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"1 INTRODUCTION

1 Introduction

In such areas as system identification, time series analysis or controller design by parameter opti-
mization, often a nonlinear search has to be performed over a specific set of linear systems of fixed
McMillan degree. It is therefore important to have knowledge of the structure of such classes of
systems. This motivated Brockett [2] to study the topology of the set of single-input single-output
linear systems of fixed McMillan degree n. He proved that this set has n + 1 connected compo-
nents. Glover [9] showed that in the multivariable situation there is however only one connected
component. The same result was established by Hanzon [12] and independently by Ober [19] for the
sub-class of (asymptotically) stable systems of McMillan degree n. Results of this type suggested
that there might be a close connection between these two classes of systems. Helmke [15] then
showed that these two classes are homeomorphic, and Hanzon [13] used a dlfferent approach to
show that they are in fact diffeomorphic.

Using different types of balanced realizations, Ober [19], {21] and Ober and McFarlane [20]
derived canonical forms for several classes of linear systems of fixed McMillan degree: stable,
positive real, bounded real, minimum phase and systems without constraints. An interesting aspect
of these canonical forms is that they have a remarkably similar structure. This gave further evidence
that there should be a strong relationship between these classes of systems. In Ober [20] it was
moreover shown that all these sets of systems have identical numbers of connected components.

In this paper we will establish new diffeomorphisms between sets of systems. The diffeomor-
phism ‘between the set of all systems of fixed McMillan degree and the subset of stable systems
is motivated by a map that was studied in much detail in Fuhrmann-Ober (8] and by some state
space formulae in Glover-McFarlane [10]. The other diffeomorphisms studied in this paper are in
fact adaptations of this map. These maps also explain to a great extent why the canonical forms
for the different classes of systems in- Ober [21] have such a similar structure.

For single-input single-output systems it was shown in Ober [21] that each minimal, or stable,
or bounded real or positive real system can be parametrized by a set of standard parameters:

(71>...>O’j>...>0k>0

MiyeeoyMyyen, Nk nj €N, Zf=lnj=n;
S1y0ev9859:-.98k Sj:il, 1S]Sk1
bi,a(l),...,a(1)j,...,a(1)n, -1, b1 >0, a(1); >0, 1<5<n -1
biya(i)ry ... a(i)j,- ..y @(i)n, -1, b; >0, a(1); >0, 1 <j<ni—1;
bkva(k)lv"'aa(k)jv'-'»a(k)nk—la bk > Ov a(k)J >0, 1< .7 < ng— 1
d de R

In particular each system in one of the classes of systems has a unique representation, a canonical

form, in terms of following ‘standard system’.
The standard system (A,b,c, d) is then given by

L b= (b1,0,...,0,...,5;,0,. 16k, 0, ..,O)T,

ni ny "k

2.¢c= (8161,0,...,O,...,s_,'bj,O,...,O,...,skbk;o,...,O),

ni n, Nk

3. For A =: (Aij)i<i i<k We have

=
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a) block diagonal entries A;;, 1 < j < k:

a5 a(jh .
—a(ih 0 a(j)2
—a(j)2 0 0
Aj; = ,
0 . 0 a(j)nj_l
~a(j)ay-1 0
with a;; a function of b;,0, and d.
b) off diagonal blocks A;;, 1 <i,j < k, i # j:
‘ a,, 0O ... 0
0 0 ... 0 ,
Aij = L. . with a;; a function of b;,b;,s,,s;,0,,0; and d.
0 0 ... 0

For the case of stable systems we have the following canonical form (Ober [18]). We call a
minimal system stable if all its poles are in the open left half plane.

Theorem 1.1 The following two statements are equivalent:
(i) g(s) is the transfer function of a stable minimal system over R of McMillan degree n.

(1t) g(8) has a standard n-dimensional realization (A,b, c,d) given by a standard set of parameters
such that

—b;b;

ajj = —————.
${8;0; + gy

Moreover, the map which assigns to each stable minimal system the realization in (ii) is a canonical
form. : ’

The canonical form presented in the previous theorem is in the form of a Lyapunov balanced
realization (Moore [17]).

Definition 1.1 A stable minimal system (A, B,C, D) is called Lyapunov balanced if
AY + XA = -BB",
AL+ XA=-C"C,

with ¥ = diag(011n,,021n;,...,0kln,), 01 > 02 > --- > o > 0. The matriz £ ts called the
Lyapunov grammian of the system.

The canonical form quoted in the previous theorem is Lyapunov balanced with Lyapunov gram-
mian £ = diag(o1ln,,020n,,...,0kl,, ). Another interesting property of the canonical form is that
it is sign-symmetric. Indeed if

S = diag(slinl, - ,sjfn, yeeeaSkdng),
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where in, = diag(+1,—l,+1‘...,(—1)"1+1) € RMXM 5 =1,....k, then
A= SATS, T = Sb.

It should also be noted that the Cauchy index of a system is given by trace(S) (see Anderson [1]).

In Section 2 we introduce a map, the so-called L-characteristic, that maps not necessarily stable
minimal systems to stable minimal systems of the same McMillan degree. It will be shown that this
characteristic map is in fact a bijection between the set of minimal systems of fixed McMillan degree
and its subset of all stable minimal systems. This map will also be analyzed from the point of view
LQG-balanced realizations and Lyapunov realizations. Sections 3-5 contain the analogous analyzes
for bounded real systems, positive real systems and antistable systems. Finally in Section 6 it is
shown that the bijections are in fact diffeomorphisms.

Both authors would like to thank the Institute for Technomathematik and in particular Prof.
D. Praetzel-Wolters at the University of Kaiserslautern, Germany for their hospitality during the
preparation of this manuscript. Paul Fuhrmann would like to gratefully acknowledge the support
~ of the DFG (Deutsche Forschungsgemeinschaft) during his stay in Kaiserslautern.

2 Minimal systems

The aim of this section is to establish a bijection between the set of minimal systems of dimension
n and the set of all stable minimal systems of dimension n. Note that we mean by a stable
system a system whose poles are all in the open left half plane. This bijection which we call the L-
characteristic map isin fact a map that occurred implicitly in the work by Glover and McFarlane [10]
and was analyzed from an operator theoretic point of view in Fuhrmann and Ober [8].

To simplify presentation we introduce the notation, :

A := A— B(I + D*D)"'D*C,
for a given linear system (A4, B,C, D). Note that A, = Aif D = 0.

Definition 2.1 Let ( 2’ IB; ) be a minimal system. LetY be the stabilizing solution of the Riccati

equation |
0=ALY + YA, -YB(I+D*D)"'B"Y + C*(I + DD*)"'C,

i.e. AL — B(I+ D*D)™'B*Y is stable, and let Z be the stabilizing solution to the Riccati equation
0=ALZ+ ZA} - 2C*(I+ DD*)"'CZ + B(I + D*D)"'B*,

i.e. A, — ZC*(I + DD*)71C is stable.
Then the system *

A|B i AL — B(I+ DtD)—chY | B(I+D'D)_1/2
XL C|D = (I+DD‘)_112C(I+ ZY)I D

ts called the L-characteristic of the system ( g g )

The following relationships are due to Bucy {3]. Since the reference is difficult to find we give
a short proof. ‘
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Lemma 2.1 (Bucy relationships) Let < Ct g ) be a mintmal system. Let Y be a solution of

the Riccati equation
0=A}Y +YAL -YB([ + D*D)"'B°Y + C~({ + DD*)"'C,
and let Z be a solution of the Riccati equation
0=ALZ+ ZA} — ZC*(I + DD*)"'CZ + B({ + D*D)"'B*,
then
(I + ZY)(AL - B(UI + D*D)™'B"Y) = (AL - ZC*(I + DD)~'O)I + ZY).
Proof: Consider the two Riccati equations,
0=A}Y + YA, -YB(I+ D"D)'BY +C*(I + DD™)"'C,
and
0=ALZ + ZA] - ZC*(I+ DD*)"'CZ + B({ + D*D)™'B".

Multiplying the first equation on the left by Z and the second equation on the right by Y, equating
both equations and adding Ap to both sides we obtain

AL+ ZALY + ZY AL — ZYB(I + D*D)"'B*Y + ZC*(1 + DD*)"'C
= AL+ ALZY + ZALY - ZC*(I + DD*)"'CZY + B(I + D*D)"'B"Y.
Canceling the term ZA7Y from either side and‘ collecting terms, we obtain

[l + ZY)(AL — B(I + D*DY'B*Y) = (AL — ZC*({ + DD*)"'C)[I + ZY).

As a consequence of the Bucy relationships we can rewrite the L-characteristic of a system as
follows, .

(48

I+ Z2Y)"Y (AL — ZC*(I + DD*)"'C)[I + zY]) | B( + D*D)~'/?
(I + DD*)"2C(I + ZY) | D ‘

The following Lemma shows that the L-characteristic map maps a system with no stability
assumptions to a stable system of the same McMillan degree.

Lemma 2.2 The L-characteristic of a minimal system is stable and minimal. The L-characteristics
of two equivalent systems are equivalent.
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Proof: Since Y is the stabilizing solution of the Riccati equation the matrix Ay, — B(/+D*D)~'B"Y
is stable by definition. It is easily seen that the characteristic system is reachable. The observability
of the system follows by using the representation of the characteristic in which the A matrix is

written in the form resulting from the Bucy relations.
Let (A,B,C,D) € L?™. If Z is the stabilizing solution to the Riccati equation,

ALZ + ZA} - Z(C*(I + DD*)"'CZ + B(I + D"D)™'B* = 0,

then TZT™ is the stabilizing solution to this Riccati equation for the system (TAT~',TB,CT~!', D),
where T is non-singular. Similarly, if Y is the stabilizing solution to

AY + YA, - YB( + D°D)"'B*Y + C*(I + DD*)"'C =0,

then T-*YT-! is the stabilizing solution to this Riccati equation for the system (I'AT~',TB,CT~!, D).
Using this fact it is easily seen that the L-characteristic of two equivalent systems are equivalent.
a

The main theorem of this section will show that the L-characteristic map is in fact a bijection
between the set of n-dimensional minimal systems and the set of stable n-dimensional minimal
systems. - We denote by LP"™ the set of all minimal n-dimensional systems, with m-dimensional
input-and p-dimensional output space. The subset of continuous-time stable systems is denoted by
CP™. Recall that we mean by a stable system what is often referred to as an asymptotically stable
system, i.e. all the eigenvalues of the A matrix are in the open left half plane.

In the next definition we are going to define the so-called inverse L-characteristic map [xy :
CP™ — [P™ We will show that this map is in fact the inverse of the L-characteristic map xr.

Definition 2.2 Let (A,B,C,D) € C?™ and Ietk P and Q be the solutions to the Lyapunov equations

AP+ PA* = -BB*, A"Q+QA=-C"C.

[ AlBYY [ A+ B(B‘Q +DC)(I + PQ)~" | B(I + b*p)w
XL\ = (I+DD")%C(I + PQ)-' | D

is called the inverse L-characteristic system.

Then

In order to be able to analyze the inverse L-characteristic map we need the following Lemma.
Lemma 2.3 Let (A,B,C,D) € CE™ and let P and Q be such that
: AP‘+ PA* = -BB*,
A"Q + QA = —C*C.
Then
[A+B(B*Q +D*C)(I + PQ)'|Il + PQ] = [I + PQ][A + (I + PQ)™'(PC* + BD")C]
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Proof: We have
[A+ B(BQ + D*C)(I + PQ)™"J[I + PQ) = A(I + PQ) + B(B"Q + D°C)
= A+ APQ + BB*Q + BDC = A + (AP + BB")Q + BD"C
= A+ (~PA)Q+BDC=A-P(-QA-C"C)+BD*C = A+ PQA+ (PC* + BD")C

= (I + PQJ[A+ (I + PQ)~'(PC" + BD")C].

The following Lemma shows that the inverse L-characteristic system is minimal.
Lemma 2.4 We have that
Ixp(CE™) ¢ L™

Proof: Let (A,B,C,D) € CP™. That Ix.((A,B,C,D)) is reachable follows immediately from
the given representation. The observability follows in a similar way after rewriting A + B(B*Q +
D*C)I + PQ) ' as (I + PQ)A+ (I + PQ)~Y(PC~ + BD*)C)(I + PQ)~!, using Lemma 2.3. O

The following proposition shows that the characteristic map is injective. We need the following
Lemma that shows how the solutions of the Riccati equations of a minimal system are related to
the solutions of Lyapunov equations of its L-characteristic system.

Lemma 2.5 Let ( 2‘ g ) be a minimal system and let

( A l B ) . ( Ar - B(I+ D'D)_lB"Y l B(I + D-D)—l/z )

C|D )~ \(I+DD)'2C(I1+2zY)| D

be its L-characteristic system, with Y and Z the solutions to the respective Riccati equations. Then
the Lyapunov equations

AP + PA*

-88B*
A'Q+QA=-CC
have solutions given by
P=(I+2Y)'Z=2(I1+Y2)!
Q=Y{U+2Y)=(I+Y2Z)Y.
Proof: We want to show that with P = (I + ZY)"'Z = Z(I + Y Z)~! we have,
AP + PA® = —-BB".
To do this consider

(I + ZY)AP + PA*|(I+Y 2)
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=(I+ ZY)[(AL - B(I + D'D)“B‘Y)P + P(AL — B(I+ D"D)"'B"Y)'|(I + Y Z2)
=(I+ZY)AL - B(I+ D“D)“B‘Y)Z + Z(AL - BU 4+ D*D)'BY) (I +Y2Z)
=ALZ+ ZAL + Z(YAL + ALY)Z L
~2ZYB(I + D*D)™'B"YZ - B(I +D*D)"'B'YZ — ZYB(I + D*D)"'B",
hsing the two Riccati equations this gives,
=ZC*(I+DD*)"'CZ - B(I + D*D)"'B*
+Z[YB(I + D*D)"'B*Y — C*(I + DD")"'C)|Z
-2ZYB(I + D*D)™'B'YZ - B(I+ D"D)"'BYZ - ZYB(I + D*D)'B*
=—(I+ZY)B(I+D°D)'B*(I +YZ)
=—(I+ 2ZY)BB*(I +Y2Z),

which shows the claim.
Now with @ =Y + YZY, we have

A'Q+QA=AY(I+2ZY)+(I+Y2Z)YA
= (ALY =Y B(I + D*D)™'B*Y)(I + ZY) + (I + YZ)(Y AL - Y B(I + D*D)™' B"Y),
using the Riccati equation, we have
‘= (=YAL -C*(I+ DD 'CYI+ZY)+ (I +YZ)-ALY - C*(I + DD*)"'(C)
= —C*(I+ DD*)"'C(I + 2Y) - (I + YZ)C*(I + DD*)"'C
| —ALY - YAL - Y(ALZ + ZAL)Y
= -C*(I+ DD*)"'C(I+ ZY)- (I +YZ)C*(I + DD*)"'C |
-YB(I + D‘D)“B‘Y +C*(I+ DD*Y'C -Y(ZC*(I+ DD*)"'CZ)

—B(I + D°'D)™'B")Y

~(I+Y2Z)C*(I+ DD*)~'C(I + ZY)

= —-C*C.

We can now prove the proposition. -

Proposition 2.1 The characteristic map xr, is injective. More precisely, Ixy, - xL is the identity
map on LP'™.
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Proof: Let (A.B,C.D) € L?™ and let (A,B,C,D) € CE'™ be its L-characteristic, i.e.

A|B\ [ AL-BU+D'D)"'B"Y)| B+ D*D)”'/?
C T\ U+DDYPC(I+ ZY) | D ’

where Y and Z are the stabilizing solutions to the respective Riccati equations. We know by
Lemma 2.5 that the solutions to the Lyapunov equations

AP+ PA® = -BB*, AQ+QA=-CC

are given by
P=(U+2Y)'Z=2(I+YZ)™",
Q=Y({U+2Y)=(I+Y2)Y.

Hence we can see that PQ = ZY. Now apply Ixr to (A,B;C,'D) and set (A, B,,Cy,D,) :=
Ixt((A,B,C,D)), then Dy = D and !

B, = B(I + D*D)/* = B(I + D*D)~V*(I + D*D)*/* = B,
Cy = (I +DDHYVC(I + PQ)™' = (I+ DD*)'/*(I + DD*)~V2C(I + ZY)I + 2Y) ' = C,
A = A+ BBQ(I+ PQ)' + BDC(I + PQ)™!
=A-B(I+D*D)y"Y(D°C+ BY)+ B(I+D"D)"'B*Y(I+2ZY)I+ZY)™!
+B(I+ D*D)'D*C(I+ZY)I + 2Y)™"
= A,
ie. IxL - xL((A,B,C,D)) = (A, B,C, D) for (A, B,C, D) € L™, | g

We now need to prove that x is in fact surjective, or that xr,-I'xt is the identity map on C5™.
To do this we need the following Lemma.

Lemma 2.6 Let (A,B,C,D) € C2™. Let P, Q be the positive definite solutions to the Lyapunov
equations ‘

AP+ PA*+BB* =0, AQ+QA+CC=0.

Let
(#t5) - = ((#15))
C|D C
Then
0=A}Y +YAL, -YB(I+ D"D)"'BY +C*(I + DD*)"'C,
0=ALZ+ ZA} - ZC*(I + DD*)"'CZ + B(I + D*D)™'B*,
with

Y=QU+PQ)'=(1+QP)'Q,
Z=P(+QP).

Moreover, Y and Z are the stabilizing solutions to the Riccati equations.
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Proof: First n§te that
AL =A-B(I+D"D)"'DC
= A+ B(BQ + D°C)(I + PQ)~' - B(I + D?D)l/z(l +D*D)"'D*(I + DD*)!/?2C(I + PQ)™!
= A+ BB*Q(I + PQ)~". | '
Since, | ' :
(I + QP)A}Y +YAL —~ YB(I + D*"D)"'B*Y + C*(I + DD*)"'C)(I + PQ)
=(I+QP)(A+BBQU+ PQ)™ QU+ PQ)™ + (I + QP)'Q(A + BB Q(I + PQ)™")
—(I +QP)"'QB(I + D*D)*¥(I + D*D)" (I + D*D)'/?B*Q(I + PQ)™!
+(I + PQ)™"C*(I + DD*)'/*(1 + DD*)~Y(I + DD*)'/*C(1 + PQ)™')(I + PQ)
= (I +QP)A"Q + QBB"Q + QA(I + PQ) + QBB*Q — QBB"Q +C*C
= A"Q + QA +C°C+ Q(PA" + AP + BB*)Q
=0,
we have verified the first identity. Now with Z = P(I + QP) we have
ALZ + ZA} — ZC*(I+ DD*)™'CZ + B(I + D"D)~'B"
= (A+BBQU + PQ) " )YI + PQ)P + P(I + QP)(A+ BB*Q(I + PQ)™ )"
—P(I+QP)I+ PQ)~"C*(I1 +DD*)"*(I + DD*)'(I + bv‘)‘/26(1 + PQ)"'(I + PQ)P
+B(I + D*D)V*(1 + D*D)~'(I + D*D)/?B*
= AP + APQP + BB*QP + PA* + PQPA" + PQBB* — PC*CP + BB
= A°P + PA* + BB* + (AP + BB*)QP — PC*CP + PQ(PA"* + BB*)
=0- PA*QP — PC°CP + PQ(PA" + BB")
= —P(A*Q +C*C)P + PQ(PA" + BB")
= P(QA)P + PQ(PA" + 33?) ' \ | :
= PQ(AP + PA" + BB")
=0,
which shows the second identity. Since
AL — B(I+ D°D)"'B°Y
= A+ BB*Q(I + PQ)™' - B(I + D"D)'*(I + D*D)M(I + D*D)V2B*(I + QP)'Q
= A,
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which is stable and
AL - ZC*(I+ DD")'C
= A+ BBQ(I + PQ)™!
—P(I + QP)I + PQ)~*C*(I + DD*)Y/*(I + DD*)~Y(I + DD*)'/*C(I + PQ)~"
= A+ BB"Q(I + PQ)™' - PC*C(I + PQ)™"
= ([ + PQ)A+ (I + PQ)'PC*CI(I + PQ)™" — PC"C(I + PQ)™
- (I + PQ)A(I + PQ)™1, '

is stable, where we have used Lemma 2.3, we have shown that Z, Y are the stabilizing solutions to
the Riccati equations. a

We are now in a position to state and prove the main theorem of this section. This theorem
shows that the L-characteristic map is bijective.

Theorem 2.1 The map
Xt L5™ = Cp
ts a bijection that preserves system equivalence. We have le = Ixg.

Proof: In Proposition 2.1 it was shown that x is injective and preserves system equivalence.
Therefore it remains to show that x is surjective, or more precisely that x - I'xr is the identity
map. Let (A,B,C,D) € CE'™ and let

_ [ A+ B(B*Q + D*C)(I + PQ)~' | B(I + D*D)'/?
- (I +DD*)':Cc(I + PQ)™ ' | D ’

Now consider

(ertor) =xe e ((£15) - ((215)

_( AL —B(I+ D*D)"'B*Y | B(I + D*D)~'/?
"\ (I+DD*):C(I+2Y)]| D ’

where Z, Y are the stabilizing solutions to the Riccati equations,
0=A;Y +YAL-YB(I+ D*D)'B'Y +C*(I + DD*)"'C,
0=ALZ+ ZA; - 2C*(I+ DD*)"'CZ + B(I + D*D)"'B".
By Lemma 2.6
Y=QU+PQ)!'=(I+QP)'Q,
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Z:PU+QHV
with Q, P the positive definite solutions to
AP + PA" = —BB*, A"Q + QA = ~-C*C.
Now, using that Ay = A + BB*Q([ + PQ)~! (proof of Lemma 2.6), we have D; = D, and
A, = AL - B(I+ D*D)"'BY |
= A% BBQ( + PQ)™" — B(I+ D*D)/2(I + D*D)~Y(I + D*D)/*BQ(I + PQ)~*
= A,
= B(I + D*D)™* = B(I + D*D)/*(I + D"D)~'/?
= B,
C,=(I+DD*)Y2C(I 4+ ZY)
= (I +DD*)~ V¥ + DD")/2%C(I + PQ)~ (I + PQ)
=C, |

which shows the claim that xz - Ixy is the identity map. Therefore x, is invertible with XZI =Ixr.
0 ‘

The notion of balancing that is appropriate for minimal systems is that of LQG balancing
(Jonckheere and Silverman {16]) (see Ober and McFarlane [22] for the non-strictly proper case).

Déﬁnition 2.3 A system (A,B,C,D) € L?™ is called LQG-balanced if
A}L + LA, —SB(I+ D°D)'B*L +C*(I + DD*)"'C =0,
ALY + £A} - £C*(I+ DD*)"'CT + B(I + D*D)"'B* =0

for
Y= dia\g(dlfm,aglnz,.. okln,), oy >02> >0 >0.

The matriz ¥ is called the LQG grammian of the system.

In Ober and McFarlane [22] (see also [21}) the following canonical form for SISO systems was
given in terms of LQG balanced realizations.

Theorem 2.2 The following two statements are equivalent:
(i) g(s) is the transfer function of a minimal system over ® of McMillan degree n.

(ii) g(s) has a standard n-dimensional realization (A,b, c,d) given by a standard set of parameters
such that

-bb; [1 - sis;0:0;
.. —s.d).
Wi = 1+ d2 ( 8i8;0; + 0; %3 )
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Moreover, the realization given in (ii) is LQG balanced with LQG grammian T = diag(o11n,,021n,,. .. ,Ok1n,
The map which assigns to each minimal system the realization in (ii) is a canonical form.

For an analysis of the characteristic map from the point of view of balancing it is more ap-
propriate to slightly change the definition of the characteristic map. This is done by performing a
state-space transformation on xr((4, B,C, D)).

Define for a system (A, B,C, D) € L?™ the modified characteristic map

«((15))

_ [ T'*(AL - B + D*D)-'B*Y)T-Y4 | TYB(I + D*D)-\/2
- T+ DD*)'PC(I+ zY)T- % | D :

where T := (I + ZY)*(I+ ZY) and Z, Y are the stabilizing solutions to the two Riccati equations.

Corollary 2.1 The map X1 : LE™ — CP™ is a bijection with the following properties,

1. (A,B,C,D) € L?™ is LQG balanced with LQG grammian T if and only if x1.((A, B,C, D))
is Lyapunov balanced with Lyapunov grammian X.

2. (A,b,c,d) € L} isin LQG-balanced canonical form of Theorem 2.2 if and only if xr((A,b,c,d))
is in Lyapunov balanced canonical form of Theorem 1.1.

Proof: 1.) Let (A,B,C,D) € L%™ and let Y, Z be the stabilizing solutions to the two Riccati
equations. By Lemma 2.5 (A, B,C,D)= xL((A, B,C,D)) is such that P = (I + zZY)'z,Q =
Y (I + ZY) solve the Lyapunov equations,

AP+ PA* = -BB*, A'Q+QA=-C"C.

If (A1, B1,C1,D1) = x((A, B,C, D)), then the positive definite solution to the Lyapunov equations,
AP+ PLA; = —BiB, A1Q1 + Q1A = —CCy,

are given by
P, = TVAPTVA = (I + ZY)(I + ZY)A (I + ZY) ' Z((I + ZY)*(I + ZY))'/*,
Q1 =T VAQTVA=((I+2Y)(I+2Y) ™Y+ 2Y)( + ZY)' (I + ZY))"V/4.

If (A,B,C,D)is LQG balanced then Z =Y = ¥ is diagonal and therefore
P=Z=Y=0Q,

i.e. (A1,B1,C1,D,) is Lyapunov balanced with Lyapunov grammian I. The converse follows in the
same way.
2.) This follows by straightforward verification. o
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3 Bounded real systems

The next class of systems that we will consider are bounded real systems. We call a system bounded
real, if it is stable and its transfer function satisfies,

I - G*(iw)G(iw) > 0,

-~ forallw € RU {too}. We denote by BE™ C LE™ the subset of bounded real systems. We will

proceed as in the previous section and construct a map of the set of bounded real systems into the

set of stable systems. Whereas in the previous case the map was onto, this is not the case here. In

" the present case the map will be a bijection between the class of bounded real systems of McMillan

degree n and the set of stable minimal system of the same McMillan degree whose Hankel smgulax

values are less than one. ‘
To simplify presentation, we are going to use the following notation,

Ag:= A- B(I - D*D)"'D*C.

We are now going to define the B-characteristic of a bounded real system.

Definition 3.1 Let (%‘%) be a ﬁummal bounded real system. LetY be the stabzlzzmg solution
of the Riccati equation ‘
0=ARY +YAp+YB(I - D*'D)"'B*'Y + C*(I - DD*)"'C,
te. Ap+ B(I - D‘D)“B‘}f is stable, and let Z be the stabilizing solution to the Riccati equation
0= ApZ + ZA} + ZC*(I — DD*Y"'CZ + B(I — D*D)~'B",

i.e. Ag+ ZC*(I — DD*)"1C is stable.
Then the system

A|B\\ _( As+B(I-D*D)"'B'Y | B - D*D)"'/?
XB\\TID )] "\ = -DD")7’CI-ZY) | D
. o Al B |
ts called the B-characteristic of the system (T‘T) .

These following relations are the relations that are equivalent to the Bucy relations for the case
of minimal systems. Note that standard results on the bounded real Riccati equation ({24]) imply
that I — ZY is non-singular, where Y and Z are the stabilizing solutions to the two bounded real
Riccati equations.

Lemma 3.1 Let (%i—g—) be a minimal bounded real system. LetY be a solution of the Riccati
equation ‘
0= ARY + YAp + YB(I - D*D)"'B*Y + C*(I - DD")"'C,
and let Z be a solution of the Riccati equation
0=AgZ+2ZA5+2C*(I-DD*)'CZ + B(I D*D)'B*,
i,hen
(I - ZY)(Ag + B(I - D*D)™'B*Y) = (Ag + ZC*({ — DD*)"'C)[I - ZY).
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Proof: Considef the twd Riccati equations,

0=ARY +YAg+YB(I - D"D)"'B"Y + C*(I - DD*)"'C,
and

0=AgZ+ ZAy+ ZC"(I-DD*)"'CZ + B({ - D°D)™'B".

Multiplying the first equation on the left by —Z and the second equation on the right by ~-Y,
equating both equations and adding Apg to both sides we obtain

Ag — ZAgY - ZY Ag - ZY B(I — D*D)"'B*Y - ZC"(I - DD*)"'C
= Ag — AgZY — ZARY — ZC*(I - DD")"'CZY - B(I ~ D"D)"'B"Y.
Canceling the term ZAgRY from either side and collecting terms, we obtain

(I - ZY)(Ap+ B(I - D°D)"'B"Y) = (Ag + ZC*(I - DD*)"'C)[I - ZY].

As a consequence of these Bucy type relationships we can rewrite the B-characteristic of a
bounded-real system as follows,

o ((348)-

I - ZY]"Y(Ap + ZC*(I - DD*)"'C)[I — ZY)) | B( — D*D)~/?
~(I - DD*'2C(I - ZY) | D

The following Lemma shows that the B-characteristic map maps a bounded real system to a
stable system of the same McMillan degree.

Lemma 3.2 The B-characteristic of a minimal bounded-real system is stable and minimal. The
B-characteristics of two equivalent systems are equivalent.

Proof: Since Y is the stabilizing solution of the Riccati equation the matrix Ag+B(I-D*D)"1B*Y
is stable by definition. It is easily seen that the characteristic system is reachable. The observability
of the system follows by using the representation of the characteristic in which the A matrix has
been written in the form resulting from the Bucy type relations. That the B-characteristics of two
equivalent systems are equivalent is easily verified. a

In the following Lemma we investigate the solutions of the Lyapunov equations of the B-
characteristic system.

Lemma 3.3 Let ( é' IB) ) be a minimal bounded-real system and let

AlBY _ Ap + B(I- D*D)'B*Y | B(I- D*D)"'/?
C|D )~ \'—-0-DD*Y"*C(I-2ZY)| D




3 BOUNDED REAL SYSTEMS 16

be its B-characteristic system, with Y and Z the stabilizing solutions to the respective Riccali
equations. Then the Lyapunov equations

AP + PA* = -BB"
A'Q+QA=-CC
have solutions given by
=(I-2Y)'Z=2(1-Y2)"!
Q=Y(I-2Y)=(I-Y2Z)Y.
Proof: We first show that AP + PA* = —BB". Since [ — ZY is invertible this follows from,
(I - ZY)(AP + PA")I - Y 2)
=(I-2Y)AZ+ ZA(I-Y2Z)
=(I - ZY)Ap+ B(I- D"D)'B*Y|Z + Z[AB + B(I - D*D)"'B*Y]"(I - Y Z)
= ApZ + ZAp - Z(Y Ap + ARY)Z |
+(I - ZY)B( - D*D)'B*YZ + ZYB(I — D*D)"'B*(I - Y Z)
= _ZC*(I- DD*)"'CZ - B - D*D)™'B*
-Z(-YB(I - D'D)"'B*Y - C*(I - DD") -1c)1z
- +(I-Z2Y)B(I -D*D)'B*YZ + ZYB(I - D*D)” 1B*(I -YZ)
= —B(I-D*D)'B*+ZYB(I- D*D)"'B'YZ
+(I - 2ZY)B(I-D*D)'B*YZ + ZYB(I - D*D)” ‘B (I-YZ)

= —(I-2Y)BUI - D*D)"'B*(I -Y2)

—-(I-2Y)BB*(I-YZ).
Let now Q =Y — Y ZY. We are going to show that
A'Q+ QA =-C°C.
We consider
AQ + QA
=[Ap+ B(I-D*D)'B*Y|’Y(I - ZY)+ (I -YZ)Y[Ap + B(I — D*D)"'B*Y]
=[A3Y +YB(I - D*D)'BY|I - 2Y)+ (I -YZ)[YAp +YB(I - D*D)"1B*Y],
using the bounded real Riccati equation this gives,
=[-YAp - C*(I - DD*)'CYI - ZY)+ (I -YZ)[-ABY - c*(I - DD‘ -1C)

= —C*(I- DD*)'C(I - 2Y) - (I -YZ)C*(I - DD*)"'C
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~Y Ap — ARY + Y(ABZ + ZAR)Y

~-C*(I-DD) "I -2Y)-(I-YZ)C"({ -DD*)"'C

+Y B(I - D*D)"'B*Y + C*(I - DD*)"!C

+Y[-ZC*(I - DD*)"'CZ -~ B(I - D°D)"'B°]Y

~(I-YZ)C*(I - DD*)"'C(I - ZY)
= -C*C.

A consequence of the previous Lemma is that the image of xp is not the whole set CZ'™, but
the subset UCH'G. A 'system (A,8,C,D) € CE™ is in UCY'g if

l. Amaz(PQ) < 1, where P, Q are the positive definite solutions to
AP+ PA* = -BB*, A*Q+QA=-CC,
2. I -D*D > 0.
We can now show that the B-characteristic of a bounded real system is minimal and in UC’,’::E
Lemma 3.4 We have '
xs(BY™) CUCYR

Proof: Let (A,B,C,D) € BF™. It follows from standard results on the bounded real Riccati
equations that Apmaz(ZY) < 1 ([24]), where Z, Y are the stabilizing solutions to the bounded real
Riccati equations. If (A,B,C,D) = x8((4, B,C, D)) and P, Q are the positive definite solutions
to the Lyapunov equations

AP+ PA* = —BB*, A*Q+ QA= -C"C,

then as a consequence of Lemma 3.3 we have PQ = ZY and therefore that Ape-(PQ) < 1. Clearly,
I-D*D=1-D*D >0 and hence (4,B,C,D) e UC.'p

In the next definition we are going to define the inverse B-characteristic map Ixp : UCL'g —
B2™. Analogously to the case of minimal systems Ixg will turn out to be the inverse of the
B-characteristic map xp : B2™ — U C,’::'g.

Definition 3.2 Let (A,B,C,D) € UCh'5 and let P, Q be the solutions to the Lyapunov equations
AP+ PA" = -BB", A'Q+QA=-C*C.
Then
Ixs ((—A;’—E-)) = ( A - B(B*Q +D*C)({ - PQ._)‘l I B(I — D*D)\/? )
C|{D —(I - DDH2C(I - PQ)! I D

ts called the inverse B-characteristic system.
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In order to be able to show that Ixg maps a stable system in UCP'5 to a bounded real system
we need the following Lemmas. ‘

Lemma 3.5 Let (A,B,C,D) € UC]'g and let P and Q be such that
AP+ PA" = —BB", A°Q+QA=-C"C.
Then | |
| [A~B(B*Q + D*C)(I - PQ)™'|I - PQ] = [l - PQIA - (I - PQ)"'(PC" + BD")C].
Proof: We have |
[A - B(B*Q + D°C)(I - PQ)~'|lI - PQ]
= A(I - PQ) - B(B*Q + D*C) = A— APQ - BB°Q - BD*C = A - [AP + BB"]Q - BDC
= A-[-PA")Q - BD*C = A- PQA - PC*C - BD"C

={I - PQ)[A - (I - PQ)"'(PC" + BD*)C).

Lemma 3.6 Let (A,B,C,D) € UC,’::E. Let P, Q be the positive definite solutibns to the Lyapunov
equations :

AP+ PA*+BB* =0, AQ+QA+C*C =0.

Let
(#5) = ((45)
C|D \ C
Then
0=A3Y +YAg+YB(I - D*D)'B'Y + C*(I - DD*)~'C,
0= ApZ + ZAy + ZC*(I - DD*)™'CZ + B(I - D*D)™'B",
with |

Y =QU - PQ)" =(I-QP)7'Q,
Z =(I - PQ)P = P(I - QP).

Moreover, Y and Z are the stabilizing solutions to these two bounded real Riccati equations.
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Proof: First note that
Ag=A-B(I -D"D)'D*C
= A-B(B*Q +D*C)(I = PQ)~" + B(I - D*D)V/*(I — D*D)~'D*({ - DD*)}/?C(I - PQ)™!
= A-BBQ(I - PQ)".
Since I — QP is invertible and
(I - QP)[ARY + YA+ YB(I -~ D*D)"'B*Y + C*(I - DD*)~'C|(I - PQ)
= (I - QP)(A-BB*Q(I - PQ)™)"Q( - PQ)™ + (I - QP)™'Q(A - BB QI - PQ)™")
+(I = QP)™'QB(I - D"D)Y*(I — D*D)"}(I - D*D)}/*B*(I - PQ)™"
+(I - PQ)"C~(I - DD")V*(1 — DD*)~'(I — DD*)/*¢c(I - PQ)~'|(I - PQ)
= (I -QP)A"Q - QBB*Q + QA(I - PQ) - QBB*Q + QBB Q +C*C
= AQ+ QA +C"C— Q(PA" + AP + BB*)Q
=0,
we have verified the first identity. Now with Z = P(I — QP) we have
ABZ + ZAy + ZC*(I - DD*)"'CZ + B(I - D"D)™'B*
= (A= BB"Q(I - PQ)~")(I - PQ)P + P(I - PQ)(A - BB*Q( - PQ)™')"
+P(I = QPY(I — PQ)~"C*(I — DD*)Y/*(I - DD*)~}(I - DD*)}/*C(1 - PQ)™'(I - PQ)P
+B(I — D*D)Y*(I - D*D)"'(1 — D*D)'/?B" |
= AP — APQP - BB°QP + PA* — PQPA" - PQBB* + PC*CP + BB"
= A*P + PA* + BB* — (AP + BB*)QP + PC*CP — PQ(PA" + BB")
=0+ PA"QP + PC*CP — PQ(PA" + BB*)
= P(A°Q +C*C)P — PQ(PA" + BB")
= —P(QA)P — PQ(PA" + BB*)
= —PQ(AP + PA" + BB™)
=0,
which shows the second identity. Since
Ap + B(I - D°D)"'B*Y
= A-BB°Q(I - PQ)~' + B( - D*D)*(I - D*D)~'(I - D*D)'/?B*Q(I - PQ)™"
= A,
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is stable and
| Ap +ZC*(I - DD")™'C
=A-BBQ(-PQ)"!
+P(I-QP)I - PQ)~"C(I - DD.‘)“/2(I - DD')—‘(I - DDYV2C(I - PQ)!
=A-BB'QU - PQ)™' + PC*C(I - PQ)™!
=(I - PQ)A-(I-PQ)'PCC)I + PQ)™" + PC*C(I + PQ)™!
= (I - PQIAU - PQ)™,

is stable, where we have used Lemma 3.5, we have shown that Z, Y are the stabilizing solutions to
the bounded real Riccati equations. a

We can now show that Ixg maps UC.'g into BE™.

Lemma 3.7 We have
Ixp(UCLg) € BR™.

Proof: Let (A,B,C,D) € UC,’::Z and let (A, B,C, D) = Ixg((A, B,C,D)). It follows immediately
that (A, B,C, D) is reachable. After rewriting of (A, B,C, D) using the formula of Lemma 3.5
it follows that the system is observable. In Lemma 3.6 it was shown that the two bounded real
Riccati equations for the system (A, B, C, D) have positive definite stabilizing solutions Y, Z. This
together with the fact that ,\,,,“(YZ) = Amar(PQ) < 1 implies ([24]) that (A, B,C, D) is bounded
real. o

We are now in a position to show that xp : BE™ — UCE'g is a bijection.
Theorem 3.1 The map
Xt BE™ — UCLE
is a bijection that preserves system equivalence. The inverse map is given by xgl =IxB.:

Proof: That xp preserves system equivalence was established in Lemma 3.2.We are next going to
show that xp is injective, or more precisely that I'xg - xp is the identity map. Let (A,B,C,D) €
Br™ let (A,B,C,D) = xB((A,B,C, D)) and set (Ay, By,Cy,Dq) := Ixs((A,B,C,D)). Using
Lemma 3.3 we have

D, =D,
B, = B(I - D*D)'/? = B(I - D*D)""/*(I - D*D)'/* = B,
C = —(I - DD*)' /(I - PQ)™!

= (I -DD*)"'}*(I - DD**C(I - ZY)I - ZY)' =
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Ay = A-B(BQ+DC)I - PQ)!
= Ag + B(I - D*D)"'B*Y — B(I — D*D)~Y*I - D*D)"'?B*Y
+B(I - D*D)Y2D*(I - DD*)""*C(I - ZY)(I - ZY)~!
=A- B(I-D*D)'D*C + B(I _ D*D)'D*C
= A,
| which shows that Ixpg - x8((A, B,C,D)) = (A, B,C, D) and hence that xp is injective. We now
show that xp is surjective by showing that xg - Ixp is the identity map. Let (A,B,C,D) € UCY'g,
let (A, B,C, D) := Ixg((A,B,C,D)) and set (A,,B;,C1,D,) := x5((A, B,C, D)). Then
D, = D,
Ci=—(I-=D*D)"Y2C(I - ZY) = (I - DD*)~"V*(I - DD*Y'/?%C(I - PQ)~'({ - PQ)
=C,
B, = B(I - D*D)~Y* = B(I — D*D)"/*(I - D*D)"'/? = B,
Ay = Ag+ B(I - D*D)"'B"Y
=A-BB*Q(I - PQ)™' + B(I - D*D)V*¥(I = D*D)~'(I - D*D)V/2B*Q(I — PQ)~!
= A.

This shows that xp is surjective. Hence we have that yp is bijective with inverse xgl =Ixp. O

We now come to analyze the previous result from the point of view of balanced realizations.
Bounded real balanced realizations were introduced by Opdenacker and Jonckheere [23].

Definition 3.3 A system (A,B,C,D) € BE'™ is called bounded real balanced if
ApY +LAg+ELB(I-D"D)'B*E 4+ C*(I- DD*)"'C =0,
ABT + LA+ £C*({ - DD*)"'CT + B(I - D*D)"'B* =0,

for
X =diag(o11,,,0210,,...,0kl,,), o1 >02>---> 0, >0,

and ¥ is the stabhlizing solution to both equations. The matriz ¥ is called the bounded real gram-
mian of the system.

In Ober [21] the following canonical form for SISO bounded real systems was given.

Theorem 3.2 The following two statements are equivalent:

(i) g(s) ts the transfer function of a bounded real system over R of McMillan degree n.
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(t1) g(s) has a standard n-dimensional realization (A,b,c,d) given by a standard set of parameters
such that ‘ B ‘

ai; = ‘—-b,'b_,‘ (l + $isj0i0; n s_,d) “

T 1 - d? 8i8j0; + 0;
with !dl <1l o0 <1

Moreover, the realization given in (it) ts bounded real balanced with bounded real grammian ¥ =
diag(oyIn,,021n,,...,0k1,,). The map which assigns to each bounded real system the realization
in (it) is a canonical form.

As in the case of minimal systems we now introduce a slightly modified characteristic map.
- Define for a system (A, B,C,D) € B?™ the modified characteristic map

o((#15))

_( TY*(Ap + B(I — D*D)~'B*Y)T~Y/4 | TY/*B(I — D*D)~'/?
= —(I— DD‘)—]/2C(1’_ ZY)T—174 | D )

where T := (I — ZY)*(I — ZY') and Z, Y are the stabilizing solutions to the two bounded real
Riccati equations. We have the following corollary.

Corollary 3.1 The map %5 : Bﬁ;'" — UCP'g is a bijection with the following properties,

1. (A,B,C,D) € B?™ is bounded real balanced with bounded real grammian L if and only if
xB((A, B,C, D)) is Lyapunov balanced with Lyapunov grammian X. ,

2. (A,b,c,d) € Bl is in the bounded real balanced canonical form of Theorem 3.2 if and only
if xB((A,b,c,d)) is in Lyapunov balanced canonical form of Theorem 1.1.

4 Positive real systems

We are now going to consider positive real systems. We call a square minimal system positive real,
if it is stable and its transfer function satisfies,

G(iw) + G*(iw) > 0,

forallw e RU {ioo} We denote by P™ the subset of L™™ of positive real systems. We again
introduce some notation to simplify the presentation. Let (A, B,C, D) be a positive real system,
then set,

Ap:= A— B(D + D*)"'C".

The P-characteristic of a positive real system is defined as follows.

Definition 4.1 Let (—+—g g ) be a minimal positive real system. LetY be the stabilizing solution
of the Riccati equation |
0=ApY +YAp +YB(D + D)7'B"Y + C*(D+ D*)7'C,
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i.e. Ap+ B(D + D*)"'B*Y is stable, and let Z be the stabilizing solution to the Riccali equation
0=ApZ + ZAp+ 2C°(D + D*Y"'CZ + B(D + D) ' B~,

ie. Ap+ ZC*(D + D*)~'C is stable.
Then the system

A|B\\ ([ Ap+B(D+D*)"'B*Y | B(D+ D*)"'/?
P\\TID)) "\ =+ Dy "7*C(I - zY) ] D
: . A|B
ts called the P-characteristic of the system c .

The following relations are analogous to the Bucy relations for the case of minimal systems.
Note that standard results on the positive real Riccati equation (see e.g. [24]) imply that I — ZY is
non-singular, where Y and Z are the stabilizing solutions to the two positive real Riccati equations.

Lemma 4.1 Let (%‘-%) be a minimal positive-real system. Let Y be a solution of the Riccati
equation

0=ApY +YAp +YB(D + D*)"'B*Y + C*(D + D*)"'C,
and let Z be a solution of the Riccati equation

0=ApZ+ ZAp+ ZC*(D+ D*Y"'CZ + B(D + D*)™'B",
then

(I - ZY)(Ap + B(D + D*)™'B*Y) = (Ap + ZC*(D + D*)™'C)[I — ZY].
Proof: Consider the two Riccati equations,

0=ApY +YAp+YB(D + D*)"'B*Y + C*(D + D*)"'C,
and

0=ApZ + ZAp+ ZC*(D+ D*)"'CZ + B(D + D*)"'B".

Multiplying the first equation on the left by —Z and the second equation on the right by -Y,
equating both equations and adding Ap to both sides we obtain

Ap — ZApY — ZYAp - ZYB(D + D*)"'B*Y - ZC*(D + D*)"'C
= Ap — ApZY - ZApY — ZC*(D + D*)~'CZY - B(D + D*)"'B"Y.
Canceling the term ZApY from either side and collecting terms, we obtain

(I - ZY)(Ap + B(D + D*)"'B°Y) = (Ap + ZC*(D 4+ D*)"'C)[I - ZY].

As a consequence of these Bucy type relationships we can rewrite the P-characteristic of a
positive real system as follows,

«((448)-
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([ = ZY]"\(Ap + ZC*(D 4 D)-'C)I = ZY]) | B(D 4 D*)-1/2
—(D + D*)~V2C(I1 - ZY) | D

The following Lemma, that is proved in the standard way, states that the P-characteristic of a
positive real system is stable and minimal.

Lemma 4.2 The P-characteristic of a minimal positive-real system is stable and minimal The
P-characteristics of two equivalent systems are equivalent.

We now construct the inverse map to the P-characteristic. In order to do this we first have to
investigate the solutions of the Lyapunov equations of the characteristic system.

Lemma 4.3 Let ( 2, g ) be a minimal positive-real system and let

A|B\ ( Ap+B(D+D*)"'BY | B(D+ D*)~'/?
Cc T\ (D + DY V(I -2Y) | D
be its P-characteristic system, with Y and Z the stabilizing solutions to the respective Riccati

equations. Then the Lyapunov equations

AP+ PA* = -BB*

A*Q+ QA = -C*C
have solutions given by

P= (I-2Y)'Z=2(1-YZ)"!
Q=Y(I-2Y)=(I-Y2Y.

Proof: We first show that AP + PA®* = —BB*. To do this note that I — ZY is invertible and
consider, ’

(I-ZYYAP + PA")YI-YZ)
=(I-2Y)AZ+ZA*(I-YZ) |
= -ZY)Ap + B(D + D‘);‘B;Y]Z + Z[Ap+ B(D + D)7 'BY)"(I - Y Z)
= ApZ + ZAb — Z(Y Ap + ARY)Z - |

+(I - 2ZY)B(D+ D*)'B°YZ + ZYB(D + D*)"'B*(I - Y Z)
=-2C*(D+ D*Y'CZ - B(D + D*)'B*

—-Z[-YB(D 4 D*)"'B*Y - C*(D + D*)"'C}z

+(I - ZY)B(D+ D*)'B'YZ + ZYB(D + D*)"'B*(I = Y Z)
= ~B(D+ D*)'B*+ZYB(D + D*)"'B'YZ

+(I-ZY)B(D + D*)"'B*YZ + ZYB(D + D*)"'B*(I - Y 2)



4 POSITIVE REAL SYSTEMS ‘ 25

= ([~ ZY)B(D+D*)"'B (I -YZ)
=-(I-2ZY)BB"(I-Y2Z).
Let now Q = Y — Y ZY. We are now going to show that
AQ+QA=-CC.
We consider
ATQ+ QA
=[Ap+B(D+ D) 'BY)"'Y(I - ZY)+ (I - YZ)Y[Ap + B(D + D*)"'B"Y]
=[ApY + YB(D + D*)"'B*Y|(I - ZY) + ({ - YZ)[Y Ap + Y B(D + D*)"'B"Y],
using the positive real Riccati equation this gives,
=[-YAp - C™(D+ D) 'C)(I-2Y)+ (I - YZ)[-ApY — C*(D + D*)"'C]
—C*(D+ D" 'C(I-2Y)-([-YZ)C(D+ D*)"'C

i

_YAp - ApY + Y(ApZ + ZAp)Y

i

~C*(D+ D*yY(I-2Y)-(I-YZ)CYD + D*)™'C

+YB(D + D*)"'B*Y + C*(D+ D*)"'C + Y[-2C*(D + D*)™'CZ - B(D + D*)"'B*)Y
=-(I-YZ)CY(D+D")"'Cc(I-2Y)

= -C*C.

A consequence of the previous Lemma is that the image of xp is not the whole set C7"™, but
the subset UC'5". A system (A,B,C,D) € C1*™ is in Ucyg if

1. Amaz(PQ) < 1, where P, Q are the positive definite solutions to
AP + PA* = -BB*, AQ+QA=-C°C,
2.D+D*>0.
We can now show that the P-characteristic of a positive real system is minimal and in U C,': A
Lemma 4.4 We have
xs(Pt) CUCTE".

Proof: The proof is analogous to the proof of Lemma 3.4. a

In the next definition we are going to define the inverse P-characteristic map Ixp : U C:: P
.P™. Analogously to the case of minimal and bounded real systems Ixp will turn out to be the

inverse of the P-characteristic map xp: P* — UCL'5".

Univ.-Bibk 1
Kalsersiautertl
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Definition 4.2 Let (A, B, C D) e UC"'P"‘ and let P, Q be the solutions to the Lyapunov equations
AP+ PA" = -BB*, AQ+QA = -C"C.

I A|B . A-B(B*Q+C){I - PQ)—IIB(D‘-l—D)l/Z
el —(D + D)'7’C(I - PQ)— | D

ts called the inverse P-characteristic system.

- Then

Lemma 4.5 Let (A,B,C,D) € UCT™ and let P and Q be such that
AP 4 PA" = —BB", A"Q+QA=-C"C.
Then, |
. [A=B(BQ +C)(I - PQ)MII - PQ] = [[ - PQILA ~ (I - PQ)"'(PC" + B)C].
Proof: We have |
[A-B(B*Q +C)I - PQ) I - PQ]
= A(I- PQ) - B(B°Q +C) = A~ APQ — BB*Q — BC = A — [AP + BB"|Q - BC -
~[=PA*)Q = BC = A— PQA — PC*C — BC
= [I - PQJ[A - (I - PQ)~Y(PC" + B)C).

In order to be able to show that Ixp maps a stable system in UC]'p" to a posmve real system
was need the following Lemma. :

Lemma 4.6 Let(A,B,C,D) € ver p Let P, Q be the positive definite solutions to the Lyapunov
equations

AP + PA* +BB* =0, A'Q+QA+C°C=0.

Let
AlBY _; A| B
clD = IXp ClD .
Then,
0=ApY +YAp+YB(D + D*)"'B*Y + C*(D + D*)7'C,
0=ApZ+ZAp+ZC*(D+D*)"'CZ + B(D + D' B,
with ‘

Y = QU - PQ)™ = (I-QP)~'¢,
Z=(I-PQ)P = P(I-QP).

Moreover, Y and Z are the stabilizing solutions to these two positive real Riccati equations.



4 POSITIVE REAL SYSTEMS ‘ 27

Proof: The proof is completely analogous to the proof of Lemma 3.6. o

We now have that Ixp maps UC'g" into P
Lemma 4.7 We have
Ixp(UCTE") € P

Proof: The proof is analogous to the proof of Lemma 3.7 . o

We are now in a position to show that yp : P;* — UC,':;;" is a bijection.
Theorem 4.1 The map
xp: P — UC,':};“

ts a bijection that preserves system equivalence.
The inverse map xp' : UCT's" — P is given by xp' = Ixp.

Proof: The proof is a straightforward verification and analogous to the bounded real case. o

Balancing for positive reé.l systems has been introduced by Desai and Pal [7] (see also [14], [11]).
Definition 4.3 A system (A, B,C,D) € P is called positive real balanced if
ApL + TAp+ZB(D+ D*)" !Bt +CY(D+ D*)"'C =0,
ApT + LAp + £C*(D + D*)'CT + B(D + D*)"'B* =0,
for
Y =diag(o1In,,0200n,,...,0kln,), 01 >02>---> 0 >0,

and ¥ is the stabilizing solution to both equations. The matriz ¥ s called the positive real grammian
of the system.

In Ober [21] the following canonical form for SISO positive real systems was given.

Theorem 4.2 The following two statements are equivalent:
(i) g(s) is the transfer function of a positive real system over R of McMillan degree n.

(ii) g(s) has a standard n-dimensional realization (A,b, c,d) given by a standard set of parameters
such that

—b;b;(1 - s;0;)(1 - s50;)
2d(3.’3,‘0,’ + a,-)

a;; = ’

withd >0, 0y < 1.
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Moreover, the realization given in (i1) is positive real balanced with positive real grammian ¥ =
diag(o11n,,020n,,...,0k1n,). The map which qssigns to each positive real system the realization in
(i1) is a canonical form.

As in the case of minimal systems we now introduce a slightly modified characteristic map.
Define for a system (A, B,C, D) € P the modified P-characteristic map

_ A|B\\ _ { TV*(Ap + B(D + D*)"'B*Y)T-V/*| TV*B(D + D*)~/2
Xe\\CclD )|~ (D + D)-V2C(I - ZY)T-7* | D :
"where T := (I — ZY)*({ -~ ZY) and Z, Y are the stabilizing solutions to the two positive real
Riccati equations. We have the following corollary.

m,m

Corollary 4.1 The map xp: Pt - UCp" isa bijection with the following properties,

1. (A,B,C,D) € P™™ is positive real balanced with positive real grammian ¥ if and only if
xp((A, B,C,D)) is Lyapunov balanced with Lyapunov grammzan .

2. (A,b,c,d) € P! is in positive real balanced canonical form of Theorem 4.2 if and only :f
xp((A,b,c,d)) is in Lyapunov balanced canonical form of Theorem 1.1.

5 Antistable systems

The last class of systems that we will consider is the class of antistable functions. We call a system
antistable whose eigenvalues are all in the open left half plane. In this section we are going to study
a map from the set of antistable systems of fixed McMillan degree to the set of stable systems of
McMillan degree n. There are of course a number of obvious such maps. This map here however
appears to be different. '

Definition 5.1 Let (2,4—\%) be a m:mmal antistable system. Let'Y be the stabilizing solution
| of the Riccati equation

A'Y +YA-YBBY =0,
ie. A— BB"Y is stable, and let Z be the stabilizing solution to the Riccati equation

AZ + ZA"—2C°CZ =0,

" t.e. A—ZC*C is stable.
Then the system

A|B _ [ A-BBY | B
xs\\¢clp)) =\~ ¢czr |D
. . Al|B
is called the S-characteristic of the system (—C—|-7) .

These following relations are the relations that are equivalent to the Bucy relations for the case
of minimal systems.
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Lemma 5.1 Let (%%) be a minimal antistable system. Let Y be a sglution of the Riccatr
equation
0=A+*Y +YA-YBB"Y,
and let Z be a solution of the Riccati equation
0=AZ+ZA"-2C"C2Z,
then
ZY(A- BB'Y)=(A-ZC*C)ZY.
Proof: Consider the two Riccati equations,
0=A"Y+YA-YBB"Y
and
0=AZ+ ZA"-2C*C2Z.

Multiplying the first equation on the left by Z and the second equation on the right by Y, equating
both equations, we obtain

ZA’Y + ZYA - ZYBB*'Y = AZY + ZA'Y - ZC*CZY.
Canceling the term ZA*Y from either side and collecting terms, we obtain

ZY(A — BB'Y) = (A - ZC*C)ZY.

As a consequence of these Bucy type relationships we can rewrite the characteristic of a system
as follows,

AlB\\ _ [ [2Y]"\(A - zC*C)[ZY)| B
e ((B45)) - (22N )

The following Lemma shows that the S-characteristic maps antistable systems to stable minimal
systems. The proof is by now standard.

Lemma 5.2 The S-characteristic of a minimal anti-stable system is stable and minimal. The
S -characteristics of two equivalent systems are equivalent.

In the following definition we are going to introduce the candidate map for the inverse of the
characteristic map. We denote by ASE'™ C LP™ the subset of antistable systems.

Definition 5.2 Let (.4,B,C,D) € CP™ and let P, Q be the solutions to the Lyapunov equations
AP + PA* = -BB*, AQ+QA=-C°C.

A|B\\ [ A+BBP'|B
s ((£1)) - (Hee15)

ts called the inverse S-characteristic system.

Then
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To show that [xs maps a stable minimal system to an antistable minimal system we need the
following Lemma.

Lemma 5.3 Let (A,B,C,D) € CE'™ and let P and Q be such that
AP+ PA" = -BB", A'Q+ QA= -C"C.
Then .
[A+ BB*P~'|PQ = PQ[A+ Q~'C*(C)
 Proof: We ‘ha.ve ’ ‘
[A+ BB*P 1)PQ = APQ + BB"Q = [AP + BB"]Q = [ PA*|Q = — P[-C*C - QA
= PQA + PC°C = PQ[A+ Q~'C*C). ‘

Lemma 5.4 We have _
Ixs(CE™) C ASE™.

Proof: Let (A,B,C,D) € CF™. The minimality of (A, B,C, D) = I'xs((A,B,C,D)) follows in the
standard way. To show that A is antistable let P be the positive definite solution to the Lyapunov
equation,

AP + PA* = -BB".

Now conéiderl, ‘
AP + PA* - BB* =(A+BB*P™')P + P(A+ BB°P~')* —_BB* = AP + PA* + BB"
=0, ' |

which implies that A is antistable. Hence (A,B,C,D) € ASE™. 0

In order to prove the main result of this section we will need to again establish connections
between solutions to Lyapunov equations and solutions to Riccati equations.

Lemma 5.5 Let ( é‘ g ) be a minimal antistable system and let

(#15) = (4= 15)

be its S-characteristic system, with Y and Z the stabilizing solutions to the respective Riccati equa-
tions. Then the Lyapunov equations

AP + PA* = -BB*
AQ+ QA =-C*C
have solutions given by
P=Y"!
Q=Y2ZY.
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Proof: We first show that AP + P.A* = —BB". To do this consider
Y(AP + PA")Y = YA+ A'Y =AY + YA-YBB"Y - YBB"Y,
using the Riccati equation this gives,
=YBB'Y - 2YBB'Y = -YBBY,
which implies the claim. Now, let Q = YZY and consider,
A"Q+ QA= (A— BB'Y)YZY + Y ZY(A - BBY),
using the Bucy type relations, this gives
=[(ZY) Y (A - ZC"C)ZY]'YZY +YZY(ZY) Y (A~ ZC"C)ZY
=YZ(A-2C°C)’Y+Y(A-ZC"C)ZY
=Y(AZ+ ZA")Y -2YZCCZY,
using the Riccati equation in Z, we obtain,
=YZC*CZY -2YZC*CY = -YZC*CZY = -C*C,

which implies the result. 0

Lemma 5.8 Let (A,B,C,D) € C2'™. Let P, Q be the positive definite solutions to the Lyapunov
equations

AP+ PA*+BB" =0, AQ+QA+C°C =0.

Let
(5) - ((215)
Ci{D C\{D
Then,
0=A"Y +YA-YBB"Y,
0=ApZ+ZAp-2C"C2Z,
with
Y =P,
Z = PQP.

Moreover, Y and Z are the stabilizing solutions to these two Riccati equations.
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Proof: Since,
QP[A*Y +Y A - YBB"Y|PQ
= QP((A+ BB P~y P 4+ P~Y(A+ BB P~ - PTIBB*PT'|PQ
= QPA"Q + QBBQ + QAPQ + QBB'Q ~ QBB"Q
= Q(PA" + AP + BB*)Q
=0,
we have verified the first identity. Now with Z = PQP we have
AZ+ ZA" - 2C"CZ
- (A+ BB*P~YPQP + PQ‘P(.A + BB"P~')" — PQP(PQ) "C*C(PQ)"'PQP
= APQP + BB°QP + PQPA" + PQBB* — PC*CP

= (AP + BB*)QP — PC*CP + PQ(PA" + BB")

—PA"QP — PC*CP + PQ(PA" + BB")
= —P(A"Q +C*C)P + PQ(PA" + BB")
= P(QA)P + PQ(PA" + BB")
= PQ(AP + PA" + BB*)
= 0,
§vhich shows the second jdentity. Since
A—BB'Y = A+ BB"P~' — BB*P~! = A,
which is stable and
A-ZC*C=A+BB* P! - PQP(PQ)"C*C(PQ)™!
= A+BB'P~! - PCC(PQ)™!
= PQ[A+ Q'C*C)(PQ)~! - PC*C(PQ)™!
= (PQ)A(PQ)™,

is stable, where we have used Lemma 5.3, we have shown that Z, Y are the stabilizing solutions to
the Riccati equations. ‘ ‘ a

We now state the main theorem of this section which shows that the S-characteristic map is a
bijection. ‘
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Theorem 5.1 The map
Xs : ASE™ - CP™

is a bijection that preserves system equivalence. The inverse map xgl : CP™ — ASP™ is given by
Xs =Ixs.

Proof: The proof is analogous to the proof of Theorem 3.1. o

Following the examples of the previous sections we now introduce a balancing scheme for anti-
stable systems.

Definition 5.3 A system (A, B,C,D) € AS2™ is called anti-stable balanced if
AL+ XA -XBB*Y =0,
AL + XA* —EC*CE =0,
for »
| ¥ =diag(o11n,,020n;, ..., 0kla,), o1 >02>:--> 0k >0,

and T is the stabilizing solution to both equations. The matriz X is called the anti-stable grammian
of the system.

We are again going to define a modified characteristic map. Let (4,B,C,D) € ASE™ then

define
- Al|B TY4(A - BB*Y)T~'/4 | TY“B
Xs = ~174 ’
C|D _ CZYT | D

where T' := (ZY)*(ZY) and Z, Y are the stabilizing solutions to the two Riccati equations. We
have the following corollary.

Corollary 5.1 The map s : ASP'™ — CE™ is a bijection such that, (A,B,C,D) € ASE™ 1s
antistable balanced with anti-stable grammian T if and only if xs((A, B,C, D)) is Lyapunov balanced
with Lyapunov grammian X.

6 Diffeomorphisms

In the previous sections we have studied bijections between various sets of linear systems. We are
now going to show that these maps are in fact diffeomorphisms.

We will need a new notation. To indicate the subsets of strictly proper systems we append
the additional subscript 0, e.g. C,’::g‘ denotes the strictly proper systems in CE'™. To indicate the
subsets with identity feedthrough term we append the subscript I, e.g. U C,':','" denotes the subset
of UCT'Z" with D = I.

These sets can be endowed with a topology by embedding them in a natural way in Euclidean
space. If we denote by ~ the equivalence relation given by system equivalence then we consider
the quotient spaces L'¢'/ ~, Ch'¢'/ ~, ..., to be endowed with the quotient topology.

The key to our way of proceeding is a result by Delchamps [4], [5],(6] that states that stabilizing
solutions to Riccati equations are differentiable functions. Similarly, the positive definite solutions
to Lyapunov equations are differentiable function of the system matrices. This implies that the
bijections that we have constructed are in fact diffcomorphisms. In the same series of papers
Delchamps also showed that B5'g' and Chg are diffeomorphic.

From this discussion we immediately have the following result.
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Theorem 6.1 We have that

CRG [~ BEG ~y LG/~ UCRG/ ~ ,'6"/~
are diffeomorphic. Moreover,
are diffeomorphic. ‘
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