. 802.11n, for example, has symbol durations of either 3.6 or 4 µs, of

which 3.2 µs are the symbol time (data transmission), and the remaining 0.4 or 0.8 µs

are respectively either the short or the long guard intervals. In FFH systems, one symbol

is transmitted over multiple time slots, i.e. dslot is smaller than the symbol duration. In

this thesis, we deal with SFH networks, where the slot duration is larger than the data

symbol duration. In fact, typical slot duration for our scenario is at least an order of

magnitude larger than symbol duration, with dslot ≥ 10 ms.

1.4 Contributions and outline

The main contributions of this thesis are a schedule-based passive channel sensing scheme

and an active master-based stabilization protocol for achieving schedule consistency

w.r.t. a communication schedule within a multihop ad-hoc network. These main con-

tributions are presented in Chapters 2, 3 and 4. The thesis is then structured as

follows:

� In Chap. 2, we propose a methodology for passive channel sensing and describe the

needed components for its implementation in commodity 802.11 hardware. This

channel sensing scheme is based on both energy and signal detection, and primarily

takes into consideration the spectrum occupation created by foreign nodes. The

resulting channel quality metric, qcbt is �rst corrected to account for the spectrum

occupation generated by internal transmissions and is later aggregated to make it

both su�ciently stable and adaptive to signi�cant changes in channel usage. This

aggregation is implemented as a combination of a moving average with an exponen-

tial weighted moving average. Furthermore, the channel quality metric is made

volatility-aware by penalizing channel qualities in proportion to their downward

volatility levels. This makes the resulting metric more conservative and enables

us to distinguish channels that display similar channel qualities but present dis-

tinct volatility behaviors. Moreover, additional channel quality information such

as the foreign tra�c aware signal-to-noise ratio can be combined with the primary

Chapter 1 Introduction 8

channel quality information to provide a multidimensional view of the channel

state.

� In Chap. 3, we propose and experimentally assess a method for the construction of

high-quality local sensing schedules in which nodes possess two network interfaces,

one for communication and one for channel sensing. Nodes determine the channel

sensing order, i.e. when each channel should be sensed, through sensing schedules,

which are derived from a communication schedule. High-quality sensing schedules

are constructed with help of a stochastic local-search-based heuristic that attempts

to minimize the channel overlap e�ects between both schedules while minimizing

channel sensing bias.

� In Chap. 4, we propose a master-based stabilization protocol for keeping nodes in

an ad-hoc network tick-synchronized and schedule-consistent w.r.t. a communica-

tion schedule. This stabilization protocol makes use of special messages, namely

tick frames for tick synchronization, channel quality reports for nodes to share lo-

cal channel quality views and schedule reports for disseminating the current global

communication hopping sequence, computed by the master node. Communication

schedules are computed based on aggregated channel qualities and their dissemi-

nation is triggered by signi�cant changes in channel quality.

� In Chap. 5, we describe the main tools developed during our research to help

us conduct controlled experiments and to evaluate the proposed channel quality

metrics. These tools are a wireless tra�c generator, two types of data visualization

and a data collection pipeline using a time-series database for storing channel

sensing data and a document-based database for managing experiment metadata.

In addition, we brie�y describe the architecture used for deploying these tools to

our testbed in a �exible and scalable manner.

� In Chap. 6, we summarize our results and present some open challenges for possible

future work.

Even though many of the techniques introduced in this thesis are general enough and

could be easily adapted for other wireless protocols, we have focused on applying them

to IEEE 802.11-based ad-hoc networks. Moreover, we have implemented all proposed

approaches and either deployed them to a testbed with 802.11 transceivers or to a

simulation framework for experimental assessment and validation.

It is quality rather than quantity that matters.

� Seneca

2
Channel quality

Contents

2.1 Basic metric qcbt . 11

2.2 Implementation - qcbt . 13

2.3 Experimental Assessment . 15

2.3.1 Tra�c generator . 16

2.3.2 Airtime calculation . 16

2.3.3 Baseline spectrum occupation and channel selection in 802.11

networks . 19

2.3.4 Throughput experiments 25

2.3.5 Inter-channel interference 28

2.4 Correcting qcbt . 40

2.4.1 Correction model for 2.4 GHz 42

2.4.2 Correction model for 5 GHz 42

2.5 Aggregating qcbt . 44

2.6 Volatility . 47

2.6.1 Downward Standard Deviation σdsd 48

2.6.2 Average Downward Deviation from the Aggregation σadda . . . 49

2.6.3 Downward Parkinson Historical Volatility σphv 49

2.6.4 Penalty-based channel quality metrics 51

9

Chapter 2 Channel quality 10

2.7 Assessment of quality metrics 51

2.7.1 Downward Outlier Estimation Error Σe 51

2.7.2 Percentage of Downward Outliers Σp 52

2.7.3 Root Mean squared error Σrmse 52

2.7.4 Assessment . 52

2.7.5 Comparison of penalization schemes 55

2.8 Additional channel quality metrics 56

2.8.1 Signal-to-Noise Ratio - SNR 56

2.8.2 Received Signal Strength Indicator - RSSI 61

2.8.3 Channel State Information - CSI 61

2.8.4 Node degree . 62

2.8.5 Optimization of frame overhearing 66

2.9 Combining channel quality metrics 67

2.10 Summary . 72

11 2.1 Basic metric qcbt

In this chapter, we introduce a sophisticated channel quality metric based on energy

detection, describe its implementation on commodity 802.11 hardware and assess its per-

formance through real experiments in a testbed. First, we de�ne our raw channel quality

qcbt, which is collected by taking advantage of available customary hardware mechanisms

for clear-channel assessment (CCA). Second, we gauge the suitability of qcbt to measure

the quality of a channel. Third, we improve the accuracy of the delivered raw data by

applying corrections w.r.t. the e�ects of internal tra�c due to channel overlaps and

the near-far e�ect. Fourth, we aggregate the corrected channel quality values to make

the metric more stable and apply an exponential weighted moving average (EWMA)

to provide additional adaptivity. Fifth, we de�ne and apply several candidate metrics

to measure and account for the downward volatility of raw channel quality, yielding

volatility-aware channel quality metrics. The resulting metrics are not only accurate,

adaptive and stable, but also more conservative without being overly pessimistic. Each

of these steps is implemented and presented along with experimental results.

2.1 Basic metric qcbt

IEEE 802.11 is a group of listen-before-talk (LBT) protocols that rely on energy detection

and frame decoding to perform clear-channel assessment (CCA). Nodes are only allowed

to transmit on a channel that is deemed idle, otherwise if the channel is sensed busy,

i.e. the sensed energy lies above a chosen energy threshold, the transceiver defers the

transmission according to 802.11 protocol rules.

A channel quality metric may incorporate di�erent channel properties derived by

either energy or signal detection, such as node degree, average received signal strength,

spectrum occupation, etc. This channel quality value is measured passively and should

re�ect the overall channel conditions and correlate with the current throughput and

quality of service experienced by sensing nodes on this channel. Hence, higher quality

channels should yield less interference and less collisions.

De�nition 2.1.1. Channel quality is a numerical value between 0 and 1 associated with

a wireless channel that re�ects its current state w.r.t. to QoS parameters and its overall

usage by external nodes. 0 denotes the worst possible channel state and 1 denotes a

perfect channel, according to the chosen criteria.

The ratio of the time period during which the sensed channel is detected as busy

to the period during which CCA is performed is usually referred to in the literature

Chapter 2 Channel quality 12

as the channel busy ratio (CBR) or the channel busy fraction (CBF). This metric has

been used for all types of applications and has been predominantly assessed and val-

idated through simulations or experiments that require altered drivers or customized

�rmwares. [HXY05], for example, showed with help of simulations, that CBR is an in-

jective function of collision probability and serves as a good estimator for the available

bandwidth. [SGSK07] attempted to identify high throughput paths in 802.11 mesh net-

works. For this purpose, the authors developed an analytical model, in which CBF is an

estimator for end-to-end maximum achievable throughput, and validated their proposed

approach with simulations. In addition, the authors in [DKS10] relied both on simula-

tions and real testbed-based experiments with an Atheros 5212 802.11a/b/g chipset and

further con�rmed that the channel busy fraction is an accurate predictor of the available

bandwidth. Nonetheless, unlike our approach, these experiments made use of a cus-

tomized driver to extract the values stored in the PROFCNT_RXCLR and PROFCNT_CYCLE

registers, needed to compute CBR.

In order to assess the quality of all available channels, we proactively switch channels

and survey the quality of one channel per time slot. At the end of each slot, we measure

both the time during which the channel was deemed busy (dbusy) and the time during

which the node performed clear channel assessment (dCCA). Our basic channel quality

metric qcbt is thus de�ned as

qcbt = 1− dbusy
dCCA

(2.1)

where cbt stands for channel busy time.

The proposed basic channel quality metric quanti�es the idleness of the medium.

Experiments in our testbed have shown that qcbt has a strong correlation with the maxi-

mum achievable throughput on a channel, further con�rming the results surveyed in the

literature.

The main advantages of using qcbt are:

� It barely introduces overhead.

� It allows for a node to detect interference of nodes outside its communication range

but still in sensing range.

� It is an agnostic metric, i.e. by using both signal and energy detection, a node can

detect changes in the noise �oor triggered by any devices operating in the same

portion of a given frequency band.

13 2.2 Implementation - qcbt

2.2 Implementation - qcbt

In this section, we discuss in detail the implementation of qcbt on o�-the-shelf commodity

802.11 hardware.

8

9

3

8

10

3

7

14

11

6

9

3

1 5

15

13
Node ID

Figure 2.1: Standard node placement of our testbed. 15 nodes are placed in multiple
rooms along a long corridor.

We ran our main experiments in a testbed with 15 nodes (see Fig.2.1). These nodes

are equipped with two 802.11a/b/g/n o�-the-shelf Compex WLE200NX mini PCIe

transceivers with an Atheros AR9280 chipset and PC Engines APU2 boards (see Fig.

2.2). Both transceivers operate in monitor mode. Radio Frequency Monitor (RFMON)

mode or simply monitor mode lets a device overhear all tra�c that reaches a network

interface controller (NIC). This operation mode is needed for proactive channel hopping

on 802.11 devices and overhearing frames on a channel, including those which are not

destined for the sensing node.

Even though the idea of using multiple independent network cards on each network

node is still not widespread, the use of multiple antennas has already become more the

Chapter 2 Channel quality 14

norm than the exception among 802.11 devices. This tries to capitalize on antenna di-

versity, i.e. antennas with at least a wavelength between them display di�erent reception

capabilities due to di�erent re�ection and fading conditions. For instance, a wavelength

in the 2.4 GHz frequency band is approximately 12.5 cm. Furthermore, most modern

consumer devices such as laptops already have two antennas, one for each side of the

LCD screen, and USB dongles usually have multiple antennas as part of their printed

circuit board (PCB) [STC+08].

APU2 Board

Atheros AR9280

Figure 2.2: Illustration of a testbed node. Every transceiver has two antennas, and
antennas of di�erent transceivers are placed at least 24 cm apart.

The chosen chipset uses an Ath9k driver and is able to deliver spectral data from

which we should be able to derive the power of any received signal. This would allow

us to choose an arbitrary energy threshold to compute dbusy in a �exible manner. This

functionality, however, is still experimental and almost undocumented. With this in

mind, we opted for the Linux 802.11 Netlink userspace API. This interface of the Linux

wireless stack exposes the NL80211_CMD_GET_SURVEY command, which provides us with

both dbusy and dCCA. Even though this binds us to the energy thresholds implemented

in the chipset, it delivers consistent results through a well-established API.

Still, adopting the Netlink survey API has its own peculiarities. Before settling on our

current experimental setup, we performed a series of experiments with di�erent network

cards, mostly TP-Link and Ralink USB dongles and noticed some implausibility in the

delivered values, e.g. dbusy > dCCA. In fact, the USB-based cards led to inconsistent

measurement errors when surveying the channel with short slot durations, i.e. dslot < 40

ms. These errors were a result of additional delays introduced by the USB interfaces.

After adopting PCI network cards, we were able to consistently retrieve plausible re-

sults regardless of the chosen dslot. In addition, when using the Netlink API, we had

to deal with implementation inconsistencies, made evident when testing with di�erent

chipsets. One notable inconsistency is the manner di�erent drivers handle the dbusy and

dCCA registers. While some reset the measured busy times after each query, some keep

accumulating it as long as the operation channel is not changed.

15 2.3 Experimental Assessment

802.11n supports both 20 and 40 MHz channels. The latter are composed of a com-

bination of the former. Each 40 MHz channel has a primary and a secondary 20 MHz

channel, where the primary channel is used e.g. for management data, such as beacon

transmissions.

For 20 MHz channels, IEEE 802.11 de�nes a channel as busy either upon decoding

an 802.11 signal with at least -82dBm of signal power or when energy is detected on

the medium at -62dBm or stronger, regardless of the nature of the received transmission

[Gas12]. In the case of 40 MHz, similar rules apply with minor variations on the energy

thresholds and a slightly more complicated behavior: nodes defer transmission when

either one of the 20 MHz halves is busy, and CCA applies signal detection on the

primary channel, but energy detection on the secondary one [Gas12]. Even though 40

MHz channels provide a network with higher peak throughput, 20 MHz leads to better

total sustained throughput. One of the main reasons for this is that the wider channels

require twice as much spectrum to be idle before transmitting. On top of that, by using

a larger portion of the spectrum for each frame, 40 MHz channels will lead to more inter-

channel interference. Hence, in the 2.4 GHz band any node in the network can require

all nodes in communication range (including access points) to abstain from using 40

MHz channels by setting the Forty MHz Intolerance bit. In this thesis, we concentrate

on channels with 20 MHz of bandwidth and use them for all our experiments. It is to

be expected though that the interference e�ects observed on these narrower channels

should be even more pronounced in wider ones.

Moreover, in our network, nodes sense all available channels following a sensing sched-

ule that is derived by each node locally from its current communication hopping sequence

such that channel overlaps between communication and sensed channels are minimized.

The importance of this is explained in Sec. 2.4.

2.3 Experimental Assessment

In this section, we assess the suitability of qcbt as a channel quality metric.

Our experimental assessment has two main parts:

1. An assessment of how well qcbt correlates with achieved throughput in real TCP

transmissions.

Chapter 2 Channel quality 16

2. An examination, with help of qcbt, of the extent of inter-channel interference and

the near-far e�ect, i.e. interference happening between channels with no nominal

overlap due to the close proximity of nodes.

2.3.1 Tra�c generator

In order to conduct reproducible and controlled experiments, we have implemented a

802.11 tra�c generator with following main features:

� Adjustable frame rate.

� Payloads can have �xed length (1200 bytes) or variable length.

� The length of the variable payloads follows a normal distribution with parameters

chosen from the literature to emulate wide area IP tra�c patterns [MC00].

Before showing our main experimental results, we brie�y discuss how to compute frame

airtimes for 802.11a and 802.11b, followed by an initial assessment of baseline spectrum

occupation and usual channel selection in 802.11 networks to give some further context

as well as comparison parameters for the proposed techniques and shown experimental

results.

2.3.2 Airtime calculation

In this section, we brie�y describe 802.11b and 802.11a framing and how to perform

airtime calculations for both types of frames. Both types of frames generated by our

tra�c generator and the airtime calculation allows us to compute the spectrum occupa-

tion produced by the tra�c generator, which is fundamental for the assessment of qcbt.

In addition, computing frame airtime is also needed for performing corrections to qcbt to

be introduced in Sec. 2.4.

802.11b

A 802.11b frame has three main parts: physical layer components (preamble and PLCP

header), MAC header and payload. The preamble is the �rst portion of the Physical

Layer Convergence Protocol (PLCP) data unit and allows the receiver to synchronize

with the transmitter. In general, preambles are transmitted at �xed bitrates.

17 2.3 Experimental Assessment

Sync
1111...1111 SFD Signal Service Length CRC

PLCP
preamble

128 bits 16 bits

PLCP header

8 bits 16 bits8 bits 16 bits

Figure 2.3: PLCP for 802.11b with long preamble (128 bits).

Sync
0000...0000 SFD Signal Service Length CRC

PLCP
preamble

56 bits 16 bits

PLCP header

8 bits 16 bits8 bits 16 bits

Figure 2.4: PLCP for 802.11b with short preamble (56 bits).

We have two possible preambles: a long preamble and a short preamble. As shown

in Fig. 2.3 and Fig. 2.4, the long and short preamble start with a Sync �eld that is

respectively a sequence of 1's and 0's.

The long preamble and its PLCP header are transmitted at the lowest possible data

rate, which in the case of 2.4 GHz is 1 Mbps, see Tab. 2.1. In the case of the short

preamble, the preamble itself is also transmitted at 1 Mbps, but the PLCP header is

transmitted at 2 Mbps, see Tab. 2.2. This means that with the long preamble PLCP's

airtime amounts to 192 µs and with the short preamble 96 µs. Newer standards, e.g.

802.11n and 802.11ac, use even shorter preambles, which depending on the operation

mode can take from 20 to 36 microseconds of airtime.

We can see in Tab. 2.1, that given a payload of 1174 bytes, by transmitting at 1 Mbps

we use 9808 microseconds of airtime. This means that with a frame rate of 100 frames

per second we can occupy the channel for 98.08% of the time. For comparison purposes,

we show in Tab. 2.2 the frame transmission times for a bitrate of 5.5 Mbps with a short

preamble. In this case, by using the same rate of 100 frames per second we only occupy

the channel for 18.44% of the time. Note that our tra�c generator cannot reach 100% of

airtime in any of our experiments due to multiple factors, such as DIFS between every

frame (see Fig. 2.5) and the backo� time when the the channel is detected as busy.

DIFS stands for Distributed Coordinated Function Interframe Space, which is the time

period during which the channel has to be idle in order for a node to be able to transmit.

However, a busy node can sustain high levels of spectrum occupation for quite some time,

Chapter 2 Channel quality 18

Frame Component Bitrate (Mbits/s) Length (bits) Time (µs)

PHY header: PLCP preamble 1 144 144
PHY header: PLCP header 1 48 48
MAC header (28 bytes) 1 224 224
Payload (1174 bytes) 1 9392 9392

Table 2.1: Airtime calculation of 802.11 broadcast frame on 2.4 GHz with payload of
1174 bytes and long preamble with total airtime: 9808 µs.

MAC PAYLOADPHY

192 us

Backoff
time

DIFS
Channel

Busy

224 us 1174
us

50 us 310 us

Figure 2.5: Transmission time in µs associated with a Wi-Fi frame given a bit rate of 1
Mbps for a payload with 1174 bytes. The shown backo� time is the average
backo� for one transmission retry.

since 802.11 CCA scheme uses an exponential back-o�. This means, if the medium is

not idle for a DIFS interval, a node has to wait a random time dbackoff ∈ [0, dCW], where

dCW = (32 · 2n − 1) ∗ dcs, n ∈ N is the number of transmission retries and dcs is the

contention slot time, which is 20 µs in 802.11b.

Frame Component Bitrate (Mbits/s) Length (bits) Time (µs)

PHY header: PLCP preamble 1 72 72
PHY header: PLCP header 2 48 24
MAC header (28 bytes) 5.5 224 40.73
Payload (1174 bytes) 5.5 9392 1707,64

Table 2.2: Airtime calculation of 802.11 broadcast frame on 2.4 GHz with payload of
1174 bytes and short preamble with total airtime: 1844,37 µs.

802.11a

In the 5 GHz band, 802.11a uses OFDM. OFDM chops up a channel into sub-channels

or sub-carriers, which can be used in parallel for higher throughput. In theory, OFDM

improves robustness against narrowband interference because only a percentage of the

sub-carriers might be a�ected. Moreover, under the same conditions, 5 GHz has approx-

19 2.3 Experimental Assessment

Short training
sequences

Long
training

sequences
Signal

PLCP Preamble
(16 us)

240 bits

Guard

1.6 us

Guard

24 bits0.8 us48 bits

PLCP
Header
(4 us)

Figure 2.6: PLCP preamble and header of OFDM PHY.

imately half of the signal range of 2.4 GHz, which on the other hand makes interference

due to physical proximity a bit weaker. We expand a bit on this later in this chapter.

802.11a physical protocol unit also begins with a preamble. It is composed of 12

OFDM symbols that synchronize various timers between the transmitter and the re-

ceiver. The �rst 10 symbols are short training sequences, which the receiver uses to

lock on to the received signal, select an appropriate antenna if the receiver is using mul-

tiple antennas, and synchronize the large-scale timing relationships, required to begin

decoding the following symbols. Two long training sequences follow the short training

sequences, which are protected by a guard interval (see Fig. 2.6).

If we assume a payload of 1174 bytes with the lowest data rate at 5 GHz, namely

6.5 Mbps, this leads to 1468,4 µs of airtime for each frame, see Tab. 2.3. With these

conditions, if we generate tra�c at 600 frames per second, for instance, we occupy the

channel for 88.1% of the time.

Frame Component Bitrate (Mbits/s) Length (bits) Time (µs)

PHY header: PLCP preamble - 240 16
PHY header: PLCP header - 48 4
MAC header 6.5 22 3.4
Payload (1174 bytes) 6.5 9392 1445

Table 2.3: Airtime calculation of 802.11 broadcast frame on 5 GHz with payload of 1174
bytes with total airtime: 1468,4 µs.

2.3.3 Baseline spectrum occupation and channel selection in

802.11 networks

In this section, we perform an initial spectrum assessment with qcbt to con�rm that we

can di�erentiate the spectrum occupation in di�erent 802.11 channels by using qcbt, i.e.

whether we observe di�erent distributions of channel quality values on di�erent channels

Chapter 2 Channel quality 20

over time without any additional in�uence from our part. In addition, we analyze data

obtained from a public database of Wi-Fi observations, where we illustrate the current

situation regarding channel selection on 802.11 networks, both globally and locally, on

the TUK campus, where we perform our experiments. Moreover, we also show placement

and distances between detected �xed nodes on campus, to better illustrate the need of

our techniques for a more e�cient channel selection and spectrum usage.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Channels (2.4 GHz)

0.0

0.2

0.4

0.6

0.8

1.0

q c
bt

Figure 2.7: Box plot showing qcbt on all channels in 2.4 GHz band with dslot = 2min.

As seen in Fig. 2.7, we can de�nitely see that di�erent channels have di�erent distri-

butions of spectrum occupation values leading to di�erent distributions of qcbt. For these

experiments we have used a slot duration of 2 minutes and have run the experiments

for two hours. The edges of the displayed box plots are from bottom to the top the

25th percentile and the 75th percentile respectively, and the line inside the box is the

median. The whiskers that protrude out of the box shows the range of the data and

outliers are plotted separately as single points. We can also see that di�erent channels

display di�erent levels of dispersion in the qcbt values. Also, channel 1, for instance,

shows the largest range of values and the worst median channel quality. This is not at

all surprising, since in most environments channel 1 is the most used channel by default.

According to WiGLE [WiG], one of the largest public databases for Wi-Fi networks

around the globe, with more than 760 million cataloged networks and 10 billion Wi-Fi

21 2.3 Experimental Assessment

observations, channel 1 is used by 19.78% of all observed networks. In Fig. 2.8 we

Figure 2.8: 100 802.11 routers distributed on the TU Kaiserslautern campus (data from
[WiG] and map obtained from [Ope17]).

show 500 802.11 access points observed in a region of the TU Kaiserslautern campus.

If we look at Fig. 2.11, we can see that the most used channels are channel 1, 6 and

11, with channel 1 being used in 31% of all devices. These three channels are often

chosen to be the operation channel because they have a large enough frequency spacing

between themselves and should therefore not interfere with each other. However, as we

will show, close proximity between nodes makes this assumption invalid and considerable

interference can still be observed within the given frequency spacing.

In the 5 GHz band, we seem to encounter far fewer nodes than in the most used 2.4

GHz channels. The most used 5 GHz channels are 36, being used in 7% of all devices,

followed by 44 and 48, used in less than 5% of the observed devices. This usage frequency

of channel 36 and 44 aligns itself with the global usage of respectively 4.55% and 2.64%

documented by WiGLE.

In Fig. 2.9, we display the placement of the routers using the most used channels on

the TUK campus in the 2.4 GHz band, i.e. 1, 6 and 11. It is clear to see that the classic

blind adoption of 1, 6 or 11 leads to overcrowding of these channels. In Fig. 2.10, we

can see that even though the 5 GHz band has fewer devices, the most used channels (36,

44 and 48) are used in some easily identi�able clusters, intensifying possible interference

Chapter 2 Channel quality 22

problems. Some of these clusters in both bands have networks that are less than 10

meters apart (for comparison purposes each marker representing an AP has a radius of

8 meters). Given the longitudes λ1 and λ2 and latitudes ϕ1 and ϕ2 of respectively access

points AP1 and AP2, we can compute the spherical distance between these points with

help of the haversine formula:

d(AP1, AP2) = 2r arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) cos(ϕ2) sin2

(
λ2 − λ1

2

))

We then compute all distances between all observed Wi-Fi routers on campus that

have di�erent SSIDs and therefore service di�erent networks. In Fig. 2.12 we show

the distribution of the distances which are less than or equal to 200 meters. As seen,

approximately 1000 of these distances have less than 75 meters, of which about 200 are

possible communication (or at least interference) links on the same channel, considering

the signal range for 802.11 varies between 35 and 120 meters.

Figure 2.9: 802.11 APs on TUK campus using most used channels in the 2.4 GHz band,
i.e. 1, 6 and 11, color coded by red, green and blue respectively.

23 2.3 Experimental Assessment

Figure 2.10: 802.11 APs on TUK campus using most used channels in the 5 GHz band,
i.e. 36, 44 and 48, color coded pink, yellow and purple respectively.

1 11 6 36 48 44 40 8

13
2

10
0 64 3

25
5

14
0 52 7 5 4 60 2 13 12 9

Channel

0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
re

qu
en

cy

Figure 2.11: Frequency distribution of the observed channels in the devices displayed in
Fig. 2.8

Chapter 2 Channel quality 24

0 200 400 600 800 1000 1200

0

25

50

75

100

125

150

175

200

di
st

an
ce

 (
m

)

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 2.12: Distances between APs within di�erent networks, i.e. with di�erent SSIDs.
We show distances where the same channel was used (on the left) or any
channel combination in the same band (on the right).

25 2.3 Experimental Assessment

2.3.4 Throughput experiments

In this section, we introduce experiments performed with our in-house tra�c generator

and iPerf3, a popular tool for bandwidth measurements in IP networks. A good quality

metric should predict the performance of communications on a given channel, of which

throughput is one of the main metrics. Whereas qcbt gauges the channel state passively,

iPerf3 computes the achieved throughput in an active form by initiating TCP/IP trans-

missions. Therefore, with these experiments, we intend to assess how well the spectrum

occupation measured by qcbt predicts the achievable throughput in real transmissions

on each assessed channel. To determine the correlation between throughput and qcbt we

will compare the variations in both metrics created by a channel load generated by our

tra�c generator.

iPerf3, or for simplicity here also mentioned as Iperf, uses TCP by default and works

with a client server architecture. Without any parameter customization, clients and

servers exchange blocks of 128 KBytes over a TCP connection and the tool measures

the average throughput of the connection over 10 seconds by registering the time it

takes to transfer each data block. One important caveat is that Iperf measures TCP

throughput and will at best only approximate the available bandwidth. This happens

in special because TCP is optimized for higher reliability and tends to use conservative

rates while underestimating the available bandwidth. In addition, all presented exper-

iments had some level of cross tra�c, which further limits the achievable throughput.

Another possible limitation is CPU contention, i.e. other processes compete with Iperf

for CPU time limiting the resulting achievable throughput, which Iperf tries to minimize

by adding the possibility of using multiple connections to the same server. In our tra�c

generator, on the other hand, we try to account for CPU contention to obtain consistent

results by setting a static scheduling priority making the tra�c generator's process high

priority.

For the iPerf experiments, we used two testbed nodes in managed mode; one acting

as the client, sending data to the Iperf server node, which is also con�gured as an 802.11

access point. Reusing the server node as an AP avoids halving the achieved throughput

by routing the client data over a third node.

It is important to point out that the experiments performed with our tra�c generator

and with Iperf were done independently with similar experimental parameters. Running

these experiments at the same time would require an extra correction step, in which

nodes would have to dynamically subtract the spectrum occupation created by Iperf

Chapter 2 Channel quality 26

nodes from the measured qcbt. This would be needed because Iperf nodes compete with

our tra�c generator for airtime and would otherwise skew the qcbt results.

As a control baseline for the throughput experiments, we �rst ran some experiments

without creating any additional channel load with the tra�c generator. We can see,

for instance, in Fig. 2.13 and 2.14 that according to qcbt channel 11 has an average

spectrum idleness close to 80%. Similarly, the Iperf baseline measurements show an

average throughput of 20 Mbps, which is equivalent to 81.6% of the maximum achievable

throughput (24.5 Mbps) under the con�gured parameters. This means that iPerf3 was

able to �ll the available spectrum, which implies that qcbt delivers plausible throughput

estimates.

0 20 40 60 80
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

qu
al

ity

ch 1
ch 3
ch 5
ch 7
ch 9
ch 11

Figure 2.13: Baseline qcbt measurements

0 5 10 15 20 25 30
time (s)

0

5

10

15

20

bi
t r

at
e

(M
bi

t/s
)

Figure 2.14: Baseline iPerf throughput mea-
surements.

We then use our tra�c generator and try to occupy as much of channel 11 as possible,

achieving a spectrum occupation of 95% on channel 11, and as seen in Fig. 2.15 and

Fig. 2.16, the generated e�ects on both qcbt and the measured TCP throughput are quite

similar: both metrics are very close to 0.

27 2.3 Experimental Assessment

0 20 40 60 80
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

qu
al

ity

jammer start (ch11)
jammer end (ch11)
ch 1
ch 3
ch 5
ch 7
ch 9
ch 11

Figure 2.15: Measured qcbt with jamming
session.

0 20 40 60 80
time (s)

0

5

10

15

20

bi
t r

at
e

(M
bi

t/s
)

jammer start
jammer end

Figure 2.16: Measured througput of neigh-
bor nodes communication.

On the other hand, if we generate a much lower spectrum occupation, as shown in

Fig. 2.17, we also see a similar strong correlation between the achievable throughput

on channel 11 and qcbt, sampled at dslot = 200ms. This time we occupy 25% of the

channel's airtime and produce an equivalent percentual drop in qcbt. The measured TCP

throughput is normalized to 24.5 Mbps, the maximum achievable throughput under the

used con�guration parameters. It is easy to see that there is a clear overlap between the

results of both experiments. In fact, all performed experiments have con�rmed a high

correlation between qcbt and the measured achievable throughput on any given channel

under di�erent transmission conditions.

Chapter 2 Channel quality 28

0 20 40 60 80
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

qcbt

Throughput

Figure 2.17: Channel quality (qcbt) and achieved throughput (iPerf) on channel 11. Ver-
tical lines show the start and end of tra�c generation with 25% of total
airtime.

2.3.5 Inter-channel interference

In this section, we further assess 802.11 channels with qcbt, this time focusing on the chan-

nel overlapping e�ects to determine how transmissions on a channel a�ect the channel

quality of neighbor (or even non-neighbor) channels. For this experimental assessment,

we produce di�erent channel loads on a 802.11 channel and analyze the impact on qcbt
measurements for multiple channels. As stated in our second objective in the beginning

of Sec. 2.3, the observed e�ects happen both due to channel overlap and the near-far

e�ect. In our context, we de�ne the near-far e�ect as the increasing di�culty of dis-

tinguishing channels in the same frequency band that arises from shortening distances

between nodes. Due to close proximity, energy that should be demodulated for a given

center frequency bleeds over not only to adjacent but also further non-adjacent frequen-

cies.

2.3.5.1 Channel overlapping and the near-far e�ect

In addition, the channel overlap between adjacent channels occurs within a larger fre-

quency spacing than the nominal bandwidth. Every 802.11 standard de�nes a transmit

spectrum mask that must be respected by any vendor in order to be certi�ed as a Wi-Fi

29 2.3 Experimental Assessment

device. This mask de�nes the amount of power relative to the total carrier power that

is transmitted in a portion of the frequency space at de�ned o�sets. As seen in Fig.

2.18, the spectral mask for 802.11 20 MHz channels shows that energy is still trans-

mitted outside the nominal bandwidth. In the case of a 20 MHz channel c with center

frequency fc this could go up to fc + 30 MHz. For instance, by transmitting on chan-

nel 1 with f1 = 2.412 GHz, we transmit radio frequency (RF) energy on frequencies

2.412 − 0.030 ≤ f ?1 ≤ 2.412 + 0.030 ⇐⇒ 2.382 ≤ f ?1 ≤ 2.442 GHz with varying power

amplitudes according to the given mask. Thus, the highest frequency we expect to be

a�ected by a transmission on channel 1 is 2.442 GHz, the center frequency of channel

7. This means that by considering all components of the spectral mask, channel 1 and

channel 7 do have some overlap, which does not occur if we only take into consideration

the e�ective bandwidth of 22 MHz (see Fig. 2.19).

0 dBr

-20 dBr

-28 dBr

-40 dBr

9 11 20 30(MHz)

Figure 2.18: Spectral mask for transmission on 20 MHz channels with 802.11a/g/n/ac.
Power amplitudes are given in dBr, which means dB relative to the maxi-
mum spectral density of the signal.

Chapter 2 Channel quality 30

12
2.467

1
2.412

22 MHz

Channel
Center Frequency
(GHz)

2
2.417

3
2.422

4
2.427

5
2.432

6
2.437

7
2.442

8
2.447

9
2.452

10
2.457

11
2.462

13
2.472

14
2.484

8 MHz

Figure 2.19: 20 MHz channels in 2.4 GHz band.

It is widely assumed in the literature that a wide enough frequency spacing between

channel center frequencies su�ces to guarantee coexisting transmissions without any

harmful interference. Channels 5 and 11 of the 2.4 GHz band, for example, do not

have any nominal overlap and hence groups of nodes using either of these channels

should be able to communicate without interfering with each other. However, as our

own experiments have shown, if these nodes are close enough to each other, e.g. with a

distance of less than a meter, we have a strong interference that carries over much further

than expected in the frequency space. This e�ect has not been researched in depth in

802.11-based networks, but has been observed at [FVR07] and further con�rmed by other

studies. For instance, [CRS06] reported detecting interference between channel 1 and

channel 11. [FVR07] reported that the non-overlapping channel interference was most

noticeable for distances below or equal to 35 cm. In fact, the authors declared that the

interference behavior observed between non-overlapping channels used by nodes in close

proximity was equivalent to the interference of nodes using the same channel. Moreover,

[RPD+05] reported that by using connectors with length of 1 m (achieving a distance

of 35 db between both antennas in the node) the non-overlapping channel interference

was not detected anymore. This interference between non-overlapping channels can lead

to both frame corruption due to interference and channel contention due to channels

being sensed as busy. Also, further experiments in [RPD+05] investigated multi-antenna

interference and throughput loss due to multiple network cards in a single node: the

authors placed multiple PCI network cards on a single node and noted a decrease in

throughput for every additional card, added in passive mode (starting with the third

card). Since all additional cards were not active, any interaction between the cards was

due to radiation leakage from the chipset, eventual connectors and antennas [RPD+05].

How much this cross-talk a�ects the sending throughput of the active network card

depends on each hardware platform, since di�erent platforms might e.g. provide di�erent

levels of radiation shielding.

31 2.3 Experimental Assessment

2.3.5.2 Experiments

First, we ran experiments measuring qcbt on multiple nodes. The tra�c generator ran

on node 1 and the testbed nodes 1, 9, 11 and 13 worked as sensing nodes. Hence, it

is expected to observe the strongest interference e�ects when gauging qcbt from node 1

which simultaneously transmits on one of the sensed channels with an antenna that is

only 24 cm apart from the sensing antenna.

The second stage of the experiments used Iperf to evaluate the channel overlapping

and near-far e�ects on the measured TCP throughput and compare them to the e�ects

observed when measuring qcbt. Similarly to our throughput experiments, we created an

AP and this time the access point also used our tra�c generation tool to transmit data

on a chosen channel. The tra�c generator used the same settings of the �rst phase of

the experiments and ran again on node 1.

Before taking a look at the main results of our experiments, we �rst need to under-

stand how Iperf performs its throughput measurements. As already mentioned, an Iperf

client sends data to an Iperf server using TCP. The sender determines whether the sent

packets were received correctly by receiving ACKs from the server. If some of these

acknowledgments are lost on the return path, Iperf deems the reception of the original

packet as unsuccessful.

For the presented experiments we used the node placement shown in Fig. 2.20. Nodes

1 and 13 are spaced 2 meters apart and the minimal distance between the antennas of

di�erent transceivers on each node is 24 cm.

Figure 2.20: Node placement for the experiments.

Chapter 2 Channel quality 32

2.4 GHz

0 10 20 30 40 50 60
time (s)

0.0

0.2

0.4

0.6

0.8

1.0
q c

bt

ch. 1
ch. 3
ch. 5
ch. 7
ch. 9
ch. 11

Figure 2.21: qcbt measurements performed on node 1. Vertical lines show the start and
end of tra�c generation on channel 1 with 90% of total airtime.

In Fig. 2.21, we show the results of experiments carried out in the 2.4 GHz band where

we measure qcbt on multiple channels with the tra�c generator running on channel 1

with a spectrum occupation of 90%. As we can see in this �gure, even channels that are

quite far apart from channel 1 are still a�ected by tra�c generated on it, e.g. channel 11.

These measurements were taken on node 1, which is also responsible for the generated

tra�c. In Fig. 2.22, we show the e�ects on the achieved throughput on channels 1, 9 and

11 of generated tra�c with an average spectrum occupation of 60% on channel 1. As

illustrated, channel 1 su�ers a loss in throughput that is not as high as the losses su�ered

by channels 9 and 11. This seems at �rst to contradict our intuition, since channel 1 is the

channel on which our tra�c is generated and which accordingly su�ers the greater loss in

qcbt. In fact, the throughput measurements on each channel are obtained independently

running the tra�c generator with the same parameters once per channel. When running

on the same channel as the Iperf measurements, the tra�c generator has to compete

frequently with Iperf for airtime leading to a lower average frame rate and a lower �nal

33 2.3 Experimental Assessment

spectrum occupation than the spectrum occupation it obtains when Iperf transmissions

happen on other channels.

0 10 20 30 40 50 60
time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

bi
t r

at
e

(M
bi

t/s
)

jammer start
jammer end
ch11
ch1
ch9
max throughput

Figure 2.22: iPerf3 throughput test node 13 → 1, with tra�c generated on channel 1
with spectrum occupation of 60%.

It is also important to remember this is the extreme case where the sensing node

measuring qcbt and the achieved throughput is also the tra�c generator with a spacing

of only 24 cm between sensing and transmitting antennas.

In addition, in Fig. 2.23 and 2.24 those channels that should have no channel overlap

with channel 1 are still a�ected by the near-far e�ect, but much less severely. Channel 11

was not a�ected and is not displayed in Fig. 2.24. However, channel 5 not only su�ers

considerable losses in qcbt, but we also seem to have caused a malfunction on iPerf's

measurements, probably due to the generated tra�c corrupting frames on the channel.

It is possible to see in Fig. 2.22 and Fig. 2.24 that Iperf registers achieved throughput

values higher than the con�gured bitrate of the used network cards, which should be

the maximum achievable throughput. These spikes indicate Iperf's measurement errors

presumably triggered by re-sent TCP ACKs being detected as new additional successful

Chapter 2 Channel quality 34

transmissions and arti�cially increasing the achieved throughput. This phenomenon was

observed in measurements taken on multiple nodes and also on the 5GHz band.

0 10 20 30 40 50 60
time (s)

0.0

0.2

0.4

0.6

0.8

1.0
q c

bt

ch. 1
ch. 3
ch. 5
ch. 7
ch. 9
ch. 11

Figure 2.23: qcbt measurements performed on on node 13, placed 2 meters apart from
node 1. Vertical lines show the start and end of tra�c generation on channel
1 with 90% of total airtime.

If we move our experiments to node 9 placed in the room next to the room where

node 1 is located, we see in Fig. 2.25 that channel 5 is not as a�ected as in the previous

experiments.

35 2.3 Experimental Assessment

0 10 20 30 40 50 60
time (s)

0.0

0.5

1.0

1.5

2.0

2.5

bi
t r

at
e

(M
bi

t/s
)

jammer start
jammer end
ch1
ch5
ch7
max throughput

Figure 2.24: iPerf3 throughput test node 9 → 13, with tra�c generated on channel 1
with spectrum occupation of 70%.

Chapter 2 Channel quality 36

0 10 20 30 40 50 60
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

q c
bt

ch. 1
ch. 3
ch. 5
ch. 7
ch. 9
ch. 11

Figure 2.25: qcbt measurement on node 9. Vertical lines show the start and end of tra�c
generation on channel 1 with 90% of total airtime.

37 2.3 Experimental Assessment

5 GHz

Similar e�ects to those obtained in the 2.4 GHz band can be observed in the 5 GHz

band. In our �rst experiment, we gauge qcbt on node 13 while we use the same node for

tra�c generation on channel 40. As expected, we can see in Fig. 2.26 that the channel

which su�ers the highest losses in channel quality is channel 40, followed by its adjacent

channels 36 and 44. Channel 48 is also a�ected, but with much less intensity. All other

channels are una�ected and not shown for better visualization. We see quite similar

results in Fig. 2.27, with exception of the throughput measurement errors on channel

48.

The observed e�ects on qcbt and throughput on channels 36 and 44 are still present

in the measurements performed at node 1 but weaker, see Fig. 2.28. The interference

e�ects on channel 48 however are already gone. It is clear that the channel overlap and

near-far e�ects in the 5 GHz band are overall weaker than those observed in the 2.4

GHz band. This has two main reasons: 20 MHz channels in the 5 GHz have a greater

spacing between them and higher frequencies lead to shorter transmission ranges, since

the shorter wavelengths of high frequency signals make them more susceptible to energy

loss due to collisions within the environment. In fact, the received power in dBm at any

given antenna can be estimated with the Friis transmission equation:

Pr(dBm) = Pt +Gt +Gr + 20 log10(
λ

4 · πR
)

where λ is the carrier's wavelength and R the distance between the transmitter and the

receiver. This means, that under the same antenna conditions, higher frequencies result

in higher path loss and hence shorter range.

In Fig. 2.29, we show the results of measuring qcbt on node 9 placed more than 5

meters apart from node 13 and with a wall in between. As seen, we can still observe

a signi�cant e�ect on qcbt on channels 36 and 44 due to the generated transmissions on

channel 40.

Chapter 2 Channel quality 38

0 10 20 30 40 50 60
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

q c
bt

ch. 36
ch. 40
ch. 44
ch. 48

Figure 2.26: qcbt measurement on node 13. Vertical lines show the start and end of tra�c
generation on channel 40 with spectrum occupation of 90%.

0 10 20 30 40 50 60
time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

bi
t r

at
e

(M
bi

t/s
)

jammer start
jammer end
ch36
ch40
ch44
ch48
max throughput

Figure 2.27: iPerf3 throughput test node 13 → 1, with tra�c generated on channel 40
with spectrum occupation of 70%.

39 2.3 Experimental Assessment

0 10 20 30 40 50 60
time (s)

0.0

0.2

0.4

0.6

0.8

1.0
q c

bt

ch. 36
ch. 40
ch. 44
ch. 48

Figure 2.28: qcbt measurement on node 1. Vertical lines show the start and end of tra�c
generation on channel 40 with 90% of total airtime.

0 10 20 30 40 50 60
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

q c
bt

ch. 36
ch. 40
ch. 44
ch. 48

Figure 2.29: qcbt measurement on node 9. Vertical lines show the start and end of tra�c
generation on channel 40 with 90% of total airtime.

Chapter 2 Channel quality 40

2.4 Correcting qcbt

In this section, we describe needed corrections to qcbt in order not to skew its raw values

by transmissions of internal nodes. The channel quality metric qcbt should estimate the

available bandwidth on a channel w.r.t. spectrum occupation of foreign nodes. By

measuring energy on the medium we obtain dbusy values that are a�ected not only by

external transmissions but also by those of internal nodes, which have to be accounted

and corrected for. As already shown in the previous section, transmissions on a given

channel will impact the busy times measured in multiple channels. As our experiments

show, this interference between channels varies according to both the spacing between

center frequencies as well as physical proximity between sender and receiver, assuming

constant transmit power levels. Depending on the distance between sender and receiver,

this impact will carry over to channels that in theory should have no overlap. This e�ect

is made quite prominent in our testbed nodes in which the transceiver's antennas of

di�erent transceivers are only 24 cm apart.

With this in mind, we introduce our qcbt correction models. Each node that is currently

transmitting has to correct its measured busy times dbusy(c′) on every a�ected channel

c′, based both on its transmission times dsend on channel c, the variation ∆dbusy(c
′) of

measured dbusy on channel c′, induced by its transmissions on channel c′, and the spacing

∆(c, c′) between the center frequencies of channels c and c′. For our correction model,

we assume that in the worst case the whole sending time dsend will be added up to the

measured busy time. This way, we derive corrected busy times d?busy, such that

d?busy(c
′) = dbusy(c

′)− ω?(c, c′) · dsend (2.2)

To complete our correction model, we �t a curve mapping ∆(c, c′) values to observed

ω?(c, c′) =
∆dbusy(c′)

dsend
values. Note that we have to �t a model for each frequency band

used by IEEE 802.11n, namely 2.4 GHz and 5GHz. The need to compute two distinct

models arises from the di�erent physical layer parameters employed in each frequency

band, such as frequency spacing between neighbor channels, channel bandwidth and

chosen modulation schemes. The distinct parameters lead hence to di�erent interference

behaviors between di�erent channels requiring di�erent models.

41 2.4 Correcting qcbt

0 10 20 30 40 50 60
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

q c
bt

ch. 1
ch. 2
ch. 9

Figure 2.30: Vertical lines show start and end of tra�c generation with 60% airtime on
channel 1.

Chapter 2 Channel quality 42

2.4.1 Correction model for 2.4 GHz

If we look at Fig. 2.30, where 60% of available airtime on channel 1 is occupied by tra�c

generated by our tra�c generator, we can get an intuition of the needed corrections in

the 2.4 GHz band. As seen in Fig. 2.30, the furthest channel from channel 1 which is

still a�ected by our generated tra�c is channel 9, whose center frequency lies 40 MHz

away from the center frequency of channel 1. We conducted a series of experiments that

delivered similar results, and based on the obtained experimental data, we have �tted a

correction model for qcbt in the 2.4 GHz band, as shown in Fig. 2.31.

Given ∆(c, c′) = |fc′ − fc| the di�erence in MHz between the center frequencies of

channel c and c′, we derive the correction factor ω?(c, c′) as follows

ω?(c, c′) =


1 if 0 ≤ ∆(c, c′) ≤ 15

−0.235 + 0.875

(1+
∆(c,c′)

35.4

5.8
)

if 20 ≤ ∆(c, c′) ≤ 40

0 else

0 10 20 30 40 50 60 70 80
(c, c′) (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

(c
,c

′)

Figure 2.31: ω?(c, c′) in 2.4 GHz band.

2.4.2 Correction model for 5 GHz

In the 5 GHz band, we observe a slightly di�erent interference behavior. As shown in

Fig. 2.32, a transmission e.g. on channel 36 a�ects qcbt on all channels up to channel 52.

43 2.4 Correcting qcbt

0 10 20 30 40 50 60
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

q c
bt

ch. 36
ch. 40
ch. 44
ch. 48
ch. 52

Figure 2.32: Vertical lines show start and end of tra�c generation with 20% airtime on
channel 36.

Moreover, this holds for any di�erent combination of channels within a frequency span

of 80 MHz. Again, from experimental observations, we derive a correction model for qcbt
in the 5 GHz band (see Fig. 2.33):

ω?(c, c′) =

 0.04 + 0.96

(1+(
∆(c,c′)

35
)4.7)

if 0 ≤ ∆(c, c′) ≤ 80

0 else

Chapter 2 Channel quality 44

0 10 20 30 40 50 60 70 80
f (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

(c
,c

′)

Figure 2.33: ω?(c, c′) in 5 GHz band.

2.5 Aggregating qcbt

In this section, we describe di�erent aggregation functions applied to channel sensing

raw data. Aggregation serves the purpose of summarizing multiple observations into one

single value. Communication schedules, for instance, require a single channel quality

value to be computed. Furthermore, as already indicated in Chap. 1, an ideal channel

quality metric should have good stability and adaptivity. By combining two di�erent

aggregation methods, we try to reconcile these con�icting objectives.

Since channel sensing is essential to each node's operation and is performed through-

out its active period, the volume of generated data is tremendous. Given nodes with

restricted volatile memory and processing power, it is infeasible to store and aggregate

all these data in memory. On the other hand, the relevance of the sensed data decreases

with time and the most important values are the most recent ones. In general, we want

to have sensing data that re�ects the current usage of a given channel with just enough

historical values in the mix to prove useful in detecting anomalies or changes in behavior.

By displaying good levels of stability, a quality metric can prevent super�uous re-

computations of communication schedules due to nonsigni�cant changes in channel qual-

ity. At the same time, we want to stay adaptive enough, such that a network can react

to signi�cant changes in channel usage. This way, a node might, for instance, update its

channel hopping sequence in accordance with the new channel conditions.

45 2.5 Aggregating qcbt

To provide the desired stability, we aggregate each raw value qcbt(i) measured at slot

i with the past nmw observations by applying an arithmetic mean, yielding qcbt(i). We

have hence a moving window, such that the most recent value always evicts the oldest

observation in a First In, First Out (FIFO) manner. However, this aggregation method

alone can completely bias the resulting metric towards the recently seen values and might

ignore an overarching trend by having a focus that is too narrow.

Therefore, to guarantee an appropriate level of adaptivity, we incorporate measure-

ments outside the current moving window with diminishing weights. This is achieved

through the application of an exponential weighted moving average (EWMA). As hinted

by the name of this function, provided weights fall exponentially.

The combination of a moving average with an EWMA results in the aggregated chan-

nel quality qaggr (see Fig. 2.34):

qaggr(i) =


qcbt(i) if i = nmw

α · qcbt(i) + (1− α) · qaggr(i− 1) if i > nmw

undefined else

where α is the weight of the latest measurement. For our experiments, unless otherwise

stated we used a moving window of 10 seconds and α = 0.8.

An alternative approach proposed in the literature that might achieve similar results to

an EWMA is the biased reservoir sampling [Agg06]. The basic idea behind this approach

is that instead of using a moving window with FIFO eviction, it uses a window with

probabilistic insertions and evictions. In fact, biased reservoir sampling is a sophisticated

variant of the simple reservoir sampling, which uses following random eviction policy:

1. Eviction starts, once the simple reservoir reaches its maximum size. If the reservoir

is not full, all new measurements are inserted.

2. If the reservoir is full, for any incoming measurements, the simple reservoir ran-

domly ejects a data point with equal probability.

This simple form of sampling is proved to be unbiased and not to consider the changes

in the behavior of the data stream over time. In fact, with passing time an unbiased

sample will contain more and more points from the distant history of the data stream. If

overall channel quality conditions change, the vast majority of the measurements in the

reservoir may represent a stale history of the channel. In a biased reservoir sampling,

however, temporal bias functions are used such that newer observations substitute older

Chapter 2 Channel quality 46

300 325 350 375 400 425 450 475 500
time (s)

0.0

0.2

0.4

0.6

0.8

1.0
qcbt

qaggr

Figure 2.34: Comparison of raw qcbt and the aggregation qaggr.

47 2.6 Volatility

ones with higher probability. Actually, for every point r currently in the reservoir a

probability P(r,t) is computed to determine whether r stays in the reservoir upon the

arrival of t, i.e. whether t substitutes r. Even though, biased sampling adds adaptivity

to simple reservoir sampling, its implementation is nontrivial, and with exception of

particular use cases, might not be e�ciently implementable in general, as maintained by

its authors [Agg06].

2.6 Volatility

The notion of volatility has been used throughout the literature and mostly focused

on price movements of �nancial instruments such as stocks and options. Volatility is a

statistical measure of dispersion in a time series. Values delivered by a given series vary

with time and all these value �uctuations can be compiled into a volatility metric. This

volatility delivers non-negative real numbers that increase with the increase of dispersion

in the output variable, e.g. raw channel quality. Statistically, a set of observations can

be interpreted as a sample from an unknown population.

Most works that study wireless networks and volatility focus on characterizing and

distinguishing the di�erent causes for �uctuations in frame-based quality metrics. The

most studied metrics in this respect are the received signal strength indicator (RSSI) and

the link quality indicator (LQI). The variations in the values of these metrics can happen

due to many factors, such as changes in temperature, humidity, antenna alignment,

external interference and node mobility [Bil13,WD21].

However, a deeper study of how to handle these �uctuations in the context of channel

sensing is still mostly absent, especially with regards to the channel busy ratio. Our

approach is to the best of our knowledge the �rst to introduce a general penalty-based

volatility-aware channel quality assessment framework.

Probably, the most used measure of statistical dispersion throughout the literature

is the standard deviation. The sample standard deviation uses the size of the sample

as the size of the population and is computed as the square root of the variance. If

we compute the standard deviation of raw channel qualities in a moving window of size

nmw, we have:

s =

√√√√ 1

nmw

nmw∑
i=1

(qi − q̄)2.

where q̄ is the sample mean.

Chapter 2 Channel quality 48

For our purposes, it is not su�cient to take into consideration the total volatility of

the raw channel quality. In fact, it is essential to make a distinction between downward

and upward volatility, in special because the channel quality distribution is in general

not symmetrical. This means we have distinct probabilities for channel qualities to

fall below or above a chosen target value, e.g. the sample mean or the median. In

addition, decreasing the number of slots assigned to channels with higher total volatility

would penalize not only those channels with increasing downside volatility but also

those with increasing upside volatility, i.e. movements in channel quality that signal an

improvement in channel conditions.

In order to rank channels based on their aggregated channel qualities and on the level of

downward volatility, we need downward volatility metrics. To the best of our knowledge,

Markovitz [Mar59] proposed the �rst downward volatility metric, i.e. the semivariance.

This metric can be interpreted as a downside risk of an asset and was introduced to guide

the selection of an investment portfolio to maximize expected returns. The squared root

of the semivariance computed at a slot i in a window of nmw observations is the semi-

deviation:

σsed(i) =

√√√√ 1

nmw
·
nmw∑
j=1

φsed(i, j)2

where given q(i) the average quality in the moving window k = i− j + 1

φsed(i, j) =

{
q(i)− qcbt(k) if q(i) > qcbt(k)

0 else

In this section, we introduce and compare three downward volatility metrics. From

these metrics we derive three penalization schemes for channel qualities, which yield the

penalized channel qualities qadda, qdsd and qphv. All metrics are computed for a moving

window. By only considering downward �uctuations in the current window, we try to

obtain a meaningful estimate of the downward volatility in the near future.

2.6.1 Downward Standard Deviation σdsd

The downward standard deviation σdsd is a generalization of the semi-deviation. It

quanti�es downward volatility by adding up the distances to the aggregated channel

quality qaggr in the current moving window only from those data points that fall below

it. In the literature, σdsd is referred as the below-target semi-deviation for a target t,

49 2.6 Volatility

where t = qaggr. If the aggregated channel quality is the sample mean, then σdsd is the

semi-deviation. Given slot i:

σdsd(i) =

√√√√ 1

nmw
·
nmw∑
j=1

φdd(i, j)2

where given k = i− j + 1

φdd(i, j) =

{
qaggr(i)− qcbt(k) if qaggr(i) > qcbt(k)

0 else

2.6.2 Average Downward Deviation from the Aggregation σadda

The volatility metric σadda has a similar shape to σdsd, but sums up the distances between

aggregated and raw qualities in a linear fashion. Given slot i:

σadda(i) =
1

smw
·
smw∑
j=1

φdd(i, j)

2.6.3 Downward Parkinson Historical Volatility σphv

Parkinson [Par80] introduced an extreme value method to estimate the variance of the

rate of return for stock prices. The basic assumption used for the derivation of this

metric, that has been since referred to as the Parkinson Historical Volatility (PHV), is

that given P the price of a stock, ln(P) approximates a random walk. The volatility of

the prices, quoted at equal time intervals, is then computed as the di�usion constant of

the underlying ln(P) random walk.

The main insight used by Parkinson that distinguishes his approach from a classical

method such as the standard deviation is that instead of adding up distances from each

input value to a measure of central tendency, it sums up the distances between high

and low prices within each measuring period, e.g. weekly. This way, due to its higher

granularity, PHV is more sensitive to �uctuations than the standard deviation.

In our approach, we divide our moving window into a �xed number of equal-sized

window slices. Also, since our investment assets are channels instead of stocks, in each

of those slices, we compute the maximum and the minimum raw channel qualities,

denoted respectively by qmax and qmin.

However, much as with the standard deviation, it is not enough for us to apply PHV

without further modi�cations. Since it measures the total volatility in a time period,

Chapter 2 Channel quality 50

and we need to estimate the downward volatility of the channel qualities, we propose a

modi�ed version of PHV, the downward Parkinson historical volatility σphv. Our main

modi�cation consists in only adding up the distances between qmax and qmin for those

slices where a downward movement is detected. In addition, we adopt a di�erent scale

than the original metric, by changing ln(qmax
qmin

) = ln(qmax)− ln(qmin) into qmax − qmin.

Detecting downward trends requires an adequate mathematical tool. The tool we

picked for the job is linear regression, most speci�cally ordinary least-squares (OLS).

This regression approach approximates a model for a set of data using a quadratic loss

function of the form L(q̂, q) = (q̂ − q)2, where q̂ is the estimated value and q the value

obtained from observation. Given a set of nslice observations in a window slice, OLS �ts

a linear model to this set such that the sum of squared residuals (q̂ − q)2 is minimized.

For a window slice with raw channel qualities q(t) in a time slot t, the resulting line is

of the form q(t) = α + β · t, where α and β can be computed as:

β =
nslice

∑nslice
t=1 t · q(t)−

∑nslice
t=1 t

∑nslice
t=1 q(t)

n
∑nslice

t=1 t2 − (
∑nslice

i=1 t)2

α = q − β

2
· (nslice + 1) ,

(2.3)

Given slot i and a window slice j, we then de�ne σphv as:

σphv(i) =

√√√√ 1

4 · ln 2 · nslice
·
nslice∑
j=1

φphv(j)2

where

φphv(j) =

{
qmax(j)− qmin(j) if β(j) < 0

0 else

This linear model works very well if there is enough spacing between surges and drops

in channel qualities and if the �uctuations in value are not too extreme. Otherwise,

the resulting linear model can be misspeci�ed and no single downward trend can be

detected. This means we would compute σphv = 0, despite having high levels of down-

ward volatility. One way to account for this corner case, is to take an additional look at

σadda. In fact, for these extreme cases σadda would be close to 1, hinting that computing

σphv = 0 is such a misspeci�cation of the model. In such cases, where σadda ≈ 1 and

σphv ≈ 0, we re-compute σphv by assuming a downward trend in a window slice when

qmax occurs at least once before qmin.

51 2.7 Assessment of quality metrics

2.6.4 Penalty-based channel quality metrics

As already mentioned, we compute risk-adjusted channel qualities by penalizing channel

qualities according to their downward volatility. For each proposed downward volatility

metric, we introdude a penalized channel quality metric. For a time slot i, we have :

qadda(i) = qaggr(i)− σadda(i)

qdsd(i) = qaggr(i)− σdsd(i)

qphv(i) = qaggr(i)− σphv(i)

The way these quality metrics are constructed intends to penalize channels proportion-

ally to recent downward volatility levels. Hence, stable channels are barely penalized,

while �uctuating channels su�er higher penalties.

2.7 Assessment of quality metrics

In this section, we introduce three metrics to assess the proposed channel quality metrics

and penalization schemes. These are the downward outlier estimation error Σe, the

percentage of downward outliers Σp and the root mean squared error Σrmse. Here, we

interpret the resulting channel qualities in each time slot i delivered by a metric m as

the estimation of the raw channel quality to be observed in the next time slot.

2.7.1 Downward Outlier Estimation Error Σe

Given a channel quality metric qm with m ∈ {aggr, adda, dsd, phv} and the associated

channel quality qm(i− 1) observed in time slot (i− 1), we de�ne the Downward Outlier

Estimation Error Σe as the sum of the squared residuals (qm(i − 1) − qcbt(i))
2 when

qm(i − 1) > qcbt(i). This means that Σe only takes into consideration channel quality

measurements that fall below their estimates. Given smw the size of the moving window

and nslot the total number of slots in an experiment, we have:

Σe =

√√√√ 1

nslot − (smw + 1)
·

nslot∑
j=smw+1

(φe(i))2

where

φe(i) =

{
qm(i− 1)− qcbt(i) if qm(i− 1) > qcbt(i)

0 else

Chapter 2 Channel quality 52

2.7.2 Percentage of Downward Outliers Σp

Whereas with Σe we compute the estimation error, i.e. the sum of the distances of

channel qualities qm delivered by a given metric m to the observed downward outliers,

with Σp we compute the percentage of qcbt measurements that lie below their estimation.

Given smw the size of the moving window and nslot the total number of slots in an

experiment, we have:

Σp =
1

nslot − (smw + 1)
·

nslot∑
j=smw+1

φp(i)

where

φp(i) =

{
1 if qm(i− 1) > qcbt(i)

0 else

2.7.3 Root Mean squared error Σrmse

Finally, we compute the within-sample root mean squared error, here denoted as Σrmse.

This metric takes all qcbt measurements into account and computes hence the total

estimation error which Σe computes a portion of. Given smw the size of the moving

window and nslot the total number of slots in an experiment, we have:

Σrmse =

√√√√ 1

nslot − (smw + 1)
·

nslot∑
j=smw+1

(qm(i− 1)− qcbt(i))2

2.7.4 Assessment

As seen in Tab. 2.4, qdsd displays the smallest estimation error in the experiments shown

in Fig. 2.35 and Fig. 2.36 and is hence the most conservative metric with respect to Σe.

In addition, if we look at the percentage of downward outliers (see Tab. 2.5), we can see

that qdsd is most of the time the most conservative of the penalization schemes. In fact,

qdsd achieves Σe values approximately half of those delivered by qaggr and displays 20%

less downward outliers than qaggr, showing a signi�cant improvement in both respects.

On the other hand, qdsd is still almost as accurate as qaggr, displaying an increase of only

7% in Σrmse.

53 2.7 Assessment of quality metrics

0 100 200 300 400 500
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

qcbt

qphv

qdsd

qadda

Figure 2.35: Comparison of the three penalized qualities and the raw quality.

Σe Fig. 2.35 Fig. 2.36
qaggr 0.16 0.079
qadda 0.12 0.056
qphv 0.1 0.055
qdsd 0.09 0.038

Table 2.4: Comparison of estimation error Σe on channel quality data shown in Fig. 2.35
and Fig. 2.36.

Σp Fig. 2.35 Fig. 2.36
qaggr 0.42 0.33
qadda 0.3 0.22
qphv 0.18 0.16
qdsd 0.22 0.13

Table 2.5: Comparison of percentage of downward outliers Σp on channel quality data
shown in Fig. 2.35 and Fig. 2.36.

Chapter 2 Channel quality 54

1000 1100 1200 1300 1400 1500
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

qcbt

qphv

qdsd

Figure 2.36: Comparison of qcbt, qdsd and qphv.

Σrmse Fig. 2.35 Fig. 2.36
qaggr 0.2 0.12
qadda 0.23 0.15
qphv 0.25 0.16
qdsd 0.27 0.19

Table 2.6: Comparison of root mean squared error Σrmse of data shown in Fig. 2.35 and
Fig. 2.36.

55 2.7 Assessment of quality metrics

2.7.5 Comparison of penalization schemes

As expected, all penalization schemes show a similar behavior in the regions of low

downward volatility with a larger divergence happening where signi�cant quality drops

take place (see Fig. 2.35). As shown in Fig. 2.37, qadda is the most lenient penalization

scheme and we can see that between 170 and 230 seconds it barely penalizes qaggr, even

in face of a signi�cant drop in raw quality. On the other extreme, qdsd penalizes the most

for most cases, but displays less variation than qphv. Furthermore, both qphv and qdsd

penalize minimally in regions of low downward volatility (see Fig. 2.36, between 1200 and

1300 seconds). According to our requirements, qdsd comes out as the strongest quality

0 100 200 300 400 500
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

qaggr

qphv

qdsd

qadda

Figure 2.37: Comparison of the three penalized qualities with the aggregated quality.

metric, since it displays good adaptivity to signi�cant changes in channel quality, is in

general more conservative than qphv and qadda and more stable than qphv. Furthermore,

it is simpler than qphv, i.e. has less hyper-parameters to tune (such as the number of

window slices) and needs less computation, e.g. no linear regression.

Chapter 2 Channel quality 56

2.8 Additional channel quality metrics

In this section, we investigate alternative channel quality metrics and combinations

thereof. For our purposes, we model a channel as having a center frequency and a set

of all available links that transmit on this center frequency. Therefore, we can further

assess the quality of a channel by passively gauging the quality of all its links. Hence,

our alternative quality metrics all rely on successful frame reception and decoding. Even

though frame decoding alone is too restrictive, since it is e.g. blind to all other foreign

protocols, by combining these frame-derived properties, we can still add information to

our quality assessment of the available channels that we do not have with qcbt.

In fact, measured quality derived from frame overhearing depends, among other things,

on the placement of senders relative to the sensing node and the signal strength of the

sender, similarly to the metrics derived from qcbt. Moreover, by adding channel properties

derived from 802.11 frames we can skew the channel quality towards interference of other

802.11 networks. This makes sense, since these networks can interfere not only in the

physical layer through energy emissions when in sensing or interference range, but also

on additional layers when in communication range.

2.8.1 Signal-to-Noise Ratio - SNR

The �rst link metric to take into consideration is the signal-to-noise ratio (SNR). This

property indicates the relation between the power of the received signal Psignal and the

estimated background noise level Pnoise:

SNRdB = 10 log10

(
Psignal

Pnoise

)
= Psignal,dB − Pnoise,dB (2.4)

Psignal and Pnoise are voltages across the same impedance and Psignal,dB and Pnoise,dB
respectively the same values but in the logarithmic decibels scale.

Multiple models in the literature have shown that QoS metrics such as Bit Error Rate

(BER) or packet delivery ratio (PDR) correlate strongly with SNR. BER is the ratio

of bits received with error to the total number of received bits and PDR the ratio of

packets received without error to the total number of sent packets. [Gol05], for instance,

derives the delivery probability of a signal based on the SNR and shows that for the

DPSK wireless modulation, which is used in 802.11b, the probability of a bit error Pb
can be computed as:

57 2.8 Additional channel quality metrics

Pb =
1

2 · SNR
where SNR is the average SNR on the channel. In fact, as shown throughout the

literature for multiple channel models, the capacity of a channel, i.e. the data rate at

which data can be sent with negligible Pb and hence minimum delay is a function of the

bandwidth of the channel and of the SNR [Gol05]. In Additive White Gaussian Noise

(AWGN) channels, for example, the capacity C of a channel with bandwidth B is given

by:

C = B · log2(1 + SNR)

Similarly to what we have done for qcbt, in order to summarize multiple observations

into a single quality value and to have a channel quality metric (based on SNR) with

appropriate stability, we need an aggregation method. This time though, we are going to

aggregate raw properties, derived on a frame by frame basis, and plug these values into

an SNR-based quality metric. We will make use of following frame-derived properties:

the signal strength Psignal,int of frames delivered by internal nodes, the received signal

strength Psignal,ext of foreign frames and the noise �oor level Pnoise, all measured in

dBm. Given the signal strength Pm where m ∈ {(signal, int), (signal, ext), noise}, we
aggregate multiple observations of Pm as:

P ?
m(i) =


Pm(i) if i = nmw

α · Pm(i) + (1− α) · P ?
m(i− 1) if i > nmw

undefined else

where α is the weight of the latest measurement, nmw the number of slots inside a

moving window and Pm(i) the arithmetic mean of all observations of Pm in the current

moving window up to time slot i.

This way, we obtain P ?
signal,int, P

?
signal,ext and P

?
noise based on the received frames during

each slot and the past history of received frames.

To de�ne a channel quality based on SNR, we �rst introduce the notion of a foreign

tra�c aware SNR, denoted by SNRfta. Given P ?
signal,int, P

?
signal,ext and P

?
noise, we de�ne:

SNRfta = P ?
signal,int − (P ?

noise + P ?
signal,ext) (2.5)

With the foreign tra�c aware SNR, foreign 802.11 signals are interpreted as a further

noise component, since these transmissions while decodable are mostly harmful to the

Chapter 2 Channel quality 58

transmissions of internal nodes. In contrast, higher received signal strength of internal

neighbors contributes to a higher SNRfta.

An important phenomenon that highlights the importance of SNRfta for channel

quality assessment is the capture e�ect, i.e. when two or more signals collide but only

the weaker signals are discarded (see Fig. 2.38). This means that larger signal amplitudes

of foreign frames on a given channel might make the reception of weaker signals from

internal nodes more di�cult or even completely suppress them. Hence, the quality of

all a�ected internal links degrades and with it the quality of the channel. Note that

qcbt while able to detect the occupation of the spectrum does not di�erentiate between

stronger or weaker occupations, except indirectly by detecting the near-far e�ect.

 Foreign
node

Sensing
node

High

Figure 2.38: Foreign node with high Psignal,ext prevents successful transmissions on inter-
nal links due to collisions or CCA. The foreign signal can still be detected
by the sensing node due to the capture e�ect.

Example 2.8.1. To better illustrate the motivation of treating foreign 802.11 signal

as noise, let us look at following scenario (see Fig.2.38): the signal strength Psignal,ext

is derived of frames sent by a foreign node (in red) and received by a sensing node (in

green) such that ∀i ∈ {1, 2, 3} : Psignal,ext > P i
signal,int, where P

i
signal,int is the signal

59 2.8 Additional channel quality metrics

strength received by the sensing node from its internal neighbors vi on channel ci. Here,

the foreign node has two possibilities to thwart the transmissions of the internal nodes.

First, this foreign node is a hidden station to the internal neighbors of the sensing node

and prevents transmissions on internal links from being successful due to collisions.

However, the foreign signal can still be detected by the sensing node due to the capture

e�ect. Second, the foreign node is in sensing range of the internal nodes, but they are

hidden stations to the foreign node. This time, transmissions of the foreign node will

trigger CCA back-o�s at the internal nodes, but not the other way around also leading

to collisions. Moreover, the CCA back-o�s occur not only on channel c1, in use by the

foreign node, but also on its adjacent channels, c2 and c3.

Given the minimum and maximum possible SNRfta values for a given chipset, respec-

tively SNRfta,min and SNRfta,max, and given q′snr =
SNRfta−SNRfta,min

SNRfta,max−SNRfta,min
, we de�ne the

foreign tra�c aware SNR-based quality metric qsnr as

qsnr = 1.2 · q′snr
q′snr + 0.2

(2.6)

Typical values for the frame-derived signal strength (e.g. for Atheros chips) lie in

the range −95 dBm < Psignal ≤ −35 dBm and typical noise �oor values lie in the

range −98 dBm < Pnoise ≤ −90 dBm. A signal strength of −25 dBm is equivalent

to measuring the output power directly on the transmitting antenna and −35 dBm is

equivalent to having a transmitting node right next to the sensing node. On the other

hand, −95 dBm is a very common receive sensitivity for a 802.11 NIC, i.e. the minimum

possible signal strength that can be received by the chipset. In this case, a signal

strength of e.g. −100 dBm would indicate 0% of signal strength and would therefore

never be measured, since a frame has to be received with some signal strength for any

measurement to take place.

Given the mentioned typical signal strength values, we estimate SNRfta,min and

SNRfta,max with the following examples:

Example 2.8.2. (SNRfta,min) Consider the internal signal strength at its worst P ?
signal,int =

−95 dBm, a foreign signal strength P ?
signal,ext = −35 dBm at its strongest level and a

noise �oor P ?
noise = −90 dBm. We then have:

SNRfta,min = −95 + 35 + 90 = 30 dBm

Chapter 2 Channel quality 60

Example 2.8.3. (SNRfta,max) Consider the internal signal strength at its best P ?
signal,int =

35 dBm, a spurious foreign signal strength P ?
signal,ext = −95 dBm and noise �oor P ?

noise =

−98 dBm. We then have:

SNRfta,max = −35 + 95 + 98 = 158 dBm

This way, we have SNRfta,min = 30 dBm and SNRfta,max = 158 dBm, yielding (see

Fig. 2.39):

qsnr = 1.2 ·
1

128
· (SNRfta − 30)

1
128
· (SNRfta − 30) + 0.2

= 1.2 · SNRfta − 30

SNRfta − 4.4
(2.7)

40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

SNRfta

q s
n
r

Figure 2.39: qsnr for 30 dBm ≤ SNRfta ≤ 158 dBm.

In situations where internal nodes are too far away from the sensing node or during

the bootstrapping phase of the network, it is possible to receive foreign frames for one or

more moving windows during which no internal frames are received, which means there

are no measurements to derive P ?
signal,int from. For this case, we can adopt a conservative

estimate such as P ?
signal,int = −95 dBm. The same estimate can also be used for P ?

signal,ext

when no foreign frames are received.

Upon each frame reception, Psignal can be derived from the received signal strength

indicator (RSSI) or the channel state information (CSI) and many NICs also deliver

Pnoise.

61 2.8 Additional channel quality metrics

2.8.2 Received Signal Strength Indicator - RSSI

The energy received by a node during the transmission of the PLCP header is mapped

to a Received Signal Strength Indicator [FVR07]. To be exact, RSSI is measured from

the start of frame delimiter (SFD) until the end of the PCLP header error check (HEC)

[80205]. This means RSSI is not computed for the full frame, just for its preamble.

RSSI is often delivered in a negative dBm scale or as dimensionless values that can be

converted to this scale. [HHSW10] points out that RSSI alone can be an unreliable indi-

cator of transmission performance. RSSI computation may be miscalibrated (hardware

imprecision) and its values may be corrupted due to interference. Another argument

against RSSI is that 802.11n OFDM and MIMO use multiple independent sub-channels

to send di�erent bits of the same data payload, each one with its own SNR. The RSSI-

inferred SNR is thus an average for all received bits. Moreover, computing SNR values

requires noise measurements (derived from frame receptions) and these values are not

available to all network cards, e.g. Ralink network cards used for some of our tests do not

support it. Even so, RSSI has been used throughout the literature for both performance

estimation and distance gauging between nodes, as done in [ARW07].

RSSI can be retrieved through the radiotap interface. Device drivers that implement

this interface, make both RSSI and antenna noise measurements available after frame

reception through an appended virtual header with following �elds:

� IEEE80211_RADIOTAP_DBM_ANTSIGNAL: an 8-bit �eld containing the received signal

strength in decibels di�erence from 1mW.

� IEEE80211_RADIOTAP_DBM_ANTNOISE: an 8-bit �eld indicating the noise power,

also in decibels di�erence from 1mW.

2.8.3 Channel State Information - CSI

An alternative to RSSI is the Channel State Information (CSI). This metric o�ers a

higher level of granularity in OFDM transmissions by capturing the received signal

strength for each sub-carrier of a given channel and also provides the phase information

of these carriers. In OFDM, multiple narrow-band sub-carriers are used to transmit data

in parallel instead of using a single wide-band channel. One can imagine these OFDM

sub-carriers as sub-channels, i.e. components of a given channel. 802.11n/ac 20 MHz

channels, for instance, are composed of 64 sub-carriers, of which 52 can be used for data

transmission. Similarly to RSSI, every 802.11n/ac network card measures the channel

Chapter 2 Channel quality 62

state information for each received frame only during its preamble. Even though, 802.11

standards name this property Channel State Information, strictly speaking, it is gained

on a link by link basis and hence a Link State Information.

In [HHSW10], CSI measurements obtained from commodity 802.11n NICs were used

to accurately predict the successful delivery of packets. Using power and noise levels

measured at the receiver, they computed SNR values from which the highest usable rate

in the channel as well as error rates for di�erent modulations were predicted.

Even though CSI seems promising for link state estimation, its implementation is still

experimental. [HHSW10], for instance, used a customized version of Intel's closed source

Wi-Fi �rmware for the Intel 5300 NIC. Firmware modi�cations allowed them to record

CSI data, pass it to the network driver and later access it through a user-space pro-

gram. Another work [XLL15] implemented a Atheros-CSI-Tool for CSI derivation on

the Atheros ath9k driver. However, their code requires nodes to run a customized Linux

Kernel 4.1.10 and one of the communicating nodes to be in 802.11n Access Point(AP)

mode which is not practical in an ad-hoc scenario. In addition, for CSI to be derived,

both communicating nodes have to use HT packets, since this information is only avail-

able under OFDM. Hence, even though CSI delivers a more detailed picture of SNR

values when compared to RSSI, all its current restrictions make it di�cult to use it as a

�exible channel quality metric. Furthermore, since the SNR values must be aggregated

over multiple time slots, it is rather unclear what real bene�ts are to be gained by having

�ner granularity with SNR values of sub-channels of a given channel, since this higher

accuracy might lead to higher volatility as well.

2.8.4 Node degree

Another metric that strongly correlates with the performance of the communication in

a network is the node degree. The node degree of a node n is the number of links from

n to other nodes. In our case, even though it would be ideal to identify interference

and sensing links, we can only detect communication links through frame decoding, and

therefore only consider node degrees w.r.t. communication links.

Here we make a distinction between internal and external node degrees, depending

respectively on whether the detected nodes are internal nodes or external ones. Whereas

a higher internal node degree improves the connectivity and consequently the commu-

nication within a network, in special in an ad-hoc network, where each neighbor is a

potential router, a higher external node degree increases the probability of a higher

level of interference on the a�icted node. If these external nodes are 802.11 devices in

63 2.8 Additional channel quality metrics

managed mode we have an automatic increase in baseline interference by adding more

nodes, since APs send beacons and possibly other management frames periodically (inde-

pendently of stations activity) and client devices perform active scanning, broadcasting

probe requests which prompts receiving APs to reply with probe responses. Moreover,

other competing technologies also foresee special packets for discoverability, such as Blue-

tooth. A Bluetooth base station in scan mode periodically broadcasts discovery packets

on all available channels. Upon reception of these packets, all discoverable devices reply

to identify themselves. Each scan inquiry runs for at least 10.24s seconds in order to

discover all devices in communication range [HH09].

In general, a higher external node degree implies a higher level of future foreign spec-

trum occupation. This is a direct consequence of the fact that more nodes on a channel

increase the probability of this channel being occupied at any given moment as well as

the probability of simultaneous transmissions taking place on this channel. The amount

of simultaneous transmissions from external nodes on the same channel as a node n

in�uences the SNR (signal to noise ratio) observed by n and the SNR observed by other

nodes on neighbor channels.

The authors in [HMCV07] have evaluated node degree distributions of Wi-Fi-based

networks placed in densely populated areas and observed that they follow an exponential

decay. The authors evaluated seven urban areas in the United States, one of which has

more than 48,000 routers and have observed similar results throughout all analyzed

areas. The observed node degrees all lie between 10 and 24, with the maximal node

degree going as high as 154 for a maximum signal range of 45 meters. It is therefore

realistic to expect a lower node degree for less densely populated scenarios.

In an ad-hoc network with dynamic membership, i.e. nodes leave or join the network

at non-scheduled points in time, one can at best try to estimate the node's degree on a

given channel. One property that is easy to obtain through frame decoding is the number

of nodes that were seen to be communicating on a channel in a given time interval. For

this, we count the number of seen MAC addresses in the last dseen seconds.

2.8.4.1 Channel quality metric

If we assume nodes operating on |C| available channels under random channel hopping

sequences and continuously transmitting, we can derive the probability Phop of more

than one node picking the same channel at the same time. Given nc channels and nseen
nodes we have:

Phop = 1−
(

1− 1

|C|

)nseen

Chapter 2 Channel quality 64

For instance, if we have |C| = 13 and say nseen = 20 we have Phop = 0, 798 .

On the other hand, we can formulate the probability Psend that any of the nseen nodes

transmits on any given slot:

Psend = 1− (1− τ)nseen

where τ is the channel access probability. Considering both events (channel hopping

and transmission) as independent, we can then compute the probability of the channel

being idle as:

qdegree = (1− Phop) · (1− Psend) =

((
1− 1

|C|

)
· (1− τ)

)nseen
(2.8)

We can use this probability as a channel quality metric, whose best value qdegree = 1

happens for nseen = 0. For instance, if we have |C| = 13, τ = 2.5% and nseen = 1, we

have qdegree =
(

11.7
13

)1
= 0.9. In Fig. 2.40, we can see the overall behavior of qdegree under

the mentioned conditions with increasing values for nseen.

Moreover, instead of assuming a �xed channel usage probability for all nodes, we

can further optimize qdegree by estimating τ(n) as the average channel airtime of every

neighbor node n after nslot slots, i.e.

τ(n) =

∑nslot
i=1 dsend(n, i)

nslot · dslot

With this we arrive at the following formula for qdegree:

qdegree =

(
1− 1

|C|

)nseen
·
nseen∏
n=1

(1− τ(n)) (2.9)

It is worth noting that many 802.11 nodes in managed mode rarely switch their oper-

ating channel. Another possible optimization to qdegree would be to compare the received

MAC addresses across all channels and to lower the probability of channel switching for

those nodes we never see on a di�erent channel. In the worst case, when no nodes are

ever observed to perform channel hopping, we would have qdegree = 1 − Psend. In the

general case, we propose using an exponential decay for Phop such that it can be written

as:

Phop(t) = Phop(0) · e
−t
τ =

(
1− 1

|C|

)
· e
−t
τ

65 2.8 Additional channel quality metrics

where t is the number of slots since we last saw any channel switching from node n and

τ the time point at which the probability of channel switching decays to 1/e · Phop(0) ≈
0.3679 ·

(
1− 1

|C|

)
. In addition, each time we observe node n on a di�erent channel than

its last observed operation channel, we bump up its Phop back to 1− 1
|C| .

2.8.4.2 Protection against MAC spoo�ng

A valid concern in using MAC addresses to detect unique neighbors is the real possibility

of MAC spoo�ng, i.e. nodes might use MAC addresses of other nodes in their vicinity.

One relatively simple way of detecting such spoo�ng cases is to look into the sequence

numbers in the MAC header of the received 802.11 frames. This MAC �eld is a value

modulo 4096 that should be monotonically increasing for a sequence of frames. For

instance, if a frame f1 with sequence number s1 is received after frame f2 with sequence

number s2 such that s1 < s2 and another frame was already received before f2 with s1

then f1 must be a duplicate frame or has originated at a di�erent node with the same

MAC address. Such a method is proposed by [GcC05], where detecting inconsistencies

in the sequence number advance leads to detection of duplicated MAC addresses. Note

that this type of detection involves keeping track of payloads of previously received

frames on a node by node basis which incurs some overhead. A possible optimization

here would be to use a probabilistic membership data structure such as Bloom �lters

where only the hashes of the received payloads have to be stored instead of the payloads

themselves. This increases however the chance of false positives. An alternative approach

to detect MAC spoo�ng that can also be combined with the sequence number-based

method is identifying the distribution of RSSI values of received frames, since nodes

at di�erent distances to the sensing node will produce distinct distributions of received

signal strength. In [STC+08], authors were able to detect MAC spoo�ng with help of only

received signal strength and obtained a false positive rate of only 3% and a detection rate

of 73.4% with RSSI statistics computed locally. By combining the statistics measured

by multiple nodes they were able to detect 97.8% of duplicated MAC addresses.

Chapter 2 Channel quality 66

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

nseen

q d
eg
r
ee

Figure 2.40: qdegree for |C| = 13 and τ = 2.5% with varying nseen.

2.8.5 Optimization of frame overhearing

Besides only detecting link properties of nodes using the same technology, deriving chan-

nel quality from frame overhearing has one signi�cant weakness: processing overhead.

One of the most promising technologies to minimize this overhead is the eXpress Data

Path (XDP). This Linux kernel feature was introduced in 2014 and merged into the

Linux kernel in 2016 and has already been adopted by big companies such as Facebook

and Cloud�are [VCP+20]. XDP is the lowest layer of the Linux network stack (see Fig.

2.41) and allows network monitoring and packet processing to happen close to the NIC

(in the driver of a network device), even before any memory allocation is done by the

operating system. For this, eXpress Data Path uses eBPF, another Linux kernel feature,

composed of a set of instructions and an in-kernel virtual machine (VM). XDP exposes

network hooks to which eBPF programs can be attached and these are run in the eBPF

VM. For instance, a node counting external neighbors by MAC address with XDP is

able to retrieve only the needed information and then dropping this frame (the eBPF

program returns with action XDP_DROP) without it ever touching any of the higher layers.

Furthermore, XDP does not require any special hardware, but requires driver support

for achieving best performance.

67 2.9 Combining channel quality metrics

Socket layer

TCP/IP stack

Netfilter

XDP

Network Interface (NIC)

Traffic control

Kernel Space

Driver space

Figure 2.41: Layers of the Linux network stack.

2.9 Combining channel quality metrics

In this section, we motivate and formalize the combination of di�erent channel quality

metrics into a single value. As pointed out by the British Statistician George Box in his

famous article Science and Statistics [Box76] �all models are wrong�, because by nature

they not only simplify things but also usually focus on certain properties in lieu of others.

This does not mean however that they cannot be useful for di�erent applications. The

same applies to our proposed channel quality metrics.

Wireless communications involve many di�erent working components and are subject

to multiple complex phenomena, such as random interactions due to back-o� mecha-

nisms, the near-far e�ect, the capture e�ect and fading. Small-scale fading, for instance,

is the phenomenon of quick variations of both signal amplitude and phase for short

distances (on the order of a few wavelengths) and short periods of time (within a few

seconds). These variations can amount to 30 to 40 dB by changing the spacing between

transmitter and receiver by a fraction of the signal's wavelength, which in 802.11 net-

works is on the order of a few meters. This type of fading, which de�nes how amplitude

and phase of the radio signal varies, depends on the relations between a plethora of

variables such as the symbol period, the bandwidth, delay and Doppler spread and the

coherence time [Gra16], which is further dependent on the chosen 802.11 standard and

its modulation scheme. It is therefore unrealistic to expect one channel quality metric

alone to model and predict the behavior of all these channel properties. However, to

bene�t the most from a combined channel quality metric, its components should display

Chapter 2 Channel quality 68

a minimum degree of separability by focusing on di�erent properties, causal threads or

di�erent scales of similar properties.

Take qcbt, for example, which strongly correlates with achievable throughput and is a

solid metric to evaluate channel quality, but still completely ignores the �oor noise and

the amplitude of received signals, which as already mentioned in Sec. 2.8.1, do correlate

with the successful delivery of frames and BER. Therefore, even though qcbt can be seen

as our main quality metric, it would be interesting to also take the mentioned frame-

based metrics into consideration to achieve a holistic view of the channel. Moreover, in

order to compute a communication schedule following the approach of [Eng20], where

the number of slots assigned to each channel is proportional to its quality, we need a

single value to represent the channel quality of each evaluated channel. Finally, we are

less interested in the values themselves yielded by each channel quality metric, than

concerned with the relation between these values and the ability of ranking channels

based on multiple relevant channel properties.

Example 2.9.1. Let us imagine, for instance, two channels c1 and c2 with the same

qcbt = 0.6, but with di�ering qsnr values, respectively qc1snr = 0.8 and qc2snr = 0.3. It is clear

in this case that we should prefer channel c1 over channel c2, since even though both

channels potentially provide the same achievable throughput, it is more probable for a

node on c1 to have successful transmissions with the available bandwidth, leading to

less end-to-end delay and fewer re-transmissions. Hence, combining qcbt and qsnr assures

that we choose c1 over c2 by yielding a higher channel quality for c1.

With this in mind, we propose combining our proposed channel quality metrics qcbt,

qsnr, qdegree (or a subset thereof) while leaving the door open for adding any further pro-

posed metrics. This combination is to be achieved with help of a normalized exponential

transformation, namely the softmax function Smax. The softmax operation determines

how much of every metric goes into the �nal combined metric with weights proportional

to the value yielded by each metric.

Let ~z be a vector, the softmax Smax(~z) function generates a weight for every value zi
in ~z such that zi ∈ [0, 1], and the sum of all weights is always 1.

Smax(~z) =
[
ω1 ω2 ω3 . . . ωn

]
(2.10)

69 2.9 Combining channel quality metrics

where

ωi =
e
zi
τ∑|z|

k=1 e
zk
τ

τ is a temperature parameter and allows us to de�ne how much of the greatest of the

mixed values goes into the resulting metric. For a low temperature τ → 0+ , the weight

of the highest values tends to 1.

Given channel quality metrics qm1 , qm2 , . . ., qmn , we then de�ne the combined channel

quality metric qm1,m2,...,mn as the following matrix product:

qm1,m2,...,qmn = Smax




qm1

qm2

qm3

. . .

qmn



 ·


qm1

qm2

qm3

. . .

qmn

 =
n∑
i=1

ωi · qmi

It is worth noticing that by de�nition the combined metric is also in the range [0, 1],

since:
∀i ∈ [0, 1] : 0 ≤ wi ≤ 1 ∧ 0 ≤ qmi ≤ 1 =⇒ 0 ≤ wi · qmi ≤ wi

=⇒ 0 ≤
n∑
i=1

ωi · qmi ≤
n∑
i=1

wi

n∑
i=1

ωi = 1 =⇒ 0 ≤
n∑
i=1

ωi · qmi ≤ 1

This means, any chosen combination of channel quality metrics yields a new combined

channel quality metric. We can, for instance, combine qcbt, qsnr and qdegree yielding

qcbt,snr,degree:

qcbt,snr,degree = Smax


 qcbt

qsnr

qdegree


 ·

 qcbt

qsnr

qdegree


Example 2.9.2. Given qcbt = 0.9, qsnr = 0.65 and qdegree = 0.5 and τ = 0.9, we compute

qcbt,snr,degree as:

Smax


 0.9

0.65

0.5


 =

[
0.4 0.32 0.28

]

Chapter 2 Channel quality 70

qcbt,snr,degree =
[
0.4 0.32 0.28

]
·

 0.9

0.65

0.5

 = 0.708

Example 2.9.3. Now, let us take our previous example and keep the same quality

values for qcbt and qdegree, but let us assume an improvement in qsnr, because e.g. a

foreign node moved further away from our sensing node. Given qcbt = 0.9, qsnr = 0.8

and qdegree = 0.5 and τ = 0.9, we compute qcbt,snr,degree as:

Smax


0.9

0.8

0.5


 =

[
0.38 0.35 0.27

]

qcbt,snr,degree =
[
0.38 0.35 0.27

]
·

0.9

0.8

0.5

 = 0.758

As expected the improvement in qsnr led to an improvement in qcbt,snr,degree.

In Fig. 2.42, we show qcbt, qsnr and qcbt,snr computed for a duration of more than 25

hours and in Fig. 2.43 we show the �rst 3 hours of the same experiment. As seen in

both Fig. 2.42 and Fig. 2.43, the combined quality has values lying between the values

of the original qualities and incorporates the oscillations of both qcbt and qsnr, such as in

the �rst 1.5 hour (strongly following qcbt) and after 25 hours with a drop in quality due

to a worsening in qsnr.

71 2.9 Combining channel quality metrics

0 5 10 15 20 25
t (h)

0.0

0.2

0.4

0.6

0.8

1.0

qsnr

qcbt

qcbt, snr

Figure 2.42: Comparison of qcbt, qsnr and qcbt,snr computed for more than 25 hours.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t (h)

0.0

0.2

0.4

0.6

0.8

1.0

qsnr

qcbt

qcbt, snr

Figure 2.43: Comparison of qcbt, qsnr and qcbt,snr computed for the �rst 3 hours of the
experiment showing in Fig. 2.42

Chapter 2 Channel quality 72

2.10 Summary

In this chapter, we have dealt with di�erent aspects regarding the formalization, imple-

mentation and evaluation of di�erent channel quality metrics in 802.11 based networks.

In Sec. 2.1, we formalized the concept of channel quality and have introduced our

main channel quality metric, qcbt. In Sec. 2.2, we then discussed multiple aspects of

implementing qcbt on a testbed equipped with commodity 802.11 hardware.

As a motivation for our research and to better contextualize our design decisions, we

have shown in Sec. 2.3.3 typical channel selections both around the world and locally,

using the campus of the TUK as an example. These selections are usually constrained

to channels 1, 6, 11 in the 2.4 GHz band or channels 36, 40 and 44 in the 5 GHz band,

which leads to an even sharper overcrowding of the ISM spectrum. Later in Sec. 2.3, we

have discussed the results of testbed-based experiments carried on multiple channels in

both 802.11 frequency bands with help of an in-house tra�c generator and an external

tool (iPerf3). In Sec. 2.3.4, these experiments have shown that qcbt strongly correlates

with achievable throughput and is a solid choice as a channel quality metric. Afterwards,

in Sec. 2.3.5, we also showed how qcbt is able to detect transmissions on adjacent or even

non-adjacent channels due to the near-far e�ect. However, using raw values of qcbt has

some downsides, which we have improved upon. First, in Sec. 2.4, we have introduced

appropriate corrections to qcbt to be used by every active node in order to deduct the

e�ects of the node's transmission on the metric, not only on the current channel but also

on all further a�ected channels. Second, in Sec. 2.5, we have introduced an aggregation

method based on an EWMA combined with a moving average to keep our channel quality

metric both stable and adaptive to signi�cant changes in channel conditions. Finally, in

Sec. 2.6, we have made qcbt volatility-aware by penalizing the qualities of channels with

higher levels of downward volatility. In Sec. 2.7, these downward volatility levels were

gauged by three proposed metrics of which the downward standard deviation showed

the best performance.

In Sec. 2.8, we have introduced two additional quality metrics, qsnr and qdegree. These

quality metrics rely on frame overhearing to derive metrics to assess channel conditions,

such as SNR and the node degree, i.e. number of neighbor nodes currently active on

a channel. In order to account for the near-far e�ect and the capture e�ect, we have

de�ned qsnr based on the introduced notion of a foreign-tra�c aware SNR (SNRfta),

in which the aggregated signal strength of foreign nodes is considered a further noise

component.

73 2.10 Summary

Finally, in Sec. 2.9, we have argued the bene�ts of combining di�erent channel quality

metrics to assess the quality of a channel based on multiple properties that have a certain

degree of separability, e.g. the spectrum occupation and the foreign tra�c aware SNR.

The proposed combination uses the softmax operation and is quite �exible, allowing

the addition of further quality metrics. To better illustrate the behavior of one such

combination, we have carried out experiments and compared the combination qcbt,snr to

the individual metrics qcbt and qsnr over a period of more than 24 hours.

What makes a problem a problem is not that a large

amount of search is required for its solution, but that

a large amount would be required if a requisite level

of intelligence were not applied.

� Allen Newell and Herbert A. Simon

3
Sensing schedules

Contents

3.1 Channel sensing order . 77

3.2 Geometrical model for channel overlap 80

3.3 Construction of high-quality sensing schedules 84

3.3.1 Balanced sensing schedules 85

3.3.2 Schedule con�icts . 85

3.3.3 Con�ict metric and overlap fairness 88

3.3.4 Basic local search heuristics 89

3.3.5 Prioritizing overlap fairness over con�ict metric 92

3.4 Performance assessment of heuristics 93

3.4.1 Terminology . 94

3.4.2 Test set generation . 95

3.4.3 Similarity measures . 96

3.4.4 Results . 97

3.4.5 Test Set 1 - Primary goals 97

3.4.6 Test set 1 - secondary optimization goals 99

3.4.7 Test set 2 - Primary goals 101

3.4.8 Test set 2 - Secondary goals 102

3.4.9 Investigating divergences from optimal solutions 103

75

Chapter 3 Sensing schedules 76

3.5 Improving local minima . 105

3.5.1 Random restart . 105

3.5.2 Iterated local search . 106

3.5.3 Implementing randomness 111

3.5.4 Time complexity . 112

3.5.5 Experimental results . 112

3.5.6 Parameter exploration . 114

3.6 Solution constraints w.r.t. primary con�icts 125

3.7 Matching - a graph theoretical formulation 131

3.7.1 Fundamentals . 131

3.7.2 Finding minimum weight perfect matchings 134

3.7.3 Comparison with our heuristics 140

3.8 Summary . 142

77 3.1 Channel sensing order

In Chap. 2, we have introduced a holistic approach for gathering channel quality

information in ad-hoc 802.11 networks, which is then converted into a communication

schedule. This schedule tells nodes at the beginning of each slot which channel to switch

to, in order to communicate with peers that comply with the same communication

schedule. In addition, nodes autonomously derive a sensing schedule based on their

current communication schedule, which determines in which order the available channels

should be sensed.

In this chapter, we will go into depth on the motivation behind using sensing sched-

ules and describe our solution to synthesize high-quality sensing schedules based on

di�erent criteria. In Section 3.1, we discuss di�erent approaches to determining channel

sensing order, compare these to our proposed approach and informally state our main

objectives when constructing sensing schedules. In Section 3.2, a geometrical model for

channel overlap is introduced and in Section 3.3 di�erent optimization metrics are de-

�ned accompanied by the description of the basic algorithm for optimizing these metrics,

yielding high-quality channel sensing schedules. Section 3.4 analyses the performance

of the introduced heuristics by comparing the quality of delivered sensing schedules to

global optima. Section 3.5 introduces di�erent variants of our basic heuristics using

an iterated local search approach coupled with randomness to improve local minima

and compares the performance of these variants against global optima. In Section 3.6,

we introduce some relevant properties and constraints associated with our solution to

the optimization problem at hand. Section 3.7 describes the problem of constructing

con�ict-minimal sensing schedules from a graph theoretical standpoint, refers to an ex-

act method from the literature to solve it, the Hungarian Method, and compares the

performance of our iterated-local-search-based heuristic against it. Finally, Section 3.8

summarizes the chapter.

3.1 Channel sensing order

As already hinted at, sensing schedules dictate the channel sensing order, i.e. the order

in which channels are sensed. Most techniques proposed in the literature for computing

optimal or sub-optimal channel sensing orders are devised for cognitive radio networks,

and use approaches based on a single transceiver. These approaches divide the time

into slots with duration T , and at each slot nodes sense multiple channels following a

given hopping sequence. Each channel c ∈ C appears once in the sensing sequence and

is sensed for a �xed duration τ such that τ · |C| < T . Moreover, the transceiver used for

Chapter 3 Sensing schedules 78

sensing is the same transceiver used for communication, which means that at any given

moment only one of these activities can take place. In fact, the sensing phase always

takes place at the beginning of each slot, and is followed by a transmission phase where

the node can become active on a channel which it detected as idle (see Fig. 3.1). If no

channel was deemed idle, nodes stay silent for the remaining duration of the slot.

In [CZ11], for instance, channels are sensed in descending order of achievable transmis-

sion rate and nodes stop sensing as soon as a an idle channel is detected. This channel

can then be used for communication. Initially, a sensing order might be randomly cho-

sen from the space of all possible permutations of {c1, c2, . . . , c|C|} and the �rst time a

channel is sensed as idle a communicating pair or nodes exchange probe frames with

a training sequence in order to estimate the channel gain of the given link (directly

associated with the signal attenuation of the link) and with it estimate the achievable

transmission rate on the channel.

This approach has three main disadvantages:

1. By having a single transceiver, channel sensing and communication compete for

transceiver time, yielding an overall loss in airtime, since all slots have a minimum

silent period τ , regardless of channel conditions.

2. In addition, the view delivered by the channel sensing is incomplete and poten-

tially outdated, since channels are measured with di�erent frequencies, leading to

a biased use of the channels, which in an extreme case results in sensing starva-

tion for some channels, i.e. multiple channels are never sensed and their channel

conditions are never updated, potentially wasting bandwidth.

3. After detecting channel ck as idle, the approach used in [CZ11] assumes a channel

stays unused by other nodes for the remaining duration T−k·τ of the slot. However,
this quality assessment is quite naive and easily disrupted by e.g. periodic foreign

tra�c whose period of transmission does not align with the channel sensing order.

Other works have proposed alternative sensing order construction schemes focusing

on sensing order dispersion [KLDLa13,XWW+15,LLG+17], i.e. trying to minimize the

con�icts in sensing order among peers to minimize the number of frame collisions on any

given channel. These collisions happen when nodes sense the same channel as idle at the

same time and try to simultaneously transmit on this channel. [KLDLa13], for instance,

proposes a γ-persistent strategy that attempts to create collision-free sensing orders,

i.e. neighbor nodes do not sense the same channels at the same time and consequently

79 3.1 Channel sensing order

Transmission phase

Channel sensing phase

Figure 3.1: Example of sequential channel sensing with 6 channels, where channels
c1 . . . c5 were sensed as busy, but channel c6 was sensed as idle and is hence
used in the transmission phase for communication.

never use the same channels for communication. The proposed algorithm takes into

consideration the history of collisions on the sensed channels in order to update the

probability of sticking with the current sensing order or picking a new one. Di�erent

from our approach though, γ-persistent sensing orders are not constructed at run-time,

but rather pre-computed and randomly chosen from a Latin Square, i.e. a |C| by |C|
matrix in which every channel c ∈ C appears exactly once in each column and each row.

This γ-persistent strategy does not consider minimizing adjacent channel interference

and only tries to eliminate con�icts where the same channels are used. In addition, it

relies on missing ACKs to detect sensing order con�icts among peers and eventually

change its sensing sequence. This is a somewhat pessimistic approach and can lead to

unnecessary sensing order changes, since ACK losses might include a large number of

false positives w.r.t. sensing order con�icts. In fact, due to the lossy nature of the

medium and depending on the used wireless technology, frame losses might occur due

to multiple factors such as interference by foreign tra�c.

Despite some clear similarities with the described sensing order schemes, our problem

and solution for it present some fundamental di�erences. Di�erent from the previously

shown cognitive radio approaches, our implementation decouples channel sensing from

communication by using two radio transceivers and separate schedules, such that a

sensing schedule does not compete for transceiver time with a communication schedule

(see Fig. 3.2). Furthermore, in our approach, high-quality sensing schedules should

deliver an unbiased broader view of channel conditions, and minimize overlaps with the

communication schedules. In summary, our main objectives are:

1. To construct balanced sensing schedules, in which channels are sensed equally often

to minimize channel sensing bias.

2. To minimize channel overlap between sensing and communication schedules such

that tra�c from peers will produce the least possible disturbance to channel quality

measurements.

Chapter 3 Sensing schedules 80

3. If possible, distribute remaining channel overlap evenly in order to maximize chan-

nel overlap fairness. This intends to give each channel similar chances of being correctly

sensed.

=

=

Used for communication

Used for assessing channel quality

Figure 3.2: In our approach, a communication schedule scom is used for hopping to com-
munication channels (with one transceiver) and a sensing schedule ssens (with
another transceiver) is used for hopping to channels to be sensed.

3.2 Geometrical model for channel overlap

In order to minimize the channel overlap between the communication and the sensing

schedule, we �rst need to de�ne how this channel overlap is modeled and calculated. In

this section, we introduce a geometrical model that allows us to calculate the amount of

channel overlap between two channel hopping sequences in an e�cient manner. Wireless

communication technologies in general divide the wireless spectrum in frequency ranges

called channels. These channels have some fundamental properties associated with them

such as the bandwidth (the extension of the frequency range) and the center frequency

(usually calculated as the arithmetic or as the geometric mean of the upper and lower

passband cuto� frequencies). Typically, the physical layer of a wireless network protocol

has a bandplan that de�nes how each frequency band is to be used for communication

w.r.t. transmit power distribution across the frequency space. This distribution of

power is de�ned by a transmit spectrum mask (also called a channel mask), which sets

signal attenuation requirements (upperbounds) at given frequency o�sets (see Fig. 3.3).

Similar to the nominal channel bandwidth in 802.11 standards, FCC regulations de�ne

a channel bandwidth as the 20-dB bandwidth, i.e. the bandwidth at which the signal

is attenuated by 20 dB relative to the power peak (measured at the center frequency)

[LSW+20].

81 3.2 Geometrical model for channel overlap

0 dBr

-20 dBr

-28 dBr

-40 dBr

9 11 20 30(MHz)

Figure 3.3: Illustration of a channel mask in 802.11 for the 2.4 GHz band. Attenuation
requirements are given in dBr (decibel relative to the power spectral density
peak in the signal)

12
2.467

1
2.412

22 MHz

Channel
Center Frequency
(GHz)

2
2.417

3
2.422

4
2.427

5
2.432

6
2.437

7
2.442

8
2.447

9
2.452

10
2.457

11
2.462

13
2.472

14
2.484

8 MHz

Figure 3.4: Illustraton of 802.11 channels in 2.4 GHz band.

It is clear from this de�nition that even though most of the power of the modulated

wireless signal is contained within the channel bandwidth, there is still a portion of

the total power that bleeds over to neighboring frequencies causing additional overlap

between channels that nominally should not have any. If an overlap occurs between

channels ci and cj, radiation transmitted on ci lies in the passband of cj and will be

passed on mostly unattenuated to the demodulator of a node listening on channel cj.

Figure 3.4 shows the channels in the 2.4 GHz band and makes it evident that there

is a lot of overlap in this frequency band (which is even worse if we take the whole

transmit mask into consideration). It is interesting to note that consecutive channels

Chapter 3 Sensing schedules 82

do not always have the same frequency spacing between them, e.g. channels 13 and

14 in the 2.4 GHz band have 12 MHz instead of 5 MHz between them. However, even

though the frequency separation between consecutive center frequencies may vary, we

assume that all channels that are within the same band and can be used at the same

time have the same bandwidth (which is the case in 802.11 networks). In Figure 3.5, we

Figure 3.5: Channel overlap between two consecutive channels with 22 MHz of channel
bandwidth.

display two consecutive channels ci and cj overlapping in the 2.4 GHz band, both with

a bandwidth of 22 MHz and center frequency separation of 5 MHz. In our geometrical

model we approximate the shape of a 802.11 channel (enveloped by the transmit mask)

to a semicircle centered at the channel's center frequency. The 802.11b standard, for

instance, considers its modulated signals to follow the shape of sin(x)
x

, which shape-wise

is not far from a semicircle (see Fig. 3.6).

For the purpose of constructing high-quality sensing schedules, we consider that more

than 99% of the energy of the modulated signal is received within this approximated

shape, and disregard the additional components of the transmit mask. In fact, we have

already introduced a correction model in Chap. 2 that corrects for the interference e�ect

resulting from these additional spectrum mask components and from close proximity.

The approximation to a semicircle allows us to calculate the overlap between two

channels by computing the overlapping area between two semicircles, which is a well-

known closed formula.

De�nition 3.2.1. Given a channel ci and an overlapping channel cj, both modeled

as semicircles with a radius rband, the overlap area Aoverlap(ci, cj) between ci and cj

and the area Aband(rband) of a semicircle with radius rband, we de�ne the overlap ratio

roverlap(ci, cj) as

83 3.2 Geometrical model for channel overlap

Figure 3.6: Illustration of sin(x)
x

shape involved by a channel mask.

roverlap(ci, cj) =
Aoverlap(ci, cj)

Aband(rband)
(3.1)

Given the center frequencies fci and fcj of respectively ci and cj, the radius rband of

the overlapping semicircles, and the frequency spacing between the center frequencies

d = |fci − fcj |, we have

Aband(rband) =
π

2
· r2

band (3.2)

Aoverlap(ci, cj) =


0 d ≥ 2 · rband

r2
band · cos−1

(
d

2·rband

)
− d

4
·
√

4 · r2
band − d2 otherwise

(3.3)

Example 3.2.1. Given channel 13 and channel 14 under 802.11b the spacing between

the center frequencies is 12 MHz and the radius rband = 11MHz, yielding

Aoverlap(ci, cj) = 121 · 0.993MHz2 − 3 ·
√

484− 144MHz2 ≈ 64.94MHz2

Aband(rband) =
π

2
· 121MHz2 ≈ 190.07MHz2

Chapter 3 Sensing schedules 84

roverlap(ci, cj) =
64.94MHz2

190.07MHz2
≈ 0.34

Example 3.2.2. In 802.11b, between channels 2 and 6 we have d = |f2−f6| = 20MHz

and Aband(rband) ≈ 190.07MHz2 (computed in the previous example) leading to

Aoverlap(ci, cj) = 121 · 0.429MHz2 − 5 ·
√

484− 400MHz2 ≈ 6.17MHz2

roverlap(ci, cj) =
6.17MHz2

190.07MHz2
≈ 0.032

As shown in the previous examples, increasing the frequency separation between the

center frequencies of the overlapping channels by a factor of 1.6 led to a tenfold reduc-

tion in the overlap ratio. Our geometrical model even though simpli�ed approximates

the nonlinear relation between frequency spacing and overlap ratio and delivers results

cohesive with the underlying physical model. Moreover, it is worth noting that our

algorithm for synthesizing high-quality sensing schedules works independently of the

underlying channel overlap model. This means that in a scenario with another wireless

technology where our main assumptions proved unsatisfactory, our geometrical model

could be easily swapped for an alternative model.

A channel overlap model with some similarities to our geometrical overlap model was

introduced in [MSBA06]. In their model, the overlap between two channels is computed

by an interference factor, de�ned as the overlapping area between the transmitter's

channel mask and the receiver's passband �lter. This area is computed through the

convolution of the mask and �lter functions. This model while potentially more precise

than our model requires not only the transmit spectral mask but also the bandpass

�lter function on the receiver side, which makes both the calculation itself and the

implementation of this approach considerably more complex.

3.3 Construction of high-quality sensing schedules

In this section, we formalize the concept of balanced sensing schedules and de�ne our

main optimization metrics when constructing sensing schedules, i.e. the con�ict metric

and the overlap fairness. Both metrics take a pair of sensing and communication sched-

ules as input. Moreover, we describe opt_con�ict, a heuristic for synthesizing sensing

schedules that are balanced, con�ict-minimal and if possible that maximize overlap fair-

ness. Also, we introduce opt_fairness, a variant heuristic that prioritizes overlap fairness

85 3.3 Construction of high-quality sensing schedules

over con�ict-minimality. We �rst introduced the basic ideas behind the construction

algorithms for both heuristics in [AG20]. In this chapter, we will also introduce an

extension to these basic construction algorithms that is able to improve local minima,

achieving higher quality in the generated sensing schedules.

As already mentioned, we have a set of channels C = {c1, c2, . . . , cnc} that is �xed
and known to every node, in which each channel has a dynamic channel quality. This

quality is assessed in an order de�ned by a sensing schedule ssens and each channel is

used for communication in an order de�ned by a communication schedule scom. The

placement and the frequency of occurrence of these channels in the communication

schedule is dependent on the channel qualities at the time the communication schedule

is synthesized. In contrast, the placement of channels in ssens depends on scom.

3.3.1 Balanced sensing schedules

Here, we formalize the �rst of our main objectives when constructing sensing schedules,

i.e. that they are balanced.

De�nition 3.3.1. Given C a non-empty set of channels, ssens a sensing schedule,

n(c, ssens) the number of occurrences of channel c ∈ C in ssens, and ssens satisfying

∀c ∈ C. n(c, ssens) > 0. The sensing schedule ssens is balanced w.r.t. C i� ∀c1, c2 ∈
C. n(c1, ssens) = n(c2, ssens).

This means, a sensing schedule is balanced if and only if all channels are sensed equally

often. This intends to minimize channel sensing bias by avoiding that some channels

are sensed more often than others. Note that we still impose no constraints on the

placement of channels in the sensing schedule, and that the frequency of occurrence of

these channels in ssens is independent of the channel qualities.

To derive a balanced sensing schedule we start with a balanced seed sensing sched-

ule s
(0)
sens = [c1, . . . , cn], where every channel c ∈ C occurs exactly once, i.e. ∀c ∈

C. n(c, s
(0)
sens) = 1 and |s(0)

sens| = |C|.

3.3.2 Schedule con�icts

As already mentioned, any channel overlap between sensing and communication sched-

ules is detrimental to the performance of our channel sensing scheme. Any time slots

in which channel overlap occurs between both schedules are deemed as con�icts. These

may occur as primary or secondary con�icts.

Chapter 3 Sensing schedules 86

De�nition 3.3.2. (Primary con�ict). Given a communication schedule scom and a

sensing schedule ssens, a primary con�ict occurs in a slot i i� scom[i] = ssens[i].

Channel hopping sequences map channels to sequences of successive time slots. Even

though schedules are �nite, this mapping repeats in�nitely for an in�nite sequence of

slots (in practice for as long as nodes are in operation). Given a communication schedule

scom and a seed sensing schedule s(0)
sens, we assume without loss of generality that the

applications of these schedules are synchronized and start in the same time slot. If the

communication schedule and the seed sensing schedule have the same number of slots,

they will hence stay aligned in time for the whole duration of operation. The upside of

this is that a reordering of s(0)
sens such that ∀i ∈ [1 , |s(0)

sens|]. s(0)
sens[i] 6= scom[i] eliminates

all primary con�icts, i.e. all aligned slots in scom and the reordered s(0)
sens have distinct

channels.

Example 3.3.1. Given C = { c1, c2, . . . , c5 }, a communication schedule scom = [c1, c3, c2, c1, c2]

and s(0)
sens = [c1, c2, . . . , c5], we can reorder s(0)

sens obtaining a primary-con�ict-free ssens as

shown below

scom = [c1, c3, c2, c1, c2]

ssens = [c4, c5, c3, c2, c1]

However, if the sizes of the communication and seed sensing schedules di�er, the

alignment in time of scom and s(0)
sens is lost, and hence permutation alone cannot deliver

a primary-con�ict-free sensing schedule w.r.t. scom. Our solution to this dilemma is to

modify the seed sensing schedule obtaining a new schedule that is still balanced, but that

now aligns with scom in time. For this purpose, we derive an auxiliary extended form

of scom, namely s′com and an extended version of the seed sensing schedule, namely s(0)′
sens

both with the same length. These extended forms are obtained by concatenating the

original schedules with themselves until the least common multiple lcm(|scom|, |s(0)
sens|) is

reached. As s(0)
sens is balanced, if follows, by induction, that its concatenation with itself

is still balanced.

De�nition 3.3.3. (Schedule alignment). Given schedules s1 and s2, we obtain the

aligned schedules s′1 and s
′
2 by concatenating s1 and s2 with themselves, such that |s′1| =

|s′2| = lcm(|s1|, |s2|).

87 3.3 Construction of high-quality sensing schedules

Example 3.3.2. Given C = { c1, c2, . . . , c8 }, scom = [c1, c2, c3, c1, c4, c2, c1, c3], and

s
(0)
sens = [c1, c2, c3, c4], we have lcm(|scom|, |s(0)

sens|) = lcm(8, 4) = 8, which yields the

following aligned schedules s′com and s(0)′
sens:

s′com = [c1, c2, c3, c1, c4, c2, c1, c3]

s(0)′

sens = [c1, c2, c3, c4, c1, c2, c3, c4]

The construction of a sensing schedule free of primary con�icts is closely related to

the k-coloring problem. Given a graph G, a k-coloring colors each vertex of G with

one out of k colors in such a manner that no two adjacent vertices are colored the

same. In our case, half of the graph (the communication schedule) is already colored

and the remaining vertices (the sensing schedule) must receive each an appropriate color

(a channel).

De�nition 3.3.4. (Secondary con�ict). Given a communication schedule scom and a

sensing schedule ssens, a secondary con�ict occurs in a slot i i� scom[i] 6= ssens[i] and

roverlap(scom[i], ssens[i]) > 0.

Ideally, we would like to be even more strict and not only eliminate primary con�icts,

but also secondary ones. And if this is not possible, we want to minimize the impact of

the remaining con�icts on the qcbt-based quality assessment.

This way, �nding a con�ict-free sensing schedule w.r.t. a given communication sched-

ule can be better described by a generalization of the k-coloring problem, namely the

list k-coloring problem. In this version of the problem, the coloring of the graph has

to respect for every vertex v a list of allowed colors L(v). As one might suspect, for

a general graph, the list k-coloring problem is NP-complete for any integer k ≥ 3. A

considerable research e�ort has been put into solving this problem for restricted graph

classes (most of them without cycles or paths) [BCM+18].

Moreover, the heuristics to construct high-quality sensing schedules we later introduce

in this chapter are examples of local search heuristics. This class of algorithms has shown

good performance when used for coloring graphs with fewer than 500 vertices [GHHP13].

Similarly to our algorithm, most heuristics that try to create a con�ict-free coloring

(or a partial sub-optimal coloring) start with an incomplete k-coloring where some of

the adjacent vertices have color con�icts and in an iterative manner move the solution

towards optimality through a sequence of improving color exchanges.

Chapter 3 Sensing schedules 88

3.3.3 Con�ict metric and overlap fairness

In this section, we formalize our last main objectives, i.e. that every sensing schedule

should be con�ict-minimal w.r.t. a communication schedule, and that it should try to

maximize channel overlap fairness, without leading to the deterioration of the con�ict-

minimality.

De�nition 3.3.5. (Con�ict metric). Given aligned schedules s′1 and s′2, we de�ne the

con�ict metric Σconflict(s
′
1, s
′
2) as the sum of the overlap ratios for all channel pairs placed

in the same position i, 1 ≤ i ≤ N , where N = |s′1| = |s′2|, normalized to the interval

[0, 1]:

Σconflict(s
′
1, s
′
2) =

1

N

N∑
i=1

roverlap(s
′
1[i], s′2[i]) (3.4)

De�nition 3.3.6. (Con�ict-minimality). Given a sensing schedule ssens aligned with a

communication schedule scom and P(ssens) the set of all permutations of ssens, ssens is

con�ict-minimal w.r.t. scom i�

ssens ∈ argmin
s∈P(ssens)

Σconflict(scom, s)

De�nition 3.3.7. (Con�ict-freedom). Given a sensing schedule ssens and a communi-

cation schedule scom, ssens is con�ict-free w.r.t. scom i� Σconflict(scom, ssens) = 0.

With regards to the con�ict metric, the worst possible sensing schedule has matching

channels (with those of the communication schedule) aligned in all slots, i.e. all time

slots exhibit primary con�icts, yielding Σconflict(scom, ssens) = 1. However, if secondary

con�icts are present we have 0 < Σconflict(scom, ssens) < 1.

De�nition 3.3.8. (Total overlap). Given aligned schedules s′1 and s′2, we de�ne the

total overlap L(s′1, s
′
2, c) of channel c ∈ C as the sum of the overlap ratios of all slots in

which c occurs in s′2:

L(s′1, s
′
2, c) =

∑
i∈{ k∈[1,|s′2|] |s′2[k]=c }

roverlap(s
′
1[i], s′2[i])

89 3.3 Construction of high-quality sensing schedules

De�nition 3.3.9. (Overlap fairness). Given aligned schedules s′1 and s′2 and the set

of channels C = { c1, c2, . . . , cnc }, we de�ne the overlap fairness φ(s′1, s
′
2, C), based on

Jain's fairness index [JCH98]:

φ(s′1, s
′
2, C) =

(
∑nc

i=1 L(s′1, s
′
2, ci))

2

nc ·
∑nc

i=1 L(s′1, s
′
2, ci)

2
(3.5)

This way, φ(s′1, s
′
2, C) values lie in the range [0, 1] and measure how fair the distribution

of the total overlap across all channels is, where φ(s′1, s
′
2, C) = 1 indicates the fairest

con�guration possible.

3.3.4 Basic local search heuristics

In this section, we introduce two local search heuristics for constructing high-quality

sensing schedules. Given a communication schedule scom and given a set of channels C,

our main heuristic opt_con�ict derives aligned communication and sensing schedules

s′com and s′sens, such that the resulting sensing schedule is balanced w.r.t. C, con�ict-

minimal w.r.t. s′com, and, if possible under these constraints, maximizes overlap fairness

w.r.t. s′com. In addition, we describe a variant heuristic, opt_fairness, that also delivers

balanced sensing schedules, but primarily optimizes for overlap fairness while secondarily

attempting to minimize the con�ict metric.

As already mentioned, our basic construction algorithm is a local search-based heuris-

tic, in which an optimal or sub-optimal sensing schedule is constructed through per-

mutations that progressively improve the chosen optimization criteria. In the case of

opt_con�ict this means primarily lowering the value of Σconflict(s
′
com, s

′
sens) while secon-

darily trying to increase φ(s′com, s
′
sens, C) until a local optimum is reached.

De�nition 3.3.10. Given a schedule s and slots i and j with i 6= j, we de�ne fswap(s, i, j)

as the function that returns schedule s?, a permutation of s, in which the channels in

positions i and j are swapped, i.e.

∀k ∈ [1, |s|] : s?[k] =


s[k] if k 6= i ∧ k 6= j

s[i] if k = j

s[j] if k = i

The main steps of opt_con�ict are described in Alg. 1. As shown, a channel is only

swapped with another if the resulting permutation either yields a lower con�ict metric

Chapter 3 Sensing schedules 90

than the current one or if the con�ict metric stays the same but there is an improvement

in overlap fairness.

Algorithm 1 Local search heuristic opt_con�ict

1: function opt_conflict(scom, C)
2: s

(0)
sens ← ConstructSeedSolution(C) . construct balanced seed

3: s′com, s
(0)′
sens ← AlignSchedules(scom, s

(0)
sens) . ensure |s′com| = |s

(0)′
sens|

4: l← 1
5: k ← 0
6: repeat
7: Sswap ← {t|t 6= l ∧ t ∈ [1, |s′com]}
8: Find slots k to swap with l such that we have highest loss in

Σconflict(s
′
com, s

(0)′
sens) , i.e.

k ∈ arg min
k∈Sswap

Σconflict(s
′
com, fswap(s

(0)′

sens, k, l))

9: if there is one or more swap positions k then
10: Pick k such that we have the highest gain in overlap fairness

φ(s′com, s
(0)′
sens, C):

k ∈ arg max
k∈Sswap

φ(s′com, fswap(s
(0)′

sens, k, l)), C)

11: else
12: Find the swap position k that yields the highest gain in the overlap fairness

φ(s′com, s
′
sens, C), without increasing the value of Σconflict(s

′
com, s

(0)′
sens).

13: end if
14: if no swap position k was found then
15: k ← l
16: else
17: s

(0)′
sens ← fswap(s

(0)′
sens, k, l) . Swap channels in slots l and k

18: l← (l + 1) mod |s′com|
19: end if
20: until k = l
21: ssens ← s

(0)′
sens . We found our sensing schedule

22: end function

Example 3.3.3. Given C = {1, 3, 5, 6, 7, 9, 10, 11, 13}, a subset of the channels available
in 802.11 2.4 GHz band, a communication schedule scom = [10, 3, 5, 7, 3, 5] and a seed

sensing schedule s(0)
sens = [1, 3, 5, 6, 7, 9, 10, 11, 13], the steps needed to construct a sensing

schedule s′sens balanced w.r.t. C and con�ict-minimal w.r.t. scom are shown below:

91 3.3 Construction of high-quality sensing schedules

1. First the given schedules are aligned:

s′com = [10, 3, 5, 7, 3, 5, 10, 3, 5, 7, 3, 5, 10, 3, 5, 7, 3, 5]

s(0)′

sens = [1, 3, 5, 6, 7, 9, 10, 11, 13, 1, 3, 5, 6, 7, 9, 10, 11, 13]

2. Then we perform a series of swaps to minimize the con�ict metric (see Tab. 3.1).

Swapped channels are shown in bold and following abbreviations are used:

a) result = 1 when a primary con�ict was solved

b) result = 2 when a secondary con�ict was solved

c) result = 3 when Σconflict(s
′
com, s

(0)′
sens) was lowered, but no con�icts were solved.

s′com

[10, 3, 5, 7, 3, 5, 10, 3, 5, 7, 3, 5, 10, 3, 5, 7, 3, 5]

s
(0)′
sens Σconflict φ result

[1, 3, 5, 6, 7, 9, 10, 11, 13, 1, 3, 5, 6, 7, 9, 10, 11, 13] 0.34 0.41 start
[5, 3,1, 6, 7, 9, 10, 11, 13, 1, 3, 5, 6, 7, 9, 10, 11, 13] 0.29 0.42 1
[5,10, 1, 6, 7, 9,3, 11, 13, 1, 3, 5, 6, 7, 9, 10, 11, 13] 0.18 0.43 1
[5, 10,10, 6, 7, 9, 3, 11, 13, 1, 3, 5, 6, 7, 9,1, 11, 13] 0.16 0.36 2
[5, 10, 10,3, 7, 9, 3, 11, 13, 1,6, 5, 6, 7, 9, 1, 11, 13] 0.081 0.22 3
[5, 10, 10, 3,5, 9, 3, 11, 13, 1, 6,7, 6, 7, 9, 1, 11, 13] 0.078 0.36 3
[5,9, 10, 3, 5,10, 3, 11, 13, 1, 6, 7, 6, 7, 9, 1, 11, 13] 0.077 0.35 2
[5, 9, 10, 3, 5, 10, 3,7, 13, 1, 6,11, 6, 7, 9, 1, 11, 13] 0.051 0.28 3
[5, 9, 10, 3,6, 10, 3, 7, 13, 1, 6, 11,5, 7, 9, 1, 11, 13] 0.037 0.17 3
[5, 9, 10, 3, 6, 10, 3, 7, 13, 1, 6, 11, 5, 7,11, 1,9, 13] 0.035 0.15 2

Table 3.1: Construction of a balanced con�ict-minimal sensing
schedule for C = {1, 3, 5, 6, 7, 9, 10, 11, 13} and

scom = [10, 3, 5, 7, 3, 5].

Note that in this example each channel swap lowered Σconflict(s
′
com, s

(0)′
sens) and that we

solved nearly all con�icts, reaching a very low con�ict metric, i.e. Σconflict(s
′
com, s

′
sens) =

0.035. However, as this example shows, lowering the con�ict metric is not always ben-

e�cial to the overlap fairness. In fact, it is very challenging to �nd short examples in

which it is possible to increase the overlap fairness after reaching a local minimum for

the con�ict metric.

According to the algorithm described in Alg. 1, any pair of slots (l, k) whose channels

s
(0)′
sens[l] and s

(0)′
sens[k] are to be swapped, complies with conditions (a), (b), (c) or (d):

Chapter 3 Sensing schedules 92

(a) roverlap(s
(0)′
sens[l], s′com[k]) = 0 and roverlap(s

(0)′
sens[k], s′com[l]) = 0. This means, swapping

s
(0)′
sens[l] and s

(0)′
sens[k] solves any existing con�ict (primary or secondary) on both

positions l and k.

(b) roverlap(s
(0)′
sens[k], s′com[l]) = 0 and 0 < roverlap(s

(0)′
sens[l], s′com[k]) < 1. With this swap, we

solve any con�ict (primary or secondary) on position l while replacing an eventual

primary con�ict at position k by a secondary con�ict. Alternatively, we might just

improve a secondary con�ict in k while l has no con�ict and stays without any.

(c) 0 < roverlap(s
(0)′
sens[l], s′com[k]) < 1, 0 < roverlap(s

(0)′
sens[k], s′com[l]) < 1.

and Σconflict(s
′
com, fswap(s

(0)′
sens, k, l)) < Σconflict(s

′
com, s

(0)′
sens), we improve the con�ict

metric, but no secondary con�ict is eliminated.

(d) Σconflict(s
′
com, s

(0)′
sens) = Σconflict(s

′
com, fswap(s

(0)′
sens, k, l)) and

φ(s′com, fswap(s
(0)′
sens, k, l), C) > φ(s′com, s

(0)′
sens, C). With this swap, we maintain the

current value of the con�ict metric (no con�ict is improved), but increase the

overlap fairness.

3.3.5 Prioritizing overlap fairness over con�ict metric

As the previous example has already hinted at and as our next sections will show, con�ict

metric and overlap fairness seem to be con�icting objectives and only in few cases do

we have a sensing and communication schedule that lead to optimal con�ict metric and

overlap fairness. Therefore, to better assess the extent of possible optimization for each

optimization goal, we have implemented a variant heuristic, opt_fairness (see Alg. 2),

in which we optimize primarily for the overlap fairness, only trying to minimize the

con�ict metric if it does not lower the overlap fairness.

93 3.4 Performance assessment of heuristics

Algorithm 2 Local search heuristic opt_fairness

1: function opt_fairness(scom, C)
2: s

(0)
sens ← ConstructSeedSolution(C) . construct balanced seed

3: s′com, s
(0)′
sens ← AlignSchedules(scom, s

(0)
sens) . ensure |s′com| = |s

(0)′
sens|

4: l← 1
5: k ← 0
6: repeat
7: Sswap ← {t|t 6= l ∧ t ∈ [1, |s′com]}
8: Find slots k to swap with l such that we have the highest gain in overlap

fairness φ(s′com, s
(0)′
sens, C), i.e.

k ∈ arg max
k∈Sswap

φ(s′com, fswap(s
(0)′

sens, k, l)), C)

9: if there is one or more swap positions k then
10: Pick k such that we have the highest loss in Σconflict(s

′
com, s

(0)′
sens) , i.e.

k ∈ arg min
k∈Sswap

Σconflict(s
′
com, fswap(s

(0)′

sens, k, l))

11: else
12: Find the swap position k that yields the highest loss in Σconflict(s

′
com, s

(0)′
sens),

without decreasing the value of the overlap fairness.
13: end if
14: if no swap position k was found then
15: k ← l
16: else
17: s

(0)′
sens ← fswap(s

(0)′
sens, k, l) . Swap channels in slots l and k

18: l← (l + 1) mod |s′com|
19: end if
20: until k = l
21: ssens ← s

(0)′
sens . We found our sensing schedule

22: end function

3.4 Performance assessment of heuristics

In this section, we will discuss and assess the performance of our local search heuris-

tics for the construction of high-quality sensing schedules, namely opt_con�ict and

opt_fairness, comparing them against a complete enumeration approach. By complete

enumeration we mean computing all possible permutations of a given seed sensing sched-

ule in order to �nd an optimal schedule according to the chosen optimization metrics

w.r.t. a given aligned communication schedule.

Chapter 3 Sensing schedules 94

A naive approach to �nd high-quality sensing schedules would be to attempt a com-

plete enumeration of the permutation space of s(0)′
sens every time a new communication

schedule is received, which in the general case is not feasible in polynomial time, since

the number of possible permutations grows combinatorially with the sizes of s′com and

s
(0)′
sens.

Example 3.4.1. To better illustrate the large search space associated with permu-

tations, let us look at a small case with 14 channels (the number of Wi-Fi channels

in the 2.4 GHz band) and a communication schedule with |scom| = 5, which leads to

|s(0)′
sens| = lcm(5, 14) = 60. This means we would have to inspect

|P(s(0)′
sens)| =

60!

5!14
≈ 6.48 · 1052

distinct permutations. To put this number into perspective, the total number of possible

IPv6 addresses is 3.4 · 1038 and an estimated number of atoms comprising earth's total

mass falls in the order of 1049.

In fact, even small cases can take up to an hour or more to be completely enumerated

in a sequential manner on commodity hardware and even the use of parallelism has its

limits on providing a signi�cant speedup. This not only highlights the need of heuristics

to �nd near-optimal solutions in an e�cient manner, but also poses a challenge when

evaluating our heuristics against complete enumeration, since generating global optima

(even o�ine) is quite time-intensive.

However, the major advantage of complete enumeration over any chosen heuristic is

that given su�cient time it always constructs an optimal sensing schedule, e.g. a permu-

tation of s(0)′
sens with minimal con�ict metric value w.r.t. the communication schedule and

best possible overlap fairness without increasing the value of the con�ict metric. This

will help us compare the quality of solutions delivered by our heuristics when compared

to the global optima for each pair of communication and sensing schedules.

3.4.1 Terminology

At this point, it might be helpful for our further discussion to clarify some terms used in

further sections regarding our optimization heuristics for constructing sensing schedules.

De�nition 3.4.1. (Candidate sensing schedule). For a given seed sensing schedule s(0)′
sens

constructed from a set of channels C and aligned with communication schedule s′com, a

candidate sensing schedule solution is de�ned as any permutation of s(0)′
sens.

95 3.4 Performance assessment of heuristics

When clear from the context we will refer to candidate sensing schedule solutions

simply as candidate solutions. The same holds for constructed sensing schedules which

depending on the context will be just referred to as solutions.

As already mentioned, we have two optimization goals, namely minimal con�ict metric

and maximal overlap fairness. Each of these objective functions is used to quantify

the goodness, i.e. quality, of a given candidate solution. Furthermore, we make the

distinction between local and global optima.

De�nition 3.4.2. (Global optimum). Given an optimization goal g, a global optimum

is the solution with the maximum solution quality according to g.

This maximum solution quality might be obtained by minimizing or maximizing given

optimization goals, which is respectively the case for the con�ict metric and the overlap

fairness.

De�nition 3.4.3. (Neighborhood). Given a candidate solution si and a set of allowed

moves that allow us to transition to another candidate solution sj, we de�ne the neigh-

borhood of si as the set of all candidate solutions that are reachable from si in any

number of valid moves.

For opt_con�ict and opt_fairness valid moves are permutations of s(0)′
sens that improve

either of the optimization metrics.

De�nition 3.4.4. (Local optimum). Given a starting solution s0, a local optimum is a

permutation of s0 with the best quality within the neighborhood of s0.

This way, local optima constructed by opt_con�ict or opt_fairness are either global

optima or candidate solutions that cannot be improved by greedy local search, i.e. ex-

clusively applying improving moves.

De�nition 3.4.5. (Quasi-global optimum). Given a starting solution s0 and a global

optimum sg with quality q(sg) ∈ [0, 1], we de�ne a quasi-global optimum to be a permu-

tation of s0 with quality q(s0) such that |q(s0)− q(sg)| ≤ 0.001.

3.4.2 Test set generation

Before analyzing in detail the performance of both opt_con�ict and opt_fairness against

a complete enumeration, we �rst describe how our test set was built.

In order to assess the performance of our heuristics we need to generate one or more

tractable test sets. Creating a tractable test set can be achieved by limiting the size of the

Chapter 3 Sensing schedules 96

communication schedule and the size of the seed solution, thereby limiting the size of the

constructed sensing schedules. For our main test set, we decided to use aligned sensing

schedules with size 8. This way, we have test cases that are neither too big nor too small,

i.e. they still have some wiggle room for enough con�icts to happen, allowing us to have

cases that are distinct enough to be representative of the general optimization problem

while still being enumerated in able time. In addition, we created a secondary test set

with sensing schedules of size 10. While our main test set, with |s′com| = |s(0)′
sens| = 8,

has 3178 test cases, the smaller test set where the aligned communication and sensing

schedules have 10 elements instead has 937 test cases. 1

Given a set of channels C, we created the test sets by generating all possible combina-

tions of size lcomb ∈ {3, . . . , |C| − 2} where all channels in the combination are distinct.

For each combination k of channels, we generated a communication schedule s′com with

size |C| by repeating channels inside k in unique ways. This was achieved by calculating

all integer partitions of lcomb, i.e. all possible ways to partition lcomb into smaller integers

that sum up to it. In addition, we use a balanced seed sensing schedule for both cases,

i.e. s(0)′
sens = [c1, c2, . . . c|C|].

3.4.3 Similarity measures

In order to compare the results delivered by both complete enumeration and our heuris-

tics, we introduce three similarity measures. These metrics will allow us to quantify the

di�erences between the di�erent optimization approaches and will work as a measure of

performance of our heuristics when running on a given test set.

The �rst measure of similarity we are going to use is the Mean Squared Error (φMSE).

De�nition 3.4.6. (Mean Squared Error). Given a test set with n test cases, let

fi and f̂i be the values delivered by two di�erent optimization methods for a chosen

optimization metric for test case i, we de�ne

φMSE =
1

n

n∑
i=1

(fi − f̂i)2 (3.6)

φMSE is a typical metric to gauge the quality of an estimation model, which includes

both the bias and the variance of an estimator. In our case, if fi is the value of an

1Two additional test sets with 19669 and 1680 test cases and respectively |s(0)′sens| sizes of 13 and 36

were created for comparison with the Hungarian Method in Sec.3.7.3.

97 3.4 Performance assessment of heuristics

optimization metric delivered by complete enumeration for a test case i, an ideal heuristic

will produce f̂i which approximates f as well as possible.

By calculating the mean squared error between the results delivered by our heuristics

and the results obtained with complete enumeration, we can capture the overall perfor-

mance of these heuristics. An exact method, for instance, would always yield φMSE = 0

when compared with complete enumeration regardless of the test set at hand.

Furthermore, we de�ne another measure of similarity, namely φg.

De�nition 3.4.7. Given a test set with n test cases, let f and f̂ be the values delivered

by two di�erent optimization methods for a chosen optimization metric and nequal the

number of values where the methods deliver the same value, i.e. f = f̂ , we de�ne φg as

φg =
nequal
n

.

If f is produced by complete enumeration and f̂ by one of our heuristics, φg represents

the fraction of global optima found by the heuristic.

Our third similarity measure is φquasi. It addresses the points where f and f̂ di�er,

but not by much.

De�nition 3.4.8. Given a test set with n test cases, let f and f̂ be the values delivered

by two di�erent optimization methods for a chosen optimization metric and nquasi the

number of values where the methods deliver values that di�er by less than 0.001, i.e.

|f − f̂ | < 0.001, we de�ne φquasi as φquasi =
nquasi
n

.

In this case, if f is produced by complete enumeration and f̂ by one of our heuristics,

φquasi represents the fraction of quasi-global-optima found by the heuristic, i.e. points

that are as good as global optima.

3.4.4 Results

In this section, we will display and analyze the performance of both opt_con�ict and

opt_fairness. For better visualization, we sorted the constructed solutions from worst

to best quality, which in the case of the con�ict metric will be in descending order and

in the case of the overlap fairness in ascending order.

3.4.5 Test Set 1 - Primary goals

First, we will analyze the results of the optimization of the con�ict metric by opt_con�ict

and overlap fairness by opt_fairness on test set 1. In Tab. 3.2, we can see that both

Chapter 3 Sensing schedules 98

similarity opt_con�ict opt_fairness

φMSE 6.486 · 10−5 5.503 · 10−5

φg 0.4292 0.8530
φquasi 0.915 0.8571

Table 3.2: Comparison of similarity measures of both opt_con�ict and opt_fairness
compared to complete enumeration.

opt_con�ict and opt_fairness deliver a very low φMSE value when optimizing for their

primary optimization objectives. This is further con�rmed by a quick visual inspection

of both Fig. 3.7a and Fig. 3.7b.

With respect to the fraction of global optima, opt_fairness seems to have the up-

per hand achieving φg = 0.853 whereas opt_con�ict �nds fewer than half of all global

optima. On the other hand, opt_con�ict seems to have a slightly better performance

w.r.t. the fraction of quasi-global optima. Also, if we look at Fig. 3.8a, we can see that

out of more than 3000 test cases, in only fewer than 250 cases the solutions constructed

by opt_con�ict have an absolute di�erence in con�ict metric greater or equal to 0.005

w.r.t. to the global optima. In Fig. 3.8b, we can see that opt_fairness while achieving a

very good performance, has slightly more than double as many cases in which the abso-

lute di�erence in overlap fairness surpasses or equals 0.005. In addition, the maximum

absolute di�erence in the values of the local and global optima was lower than 0.1 in

both cases, with 0.066 for opt_fairness and 0.082 for opt_con�ict. Even though not

always able to �nd a global optimum, it is clear that both our heuristics display a very

good performance in optimizing for their primary goals.

99 3.4 Performance assessment of heuristics

0 500 1000 1500 2000 2500 3000
test cases

0.0

0.2

0.4

0.6

0.8

1.0

co
nf

lic
t m

et
ric

complete enum.
opt_conflict

(a) opt_con�ict

0 500 1000 1500 2000 2500 3000
test cases

0.0

0.2

0.4

0.6

0.8

1.0

ov
er

la
p

fa
irn

es
s

complete enum.
opt_fairness

(b) opt_fairness

Figure 3.7: Comparison of global optima of con�ict metric and overlap fairness with local
optima delivered by respectively opt_con�ict and opt_fairness.

0 50 100 150 200
test cases

0.05

0.10

0.15

0.20

0.25

co
nf

lic
t m

et
ric

complete enum.
opt_conflict

(a) opt_con�ict

0 100 200 300 400 500
test cases

0.6

0.7

0.8

0.9

1.0

ov
er

la
p

fa
irn

es
s

complete enum.
opt_fairness

(b) opt_fairness

Figure 3.8: Instances in which absolute di�erence between local and global optima equals
0.005 or greater.

3.4.6 Test set 1 - secondary optimization goals

In this section, we examine the results regarding the optimization of the secondary objec-

tive functions. The secondary objective function for opt_fairness is the con�ict metric

and for opt_con�ict the overlap fairness. We compare the results of both optimization

metrics with the results delivered by complete enumeration, i.e. global optima, as shown

in Fig. 3.9b and Fig. 3.9a . We can clearly see a large di�erence when compared to the

results for the primary optimization goals, as shown in Fig. 3.7b and Fig. 3.7a. Whereas

Chapter 3 Sensing schedules 100

with the primary goals we saw a convergence of the heuristic results towards the global

minima, we clearly see a divergence between global optima and the values delivered by

the two heuristics.

While for the primary optimization objectives the maximum di�erence between local

and global optima for both opt_con�ict and opt_fairness was below 0.1, the maximum

absolute di�erence between the overlap fairness values delivered by opt_con�ict and

the global optima is 0.7799 and the maximum absolute di�erence for the con�ict metric

delivered by opt_fairness is 0.91.

If we look at the similarity measures in Tab. 3.3, we can see that φMSE is in the order

of 104 times larger than in the primary case, and φg and φquasi are considerably lower than

in the primary cases. It is interesting to note that both opt_con�ict and opt_fairness

still found around 10% of the quasi-global minima (in the case of opt_con�ict these

quasi-global optima were even real global maxima for overlap fairness).

However, despite encountering about 10% of the cases in which it is possible to opti-

mize both metrics, the overall tendency for the remaining cases regarding the optimiza-

tion of secondary goals is for the heuristic curves and the the global optima curves to

diverge. This seems to indicate that neither local-search-based heuristics can reliably

optimize both objectives, i.e. con�ict metric and overlap fairness, at least for most cases,

which indicates that the objective functions are con�icting.

similarity opt_con�ict opt_fairness

φMSE 0.1365 0.14102
φg 0.1155 0
φquasi 0.1155 0.1073

Table 3.3: Comparison of similarity measures of secondary optimization goal results for
opt_con�ict and opt_fairness compared to complete enumeration.

101 3.4 Performance assessment of heuristics

0 500 1000 1500 2000 2500 3000
test cases

0.2

0.4

0.6

0.8

1.0

ov
er

la
p

fa
irn

es
s

complete enum.
opt_conflict

(a) opt_con�ict

0 500 1000 1500 2000 2500 3000
test cases

0.0

0.2

0.4

0.6

0.8

co
nf

lic
t m

et
ric

complete enum.
opt_fairness

(b) opt_fairness

Figure 3.9: Results of optimization of secondary goal compared to global optima.

3.4.7 Test set 2 - Primary goals

In this section, we analyze the results for test set 2 and whether these are in accordance

with the results regarding test set 1.

A quick visual inspection indicates a very similar performance of both opt_con�ict and

opt_fairness in test set 2 when compared to test set 1, see Fig. 3.10a and Fig. 3.10b. In

both cases we seem to have again found high quality solutions, many of which are global

optima. In Tab 3.4 we show the similarity values for test set 2, comparing both the global

optima and the solutions delivered by our heuristics. As shown, both heuristics were

able to �nd more than 82% of the quasi-global optima for their primary optimization

goals with φMSE in the order of 10−4. In addition, in only fewer than 250 test instances

did opt_fairness and opt_con�ict deliver a solution with a quality worse than the global

one by equal to or more than 0.005, see Fig. 3.11a and 3.11b.

similarity opt_con�ict opt_fairness

φMSE 10.13 · 10−5 6.06 · 10−5

φg 0.499 0.809
φquasi 0.825 0.828

Table 3.4: Comparison of similarity measures of results for opt_con�ict and opt_fairness
on test set 2 compared to complete enumeration.

Chapter 3 Sensing schedules 102

0 200 400 600 800
test cases

0.0

0.2

0.4

0.6

0.8

1.0

co
nf

lic
t m

et
ric

complete enum.
opt_conflict

(a) opt_con�ict

0 200 400 600 800
test cases

0.0

0.2

0.4

0.6

0.8

1.0

ov
er

la
p

fa
irn

es
s

complete enum.
opt_fairness

(b) opt_fairness

Figure 3.10: Comparison of global optima of con�ict metric and overlap fairness with
local optima delivered by respectively opt_con�ict_ils and opt_fairness
run on test set 2.

0 20 40 60 80 100 120 140
test cases

0.00

0.05

0.10

0.15

0.20

0.25

co
nf

lic
t m

et
ric

complete enum.
opt_conflict

(a) opt_con�ict

0 50 100 150 200
test cases

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
ov

er
la

p
fa

irn
es

s
complete enum.
opt_fairness

(b) opt_fairness

Figure 3.11: Local optima delivered by opt_con�ict and opt_fairness compared to global
optima on test set 2 with absolute di�erence between optima equals 0.005
or higher.

3.4.8 Test set 2 - Secondary goals

With regards to the secondary goals we do not see much di�erence when compared to

test set 1 (see Fig. 3.12b and Fig. 3.12a). Still we see a great divergence between

values delivered by the heuristics and the global optima. In fact, this seems to con�rm

that con�ict metric and overlap fairness are for most of the cases con�icting objective

103 3.4 Performance assessment of heuristics

functions. In this test set, both opt_con�ict and opt_fairness were able to �nd around

3% quasi-global optima for their secondary optimization goals.

metric opt_con�ict opt_fairness

φMSE 0.1971 0.163741
φg 0.03842 0
φquasi 0.0384 0.0288

Table 3.5: Results for overlap fairness delivered by opt_con�ict and con�ict metric de-
livered by opt_fairness compared to global optima of test set 2.

0 200 400 600 800
test cases

0.2

0.4

0.6

0.8

1.0

ov
er

la
p

fa
irn

es
s

complete enum.
opt_conflict

(a) opt_con�ict

0 200 400 600 800
test cases

0.0

0.2

0.4

0.6

0.8
co

nf
lic

t m
et

ric

complete enum.
opt_fairness

(b) opt_fairness

Figure 3.12: Results of optimization of secondary goal compared to global optima on
test set 2.

3.4.9 Investigating divergences from optimal solutions

Even though the performance of our heuristics for their primary goals is already promis-

ing, we still have enough divergence from the optimal curve delivered by complete enu-

meration, since both opt_conflict and opt_fairness do not always reach the global

optima.

Trying to determine whether we can identify any of the shortcomings of our heuristics,

we started investigating the construction of sensing schedules performed by them. To

better examine the di�erences between sub-optimal sensing schedules constructed by our

algorithm and optimal ones delivered by a complete enumeration, we started analyzing

for multiple test cases the swaps needed to move from any given sub-optimal schedule,

Chapter 3 Sensing schedules 104

delivered by one of our heuristics, to one of its optimal permutations. For this purpose,

we have implemented a graphical application (with help of the Qt widget toolkit), in

which we are able to visualize all relevant swaps, both the swaps performed by our

heuristics from a starting seed solution to a �nal sensing schedule and those needed to

get from a local optimum to a global one (see Fig. 3.13). This helped us quickly identify

some of the pain points of using our local-search-based algorithm.

As seen in Fig. 3.13, we computed a series of moves needed to move the local optimum

delivered by opt_con�ict to a global optimum. In order to arrive at the optimal sensing

schedule

ssens = [8, 1, 10, 2, 3, 4, 9, 11, 12, 5, 7, 6]

with the minimal con�ict metric value of 0.15573, starting from local optimum

s?sens = [8, 1, 12, 4, 5, 6, 7, 10, 9, 11, 2, 3]

with con�ict metric value of 0.219312, we have to �rst perform a permutation that

worsens the con�ict metric, followed by four permutations that dot not a�ect the value

of the con�ict metric at all, and only then by applying successive improving moves we

reach the global minimum, i.e.

ssens = [8, 1, 10, 2, 3, 4, 9, 11, 12, 5, 7, 6]

In fact, we can see that we have at least four possible global optima w.r.t. con�ict

metric.

This seems to point us in the right direction. According to our investigations, the

global minima we seem to be missing can be reached through what we will call non-

improving moves. These moves are either neutral moves, i.e. swaps that leave the

optimization metric at its current value or worsening moves, i.e. swaps that worsen the

optimization metric.

It is hence quite clear why our heuristics cannot always reach global optima, since by

using a greedy approach, in which every valid move has to either increase or decrease one

of the optimization metrics, we eventually miss some needed intermediate non-improving

moves. This means that in such cases our heuristics stay stuck in local minima.

105 3.5 Improving local minima

Figure 3.13: Converging from solution constructed by our heuristic to an optimal solu-
tion generated by complete enumeration.

3.5 Improving local minima

Ours is a combinatorial optimization problem: we want to either maximize or minimize

our chosen optimization criteria, i.e. overlap fairness and con�ict metric, given a set of

constraints, i.e. a �xed set of channels and a current communication schedule.

As seen in the previous section, our basic algorithm has one major drawback when

compared to complete enumeration: even though it quickly converges to an optimum,

this optimum might be only a local one. Escaping from a local optimum to a better one

(possibly a global one) is not trivial.

3.5.1 Random restart

Randomness is a key component to solve many combinatorial optimization problems

[Wal99], among which SAT and graph coloring are prominent examples.

In fact, one of the easiest ways to try to escape from a local minimum is to begin a

new local search from another random starting point. This yields multiple local minima

that are independently generated. This approach could be interpreted as a softer variant

of a complete enumeration approach. While in theory multiple trials increase the prob-

ability of reaching a better local minimum [LMS10] empirical studies have shown that

it is almost impossible to improve a local minimum generated by local search through

random restarts even by a small percentage of the typical cost, e.g. the values of con-

�ict metric and overlap fairness delivered by respectively opt_con�ict and opt_fairness.

Chapter 3 Sensing schedules 106

This happens because local search approaches tend to produce a mean that is a �xed

percentage worse than the global optimum and the optimization metric values peak ar-

bitrarily around the mean when the input size goes to in�nity. This means, by random

sampling the solution space one has a decreasing probability of �nding better solutions

as the size of the problem instance increases. Hence, a sensible approach to e�ectively

reach some of the better solutions is to perform a biased sampling of the solution space.

3.5.2 Iterated local search

In our case, this biased sampling of the solution space, i.e. the set of all possible sensing

schedules, will be achieved through a stochastic search following an iterated local search

(ILS) metaheuristic. Metaheuristics are general-purpose solution �nding frameworks and

many di�erent ones were proposed in the literature for solving combinatorial problems.

The basic idea behind ILS is to construct a chain of solutions by re-applying a

core heuristic, usually in a reduced solution space, such that solutions are improved

iteratively. Iterated local search has been used in many di�erent contexts and has

been re-discovered multiple times under many di�erent names such as iterated de-

scent [Bau86], iterated Lin-Kernighan [Joh90], chained local optimization [MO96] and

large-step Markov chains [MOF91], to name a few. In fact, iterated local search is usu-

ally applied to local searches, but any underlying optimizer may be embedded within

this metaheuristic [LMS19].

To improve local minima delivered by our basic heuristics we apply the ILS meta-

heuristic as follows (see Fig. 3.14):

1. We �rst compute an initial solution s′sens with one of our greedy local search

heuristics.

2. Perturb the constructed solution, arriving at intermediate state s?.

3. Re-apply our local search to the perturbed state.

4. Accept the new solution s′′, if it is better than the original solution s′sens with

respect to the optimization criteria.

5. We then repeat this procedure until a given termination condition is met, which

means a given exploration budget is used up.

Regarding the initial solution to be handed to the ILS procedure, we have decided

to start with a local optimum delivered by one of our local-search-based heuristics, as

107 3.5 Improving local minima

TerminationLocal Search Perturbation
SolutionSeed

solution

Perturbed
solution

(new seed)

Final
solution

Figure 3.14: Diagram showing the basic idea of the iterated local search.

this often helps reaching better local optima [LMS10]. Nonetheless, depending on the

optimized problem, starting with random solutions might gain the upper-hand compared

to greedy initial solutions, as shown in [JM08] in the context of solving the Traveling

Salesman Problem (TSP) with the Clarke-Wright savings heuristic where random initial

solutions led to slightly better tour quality on average. As a short aside, the TSP

has strong similarities to our optimization problem. Given N cities {c1, c2, . . . cN} with
distances d(ci, cj) between every pair of cities (ci, cj), the TSP can be de�ned as �nding

a permutation π (an order in which to visit the cities) such that the tour length, i.e.

d(cπ(N), cπ(1)) +
∑N−1

i=1 d(cπ(i), cπ(i+1)), is minimized.

Another essential component in the ILS-based approach is the perturbation. In the con-

text of our optimization problem, a perturbation is any move that allows us to move from

the current solution to a neighbor solution that cannot be reached with opt_conflict or

opt_fairness. Since our local searches are greedy and only make improving moves this

can be achieved by having a perturbation be a sequence of non-improving moves.

In addition, the exploration budget can take many forms. An imaginable termination

condition would be reaching a target optimization metric value or reaching a target

percentage improvement with respect to the original solution. It is not trivial though to

compute such a target beforehand and due to the nature of the problem it is not possible

to determine a priori whether a chosen target is reachable or not. Other possible forms

of such an exploration budget are for example restrictions on the total running time or

on the number of times a local search should take place.

In order to assess the performance of ILS on top of our heuristics we implemented

an iterated local search variant of each of our basic heuristics: opt_conflict_ils and

opt_fairness_ils. In this implementation, we de�ne our exploration budget through

two parameters that guarantee the termination of our algorithm. These parameters

are nswaps and npert, respectively the number of swaps that take place within each per-

turbation and the total number of perturbations that take place before our algorithm

�nishes.

Chapter 3 Sensing schedules 108

This means that for each of the ILS variants, every perturbation of a sensing schedule

s′sens consists of nswaps channel swaps that might either worsen the chosen optimization

metric or keep this optimization metric unchanged. The new perturbed schedule s? is

then used as a new starting point for either opt_con�ict or opt_fairness, which then

attempts to �nd a better sensing schedule s′′, i.e. closer to the global optimum (see

Fig. 3.15). In total, we perform npert perturbations starting with the original solution

delivered by the underlying local search heuristic.

perturbation

Σconflict

solution space S

s′sens

s?

s′′

Figure 3.15: Iterated local search with embedded opt_con�ict: a constructed solution
s′sens is perturbed to an intermediate state s? from which we can search for
another solution s′′, such that Σconflict(s

′
com, s

′′) < Σconflict(s
′
com, s

′
sens).

Ideally, perturbations should have a random component since deterministic changes

to the current solution might lead to shorter cycles. This means, by adding randomness

to the ILS-based heuristics, we convert the traversal of the solution space into stochastic

local searches. To achieve this, for every swap in a perturbation, we randomly choose

a slot x and make the �rst non-improving move (x, y) we can �nd. As we re-run the

appropriate heuristic after each perturbation, we always keep the best solution of all

attempts.

In fact, the e�ectiveness of ILS biased sampling of the solution space is highly de-

pendent on the optimization problem at hand and the chosen acceptance criterion for

intermediate solutions. For instance, some techniques might take into account not only

109 3.5 Improving local minima

the quality of these candidate solutions but also the history of the already visited so-

lutions. Whereas random walks accept any intermediate solutions, thereby prioritizing

diversi�cation over intensi�cation of the search process, our approach uses a Markovian

acceptance criterion. This means that no history is considered and that only better can-

didate solutions than the current best one are accepted. Alternative approaches might

use acceptance criteria that fall in between ours and random walks. One such approach

uses large-step Markov chains [MOF91], in which a new candidate solution s′ can be

accepted with probability paccept.

paccept =

{
1 if q(s′) > q(s)

e−
|q(s′)−q(s)|

T if q(s′) ≤ q(s)

where s is the current candidate solution and q(s′) and q(s) are respectively the qualities

of s′ and s w.r.t. an optimization goal. This acceptance criterion follows a simulated an-

nealing approach and the time-varying temperature parameter T can be lowered during

the iterated search, restricting the diversi�cation of the search process as it progresses.

This way, as T decreases, the search increasingly prioritizes improving solutions over

non-improving ones.

Even though such a simulated annealing approach might be attractive and display

good performance in di�erent contexts, it adds complexity to the optimization problem

and increases the number of parameters to be �ne-tuned. We have hence opted for a

simpler acceptance criterion, in which non-improving candidate solutions are discarded.

However, as our results will show later in this chapter, we have obtained very impressive

results, which seems to indicate that we have made a good choice w.r.t. the acceptance

criterion. It is worth noting that for problems in which instances might get much larger,

e.g. with hundreds or thousands of slots, more diversi�cation might be needed during

the sampling of the solution space to achieve similar results.

With Alg. 3 and its associated sub-routines Alg. 4, Alg. 5 and Alg. 6, we summarize

our ILS implementation.

One of the main di�culties of the ILS approach is �ne-tuning the perturbations to

improve the local minima. If the perturbation is too large we lose any bias in our

sampling of the solution space and end up degenerating into random restarts. On the

other hand, if the perturbation is too small we may walk in cycles returning to the original

solution. In addition, minimally worsening swaps might get us stuck on a plateau, i.e. a

region where all neighbors have the same values for the objective function. Later in this

Chapter 3 Sensing schedules 110

Algorithm 3 Iterated Local Search

1: function ILS(scom, C, h) . h ∈ {opt_conflict, opt_fairness}
2: s

(0)
sens ← ConstructSeedSolution(C)

3: s′com, s
(0)′
sens ← AlignSchedules(scom, s

(0)
sens)

4: s
(0)′
sens ← LocalSearch(s′com, s

(0)′
sens, h) . Initial solution

5: n← 0
6: repeat
7: s? ← Perturbation(s′com, s

(0)′
sens, h) . see Alg. 4

8: s′′ ← LocalSearch(s′com, s
?, h)

9: s
(0)′
sens ← Better(s′com, s

(0)′
sens, s′′, h)

10: n← n+ 1
11: until n = nperturbations
12: s′sens ← s

(0)′
sens

13: end function

Algorithm 4 Perform nswaps swaps on s
(0)′
sens

1: function Perturbation(s′com, s
(0)′
sens, h)

2: s? ← s
(0)′
sens

3: n← 0
4: repeat
5: x← GetRandomBetween(1, |s?|)
6: y ← 1
7: repeat
8: y ← y + 1
9: until no_improvement(x, y, s′com, s

?, h) . see Alg. 5
10: s? ← fswitch(s

?, x, y)) . Swap slot x with y
11: n← n+ 1
12: until n = nswaps
13: return s?

14: end function

section, we will explore di�erent parameter settings and assess the resulting performance

of each of these settings w.r.t. the quality of the obtained sensing schedules.

It is also worth noting that even though picking the positions to make a swap might

be random, one possible optimization would be to add a tabu rule in order to avoid

going back to a permutation we have already visited in the current chain of swaps. This

requires some bookkeeping and consequently yields a higher demand for memory but

could improve the speed of convergence to a better optimum.

111 3.5 Improving local minima

Algorithm 5 Check that swap (x,y) does not improve primary optimization metric

1: function no_improvement(x, y, s′com, s
?, opt_metric)

2: st ← fswitch(s
?, x, y))

3: old_metric = ComputeMetric(s′com, s
?, h)

4: new_metric = ComputeMetric(s′com, st, h)
5: if h = opt_conflict then
6: return new_metric ≥ old_metric
7: else
8: return new_metric ≤ old_metric
9: end if
10: end function

Algorithm 6 Decide whether s′′ is better than s(0)′
sens w.r.t. the primary optimization

goal

1: function better(s′com, s
(0)′
sens, s′′, h)

2: old_metric = ComputeMetric(s′com, s
(0)′
sens, h)

3: new_metric = ComputeMetric(s′com, s
′′, h)

4: if h = opt_conflict then
5: return new_metric < old_metric
6: else
7: return new_metric > old_metric
8: end if
9: end function

3.5.3 Implementing randomness

As already mentioned, one of the key additions to our original implementation is ran-

domness. As a matter of fact, we would like for the randomly chosen swap positions

during each perturbation to be serially uncorrelated. Ideally our random number gener-

ator would have an in�nite period (the series of generated numbers would never cycle)

and the generated sequence of integers should be uniform and unbiased. For practical

reasons we make use of a pseudo-random generator (PRNG). Even though PRNGs do

not provide real randomness, we can pick one that provides us with cycles of integers with

a large enough period. In fact, we have opted for using a Mersenne Twister (MT19937),

which not only has a very large period of 219937−1, but also produces a statistically uni-

form distribution of values and has been shown in the literature to produce high-quality

pseudo-random sequences [HS05]. By using the MT19937 we have an e�cient random

number generator that all in all should be good enough for our purposes. It is also worth

Chapter 3 Sensing schedules 112

noting that there is no evidence in the literature whether real randomness would bring

any advantage over state-of-the-art PRNGs such as the Mersenne Twister.

3.5.4 Time complexity

With the addition of ILS, we increase the run time of each generation of a sensing

schedule, since by construction our ILS algorithm terminates after running npert + 1

local searches. Nonetheless, we are interested in �nding out, whether we also increase

the asymptotic time complexity class of our heuristics. Hence, we will calculate the time

complexity of our algorithm with and without ILS.

We have following elements involved in our problem:

1. The set of all nc channnels, C = {c1, c2, . . . , cnc}.

2. A communication schedule scom, with |scom| = n.

3. A seed sensing schedule s(0)
sens = [c1, c2, c3, . . . cnc]

This means that in the worst case, i.e. when nc and n are co-prime, the aligned versions

of the communication schedule s′com and of the seed sensing schedule s(0)′
sens have nc · n

elements.

In the basic version of our heuristics (opt_con�ict or opt_fairness), every element

yields at least a whole scan of s′com and s′sens (in order to �nd the swap positions needed to

improve the chosen optimization metrics). This means the basic version of our algorithm

is O((nc ∗ n)2) = O(n2).

By adding the ILS variant on top of it, we run our basic heuristic once and then

perform npert perturbations with nswaps each and re-run our basic heuristic for each

perturbation, which means opt_conflict_ils or opt_fairness_ils are:

O(n2) +npert · (O(n2) +nswaps) =O(n2).

This means that even though the ILS-based variants take longer to terminate than

the original heuristics, the asymptotic time complexity remains the same.

3.5.5 Experimental results

In this section, we will analyze the results of multiple conducted experiments in order

to assess the performance of the ILS heuristic variants.

113 3.5 Improving local minima

First impressions

We ran opt_con�ict_ils and opt_fairness_ils on test set 1 and compared their results

with our basic heuristics to assess whether any signi�cant improvements appear. With

a quick visual inspection, we can clearly see the improvements in con�ict delivered by

opt_con�ict_ils (see Fig. 3.16b) when compared to opt_con�ict (see Fig. 3.16a).

Similar results were obtained for overlap fairness (see Fig. 3.17a and Fig. 3.17b). Both

ILS variants were run with npert = 5 and nswaps = 2. It is clear to see that using iterated

local search introduced clear improvements to local minima compared to those delivered

by our basic heuristics.

0 50 100 150 200
test cases

0.05

0.10

0.15

0.20

0.25

co
nf

lic
t m

et
ric

complete enum.
opt_conflict

(a) opt_con�ict

0 50 100 150 200
test cases

0.05

0.10

0.15

0.20

0.25
co

nf
lic

t m
et

ric

complete enum.
opt_conflict_ils

(b) opt_con�ict_ils

Figure 3.16: Test cases where absolute di�erence in con�ict metric between global and
local optima is 0.005 or higher. As shown, opt_con�ict_ils brings a clear
improvement and has far fewer such cases (about a fourth of the number of
cases for opt_con�ict).

Chapter 3 Sensing schedules 114

0 100 200 300 400 500
test cases

0.6

0.7

0.8

0.9

1.0

ov
er

la
p

fa
irn

es
s

complete enum.
opt_fairness

(a) opt_fairness

0 100 200 300 400 500
test cases

0.6

0.7

0.8

0.9

1.0

ov
er

la
p

fa
irn

es
s

complete enum.
opt_fairness_ils

(b) opt_fairness_ils

Figure 3.17: Test cases where absolute di�erence in overlap fairness between global and
local optima is 0.005 or higher. As we can see, opt_fairness_ils has far
fewer such cases (a �fth of the number of cases for opt_fairness).

3.5.6 Parameter exploration

In this section, we explore di�erent parameter con�gurations w.r.t. nswaps and npert and

analyze the resulting e�ects on the performance of our heuristics.

As previously mentioned, by using a greedy approach in both our local search heuris-

tics, we are biased towards improving solutions. Introducing some randomness as well

as non-improving moves with the ILS approach allows for some lateral movement within

the solution space. Essentially, the farther we move within the neighborhood of a given

solution, the larger the expected change in the value of the optimization metric. To de-

termine how much lateral movement is still meaningful, it is essential to explore di�erent

parameter con�gurations. If our intuition is correct, there is a correlation between the

quality of neighboring solutions, i.e. good solutions lie close to each other in the solution

space and adding too much variation (nswaps is too high) might even be detrimental to

the quality of the solutions, given a �xed number of perturbations npert.

Varying npert

First, we want to investigate the e�ects of varying the total number of perturbations npert
(while keeping nswaps constant) when constructing a sensing schedule with one of the

ILS variants. For this purpose, we run both opt_con�ict_ils and opt_fairness_ils on

test set 1 with npert ∈ {5, 10, 20} and nswaps = 2. As we can see in Figures 3.18a, 3.18b,

and 3.18c there is a progressive improvement in con�ict metric when increasing npert

115 3.5 Improving local minima

from 5 to 10 and then to 20. If we take a look at Tab. 3.6, we can see an improvement in

all similarity measurements when increasing the number of perturbations. For instance,

whereas with the basic heuristic opt_con�ict we only reached about 43% of the global

optima, with npert = 20 we reached around 77% of all global optima.

0 10 20 30 40 50
test cases

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

co
nf

lic
t m

et
ric

complete enum.
opt_conflict_ils

(a) npert = 5

0 10 20 30 40 50
test cases

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

co
nf

lic
t m

et
ric

complete enum.
opt_conflict_ils

(b) npert = 10

0 10 20 30 40 50
test cases

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

co
nf

lic
t m

et
ric

complete enum.
opt_conflict_ils

(c) npert = 20

Figure 3.18: Test cases in which absolute di�erence between global and local optima of
con�ict metric is is 0.005 or higher. opt_con�ict_ils is run with npert ∈
{5, 10, 20} and nswaps = 2 on test set 1. As shown, the number of test cases
nearly halves when doubling npert.

In Figures 3.19a, 3.19b, and 3.19c, we can see a similar improvement when optimizing

the overlap fairness with increasing number of perturbations. Again, as we can see in

Tab. 3.7, there were improvements in all similarity measurements, and the percentage

of found global optima went from 85.3% with npert = 0 to 98.7% when npert = 20.

Chapter 3 Sensing schedules 116

similarity opt_con�ict npert = 5 npert = 10 npert = 20

φg 0.429201 0.684393 0.742920 0.773128
φMSE 0.000065 0.000015 0.000006 0.000004
φquasi 0.915041 0.976715 0.987728 0.992763
max. abs. di�erence 0.081693 0.052204 0.052204 0.052204

Table 3.6: Comparison of opt_con�ict and opt_con�ict_ils with nswaps = 2 and npert ∈
{5, 10, 20}.

similarity opt_fairness npert = 5 npert = 10 npert = 20

φg 0.853052 0.967590 0.978918 0.986784
φMSE 0.000055 0.000008 0.000004 0.000002
φquasi 0.857143 0.970107 0.980806 0.988043
max. abs. di�erence 0.065840 0.028593 0.028593 0.025427

Table 3.7: Comparison of opt_fairness and opt_fairness_ils with nswaps = 2, npert ∈
{5, 10, 20}.

117 3.5 Improving local minima

0 20 40 60 80 100
test cases

0.70

0.75

0.80

0.85

0.90

0.95

ov
er

la
p

fa
irn

es
s

complete enum.
opt_fairness_ils

(a) npert = 5

0 20 40 60 80 100
test cases

0.70

0.75

0.80

0.85

0.90

0.95

ov
er

la
p

fa
irn

es
s

complete enum.
opt_fairness_ils

(b) npert = 10

0 20 40 60 80 100
test cases

0.70

0.75

0.80

0.85

0.90

0.95

ov
er

la
p

fa
irn

es
s

complete enum.
opt_fairness_ils

(c) npert = 20

Figure 3.19: Comparison of overlap fairness values delivered by complete enumeration
and opt_fairness_ils with npert ∈ {5, 10, 20} and nswaps = 2 on test set 1
on test cases where absolute di�erence between global and local optima is
0.005 or higher. As shown, the number of such cases is more than halved
by doubling npert.

Chapter 3 Sensing schedules 118

Varying nswaps

Now, we will analyze the e�ects on the optimization results when keeping the number or

perturbations constant while applying di�erent strength values to each perturbation, i.e.

di�erent nswaps values. As we can see in Figures 3.21a, 3.21b, and 3.21c, it is possible to

see some improvement in the con�ict metric through visual inspection alone, but it is not

as clear cut as when varying npert. If we look at Tab. 3.8, we can see that even though

all ILS variants display a signi�cant improvement in comparison to the basic heuristic,

increasing the strength of the perturbation does not always yield better results in the

similarity measures. Even though nswaps = 6 found the most global optima, the overall

quality from the delivered near-optimal solutions su�ered when compared to nswaps = 4

(φMSE almost doubled). We can see in Tab. 3.9 that the results for the opt_fairness_ils

were very similar, though while we see very similar results w.r.t. φg and φquasi (see

Fig. 3.22a, 3.22b and 3.22c) there is a clear deterioration in φMSE when increasing

nswaps. This seems to indicate that there is an optimal spot to be hit with regards to

the strength of the perturbation. In addition, very similar results were obtained when

running opt_con�ict and opt_fairness and its ILS variants with the same test instances

but with less perturbations, i.e. npert = 5. Note that using nswaps = 6 is equivalent to

making 6 random swaps out of 8 slots (in test set 1), which amounts to modifying at

most 75% of any candidate solution, which in some cases seems to be too excessive . In

fact, with every swap in a perturbation we accept moves that either worsen the metric

or keep it at its current value. This means that increasing the number of swaps per

perturbation might worsen the current local optimum a bit too much having a negative

e�ect in the total improvement of the �nal local optimum. If a better local optimum

lies close to the sensing schedule being perturbed, the probability of �nding it should be

higher by using fewer swaps given the same number of perturbations. We illustrate this

e�ect in Fig. 3.20.

However, it appears to be possible to compensate for this solution quality deterio-

ration e�ect caused by excessively increasing nswaps by also increasing the number of

perturbations, as shown in Tab. 3.10. Nonetheless, this approach seems to waste more

resources (run time) than it is worth for the very small increase in solution quality.

Moreover, we performed similar experiments on test set 2 as well as on test set 1 with

di�erent seeds for the random number generator to account for small e�ects resulting

from randomness. All experiments resulted in very similar results.

119 3.5 Improving local minima

cost

solution space S

s?

s′a

s′′a

s′′b

s′b

Figure 3.20: Illustration of the possible e�ects of too strong perturbations, i.e. too many
swaps per perturbation, can lead to an improved local optimum s′′a but not
as good as s′′b .

similarity opt_con�ict nswaps = 2 nswaps = 4 nswaps = 6

φMSE · 106 77.948 6.265 3.7456 5.9899
φg 0.4218 0.7386 0.7796 0.7848
φquasi 0.9085 0.9864 0.9920 0.9889

Table 3.8: Comparison of opt_con�ict_ils with npert = 10 and nswaps ∈ {2, 4, 6}.

similarity opt_fairness nswaps = 2 nswaps = 4 nswaps = 6

φMSE · 106 58.598 2.8052 4.7031 5.28499
φg 0.8557 0.9840 0.9819 0.97705
φquasi 0.8599 0.9857 0.9840 0.9788

Table 3.9: Comparison of opt_fairness_ils with npert = 10 and nswaps ∈ {2, 4, 6}.

similarity opt_con�ict nswaps = 2 nswaps = 4 nswaps = 6

φMSE · 106 77.948 6.555 3.249 2.0924
φg 0.4218 0.7688 0.8119 0.8179
φquasi 0.9085 0.9898 0.9920 0.9910

Table 3.10: Comparison of opt_con�ict_ils with npert = 20 and nswaps ∈ {2, 4, 6}.

Chapter 3 Sensing schedules 120

0 5 10 15 20 25
test cases

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

co
nf

lic
t m

et
ric

complete enum.
opt_conflict_ils

(a) nswaps = 2

0 5 10 15 20 25
test cases

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

co
nf

lic
t m

et
ric

complete enum.
opt_conflict_ils

(b) nswaps = 4

0 5 10 15 20 25
test cases

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

co
nf

lic
t m

et
ric

complete enum.
opt_conflict_ils

(c) nswaps = 6

Figure 3.21: Comparison of con�ict metric values delivered by opt_con�ict_ils with
nswaps ∈ {2, 4, 6} and npert = 10 on test set 1 with test cases where the
absolute di�erence between global and local optima is 0.005 or higher.

121 3.5 Improving local minima

0 5 10 15 20 25 30 35 40
test cases

0.70

0.75

0.80

0.85

0.90

0.95

ov
er

la
p

fa
irn

es
s

complete enum.
opt_fairness_ils

(a) nswaps = 2

0 5 10 15 20 25 30 35 40
test cases

0.70

0.75

0.80

0.85

0.90

0.95

ov
er

la
p

fa
irn

es
s

complete enum.
opt_fairness_ils

(b) nswaps = 4

0 5 10 15 20 25 30 35 40
test cases

0.70

0.75

0.80

0.85

0.90

0.95

ov
er

la
p

fa
irn

es
s

complete enum.
opt_fairness_ils

(c) nswaps = 6

Figure 3.22: Comparison of overlap fairness values delivered by opt_fairness_ils with
nswaps ∈ {2, 4, 6} and npert = 10 on test set 1 where the absolute di�erence
between global and local optima is 0.005 or higher. As shown, increasing
nswaps has lead either to a similar or worse performance.

Chapter 3 Sensing schedules 122

Combining di�erent nswaps values

To further explore the limits of our ILS-based heuristics, we have implemented two ad-

ditional ILS variants, namely opt_con�ict_ils_best and opt_fairness_ils_best, where

we take a list of di�erent parameter combinations (nswaps, npert), run our ILS approach

for every combination and take the best result w.r.t. the chosen optimization metric,

e.g. nswaps ∈ {2, 4, 6} and npert = 10. As seen in Fig. 3.23 and 3.24a, the end results are

quite impressive. In Fig. 3.23c, for instance, we can barely see any divergence between

the optimal curve and opt_con�ict_ils_best (only 6 test cases displayed an absolute

di�erence to the global optima that equaled or surpassed 0.001). This is further con-

�rmed by the similarity metrics shown in Tab. 3.11. We can see, for instance, that

φMSE got better by an order of magnitude when compared to all attempts where only

a single number of swaps was used. A similar, if only not as strong, improvement was

also observed with opt_fairness_ils_best, as shown in Tab. 3.12 and Fig. 3.24.

similarity opt_con�ict nswaps = 2 nswaps = 4 nswaps = 6 ils_best

φMSE · 106 77.948 6.265 3.7456 5.9899 0.4473
φg 0.4218 0.7386 0.7796 0.7848 0.8479
φquasi 0.9085 0.9864 0.9920 0.9889 0.9987

Table 3.11: Comparison of opt_con�ict with opt_con�ict_ils and
opt_con�ict_ils_best for npert = 10 and nswaps ∈ {2, 4, 6}.

metric opt_fairness nswaps = 2 nswaps = 4 nswaps = 6 ils_best

φMSE · 106 77.948 2.8052 4.7031 5.285 1.3375
φg 0.4218 0.9840 0.9819 0.977 0.9920
φquasi 0.9085 0.9857 0.9840 0.9788 0.9926

Table 3.12: Comparison of opt_fairness with opt_fairness_ils and
opt_fairness_ils_best with npert = 10 and nswaps ∈ {2, 4, 6}.

123 3.5 Improving local minima

0 200 400 600 800 1000 1200
test cases

0.05

0.10

0.15

0.20

0.25

0.30

0.35

co
nf

lic
t m

et
ric

complete enum.
opt_conflict

(a) npert = 0, nswaps = 0

0 200 400 600 800 1000 1200
test cases

0.05

0.10

0.15

0.20

0.25

0.30

0.35

co
nf

lic
t m

et
ric

complete enum.
opt_conflict_ils_best

(b) npert = 5, nswaps ∈ {2, 4, 6}

0 200 400 600 800 1000 1200
test cases

0.05

0.10

0.15

0.20

0.25

0.30

0.35

co
nf

lic
t m

et
ric

complete enum.
opt_conflict_ils_best

(c) npert = 10, nswaps ∈ {2, 4, 6}

Figure 3.23: Comparison of basic opt_con�ict_ils and opt_con�ict_ils_best with
nswaps ∈ {2, 4, 6} and npert = 10 with absolute di�erence between local
and global optimal greater or equal to 0.001.

Chapter 3 Sensing schedules 124

0 200 400 600 800 1000 1200 1400
test cases

0.6

0.7

0.8

0.9

1.0

ov
er

la
p

fa
irn

es
s

complete enum.
opt_fairness

(a) npert = 0, nswaps = 0

0 200 400 600 800 1000 1200 1400
test cases

0.6

0.7

0.8

0.9

1.0

ov
er

la
p

fa
irn

es
s

complete enum.
opt_fairness_ils_best

(b) npert = 5, nswaps ∈ {2, 4, 6}

0 200 400 600 800 1000 1200 1400
test cases

0.6

0.7

0.8

0.9

1.0

ov
er

la
p

fa
irn

es
s

complete enum.
opt_fairness_ils_best

(c) npert = 10, nswaps ∈ {2, 4, 6}

Figure 3.24: Comparison of basic opt_fairness_ils and opt_fairness_ils_best with
nswaps ∈ {2, 4, 6} and npert = 10 with absolute di�erence between local
and global optimal greater or equal to 0.001.

125 3.6 Solution constraints w.r.t. primary con�icts

3.6 Solution constraints w.r.t. primary con�icts

In this section, we derive some constraints, delivered through a collection of theorems and

associated proofs, regarding the solution of primary con�icts between communication

and sensing schedules.

Theorem 3.6.1. If a sensing schedule is constructed by our opt_conflict heuristic, any

primary con�icts present in the schedule are primary con�icts of the same channel.

Proof. For one remaining primary con�ict, our property holds trivially. To prove it holds

for n > 1 primary con�icts we will use a proof by induction with a reductio ad absurdum

argument.

1. First, assume our theorem holds for n primary con�icts, i.e. all con�icts are of

channel ci. Then, we have to show it holds for n+ 1.

2. If we add another con�ict of the same channel, our theorem holds trivially.

3. On the other hand, if we assume the (n + 1)-th unsolvable primary con�ict is of

channel cj 6= ci, we can switch one of the primary con�icts of ci with cj. This

clearly lowers the con�ict metric and solves both unsolvable primary con�icts of

ci and cj, which is a contradiction, ergo all unsolvable primary con�icts are of the

same channel.

De�nition 3.6.1. Let n(c, s) denote the number of slots in which channel c occurs in

schedule s. We de�ne the usage u(c, s) of channel c in schedule s as the fraction of the

total slots in s in which channel c appears, i.e.

u(c, s) =
n(c, s)

|s|

From the de�nition it follows
∑
c∈C

u(c, s) = 1.

Theorem 3.6.2. Given a a set of n channels C = { c1, . . . , cn }, a communication

schedule s′com and a balanced seed sensing schedule s
(0)′
sens, aligned with s′com, we can derive

a sensing schedule s′sens, primary-con�ict-free w.r.t. s
′
com, if and only if

∀c ∈ C : u(c, s′com) ≤ n− 1

n
(3.7)

Chapter 3 Sensing schedules 126

Example 3.6.1. Given a set of channels C = { c1, c2, c3 }, a communication schedule

s′com = [c1, c2, c1] aligned with a seed sensing schedule s(0)′
sens = [c1, c2, c3], it is possible

to solve all primary con�icts as shown below:

s′com = [c1, c2, c1]

s′sens = [c2, c1, c3]

In fact, we have

u(c1, s
′
com) =

2

3

u(c2, s
′
com)) =

1

3

u(c3, s
′
com) = 0

This means, all channels c ∈ {c1, c2, c3} clearly satisfy (3.7), i.e.

∀c ∈ C. u(c, s′com) ≤ 2

3

Proof. We will start by proving that (3.7) is necessary for eliminating all primary con-

�icts. Afterwards, we will show that (3.7) is also su�cient to guarantee that we can

solve all primary con�icts.

In Tab. 3.13, we show a summary of some relevant notation and expressions that will

appear during our proof.

Expression Description

nslots |s′com|
u(c, s′com) · nslots Number of slots in s′com where

channel c occurs
(1− 1

n
) · nslots Number of slots in s′sens where c

does not occur

Table 3.13: Notation and expressions relevant for proving Theorem 3.6.2.

For our argument, we will use the Dirichlet's box principle, also known as the pi-

geonhole principle. This principle though quite simple to grasp is a very powerful tool

that �nds applications throughout combinatorial mathematics and number theory. It

127 3.6 Solution constraints w.r.t. primary con�icts

basically states that if we want to distribute (n + 1) objects into n boxes then at least

one box is �lled by two or more objects.

Given c ∈ C a channel with primary con�icts, we assume the number of slots in s′com
where c occurs is greater than the number of slots in s′sens where c does not occur. This

means that to eliminate all primary con�icts, we need at least one slot in s′sens, where

a channel c? 6= c occurs, to be aligned with two slots in s′com where c occurs, which is

impossible. This means that under the assumed conditions, at least one slot in s′com and

s′sens displays a primary con�ict of channel c. Hence, for us to solve all primary con�icts

of channel c it is necessary that the number of occurrences of c in s′com to be the at most

the total number of slots in which other channels occur in s′sens, i.e.

∀c ∈ C : u(c, s′com) · nslots ≤ (1− 1

n
) · nslots =⇒

∀c ∈ C : u(c, s′com) ≤ 1− 1

n
=⇒

∀c ∈ C : u(c, s′com) ≤ n− 1

n

To prove that (3.7) is not only necessary but also su�cient to construct primary-

con�ict-free sensing schedules, we will use the famous Hall's Marriage Theorem.

For our proof, we will make use of the combinatorial formulation of the Marriage

theorem that states that each channel s′sens[k] at slot k can happily marry a channel

s′com[k] (in our case without a primary con�ict) if and only if for any subset I of slots in

s′sens, the number of channels in scom that can marry at least one of the channels in the

slots in I is at least as large as the size of I.

Let C?
optimal(s

′
com, k) be the multiset containing all (1−u(s′com[k], s′sens))·nslots instances

of every channel c 6= s′com[k] in s′sens. These are all instances of the channels that can be

placed at slot k in s′sens without creating a primary con�ict.

The marriage theorem then states that

∀I ∈ 2{ 1, ..., nslots } : |I| ≤ |
⋃
k∈I

C?
optimal(s

′
com, k)| (3.8)

Put in other words, this means that if the size of the union of the lists of suitable

groom candidates is at least as large as the number of brides (for any subset of the

brides), then there is a perfect matching.

Chapter 3 Sensing schedules 128

Therefore, we have to show that

∀I ∈ 2{ 1, ..., nslots } ∀c ∈ C : u(c, s′com) ≤ n− 1

n
=⇒ |I| ≤ |

⋃
k∈I

C?
optimal(s

′
com, k)| (3.9)

To prove (3.9), we will divide our proof into two cases:

1. At least two of the channels s′com[k1] and s′com[k2] for k1, k2 ∈ I are distinct. This

implies

|
⋃
k∈I

C?
optimal(s

′
com, k)| = nslots

As the subset of slots I has at most all nslots slots

|I| ≤ nslots =⇒ |I| ≤ |
⋃
k∈I

C?
optimal(s

′
com, k)|

2. All channels at slot k in s′com are the same, i.e. ∀k ∈ I: s′com[k] = c =⇒

|
⋃
k∈I

C?
optimal(s

′
com, k)| = |C?

optimal(s
′
com, k)|

= nslots · (1− u(c, s′sens))

= nslots · (1−
1

n
)

u(c, s′com) ≤ n− 1

n
=⇒ u(c, s′com) · nslots ≤ (1− 1

n
) · nslots

=⇒ u(c, s′com) · nslots ≤ |
⋃
k∈I

C?
optimal(s

′
com, k)|

Furthermore, since the slots in I have at most all instances of c in s′com, i.e.

|I| ≤ u(c, s′com) · nslots =⇒ |I| ≤ |
⋃
k∈I

C?
optimal(s

′
com, k)|

129 3.6 Solution constraints w.r.t. primary con�icts

I addition, by using a similar argumentation it is not hard to prove that in the general

case, where s′sens can be unbalanced, for all primary con�icts between s′sens and s
′
com to

be eliminated it is necessary and su�cient that

∀c ∈ C : u(c, s′com) + u(c, s′sens) ≤ 1

Theorem 3.6.3. Given a communication schedule s′com aligned with a seed sensing

schedule s
(0)′
sens and a set of channels C = { c1, . . . , cn }, it is possible to construct a

sensing schedule s′sens primary-con�ict-free w.r.t. s
′
com if and only if

∀c ∈ C : u(c, s′com) + u(c, s′sens) ≤ 1 (3.10)

Proof. Similarly to the previous proof, we �rst prove that (3.10) is necessary to guarantee

that all primary con�icts are solvable and then show that it is also su�cient. Some

relevant expressions to our proof are shown in Table 3.14.

Expression Description

nslots Number of slots in s′sens and s
′
com

u(c, s′com) · nslots Number of slots in s′com that have
channel c

(1− u(c, s′sens)) · nslots Number of slots in s′sens that do
not have c

Table 3.14: Notation and equivalences relevant for the proof of Theorem 3.6.3.

Again using Dirichlet's drawer principle, it follows that the number of slots in which

channel c occurs in s′com has to be at most the number of slots in which other channels

appear in s′sens, i.e.

∀c ∈ C : u(c, s′com) · nslots ≤ (1− u(c, s′sens)) · nslots =⇒

∀c ∈ C : u(c, s′com) ≤ 1− u(c, s′sens) =⇒

∀c ∈ C : u(c, s′com) + u(c, s′sens) ≤ 1

To prove that (3.10) is not only necessary but also su�cient, we will again use the

marriage theorem.

Chapter 3 Sensing schedules 130

Again, we let C?
optimal(s

′
com, k) denote the multiset containing all (1−u(s′com[k], s′sens)) ·

nslots instances of channels in s
(0)′
sens that are distinct from s′com[k]. These are all the

channel instances that could be placed at slot k without creating a primary con�ict with

the given communication schedule.

So this time we want to show that

∀I ∈ 2{ 1, ..., nslots } ∀c ∈ C : u(c, s′com) + u(c, s′sens) ≤ 1 =⇒ |I| ≤ |
⋃
k∈I

C?
optimal(s

′
com, k)|

(3.11)

We can divide our analysis in two cases:

1. In the slots k ∈ I, not all channels are the same which implies

|
⋃
k∈I

C?
optimal(s

′
com, k)| = nslots

Since I has at most all nslots slots

|I| ≤ nslots =⇒ |I| ≤ |
⋃
k∈I

C?
optimal(s

′
com, k)|

2. ∀k ∈ I: s′com[k] = c =⇒

|
⋃
k∈I

C?
optimal(s

′
com, k)| = |C?

optimal(s
′
com, k)|

= nslots · (1− u(c, s′sens))

u(c, s′com) + u(c, s′sens) ≤ 1 =⇒ u(c, s′com) · nslots ≤ (1− u(c, s′sens)) · nslots
=⇒ u(c, s′com) · nslots ≤ |

⋃
k∈I

C?
optimal(s

′
com, k)|

Finally, as I has at most all instances of c in s′com, i.e.

|I| ≤ u(c, s′com) · nslots =⇒ |I| ≤ |
⋃
k∈I

C?
optimal(s

′
com, k)|

131 3.7 Matching - a graph theoretical formulation

3.7 Matching - a graph theoretical formulation

In this section, we will describe how matching theory can help describe and at least

partially solve the problem of constructing high-quality sensing schedules.

Matching is a recurring problem in di�erent disciplines such as combinatorics, op-

erations research and mathematical computing, which basically involves some sort of

pairing of objects. Usually, this pairing tries to minimize associated costs (or maximize

pro�ts).

3.7.1 Fundamentals

First, we start with some de�nitions that will help us formulate our optimization problem

in graph-theoretical terms.

De�nition 3.7.1. (Bipartite graph). A graph is bipartite if its set of vertices can be

partitioned into two sets such that every edge connects one vertex in A to a vertex in B.

A and B are called the parts or the color classes of bipartite graph G, also called a

2-colorable graph or simply a bigraph.

De�nition 3.7.2. (Matching). Let G = (V,E,w) be an undirected weighted graph, a

matching is a subset of the edges M ⊆ E where no two edges in M are incident to the

same vertex v ∈ V .

De�nition 3.7.3. (Perfect matching). Given undirected weighted graph G = (V,E,w),

a perfect matching is a matching M where exactly one edge in M is incident to every

vertex v ∈ V .

In its graph theoretical formulation, the Marriage Theorem states that a bipartite

graph G = (A ∪ B,E) has a perfect matching, if and only if |A| = |B| and for every

subset A? ⊆ A, |NG(A?)| ≥ |A?| [LP09], where NG(A?) denotes the the set of all vertices

in B adjacent to at least one element of A?. Here adjacent means that there is an edge

connecting one vertex in A to one vertex in B.

Historically, this formulation of the Marriage Theorem was introduced by Frobenius,

but there were multiple theorems proved by di�erent mathematicians that deliver equiv-

alent results, among them Hall's theorem and König's Minimax Theorem [LP09].

Theorem 3.7.1. The problem of deciding whether a con�ict-free sensing schedule can

be constructed can be reduced to the decision problem of determining whether a perfect

matching exists.

Chapter 3 Sensing schedules 132

Proof. Construct a graphG = (Vcom∪Vsens, E) where the vertices in Vcom are all instances

of all channels that occur in s′com and Vsens contains all instances of all channels that

occur in s(0)′
sens. In addition, for each channel ci ∈ Vcom and each channel cj ∈ Vsens, add

an edge (ci, cj) to E if and only if roverlap(ci, cj) = 0, i.e. there is no overlap between

the communication and sensed channel. This way, it is easy to see that if a perfect

matching M exists in G, then we can trivially construct a con�ict-free sensing schedule,

a permutation of s(0)′
sens, in which every edge (ci, cj) ∈M determines that cj ∈ Vsens must

be placed in the same slot at which ci ∈ Vcom occurs such that all aligned channels have

no overlap.

[Tut47] was the �rst work to demonstrate that the perfect matching decision problem

is in NP ∩ co-NP, i.e. both the existence and the non-existence of a perfect matching

in a graph can be veri�ed in polynomial time. Moreover, in [Lá79] Lovász's introduced

a perfect matching decision algorithm which can be used to determine with high proba-

bility whether a bipartite graph G with two equal parts has a perfect matching or not.

Given a bipartite graph G = (A∪B,E,w) with n = |A| = |B|, consider a n× n matrix

I such that

I =

{
xa,b if (a, b) ∈ E
0 if otherwise

where xa,b are variables associated to each edge (a, b). Lova±z's algorithm works by

substituting every variable xa,b in I by random numbers. If G does not have a perfect

matching then the determinant det(I), which is a polynomial in variables xa,b for (a, b) ∈
E, is identically zero. The algorithm works by making multiple independent runs, since

its error probability 4−t decreases exponentially with the number t of runs. The Lovász

algorithm runs in randomized time O(nω) with ω < 2.38 for a sequential execution or

in O((log n)2) when executed in parallel using multiple processors [Che97].

De�nition 3.7.4. (Minimum weight perfect matching). Given G = (V,E,w) an undi-

rected weighted graph, where we denotes the weights of each edge e ∈ E, we de�ne the
the minimum weight perfect matching problem as �nding a perfect matching M such

that the weight of the matching, i.e. the sum of all weights of the matching
∑

e∈M we,

is minimal.

Interestingly, the weighted perfect matching problem is closely related to the already

mentioned Travelling Salesman Problem, but the latter is a NP-hard problem and sig-

ni�cantly more di�cult to solve than the former. In fact, the weighted perfect matching

can be seen as a relaxation of TSP [LP09]. It is also a known fact in matching theory

133 3.7 Matching - a graph theoretical formulation

that a greedy approach alone such as the one used for our basic heuristics or such as the

greedy algorithm proposed by Kruskal [Kru56] to �nd the shortest spanning subtree of

a graph do not always �nd optimal solutions for the minimum weight perfect matching

problem, because while spanning subtrees form a matroid (mathematical objects used

to generalize linear independence between vectors), perfect matchings do not [LP09].

Theorem 3.7.2. Creating a con�ict-minimal sensing schedule s′sens aligned with com-

munication schedule s′com reduces to the minimum weight perfect matching problem.

Proof. Construct a graph G = (Vcom
⋃
Vsens, E, w) where the vertices in Vcom are all

instances of all channels that occur in s′com and Vsens contains all instances of all channels

that occur in s(0)′
sens. In addition, E contains |s′com| · |s

(0)′
sens| edges that connect all vertices

from Vcom with all vertices from Vsens and the weight for each edge e = (ci, cj) ∈ E is

we = roverlap(ci, cj).

This way, �nding a con�ict-minimal sensing schedule s′sens, a permutation of s(0)′
sens,

aligned with a communication schedule s′com that minimizes∑
1≤k≤|s′com|

roverlap(s
′
sens[k], s′com[k])

is equivalent to �nding a perfect matching M in G that minimizes∑
e∈M

we =
∑

(ci,cj)∈M

roverlap(ci, cj)

And this is by de�nition the minimum weight perfect matching problem.

Fig. 3.25 illustrates the equivalence between a con�ict-minimal sensing schedule ssens
w.r.t. scom and a minimum weight perfect matching in a bipartite graph with color

classes Vcom and Vsens.

Chapter 3 Sensing schedules 134

Aligned schedules
given as input

Min. weight perfect matching maps to
a conflict-minimal permutation of

sensing schedule

Map to color classes
in a bipartite graph

Figure 3.25: Illustration showing the mapping between aligned communication and sens-
ing schedules and a perfect matching. Note that the weight of the edges
are omitted for better visualization.

3.7.2 Finding minimum weight perfect matchings

To solve the minimum weight perfect matching problem in bipartite graphs, Kuhn

[Kuh55] originally proposed the Hungarian Method, which was later proposed in dif-

ferent formulations and further re�ned by multiple research works such as [Mun57]. The

Hungarian method is able to exactly solve the minimum weight perfect matching for

bipartite graphs. For an undirected weighted bipartite graph G = (V,E,w), the Hun-

135 3.7 Matching - a graph theoretical formulation

garian Method can be implemented with a worst-case time complexity of O(|V |3) in

contrast to a time complexity of O(|V |2) of our local search heuristics.

This means, if we apply this algorithm to the construction problem of sensing sched-

ules, we can obtain global optima w.r.t. con�ict metric. However, nothing comes for

free. Even though, the Hungarian Method is able to always �nd the minimum for the

con�ict metric, it has a higher time complexity than our proposed heuristics (which could

prove problematic w.r.t. to execution time with larger sizes of aligned schedules) and

is in general more complex, both for understanding as well as implementing and test-

ing. Furthermore, while it can easily optimize con�ict metric, it is not able to optimize

overlap fairness or the combination of con�ict metric and overlap fairness.

The �rst important concept that we need to explain the Hungarian Method is that of

a feasible labeling. A labeling, in general, associates labels (or weights) to every vertex

in a graph.

De�nition 3.7.5. (Feasible labeling). Given a bipartite graph G = (A ∪B,E,w), and

weights w(a, b) assigned to each edge (a, b) ∈ E, the labeling of the graph is feasible if

l(a) + l(b) ≥ w(a, b)∀a ∈ A,∀b ∈ B (3.12)

where l(a) and l(b) are respectively the labels of vertices a and b.

Example 3.7.1. Given a bipartite graph G = (A ∪ B,E,w) (see Fig. 3.26) with parts

A and B and adjacency matrix W whose entries are the weights of all edges as shown

below

W =

A1 A2 A3
B1 3 2 3

B2 1 2 0

B3 3 2 1

Chapter 3 Sensing schedules 136

In this scenario, a possible feasible labeling is

l(A1) = 2

l(A2) = 1

l(A3) = 2

l(B1) = 1

l(B2) = 1

l(B3) = 1

The chosen labeling is feasible, since it guarantees that the weight of every edge never

surpasses the value of the sum of the labels of the connected vertices.

A1

A2

A3

B1

B2

B3

A
B

3

13
2

2
2

3
0

1

Figure 3.26: Illustration of a bipartite graph G with parts A = {c1, c2, c3} and B =
{c6, c7, c8}, where weight of each edge is shown in red.

In addition to the concept of a feasible labeling, we need to de�ne what alternating

and augmenting paths are.

137 3.7 Matching - a graph theoretical formulation

De�nition 3.7.6. (Alternating path). Given graph G = (V,E) and a matching M ,

an alternating path P = v1, v2, . . . , vm is a subset of E such that (vi, vi+1) ∈ M and

(vi+1, vi+2) 6∈M , i.e. the edges in the path alternate between being in the matching and

not being in the matching.

In Fig. 3.27 we show an example of a graph and a matching M (red edges) with an

alternating path

P = B1, A1, B2, A2, B3, A4, B4, A3, B5, A5

where vertices are connected by red and green edges in alternating fashion.

Figure 3.27: Illustration of an alternating path composed of edges in perfect matchingM
(red edges) and edges not in M (green edges) starting with B1 and ending
with A5.

De�nition 3.7.7. (Augmenting path). Given graph G = (V,E) with perfect matching

M , an augmenting path is an alternating path P = v1, v2, . . . , vm whose endpoints v1

and vm are not included in M .

In Fig. 3.28 we show an example of a graph and a matching M (red edges) with an

augmenting path

P = B1, A1, B2, A2, B3, A3, B5, A5

where vertices are connected by red and green edges in alternating fashion. Note that

P starts and ends with green edges such that both endpoints B1 and A5 are not in M .

De�nition 3.7.8. (Equality graph). Given a graph G = (A ∪ B,E,w), we de�ne the

equality graph Gl = (A ∪B,El, w) ⊆ G, where El ⊆ E is such that

El = {(a, b) ∈ E | l(a) + l(b) = w(a, b)}

Chapter 3 Sensing schedules 138

Figure 3.28: Illustration of an augmenting path composed of alternating edges in match-
ing M (red edges) and edges not in M (green edges) starting with B1 6∈M
and ending with A5 6∈M .

9 5 6

0 0 0

 9

5
6

Figure 3.29: Graph G = (V,E) and equality graph Gl = (V,El). The dashed edges are
the edges in E that are not in El.

Theorem 3.7.3. (Kuhn-Munkres Theorem). Given a feasible labeling l, ifM is a perfect

matching on the equality graph Gl, then M is a minimum (or maximum) weight perfect

matching in G.

By using the Kuhn-Munkres Theorem, we can reduce the problem of �nding an opti-

mal weight perfect matching to �nding the right labeling l and with it a perfect matching

in the associated equality graph Gl. Fig.3.29 displays an example of an equality graph.

Before describing the Hungarian Method, we will brie�y describe its two main building

blocks: the augmenting procedure and the label improvement.

The augmenting procedure

Given an equality graph Gl = (A ∪ B,El, w) derived from graph G = (A ∪ B,E,w)

and labeling l, the augmenting procedure attempts to enlarge a given matching M in

Gl. Ideally, this matching will eventually be perfect (all vertices are matched), which

139 3.7 Matching - a graph theoretical formulation

means we found the minimum weight perfect matching in the original graph G. This

procedure begins with an empty matching M , and starts building an alternating path

from any unmatched vertex u trying to make the path augmenting. Either the matching

associated with this alternating path becomes perfect or the procedure runs out of edges

in Gl to add to the growing alternating path. If the procedure runs out of edges, it

means we cannot enlarge the current matching anymore. To get out of this impasse, we

�rst improve the used labeling and then enlarge El accordingly.

Improving the labeling

We denote the sets S and T as the set of vertices in respectively A and B which were

already added to the alternating path by the last run of the augmenting procedure and

de�ne

Nl(a) = {b | (a, b) ∈ El}

Nl(S) =
⋃
a∈S

Nl(a)

This means the label improvement procedure is always activated when Nl(S) = T .

After improving the labeling, we enlarge El such that Nl(S) 6= T and the augmenting

procedure can continue.

Given δ(l) the minimum value of l(a) + l(b) − w(a, b) for all a ∈ S and b ∈ B but

b 6∈ T , we improve the labeling l to l′ (also a feasible labeling) as follows:

l′(v) =


l(v)− δ(l) if v ∈ S
l(v) + δ(l) if v ∈ T
l(v) if c 6∈ S ∧ c 6∈ T

(3.13)

We then update the equality graph by modifying its set of edges:

El′ = El ∪ {(a, b) | (a, b) ∈ E ∧ l′(a) + l′(b) = w(a, b)} (3.14)

With all the pieces in place, we �nally describe the Hungarian Method.

The Hungarian Method

Input: a graph G = (A ∪B,E,w), a matching M = {}.

1. First, we negate the weights, i.e. ∀(a, b) ∈ E.w(a, b) = −1 · w(a, b). This way,

�nding the perfect matching that maximizes the negated weights of the matching

Chapter 3 Sensing schedules 140

is equivalent to �nding the minimum weight perfect matching with the original

weights.

2. Apply a a feasible labeling l to G: label each vertice on one part of the bipartite

graph with the maximum weight of all edges incident with it. Label the vertices

on the other part of G with 0. Formally,

∀a ∈ A ∀b ∈ B. l(a) = max
b∈B

w(a, b), l(b) = 0

This labeling is feasible by construction since l(a) + l(b) ≥ w(a, b) for all edges

(a, b).

3. Construct an equality graph G = (A ∪B,El, w) for the given feasible labeling l.

4. Start the augmenting procedure on Gl and improve the current matching M .

5. If M is perfect, then we are done and this matching is the perfect matching with

maximum negated weights, i.e. the minimum weight perfect matching.

6. If M is not perfect, improve the used labeling and go back to step 4.

For brevity, we will leave out implementation details regarding the augmenting proce-

dure, but it su�ces to say that naive implementations of the Hungarian Method deliver

a time complexity of O(|A ∪ B|4)), and proper use of techniques such as breadth-�rst

search and appropriate data structures to avoid unnecessarily re-visiting vertices during

the augmenting procedure can lower the time complexity down to O(|A ∪B|3)).

3.7.3 Comparison with our heuristics

In a similar fashion to the test sets constructed for comparison with a complete enu-

meration, we have created a test set with 19669 test cases where |s′com| = |s(0)′
sens| = 13.

In Fig. 3.30a, we can see that the performance of opt_con�ict_ils is really good when

compared to the con�ict-minimal solutions delivered by the Hungarian Method. For a

better visualization of the divergences between both methods, we show in Fig. 3.30b

only the cases in which the absolute di�erence in con�ict metric value was greater than

0.01. There are 77 such cases and as we can see all absolute di�erences stay below 0.02,

which further demonstrates the high quality of the sensing schedules delivered by our

heuristic.

141 3.7 Matching - a graph theoretical formulation

0 5000 10000 15000 20000
test cases

0.00

0.05

0.10

0.15

0.20

0.25

0.30

co
nf

lic
t m

et
ric

opt_conflict_ils
Hungarian Method

(a) 19669 test cases.

0 10 20 30 40 50 60 70 80
test cases

0.02

0.04

0.06

0.08

0.10

0.12

0.14 opt_conflict_ils
Hungarian Method

(b) Absolute di�erence between global and local

optima equals 0.01 or higher.

Figure 3.30: Comparison of opt_con�ict_ils with the Hungarian Method on test set
with 19669 cases where |scom| = |s(0)′

sens| = 13. On the right, we show only
the 77 test cases where the absolute di�erence between global and local
optima is greater than or equals 0.01. This means 99.6% of all test cases
display a di�erence of less than 0.01 in con�ict metric.

In addition, we have generated another testset using s(0)
sens = [c1, c2, c3, . . . , c12] and

communication schedules scom as permutations of all combinations of 4 channels ci ∈
[c3, c4, c5, . . . , c10] with utilizations ~u = (2, 1, 3, 3). Since |scom| = 9 and |s(0)

sens| = 12, the

size of the aligned schedules is |s′com| = |s
(0)′
sens| = lcm(9, 12) = 36. As seen in Fig. 3.31a,

in all 1680 test cases opt_con�ict_ils is again capable of constructing sensing schedules

that are either con�ict-minimal or very close to the global optima. In Fig. 3.31b, we see

that only 16 test cases had an absolute di�erence greater than 0.005 in con�ict metric.

This means that more than 99% of all test cases display a di�erence of less than 0.005

in con�ict metric.

Chapter 3 Sensing schedules 142

0 250 500 750 1000 1250 1500 1750
test cases

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
co

nf
lic

t m
et

ric

opt_conflict_ils
Hungarian Method

(a) 1680 test cases.

2 4 6 8 10 12 14 16
test cases

0.10

0.12

0.14

0.16

0.18
opt_conflict_ils
Hungarian Method

(b) Test cases where absolute di�erent between

global and local optima equals 0.005 or

higher.

Figure 3.31: Comparison of opt_con�ict_ils with the Hungarian Method on test set
with 1680 cases where |scom| = |s(0)′

sens| = 36. On the right, we show only the
16 test cases where the absolute di�erence between global and local optima
is greater than or equals 0.005.

3.8 Summary

In this chapter, we proposed and implemented a method for the construction of high-

quality local sensing schedules in which nodes compute their sensing order based on a

communication schedule. The resulting sensing schedule is balanced, and if constructed

by the opt_con�ict heuristic tries to achieve con�ict-minimality as well as maximize

overlap fairness when possible through local-search-based heuristics. An alternative

heuristic, namely opt_fairness, also constructs balances schedules but prioritizes maxi-

mizing the overlap fairness over minimizing the con�ict metric. These heuristics, while

not able to always deliver optimal solutions, accomplished impressive results, especially

with the �ne-tuned iterated local search variants. Our ILS approach embeds our ba-

sic opt_con�ict and opt_fairness heuristics in a stochastic local search-based heuristic

that uses perturbations and randomness to improve local optima. Minimizing channel

overlap between the sensing and communication schedules tries to minimize the e�ect of

internal transmissions in the qcbt channel quality metric, allowing nodes to derive channel

quality primarily based on foreign tra�c. Moreover, making sensing schedules balanced

and trying to improve overlap fairness when possible, minimizes bias in the sensing pro-

cess. Finally, we have shown that the problem of constructing con�ict-minimal sensing

schedules can solved by the Hungarian Method by reducing it to the problem of �nding

143 3.8 Summary

a weighted perfect matching in a bipartite graph (whose parts are derived from our sens-

ing and communication schedules). This method, however, while exact displays a worse

asymptotic time complexity than our opt_con�ict_ils_best heuristic, which is able to

approximate the optimal results remarkably well.

Long term consistency trumps short term intensity.

� Bruce Lee

4
Three-Dimensional Stabilization

Contents

4.1 Foundations . 149

4.1.1 Channels . 149

4.1.2 Graph model and topology 149

4.1.3 Time-slotted channel hopping 150

4.1.4 Channel quality metric . 151

4.1.5 Communication schedules 151

4.1.6 Schedule computation . 152

4.1.7 Schedule quality metric . 154

4.1.8 Heuristic Computation . 156

4.1.9 Channel sensing schedules 156

4.2 Fast restabilization . 157

4.2.1 Synchronization . 158

4.2.2 Channel quality reports . 162

4.2.3 Aggregation of quality reports 164

4.2.4 Data dissemination methods 167

4.2.5 Communication schedule dissemination 170

4.2.6 Optimal and temporary schedules 171

4.2.7 Re-computation of communication schedules 172

4.2.8 Estimating dcomp . 173

145

Chapter 4 Three-Dimensional Stabilization 146

4.3 Leader election . 177

4.3.1 Master failure . 177

4.3.2 The voting process . 178

4.3.3 Raft . 179

4.4 Initial stabilization . 180

4.4.1 Initial synchronization . 181

4.4.2 Initial communication schedule 182

4.5 Simulation . 182

4.5.1 Schedule consistency Metrics 182

4.5.2 Simulation environment . 184

4.5.3 Scope of the simulation . 185

4.5.4 Channel sensing . 185

4.5.5 Physical model of the wireless channel 186

4.5.6 Experiments . 186

4.6 Con�ict-minimal channel orderings for communication sched-

ules . 197

4.7 Summary . 199

147

As described in Chapter 1, alongside channel sensing the other main component we

need for achieving a robust utilization of the available radio spectrum is channel hopping.

As described in Chapter 2, time is divided into time slots in our network and in each

slot a single channel is used.

We keep the operation of our network stable by using the volatility-aware techniques

introduced in Chapter 2 and by using a subset of all available channels in which a

minimum acceptable quality is reached. Moreover, nodes proactively hop to di�erent

channels at the end of each slot in order to minimize interference with external nodes.

The choice of which channel should be used for communication is dictated by a com-

mon communication schedule. This schedule allocates each channel a number of slots

proportional to its quality and tries to keep channel usages from the same channel as

far apart as possible [EG18a].

Channel qualities and with it the set of usable channels, i.e. channels with su�cient

quality for proper communication, may change in space and time. This requires dynamic

adjustments to the communication schedule in order to adapt to these new conditions and

a consensus mechanism through which all nodes use the same communication schedule.

Furthermore, to keep the channel usage in di�erent nodes not only in the same order

(schedule consistent) but also aligned in time, we need network-wide synchronization.

First, we will introduce a master-based three-dimensional stabilization protocol in

which a master node is responsible for time-giving and for the computation of com-

munication schedules. In this motivating scenario we have a network where all nodes

communicate on a common channel and where the master node is an essential compo-

nent to keep all nodes in the network both synchronized and schedule-consistent, i.e.

all nodes eventually possess the same communication schedule. The stabilization proto-

col can handle multiple perturbations, such as clock skew (dimension time), signi�cant

changes in channel quality (dimension channel) and topology alterations (dimension

space), hence three-dimensional, with little deterioration in network performance.

Since the master node should produce a channel hopping sequence that optimizes the

overall operation of the network it should aggregate the views of all nodes within it.

With this purpose, all non-master nodes report the channel qualities measured locally

through channel quality reports.

Later, we will relax the constraint that a master node is always present and will sketch

a leader election algorithm in which a new master node is elected.

Even though we originally proposed this stabilization protocol in [JEG18] for cognitive

radio networks in the presence of primary users, i.e. license holders of a given frequency

Chapter 4 Three-Dimensional Stabilization 148

band, in this chapter we will re�ne and expand the proposed protocol without making

any distinction between primary and secondary users. Note that primary users are still

possible in 802.11 networks when using certain channels in the 5 GHz band, but they will

be treated here purely as foreign tra�c. 802.11a nodes are secondary users in a portion

of the 5 GHz band, in which primary channel usages are satellite communications and

radars. To avoid interfering with ongoing radar transmissions, 802.11a AP nodes use

both transmission power control (limit their radiated energy) and Dynamic Frequency

Selection (DFS), i.e. hop to another channel upon detecting radar transmissions or stay

silent for a certain time. DFS uses physical layer characteristics of radar transmissions,

such as pulse width and the number of pulses per burst, to detect them. However,

802.11 DFS implementations are far from perfect and many deployed nodes at 5 GHz

implement DFS in a manner non-compliant with regulatory requirements [SCT+16].

Indeed, detecting certain types of radar transmissions is very challenging. For instance,

pulses in weather transmissions are very short (0.5 to 2 µs), radar beam direction varies

with time, typically at every 1 to 10 min, and waveforms used for matching radar

transmissions during DFS certi�cation tests while comprehensive do not cover all possible

types of weather radar communication [SCT+16]. Moreover, in contrast to our protocol,

DFS hopping sequences are static and built into the implementation of the protocol.

Furthermore, it is not only in the 5 GHz band that primary users can occur: with the

advent of the 6 GHz band for 802.11 networks, approved for use in Germany since July

2021 [Bun21], coexistence between secondary and primary users (e.g. 6 GHz microwave

links) remains a very relevant topic.

A natural extension of the techniques developed in Chapter 2 in the presence of pri-

mary users would be to give the tra�c resulting from primary users more weight than

the tra�c generated by secondary foreign nodes when computing channel qualities. This

way channels with equivalent foreign spectrum occupation could have di�erent channel

qualities based on primary user activity, i.e. channels where primary nodes are more

active would have lower channel quality. This however presupposes a mechanism for

802.11 devices to distinguish primary users, either decoding a primary user's frames or

through signal detection (as in the case of 5 GHz). In addition, supporting multiple pri-

mary user's protocols requires special re-programmable radio such as a software de�ned

radio (SDR). Even though SDR is a promising technology that can bring more �exibility

to the table, this �exibility comes at a cost: SDR tunable frequency ranges can be quite

limited (most boards do not support 5 GHz o�-the-shelf), SDR boards are consider-

ably more expensive than commodity 802.11 hardware (more robust boards with larger

149 4.1 Foundations

frequency ranges can cost upwards of 500 dollars as of 2021) and most mobile boards

are quite young, still under active development and lack long proven records regarding

stability, accuracy and performance.

This chapter is structured as follows. In Section 4.1, we outline the foundations for

our stabilization protocol. In Section 4.2, we discuss how to achieve fast re-stabilization

having already reached an initial stabilization. In Section 4.3, we sketch out a leader

election mechanism to cope with master node failures and in Section 4.4, we discuss

the steps needed for achieving initial stabilization. After that, Section 4.5 presents

simulation results regarding the performance of our stabilization protocol and Section

4.6 sketches out a further application of the techniques described in this chapter and

in Chapter 3 through con�ict-minimal channel orderings for communication schedules.

Finally, a summary of the chapter is delivered by Section 4.7.

4.1 Foundations

In this section, we brie�y review and extend our used system model, formalize and

discuss the computation and the quality assessment of communication schedules and

review its relation to sensing schedules.

4.1.1 Channels

As mentioned in previous chapters, we have a non-empty �nite set of channels C. This

set of all available channels is known beforehand to all nodes and is also �xed at runtime.

In fact, the regulatory constraints of which frequencies are available to each node in a

speci�c country is precon�gured before deployment in the form of a Central Regulatory

Domain Agent (CRDA) database.

Each channel has a center frequency and the nodes use all channels with the same

characteristic bandwidth. A typical channel bandwidth value for 802.11 is 20 Mhz, but

smaller channels can be bonded into larger channels with 40 MHz or more. Channels

might be chosen from di�erent frequency bands available to the nodes.

4.1.2 Graph model and topology

Due to the nature of the wireless medium, the network has lossy and possibly asymmetric

links. Moreover, since nodes might temporarily use di�erent channels at the same time

and di�erent environmental conditions will inevitably produce distinct channel qualities

Chapter 4 Three-Dimensional Stabilization 150

for di�erent channels in di�erent regions of the network, we will have distinct network

topologies for di�erent channels. We can hence model our network as the union of all

directed graphs for every channel c ∈ C, G = {Gc = (V,Ec)}, where an edge (v1, v2) ∈ Ec
indicates that node v1 can communicate with node v2 on channel c.

In addition, there is a distinct node vmaster ∈ V that acts as the master node in the

network and every node v stores the minimal known number of hops v.hops from itself to

vmaster. This hop count is added by each node to all its outgoing management messages.

With this, the neighbors of v can update their own hop counts as well as store v.hops.

The importance of this step will be explained later on.

Furthermore, nodes have no pre-con�gured knowledge of other nodes or of the topology

of the network at deployment.

4.1.3 Time-slotted channel hopping

Much as in Time Division Multiple Access (TDMA) protocols, time in our network is

divided into time slots of �xed duration dslot. Every node in the network adopts the

same slot duration dslot and the same number nslot of time slots in a hopping sequence.

Some protocols in the literature also make use of a time-slotted operation coupled with

schedule-based channel hopping, the most promiment example being TSCH [WPG15],

one of the MAC layer protocols de�ned by IEEE 802.15.4e [tsc12]. TSCH was designed

for low-power and lossy networks and has several similarities with our stabilization pro-

tocol: time is divided into slots and a �xed number of slots compose a slotframe, nodes

are time-synchronized to a coordinator node, and each node follows a communication

schedule. Nonetheless, di�erent from our protocol, the schedule tells TSCH nodes not

only which channel to use for communication in which slot but also which neighbor it

should communicate with. A further distinction from our protocol is that TSCH nodes

can either transmit or receive in a slot (links are half duplex) and can only receive from

a single node during a slot. Moreover, schedules tell nodes when to sleep, receive or

transmit data, whereas in our approach nodes only need to stay passive during the ini-

tial stabilization phase. Another di�erence is that our schedule (unless re-computed)

assigns the same channel to the same slot for each iteration of the schedule, while in

TSCH the same slot in a schedule is assigned a di�erent channel for every iteration of

the slotframe [DANLW15].

Furthermore, the TSCH protocol de�nes more of a framework with di�erent mech-

anisms needed to operate with a communication schedule, but it does not de�ne how

to compute it or if needed how to distribute this schedule. Hence, di�erent scheduling

151 4.1 Foundations

approaches can be found in the literature, such as Orchestra [DANLW15], a distributed

approach designed for RPL [WTB+12] networks, and TASA [SZQ+19], a centralized

scheduling algorithm. While Orchestra, for example, lets nodes compute schedules au-

tonomously, TASA relies on an omniscient master node, which not only has complete

knowledge of the topology of the network, but also knows the tra�c load generated by

each node.

4.1.4 Channel quality metric

Every channel c ∈ C has a dynamic channel quality qc ∈ [0, 1] that is derived through

passive channel sensing. As described in Chap. 2, every node computes the volatility-

aware quality of each channel at the end of each time slot and aggregates it locally.

The computed qualities of node v are listed in vector v.~q ∈ [0, 1]|C|. The main used

channel quality metric, qcbt, is based on energy detection and correlates strongly with

achievable throughput on any given channel. Our implementation on 802.11 commodity

hardware measures the spectrum occupation needed to compute qcbt with help of 802.11

CCA capabilities.

Furthermore, the main channel quality metric may be enhanced by combining it with

frame-based metrics to incorporate additional information such as the signal-to-noise

ratio. In general, we assume that the channel quality also strongly correlates with the

probability of frame delivery.

4.1.5 Communication schedules

The master node is responsible for synthesizing the global channel hopping sequence,

i.e. communication schedule, to be adopted by the whole network. Whereas in Chap.

2 we formalized the computation of channel qualities based on passive observation of

the medium, in this section we will brie�y describe how communication schedules are

synthesized. First we start with some de�nitions.

De�nition 4.1.1. (Schedule). A schedule s maps every time slot in the interval m ∈
{1, . . . , nslot} to a channel c ∈ C.

s : {1, . . . , nslot} → C (4.1)

i ∈ {1, . . . , nslot} 7→ s(i) ∈ C

Chapter 4 Three-Dimensional Stabilization 152

Hence, a schedule is a channel hopping sequence, i.e. a list of channels a node hops

to in a given order repeatedly. As the name indicates, a communication schedule is

therefore a schedule that de�nes which channels should be used for transmissions and

in which slots.

4.1.6 Schedule computation

The algorithm we apply to compute communication schedules follows the technique

developed by Engel [EG18a]. This method solves the apportionment problem by trying

to allot each channel a fair share of the schedule w.r.t its channel quality while keeping

channel reuses within the schedule as far apart as possible. The main insight of Engel's

method is ensuring that channels with better quality are used more often while avoiding

grouping channel reuses such that signi�cant changes in the quality of one channel will

not have such a great impact on the overall performance of the network. This helps

keep the network more robust in special against channel failures since the slots before a

channel reuse function as a time bu�er during which a new schedule can be synthesized

and disseminated into the network.

De�nition 4.1.2. (Utilization). We de�ne a vector ~u over all channels such that the

utilization uc ∈ N of a channel c denotes the number of slots in which c appears in the

communication schedule.

This way, the utilization of a channel determines how often this channel is used every

nslot slots, which means that the sum of all utilizations in ~u must add up to nslot. As

we will later describe, ~u is derived from ~q, the vector containing the channel quality of

each channel.

De�nition 4.1.3. (Relative quality). We de�ne the relative quality τc of a channel c as

the relation between its measured quality qc and the sum of the qualities of all channels:

τc :=
qc∑

c∈C
qc

(4.2)

The relative quality can be interpreted as a normalized quality such that
∑

c∈C τc = 1.

Example 4.1.1. Let C = {c1, c2, c3} be a set of channels with qualities ~q = (1, 0.4, 0.6).

We can the compute ~τ = ~q∑
c∈C

qc
= (0.5, 0.2, 0.3).

Furthermore, we need to formalize the concept of a fair share.

153 4.1 Foundations

De�nition 4.1.4. (Fair share). Given nslot the number of slots in a schedule, C the

set of all channels and ~τ the relative qualities, we de�ne the fair share as the following

utilization:
~u? := nslot · ~τ (4.3)

Example 4.1.2. Let C = c1, c2, c3, nslot = 8 be a set of channels with relative qualities

~τ = (0.5, 0.2, 0.3) the fair share is then ~u? := nslot · ~τ = (4, 1.6, 2.4).

Having de�ned the concept of relative qualities and fair share, we can �nally formally

de�ne the apportionment problem as follows.

De�nition 4.1.5. (Apportionment Problem). Given the set of all channels C, a set of

channel qualities ~q and the number of slots in a schedule nslot, �nd a utilization ~u that

approximates the fair share ~u? such that ∀uc ∈ ~u. uc ∈ N>0 and
∑
uc∈~u

uc = nslot.

As illustrated in Example 4.1.2, while utilizations are natural numbers, fair share

values are not always whole numbers. Since we are dealing with real numbers, in the

general case, we can only approximate the fair share of each channel. The apportionment

problem is a well studied problem and �nds its original motivation in the distribution

of seats in electoral systems characterized by proportional representation such as the

European Parliament. In such a system, the support of τ% of the electorate for a

given party leads to an allotment of approximately τ% of the available seats to the

party. In our application of the apportionment problem, this allotment is kept until

a signi�cant change in channel qualities and consequently in utilizations takes place.

Hence, slot assignment repeats every nslot slots, until fair shares and slot assignments

are re-computed, a process akin to holding new elections. Nonetheless, while in politics

old election results are immediately discarded, in our scenario, we change assigments

progressively by applying an incremental convergence algorithm, which will be described

later in this chapter.

Engel [EG18a] surveyed di�erent apportionment methods and identi�ed the Hamilton

method as a good choice for our requirements. The Hamilton method (also known as the

Vinton method) [BY75] is a quota method and works by initially giving each channel

its lower quota bu?cc, then ordering the channels based on the fractional remainders of

their fair shares rc = u?c −bu?cc. The remaining nslot−
∑
c∈C
bu?cc slots are then distributed

such that each channel receives one additional slot following a priority ordering where

channels with higher remainders have a higher priority. Since we might have ties (chan-

nels with the same remainder) we can generate distinct equal-valued solutions following

this method.

Chapter 4 Three-Dimensional Stabilization 154

Having derived an optimal utilization that approximates the fair share of each channel,

we already know how often every channel should appear in our communication schedule,

but we still do not have an order of usage for these channels. De�ning this order on

top of a given utilization is the last step to synthesizing a communication schedule.

As already mentioned, this order should be chosen such that we try to maximize the

distances between channel reuses.

De�nition 4.1.6. (Schedule compliance). A schedule ~s is compliant with a utilization

~u if the number of distinct channels that appear in ~s equals |~u| and every channel occurs

exactly uc times in ~s.

Example 4.1.3. Given utilization ~u = (3, 2, 1) and schedule ~s = (c1, c2, c3, c1, c2, c1),

then ~s is compliant with ~u, since ~s has three distinct channels (|~u| = 3), channel c1

occurs 3 times (u1 = 3), c2 two times (u2 = 2) and c3 occurs one time (u3 = 1) in ~s as

mandated by ~u.

De�nition 4.1.7. (Reuse optimization goal). Given a set of channels C, ~s a schedule

compliant with a given utilization ~u and the set S(c) of all slots in which channel c ∈ C
is used in ~s , we have following optimization goal: for any slots i, j ∈ S(c) we want to

maximize the distance |i− j|.

Note that there can be no general solution that always constructs a compliant schedule

that also maximizes the channel reuse for all channels, since permuting a channel within

a schedule a�ects other channels. Moreover, it is also not possible to always avoid

adjacent channel reuse. In fact, Engel demonstrated that at most one channel c will

have to su�er adjacent reuse and that this channel has a utilization uc > 0.5 · nslot.
Therefore, in the absence of a general solution, Engel proposed a heuristic to construct

sub-optimal high-quality communication schedules, where ideally the channel reuses are

distributed equally among all channels. The theoretical optimum δ?c for the number of

slots between channel reuses of a channel c ∈ C is:

δ?c =
nslot
uc

(4.4)

4.1.7 Schedule quality metric

In order to qualify a compliant schedule w.r.t. the channel reuses we use the schedule

quality metric Ω(~s) de�ned by [EG18b]:

155 4.1 Foundations

Ω(~s) =

{
1 if Ψmin = Ψmax

1− Ψ(~s)−Ψmin
Ψmax−Ψmin

otherwise
(4.5)

where given δ(c, i) the number of slots between the i-th and (i+1)-th use of channel

c ∈ C, we have

Ψ(~s) =
∑
c∈C

uc∑
i=1

(δ(c, i)− δ?c)2

δ?c
(4.6)

In order to compute Ω(~s), we need both Ψmin and Ψmax, respectively the squared

error sum of the best and worst possible schedule w.r.t. channel reuses. Ψmax is easy to

obtain by computing the squared error sum of a schedule where all channels are used in

consecutive slots, i.e. ∀c ∈ C. ∀i ∈ [1, uc − 1]. δ(c, i) = 1 and δ(c, uc) = nslot − (uc − 1).

This way, we have:

Ψmax =
1

nslot

∑
c∈C

((uc − 1) ∗ (nslot − uc)2) (4.7)

Given a utilization ~u, to compute Ψmin we would have to generate all schedules compliant

with ~u and determine the minimum squared error sum. However, the number of possible

schedules grows extremely fast with nslot and |C|. In fact, the number of all possible

compliant schedules is |S(~u, nslot, C)|:

|S(~u, nslot, C)| = nslot!∏
c∈C

uc!
(4.8)

So, instead of taking the true Ψmin, we can calculate its lower bound Ψ?
min as:

Ψ?
min =

∑
c∈C

Emin(c) (4.9)

where Emin(c) is the minimum squared error sum for channel c and can be computed as

(see [EG18b]):

Emin(c) =
1

δ?c
· (nslot mod uc) · (1− δ?c + bδ?cc) (4.10)

By using this lower bound instead of the true Ψmin we have to keep in mind that the

metric becomes a bit more pessimistic since schedules where Ψ?
min cannot be reached

will have a quality below 1 even if the schedule is the best possible one.

Chapter 4 Three-Dimensional Stabilization 156

4.1.8 Heuristic Computation

Finally, given a utilization ~u, we use the heuristic H1, introduced by [EG18b] to compute

a schedule ~s compliant with ~u that optimizes Ω(~s). For this, we �rst de�ne the local

cost of using channel c ∈ C at some slot i in ~s:

L(~s, c, i) =
((i− last(~s, c, i)− δ?c)2

δ?c
(4.11)

where last(~s, c, i) is the last slot in ~s before slot i at which channel c occurs.

Given a utilization ~u, for every slot 1 ≤ i ≤ nslot, H1 decides which channel c ∈ C to

place into si as follows:

1. Compute the set Ccand ⊆ C of candidate channels, i.e. those channels which

have not yet achieved their utilization uc. All other channels are ignored. This

guarantees the compliance of ~s with the desired utilization ~u.

2. Compute the local cost last(~s, c, i) of all channels c ∈ Ccand. If the channel was

never used in the schedule its local cost is 0.

3. Compute the set Cinc of channels whose local error is increasing and pick the

channel cmax ∈ Cinc with the maximum local error for si. We know due to quadratic

nature of the local cost function that for any given channel its local cost will

decrease up to some slot and will start increasing from then on.

4. If Cup = {}, pick the channel cmin ∈ Ccand that has the minimum L(~s, c, i).

4.1.9 Channel sensing schedules

As introduced in Chap. 3, a channel sensing schedule de�nes the channel sensing order,

that is in which slot should the channel quality of each channel be measured. This

channel hopping sequence is computed by each node locally and is indeed derived from

communication schedules with help of a stochastic local search-based heuristic. This

heuristic attempts to minimize the channel overlap between both schedules, which mini-

mizes the e�ect of internal transmissions in the resulting channel quality metric. Having

minimal overlap between schedules allows nodes to derive channel quality primarily

based on foreign tra�c. In addition, in order to minimize bias in the channel sensing

process, the heuristic constructs balanced sensing schedules, i.e. each channel is assigned

the same number of slots within a sensing schedule. Moreover, the remaining channel

157 4.2 Fast restabilization

overlap between the sensing and the communication schedule is distributed among the

channels steering towards overlap-fairness.

4.2 Fast restabilization

In this section, we discuss the steps taken by our protocol to stabilize the network

operation w.r.t. time synchronization and schedule-consistency. The discussion in this

section assumes the presence of a master node vmaster and that the network has already

performed an initial stabilization, i.e. all nodes possess the same communication schedule

scom and are synchronized. As already mentioned, these constraints (master node and

initial stabilization) will be relaxed and we will discuss in later sections the adjustments

needed for dealing with the relaxed constraints.

There are three main perturbation sources that a�ect the stability of the network

� clock skew, making it harder for nodes to keep the same time structure.

� topology changes due to node movement or node failure, changing the current

communication topology

� signi�cant changes in channel quality, which requires the re-computation of the

communication schedule.

The main mechanisms to correct these perturbations are:

� Tick synchronization to deal with clock skew perturbations.

� Periodic exchange of channel quality reports to correct for channel quality changes.

� Periodic exchange of schedule reports to disseminate the current communication

schedule into the network.

Our protocol is in addition robust against topology changes and provides a fast restabi-

lization. One of the reasons for this is that the degradation of quality on some channels

has a limited impact in the stabilization protocol, since tick frames, schedule reports

and channel quality reports can be further exchanged on channels that still display good

quality, without having to repeat the initial stabilization process.

Chapter 4 Three-Dimensional Stabilization 158

4.2.1 Synchronization

In synchronous digital circuits, synchronism is introduced by a clock signal with an

associated frequency of oscillation. For binary signals this oscillation takes place between

a low and a high state. Clocks count the number of oscillations of an oscillator, usually

a piezoelectric resonator, such as a quartz crystal, that vibrates with a precise frequency

when an electric charge is passed through it. By counting these oscillations or ticks,

a clock can be used to measure the passage of time. In a perfect world with perfect

clocks that always gave the same time at the same rate a synchronized network would

stay synchronized forever. However, in the real world, wireless nodes rely on crystal

oscillators that are fallible. A basic crystal oscillator can achieve frequency accuracy in

the order of 10−4 and 10−5, which means that they yield errors in the order of 10 to 100

microseconds per second [TA20].

Even though these oscillators are very stable, the frequency of the generated signal is

still sensitive to temperature and supply voltage �uctuations. In addition, other factors

such as impurities in the crystal and its geometry also in�uence the frequency stability.

The resulting frequency variations in the network, also called clock drift, lead to recurring

clock o�sets among nodes, i.e. di�erences in the given times.

To account for this clock skew and minimize clock o�set between nodes we need a

mechanism to resynchronize them properly and frequently.

Most synchronization algorithms in the literature are master-based. Examples thereof

are TPSN [GKS03], the Gossiping Time Protocol GTP [IvSV06], Recursive Time Syn-

chronization Protocol (RTSP) [AS12] and the Flooding Time Synchronization Protocol

(FTSP) [MKSL04].

Recent research and standardization attempts for future 802.11 standards have also

proposed using IEEE 1588, the Precision Time Protocol (PTP) [CSZ+15] for achieving

time-sensitive capabilities in 802.11 networks. PTP is a time synchronization proto-

col originally developed for wired networks, which is able to achieve sub-microsecond

accuracy.The PTP master nodes synchronizes with its slave nodes using sync messages.

In fact, almost all synchronization methods in wireless networks rely on message pass-

ing between network nodes. An exception here are some protocols that make use of

the Global Positioning System (GPS). Especially solutions for wireless networks in out-

door spaces have relied on GPS for synchronization, since GPS time has an o�set in

the nanosecond range w.r.t. the Universal Time Coordinated (UTC). However, this re-

quires additional dedicated hardware (GPS modules) that are not only expensive, but

159 4.2 Fast restabilization

time

Figure 4.1: Tick o�set between the tick perceived by node vA and the tick perceived by
node vB

also energy-hungry. Moreover, since GPS depends on proper satellite coverage, using it

indoors is not always ideal.

Black Burst Synchronization (BBS)

Another master-based synchronization protocol that seems to be a good candidate for our

needs is Black Burst Synchronization (BBS) [GK11], a protocol devised for deterministic

tick or time synchronization in wireless ad hoc networks. The main insight behind BBS

is the use of black bursts, �xed-length energy bursts starting at pre-determined points

in time, to encode synchronization messages such that collisions are non-destructive.

Moreover, BBS provides low convergence delay and in the absence of foreign nodes

bounded clock o�sets.

De�nition 4.2.1. (Clock o�set). Given two nodes vA and vB with respectively clocks

cA and cB and local times cA(t) and cB(t), then the clock o�set of cA relative to cB at

time t is

doffset(cA, cB, t) = cA(t)− cB(t) (4.12)

Synchronization comes in two �avors: tick and time synchronization. Whereas time

synchronization intends to keep both reference points in time and a clock value syn-

chronized, tick synchronization has no need for the clock value and only focuses on

minimizing the tick o�set (see Fig. 4.1) network-wide. One of the oldest tick synchro-

nization protocols is the Reference-Broadcast Synchronization (RBS) protocol [EGE03].

For our purposes, network-wide tick synchronization is su�cient, since we only need

to keep the time slots in all nodes aligned, and therefore do not need to exchange clock

values.

In order to achieve tick synchronization with BBS, nodes broadcast special synchro-

nization messages called tick frames. The operation of a BBS-based tick synchronization

can be outlined as follows:

Chapter 4 Three-Dimensional Stabilization 160

1. The resynchronization is started at the beginning of every slot by the master node,

which sends a tick frame with a round number 1 to its downstream neighbors.

2. One-hop neighbors of the master node receive the tick frame and can then resyn-

chronize by recording the reception time as their new local tick. They then broad-

cast a synchronization message with round number 2 at the beginning of the next

slot.

3. Nodes on the next hops of the network repeat this process (always increasing

the number of the round) until the maximum known diameter of the network is

reached. Based on the time of reception trx, the duration of a round dround and

the round number i, each node can determine its resynchronized local tick

t′ = trx − (i− 1) · dround

By using BBS, tick frames from the same round are sent almost simultaneously without

creating destructive collisions. This is achieved by encoding the bits of every synchro-

nization message with black bursts. Overlapping black bursts resolve to a bitwise OR

operation on the medium.

To implement a black burst we need to transmit energy on the medium with a �xed

period. In fact, the information contained in the transmitted energy is irrelevant for the

BBS encoding: a bit has value 1 if energy is transmitted on the medium and a bit has

value 0 if no transmission takes place. This can be achieved with 802.11 commodity

hardware by sending a 802.11 frame with no payload. A good choice in this case are

control frames (see Fig.4.2), which in contrast to management and data frames have no

frame body (no data payload) and therefore have minimal frame length in number of

bytes.

Even though the BBS-inspired tick frame dissemination logic can be applied to 802.11,

the presence of foreign tra�c and false positives might nullify the bene�ts of using

the black burst enconding itself. For instance, foreign transmissions that cannot be

distinguished from logical 1s while internal nodes are sending logic 0s will corrupt these

internal black bursts. One way to try to counteract this e�ect is by identifying the used

control frames by setting the 4-bit subtype �eld to one of its reserved (unused) values

such as 0000. This would help then to distinguish possible black burst logical bits from

external transmissions and help avoid false positives. Nonetheless, since we have no

161 4.2 Fast restabilization

control over foreign nodes, we cannot guarantee, for example, that a similar encoding

for control frames will not be used by such nodes.

Protocol
Version Type: 01 Subtype

Bits:: 2 2 4

Additional fields

8

Figure 4.2: Relevant frame control �elds for implementing BBS with 802.11. The type
�eld is always 1 for control frames and the subtype varies depending on
application, such as 1011 for RTS and 1101 for ACK frames.

Our approach

A probably better approach for our scenario is to discard the BBS encoding altogether

and use a single regular frame per node instead of sending multiple short 802.11 frames.

This makes a tradeo�, of course, of avoiding false positives, while having to deal with

more tick frame collisions and losses, and less synchronization accuracy. However, not

only can our scenario handle the loss in synchronization accuracy, but it is possible to

minimize tick frame collisions by having nodes choose a random timepoint within a time

slot for broadcasting the current tick frame.

Much as in BBS, in our approach to tick synchronization, tick frames are broadcast

from the master frame and every receiving node re-transmits the tick frame, containing:

� the number of the current slot

� the number of milliseconds since the start of the current slot at the time of the

tick frame transmission

These two pieces of information are all a node needs to re-sync its current time slot

upon reception of a tick frame. Here we can disregard the time needed for the signal to

travel from one node to the other, since it lies in a microsecond range and we are dealing

with time slots with duration in a millisecond range.

The master node always broadcasts tick frames at the beginning of each slot where

the channel with the highest utilization occurs. Transmitting on the channel with the

most slots (which was the best channel at the time of computation of the communica-

tion schedule) increases the probability of successful delivery of each tick frame due to

Chapter 4 Three-Dimensional Stabilization 162

the good quality of the channel and provides the highest frequency of tick frame dis-

semination by the master node when always using the same channel to broadcast tick

frames.

Nodes downstream from the master node try to re-transmit the tick frame in the same

time slot, and if it is not possible on the next available slot until the synchronization

process is �nished. To allow multiple nodes to broadcast in the same slot while trying to

minimize tick frame collisions, we divide a time slot in 1 ms synchronization windows.

Every node picks a random time point within the next available 1 ms window to broad-

cast the current tick frame. The nodes in the next hop repeat this procedure until a

network-wide synchronization is reached.

This simple scheme should provide with high probability a convergence delay of one

time slot for any network with a diameter of less than or equal to dslot
1ms

hops (as long as

we do not have hundreds of nodes per hop), where dslot is the duration o a single time

slot. For a maximum number nhops of hops in the network, we should reach a network-

wide synchronization with high probability in at most nhops·1ms
dslot

. Since in our scenario

we adopt dslot ≥ 10 ms, this convergence delay should be no worse than nhops
10

time slots.

Moreover, by knowing its distance in hops to the master node, each node can calculate

the worst case delay for it to receive a tick frame, allowing it to detect missing tick frames,

which is a important signal in detecting a potential master node failure.

It is worthy noticing that it is su�cient for nodes in our network to stay loosely

synchronized within one-hop neighborhoods, since only nodes within communication

range can talk to each other. In addition, by repeating the synchronization process, we

can keep the clock o�set in the network bounded in the order of O(dslot), where dslot is

the duration of a single time slot.

4.2.2 Channel quality reports

In our master-based approach, the communication schedule is synthesized by the master

node based on the qualities of all channels. However, in order to optimize the overall

throughput and minimize the overall interference on the used channels network-wide,

it is insu�cient to only consider the channel qualities measured locally by the master

node vmaster. Depending on the placement of internal nodes as well as on the placement

and channel usage of foreign nodes, locally measured qualities might paint a complete

di�erent picture of the spectrum. With this in mind, nodes periodically broadcast special

messages, i.e. channel quality reports, responsible for carrying locally measured channel

qualities up to the master node. It is then the responsibility of vmaster to properly

163 4.2 Fast restabilization

aggregate these channel qualities and compute a global communication schedule to be

distributed in the network. Channel quality reports are broadcast asynchronously in an

independent manner. Furthermore, upstream neighbors of reporting nodes also aggregate

the received channel qualities into their own channel quality reports.

This approach based on channel quality reports follows the parallel data fusion model

described in [Var12]. This cooperative model is based on spatially distributed nodes

that observe a given phenomenon (in our case the channel quality) and that report

their observations to a central coordinator (our master node), which then combines

them and carries a global decision (compute a communication schedule and disseminate

it). Di�erent schemes in the literature have also used the parallel data fusion model or

variants thereof for cooperative spectrum sensing [ALB11], most of them in the context

of cognitive radio networks in the presence of primary users.

Broadcasting reports

Every node v reports the aggregation of its own channel quality report ~qv with the

channel quality reports of reporting downstream neighbors.

De�nition 4.2.2. (Downstream neighbor). Given a node v with hop count v.hops, i.e.

the number of hops to the master node, and a node u with hop count u.hops such that

v.hops < u.hops and u is in communication range of v then u is a downstream neighbor

of v.

The added constraint that nodes only aggregate reports from downstream neighbors

tries to avoid the generation of cycles and attempts to construct a directed convergecast

tree rooted at the master node, the �nal destination of the reports (see Fig. 4.3).

Nodes report at maximum nrep ∈ N times every nslot slots. Having nrep > 1 attempts

to compensate for lost reports, e.g. due to high interference conditions, and tries to

reach more upstream nodes faster such that the information contained in these reports

is carried faster to the master node.

At every slot, nodes decide whether they should broadcast a channel quality report or

not. This decision is based on the local quality of the current channel and on the channel

qualities reported by upstream neighbors. By picking channels with higher channel

qualities (both on the sending and the receiving side), nodes increase the probability of

a successful report delivery.

Nodes expect channels to comply with two requirements in order for them to carry

quality reports:

Chapter 4 Three-Dimensional Stabilization 164

Figure 4.3: Illustration of reports being brought to the master node. Each incoming
edge indicates the delivered report is aggregated at the receiving node.

1. The channel is the best local channel, i.e. the channel with the highest channel

quality adapted for volatility-awareness and locally aggregated (for now ignoring

reported qualities from downstream neighbors).

2. If the current channel is not the best channel, at least nup upstream neighbors of

the node must have used this channel for their quality reports in the past nslot
slots.

Note that for this scheme to work, nodes have to keep track of which channels are used

by its upstream neighbors for channel quality reports.

4.2.3 Aggregation of quality reports

The next issue to be dealt with is the aggregation function. How should each node

combine the incoming reports with its own measured channel qualities? One possible

approach would be to simply average the incoming quality vectors. However, this simple

averaging procedure can deliver quite undesired results by e.g. delivering a communica-

tion schedule that is non-optimal for a large portion of the network. This can happen

because an arithmetic mean will give all downstream nodes the same impact on each

aggregation performed at every upstream node along the way to the master node. One

way to deal with this is to make use of a weighted average of the incoming reports, with

weights derived from the current network state and topology.

165 4.2 Fast restabilization

In [VJP08], for instance, secondary users in a cognitive radio network perform cooper-

ative spectrum sensing and report spectrum energy measurements that are combined by

a master node with a weighted arithmetic mean where weights are derived from the local

mean SNR observed at each node. Simulations showed that this weighted combination

yielded an improved primary user detection performance with a lower false alarm rate

than when combining all energy measurements with the same weight.

In our approach, we take topology into consideration by deriving the aggregation

weights out of each reporting node's downstream in-degree. In fact, we want the higher-

weight nodes to hold more in�uence in the �nal channel quality aggregation.

De�nition 4.2.3. (Downstream in-degree). We de�ne the node downstream in-degree

v.win(c) of node v on channel c ∈ C as the number of downstream neighbors of v on c.

Note that the downstream in-degree is always smaller or equals the total node in-

degree, since we can also have incoming transmissions from upstream neighbors on any

given channel.

We estimate each node's downstream in-degree by calculating the number of unique

MAC addresses seen in incoming messages from downstream neighbors in the past dseen
seconds. This time constraint helps avoid the set of downstream neighbors becoming

stale, e.g. a node is o�ine, but is still considered a neighbor. Therefore, each node

repeatedly computes its downstream in-degree and sends it along with its channel quality

report to its upstream neighbors.

Weighing the aggregation of the collected reports based on the network topology

prevents nodes with fewer connections from highly in�uencing the �nal quality vector

at the master node, which will be used for synthesizing the communication schedule.

In addition to the network topology, we look at a metric based on local measures of

the current channel quality and the current communication schedule to help us compute

the aggregation weights: the expected achievable throughput.

De�nition 4.2.4. (Expected achievable throughput). Given a communication schedule

scom, and uc the utilization of channel c ∈ C with quality qc, we de�ne the expected

achievable throughput as:

U(scom) =
∑
c∈C

uc ∗ qc (4.13)

The maximum expected achievable throughput for a given communication schedule

scom is then

Umax(scom) =
∑
c∈C

uc = nslot (4.14)

Chapter 4 Three-Dimensional Stabilization 166

If a network achieves Umax(scom), this means it has the full capacity of all channels at

its disposal and could under ideal conditions achieve maximum throughput.

De�nition 4.2.5. (Normalized expected achievable throughput). We then de�ne the

normalized version of the expected achievable throughput τEAT ∈ [0, 1] as

τEAT (scom) =
U(scom)

Umax(scom)
=

∑
c∈C

uc ∗ qc∑
c∈C

uc
=

1

nslot
·
∑
c∈C

uc ∗ qc (4.15)

This means that decreasing values of τEAT (scom) for a given node signal that this node

is pro�ting less from the current hopping sequence either due to signi�cant changes in

relative qualities among channels, i.e. the fair share w.r.t. slot distribution has changed,

or due to an overall worsening in channel conditions, i.e. all channels are su�ering more

foreign tra�c and have worse qualities for it, without displaying a signi�cant change in

fair share.

De�nition 4.2.6. (Aggregation weight). We then de�ne the aggregation weight ~wr

reported by node v to be used upstream in the aggregation of the quality reports coming

from nodes with similar hop counts. ~wr should be proportional to the node downstream

in-degree ~win and proportional to (1 - τEAT) such that:

~wr = (1− τEAT) · (1 + ~win) (4.16)

Note that we use (1+v. ~win) instead of v. ~win because we have to account for leaf nodes

with no downstream neighbors.

Our aggregation scheme works then as follows:

1. Every node v receives channel quality reports from downstream neighbors and

stores these reports for later use in a set of received but not aggregrated reports

v.R.

2. Before broadcasting a report, node v aggregates the |R| received reported qualities
using the reported weights:

qR[c] =
1

|R|

|R|∑
r∈R

wr[c] · qr[c] (4.17)

167 4.2 Fast restabilization

3. The locally aggregated quality ~qaggr of node v is then combined with ~qR:

~q?R =
1

2
· (~qaggr + ~qR) (4.18)

4. ~q?R is then broadcast in a channel quality report together with the weight ~wr of

node v.

As described above, our aggregation policy tends to prioritize over time those regions

of the network that either have the higher network densities, observe the worst channel

quality conditions or are losing the most with the current schedule w.r.t. achievable

throughput due to a high discrepancy of the local fair share and the global one embedded

in scom.

The aggregation weights dynamically adapt to new conditions in the network e.g. τEAT
changes due to a new communication schedule or when some nodes leave the network,

downstream in-degree values will change for di�erent nodes, re�ecting the new topology.

4.2.4 Data dissemination methods

Di�erent approaches were proposed in the literature trying to solve the problem of

propagating data into a wireless ad-hoc network and keeping it consistent network-

wide. A widely-used approach is delivered by Trickle [LPCS04], a polite gossip protocol

designed for low-power multihop ad-hoc networks. The two main ideas behind Trickle

are the use of an adaptive transmission rate and the suppression of redundant messages,

i.e. nodes only disseminate data if they have not seen consistent data enough times in a

chosen listen-only time interval. Trickle's adaptation of the transmission rate works as

follows:

1. At the beginning of a node's operation, set the Trickle interval I to the chosen

minimum interval Imin, i.e. I := Imin.

2. For every potential transmission, at the beginning of the current Trickle interval

choose a random transmission point t in the interval [I
2
, I].

3. After interval I has passed, double the interval or after enough doublings set the

interval to the maximum possible interval, i.e. I := min(2 · I, Imax).

4. If at any moment inconsistent data is observed, re-start the interval I, i.e. I :=

Imin.

Chapter 4 Three-Dimensional Stabilization 168

This means, Trickle starts with a high transmission rate that decays exponentially with

time as long as no inconsistent data is observed. Most Trickle-based protocols resort

to version numbers in order to di�erentiate data artefacts and detect inconsistencies in

the network. As already mentioned, in addition to transmission rate adaptation, nodes

try to minimize redundant transmissions by counting the number of received consistent

messages in each transmission interval and only transmit the same data if a certain

threshold K is not reached.

Trickle's ideas have been adopted (often with some variations) by many protocols

such as Drip [Tol05], Dip [LL08] and Dhv [DBFP09]. For instance, TinyOS [LMP+05],

an operating system designed for sensor networks in use by hundreds of research groups

throughout the world, has implemented Dip and Dhv for lightweight data dissemination.

Even though Trickle has been shown to be quite scalable, its simplicity proves to be

problematic under di�erent scenarios leading, for instance, to information partitioning.

A recent variant of Trickle, A2-Trickle, adds enhancing mechanisms such as:

� Aligned intervals: neighboring nodes align their Trickle intervals through tick syn-

chronization to minimize message collisions.

� Adaptive suppression mechanism: nodes change the suppression counter K for

every Trickle interval by keeping track of the topology around it. In addition, if a

node v detects that a certain node u only receives information from it, v always

transmits new information regardless of K.

The authors showed with testbed-based experiments and simulations with more than

a hundred di�erent topologies that A2-Trickle leads to fewer collisions than the vanilla

Trickle algorithm, forwards messages faster and leaves no node in an inconsistent state.

Moreover, it makes con�guring the dissemination protocol easier by making the suppres-

sion threshold adaptive and is also more energy-e�cient.

Even though Trickle-based data dissemination protocols have found wide adoption,

there is still a dearth of algorithms concerned with multichannel data dissemination.

Some works focus only on the channel selection aspect (leaving out any discussion of

data consistency) such as [ACKR], where the authors measure worst-case transmission

latency when using �ve di�erent channel access schemes.

An interesting approach, which is comparable to our approach is SURF [RVKF13].

In a similar fashion to our stabilization protocol, SURF assigns di�erent weights to

channels. However, in contrast to our protocol, nodes are only equipped with a single

transceiver and channel selection is decided on a node-by-node basis: nodes always use

169 4.2 Fast restabilization

jams channel
Nodes are
outside of

sensing range

stays on channelhops to channel

Figure 4.4: Hidden stations make it rather problematic for nodes to always use the best
local channel for communication.

the best local channel for communication. Channel weights are proportional to primary

user occupancy of the channel and the number of neighbors on the channel. One of

the main assumptions made by SURF is that neighbors will rank channels similarly and

will hence with high probability pick the same channel for communication. Di�erent

from our algorithm SURF node might overcrowd channels with good conditions instead

of distributing the channel usage over multiple channels. Furthermore, even though it

might minimize channel switching, always picking the best local channel is much more

susceptible to scenarios where the channel quality suddenly becomes considerably worse

due to hidden stations, e.g. a node v3 has only one neighbor v2 and they communicate

on channel c, when a foreign node in communication range of v2 and outside the sensing

range of v3 starts jamming channel c. This would make it e�ectively impossible for v2

and v3 to communicate with each other, because whereas v3 will stay on channel c, since

for it the channel is still very good, v2 will switch to its next best channel (see Fig. 4.4).

Another two data dissemination protocols that consider multichannel access are Mc-

Torrent and McSynch [SHFS05]. McTorrent was designed to allow the end-to-end dis-

semination of large data objects such as over-the-air reprogramming and adopts many of

the ideas introduced by Deluge [CHT04] while extending them to work in a multichan-

nel scenario. McTorrent nodes use advertisement and request messages to negotiate the

transmission of data pages (portions of the data object) on a given channel. McSynch,

on the other hand, focuses on keeping data consistent within two-hop clusters. With this

purpose, it uses a round-based approach and divides the time into slots. In each round,

data pages are assigned to both a channel and a slot in order to produce collision-free

Chapter 4 Three-Dimensional Stabilization 170

transmission within the cluster, i.e. only one node transmits on any given channel in

any given slot. Both McTorrent and McSynch only marginally consider data consistency,

McSynch a bit more than McTorrent, but even so in a simpler scenario than ours (the

consistency is only kept within two hops).

4.2.5 Communication schedule dissemination

In our scenario, the master node vmaster is responsible for computing a communication

schedule scom based on collected channel quality reports and on its own local channel

quality measures. The synthesized scom must be then disseminated into the network and

be used as a global hopping sequence for communication. This means that one of the

main tasks of our stabilization protocol is to keep the network schedule-consistent, i.e.

all nodes possess the same hopping sequence.

Communication schedules are propagated through the network with special messages,

namely schedule reports. Similarly to channel quality reports, these messages are broad-

cast from each node with a certain frequency.

Besides the communication schedule itself, schedule reports carry additional metadata

such as the version number of the current schedule. This helps other nodes distinguish

between new and old schedules and also helps nodes decide which schedule to use (the

one with the higher version number) when multiple nodes advertise di�erent schedules.

It is worth noting that nodes advertise their communication schedules even when

no change took place. This is important, for instance, for nodes joining the network,

which otherwise would have no communication schedule until it got re-computed and

re-disseminated.

Our basic dissemination protocol works as follows:

1. For every nslot slots, every node broadcasts its current commnunication schedule

at maximum ndis ∈ N slots.

2. Each node keeps track of how many consistent schedule reports it received since

its last attempt at broadcasting a schedule report.

3. If a node is on a report channel and it has received less than nadv schedule reports

and it has broadcast fewer than ndis schedule reports in the past nslot slots, then it

picks a random time point in the current slot and reaching that point it advertises

its current communication schedule. Otherwise it stays silent, resets its report

counter and starts counting anew. Choosing random time points for the broadcasts

171 4.2 Fast restabilization

tries to minimize collisions between nodes in communication range that select the

same channel in the same slot for the schedule reports.

By using this polite gossip scheme inspired by Trickle [LPCS04], we lower the num-

ber of redundant schedule advertisements, since every node only advertises its current

communication schedule if not enough schedule reports were broadcast in its vicinity.

In order to avoid having the same nodes advertising all the time while others stay

silent, each node picks a random time point within each slot at which its schedule report

should be broadcast.

At every time slot, each node has to decide whether the current channel can be used

for a schedule report or not.

This channel selection relies primarily on locally measured channel qualities. Chan-

nels are ranked according to aggregated channel quality and the nbest local channels are

selected for schedule reports in the descending order of channel quality. In addition,

nodes do not re-use channels until all suitable channels have been selected. This channel

selection scheme makes it easier for joining nodes to receive a new schedule by broad-

casting the current communication schedule on multiple good channels. Furthermore,

as an optimization, if a node v receives an inconsistent schedule report from node u,

it may broadcast its next schedule report on the next channel that is also good for u,

even if this channel is outside the subset of the nbest local channels for v, as long as this

channel comes up earlier in the communication schedule. This exception to the channel

selection scheme intends to speed up the elimination of schedule inconsistencies within

a one-hop neighboorhod. For this scheme to work, nodes have to keep track of the chan-

nels on which their neighbors sent schedule reports in past slots. Furthermore, in order

to avoid nodes keeping stale information on neighbors, channels are not considered good

for neighbors anymore if they were not used for nslot slots for broadcasting a schedule

report.

4.2.6 Optimal and temporary schedules

Based on current locally measured channel conditions and the estimated network-wide

channel conditions, derived from channel quality reports, the master node computes an

optimal communication schedule. However, if this schedule is not the �rst communica-

tion schedule computed by the master node since bootstrapping the network, and this

schedule has just been computed, the master node does not disseminate this new sched-

ule in a single schedule report. Instead, the master reports schedule deltas, i.e. changes

Chapter 4 Three-Dimensional Stabilization 172

to the previous schedule that have to be performed to converge to the new optimal

schedule.

This helps keeping the variation in schedule-consistency due to new schedules bounded.

This avoids having nodes who still have not received the new schedule from drifting too

far apart from the new schedule. A certain level of drifting is unavoidable, especially in a

larger network, where a number of nodes will most probably miss some schedule reports

due to frame losses resulting from frame collisions or overall bad channel conditions.

These schedule drifts should be most prominent at the border of the network, since

the nodes at this region are the furthest apart from the master node. In order to

keep this schedule dri�ting contained, we limit the sizes of the schedule deltas that are

disseminated into the network. The minimal possible schedule delta is called an atomic

substitution and is the pair (i, c?), where i denotes the slot i where channel c? should

be used, i.e. for a schedule s, s[i] ← c?. While having schedule reports carry atomic

substitutions lead to minimal divergence it also leads to the slowest convergence from

the current communication schedule to the new optimal one. This means that it might

be advisable for a schedule delta to carry more than one atomic substitution, especially

if the depth of the network grows, i.e. there is an increase in the maximum number of

hop counts from the master node to the border of the network.

In addition, in order to steer towards the best possible network performance, also dur-

ing the convergence process between two communication schedules, atomic substitutions

are chosen such that the resulting schedules are the best possible intermediate schedules

after a single substitution. This substitution is computed considering the aggregated

channel qualities perceived by the master node and the resulting optimal channel uti-

lizations. For more details on how to compute such optimal atomic substitutions, please

refer to [Eng20].

After a certain time has passed since the dissemination of the new optimal schedule

(see Sec. 4.2.8), nodes assume the network has been stabilized and is schedule consistent.

As an optimization, in order to have joining nodes receive the current communication

schedule faster, nodes might switch to broadcasting the whole communication schedule

in a single schedule report.

4.2.7 Re-computation of communication schedules

In our scenario, the number of slots assigned to each channel is proportional to its quality

at the time of computation of the current hopping sequence. In general, this channel

selection remains static for multiple time slots and is only updated upon detection of

173 4.2 Fast restabilization

signi�cant changes in channel quality. On top of that, we do not want to re-compute

the communication schedule too often, since this could lead to unnecessary schedule

inconsistencies throughout the network.

Every dcomp milliseconds, the master node tries to gauge whether its aggregated chan-

nel qualities (of both its measured qualities and the channel reports) signal a change in

overall channel quality for it to re-compute and disseminate a new schedule.

First, we need to de�ne what constitutes a signi�cant change in overall channel quality.

We de�ne a signi�cant change with help of the throughput variance.

De�nition 4.2.7. (Throughput variance). Given a current communication schedule s,

computed based on previously measured channel qualities, a schedule s′ computed by

the master node based on the current aggregated channel qualities, as well as τEAT (s)

and τEAT (s′) the normalized expected achievable throughput of respectively s and s′, we

de�ne the throughput variance R(s, s′) as:

R(s, s′) =
τEAT (s′)− τEAT (s)

τEAT (s)
(4.19)

R(s, s′) calculates the the net gain or loss in expected achievable throughput relative

to the current τEAT (s) by swapping the current communication schedule s for a new one

s′, computed based on the current channel state. For instance, if R(s, s′) is negative,

it indicates that there is a loss utility-wise in disseminating a new schedule, from the

perspective of the master node. This is clearly an estimate, derived from aggregated

channel qualities at the master node, of the expected payo� for each node in using the

new schedule and might di�er from local views. However, due to how channel quality

reports are aggregated, we try to align the view of the channel state at the master node

with the view of the majority of the network giving more weight to better connected

nodes and nodes which bene�t the least from the current communication schedule.

Given a pre-con�gured threshold δret, we only adopt a new communication schedule

if the throughput variance rises above this threshold, i.e. R(s, s′) > δret. This threshold

should be chosen in a conservative manner to only re�ect meaningful changes in overall

channel quality, e.g. δret = 0.2.

4.2.8 Estimating dcomp

Regardless of channel quality �uctuations, synthesizing new communication schedules

and subsequent dissemination should not happen too often, allowing for the network to

enjoy the current stabilized state.

Chapter 4 Three-Dimensional Stabilization 174

The parameter dcomp de�nes the minimum time the master node waits between schedule

computations. This waiting time depends on how long it takes for the network to

transition from inconsistency to network-wide schedule-consistency.

Given

� dslot the duration of a slot

� nslot the number of slots in a hopping sequence

� nmaxHops the maximum distance in hops from a node to the master node (see

Figure 4.5)

� ndis the maximum number of times every node broadcasts its current schedule

within nslot slots.

we estimate the time duration dstabilization needed to stabilize the network:

A very optimistic estimation. Assuming that the new schedule is propagated down-

stream one hop for every slot, we can calculate the time for the whole network to become

schedule consistent with the master node as

dstabilization,opt = nmaxHops · dslot (4.20)

Example 4.2.1. For nmaxHops = 5, dslot = 500ms, we have:

dstabilization,opt = 5 · 500ms = 2.5s

Even though this estimate of the stabilization time is realistic enough, depending on

ndis and on the current channel conditions, it might be way too optimistic. That is why

we will try to be a bit more conservative.

A more conservative estimation. Assuming that the new schedule advances ndis
hops downstream from the master node for every nslot slots, we can estimate the time

for the whole network to become schedule-consistent with the master node as

dstabilization,fast =
⌈nmaxHops

ndis

⌉
· nslot · dslot (4.21)

Example 4.2.2. For nmaxHops = 5, ndis = 3, dslot = 500ms and nslot = 12 we have:

dstabilization,fast =
⌈5

3

⌉
· 12 · 0.5s = 2 ∗ 12 ∗ 0.5 = 12s

175 4.2 Fast restabilization

A less optimistic estimate. For a more pessimistic estimate, we assume one hop

propagation per nslot slots of the new schedule through schedule reports. This way, we

have

dstabilization,slow = nmaxHops · nslot · dslot (4.22)

Example 4.2.3. For nmaxHops = 5, ndis = 3, dslot = 500ms and nslot = 12 we have:

dstabilization,slow = nmaxHops · nslot · dslot = 5 · 12 · 0.5s = 30s

Based on the estimates described above, we constrain dcomp to lie between our more

conservative estimates:

dstabilization,fast ≤ dcomp ≤ dstabilization,slow

Estimating nmaxHops Since the network topology is dynamic we need to repeatedly

estimate the depth nmaxHops of the network in order to keep dcomp up to date. In order

to accommodate for this, channel quality reports can carry not only the hop count of

the current broadcasting node, but also the maximum seen hop count, allowing for the

current depth of the network to eventually propagate to the master node (see Fig. 4.6).

Since changes in the network (nodes joining or leaving it) may have rendered hop counts

temporarily invalid, this yields only an estimation of nmaxHops.

Chapter 4 Three-Dimensional Stabilization 176

Master

nmaxHops

Figure 4.5: nmaxHops = 5 is the estimated maximum distance in hops from a node to the
master node

Master

max(4,5)

max(3,5)

max(5, 5)

max(2,5)

max(1,5)

Figure 4.6: Maximum seen hop count piggy-backs on channel reports and yields an es-
timate of the depth of the network at the master node

177 4.3 Leader election

4.3 Leader election

Since the computation and dissemination of communication schedules rely on a master

node, a still missing primitive in our stabilization protocol is how to elect a new master

node when the current one fails. This problem is referred in the literature as leader

election. Hence, in this section we use the term leader and master node interchangeably.

Di�erent leader election algorithms have been proposed in the literature under di�erent

network settings such as [GH12] and [CD15].

4.3.1 Master failure

We propose a simple leader election algorithm, where one-hop neighbors become can-

didates after detecting a possible master failure. First, a possible master failure is

detected by a node v when no tick frame is received by v from the master for nfail slots,

where nfail > 1. Nodes pick nfail locally in a conservative manner based on locally

perceived channel qualities such that the probability of the master node having failed

pfail = 1− ploss > 0.9, where ploss is the probability of all tick frames being lost, which

in this case becomes less than 0.1. We assume that the quality of each channel during a

given slot equals the probability of a tick frame being delivered to a certain neighbor of

the master node during this slot. This means nodes seeing di�erent channel conditions

will assume master node failures at di�erent slots.

Example 4.3.1. Let us assume every channel c has a quality qc = 0.5, which constitutes

overall bad but still usable channel conditions. We can then compute the probability

of all tick frames being lost after 4 slots as ploss = (0.5)4. In this case, after observing

4 consecutive tick frames losses, in the �fth slot the node assumes the master node has

failed, since it calculates the probability of the master having failed as

pfail = 1− (0.5)4 ≈ 0.94

Example 4.3.2. A node using channels C = {c1, c2, c3, c4} with respective qualities

~q = (q1, q2, q3, q4) = (0.7, 0.6, 0.4, 0.9), and expecting a tick frame on channel c4 will

derive pfail = 1− (0.1)2 = 0.99, assuming already after nfail = 2 missed tick frames that

the master node has failed.

Upon detecting a potential failure, a node may become a candidate for the leadership

of the network. By having only neighbors of the previous master node become candi-

dates, we try to minimize the changes in the topology of the network resulting from a

Chapter 4 Three-Dimensional Stabilization 178

0 5 10 15 20 25

0.3

0.5

0.7

0.9

nneighbors

p c
a
n
d
id
a
te

change in leadership. In addition, to lower the number of leader candidates, after detect-

ing a master failure each node decides at every slot with probability pcandidate whether

to become a candidate, as long as it is not a candidate already or has already chosen

a new leader. This probability is chosen by each node based on its current number of

neighbors nneighbors:

pcandidate = min(0.9, 0.2 +
1

nneighbors
) (4.23)

For nodes with 5 neighbors for example, the probability of all of them choosing not to

become a candidate after one slot is p¬∀candidate = (1−pcandidate)(nneighbors+1) = (0.2+ 1
5
)6 =

(0.4)6 ≈ 0.004, which is already quite low. The probability of all of them not becoming

candidates after two slots is 0.0042 ≈ 0.000016 and hence negligible. In fact, in a n-node

neighborhood we expect on average to have n · pcandidate candidates per leader election.
In addition to the probabilistic candidacy, nodes use random voting timers to cast

votes for themselves or others in each election slot, i.e. where no leader is present. By

combining a probabilistic candidacy with randomized timepoints for casting the votes,

we considerably reduce the probability of persisting split votes.

4.3.2 The voting process

Nodes that decide to become candidates broadcast votes for themselves, one vote per

slot. Neighbors of a candidate v who are not yet candidate themselves and who have

not received any other vote yet, become followers of v upon receiving a vote from it.

Followers choose a random time point in the current slot and broadcast a vote for the

179 4.3 Leader election

supported candidate. Each node votes for at most one candidate in any given slot.

Having followers of a node v cast votes for v has a dual purpose: making v aware that

these nodes are now its followers as well as telling other nodes (not in communication

range of v) that v is a leader candidate.

Furthermore, each vote carries a timestamp with nanosecond precision of the time

when the supported node cast its �rst vote for itself (announced its candidacy). If more

than one node within the same neighborhood have voted for themselves in the same slot,

a deterministic tie-breaking rule is applied: the older candidate wins, i.e. the node with

the lower candidacy timestamp value stays a candidate while the other node becomes its

follower. Note that it is irrelevant whether the lower value really proves that one vote

was cast before the other, it is only important to notice that the probability of both

nodes having the same timestamp is negligible. In addition, any followers of the losing

candidate will eventually support the other candidate.

At the beginning of each slot, a leader candidate chooses a random time point in the

current slot and casts a vote for itself again. After 3 consecutive slots with no competing

votes, a candidate v considers itself a master node. This is a conservative waiting time

to cope with the loss of votes or a delayed propagation of votes especially for candidates

outside the communication range of v.

During the voting slots, as long as no leader is elected, there is no dissemination of

changes to the current communication schedule. However, to cope with re-synchronization

of nodes in the absence of a master node, votes in each slot act as tick frames, i.e. carry

the current time slot. This allows follower nodes to re-synchronize to the ticks of the

current supported node or to followers of the same node.

4.3.3 Raft

The basic ideas behing our leader election algorithm are mainly inspired by the leader

election proposed by Raft [OO14], a widespread distributed consensus algorithm, which

is considered to be a simpli�ed version of Paxos [Lam05]. Similar to our work, failures due

to malicious nodes, i.e. Byzantine failures, are not considered by Raft. Also, similarly to

Raft we let older candidacies win. However, while we prefer to use the time point where

the candidacy started, Raft uses election rounds (terms), which increase monotonically

until the election terminates and candidates with higher terms win. The termination in

Raft takes place when a node acquires the majority of votes. This would not work as

easily in our scenario since nodes do not know how many potential leader candidates

there are in the network at the time of the master failure and not all of them can

Chapter 4 Three-Dimensional Stabilization 180

Follower Candidate

Leader

Detects master failure

 becomes candidate

with probability

Casts vote for itself

until no more competing

 votes appear

Detects a leader whose candidacy

predates own candidacy

Receives votes for a candidate

better than actual supported candidate

 (or has no candidate)

becomes follower of this candidate

Figure 4.7: Simpli�ed state machine of leader election.

communicate with each other. In fact, one fundamental di�erence between Raft and our

stabilization protocol is its implementation assumption that all nodes in a cluster know

of each other and no nodes might join the cluster dynamically. In our scenario, nodes

might be aware of only some of the nodes in communication range, and we do not have

any statically con�gured topology.

Same as in Raft, we assume links between nodes are by nature lossy and unreliable

and we cannot guarantee that network partitions won't occur. Indeed, depending on the

current topology of the network, the failure of the master node might leave the network

partitioned and each remaining cluster will eventually elect its own master node. This

partitioned state will remain as long as no bridge between both partitions is built, be

it new nodes joining the network or nodes moving around, which might change the

communication topology. Since network partitions are possible, cluster leaders should

eventually become followers of other leaders whose candidacy timestamp is lower. To

achieve this goal, we extend tick frames to carry the original candidacy timestamp of the

current leader, allowing two partitions with distinct leaders to be merged later on. A

simpli�ed state machine can be seen in Fig.4.7 illustrating the state transitions between

the follower, candidate and leader states.

4.4 Initial stabilization

In order to minimize bootstrapping overhead, i.e. additional messages on the spectrum

to negotiate the joining of a new node, we adopt a conservative passive approach: a

joining node v stays passive until a number of constraints are satis�ed:

181 4.4 Initial stabilization

1. Node v must have received at least one sync message and hence be synchronized

with the master node.

2. The node must be schedule-consistent with at least one node in its communica-

tion range, i.e. it must have received a communication schedule. If a node is

synchronized and possesses a communication schedule it is considered stable.

This conservative transmission strategy also helps avoid skewing the derivation of

channel qualities due to chatty joining nodes.

To guarantee that these these constraints are eventually satis�ed, we have introduced

di�erent measures:

1. After powering up, all nodes start sensing all channels and compute for each of

these channels a channel quality. Since we use passive channel sensing no fur-

ther measure must be taken before unstable nodes start performing it. Measuring

channel qualities is performed during the whole life-cycle of a node.

2. Given qmin the minimum acceptable channel quality for e�ective communication,

after powering up the master node detects the set of channels with su�cient quality

Cmin = {c ∈ C | qc > qmin} and computes a communication schedule using Cmin.

Since the master node is always trivially synchronized with itself, after computing

a schedule it is stable and can become active on the medium.

4.4.1 Initial synchronization

To achieve an initial synchronization, unstable non-master nodes have to receive at least

one tick frame (a sync message). For this purpose, each node v computes v.Cmin = {c ∈
C|qc ≥ qmin} and listens for a tick frame on each of the channels c ∈ v.Cmin in descending
order of channel quality. Nodes listen on each channel for a duration of nslot ·dslot before
hopping to the next channel. This process is repeated until a tick frame is received.

Since for each nslot slots multiple tick frames are sent with high probability on the

same channel, this behavior increases the probability of eventually receiving a tick frame.

This way, as long as an unstable node has a stable node in communication range, it will

eventually receive a tick frame. Furthermore, by starting with the best local channel,

a node increases the probability of receiving the tick frame in the �rst listening period,

since the preferred channel for broadcasting tick frames is the channel that had the best

aggregated quality at the time of computation of the communication schedule.

Chapter 4 Three-Dimensional Stabilization 182

If a node has already received a communication schedule but no tick frame, it already

knows on which channel the tick frame should arrive with high probability (the channel

with the most slots). In this case, the node listens on this channel, and if no tick frame

is received after waiting for nwait ≤ nslot time slots, the node hops to one of the channels

that is used directly after the channel with the highest utilization and waits again. This

procedure is repeated anew until a tick frame is received.

4.4.2 Initial communication schedule

Upon receiving a tick frame, a node v knows that the sending node u must be a stable

node and that this node will eventually broadcast a schedule report. With this in mind,

stable nodes include their best local channel cbest in the tick frame such that synchronized

nodes without a communication schedule can switch to cbest and wait there until they

have received a communication schedule. This essentially guarantees and speeds up the

eventual reception of a schedule report by node v, since nodes broadcast schedule reports

on their best local channels and the best local channel of a node u (where the received

tick frame originated) will eventually be used for schedule reporting by u and with high

probability by any node in communication range of v and u.

After receiving a communication schedule, synchronized nodes can then become active

on a channel and appropriate management data can hence be broadcast, in particular,

tick frames, channel quality reports and schedule reports.

4.5 Simulation

In this section, we will introduce some metrics to gauge the level of schedule consistency

throughout the network w.r.t. the global communication schedule. In addition, we will

evaluate the capabilities of our stabilization protocol to maintain and restore network-

wide schedule consistency by discussing some of the results obtained through simulations

of the protocol.

4.5.1 Schedule consistency Metrics

To analyze the performed experiments, we introduce some schedule consistency metrics.

183 4.5 Simulation

De�nition 4.5.1. (Degree of Consistency). Given scom the global schedule disseminated

into the network by the master node, and s the schedule of a node v, we de�ne the degree

of consistency Γ of schedule s with respect to scom as

Γ(s, scom) =
1

nslot
|{ 1 ≤ m ≤ nslot | s(m) = scom(m) }|

This way Γ(s, scom) counts the number of matching slots between schedule s and

schedule scom.

Example 4.5.1. (Degree of Consistency). Given a network with 5 macroslots per super-

slot, i.e. nmacro = 5, and the schedules of the master node (vmaster.s) and of node v (v.s),

we compute the degree of consistency Γ of v:[
vmaster.s

v.s

]
=

[
1 5 8 4 1

1 5 6 3 1

]

Since the schedules match at three slots (shown in bold), the degree of consistency of

node v is

Γ(v.s, vmaster.s) =
3

5

De�nition 4.5.2. (Average Degree of Consistency). Given scom the global communica-

tion schedule and let v.s denote the communication schedule in use by node v ∈ V , we
de�ne the average degree of consistency Γ(scom) as

Γ(scom) =
1

|V |
∑
v∈V

Γ(v.s, scom) (4.24)

Γ delivers hence a metric to gauge the level of network-wide schedule consistency with

respect to the global schedule by computing the average Γ over all schedules in use in

the network. For the sake of notational simplicty, we will from here on refer to the

average degree of consistency as Γ, omitting the global communication schedule from

the notation.

In addition to Γ, we de�ne an alternative schedule consistency metric: the network

consistency ratio.

Chapter 4 Three-Dimensional Stabilization 184

De�nition 4.5.3. (Network Consistency Ratio). Given all nodes v ∈ V , let v.c be the
channel in use by v during the current slot and vmaster.c the channel being used by the

master node, we de�ne the network consistency ratio ∆ as

∆ =
1

|V |
|{ v ∈ V | v.c = vmaster.c }| (4.25)

This means ∆ computes the fraction of nodes that listen on the same channel as the

master node during a given slot.

Example 4.5.2. (Network Consistency Ratio). Given a network with �ve nodes, i.e.

|V | = 5, where V is the set of nodes, the master node is currently using channel 2 and

vi.c denotes the channel currently being used by node vi. We compute the network

consistency ratio ∆, i.e. the fraction of the whole network that currently uses the same

channel as the master node:

vmaster.c v1.c v2.c v3.c v4.c[]
2 2 2 2 4

After comparing the channels being used by every node in the network, we can com-

pute ∆ as in (4.25). Since v1, v2, v3 and vmaster all use the same channel, the network

consistency ratio is

∆ =
4

5

4.5.2 Simulation environment

We have implemented our stabilization protocol in the ns-3 simulation framework. ns-3

is a discrete event network simulator that allows us not only to evaluate the performance

of the main components of our stabilization protocol, but lets us to do so with di�erent

topologies and with a network size larger than our testbed. Moreover, simulation plays

an important role in network research in general by making results reproducible and

easier to share with the research community. ns-3 has become the de facto go-to network

simulator in special for wireless networks. Some of the reasons for its wide adoption in

the networks research community are:

1. Modularity (module-based).

185 4.5 Simulation

2. Extensive documentation and active discussion forums.

3. Integrated unit testing framework, which makes test-driven development easier.

4. Development relies on a single programming language: C++.

4.5.3 Scope of the simulation

In our simulation, we �rst focus on the main functionalities of our protocol: computation

and dissemination of communication schedules triggered by aggregated channel qualities,

which are measured and reported from non-master nodes to the master node. The main

focus of the results shown here is then to determine how well our stabilization protocol

can keep the network schedule consistent. Left out of the simulation results focusing on

schedule consistency are synchronization aspects (all nodes are always synchronized),

the leader election mechanism (the master node is always present) and the initial sta-

bilization process (all nodes can become active from slot 1 onward). The purpose of

constraining the scope of the simulation is twofold: to spend more time evaluating the

main functionalities and minimize the number of distinct active components in order to

avoid making the simulation too complex, which would make it more di�cult to validate

the main functionalities of the stabilization protocol. After evaluating the main capabil-

ities of our stabilization protocol, we brie�y evaluate our tick synchronization algorithm

through a couple of simulation experiments.

4.5.4 Channel sensing

Nodes in our simulation measure channel qualities by reading stored quality values for

the current channel. Each node applies a random variation to these channel qualities

(usually with a conservative variation upper bound, e.g. 0.2) to simulate the di�erent

foreign tra�c patterns in each region of the network. The base channel qualities used for

the simulations are historical records stored in our database from real channel quality

measurements performed by our testbed nodes. This helps us use more realistic quality

values while still allowing some random variations. This combination of base quality val-

ues and bounded variations helps us create di�erent scenarios where channel conditions

throughout the network are distinct with di�erent levels of heterogenicity.

Chapter 4 Three-Dimensional Stabilization 186

4.5.5 Physical model of the wireless channel

In our simulations, we use a physical model for the wireless channel that uses a propa-

gation model that only considers large-scale fading disregarding large object shadowing

e�ects. This means the signal attenuation depends solely on the distances between

transmitter and receiver. Moreover, the used physical model uses a constant propaga-

tion delay. Furthermore, nodes successfully receive messages from a transmitting node

with a probability corresponding to the quality of the current channel (measured by the

receiver) if and only if they are within the transmitter's communication range. The used

model allows us then to create di�erent multi-hop topologies in the network by either

changing the position allocation or the communication range of the nodes.

4.5.6 Experiments

In this section, we will discuss some of the simulation results achieved with the ns-3

implementation of our stabilization protocol.

Network self-healing

The following experiments show how our stabilization protocol is able to cope with high

losses in schedule consistency throughout the network. As seen in Fig. 4.8, the network

can self-heal, i.e. it eventually converges from a very low value of Γ towards the best

possible average degree of consistency Γ = 1. For this experiment, the simulation was

con�gured to run for 500 slots. The total number of channels is 12 with a communi-

cation schedule size of nslot = 30. Moreover, the network has 80 nodes arranged in a

grid with 5 meters between nodes both horizontally and vertically and the maximum

transmission range of all nodes is 18 meters. The maximum network diameter resulting

from this con�guration was 26 hops. Despite the huge drop in schedule consistency at

the beginning and the long convergence time, the network was fully schedule consistent

43.6% of the time.

As expected, increasing the rate of dissemination of schedule reports helps decrease

the convergence time needed to reach the maximum average degree of consistency. For

instance, simulating the previous scenario and doubling the ndis parameter, i.e. the

maximum number of disseminated schedule reports within every nslot slots, the same

drop in schedule consistency is repaired almost 100 slots faster, as seen in Fig. 4.9.

As shown in Fig. 4.10, the convergence towards network-wide schedule consistency is

not always monotonically increasing. Drops in the average degree of consistency can

187 4.5 Simulation

0 100 200 300 400 500
t(slots)

0.2

0.4

0.6

0.8

1.0

Figure 4.8: A huge drop in schedule consistency happens at the beginning of the simu-
lation and is progressively repaired.

0 100 200 300 400 500
t(slots)

0.2

0.4

0.6

0.8

1.0

Figure 4.9: The same drop in schedule consistency as in Fig. 4.8 is repaired almost 100
slots faster doubling the maximum number ndis of disseminated schedule
reports for every nslot slots.

happen during the convergence due to the di�erences in the dissemination rate of new

schedule deltas (regardless of whether they are from the same schedule towards which

nodes are already converging or from a newly computed communication schedule) and

the propagation delay of these deltas through multiple hops (which takes multiple slots).

Chapter 4 Three-Dimensional Stabilization 188

0 100 200 300 400 500
t(slots)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.10: Convergence to Γ = 1 is not always monotonically increasing.

Channel conditions and communication schedule re-computation

Despite the robustness of our stabilization protocol, it can only maintain and restore

network-wide schedule consistency if minimal working conditions are provided.

In our next simulation, we had a network with 80 nodes using the same position

allocation as the previous simulations, but with an increased maximum transmission

range of 20 meters, resulting in a maximum network diameter of 15 hops. In order to

test the limits of the self-healing capabilities of our protocol, for this simulation we used

channel qualities with higher volatility and set dcomp = 0, e�ectively removing the rate-

limit for the dissemination of a new communication schedule. As can be seen in Fig.

4.11, since channel conditions are varying too much and the master node has no rate-

limitation for computing new schedules, we end up having excessive re-computations

that prevent the network from ever reaching Γ = 1, even though the network always

steers towards network-wide schedule consistency. However, by setting dcomp = 25, we

not only restrict the number of possible re-computations, but also allow our stabilization

protocol to reach and hold Γ = 1 for multiple consecutive slots until the next signi�cant

change in channel conditions triggers another re-computation (see Fig. 4.12).

Even if we can already limit to a certain degree the rate of dissemination of new

communication schedules by using dcomp > 0, we still have another parameter that

189 4.5 Simulation

0 25 50 75 100 125 150 175 200
t(slots)

0.2

0.4

0.6

0.8

1.0

Figure 4.11: Our stabilization protocol steers towards Γ = 1, but due to excessive re-
computations never reaches it.

0 50 100 150 200 250 300 350
t(slots)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.12: Our stabilization protocol is able to make the whole network schedule con-
sistent for some consecutive slots.

triggers re-computation and re-dissemination of schedules based on channel conditions

and the current communication schedule, i.e. the throughput variance threshold.

Chapter 4 Three-Dimensional Stabilization 190

In Fig. 4.13 and Fig. 4.14 we show two simulations using the same base quality values,

but with di�erent throughput variance thresholds. Fig. 4.13 shows the simulation with

threshold R1 = 0.03, and as we can see within 500 slots we have 3 re-computations,

whereas in Fig. 4.14 with threshold R2 = 0.15, we only had 1 re-computation.

0 50 100 150 200 250 300
t(slots)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Figure 4.13: Simulation of our stabilization protocol with throughput variance threshold
R1 = 0.03.

As a general note, it is worth noting that Γ is a somewhat pessimistic metric. For

instance, if we look at the network consistency ratio for the simulation in Fig. 4.13 (see

Fig. 4.15), we can see that since we have nslot = 45, it takes a long time for any nodes

to use channels that are inconsistent with the hopping sequence of the master node, and

most of the inconsistencies are solved by the dissemination of schedule reports before

they ever become a problem. In the case of Fig. 4.16 (the same simulation of Fig.

4.14), we can see no wrong channel was used during the convergence to the new optimal

communication schedule. The shown results clearly show that our stabilization protocol

is able to self-repair w.r.t. network-wide schedule consistency while keeping schedule

drifts small. In addition, by choosing appropriate values for the minimum time between

re-computations and the throughput variance threshold, we are able to keep the network

consistent for multiple slots, only re-computing and disseminating a new communication

schedule upon reaching signi�cant changes in channel quality.

191 4.5 Simulation

0 50 100 150 200 250 300
t(slots)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Figure 4.14: Simulation of our stabilization protocol with throughput variance threshold
R2 = 0.15.

0 50 100 150 200 250 300
t(slots)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.15: Simulation of our stabilization protocol with throughput variance threshold
R1 = 0.03.

Chapter 4 Three-Dimensional Stabilization 192

0 50 100 150 200 250 300
t(slots)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.16: Simulation of our stabilization protocol with throughput variance threshold
R2 = 0.15.

193 4.5 Simulation

Topology changes

In the next experiments, we will show that our stabilization protocol is robust against

topology changes and as long as enough connectivity is still present in the network, it can

restore network-wide schedule consistency, even if with di�erent speeds of convergence.

With this in mind, we change some parameters regarding the position allocation of

nodes such that the resulting topology will lead to distinct convergences to Γ = 1 when

re-computing and disseminating a new communication schedule.

In Fig. 4.20, we see the average degree of consistency and the network consistency

ratio of a simulation with 50 nodes where 40 nodes are located on the bottom row and

the 10 remaining nodes are positioned on a second row on top of the �rst one (see

Fig. 4.17). The horizontal and vertical distances between nodes are both 10 meters,

...

40 nodes

10 meters

10 meters

...

10 nodes

...

Figure 4.17: Node position allocation with 40 nodes on the bottom row and 10 nodes on
the top row with 10 meters (max. range) between each node (in both the
x and y direction).

the maximum transmission range is also 10 meters and the �rst node to the left on

the bottom row is the master node. We can see that in this con�guration it takes the

network almost 200 slots to self-heal. In a second simulation we take the 10 nodes on the

top row and position them on the bottom one yielding 50 nodes in a single line (see Fig.

4.18). The horizontal distances between the nodes and the position of the master node

stay the same as in the previous simulation. As we can see in Fig. 4.19, the minimum

average schedule consistency Γ ≈ 0.18 is less than half the minimum average schedule

consistency in Fig. 4.20 (Γ = 0.4) and the convergence time to Γ = 1 in the second

simulation is almost 4 times the convergence time of the �rst simulation. Moreover, if

we look at the consistency ratio, we can see that during the second simulation for the

most part of the �rst 400 slots, we have at least 50% or more of the nodes using the

wrong channel, which is one of the possible reasons for the long convergence time, since

Chapter 4 Three-Dimensional Stabilization 194

...

50 nodes

10 meters

Figure 4.18: Node position allocation with 50 nodes on a single row. Nodes can only
communicate with the direct neighbors to either side.

multiple nodes will listen on a channel where potentially no messages are to be received.

It is worth noting, that even in such an extreme case as in Fig. 4.19, our stabilization

protocol is still able to restore the network-wide schedule consistency.

0 200 400 600 800
t

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800
t

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.19: Simulation of our stabilization protocol with 50 nodes in a line with 10
meters (max. range) between each node.

195 4.5 Simulation

0 200 400 600 800
t

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800
t

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.20: Simulation of our stabilization protocol with 40 nodes on the bottom row
and 10 nodes on the top row (see Fig. 4.17)

Tick synchronization

In addition to our main experiments regarding schedule consistency, we have also per-

formed some simulation experiments to validate our tick synchronization algorithm. For

these experiments, we have used a static communication schedule with �ve channels,

i.e. scom = {c3, c1, c2, c5, c3, c1, c4, c5, c3} and a �xed channel quality for channel c3, the

channel picked for transmitting the tick frames, since it is the channel that has the

higher channel utilization in scom. Similarly to the previous experiments, 50 nodes were

placed in a grid with 50 meters between nodes, both horizontally and vertically. Fur-

thermore, the maximum transmission range for all nodes is 50 meters. This somewhat

limited transmission range was chosen to construct a scenario in which the master node

cannot reach many nodes with its tick frame, relying on other nodes also broadcasting

tick frames to complete the tick synchronization process. Moreover, the simulation runs

for 1000 slots, and each slot has a duration of 300 ms. To model the tick o�sets we have

used a simple clock model, in which each non-master node is assigned a random constant

clock skew factor δskew (relative to the master node) such that 4 ·10−5 ≤ δskew ≤ 8 ·10−5.

The resulting tick o�set of a node v and the master node vmaster after one time slot is

computed as:

doffset(v, vmaster) = δskew(v) · dslot

As expected, we can see in Fig. 4.21 that if left unattended the average tick o�set

accumulates, surpassing 5 ms after only 5 minutes of operation. On the other hand, as

Chapter 4 Three-Dimensional Stabilization 196

0 50 100 150 200 250 300
t(s)

0

1

2

3

4

5 Avg. tick offset (ms)

Figure 4.21: Average tick o�set values with no tick synchronization.

shown in Fig. 4.22, after an initial synchronization, our approach is clearly capable of

keeping the average tick o�set bounded in the order of 10 us, which is negligible when

compared to the duration of a time slot of 300 ms. However, it is important to note

that this is only the average value of the tick o�set, and that the maximum tick o�set

measured in our experiments was in the order of 100 to 300 us. This maximum value

depends not only on the range and distribution of the skew values among the nodes but

also on the topology of the network and the duration of a time slot. Furthermore, for

the shown experiments we assumed good channel qualities and static communication

schedules (all nodes always have the same communication schedule). It is realistic to

expect slightly worse tick o�set values if, for instance, the channel picked for the tick

frames suddenly (or recurringly) displays a bad quality, for instance worse than 0.5,

during multiple time slots.

197 4.6 Con�ict-minimal channel orderings for communication schedules

0 50 100 150 200 250 300
t(s)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200
Avg. tick offset (ms)

0 50 100 150 200 250 300
t(s)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200
Avg. tick offset (ms)

Figure 4.22: Comparison of average tick o�set values where the channel used for broad-
casting tick frames has channel quality 0.6 (left) and 0.8 (right).

4.6 Con�ict-minimal channel orderings for

communication schedules

In Chap. 3, we have introduced di�erent heuristics to construct high-quality sensing

schedules. One possible further application of these heuristics could be to construct

interference-aware channel orderings for communication schedules. In this scenario, we

have two networks N1 and N2 with nodes that communicate over a common channel

following a communication schedule. Due to space constraints or independent opera-

tors, both networks are placed in proximity to each other. To maximize throughput

and QoS, both networks want to communicate on channels that have minimal channel

overlap. By making use of our time-slotted channel sensing approach, nodes are already

capable of detecting di�erent levels of interference and reacting to the current channel

conditions by communicating on each available channel with a frequency proportional

to each channel's quality. The bene�ts of using high-quality channels can be further

improved by minimizing the con�ict metric between communication schedule N1.scom

in use by network N1 and communication schedule N2.scom in use by N2. This means

that by using con�ict-minimal hopping sequences, the networks try to preemptively

lower the expected interference due to the channel selection and ordering in the adopted

communication schedules, which results in throughput bene�ts for both networks.

Changes in channel ordering would ideally not only attempt to minimize the total

overlap between two communication schedules, but also preserve the optimal re-use

distances for each channel as proposed by Engel [EG18a]. However, further investigation

Chapter 4 Three-Dimensional Stabilization 198

is needed to determine in which cases keeping re-use distances is possible and when it

would be necessary to relax the condition that states that usages of the same channel

should be as far apart as possible.

Given two networksN1 andN2, we summarize the main steps needed to create con�ict-

minimal channel orderings below:

1. N1 has been active for some time and its nodes broadcast schedule reports to keep

schedule-consistency.

2. After N2 bootstraps, N2.vmaster senses all available channels and waits for a certain

time on its best local channel. It eventually receives N1.scom by overhearing a

schedule report and sees that N1.start < N2.start.

3. N2 then adopts N1.dslot and N1.nslot for its operation if possible. If N1.nslot cannot

be adopted, N2 adopts N2.n
′
slot = lcm(N1.nslot, N2.nslot), such that the communi-

cation schedules are aligned.

4. Moreover, minimizing overlap only makes sense if the networks are at least partially

tick-synchronized, which is also possible to achieve by N2.vmaster capturing sync

messages broadcast by nodes in N1.

5. N2.vmaster computes N2.scom = f(~Q,N1.scom), where ~Q = {q1, . . . , q|C|} is the

set of all channel qualities measured by N2.vmaster. With this, we compute a

seed communication schedule with Engel's method (solving the apportionment

problem) and then use our local-search-based heuristic to create a permutation

of the computed schedule in which channel overlap between both communication

schedules is minimized. This last step could either preserve the re-use distances,

which would yield a lower improvement in con�ict metric or relax the optimality

of the channel re-use distances, achieving a lower total channel overlap between

the communication schedules.

By default, the network that has the latest starting time of operations adapts its

communication hopping sequence to the network which has been active for a longer

period. However, in a scenario where three or more networks are present (see Fig. 4.23),

it is possible for a network N2 to already have adapted its communication schedule due

to a network N3. Meanwhile network N1 keeps its original communication schedule,

since N1.start < N2.start, even though it would be bene�cial for N2 and N1 if the

latter eventually tried to minimize the channel overlap between the used communication

199 4.7 Summary

schedules. A possible solution to this problem is for each master node to keep track

of whether the neighbor network eventually adapts its channel ordering or not, and if

this change does not take place within nadopt slots, N1.vmaster decides to adapt its own

channel ordering upon its next communication schedule re-computation. A thorough

experimental investigation of this scenario, however, is left for future work.

Sensing

Interference

Communication

Links

Figure 4.23: Scenario whereN2.scom uses an ordering based onN3.scom. After nadopt slots,
N1.vmaster decides to optimize its channel ordering regarding interference
awareness w.r.t. N2 , even though N1 is longer in operation than N2.

4.7 Summary

In this chapter, we proposed and implemented a stabilization protocol for keeping nodes

in an ad-hoc network synchronized and schedule-consistent w.r.t. a communication

schedule, i.e. a channel hopping sequence used for communication. This stabilization

protocol makes use of special messages, namely tick frames for synchronization, channel

quality reports for sharing local views of channel conditions and schedule reports for

disseminating the global communication hopping sequence. The communication sched-

ules are computed based on an aggregation of channel qualities and their dissemination

is triggered by signi�cant changes in channel conditions. In addition, simulation results

Chapter 4 Three-Dimensional Stabilization 200

were presented con�rming the robustness of our stabilization protocol with respect to

restoring network-wide schedule consistency in face of changes in channel conditions and

topology.

To the man who only has a hammer, everything he

encounters begins to look like a nail.

� Abraham Maslow

5
Developed tools

Contents

5.1 Data logging . 202

5.2 Data visualization . 204

5.3 Tra�c generator . 206

5.3.1 Streams . 206

5.3.2 Con�guration and debugging 208

5.3.3 Deployment . 209

201

Chapter 5 Developed tools 202

In this chapter, we brie�y describe the tools developed and used for our experiments.

Moreover, we introduce the architecture used for collecting experimental data and brie�y

describe how our code is deployed to testbed nodes.

5.1 Data logging

Running channel sensing experiments for hours produces a deluge of data and additional

metadata associated with every experiment. In addition, running many of the experi-

ments is time consuming and needs many working parts. Hence, running throw-away

experiments is not a sustainable way of doing things. This means, we need a way to

store our experimental data for later analysis. Initially, we used log �les with comma-

separated values (CSV), but this approach did not scale well. The lack of any additional

structure makes organizing the data quite challenging and querying the data very inef-

fective. Besides, writing to �les is slow, since disk i/o latency is quite high, which also

led to some inconsistent data loss problems at high sampling rates. Moreover, there

is the problem of data availability: each node has to copy each log �le to our central

server. Furthermore, this approach also makes it quite hard to combine data of di�erent

experiments, which limits our �exibility for data exploration.

Therefore, we need an architecture where data can be easily centralized in a structured

manner. Furthermore, the data store should support high throughput of data ingestion.

We ended up with following architecture (see Fig. 5.1):

1. Di�erent parameters related to each experiment (metadata) are stored into a doc-

ument database, and a universally unique identi�er (UUID) is generated.

InfluxDB MongoDB

Experiment

Data, UUID

Metadata

Data visualization
Data

Data UUID

Figure 5.1: Experimental data logging and visualization architecture.

203 5.1 Data logging

2. Experimental data, e.g. qcbt, is logged at the end of every time slot to a time-series

database together with its UUID to become associated with the current experiment

and for later retrieval of associated metadata.

Our database of choice for storing metadata is MongoDB [mon], a general purpose,

document-based database. The main advantages of using MongoDB are its ease of use

and its support of continuous changes in the underlying data model. This was very

important, since in a research environment, requirements change quickly. Document-

based databases are basically key-value stores, and the stored data lies in versioned

semi-structured documents. In the case of MongoDB, documents use the Binary Json

(BSON) format. This is a variant of the classic JSON format, optimized for both data

storage and faster scanning. Furthermore, MongoDB generates a UUID for each new

entry by default, which, as already mentioned, we use as a foreign key in the data store,

so that data and metadata are linked.

Our chosen data store is a time series database: In�uxDB [inf]. The key features that

led us to choose it were:

� High write performance, optimized for time series data.

� Built-in data compression.

� Ease of deployment, since it is released as a single binary with no external depen-

dencies.

� Posting data to the database and queries use a simple HTTP API.

� Built-in SQL-like query language and the possibility of aggregating data.

� The possiblity of adding tags to index each experiment in order to optimize queries.

� Built-in auto-expire retention policies, i.e. stale data can be automatically re-

moved.

Both databases run on a central server reachable by all testbed nodes.

Chapter 5 Developed tools 204

5.2 Data visualization

In order to better describe our dataset and explore relationships between di�erent data

samples, we need di�erent ways to visualize our data. This data exploration leverages

visual cues, allowing us to gain qualitative insights into the captured data. These insights

can range from the presence and frequency of outliers or getting a feel for the shape

of the overall data distribution, allowing us to better understand the nature of the

computed metrics, and to better di�erentiate anomaly from normal behavior. Moreover,

the integration of diverse statistics provides an additional quantitative dimension to this

analysis. We have implemented two types of visualization: an o�ine and a real-time

visualization. Our language of choice is Python due to the plethora of available data

science libraries.

For our o�ine visualization, we ingest data over In�uxDB's HTTP API. For this type

of visualization we have the whole dataset (consisting of multiple experiments) at our

disposal. This allows us to process, combine and analyze data in a grander scale than

by only looking at a single experiment. We can not only compute di�erent statistics,

but also produce plots to analyze the whole dataset, which would not be possible in

real-time.

For the real-time visualization, data has to be forwarded from each experiment to our

visualization module, which can be run on any node accessible by one of the testbed

nodes. With that in mind, sensing nodes create a WebSocket [MF11] connection to the

node running the visualization. The WebSocket Protocol allows bidirectional communi-

cation among sensing and visualization nodes in a TCP full-duplex connection. Data is

then posted over the WebSocket connection in a JSON payload. After being processed

on the Python side, data is posted to a web server and can be then visualized in any web

browser of choice. Also, both sensing and visualizing nodes can be started in an asyn-

chronous manner. For this, we have implemented a queue following a producer-consumer

model. This real-time visualization is best suited for quick visual inspection, validation

of the plausibility of sensed data and parameter tuning. It allows us, for instance, to see

immediate e�ects on qcbt on multiple channels by activating the tra�c generator with

varying tra�c loads on any given channel (see Fig. 5.2) or to pick the best available

channel at the moment in order to carry out speci�c single-channel experiments (see

Fig. 5.3).

205 5.2 Data visualization

Figure 5.2: Real-time visualization as a line graph.

Figure 5.3: Real-time visualization in bar form, the green channel is the current best
channel according to the aggregated channel quality.

Chapter 5 Developed tools 206

5.3 Tra�c generator

As mentioned in Chap. 2, we have implemented a 802.11 tra�c generator, allowing us

to conduct reproducible and controlled experiments.

Tra�c generators of stateful and realistic wireless tra�c are mostly:

� expensive

� not �exible

� bound to speci�c hardware platforms

To support multiple experiments related to channel sensing, we needed to create �ex-

ible and detectable realistic foreign tra�c patterns in a controllable way. Depending on

the e�ects we want to observe (say test for statistical independence in certain phenom-

ena), it is not su�cient to transmit on a channel for de�ned intervals, or with di�erent

rates. In fact, foreign tra�c is an overlay of tra�c created by a set of multiple nodes,

which if in communication or interference range will contend on the medium and ac-

cordingly transmit on the channel or defer to another node. In our approach to tra�c

generation, we replace this set of nodes by a single node trying to emulate the tra�c

that would be otherwise generated by multiple contending nodes.

5.3.1 Streams

Our solution to generate �exible tra�c patterns is to combine streams with di�erent

properties. The tra�c generator works in a single thread and streams generate frames

that are added to a single FIFO queue. If a frame cannot be transmitted due to certain

conditions (rate limits, stream is passive, etc.), no new frame is generated until these

conditions change. Each node has a con�gurable list of generated streams. Frames are

then scheduled for transmission according to the properties of each stream. In addition,

con�icts between di�erent streams are handled by postponing transmissions of deferring

streams to a later slot (see Fig. 5.4). After determining the �nal schedule, frames are

sent to the transceiver at scheduled points in time.

207 5.3 Tra�c generator

Stream 1

Stream 2

Stream 3

Medium

1 2 3 4

1 2 3 4

1 2 3 4

1 1 1 2 2 2 3 3 3 4 4 4

Figure 5.4: Stream 1 is periodical, streams 2 and 3 generate frames in a random manner
following a certain chosen distribution. Frames are scheduled to be sent at
a later point when a collision happens, e.g. the second frame of stream 2 is
only set at the �fth slot due to a collision at slot 4.

Stream properties

Streams have multiple properties. We brie�y describe these properties below:

� All streams start by default in PASSIVE mode.

� After a chosen start delay the stream becomes ACTIVE .

� The default start delay is 0, i.e. streams switch immediately to ACTIVE mode.

� Streams in DISABLED state never turn active. This is useful when adding di�erent

stream pro�les to a con�guration �le and disabling some streams from time to

time. This avoids having to have multiple con�guration �les or having to copy the

streams out of the con�guration �le.

� If a stream is of type PERIODIC, it transmits frames with a �xed chosen frame

rate. On the other hand, if a stream is of type RANDOM_INTER_FRAME_SPACE, it

only transmits a frame on a given transmission opportunity with a probability of

ptransmit, a con�gurable parameter.

� If a stream generates frames of type FIXED, the number of bytes in each frame's

payload is constant for the whole duration of the tra�c generation. Alternatively,

if a stream generates frames of type RANDOM_NORMAL, the number of bytes in each

frame is randomly sampled from a normal distribution with mean 413.0 and stan-

dard deviation 509.0 with minimal and maximal frame sizes of respectively 8 and

1200 bytes. These parameter values for the normal distribution were obtained

from measurements of IP tra�c patterns with 85% of it being TCP tra�c [MC00].

Chapter 5 Developed tools 208

5.3.2 Con�guration and debugging

The tra�c generator can be con�gured with help of a con�guration �le in json format,

see Fig. 5.5.

Figure 5.5: Json con�guration �le de�ning two streams.

If no con�guration �le is present, a number of di�erent streams with di�erent con�g-

uration parameters are generated by default.

In order to debug the tra�c generation we can log the streams and the generated

frames, see Fig. 5.6.

209 5.3 Tra�c generator

Figure 5.6: Stream log �le, showing the generation of two beacon frames with a frame
rate of 1 frame per second.

5.3.3 Deployment

To rapidly adjust to changing requirements, and incremental changes to our implemented

libraries and tools, as well as to avoid creating library dependency con�icts on our

testbed nodes, we deployed our channel sensing code, tra�c generator and visualization

module as Docker [doc] images to our testbed. Docker engine is the de-facto container

environment for Linux systems. A Docker image packages an application with all its

dependencies and con�guration to be run as a container on top of the host operating

system (see Fig. 5.7). This way, containers can be seen as a lightweight virtual machines.

In order to automate and better manage the deployment of our tools to multiple

testbed nodes at once, we make use of Ansible [HM17]. The main selling points of

Ansible are:

Chapter 5 Developed tools 210

App

Configuration

Dependencies

Container

Docker

Kernel (host)

Figure 5.7: Illustration of a container runtime.

� It is easy to con�gure: Ansible uses YAML (which was designed to be readable)

to de�ne executable con�gurations.

� Ansible is push-based and agentless, so there is no need to install anything besides

Python and SSH on controlled nodes.

With Ansible we use a playbook (a collection of con�gured tasks) to orchestrate changes

in multiple testbed nodes at the same time. This could be either deploying a new version

of a tool, starting it on the node, or copying over con�guration �les. Our overall work�ow

with Docker and Ansible is illustrated by Fig. 5.8.

Docker image Registry server

Ansible

Testbed node 1

Testbed node 2

Testbed node 3

is pushed to registry server

Pull image from

registry, if current

image is not the latest

one. Execute image in

container.

Asks nodes to run image

Figure 5.8: Deployment work�ow with Docker and Ansible.

There is no real ending. It's just the place where you

stop the story.

� Frank Herbert

6
Summary & Future Work

Contents

6.1 Summary . 212

6.2 Future Work . 214

211

Chapter 6 Summary & Future Work 212

6.1 Summary

In this thesis, we have proposed a holistic time-slotted schedule-based approach for chan-

nel hopping and channel sensing to deal with spectrum scarcity and spectrum sharing

in wireless ad-hoc networks. Even though many of the techniques introduced in this

thesis are general enough and could be easily adapted for other wireless protocols, we

have focused on applying them to IEEE 802.11-based ad-hoc networks. Our techniques

try to minimize interference among networks while optimizing quality of service levels

for an e�ective communication. Moreover, the main results in this thesis were eval-

uated through both simulations and deployment to a testbed with commodity 802.11

transceivers. In additon, whenever possible and relevant, we formalized our concepts and

provided proofs or sketches thereof in order to steer towards precision and away from

ambiguities. However, most of this thesis followed an empirical mindset, in which all our

main assumptions were put to test and evaluated for both performance and plausibility.

In our proposed solution, nodes gather channel quality information in order to as-

sess the state of a channel, allowing them to select high-quality channels for e�ective

communication. First, we introduced our main channel quality metric, qcbt, an energy-

detection-based metric that agnostically assesses the channel with focus on foreign tra�c.

We then introduced steps to:

1. Correct qcbt for internal tra�c.

2. Aggregate the corrected metric for stability and adaptivity through a combination

of an arithmetic mean and an exponential weighted moving average.

3. Update the resulting quality metric w.r.t. downward volatility levels with a penalty-

based scheme.

We also evaluated the performance of qcbt and con�rmed that is is a robust metric

that strongly correlates with achievable throughput on a chosen channel.

Moreover, we have proposed alternative channel quality metrics based on frame-

derived properties such as the foreign tra�c aware SNR and node degree that can be

combined with our main channel quality metric for a multidimensional assessment of

the channel conditions.

With an e�ective channel quality assessment in place, channel selection then boot-

straps a proactive channel hopping scheme, in which nodes hop to di�erent channels for

communication over a common channel. The communication schedule that dictates the

213 6.1 Summary

adopted hopping sequence is computed based on the assessed channel qualities, as pro-

posed by [EG18a]. This adopted paradigm still leaves one important problem unsolved:

in which order should channels be sensed and how should this step be combined with

communication happening on multiple channels. In Chap. 3, we have solved this problem

by adopting a schedule-based sensing approach, in which two independent transceivers

are used respectively for communication and channel sensing. The channel sensing order

is dictated by a sensing schedule, which is locally constructed by each node based on

its current communication schedule. To construct high-quality sensing schedules we had

three main optimization goals in mind:

1. The sensing schedule should minimize channel sensing bias by being balanced.

2. Minimize the e�ects of internal tra�c on qcbt by aiming for con�ict minimality

between sensing and communication schedule.

3. Attempt to maximize overlap-fairness to better distribute the negative e�ects of

remaining con�icts among all sensed channels.

Our �nal algorithm for constructing high-quality sensing schedules makes use of a

stochastic iterated local-search-based heuristic and achieves remarkable near-optimal

results. However, we determined that con�ict minimality and overlap fairness often

cannot be both fully optimized at the same time, making it essential to prioritize one

over the other. In Chap. 3, we also showed how con�ict-minimal sensing schedules

can be constructed with help of the Hungarian Method and showed that the sensing

schedules delivered by opt_con�ict_ils (without any �ne-tuning) fair remarkably well

when compared to global optima w.r.t. con�ict minimality.

In Chap. 4, we solved the remaining piece of our puzzle by introducing a master-based

stabilization protocol that both disseminates global communication schedules as well as

keeps the network schedule-consistent (all nodes adopt the same hopping sequence for

communication) and tick-synchronized (all nodes agree on the beginning and duration

of each time slot). Furthermore, a global view of channel conditions is achieved by

aggregating the local channel quality assessments of all nodes in the network, forwarded

to the master node through channel quality reports. Simulation results showed that

the proposed protocol is robust against topology changes as well as sudden or recurring

changes in channel conditions.

Finally, to evaluate our �ndings, we have developed and re�ned through years of re-

search many di�erent tools, of which the most relevant were brie�y described in Chap. 5.

Chapter 6 Summary & Future Work 214

These tools deal with data collection pipelines, data visualization and wireless tra�c

generation as well as with the deployment of these tools to our testbed.

6.2 Future Work

As with any attempt at science, we are never completely done. There are always roads

left untraveled or at least brie�y visited. One of these avenues is the combination

of our local search heuristics and our stabilization protocol to create con�ict-minimal

communication schedules, as brie�y described at the end of Chap. 4. Such an approach

could bring further bene�ts in quality of service by taking into consideration information

broadcast by other networks w.r.t. their channel hopping behavior.

Another open challenge left for future work is implementing and evaluating our pro-

posed leader election algorithm to cope with master node failures as well as devising

an alternative decentralized (with no master node) mode of operation. However, such a

masterless approach brings a series of additional challenges, such as:

� Much as in the centralized approach, nodes can broadcast channel quality reports

to share their local views of channel quality conditions. However, these reports

are not forwarded upstream since by lacking a master node, there is no upstream

direction. Nodes that receive channel quality reports need to aggregate the received

qualities with their own, ideally leading to nodes within a one-hop neighborhood

having similar aggregated channel qualities. Nonetheless, since neighbor nodes

might be in di�erent (mutually exclusive) neighborhoods, they might end up with

diverging aggregated channel qualities.

� In addition, even if nodes agree on an aggregated quality, they still have to agree

on the sequence of the channel usages, i.e. the channel ordering, otherwise even

though they see similar conditions they might synthesize schedules with very little

matching slots. It is hard to devise a solution to this scenario without either

electing a cluster head responsible for computing a communication schedule per

cluster or alternatively attempting a best-e�ort communication in which every

node computes communication schedules locally, but might have to assume that

with some slots cannot be used for communication with certain probability for

lack of a neighbor on the channel. Both approaches bring additional performance

trade-o�s, and a further investigation is left for future work.

215 6.2 Future Work

Another interesting avenue worth exploring would be to conduct additional experi-

ments to evaluate the robustness of our protocols in the presence of competing wireless

technologies that use overlapping frequencies with 802.11 such as Zigbee and Bluetooth.

Also interesting would be applying the techniques developed in this thesis to comparable

technologies such as TSCH (IEEE 802.15.4-2015).

Furthermore, in addition to our channel sensing techniques, QoS requirements in

wireless networks can be further supported by applying reliability-constrained routing

on any given channel, i.e. creating a feasible transmission path from source node to

a chosen destination such that reliability requirements are satis�ed. This category of

routing protocols usually rely on active link quality metrics and an integration of such

a protocol with our passive channel quality metrics is left for future work.

Moreover, to detect corner cases overseen by our simulation model and to create an

even stronger performance evaluation of our stabilization protocol, we may implement

it on 802.11 commodity hardware and deploy it to our testbed. Finally, a deployment

to a larger testbed with hundreds of mobile nodes is also worth considering.

Bibliography

[80205] Iso/iec 8802-11: 1999 [ieee std 802.11-1999(r2003)] information technology�

telecommunications and information exchange between systems� local

and metropolitan area networks�speci�c requirements�part 11: Wireless

lan medium access control (mac) and physical layer (phy) speci�cations.

ISO/IEC 8802-11 IEEE Std 802.11 Second edition 2005-08-01 ISO/IEC

8802 11:2005(E) IEEE Std 802.11i-2003 Edition, pages 1�707, 2005.

[ACG04] Giuseppe Anastasi, Marco Conti, and Enrico Gregori. Ieee 802.11 ad hoc

networks: protocols, performance and open issues. Mobile Ad hoc network-

ing, pages 69�116, 2004.

[ACKR] Lakshmi Anantharamu, Bogdan S. Chlebus, Dariusz R. Kowalski, and Mar-

iusz A. Rokicki. Deterministic broadcast on multiple access channels.

[AG20] P. Aragao and R. Gotzhein. Constructing balanced, con�ict-minimal,

overlap-fair channel sensing schedules. In L. Barolli et al. (Eds.), Advanced

Information Networking and Applications, Proceedings of the 34th Interna-

tional Conference on Advanced Information Networking and Applications

(AINA 2020), pages 804�816. Springer, 2020.

[Agg06] Charu C. Aggarwal. On biased reservoir sampling in the presence of stream

evolution. In Proceedings of the 32nd International Conference on Very

Large Data Bases, VLDB '06, page 607�618. VLDB Endowment, 2006.

[ALB11] Ian F. Akyildiz, Brandon F. Lo, and Ravikumar Balakrishnan. Cooper-

ative spectrum sensing in cognitive radio networks: A survey. Physical

Communication, 4(1):40�62, 2011.

[ARW07] M. Abusubaih, B. Rathke, and A. Wolisz. A dual distance measurement

scheme for indoor ieee 802.11 wireless local area networks. In 2007 9th IFIP

International Conference on Mobile Wireless Communications Networks,

pages 121�125, 2007.

[AS12] M. Akhlaq and Tarek R. Sheltami. The recursive time synchronization

protocol for wireless sensor networks. In 2012 IEEE Sensors Applications

Symposium Proceedings, pages 1�6, 2012.

217

Bibliography 218

[Bau86] EB Baum. Iterated descent: A better algorithm for local search in combi-

natorial optimization problems. Manuscript, 1986.

[BCM+18] Flavia Bonomo, Maria Chudnovsky, Peter Maceli, Oliver Schaudt, Maya

Stein, and Mingxian Zhong. Three-coloring and list three-coloring of graphs

without induced paths on seven vertices. Combinatorica, 38(4):779�801,

Aug 2018.

[Bil13] Ana Bildea. Link Quality in Wireless Sensor Networks. PhD thesis, Uni-

versité de Grenoble, 2013.

[Box76] George E. P. Box. Science and statistics. Journal of the American Statis-

tical Association, 71(356):791�799, 1976.

[BRA20] SPECTRUM BAND IN BRAZIL. Assessing the economic value of unli-

censed use of the 6 ghz spectrum band in brazil. 2020.

[Bun21] Bundesnetzagentur. Allgemeinzuteilung von Frequenzen im Bereich

5945 MHz - 6425 MHz für drahtlose Zugangssysteme, einschlieÿlich

lokaler Funknetze WAS/WLAN (�Wireless Access Systems including

Wireless Local Area Networks�). https://www.bundesnetzagentur.

de/SharedDocs/Downloads/DE/Sachgebiete/Telekommunikation/

Unternehmen_Institutionen/Frequenzen/Allgemeinzuteilungen/

MobilfunkDectWlanCBFunk/vfg552021WLAN6GHz.pdf?__blob=

publicationFile&v=3, 2021. [Online; accessed 4-November-2021].

[BY75] M. L. Balinski and H. P. Young. The quota method of apportionment. The

American Mathematical Monthly, 82(7):701�730, 1975.

[CD15] Artur Czumaj and Peter Davies. Optimal leader election in multi-hop radio

networks. ArXiv e-prints, 2015.

[Che97] Joseph Cheriyan. Randomized Õ(m(|v|)) algorithms for problems in match-

ing theory. SIAM J. COMPUTING, 26:1635�1655, 1997.

[CHT04] Adam Chlipala, Jonathan Hui, and Gilman Tolle. Deluge: data dissemina-

tion for network reprogramming at scale. University of California, Berke-

ley, Tech. Rep, 2004.

https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Frequenzen/Allgemeinzuteilungen/MobilfunkDectWlanCBFunk/vfg552021WLAN6GHz.pdf?__blob=publicationFile&v=3
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Frequenzen/Allgemeinzuteilungen/MobilfunkDectWlanCBFunk/vfg552021WLAN6GHz.pdf?__blob=publicationFile&v=3
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Frequenzen/Allgemeinzuteilungen/MobilfunkDectWlanCBFunk/vfg552021WLAN6GHz.pdf?__blob=publicationFile&v=3
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Frequenzen/Allgemeinzuteilungen/MobilfunkDectWlanCBFunk/vfg552021WLAN6GHz.pdf?__blob=publicationFile&v=3
https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Frequenzen/Allgemeinzuteilungen/MobilfunkDectWlanCBFunk/vfg552021WLAN6GHz.pdf?__blob=publicationFile&v=3

219 Bibliography

[CRS06] Kameswari Chebrolu, Bhaskaran Raman, and Sayandeep Sen. Long-

distance 802.11b links: Performance measurements and experience. In

Proceedings of the 12th Annual International Conference on Mobile Com-

puting and Networking, MobiCom '06, page 74�85, New York, NY, USA,

2006. Association for Computing Machinery.

[CSZ+15] Wu Chen, Jianhua Sun, Lu Zhang, Xiang Liu, and Liang Hong. An imple-

mentation of ieee 1588 protocol for ieee 802.11 wlan. Wireless networks,

21(6):2069�2085, 2015.

[CZ11] Ho Ting Cheng and Weihua Zhuang. Simple channel sensing order in cogni-

tive radio networks. IEEE Journal on Selected Areas in Communications,

29(4):676�688, 2011.

[DANLW15] Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and Thomas Wat-

teyne. Orchestra: Robust mesh networks through autonomously scheduled

tsch. In Proceedings of the 13th ACM Conference on Embedded Networked

Sensor Systems, SenSys '15, page 337�350, New York, NY, USA, 2015.

Association for Computing Machinery.

[DBFP09] Thanh Dang, Nirupama Bulusu, Wu-chi Feng, and Seungweon Park. Dhv:

A code consistency maintenance protocol for multi-hop wireless sensor net-

works. In Utz Roedig and Cormac J. Sreenan, editors, Wireless Sensor

Networks, pages 327�342, Berlin, Heidelberg, 2009. Springer Berlin Heidel-

berg.

[DKS10] P. Dely, Andreas Kassler, and Dmitry Sivchenko. Theoretical and exper-

imental analysis of the channel busy fraction in ieee 802.11. In Future

Network and Mobile Summit 2010, pages 1 � 9, 07 2010.

[doc] Docker. https://www.docker.com/. Accessed: 2022-02-15.

[EG18a] Markus Engel and Reinhard Gotzhein. Dynamic computation and adjust-

ment of channel hopping sequences for cognitive radio networks based on

quality metrics. In Proceedings of the 2018 International Conference on

Embedded Wireless Systems and Networks, EWSN ’18, pages 79�

89, USA, 2018. Junction Publishing.

https://www.docker.com/

Bibliography 220

[EG18b] Markus Engel and Reinhard Gotzhein. Dynamic computation and adjust-

ment of channel hopping sequences for cognitive radio networks based on

quality metrics. In Proceedings of the 2018 International Conference on

Embedded Wireless Systems and Networks, EWSN '18, page 79�89, USA,

2018. Junction Publishing.

[EGE03] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network

time synchronization using reference broadcasts. SIGOPS Oper. Syst. Rev.,

36(SI):147�163, December 2003.

[Eng20] Markus Engel. Robust Channel Hopping Sequences in Cognitive Radio

Networks. PhD thesis, TU Kaiserslautern, 2020.

[FVR07] Paul Fuxjaeger, Danilo Valerio, and Fabio Ricciato. The myth of non-

overlapping channels: interference measurements in ieee 802.11. 01 2007.

[Gas12] Matthew Gast. 802.11n: A Survival Guide. O'Reilly Media, Inc., 2012.

[GcC05] Fanglu Guo and Tzi cker Chiueh. Sequence number-based mac address

spoof detection. In in Proceedings of 8th International Symposium on Re-

cent Advances in Intrusion Detection (RAID. Springer, 2005.

[GH12] Mohsen Gha�ari and Bernhard Haeupler. Near optimal leader election in

multi-hop radio networks. CoRR, abs/1210.8439, 2012.

[GHHP13] Philippe Galinier, Jean-Philippe Hamiez, Jin-Kao Hao, and Daniel Porum-

bel. Recent Advances in Graph Vertex Coloring, pages 505�528. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2013.

[GK11] R. Gotzhein and T. Kuhn. Black burst synchronization (bbs) � a proto-

col for deterministic tick and time synchronization in wireless networks.

Computer Networks, 55(13):3015�3031, 2011.

[GKS03] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync

protocol for sensor networks. In Proceedings of the 1st International Con-

ference on Embedded Networked Sensor Systems, SenSys '03, page 138�149,

New York, NY, USA, 2003. Association for Computing Machinery.

[Gol05] Andrea Goldsmith. Wireless communications. Cambridge university press,

2005.

221 Bibliography

[Gra16] Ali Grami. Chapter 12 - wireless communications. In Ali Grami, editor,

Introduction to Digital Communications, pages 493�527. Academic Press,

Boston, 2016.

[HH09] Simon Hay and Robert Harle. Bluetooth tracking without discoverability.

In Tanzeem Choudhury, Aaron Quigley, Thomas Strang, and Koji Sug-

inuma, editors, Location and Context Awareness, pages 120�137, Berlin,

Heidelberg, 2009. Springer Berlin Heidelberg.

[HHSW10] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. Pre-

dictable 802.11 packet delivery from wireless channel measurements. SIG-

COMM Comput. Commun. Rev., 40(4):159�170, August 2010.

[HM17] Lorin Hochstein and Rene Moser. Ansible: Up and Running: Automating

con�guration management and deployment the easy way. " O'Reilly Media,

Inc.", 2017.

[HMCV07] Hao Hu, Steven A. Myers, Vittoria Colizza, and Alessandro Vespignani.

Wi� epidemiology: Can your neighbors' router make yours sick? CoRR,

abs/0706.3146, 2007.

[HS05] Holger H. Hoos and Thomas Stützle. Stochastic Local Search, Foundations

and Applications. The Morgan Kaufmann Series in Arti�cial Intelligence.

Morgan Kaufmann, San Francisco, 2005.

[HXY05] Hongqiang Zhai, Xiang Chen, and Yuguang Fang. How well can the ieee

802.11 wireless lan support quality of service? IEEE Transactions on

Wireless Communications, 4(6):3084�3094, 2005.

[inf] In�uxDB. https://www.influxdata.com/. Accessed: 2022-02-15.

[IvSV06] Konrad Iwanicki, Maarten van Steen, and Spyros Voulgaris. Gossip-based

clock synchronization for large decentralized systems. In Alexander Keller

and Jean-Philippe Martin-Flatin, editors, Self-Managed Networks, Sys-

tems, and Services, pages 28�42, Berlin, Heidelberg, 2006. Springer Berlin

Heidelberg.

[JCH98] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure Of Fairness

And Discrimination For Resource Allocation In Shared Computer Systems.

arXiv e-prints, page cs/9809099, Sep 1998.

https://www.influxdata.com/

Bibliography 222

[JEG18] Paulo Fernando Aragao Alves Junior, Markus Engel, and Reinhard

Gotzhein. A three-dimensional stabilization protocol for time-slotted multi-

hop cognitive radio networks with channel hopping. In 32nd IEEE Interna-

tional Conference on Advanced Information Networking and Applications,

AINA 2018, Krakow, Poland, May 16-18, 2018, pages 32�39, 2018.

[JM08] David S. Johnson and Lyle A. McGeoch. The traveling salesman problem:

A case study in local optimization. 2008.

[Joh90] David S Johnson. Local optimization and the traveling salesman prob-

lem. In International colloquium on automata, languages, and program-

ming, pages 446�461. Springer, 1990.

[KLDLa13] Zaheer Khan, Janne J. Lehtomäki, Luiz A. DaSilva, and Matti Latva-aho.

Autonomous sensing order selection strategies exploiting channel access in-

formation. IEEE Transactions on Mobile Computing, 12(2):274�288, 2013.

[Kru56] J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the

Traveling Salesman Problem. In Proceedings of the American Mathematical

Society, 7, 1956.

[Kuh55] Harold W. Kuhn. The Hungarian Method for the Assignment Problem.

Naval Research Logistics Quarterly, 2(1�2):83�97, March 1955.

[Lam05] Leslie Lamport. Generalized consensus and paxos. 2005.

[LL08] Kaisen Lin and Philip Levis. Data discovery and dissemination with dip. In

2008 International Conference on Information Processing in Sensor Net-

works (ipsn 2008), pages 433�444, 2008.

[LLG+17] Liwang Li, Tong Li, Jincheng Ge, Lijun Kong, and Jie Liu. Channel sensing

order for distributed cognitive networks with multi-user and multi-channel.

In 2017 IEEE 9th International Conference on Communication Software

and Networks (ICCSN), pages 44�50, 2017.

[LMP+05] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,

D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An Operating

System for Sensor Networks, pages 115�148. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2005.

223 Bibliography

[LMS10] Helena Lourenço, Olivier Martin, and Thomas Stützle. Iterated Local

Search: Framework and Applications, volume 146, pages 363�397. 09 2010.

[LMS19] Helena Ramalhinho Lourenço, Olivier C. Martin, and Thomas Stützle. It-

erated Local Search: Framework and Applications, pages 129�168. Springer

International Publishing, Cham, 2019.

[LP09] László Lovász and Michael D Plummer. Matching theory, volume 367.

American Mathematical Soc., 2009.

[LPCS04] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: a

self-regulating algorithm for code propagation and maintenance in wire-

less sensor networks. In In NSDI'04: Proceedings of the 1st conference on

Symposium on Networked Systems Design and Implementation. USENIX

Association, 2004.

[LSW+20] Olof Liberg, Mårten Sundberg, Y.-P. Eric Wang, Johan Bergman, Joachim

Sachs, and Gustav Wikström. Chapter 15 - multe�re alliance iot technolo-

gies. In Olof Liberg, Mårten Sundberg, Y.-P. Eric Wang, Johan Bergman,

Joachim Sachs, and Gustav Wikström, editors, Cellular Internet of Things

(Second Edition), pages 633�685. Academic Press, second edition edition,

2020.

[Lá79] Lovász László. On determinants, matchings and random algorithms. vol-

ume 79, pages 565�574, 01 1979.

[Mar59] Harry M. Markowitz. Portfolio Selection: E�cient Diversi�cation of In-

vestments. Yale University Press, 1959.

[MC00] Shannon McCreary and K. Cla�y. Trends in wide area ip tra�c patterns

- a view from ames internet exchange. Proceedings of 13th ITC Specialist

Seminar on Internet Tra�c Measurement and Modeling, Monterey, CA,

01 2000.

[MF11] Alexey Melnikov and Ian Fette. The WebSocket Protocol. RFC 6455,

December 2011.

[MKSL04] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The

�ooding time synchronization protocol. In Proceedings of the 2nd Inter-

national Conference on Embedded Networked Sensor Systems, SenSys '04,

Bibliography 224

page 39�49, New York, NY, USA, 2004. Association for Computing Ma-

chinery.

[MO96] Olivier C Martin and Steve W Otto. Combining simulated annealing with

local search heuristics. Annals of operations research, 63(1):57�75, 1996.

[MOF91] Olivier Martin, Steve W Otto, and Edward W Felten. Large-step Markov

chains for the traveling salesman problem. Citeseer, 1991.

[mon] MongoDB. https://www.mongodb.com/. Accessed: 2022-02-15.

[MSBA06] Arunesh Mishra, Vivek Shrivastava, Suman Banerjee, and William Ar-

baugh. Partially overlapped channels not considered harmful. In Partially

overlapped channels not considered harmful, volume 34, pages 63�74, 06

2006.

[Mun57] James Munkres. Algorithms for the assignment and transportation prob-

lems. Journal of the Society for Industrial and Applied Mathematics,

5(1):32�38, 1957.

[OO14] Diego Ongaro and John Ousterhout. In search of an understandable

consensus algorithm. In 2014 {USENIX} Annual Technical Conference

({USENIX}{ATC} 14), pages 305�319, 2014.

[Ope17] OpenStreetMap contributors. Planet dump retrieved from

https://planet.osm.org . https://www.openstreetmap.org, 2017.

[Par80] Michael Parkinson. The extreme value method for estimating the variance

of the rate of return. The Journal of Business, 53(1):61�65, 1980.

[RKC21] Juan Jung Raúl Katz and Fernando Callorda. The Economic Value of

Wi-Fi: a global view (2021 � 2025, 2021.

[RPD+05] Joshua Robinson, Konstantina Papagiannaki, Christophe Diot, Xingang

Guo, and Lakshman Krishnamurthy. Experimenting with a multi-radio

mesh networking testbed. 04 2005.

[RVKF13] Mubashir Husain Rehmani, Aline Carneiro Viana, Hicham Khalife, and

Serge Fdida. Surf: A distributed channel selection strategy for data dissem-

ination in multi-hop cognitive radio networks. Computer Communications,

36(10):1172�1185, 2013.

https://www.mongodb.com/
 https://www.openstreetmap.org

225 Bibliography

[SCT+16] Elena Saltiko�, John Y. N. Cho, Philippe Tristant, Asko Huuskonen, Lynn

Allmon, Russell Cook, Erik Becker, and Paul Joe. The threat to weather

radars by wireless technology. Bulletin of the American Meteorological

Society, 97(7):1159 � 1167, 2016.

[SGSK07] T. Salonidis, M. Garetto, A. Saha, and E. Knightly. Identifying high

throughput paths in 802.11 mesh networks: a model-based approach. In

2007 IEEE International Conference on Network Protocols, pages 21�30,

2007.

[SHFS05] R. Simon, Leijun Huang, E. Farrugia, and S. Setia. Using multiple com-

munication channels for e�cient data dissemination in wireless sensor net-

works. In IEEE International Conference on Mobile Adhoc and Sensor

Systems Conference, 2005., pages 10 pp.�439, 2005.

[Sta22] Statista. Global smartphone penetration rate as share of population from

2016 to 2020, 2022.

[STC+08] Yong Sheng, Keren Tan, Guanling Chen, David Kotz, and Andrew Camp-

bell. Detecting 802.11 mac layer spoo�ng using received signal strength.

In Proceedings of the Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), pages 1768�1776. IEEE, April

2008.

[SZQ+19] Ke Shi, Lin Zhang, Zhiying Qi, Kang Tong, and Hongsheng Chen. Trans-

mission scheduling of periodic real-time tra�c in ieee 802.15. 4e tsch-based

industrial mesh networks. Wireless Communications and Mobile Comput-

ing, 2019, 2019.

[TA20] Francisco Tirado Andrés. Methodology for implementation of synchroniza-

tion strategies for wireless sensor networks. PhD thesis, Telecomunicacion,

2020.

[Tol05] Gilman Tolle. Design of an application-cooperative management system

for wireless sensor networks. pages 121�132, 2005.

[tsc12] Ieee standard for local and metropolitan area networks�part 15.4: Low-rate

wireless personal area networks (lr-wpans) amendment 1: Mac sublayer.

IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011), pages

Bibliography 226

1�225, 2012.

[Tut47] W. T. Tutte. The factorization of linear graphs. Journal of the London

Mathematical Society, s1-22(2):107�111, 1947.

[Var12] Pramod K Varshney. Distributed detection and data fusion. Springer Sci-

ence & Business Media, 2012.

[VCP+20] Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pací�co, Elerson

R. S. Santos, Eduardo P. M. Câmara Júnior, and Luiz F. M. Vieira. Fast

packet processing with ebpf and xdp: Concepts, code, challenges, and

applications. ACM Comput. Surv., 53(1), February 2020.

[VJP08] Frank Visser, Gerard J. M. Janssen, and Przemyslaw Pawelczak. Multinode

spectrum sensing based on energy detection for dynamic spectrum access.

In VTC Spring 2008 - IEEE Vehicular Technology Conference, pages 1394�

1398, 2008.

[Wal99] Joachim Paul Walser. Integer Optimization by Local Search, A Domain-

Independent Approach. Springer, Germany, 1999.

[WD21] Jianjun Wen and Waltenegus Dargie. Characterization of link quality �uc-

tuation in mobile wireless sensor networks. ACM Transactions on Cyber-

Physical Systems, 01 2021.

[WiG] WiGLE.net. Wireless network mapping.

[WPG15] Thomas Watteyne, Maria-Rita Palattella, and Luigi Alfredo Grieco. Using

ieee 802.15. 4e time-slotted channel hopping (tsch) in the internet of things

(iot): Problem statement. Internet Engineering Task Force, 2015.

[WTB+12] Tim Winter, Pascal Thubert, Anders Brandt, Jonathan W Hui, Richard

Kelsey, Philip Levis, Kris Pister, Rene Struik, Jean-Philippe Vasseur,

Roger K Alexander, et al. Rpl: Ipv6 routing protocol for low-power and

lossy networks. rfc, 6550:1�157, 2012.

[XLL15] Yaxiong Xie, Zhenjiang Li, and Mo Li. Precise power delay pro�ling with

commodity wi�. In Proceedings of the 21st Annual International Confer-

ence on Mobile Computing and Networking, MobiCom '15, page 53�64,

New York, NY, USA, 2015. ACM.

227 Bibliography

[XWW+15] Yuhua Xu, Qihui Wu, Jinlong Wang, Liang Shen, and Alagan Anpala-

gan. Robust multiuser sequential channel sensing and access in dynamic

cognitive radio networks: Potential games and stochastic learning. IEEE

Transactions on Vehicular Technology, 64(8):3594�3607, 2015.

Curriculum Vitae

Contact details

Paulo Fernando Aragao Alves Junior

pauloaragao1952@gmail.com

Education

PhD in Computer Science, TUK, Kaiserslautern, Germany | 2017 - present

M.Sc. in Computer Science, TUK, Kaiserslautern, Germany | 2015 - 2017

Bachelor in Computer Engineering, UFPE, Recife, Brazil | 2009 - 2015

with honours (Láurea Universitária)

Exchange program, TUK, Kaiserslautern, Germany | 2013 - 2014

Work experience

Research assistant, TUK | 2017 - 2022

Student research assistant, TUK | 2016 - 2017

Student research assistant, UFPE | 2012

Teaching assistant in Computer Networking, UFPE | 2011

Teaching assistant in Operating Systems, UFPE | 2010 - 2011

Teaching assistant in Physics, UFPE | 2010

Teaching assistant in Discrete Mathematics, UFPE | 2009

229

Curriculum Vitae 230

Publications

Paulo Fernando Aragao Alves Junior, Markus Engel, and Reinhard Gotzhein. A

Three-Dimensional Stabilization Protocol for Time-Slotted Multi-hop

Cognitive Radio Networks with Channel Hopping. In: 32nd IEEE Interna-

tional Conference on Advanced Information Networking and Applications, AINA

2018, Krakow, Poland, May 16-18, 2018. Ed. by Leonard Barolli et al. IEEE

Computer Society, 2018, pp. 32�39. doi: 10.1109/AINA.2018. 00018.

Paulo Aragao and Reinhard Gotzhein. Constructing Balanced, Con�ict-

Minimal, Overlap-Fair Channel Sensing Schedules. In: Advanced Informa-

tion Networking and Applications. Ed. by Leonard Barolli et al. Cham: Springer

International Publishing, 2020, pp. 804�816. isbn: 978-3-030-44041-1.

Paulo Fernando Aragao Alves, Reinhard Gotzhein, and Lucas Sonntag Hagen.

Volatility-Aware Channel Sensing with Commodity 802.11 Hardware.

In: 2021 IEEE Global Communications Conference (GLOBECOM). 2021, pp.

1�7. doi: 10.1109/GLOBECOM46510.2021.9685841.

	List of Tables
	List of Figures
	Introduction
	Context
	Problem statement
	Our approach
	Channel sensing
	Channel hopping

	Contributions and outline

	Channel quality
	Basic metric qcbt
	Implementation - qcbt
	Experimental Assessment
	Traffic generator
	Airtime calculation
	Baseline spectrum occupation and channel selection in 802.11 networks
	Throughput experiments
	Inter-channel interference
	Channel overlapping and the near-far effect
	Experiments

	Correcting qcbt
	Correction model for 2.4 GHz
	Correction model for 5 GHz

	Aggregating qcbt
	Volatility
	Downward Standard Deviation dsd
	Average Downward Deviation from the Aggregation adda
	Downward Parkinson Historical Volatility phv
	Penalty-based channel quality metrics

	Assessment of quality metrics
	Downward Outlier Estimation Error e
	Percentage of Downward Outliers p
	Root Mean squared error rmse
	Assessment
	Comparison of penalization schemes

	Additional channel quality metrics
	Signal-to-Noise Ratio - SNR
	Received Signal Strength Indicator - RSSI
	Channel State Information - CSI
	Node degree
	Channel quality metric
	Protection against MAC spoofing

	Optimization of frame overhearing

	Combining channel quality metrics
	Summary

	Sensing schedules
	Channel sensing order
	Geometrical model for channel overlap
	Construction of high-quality sensing schedules
	Balanced sensing schedules
	Schedule conflicts
	Conflict metric and overlap fairness
	Basic local search heuristics
	Prioritizing overlap fairness over conflict metric

	Performance assessment of heuristics
	Terminology
	Test set generation
	Similarity measures
	Results
	Test Set 1 - Primary goals
	Test set 1 - secondary optimization goals
	Test set 2 - Primary goals
	Test set 2 - Secondary goals
	Investigating divergences from optimal solutions

	Improving local minima
	Random restart
	Iterated local search
	Implementing randomness
	Time complexity
	Experimental results
	Parameter exploration

	Solution constraints w.r.t. primary conflicts
	Matching - a graph theoretical formulation
	Fundamentals
	Finding minimum weight perfect matchings
	Comparison with our heuristics

	Summary

	Three-Dimensional Stabilization
	Foundations
	Channels
	Graph model and topology
	Time-slotted channel hopping
	Channel quality metric
	Communication schedules
	Schedule computation
	Schedule quality metric
	Heuristic Computation
	Channel sensing schedules

	Fast restabilization
	Synchronization
	Channel quality reports
	Aggregation of quality reports
	Data dissemination methods
	Communication schedule dissemination
	Optimal and temporary schedules
	Re-computation of communication schedules
	Estimating dcomp

	Leader election
	Master failure
	The voting process
	Raft

	Initial stabilization
	Initial synchronization
	Initial communication schedule

	Simulation
	Schedule consistency Metrics
	Simulation environment
	Scope of the simulation
	Channel sensing
	Physical model of the wireless channel
	Experiments

	Conflict-minimal channel orderings for communication schedules
	Summary

	Developed tools
	Data logging
	Data visualization
	Traffic generator
	Streams
	Configuration and debugging
	Deployment

	Summary & Future Work
	Summary
	Future Work

	Bibliography

