
Architecture Analysis and
Implementation of an

Adaptable Satellite Sniffing
Network

Martin Böh

Bachelor Thesis

Architecture Analysis and
Implementation of an Adaptable

Satellite Sniffing Network

by

Martin Böh

contact@martb.dev

Grade: 1.0

29.03.2022

Technische Universität Kaiserslautern
Department of Computer Science

Distributed Systems Lab

Supervisor: M.Sc. Eric Jedermann
Examiner: Prof. Dr.-Ing. Jens B. Schmitt

mailto:contact@martb.dev

Abstract

With the ever-increasing amount of satellite-backed communication, constella-
tions covering the entire world, and the rise of Software Defined Radios (SDRs),
satellite signals have already become prime targets for scientific research all
over the globe. However, due to logistical challenges like capture time/loca-
tion and peripheral/system management for the sensors and the wide vari-
ety of protocols/encoding schemes used, no one-fits-all sniffing solution exists
for capturing their wide variety of signals. Therefore, this thesis aims to ana-
lyze, design, and implement a system that makes it possible to study LEO (Low
Earth Orbit) L-Band satellite signals with readily available Single Board Com-
puters (SBCs) in a widely distributed, location, and time-aware way. The key
design factors were useability, maintainability, adaptability, and security in a
centrally managed client-server architecture. The research presented yielded a
Satellite probe Operating System called SATOS, which aims to implement on-
sensor data decoding driven by GNU Radio and secure Over The Air (OTA)
updates inside the Buildroot build environment. Its intended use case is the
future deployment of DISCOSAT on a university working group scale.

Auszug

Durch die ständig wachsende Anzahl satellitengestützter Kommunikation, Kon-
stellationen, die die ganze Welt abdecken, und dem Aufkommen von Software
Defined Radios (SDRs), sind Satellitensignale bereits zu Hauptzielen für die
wissenschaftliche Forschung auf der ganzen Welt geworden. Aufgrund der
logistischen Herausforderungen wie Erfassungszeit/Ort und das Peripherie-
/Systemmanagement für die Sensoren sowie der großen Vielfalt an verwen-
deten Protokollen/Codierungsschemata gibt es jedoch keine Universallösung
für die Erfassung der großen Vielfalt an Signalen. Daher zielt diese Arbeit da-
rauf ab, bestehende Systeme zu analysieren um mit dem gewonnenem Wissen
ein neues zu entwerfen und zu implementieren, welches es ermöglicht, LEO
L-Band Satellitensignale mit leicht verfügbaren SBCs in einer weit verteilten,
orts- und zeitabhängigen Weise zu untersuchen. Die wichtigsten Entwurfsfak-
toren waren Verwendbarkeit, Wartbarkeit, Anpassungsfähigkeit und Sicherheit
in einer zentral verwaltete Client-Server-Architektur. Die vorgestellte Arbeit
führte zu einem Satellitensonden-Betriebssystem namens SATOS, das darauf
abzielt, die Dekodierung von Sensordaten durch GNU Radio und sichere Over
The Air (OTA)-Updates innerhalb der Buildroot Umgebung zu implementieren.
Der vorgesehene Anwendungsfall ist der zukünftige Einsatz von DISCOSAT im
Rahmen eines Universitätsarbeitsgruppenprojekts.

Dedicated to my family, my cat Ben and all friends
that helped me on my way to this thesis.

Contents

1. Introduction 1
1.1. Objective . 1
1.2. Motivation . 2
1.3. Outline . 4

2. DISCOSAT fundamentals 5
2.1. Goals . 5
2.2. Stakeholders . 5
2.3. Requirements and constraints . 6

2.3.1. Maintainability / Adaptability 6
2.3.2. System requirements . 6
2.3.3. Hardware constraints . 7

2.4. System overview . 8

3. Literature Review 9
3.1. Distributed Computing Projects . 9

3.1.1. Folding@Home . 10
3.1.2. RIPE Atlas . 14

3.2. Operating Systems . 18
3.2.1. Limitations . 18
3.2.2. Buildroot . 19

4. DISCOSAT ASSN 22
4.1. Design . 22

4.1.1. Aspects not covered . 22
4.1.2. Sensor Network . 23
4.1.3. Probe . 24
4.1.4. System and peripheral management 29
4.1.5. On-Device Processing . 31

4.2. Implementation . 32
4.2.1. Development status . 32
4.2.2. SATOS - External Tree . 32
4.2.3. Hardware and Peripherals 33

i

Contents

4.2.4. Basic operating system setup 35
4.2.5. Time/Location synchronisation 39
4.2.6. GNU Radio . 43
4.2.7. Network connectivity . 45
4.2.8. OTA-Updates . 47
4.2.9. APOGEE - Client daemon 51

4.3. Usage . 52
4.3.1. Image building . 53
4.3.2. Initial installation . 53
4.3.3. Probe access . 54
4.3.4. Data capture . 54

5. Usecase analysis for SATOS 56
5.1. Useability . 56

5.1.1. Adding new packages . 56
5.1.2. Modifying configurations 56
5.1.3. Adding new boards . 57
5.1.4. Firmware Updates . 57

5.2. Maintainability . 57
5.3. Adaptability . 57

5.3.1. Operating system size . 58

6. Future Work 60
6.1. Work areas . 60
6.2. Pending implementations . 60

7. Conclusion 61

Acronyms 62

A. Source code listings 64

B. Logs and Configs 71

ii

List of Figures

1.1. GNU Radio dependencies (excluding system- and build-time) . . 3

2.1. DISCOSAT (Distributed Computer Systems Satellite Operating
System) high level system overview 8

3.1. Modified F@h architecture . 11
3.2. Réseaux IP Européens Network Coordination Centre (RIPE NCC)

Atlas architecture, arrows indicate dataflow [16] 15
3.3. Buildroot GNU Radio related packages in 2022.02 Long Term

Support (LTS) . 20

4.1. DISCOSAT hardware and peripherals 24
4.2. DISCOSAT fail-safe booting flow 25
4.3. DISCOSAT probe init sequence diagram 26
4.4. DISCOSAT high-level probe job diagram 27
4.5. DISCOSAT network connectivity decision logic 30
4.6. Chrony time syncing sources and tracking offsets 42
4.7. Global Navigation Satellite System (GNSS) tracking error esti-

mates as seen by cgps . 43
4.8. gr-osmosdr - HackRF support in the configuration menu 44
4.9. gr-iridium - Target System Dependencies 45
4.10. LTE connectivity through Network- and ModemManager 46
4.11. WiFi network list demo . 47
4.12. RAUC (Robust Auto-Update Controller) - System status 50
4.13. RAUC - System status detailed . 50
4.14. iridium-extractor running on the probe 55

5.1. Satellite probe Operating System (SATOS) size distribution of tar-
get files . 58

iii

List of Tables

2.1. DISCOSAT Stakeholders . 6

4.1. GPSD Satellite object data mapping (taken from [57]) 53

iv

Listings

4.1. Buildroot board config rootfs tweaks 35
4.2. Buildroot board config firmware tweaks 36
4.3. U-Boot redundant environment config fragment 37
4.4. Buildroot board settings for Universal Boot Loader (U-Boot) . . . 37
4.5. Output of the uname -rom command on SATOS 38
4.6. Board configuration change for the Linux fragment configuration 38
4.7. Raspberry Pi (RPI) annotated Linux Kernel config fragment . . . 38
4.8. AT commands used for SIM7600E GPS autostart 40
4.9. Simplified and annotated gpsd systemd unit file 41
4.10. Board configuration snippet for gr-iridium 44
4.11. RAUC annotated Buildroot board config additions 47
4.12. RAUC manual firmware update installation 49
4.13. dbus commands for RAUC [54] . 51
4.14. dbus-monitor --system output for gpsd 52
4.15. SATOS SD-Card installation command 53
4.16. iridium-extractor sniffing example 54

A.1. Folding@Home (F@h) work unit signature checks [15] 64
A.2. RIPE NCC Atlas telnetd (Teletype Network daemon) protocol ex-

cerpt taken from [22] and [20] . 64
A.3. U-Boot script for failsafe booting (inspired by RAUC)[60] 66
A.4. gr-osmosdr HackRF support . 68
A.5. RAUC helper script for bundle creation (based on br2rauc)[53] . . 69

B.1. Buildroot structure of SATOS . 71
B.2. Buildroot configuration for genimage defining probe partitions . . 73
B.3. systemctl status output on a DISCOSAT probe 75
B.4. chrony configuration file . 76
B.5. NetworkManager config for a Congstar SIM card 77
B.6. The gr-iridium config for RPI and the HackRF One 78
B.7. RAUC configuration (based on br2rauc)[53] 79
B.8. SATOS RPI sample loss at 4 MS/s (Mega Samples per Second) . . 80

v

1. Introduction

With the availability of affordable SDRs like the HackRF One, analyzing satellite
signals at a low cost is now becoming a reality. However, due to the wide va-
riety of new research possibilities, it is necessary to adopt a more solid satellite
transmission capturing approach when studying time and location-dependent
signal effects. The significant challenges to overcome include the need for an in-
dependent Adaptable Satellite Sniffing Network (ASSN) that can perform pre-
planned capture tasks independently without streaming data back in real-time,
alleviating the need for constant connectivity and allowing the use of wireless
network connectivity and battery-powered deployments. Moreover, feature-
and security updates are also required for the probes. Ideally, such an ASSN
should feature easily deployable sensors with a solid software stack, permitting
users to focus on the scientific research data and not on the complexity of the
data acquisition, entirely abstracting it away.

1.1. Objective

This thesis is part of a satellite sniffing research project conducted at the Tech-
nische Universität Kaiserslautern Department of Computer Science Distributed
Systems Lab (DISCO). The main focus of work lies in the sensor (client) architec-
ture and its corresponding implementation. Furthermore, at the time of writing,
the project is still under active development, and therefore no final evaluation
on practical, real-world implementation scenarios can be provided yet. Hence,
work will start from the ground up by factoring in the core operating system
tooling and tweaks needed to get all aspects covered.

1

1. Introduction

1.2. Motivation

This section justifies the choice of critical parts of this thesis through the use of
feasibility examples and under-researched topics encountered during the DIS-
COSAT design process.

Data Volume When talking about raw satellite signal capturing done by an
SDR, I/Q samples are what gets sent to the host computer. These samples consist
of an in-phase (I) and quadrature-phase (Q) sample of the same signal. These
components are needed to recover amplitude and phase information from the
received signal for later demodulation [1]. For the HackRF One, each I/Q sam-
ple consists of two separate integers with a resolution of 8-bit [2]. Consider
the following real-world scenario to get an intuition for the network bandwidth
needed to stream this data in real-time, which helps narrow down possible sys-
tem designs.

Iridium® L-Band The Iridium satellite constellation (Iridium®) L-Band links
operate at 1,616 - 1,626.5 Mhz and use Quadrature Phase Shift Keying (QPSK)
as their modulation scheme [3]. The main channels in use are between 1,616 and
1,626 Mhz, with an additional ring alert covering up the last 500 kHz [4]. Due to
the 10 MHz bandwidth covering the main channels and the usage of quadrature
sampling by standard SDR receivers [5], applying the Nyquist–Shannon sam-
pling theorem yields a needed minimum sampling rate of Rsample ≥ 10 MS/s.
1.

Thus if each sample consists of I and Q data with a resolution of 8-bit the size
of one I/Q-Sample is precisely LIQ = 2 × 8bit = 16bit and therefore the amount
of uncompressed raw data streamed when capturing Iridium® with the above
theoretical settings is Riridium = LIQ ∗ 10000000 hz ∗ 1 = 20 MBps.

If the above capture runs for 8 hours a day, this will accumulate to Ltotal =
20 MBps ∗ 28800s = 576 GB of data streamed. Unfortunately, transmitting or
storing this large amount of raw data for centralized processing is not feasible
due to mobile network data caps in the low double-digit GB range and device
storage performance constraints due to the ordinary SD-Cards used in embed-
ded boards.

So how to ideally design payload transmission and data capture in a ASSN to
offload as much work as possible to the sensor and therefore reduce data flow?

1In a real-world scenario, higher sampling rates should be used to combat filtering issues
inside the SDR. For a hypothetical example, it is sufficient.

2

1. Introduction

GNU Radio As a way to fulfill their signal processing needs, research projects
in the SDRs field often directly deploy GNU Radio [6] on suitable embedded de-
vices [7] [8]. However, given its target dependency graph in Figure 1.1 and its
direct dependency on boost 2, and python3 (in case of the enabled python API),
it is safe to classify GNU Radio as a large and complex project. Furthermore,
when dealing with constellations like Iridium® or different SDR hardware, cus-
tom plugins like gr-iridium used to capture Iridium® [10], and gr-osmosdr used
for SDR hardware support also extend this graph further, as seen later on.

gnuradio

boost fftw-single gmp log4cpp python-pybind volk

python3

bzip2 libffi xz zlib

libzlib

orc

Figure 1.1.: GNU Radio dependencies (excluding system- and build-time)

Operating Systems Throughout the research for this thesis, it became clear
that little to no information about the system software used in “Demonstration
Abstract: OpenSky: A Large-scale ADS-B Sensor Network for Research”[11]
and “Low Cost Nano Satellite Communication System Using GNURadio, HackRF,
and Raspberry Pi”[7] is provided. Therefore, it is assumed that the authors used
custom-baked software solutions on top of the factory-provided operating sys-
tems for embedded devices like Raspbian in the case of the Raspberry Pi em-
bedded board or a proprietary one running on fixed-feature devices.

However, with additional ASSN requirements like WiFi and LTE backhaul for
mobile communication, GNSS for position tracking, custom GNU Radio plug-

2A collection of peer-reviewed portable C++ source libraries for (network) I/O, threading, and
more. [9]

3

1. Introduction

ins for on-device processing, and project longevity, this could turn out to be-
come a logistical management challenge. Moreover, entirely standard Linux
distributions like Fedora Core or Ubuntu used in projects like “KUAR: A Flexi-
ble Software-Defined Radio Development Platform”[8] require a stronger focus
on the underlying operating system configuration and its needed modifications,
yielding the following fundamental research question. Which system base is
suitable for use and covers the required packages and tools for an ASSN in an
adaptable and maintainable way?

1.3. Outline

First, the fundamentals needed to understand the DISCOSAT project and the
real-world constraint environment that applies to it will be provided. Further-
more, a literature review will be conducted on existing projects that help answer
the core questions outlined above. Moreover, some intuition on which aspects
used in these projects were adopted or improved upon in DISCOSAT will be
provided, keeping the encountered limitations in mind. Said literature is go-
ing to establish the base needed to understand the choices made for the design
and implementation of DISCOSATs architecture. Then, the architecture design
for DISCOSAT will be described, and implementation specifics for the system-
and peripheral management will be provided. Lastly, a brief analysis based on
SATOSs useability in a real-world environment will be performed. The broader
scope for this analysis contains maintenance tasks like adding new packages,
deploying firmware updates, and more general system operations.

4

2. DISCOSAT fundamentals

This chapter is the base for the literature analysis and provides the guidelines
for further development. Moreover, it is going to outline the essential respon-
sibilities and requirements for a functional ASSN called DISCOSAT which is
programmed but not limited to analyzing the traffic of Iridium®.

2.1. Goals

Sniffing packet-based signals from Iridium® in remote locations during a given
time window, decoding them, and later uploading the decoded data to a remote
server. Said server has to be able to store the data so researchers can later access
it. One example use-case would be verifying the active spot beam patterns from
Iridium® by analyzing decoded protocol and metadata from sensors in differ-
ent regions. Remote management is limited to OTA-update support through
the use of secured firmware binaries.

2.2. Stakeholders

The stakeholder analysis in Table 2.1 plays a role in understanding the involved
parties. All parties besides the sensor hosts are primary stakeholders as they
have a direct interest in the collected data and the project’s success. Moreover,
volunteers are secondary stakeholders, as they only provide replaceable infras-
tructure to the project. However, some double assignments are to be expected,
especially in the case of a researcher volunteering to host a sensor.

5

2. DISCOSAT fundamentals

Role Assumptions and Risks Impact

Network Owner Owner

- Provides and maintains the network
- Has fundamental embedded development knowledge
- Distributes sensors to volunteers
- Plans new hardware / software revisions

High

DISCO researchers System user

- Need access to collected satellite data
- Must be able to specify new data collection jobs
- Provide feedback for missing tooling
- Test future software updates
- Do not care about the “how”, just need the data

High

Sensor hosts Volunteer - Provide power and location to set up the sensor
- Can drop out at any time Low

Other researchers System user - Access to historical satellite data
- Can submit requests for new data Medium

Table 2.1.: DISCOSAT Stakeholders

2.3. Requirements and constraints

To provide a realistic example scope for this thesis, some high-level require-
ments and constraints are given in this section.

2.3.1. Maintainability / Adaptability

The system needs to be maintainable and adaptable by non-industry profes-
sionals. This includes the work required for new firmware updates and up-
dates for the infrastructure used in the project. In addition, every component
used should be understandable after some basic training.

2.3.2. System requirements

Sensors

1. can be deployed all over Germany

2. guaranteed to have a working power source at all times

3. need to have network connectivity, including backup WiFi or LTE to up-
load the captured data and receive tasks reliably

4. need time synchronization (sub-second precision)

6

2. DISCOSAT fundamentals

5. need GNSS support for accurate location reporting and as offline time
source

6. need to be securely updateable remotely

Backend

1. ability to set sniffing job type, capture start- and end time, and metadata 1

2. ability to manage participating devices (firmware updates, status)

3. ability to save decoded Iridium® frames or other payloads transmitted by
the sensors

4. provides an interface to access captured data for researchers

2.3.3. Hardware constraints

The following hardware is used in DISCOSAT. It provides a solid base for sniff-
ing parts of the spectrum from LEO satellites like Iridium® successfully. This
constraint is primarily influenced by availability and cost, as no other similarly
priced hardware was readily available while writing this thesis.

Sensor

1. Raspberry Pi 3B+ (4x 1.4 GHZ, 1 GB RAM) AArch64 (64-bit ARM cpu
architecture) 2

2. SIM7600E-H 4G HAT for Raspberry Pi, LTE Cat-4 4G / 3G / 2G, GNSS
including antennas.

3. Great Scott Gadgets HackRF One SDR including a
TAOGLAS IAA.01 Iridium Antenna

4. Miscellaneous (power supply, additional antennas, USB-Sticks, SD-Cards)

1More advanced job data like center frequency, bandwidth, and device-specific settings
2The faster successor Raspberry Pi 4 was originally planned, but was not available.

7

2. DISCOSAT fundamentals

Backend

For the backend, the only available hardware is a Linux-powered virtual ma-
chine in the university network with a public IP-Address and the possibility to
open network ports and install custom software on demand.

2.4. System overview

The high level system component overview is described in Figure 2.1. The sen-
sors will be distributed and connected to the server using ordinary internet links
with the help of basic access technologies like Ethernet, WiFi or LTE.

DISCOSAT Sensor Network

Sensor #2

Text
University Network

Sensor #3

Sensor #1

Server

Ordinary
internet links

Figure 2.1.: DISCOSAT high level system overview

8

3. Literature Review

In this chapter, existing solutions in the context of Distributed Computing
Projects and the Operating Systems used in related fields are analyzed. They
serve as an aid in determining the amount of work needed to answer the re-
search questions of this thesis. The general motivation is re-using and only
slightly modifying existing system designs and implementations for all aspects
of DISCOSAT.

3.1. Distributed Computing Projects

Some proven distributed computing projects with centralized management sup-
porting a wide variety of configurable work tasks for client devices exist. No-
table ones will be presented based on the following key questions and com-
pared with the approaches used for DISCOSAT. Furthermore, the required adap-
tations and iterations of the designs for use in DISCOSAT will also be provided.

System Architecture

What is the system architecture used in the project?

Work Distribution and Results How does task distribution to client devices
work? How do the obtained results get delivered, and which data do they con-
tain?

Clients

What is a client in the project?

9

3. Literature Review

Payload Are raw scientific data payloads being computed by a fixed toolchain
on the device, or is an additional Compute Core (CC) or similar on-demand
downloading approach used that contains the required processing logic?

Computation What are the rough layouts of the payloads and computation-
related data, and how is the computation carried out?

Security Which mechanisms for preventing attacks like Man In The Middle
(MITM) and general data integrity issues are in use?

Supported systems Which operating systems and CPU architectures are sup-
ported, and how is adoption for other systems handled?

3.1.1. Folding@Home

F@h is a distributed computing project released in the year 2000. It aims to
provide computational power for various mostly bio-informatics-related sub-
projects through “Volunteer Computing (VC)” [12]. The use of F@h in this thesis
can be seen as a representation for similar distributed computing projects like
Berkeley Open Infrastructure for Network Computing (BOINC), as they exhibit
similar core functionality in our narrowed down analysis scope.

System Architecture

As shown in Figure 3.1 F@h uses a client-server architecture. The multiple
single-purpose servers exist for scalability and fault tolerance reasons as F@h is
a large-scale project with more than 400.000 clients [12] exceeding a total com-
pute capacity of 100 PetaFLOPS (Floating Point Operations Per Second) in the
year 2016 [13].

The multi-server architecture allows F@h to alleviate downtime of single servers
and attempts to guarantee successful result delivery as there is no single point
of failure in the design. Therefore, making this approach a viable candidate
upon further expansion of our DISCOSAT server infrastructure.

10

3. Literature Review

Figure 3.1.: Modified F@h architecture1, arrows show dataflow, based on [12]

Work Distribution and Results In F@h tasks are called Work Units (WUs) and
are exclusively planned by an Assignment Server. Upon assignment (1), clients
download the WU and, if needed, an additional computational core from the Work
Server listed in the assignment payload (2). When finished with the work, clients
either deliver the results back to their original Work Server or attempt to reach
a fallback Collection Server in case the former is unreachable (4). With this, the
WU is considered complete, and the next one can be assigned. As F@h primarily
uses GPU and CPU intensive calculations, multiple WUs can be assigned and
worked on in parallel if the assigned client system resources allow it [12].

Albeit not using multiple servers for fault tolerance, DISCOSAT adopts the sig-
nificant components for work distribution and result sharing needed in a dis-
tributed computing project. Moreover, F@hs work scheduling, and processing
functionality can be considered state-of-the-art since only slightly different im-
plementations are in use in other large-scale distributed computing projects like
BOINC [14]. Furthermore, neither does DISCOSAT need support for multiple
tasks at the same time, nor is it planned to be deployed on a large enough scale
to warrant various independent servers.

1Steps 3 and 5 of the original are not of concern, as they are related to the credit system used
in F@h

11

3. Literature Review

Clients

Clients in F@h are software-based and get installed by volunteers on ordinary
computer hardware like desktops, laptops, tablets, smartphones, and even game
consoles all over the world [12]. The client component called bastet is primar-
ily written in the C++ programming language. Its source code is available on
GitHub under the GPL-v3.0 license [15].

In DISCOSAT the entire hardware and software stack can be considered part of
the client, as APOGEE needs to handle auxiliary system setup and peripheral
management. However, bastet only deals with computation and other work-
related tasks.

Payload The raw payload-data transmitted inside WUs is sub-project specific
and is later being worked on by clients using the specified CC in the WU meta-
data.

Computation F@h deploys the aforementioned CCs that package the tool-
ing and processing code required for the client to work on one or more as-
signed WUs. These cores are platform- and operating system dependent and
get delivered as binary files for later execution by the client. They come with
metadata fields for the identification and verification of the core. This metadata
approach allows having multiple revisions of the same core or specific cores
for different target architectures. During the setup of WUs, authors can choose
the required CCs for their data. Due to its flexibility, F@h needs to rely on the
on-demand download of additional software as the client computer does not
belong to them, and preloading every required package is not feasible on vol-
unteer machines.

In an attempt to simplify and improve upon the maintainability and data in-
tensity of the CC approach used by F@h, DISCOSAT is relying on payload-less
WUs to achieve a higher level of system architecture independence and alleviate
the need for additional downloads. Furthermore, the WUs execute pre-installed
software on the sensors, made possible by the used operating system SATOS
providing all the tooling and processing capabilities ahead of time directly on
the device.

Security As seen in Listing A.1 all payloads like WUs and CCs are cryp-
tographically signed. Their corresponding signature gets checked against a

12

3. Literature Review

well-known Certificate Authority (CA)-File distributed with the client upon re-
trieval, making sure that an authorized person created the package. This mech-
anism prevents unauthorized payloads from being executed on a volunteer’s
machine, preventing malicious malware deployment as a result of attacks like
MITM as long as the private keys used are kept secure. Moreover, as an ad-
ditional data measure, payload integrity gets verified by SHA-256 checksums,
preventing malformed payloads from crashing the client software or, worse, the
system in the case of dangerous buffer under-/overruns.

For DISCOSAT, the same Public Key Infrastructure (PKI) powered security and
integrity approach outlined above is planned, as the security measures imple-
mented by F@h are considered sufficiently advanced at the current time.

Supported systems F@h clients are available for multiple different systems
like Windows, Linux, Mac OS, and architectures like x86, x64, PowerPC. How-
ever, not all projects are executable on all platforms [12], even though WUs are
architecture-independent, the CCs are not. Still, as briefly mentioned before,
CCs are adaptable for different target architectures by porting the required pro-
cessing software stack and packaging it. Allowing authors to add new target
systems on the fly if the F@h client supports the device.

For DISCOSAT, the operating system SATOS is the core component and runs
on a fixed set of needed architectures. On the other hand, F@h does run on all
major operating systems and does not provide any custom operating system
base, not yielding any pointers for analysis.

Takeaways

F@h does have a broader scope than DISCOSAT as it does heavily distributed
computation on existing chunk-data, supporting all major operating systems
since only CPU and GPU compute power is required as a resource. For DIS-
COSAT, real-time data retrieval on a fixed set of architectures with specialized
peripherals is needed. Therefore, the implementation choices differ slightly,
and the goals diverge, but the general task scheduling and security aspects pre-
sented above are reusable and sufficiently advanced. With the usage of lighter
WUs and the possibility to control the target systems as a whole, multiple new
ways of improving project maintainability and data intensity are achievable.
Furthermore, DISCOSAT requires special attention in the fields of system man-
agement like network connectivity and peripheral management (GNSS or SDR
hardware), as they are required for successful and reliable data capturing, a
field not touched upon by F@h.

13

3. Literature Review

3.1.2. RIPE Atlas

RIPE Atlas is an open-data distributed measurement platform for internet met-
rics, including latency and internet reachability. After being established in 2010
by RIPE NCC (a not-for-profit Regional Internet Registry (RIR) for multiple in-
ternet service regions, including Europe), [16] it now features over 11,000 con-
nected probes all over the world, delivering over 13,000 measurement results
per second [17]. In addition, Atlas deploys off-the-shelf hardware like modi-
fied routers and embedded boards preloaded with custom firmware based on
BusyBox[18], making it a candidate for system-related research.

System Architecture

Albeit being ten years newer, Atlas still uses a classic client-server approach, just
like F@h. Its core components can be seen in Figure 3.2. The infrastructure heav-
ily uses Message Queuing (MQ) [16], but this technique and the nodes upstream
of the brain are of no concern for this thesis, as its focus lies on the client sys-
tem architecture. Therefore, only the probe-to-controller, probe- to-registration
server communication, and the measurement-scheduling by the brain is rele-
vant.

Atlas improves upon certain aspects like message buffering and fault-tolerance,
but no improvements exist for the high-level client system architecture analyzed
in this thesis.

Work Distribution and Results After connecting to the registration servers seen
in Figure 3.2 the probe network geo-location gets analyzed and used to point
it to an adequate controller. Said controller then is in charge of talking to the
connected probe and, based on location and capacity, assigns it to requested
measurements and performs system management. The controllers themselves
get managed by the brains which coordinate the measurements and process part
of the collected data.

New work tasks get transferred to the client by controllers using a Secure Shell
Protocol (SSH) port forward exposing a telnetd daemon running on the probe
to the assigned controller [19]. Said protocol gets used to invoke the on-device
measurement system at the specified time, which starts the computation of the
tasks. Once finished, results are delivered back to the upstream controller using
a single HTTP JavaScript Object Notation (JSON)-reply for each measurement

14

3. Literature Review

Figure 3.2.: RIPE NCC Atlas architecture, arrows indicate dataflow [16]

containing the firmware version of the device and the collected raw data from the
measurement-tool run [20].

Atlas uses an interactive no-payload, only instructions approach powered by
telnetd. For DISCOSAT, the no-payload strategy was adopted as much as pos-
sible for specific job types. For example, a periodic-polling approach does not
rely on long-lived tunnel or web-socket-based real-time connectivity to save
data. Moreover, a similarly designed result delivery mechanism is used, but
as DISCOSAT also needs binary result data just like F@h a hybrid approach is
required.

Clients

There are two types of clients in the Atlas project Software- and Hardware Probes.
Both deploy the core measurement framework eperd which is based on crond
(Command Run On Daemon) [21]. However, Software Probes are installable
on volunteer controlled devices whereas Hardware Probes are exclusively con-
trolled and managed by RIPE NCC. eperd is written in C and integrated into a
BusyBox tooling environment [18]. All measurement related projects (ripe-atlas-

15

3. Literature Review

probe-busybox, ripe-atlas-software-probe) are available on GitHub under the GPLv2
license [20]. Not a lot of details about the firmware exist, but the ripe-atlas-
software-probe repository contains scripts (bin/arch/openwrt-atlas-probe-v[3-5]) for
building an OpenWRT (Open wireless router) based image.

Atlas also deploys hardware probes as clients, lining up closer with DISCOSATs
goals. Furthermore, the usage of BusyBox indicates the existence of a custom
operating system image [18]. With the additional information obtained above,
it seems likely that the OpenWRT build environment is in use for building the
probe operating system, bridging the gap to the Buildroot toolchain used in
DISCOSAT.

Payload Atlas does not use conventional payloads in the sense of F@h WUs,
making it payload-less for measurement tasks.

Computation Atlas uses a plaintext-based protocol for managing and trig-
gering measurements, as the annotated excerpt in Listing A.2 shows. However,
the format is not easily readable by humans. The text lines contain program
invocations with parameters that get parsed by eperd. They have all the needed
information like time, target address, and the specific tool command line to
start the computation. Moreover, no CCs or similar techniques get used, as all
the processing is happening directly on the probes.

The protocol used in Atlas that invokes arbitrary cron commands is unadapt-
able and hard to maintain due to its loose fixed-purpose structure. Therefore,
a more descriptive representation with different task types for the jobs is used
in DISCOSAT. The computation makes use of pre-installed on-device software
closely lining up with the processing approach chosen for DISCOSAT

Security The transport layer security provided by the established SSH tun-
nel between the controller and the telnetd instance on the probe offers strong
protection against MITM-Attacks and unauthorized access. Moreover, Atlas
uses additional command sanity-checking logic, preventing the creation of arbi-
trary files on the device and protecting security-critical operations like firmware
upgrades through message-digest hashes and signature checks. [22]

DISCOSAT also relies on additional transport layer security. Moreover, the
firmware updater also enforces similar state-of-the-art signature checks to pre-
vent unauthorized updates.

16

3. Literature Review

Supported systems Atlas was primarily supposed to run on embedded hard-
ware handed out to volunteers by RIPE NCC. Nowadays, multiple OpenWRT
based hardware probes exist in Atlas, most notably the v5 revision based on
the Turris Mox router 2. Moreover, software probes are also available for major
Linux-based operating systems like CentOS and Debian. Additionally, Docker
images also exist, making the installation possible on all architectures supported
by it, providing access to a vast arsenal of potential target systems. Porting
the software to other architectures in the case of hardware probes is achieved
through OpenWRT build-scripts, as they feature the required cross-compilation
toolchain for building the customized BusyBox package that contains the eperd
measurement framework. For software probes only the latter part concerning the
eperd framework is relevant.

DISCOSAT uses Buildroot, the base behind OpenWRT, a less router-software-
inspired build environment. Additionally, the project-specific build scripts used
in Atlas are not reusable for DISCOSAT. Instead, a more maintainable approach
based on Buildroot’s best practices is used to achieve a saner and well-defined
repository structure.

Takeaways

The scope of the RIPE NCC Atlas project is firm in the range of network-related
measurements. Therefore, all required parameters for data collection like time,
target, and tools are adjustable remotely. The protocol used is plain-text based
and something that needs more flexibility for usage in DISCOSAT. Additionally,
suppose an additional mechanism is necessary. In that case, the measurement-
framework eperd integrated into BusyBox needs an update, indicating the need
for hardware probe firmware update creation through the OpenWRT build en-
vironment. No further details exist, so the general mechanisms used to create
such an update are subject to further analysis. Just like F@h, Atlas relies on PKI,
and digest-checksums for its security needs embodying the current state-of-the-
art.

2See Atlas probe v5 device scripts commit message at https://github.com/RIPE-NCC/
ripe-atlas-software-probe/commit/d08a06496e3dc01843eed46667163a2918e4732f

17

https://github.com/RIPE-NCC/ripe-atlas-software-probe/commit/d08a06496e3dc01843eed46667163a2918e4732f
https://github.com/RIPE-NCC/ripe-atlas-software-probe/commit/d08a06496e3dc01843eed46667163a2918e4732f

3. Literature Review

3.2. Operating Systems

As seen in the previous analysis of related Distributed Computing Projects, the
operating system details are mostly out-of-scope, as they either run on mul-
tiple existing platforms like Windows / Linux / macOS or, in the case of At-
las, only require application-level adjustments. Furthermore, if mentioned, the
build systems and toolchains used for embedded device development and the
necessary production readiness work are primarily left unexplained. Therefore,
this section will provide information on the core systems encountered in other
projects capable of running on-device processing software stacks based on GNU
Radio.

3.2.1. Limitations

This section will provide information on the limitations found during the re-
search of this thesis. For example, some analyzed projects did not meet the
scope of DISCOSAT and were discarded. Others sufficiently overlapped with
other more suitable approaches and were therefore not evaluated to the same
degree.

Desktop Linux distributions

Operating systems for general-purpose use like Debian, Fedora, Ubuntu, Arch-
linuxARM, which support different architectures like AArch64 are not suitable
for use in DISCOSAT. Their overall scope and the package-manager-based up-
date designs make them unsuitable for use in an embedded device, as network
traffic and filesystem size must be minimal. Moreover, in the case of Debian
and others, no readily available reproducible build support exists, as past pack-
age versions are deleted from the primary upstream servers regularly and need
to be fetched from snapshot mirrors instead [23]. Furthermore, the amount of
manual work required to get the build environment for the system and the tar-
get device running depends on the exact project implementation and can only
be evaluated practically. All in all, desktop Linux distributions do not align with
the maintainability targets set for DISCOSAT, as modifications are not stored in
an easy-to-understand and reproducible way.

18

3. Literature Review

Yocto Project®

Much like Buildroot [24], the open-source Yocto Project® founded in 2010, en-
ables developers to create an embedded operating system from scratch. Unfor-
tunately, albeit showing satisfying results during research, the overall imple-
mentation complexity due to its non-simple layer approach [25] and the inher-
ent steeper learning curve made it unsuitable for practical evaluation. Hence, it
does not meet ease-of-use and maintainability requirements when used by non-
subject matter experts, making it more suited for specialty tailored commercial
device fleets deployed on a larger scale. Fortunately, its significant feature over-
lap with Buildroot made it possible to focus on this type of build system instead.

3.2.2. Buildroot

“Buildroot is a tool that simplifies and automates building a complete Linux
system for an embedded system, using cross-compilation.”[26] Its development
started in 2005, making heavy use of Make, Python, and shell-based scripts.
Buildroot is maintained in a public GIT repository and is available under the
GPLv2 license [27]. It aims to provide reproducible builds and the most minia-
ture root filesystem possible for a particular project and allows tuning every
step in the build process.

Provided Packages

Buildroot version 2022.02 LTS currently comes with hundreds of packages in-
cluding a dedicated section of GNU Radio 3.8 related packages [28] as seen in
Figure 3.3. Unnecessary packages can be disabled if they serve no purpose in
the build. More use-case specific plugins like gr-iridium are non-existent but can
be added. Albeit without support for the HackRF One used in DISCOSAT, the
gr-osmosdr library needed for common SDRs operations and data capturing in
DISCOSAT does exist. For hardware and service management, recent versions
of the Linux kernel, the U-Boot bootloader and systemd are available out of the
box.

Customizability and Maintainability Buildroot uses a simple text-based make-
file approach, which makes it heavily customizable. Furthermore, it supports
additional changes and new packages in an external tree that stacks on top of
the one provided by Buildroot [26]. The ability to place custom files on the

19

3. Literature Review

(a) Core GNU Radio packages (b) gr-osmosdr SDR support
packages

Figure 3.3.: Buildroot GNU Radio related packages in 2022.02 LTS

filesystem of the target devices also exists through the use of rootfs-overlays.
Buildroot also comes with a LTS release that only ships critical bug and secu-
rity fixes. However, daily snapshots for testing new developments and more
frequent stable updates are also available [26]. If desired, reproducible build
support can be configured, which aims to provide identical binary build results
given the same version is used, even if compiled on a different host device [26].

Software updates

Build system Buildroot releases one LTS version every year. Said release then
gets further point releases with security, build and bug fixes over the year. The
additionally available stable updates are more frequent and may contain break-
ing changes that need adjustments depending on the chosen setup [26].

Target system Builds created with Buildroot do not come with an update
mechanism out of the box. However, Buildroot does have support for state-of-
the-art atomic update tools like Mender, SWUpdate (Software Update for Em-
bedded System) and RAUC for binary firmware updates. As the build chain in
Buildroot creates flashable filesystem images instead of single packages [26], it
is advisable to use a full image block-by-block update.

20

3. Literature Review

Notable uses

Buildroot is in use by a wide variety of projects. Notably, the OpenWRT build
system deployed by significant projects like RIPE NCC Atlas uses it as a base
[29]. In addition, Conseil Européen pour la Recherche Nucléaire (CERN) Fer-
milab researchers rebuilt a real-time data acquisition system to use Buildroot,
yielding better maintainability, less multi-device support complexity, improved
performance, and storage footprint when compared to their previous Scientific
Linux-based setup. Moreover, the use of a customized real-time kernel was
also made easier through the application of custom patches managed inside the
Buildroot toolchain [30].

Summary

Buildroot offers a wide range of packages, including some of the ones needed
for on-device processing based on GNU Radio [28]. Moreover, due to the demon-
strated real-world readiness in terms of ease-of-use, in a research context, [30],
and the project-specific limitations of Yocto, Buildroot is the build system of
choice for DISCOSAT. More specific packages like gr-iridium used in similar
Iridium® research [10] and the required drivers for the HackRF One SDR need
to be added, but thanks to the low entry barrier and the ease-of-use first ap-
proach, this is a feasible task within the Buildroot build environment [30].

21

4. DISCOSAT ASSN

4.1. Design

This section will outline the significant design aspects for DISCOSAT. The pri-
mary focus is on the peripheral and probe management part, as this is under-
represented in current literature [8][11][30].

4.1.1. Aspects not covered

The following aspects were not part of the design due to exceeding the time
constraints for this thesis.

Probe provisioning No design for automatic probe provisioning is provided.

Measurements No measurement execution, data access, or result storing ex-
ists. This is mainly because the required server backend is not finalized yet.

WiFi connectivity setup Setting up WiFi connectivity is not currently imple-
mented, as that would require volunteer interaction. No suitable way of con-
figuring the required parameters was agreed on. Writing a custom parser for
network-specific config files stored on a USB-Stick seems like the easiest way
to deal with this. However, a more robust and secure approach would be stor-
ing per-probe encrypted WiFi settings on the device through a one-time wired
network setup routine done by the volunteers.

Fault tolerance/scalability The current DISCOSAT client-server communica-
tion design requires perfect uptime. No mechanisms exist to prevent problems
caused by controller connectivity disruptions during network operations like

22

4. DISCOSAT ASSN

task retrieval or result uploading due to system maintenance or similar outage
events. Moreover, a growing network could increase the load on the controller,
prompting a re-design with load balancing features for scalability reasons.

4.1.2. Sensor Network

The simple client-server structure as shown in Figure 2.1 is suitable for the scope
of DISCOSAT in this thesis. Moreover, the previously analyzed work for Atlas
and F@h shows that this approach is well accepted. Additionally, the sensor
will only support decoded data transmission powered by on-device processing,
eliminating the need for real-time streaming data and keeping the setup simple.
Furthermore, certificates pre-registered on the server are stored on each probe
to establish the needed trust chain between client and server without relying on
a zero-configuration provisioning mechanism.

Server The project constraints (section 2.3) limit DISCOSAT to the use of a
single server. However, the server and network architectures are out-of-scope
for this thesis, leaving a black box that mostly needs to satisfy aspects for the
client.

Client The sensor used in DISCOSAT and the additional HackRF One SDR
can be seen in Figure 4.1. It consists of the hardware previously mentioned
(subsubsection 2.3.3).

23

4. DISCOSAT ASSN

(a) RPI 3b+ with SIM7600E-H LTE/GNSS hat

(b) HackRF One SDR

Figure 4.1.: DISCOSAT hardware and peripherals

4.1.3. Probe

Startup logic The high level startup-sequence can be seen in Figure 4.3. The
bring up of the DateTime, location, OTA and additional system services is done
by the operating system itself and described in more detail during the imple-
mentation phase. Once the time synchronization for required tasks like certifi-
cate validity checking happens, APOGEE takes over the management of the
device. This service handles all the non-system initialization and provisioning
required on the probe.

Failsafe Booting To allow for failsafe booting and bad-flash recovery, there
are two copies of the operating system stored on the device. As shown in Fig-
ure 4.2, the bootloader tracks failed boot attempts and switches to the other copy
if three consecutive start attempts fail due to system errors. For example, these
errors are caused by the system daemon APOGEE not starting or more severe
problems with the operating system ending in a device reboot before its start.
The counter only gets reset by APOGEE if the system state is considered sane.

24

4. DISCOSAT ASSN

That means the internet connectivity is active, the probe has checked in with the
server, and no critical tooling errors exist, see Figure 4.3 ResetBootCount.

System Booting

activeSlot == A False

BOOTCOUNT_A += 1

BOOTCOUNT_B += 1

True

activeSlot = A

BC_A > 3

BC_B > 3

BOOTCOUNT_A = 0

activeSlot = B

BOOTCOUNT_B = 0

True

False

Boot activeSlot

False

True

Figure 4.2.: DISCOSAT fail-safe booting flow

System Services DISCOSAT relies on functionality provided by pre-existing
services as much as possible. This means, that tasks like network time synchro-
nization (DateTimeService), GNSS location tracking (LocationService), network
connectivity (including LTE and WiFi), and OTA-Updates (OTA-Controller) are
not to be implemented solely by application code. Hence, guaranteeing a main-
tainable architecture, as the amount of custom maintenance scripting on the
device itself is restricted to a minimum. Suitable interfaces for the necessary
data and configuration retrieval from these services exist and are in use where
applicable.

25

4. DISCOSAT ASSN

Probe Apogee RemoteController DateTimeService LocationService OTAService

startup

Start

StartTracking

Bring up GPS

TrackingStartResult

SyncTime

Use Network or GPS Time
(from location service)

TimeSynced

start

GetBootedSlot

SlotImageDetails

CheckIn

Mark probe online,
store system details

CheckInData

MarkSlotGood

ResetBootCount

SystemHealth

Figure 4.3.: DISCOSAT probe init sequence diagram

26

4. DISCOSAT ASSN

Probe Apogee RemoteController DateTimeService LocationService OTAService

GetJobSchedule

JobSchedule

schedule(jobs)

If a job is
about to start

launchWithType(job)

SetRunning(job)

requestDateTime

DateTime

requestGPSLocation

GPSLocation

GetMetaData(job)

PerformDataCapture

UploadData

UploadResult

requestOTAUpdate

OTABinaryFile

ApplyFirmwareUpdate(file)

PerformFirmwareUpdate

SwitchActiveSlot

FirmwareUpdateResult

planReboot

scheduleBackoffRetry(job)

Finalize job

finished(job)

loop [JobRunning == false]

seq [JobImminent]

alt [capture]

[update]

alt [success]

alt [success]

[failure]

Figure 4.4.: DISCOSAT high-level probe job diagram

27

4. DISCOSAT ASSN

Jobs The job processing outlined in Figure 4.4 can be described as follows.
Probes in the DISCOSAT network handle one job at a time, as multiple captures
are not possible with the current hardware setup. Moreover, special job types
exist for specific tasks. They will be extendable in the future. The following two
main types are currently designed.

Decoded-Data-Capture The core of the job system is the data capture job
that contains the metadata to set up the decoding and capture tools. It stores
the GPS location of the probe and a start timestamp with second precision in the
result data. Lastly, it invokes the specified decoder with the settings provided,
runs until the specified end time, and packages the results for later upload.

Metadata The required parameter data defined for the capture job.

1. Start time [Timestamp]

2. End time [Timestamp]

3. Decoder tool [Enumeration]

4. Center frequency [Number in hz]

5. Sample rate [Number samples per second]

6. Bandwidth [Number in hz]

7. SDR gain and antenna settings

Additionally, optional parameters for each decoder tool also exist. In the case of
gr-iridium the decimation [Number] can be specified.

The result contains the captured data in a binary format and additional meta-
data identifying the probe and the currently running firmware on the device.

Update This job type performs a firmware update on the device. It must be
applied through the OTA Service as soon as possible if no job is currently run-
ning, as the same one job at a time limit applies. Firmware updates are schedu-
lable by the system manager through a web interface running on the controller.
Hence, updates are not sent out automatically to each online probe, limiting the
data usage and allowing different firmware versions to co-exist.

Metadata The required parameter data defined for the firmware update job.

1. Firmware version [string]

2. Download location [string]

28

4. DISCOSAT ASSN

3. File Size [Number in byte]

The transferred update package contains an embedded signature from the net-
work owner. Therefore, the OTAService checks this signature against a known
authority file stored on the probe. If it is invalid and the update is still in the
job list sent from the controller, the update job gets retried later. In addition, the
OTAService also verifies update integrity through the use of checksums, trigger-
ing the exact on-failure retry mechanism mentioned before.

4.1.4. System and peripheral management

The core system management and maintenance aspect in long-term projects
is barely touched upon in existing embedded sensor literature and therefore
needs more in-depth consideration for DISCOSAT. In addition, requirements
like millisecond-accurate time synchronization, secure and failsafe firmware
updates, and on-device processing come into play when capturing satellite data
on multiple independent devices.

Network connectivity Network connectivity is achieved by using the follow-
ing decision logic shown in Figure 4.5. For simplicity, no error conditions are
described, but failed WiFi and LTE connection attempts will be retried. Net-
work cable hotplug events and WiFi roaming are also handled accordingly. The
general approach of using pre-existing solutions heavily applies here.

29

4. DISCOSAT ASSN

No Internet
Connectivity

No

YesLAN Port Up? Invoke DHCP
client

No

YesConfigured

WiFi Networks

available?

Establish WiFi
connection

LTE Modem
available?

No

Bring up Modem
Yes

Sleep

Figure 4.5.: DISCOSAT network connectivity decision logic

Time/Location synchronisation For DISCOSATs probe measurements to be
valid, the exact sensor location and time need to be accurate to the second. If the
time is incorrect, no synchronized work is possible, so the system management
daemon APOGEE will not start. On the other hand, if no accurate location fix
within 50 Meters can be achieved, planned Decoded-Data-Capture jobs will still
execute but indicate a lack of GNSS accuracy in the result.

Firmware DISCOSAT probes use a two-slot A/B root filesystem (rootfs) lay-
out similar to the one used in recent versions of the Android operating system
[31]. Additionally, the system has one primary bootloader in charge of boot-
ing the system and establishing the safety mechanisms needed for the fail-safe
device initialization described in subparagraph 4.1.3. This bootloader is consid-
ered feature-complete upon deployment and only receives occasional security-
relevant updates.

30

4. DISCOSAT ASSN

Security OTA-update integrity is verified through checksums to prevent
the flashing of corrupt firmware files rendering the device unbootable. More-
over, only authorized and adequately cryptographically signed payloads get
accepted by the OTA-Controller to prevent a hostile takeover of probes by mali-
cious actors.

Size Firmware and update sizes are minimal due to the minimum base sys-
tem approach. Furthermore, compression is in use for all OTA files transferred
over the network.

Updating The type of firmware update bootloader or rootfs is stored in the
downloaded firmware binary itself, making it possible to update the individual
parts of the system without any additional metadata. Furthermore, adopting
the seamless A/B approach from android [31], DISCOSATs firmware flashing
logic ensures not to overwrite the current slot. Example: If slot A is currently
executing the firmware flash, slot B is the target for the new system and vice-
versa. A successful update sets the boot target slot to the presently inactive one
and resets its bootcounter to zero, allowing the new system to take over on the
next boot.

4.1.5. On-Device Processing

As already mentioned before, the network traffic hurdles to overcome when
dealing with real-time raw SDR traffic make it necessary to not only capture the
traffic but also decode it on the device. Currently, only one design that enables
the parsing of Iridium® frames is required.

Iridium® The data required by the DISCO Researchers consists of the decoded
packet-based data from Iridium®. Hence our device will only provide this
data and run pre-processing straight on the device based on the Decoded-Data-
Capture job execution pipeline.

31

4. DISCOSAT ASSN

4.2. Implementation

The following section will provide some of the core steps done while imple-
menting the DISCOSAT design goals. It starts with a quick overview of the
development status, followed by the main course of work, the implementation
of the SATOS operating system, and all the features it provides. Finally, it ends
with the future system daemon work planned for APOGEE.

4.2.1. Development status

APOGEE is in the early concept stage. No task scheduling, remote system man-
agement, or other automatic data-acquisition-related functionality exists. The
implementation in this thesis mainly focuses on the SATOS part of DISCOSAT,
as the system work required extensive research and development efforts. A
prior work analysis for implementing state-of-the-art task scheduling and a
rough design is part of this thesis so that development efforts can continue in
the future.

4.2.2. SATOS - External Tree

SATOS is using the Buildroot build system to support multiple devices and
make use of the required software and firmware tweaks necessary to achieve
a performant and stable on-device processing chain. The code for SATOS is
available upon request. SATOS adopts Buildroot’s external-tree best-practice
approach, which allows leaving custom modifications outside of the Buildroot
sources, keeping the upstream repository as clean and mergeable as possible
[26].

The $(BR2_EXTERNAL_SATOS_PATH) variable is commonly seen in the fol-
lowing sections. It contains the root directory of the used external tree and is
needed to support directory lookups from inside the native Buildroot sources
[26].

Organizing the tree One of the most important aspects was splitting the tree
into multiple reusable components. For example, the common directory con-
tains all the shared scripts and configurations reusable between the different

32

4. DISCOSAT ASSN

hardware probes available. More specific configurations are possible in the re-
spective vendor folder like raspberrypi in the case of vendor adjustments like ker-
nel or firmware configuration fragments needed for multiple devices of a single
vendor. Furthermore, for adjustments of a particular probe model, the device
subfolders like rpi3-64 exist. For a more in-depth overview of the external tree
structure used in SATOS, refer to the annotated version in Listing B.1.

Config fragments Diversions from the default configurations are kept to a
bare minimum for maintainability. Hence, SATOS only uses fragments config-
urations for the Linux kernel, BusyBox and U-Boot. They get applied on top of
the default configuration specified by Buildroot and therefore only need to con-
tain the symbol changes required by the device. An example of such a fragment
would be the non-standard U-Boot build configuration (Listing 4.4), which is
explained in more detail later on.

Packages For DISCOSAT a few new custom packages and adaptation of exist-
ing ones is needed. The adjustments concerning already existing packages were
applied in a fork of the upstream Buildroot GIT repository. However, custom
and entirely new packages were added in the SATOS external tree to keep this
work out of the GPLv2 licensed project and allow for a cleaner base without too
many tweaks. In addition, this improves maintainability and supports easier
updating to newer LTS versions due to the reduced merge conflicts on version
changes and clean distinction between modified and completely new packages.

4.2.3. Hardware and Peripherals

When starting with the work on Buildroot, the available hardware was an-
alyzed first. Furthermore, its requirements and limitations were figured out
based on the designs for connectivity and processing required in DISCOSAT.

Raspberry Pi 3B+ The core of the DISCOSAT sensor is the RPI 3B+. Its USB2
connectivity allows it to only capture parts of the Iridium® spectrum as the
achievable real-world USB2 Bandwidth is below the I/Q traffic load calculated
in subparagraph 1.2. In [32, RPiDS: Raspberry Pi IDS — A Fruitful Intrusion
Detection System for IoT] a network bandwidth hard-limit of 70Mbps was seen
due to the shared USB2-bus, putting it below the theoretically-required 20MBps ≡
160Mbps for real-time data streaming. Hence, it further enforces the need for

33

4. DISCOSAT ASSN

on-device processing. However, even without the network aspect, the raw pro-
cessing power of the device is not high enough to capture the entire Iridium®
L-band, as shown through an experiment conducted later on.

HackRF One The HackRF One SDR is capable of sniffing the entire Iridium®
L-Band, as it has an operating frequency between 1 MHz to 6 GHz and a sample
rate of 20 MS/s, which is more than enough to capture the 10 MHz bandwidth
used in the Iridium® L-Band example given in subparagraph 1.2 [2]. It uses a
USB2 connection, making it compatible with the RPI and other more powerful
hardware platforms, making it reusable in the future.

LTE/GNSS - SIM7600E-H 4G HAT This RPI modem accessory made by Wave-
Share delivers LTE connectivity and GNSS localizing with support for the GPS,
BeiDou, and Glonass satellites. It sits on top of the RPI General Purpose In-
put Output (GPIO) header and makes use of the power, ground, and (optional)
Universal Asynchronous Receiver/Transmitter (UART) connections provided
by the RPI. The module also connects to the RPI through a USB2 connection
providing multiple USB serial ports. Moreover, it is configurable through the
use of AT commands sent to its management port. Lastly, it also features exter-
nal Sub-Miniature Version A (SMA) antenna ports for LTE and GNSS antennas,
allowing for a better reception when external antennas are in use. [33]

The exposed serial ports used by DISCOSAT are as follows:

1. /dev/ttyUSB1 - Dedicated National Marine Electronics Association (NMEA)
output (needs to be started)

2. /dev/ttyUSB2 - Management interface for the modem (AT commands)

Summary The chosen hardware together with the previous constraints leaves
the following list of essential steps needed for successful SATOS implementa-
tion.

1. Basic operating system setup

2. Time/Location synchronization (including GNSS)

3. LTE USB-Modem connectivity

4. GNURadio, HackRF One support and plugins

5. Network connectivity

6. OTA updates

34

4. DISCOSAT ASSN

4.2.4. Basic operating system setup

For creating an image, a specific device needs to be selected. Hence, the al-
ready existing default configuration file for the RPI 3B+ buildroot/configs/raspber-
rypi3_64_defconfig is used as a base, as it contains all required settings to get the
system to a bootable state [27]. However, some extensive tweaking is needed to
implement the design goals for DISCOSAT. The important ones are mentioned
in the paragraphs below.

Boards The adjusted board configuration files are stored in the config folder,
currently only the RPI 3B+ is supported through rpi3_64_defconfig. It is useable
for multiple boards that share the same RPI3 prefix and supports them by using
different Linux kernel device trees.

Filesystem layout

By default, Buildroot uses a single EXT4 rootfs with an additional FAT32 boot
partition [34]. However, this does not align with the two-slot system and fail-
safe booting approach, so tweaking was needed. This yielded the configura-
tion provided in Listing B.21 to establish the needed layout by duplicating the
boot and rootfs partitions. For DISCOSAT the rootfs partition has a fixed size of
512MB and is mounted read-only through applying the settings seen in List-
ing 4.1 inside rpi3_64_defconfig.
BR2_TARGET_ROOTFS_EXT2 =y
BR2_TARGET_ROOTFS_EXT2_4 =y
BR2_TARGET_ROOTFS_EXT2_SIZE ="512M"
BR2_TARGET_GENERIC_REMOUNT_ROOTFS_RW is not set

Listing 4.1: Buildroot board config rootfs tweaks

Moreover, the boot partition is also mounted read-only by default. These changes
prevent accidental system modification and data loss caused by unexpected
power dropouts, as no data gets written to the crucial partitions. However, a
writeable data partition with a size of 512MB to store persistent configuration
and measurement data on the probe was added. If desired by a developer, the
rootfs can also be remounted in read-write mode by issuing the mount -o remount,
rw / command, like for any standard EXT4 partition.

1The offset calculations seen in the boot partitions are specific to the U-Boot environment stor-
ing mentioned in the U-Boot paragraph.

35

4. DISCOSAT ASSN

Startup and initialization

The startup can be divided into 4-Phases.

1. Firmware

2. Bootloader (U-Boot)

3. Linux Kernel

4. Userspace

Firmware The system startup of the RPI uses a three-stage process. A first-
stage bootloader is executed from Read Only Memory (ROM), it then loads and
executes the second-stage bootloader called bootcode.bin from the SD-Card only
for said second-stage to enable more system components and transferring the
third-stage bootloader loader.bin to RAM, which in turn gets executed and runs
the start.elf script, which is in charge of loading the optional config.txt file for
system configuration parameters, the cmdline.txt file for kernel start parameters,
and lastly a Image that contains an executable to start [35].

For DISCOSAT the cut-down versions of the firmware files are used because no
GPU support is required. Furthermore, the config.txt firmware config location is
adjusted as it needs to be changed later on. These changes are set in the board
config file for the probe and are listed in Listing 4.2.
BR2_PACKAGE_RPI_FIRMWARE =y
BR2_PACKAGE_RPI_FIRMWARE_BOOTCODE_BIN =y
BR2_PACKAGE_RPI_FIRMWARE_VARIANT_PI_CD =y
BR2_PACKAGE_RPI_FIRMWARE_CONFIG_FILE ="$(BR2_EXTERNAL_SATOS_PATH)/

board/ raspberrypi /rpi3 -64/ config_fw .txt"

Listing 4.2: Buildroot board config firmware tweaks

Bootloader - U-Boot U-Boot is a primary bootloader used for embedded de-
vices that enables scriptable booting of the device’s main operating system ker-
nel. [36]

Instead of having a Linux kernel in the Image file, a secondary startup phase
through the U-Boot bootloader is used. This is achieved by specifying kernel=u-
boot.bin in the customized config.txt for the RPI, allowing implementation of the
required failsafe booting design. Configuration started by enabling a redundant
U-Boot variable environment stored on the SD-Card (Multi Media Card (MMC)).

36

4. DISCOSAT ASSN

The tweaks needed were specified in the fragment configuration stored in board-
/raspberrypi/uboot.fragment. These changes are shown in Listing 4.3 and are needed
to hold the boot order and attempts left. Moreover, network booting support
was disabled to decrease system startup time.
CONFIG_ENV_OFFSET =0 x4000
CONFIG_ENV_OFFSET_REDUND =0 x8000
CONFIG_ENV_IS_IN_FAT is not set
CONFIG_ENV_IS_IN_MMC =y
CONFIG_SYS_REDUNDAND_ENVIRONMENT =y
CONFIG_NET =n

Listing 4.3: U-Boot redundant environment config fragment

The uboot.ush script used for achieving the failsafe booting is based on the one
provided by RAUC and can be found in Listing A.3. Besides using an imple-
mentation dependent inverted boot count approach when compared to the de-
sign flowchart in Figure 4.2, its core functionality is identical. Furthermore,
depending on the active slot, it boots a different partition, either /dev/mmcblk0p2
in case of slot A or /dev/mmcblk0p3 in case of slot B.

Both of these customizations get applied through the board configuration file,
so Buildroot knows how to build U-Boot with the required changes.

1 BR2_TARGET_UBOOT =y
2 BR2_TARGET_UBOOT_BOARD_DEFCONFIG =" rpi_arm64 "
3 BR2_TARGET_UBOOT_CONFIG_FRAGMENT_FILES ="$(BR2_EXTERNAL_SATOS_PATH)

/board/ raspberrypi /uboot. fragment "
4

5 BR2_PACKAGE_HOST_UBOOT_TOOLS =y
6 BR2_PACKAGE_HOST_UBOOT_TOOLS_BOOT_SCRIPT =y
7 BR2_PACKAGE_HOST_UBOOT_TOOLS_BOOT_SCRIPT_SOURCE ="$(

BR2_EXTERNAL_SATOS_PATH)/board/ raspberrypi /uboot.ush"

Listing 4.4: Buildroot board settings for U-Boot

Kernel The Linux kernel plays a critical role in supporting auxiliary devices
and chips like WiFi and UART. While most of the RPI SBCs run on the mainline
Linux kernel as well, they never get shipped with these kernels when they get
released, as is indicated by the lack of support for the RPI 4 SBC. Moreover, it
also continues to lack features that are available on the kernel provided by the
RPI foundation as they are not merged yet [37]. In order to prevent pitfalls by
missing functionality, Buildroot is using the customized Linux kernel sources
from the RPI foundation [27, buildroot/configs/raspberrypi3_64_defconfig].

37

4. DISCOSAT ASSN

Using 5.15 LTS With the release of their Linux 5.15 LTS branch, the decision
was made to switch out the currently in use 5.10 kernel sources within Buildroot
to get the system on a LTS kernel release. This was achieved by modifying the
following lines in the board configuration seen in Listing 4.2.4.
- BR2_PACKAGE_HOST_LINUX_HEADERS_CUSTOM_5_10 =y
+ BR2_PACKAGE_HOST_LINUX_HEADERS_CUSTOM_5_15 =y
BR2_LINUX_KERNEL_CUSTOM_TARBALL_LOCATION ="$(call github ,

raspberrypi ,linux ,0 efbe86e7248ad9b80a42b37a91c44860f91eee4)/
linux -0 efbe86e7248ad9b80a42b37a91c44860f91eee4 .tar.gz"

The TARBALL directive contains the download location of the kernel. Build-
root parses it in the following format github indicates that github.com should be
used as a download source, raspberrypi is the project name, and linux the repos-
itory. Furthermore, 0efbe86e7248ad9b80a42b37a91c44860f91eee4 is the full SHA-1
git commit hash of the kernel sources. This corresponds to the 5.15.25 LTS re-
lease [38]. The call helper then downloads the sources, and Buildroot uses them
in the build process. The correct HEADERS directive also needs to be set, as
they differ between kernel versions.

Checking the running kernel on the target system after building with the modi-
fied configuration yields the output in Listing 4.5, indicating a successful kernel
update.
5.15.25 - v8 aarch64 GNU/Linux

Listing 4.5: Output of the uname -rom command on SATOS

Configuration The kernel configuration also gets configured through a frag-
ment file located at
BR2_LINUX_KERNEL_CONFIG_FRAGMENT_FILES ="$(BR2_EXTERNAL_SATOS_PATH)

/board/ raspberrypi /linux. fragment "

Listing 4.6: Board configuration change for the Linux fragment configuration

The base configuration is almost sufficient but needs tweaks for certain aspects.
For example, the CPU governor was set to performance by default to prevent
CPU frequency switching and maximize performance as energy-saving is not
required [39]. Some other required options for OTA update handling and USB
modem support also need to be set, as annotated in Listing 4.7.
Switch frequency governor to performance mode
CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE =y

Enable support for SQUASHFS images to apply OTAs

38

4. DISCOSAT ASSN

CONFIG_SQUASHFS =y
CONFIG_SQUASHFS_XATTR =y
CONFIG_SQUASHFS_ZSTD =y

Enable DM_VERITY for the firmware updater
CONFIG_DM_VERITY =y
CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG =y
CONFIG_DM_VERITY_FEC =y

Enable usb serial , WWAN and USBNET support for the modem.
CONFIG_USB_SERIAL =y
CONFIG_USB_SERIAL_WWAN =y
CONFIG_USB_SERIAL_OPTION =y
CONFIG_USBNET =y

Listing 4.7: RPI annotated Linux Kernel config fragment

Userspace Handling all the service startup dependencies is achieved by using
the systemd init system. Systemd is a software collection that provides many dif-
ferent system components. It aims to provide a unified service configuration on
all its supported systems [35]. In DISCOSAT the main task for systemd is man-
aging system initialization and user-space service bootstrapping. Systemd uses
.unit files to specify dependencies between services and control their startup.
An example unit file is provided later on. Moreover, a simple command-line
interface for checking the status of services exists. For example, executing sys-
temctl status yields the output in Listing B.3 which shows the successful startup
of all units and their command-line arguments.

4.2.5. Time/Location synchronisation

For DISCOSATs measurements, precise time down to the second is a hard re-
quirement. As the used RPI does not have offer a Real Time Clock (RTC) that
prevents clock drift, the following time synchronization features are used in
SATOS.

NTP - Network Time Protocol

The main design goal for Network Time Protocol (NTP) is the distribution of
time information over packet-based internet links that allows system operators
to have a reliable time source. It also features forwarding and routing features

39

4. DISCOSAT ASSN

and has shown a historical time accuracy of a few milliseconds [40]. For DIS-
COSAT, it is used as the reference time, as the used GNSS module does not
support the more accurate pulse per second operation mode [33].

GNSS - Time and Location

If no network connectivity is available at bootup, the system might stall as a rea-
sonably accurate time is required to start the services correctly. The SIM7600E-
H HAT features an NMEA format GPS data output that provides time and
location-related data to clients. However, the SIM7600E NMEA output at /dev/t-
tyUSB1 needs to be started first. But since GPS is always required, the modem
can be requested to start the NMEA output on startup. This only needs to be
done once during the initial probe assembly,by issuing the AT+CGPSAUTO=1
command seen in Listing 4.8 to the modem management serial port at /dev/t-
tyUSB2.

1 > AT+ CGPSAUTO ?
2 + CGPSAUTO : 0
3 OK
4

5 > AT+ CGPSAUTO =1
6 OK
7

8 // Verify it sticks after rebooting
9 > AT+ CGPSAUTO ?

10 + CGPSAUTO : 1
11 OK

Listing 4.8: AT commands used for SIM7600E GPS autostart

System integration

Support for both of these time syncing mechanisms exists in the chrony daemon
available in Buildroot.

chronyd chronyd allows using the NTP protocol and the GPS NMEA data to
synchronize the system time based through a single configuration file. The
NMEA data is provided to chronyd by gpsd using a Shared Memory (SHM)
interface. Moreover, the configuration file is provided in Listing B.4 and con-
tains the NTP pool 0.pool.ntp.org which allows DNS-based global resolving of

40

4. DISCOSAT ASSN

the nearest server addresses 2 and the settings for shared-memory powered data
pulling from a GPS NMEA source like gpsd.

gpsd Is part of Buildroot and does also manage the location tracking support
for DISCOSAT. The path to the GPS data port of the modem is specified in
the /etc/default/gpsd rootfs-overlay using the DEVICES="/dev/ttyUSB1" line. If the
probe or GNSS hardware changes, this needs to be adjusted to reflect the new
system configuration

Service startup Both, chrony and gpsd come with a systemd unit file that con-
trols their startup. chrony needs to be started before gpsd, so the shared memory
section mentioned above gets created correctly. Moreover, support for a sys-
temd time sync dependency on chrony also exists, which delays or prevents
services like APOGEE from starting if the time is not synchronized yet. These
techniques can be seen in Listing 4.9. The main unit definition provides a hu-
man readable description and specified the required startup dependency on
chronyd.service. The environment variables $GPSD_OPTIONS get loaded auto-
matically from the /etc/(default|sysconfig)/gpsd Environment files specified inside
the unit.

1 [Unit]
2 Description =GPS (Global Positioning System) Daemon
3 After= chronyd . service
4

5 [Service]
6 Type= forking
7 EnvironmentFile =-/ etc/ default /gpsd
8 EnvironmentFile =-/ etc/ sysconfig /gpsd
9 ExecStart =/ usr/sbin/gpsd $GPSD_OPTIONS $OPTIONS $DEVICES

10

11 [Install]
12 WantedBy =multi -user. target

Listing 4.9: Simplified and annotated gpsd systemd unit file

Timesynchronization accuracy

The accuracy achieved solely through the GPS data is obtainable by analyzing
the chronyc tracking output seen in Figure 4.6. The ∗ next to NMEA indicates

2For large scale projects, a custom NTP pool should be used instead of the free and public
infrastructure of the NTP project

41

4. DISCOSAT ASSN

that it is the selected source. Compared to the reference and more accurate NTP
servers below, it achieves an offset of less than ≈ 7000µs − 1000µs = 6ms. For
this calculation, the measured offsets in the brackets are substracted to compare
the currently selected NMEA reference to the more accurate NTP time sources.
Nevertheless, this is enough to achieve the sub-second accuracy needed for DIS-
COSATs data acquisition to work reliably.

Figure 4.6.: Chrony time syncing sources and tracking offsets

Location accuracy

Tracking error estimates can be obtained by executing cgps, a client for gpsd. The
output provided in Figure 4.7 shows a 2D and 3D error of below twenty meters.
However, these estimates are calculated by algorithms inside the receiver and
should be taken with a grain of salt [41]. Due to privacy reasons, the exact
location is not provided, but the tracked location was within the estimated 2D
tracking error range.

42

4. DISCOSAT ASSN

Figure 4.7.: GNSS tracking error estimates as seen by cgps

4.2.6. GNU Radio

A version bump of GNU Radio was necessary to get the required plugins for the
on-device processing pipeline to run. GNU Radio was upgraded from version
3.8 (available in Buildroot 2022.02 LTS [27]) to 3.9 to get a more recent version
that uses PyBind11 instead of swig to bind C++ code for python for better com-
patibility [42]. The main motivation behind this is that some plugins like gr-
iridium already made the transition, and their long-term stability for older GNU
Radio versions is not tested nor guaranteed [43].

Required version upgrade from 3.8 to 3.9

The upstream GNU Radio package inside Buildroot mainly needed a change
in the version number field. Moreover, the dependencies also changed, GNU
Radio 3.9 now requires numpy on the compiling host as-well, swig got replaced
with pybind and the python-mako and python-six host dependencies were dropped.
Moreover, the required volk vector optimized math library is not shipped with
GNU Radio anymore [44] and also needs a new package. Some special workaround
is required to bypass cross-compilation issues encountered with the new py-
bind11 build chain [45]. The full patch required to bring GNU Radio to 3.9 in-
side Buildroot is too large for this thesis and can be obtained from the Buildroot
fork used in this thesis [46].

43

4. DISCOSAT ASSN

Plugins

Some existing GNU Radio plugins also needed modification to work with the
hardware and software stack used by DISCOSAT.

gr-osmosdr A modified gr-osmosdr version with enabled HackRF One support
is necessary, as the one shipped by Buildroot lacks support, as shown previ-
ously in Figure 3.3. Fortunately, the required functionality could be achieved by
adding the necessary compile-time definitions for building the HackRF driver
inside gr-osmosdr. Buildroots structure made this particularly easy, as only pack-
age file adjustments were needed. The changes are also obtainable through the
Buildroot fork used in this thesis [46] and are provided with additional com-
mentary in Listing A.4. Furthermore, the hackrf package used by gr-osmosdr is
already part of Buildroot, and therefore no additional work is required.

Figure 4.8.: gr-osmosdr - HackRF support in the configuration menu

gr-iridium The Python-based command-line tool iridium-extractor that is bun-
dled with gr-iridium [47] is required for decoding and extracting the frames re-
ceived through the HackRF One. The inherent use of Python packages, as seen
in Figure 4.9 made this a challenging task. The gr-iridium package does not exist
within Buildroot. It was added based on the three-file package creation mech-
anism outlined in the Buildroot manual [26]. The changes are available in the
SATOS external tree under package/gr-iridium. Furthermore, the package can be
added to board configuration files using one or both of the lines in Listing 4.10
with the second line depending on the need for python-support.
BR2_PACKAGE_GR_IRIDIUM =y
BR2_PACKAGE_GR_IRIDIUM_PYTHON =y

Listing 4.10: Board configuration snippet for gr-iridium

44

4. DISCOSAT ASSN

gr-iridium

gnuradio python-scipy

boost fftw-singlegmp log4cpp python-pybindvolk

python3

bzip2 libffi xz zlib

libzlib

orc

openblas python-numpy

lapack

Figure 4.9.: gr-iridium - Target System Dependencies

The left gnuradio subtree is already displayed in Figure 1.1, but gr-iridium re-
quires the addition of a previously not existing package called python-scipy.

python-scipy is a python package that provides highly-optimized scientific
computing algorithm implementations usable through python [48]. It is not
available within Buildroot but was staged a few times over the past years, with
the most recent attempt done in February 2022 [49]. An older version of this
patch was used for the inclusion of python-scipy in SATOS as the newest version
was not out at the time of writing this thesis. Furthermore, it requires three new
python packages python-pythtran, python-beniget and python-gast as host depen-
dencies that were also added based on the above patch set. They also reside
in the external tree package/python-[pythran|beniget|gast] folders and can be re-
placed by the upstream patch as soon as it gets accepted.

With all these dependencies handled, the iridium-extractor toolkit is now useable
for on-device decoding later on.

4.2.7. Network connectivity

Network connectivity management got offloaded to industry-proven solutions,
primarily relying on the de-facto standard Linux solution NetworkManager for
control of different connection types through a unified interface. Network man-
ager allows access to network functionality like enabling or disabling network

45

4. DISCOSAT ASSN

devices through the use of nmcli. Furthermore, it provides an extensive Desktop
Bus (D-Bus) integration for automation through external applications making it
the perfect candidate for usage within APOGEE later on [50].

LTE - Modem Manager

Only adding ModemManager to the Buildroot board configuration file was not
enough to get the modem to work. Hence, this is where the network and
modem-related kernel tweaks seen in Listing 4.7 come into play. Moreover,
a configuration for the LTE sim card itself is needed. It can be found in List-
ing B.5 and primarily consists of the required gsm Access Point Name (APN)
configuration. The connection is configured to only start manually through the
use of the autoconnect=false directive, allowing it to be only enabled if desired
following the sequence in Figure 4.5. All the low-level implementation specifics
on how to control the modem are abstracted away by the use of Modem and
NetworkManager and their tight integration.

Bringing up LTE Connecting to the LTE Network is achieved through a sim-
ple command nmcli con up congstar yielding the following response Connection
successfully activated (D-Bus active path: /org/freedesktop/NetworkManager/Active-
Connection/3) and bringing up the wwan0 interface automatically as shown in
Figure 4.10.

Figure 4.10.: LTE connectivity through Network- and ModemManager

Disabling the LTE network connection is done by nmcli con down congstar. More-
over, these tasks can also be performed by directly talking to the ActivateConnec-
tion or DeactivateConnection endpoints of the NetworkManager D-Bus interface
[51].

wpa_supplicant - WiFi

WiFi network connectivity is also controlled through NetworkManager and its
integration with wpa_supplicant. wpa_supplicant is a free implementation of an

46

4. DISCOSAT ASSN

IEEE 802.11i supplicant, hence its name. It has support for modern WiFi proto-
cols like WPA3 and WPA2 and all commonly used encryption schemes [52].

Show available WiFi Networks The NetworkManager command nmcli dev wifi
provides a list of all WiFi networks in range and works on SATOS as shown in
Figure 4.11.

Figure 4.11.: WiFi network list demo

4.2.8. OTA-Updates

For OTA-Updates, the A/B slot firmware design needs to be taken into account.
This is achieved through RAUC, a firmware update solution primarily used
in embedded devices. It consists of a client in charge of applying the update
which is running on the device itself and the tools that allow the building of the
OTA-update bundles. rauc was chosen over swupd and mender due to its tight
integration into Buildroot and the readily available well-documented example
project br2rauc licensed under GPL-v2 that covered the groundwork and was
adaptable to fit DISCOSATs needs [53]. The provided packages can be enabled
using the annotated options shown in 4.11.

1 # Enable the RAUC client on the device
2 BR2_PACKAGE_RAUC =y
3 # Enable the client dbus support , for automation
4 BR2_PACKAGE_RAUC_DBUS =y
5 # Enable the host tools for firmware creation .
6 BR2_PACKAGE_HOST_RAUC =y

Listing 4.11: RAUC annotated Buildroot board config additions

47

4. DISCOSAT ASSN

Client configuration

The client portion of RAUC gets configured by a single configuration file for
each individual device. This configuration can be seen in Listing B.7. The system
section describes the compatible target system for which to accept update image
and sets the bootloader to U-Boot. Additionally, the mountprefix for firmware
update staging and the statusfile that keeps track of update-history and installed
slots is set. Moreover, the plain bundle format for slots was disabled to only
allow use of crypt and verity, two secured and integrity checked formats [54].
In addition, the keyring file stored on the device is set, that is needed for secure
verification of the update packages. Lastly, the slot definitions are equal to the
partitioning layout in Listing B.2.

Security and Integrity

Only bundles that contain the new dm-verity SHA-256 hash tree support over
the generated SquashFS filesystem images are created. This is why the Kernel
fragment tweaks for DM and SQUASHFS mentioned in Listing 4.7 are needed.
Moreover, verity enables integrity checking of every single file inside the pack-
age and prevents any tampering with the update images [54]. Each signed
update image needs to verify against the keyring stored on the device. If the
signature is not valid, the update will not apply.

Creating bundles

The build process automatically creates bundles through the use of the main
post-build and post-image scripts in Listing B.1. These scripts then invoke func-
tions provided by a helper script called scripts/rauc.sh which in turn generates
the bundles and stores the keyring file used for the build on the device. It re-
quires the presence of a key and a certificate authority file for the development
and production mode. This CA gets generated through standard PKI setup
commands, e.g., by using openssl, making the process easy to replicate but too
lengthy for this thesis. Once the required PKI files exist, the
rauc_generate_(root|boot)_bundle functions create the required manifest files spec-
ifying the bundle contents, version and the device they are compatible with.
This metadata is embedded and later used by the device to verify if the update
is for the right board. Next, the RAUC tooling gets invoked and creates a fin-
ished bundle from the metadata and image rootfs/bootfs images available. These

48

4. DISCOSAT ASSN

images then get stored in the /release folder of the SATOS tree. The update pack-
ages are named like satos-rpi3-64-dev-20220309-b122c30-rootfs.raucb, containing
the compatible device rpi3-64, the build type dev the data of the build 20220309,
the short GIT revision b122c30 and the contained type of filesystem rootfs.

Applying updates

In DISCOSAT, the automatic transfer of bundles is supposed to happen through
APOGEE. However, right now, the updates need to be applied manually by
transferring them to the device and invoking the install commands seen in List-
ing 4.12. First, the working directory is changed to the /tmp folder, as the rootfs
is read-only, and the subsequent download commands need to store the files on
the device. Lastly, the installation is invoked for the bootfs and rootfs slots.

1 cd /tmp
2

3 wget https :// ota - server /satos -rpi3 -64-dev -20220309 - b122c30 - bootfs .
raucb -O bootfs .raucb

4 wget https :// ota - server /satos -rpi3 -64-dev -20220309 - b122c30 - rootfs .
raucb -O rootfs .raucb

5

6 rauc install bootfs .raucb
7 rauc install rootfs .raucb

Listing 4.12: RAUC manual firmware update installation

RAUC then handles the installation and all the required boot logic changes
transparently, as shown in the update job in Figure 4.4. This is made possi-
ble through the bootloader integration with U-Boot and the use of the already
presented customized boot script (Listing A.3).

Verifying state

The currently booted slot can be obtained through issuing the rauc status com-
mand, it generates the output shown in Figure 4.12 and indicates the booted
slot, status and system info.

49

4. DISCOSAT ASSN

Figure 4.12.: RAUC - System status

If more details are desired, rauc status --detailed provides the exact version in-
formation, checksum and size of the booted slot, the installation and activation
date and count, and the current status as portrayed for slot A in Figure 4.13.

Figure 4.13.: RAUC - System status detailed

The above data and all operations are also available through a D-Bus API pro-
vided by RAUC [54] that is going to be used by APOGEE.

50

4. DISCOSAT ASSN

4.2.9. APOGEE - Client daemon

GO is the language of choice for APOGEE, as it provides a higher-level inter-
face reducing the required development effort and providing additional func-
tionality through the use of pre-existing packages like go-dbus, which allows
connecting to the D-Bus system and application buses [55].

Scope

First of all, APOGEE will be in charge of marking the currently booted system
as good after the check-in to the server has been performed (see Figure 4.3).
However, as it does not exist yet, this has to be performed manually through
the use of the rauc status mark-good command to prevent switching slots after
three startups. Furthermore, in the future, APOGEE will implement the task
scheduling and auxiliary system management design for DISCOSAT through
the use of D-Bus bindings to the chosen implementations in SATOS.

D-Bus

D-Bus is a middleware mechanism that allows programs to communicate with
each other over one shared system or multiple point-to-point buses. It features
a connection-based and stateful approach to transmitting binary data messages
between processes [56]. APOGEE will use it to obtain location data through
gpsd, manage networks through NetworkManager and perform updates through
rauc.

In addition to the already previously mentioned uses of D-Bus, some more de-
tails on which data gets exchanged over D-Bus in the case of OTA-Updates and
GNSS location tracking is provided below.

RAUC The D-Bus interface in RAUC comes with full support for system status
setting and update bundle installation. The annotated commands in Listing 4.13
show how APOGEE can use D-Bus to perform OTA related tasks.
Mark rootfs .0 as good using DBUS
busctl call de. pengutronix .rauc / de. pengutronix .rauc. Installer

Mark ss "good" " rootfs .0"

Install an update bundle over DBUS
busctl call de. pengutronix .rauc / de. pengutronix .rauc. Installer

InstallBundle sa{sv} "/path/to/satos - bundle " 0

51

4. DISCOSAT ASSN

Retrieve progress from the installer
busctl get - property de. pengutronix .rauc / de. pengutronix .rauc.

Installer Progress

Get status of all slots
busctl call de. pengutronix .rauc / de. pengutronix .rauc. Installer

GetSlotStatus

Listing 4.13: dbus commands for RAUC [54]

GPSD gpsd outputs its satellite data to the system bus each time a location fix
happens [57]. An example of the delivered data is in Listing 4.14. This data
will be used in APOGEE by mapping it to the right fields based on the table in
Table 4.1.
signal time =1648397962.024116 sender =:1.3 -> destination =(null

destination) serial =19085 path =/ org/gpsd; interface =org.gpsd;
member =fix
double 1.6484 e+09
int32 3
double 0.005
double 49.5534
double 8.23865
double 17.1
double 108.5
double 18.4
double 217.7
double nan
double 0
double nan
double nan
double nan
string "/dev/ ttyUSB1 "

Listing 4.14: dbus-monitor --system output for gpsd

4.3. Usage

This section will provide some details on how to use the SATOS implementation
to perform build and research tasks.

52

4. DISCOSAT ASSN

DBUS_TYPE_DOUBLE Time (seconds since Unix epoch)
DBUS_TYPE_INT32 mode
DBUS_TYPE_DOUBLE Time uncertainty (seconds).
DBUS_TYPE_DOUBLE Latitude in degrees.
DBUS_TYPE_DOUBLE Longitude in degrees.
DBUS_TYPE_DOUBLE Horizontal uncertainty in meter.
DBUS_TYPE_DOUBLE Altitude MSL in meters.
DBUS_TYPE_DOUBLE Altitude uncertainty in meters.
DBUS_TYPE_DOUBLE Course in degrees from true north.
DBUS_TYPE_DOUBLE Course uncertainty in meters
DBUS_TYPE_DOUBLE Speed, meters per second.
DBUS_TYPE_DOUBLE Speed uncertainty in meters per second.
DBUS_TYPE_DOUBLE Climb, meters per second.
DBUS_TYPE_DOUBLE Climb uncertainty in meters per second.
DBUS_TYPE_STRING Device name

Table 4.1.: GPSD Satellite object data mapping (taken from [57])

4.3.1. Image building

Creating the different images for the target devices is achieved through a Make-
file in SATOS, based on the one used in the HomeAssistant Operating system
project [58]. When invoking make help, the supported targets are listed. These
targets can then either be built all at once by issuing the make command without
any parameters or individually, e.g., by invoking make rpi3_64 to build the RPI
3B+ image.

4.3.2. Initial installation

The build process generates the satos_rpi3_64_sdcard.img file, which is a full
block-level system image containing all required partitions. It can be flashed
to any sufficiently large SD-Card using the command given in Listing 4.15. It
copies the image to the target and flushes the storage buffers. It is required only
once, as further firmware changes are done by OTA-Updates.
sudo dd if= release / satos_rpi3_64_sdcard .img of=/ dev/ mmcblk0 bs=4M
sync

Listing 4.15: SATOS SD-Card installation command

53

4. DISCOSAT ASSN

4.3.3. Probe access

The only way to interact with the operating system of the device is through
the use of the RPI serial UART connection, as no remote access through SSH or
similar techniques exist. This further limits the attack surface, as no ports get
exposed to the internet, and no security-critical services like ssh or dropbear run
directly on the device.

4.3.4. Data capture

The capture and decoding process can be started by executing the commands
seen in Listing 4.16 on the probe. First, the home folder of the user needs to be
overwritten by exporting a new HOME environment variable before the start
of iridium-extractor. Without this change, GNU Radio tries to write lock-files to
the read-only partitions, causing the startup to fail with RuntimeError: Failed to
create FFTW wisdom lockfile: /root/.gr_fftw_wisdom.lock.

export HOME="/data/"
iridium - extractor -D 4 " hackrf_br_rpi3 .conf" > data.log

Listing 4.16: iridium-extractor sniffing example

Decoding configuration

A custom SDR dependent configuration is required for iridium-extractor. It is
used for setting the required parameters needed to capture the Iridium® satel-
lite L-band. The file is shown in Listing B.6 and was tweaked by experimentally
testing the limits of the device.

Performance limitations When invoked with a higher sample rate like 4MS/s,
the probe started dropping samples as seen in Listing B.8 indicating that the
python-based GNU Radio processing pipeline runs too slow or the USB2 bus
is overwhelmed with the inrush of data. Hence, the current setup is not fast
enough to capture the entire Iridium® spectrum.

The output seen in Figure 4.14 shows the on-device decoding pipeline dumping
the captured data into the data.log file and outputting status messages on the
interactive console.

54

4. DISCOSAT ASSN

Figure 4.14.: iridium-extractor running on the probe

It provides proof that the raw data HackRF One capture using GNU Radio
3.9.5.0 and gr-osmosdr 0.2.0 works on the probes. Furthermore, the python-
based on-device decoding through gr-iridium is also working, as iridium-extractor
executed correctly.

55

5. Usecase analysis for SATOS

In this chapter, SATOS will briefly be analyzed based on the useability, adapt-
ability, and maintainability requirements set for DISCOSAT.

5.1. Useability

Currently, the system is only accessible through a USB serial connection allow-
ing no remote sensor work. Still, the researchers do not need to pay attention to
the complex processing readiness-work required for getting gr-iridium decod-
ing to work on a RPI SBC inside a sane and modern GNU Radio and Linux
environment, as they get a finished image that is installable on any RPI 3B+.
Furthermore, the complexity required to get features like LTE and GNSS work-
ing out of the box is hidden behind a well-structured system service setup.

5.1.1. Adding new packages

Adding new packages to the external SATOS tree is done through simple make-
files. The structure is in the external device tree layout given in Listing B.1. The
optional .hash, Config.in for the inclusion of config options and the main .mk file
for specifying the toolchain and steps required for building the packages are
easy to understand and well documented in the Buildroot manual [26].

5.1.2. Modifying configurations

Modifying major package configurations is primarily done by overriding the
existing ones through the use of fragment files. As seen before, these provide a
minimal difference view of the changed options. In addition, system software
configuration adjustments on the target device are possible by using the rootfs-
overlay mechanism provided by Buildroot, which allows placing arbitrary files
everywhere in the system.

56

5. Usecase analysis for SATOS

5.1.3. Adding new boards

Adding new hardware to SATOS is a nontrivial task, as the device needs to be
supported by Buildroot already, and the appropriate board configuration files
need creation. In the case of a different RPI, common files shared can be reused.
Still, the device hardware itself needs a hand-crafted new board configuration
file that contains the same core adjustments outlined for the RPI 3B+ in the
implementation section.

5.1.4. Firmware Updates

The build scripts automatically create firmware OTA-Updates on every build.
Moreover, the security mechanisms deployed are similar to the ones used by
F@h and Atlas. Firmware updates are integrity checked using state-of-the-art
mechanisms like dm-verity based on SHA-256 checksums. Furthermore, they
are signed and only flashable if their signature is valid. The rollout of updates
is not implemented, but as the bundles consist of one file for the respective rootfs
or bootfs slot, installation is possible through a single command.

5.2. Maintainability

Maintenance work heavily relies on the used GIT version control. Updating
to a newer Buildroot release is done by rebasing the used submodule on the
latest version. The task described before is a common GIT task for developers
and should be manageable by the network owner. In the case of merge conflicts,
the custom patches need evaluation leaving one source of potential work open.
However, this is unavoidable in any version-controlled project, and GIT pro-
vides adequate tooling to handle these challenges.

5.3. Adaptability

One primary research concern is the addition of new satellite data decoding
pipelines. But, again, Buildroot makes this simple boiling down to the same de-
pendency management and new package configuration work already outlined
for the gr-iridium pipeline in SATOS above.

57

5. Usecase analysis for SATOS

5.3.1. Operating system size

Due to the fixed rootfs partitions, it is also important to keep system and update
sizes in check so enough free space is available for further tooling expansion.
The uncompressed factory SD-Card image generated by Buildroot is 1.6GB in
size. Presently the pre-allocated 512MB rootfs partition only uses ≈ 291MB
of storage as seen in Figure 5.1, allowing bigger rootfs updates to be applied
without requiring repartitioning.

disco-apogee (2.91 MB)1.0%
bind (3.37 MB)

1.2%

libopenssl (3.42 MB)
1.2%

libqmi (4.11 MB)

1.4%

libglib2 (4.11 MB)

1.4%

modem-manager (4.57 MB)

1.6%

host-gcc-final (5.92 MB)

2.0%

lvm2 (6.49 MB)

2.2%

lapack (8.78 MB)

3.0%

network-manager (8.81 MB)

3.0%

python3 (9.44 MB)

3.2%

python-numpy (10.3 MB)

3.6%

gnuradio (10.4 MB)

3.6%

openblas (11.8 MB)

4.0%

systemd (20.3 MB)

7.0%

python-scipy (44.6 MB)
15.3%

linux (56.2 MB)

19.3%

Unknown (35.4 MB)

12.2%
Other (40.0 MB)

13.7%

Total filesystem size: 291 MB

Filesystem size per package

Figure 5.1.: SATOS size distribution of target files

According to the high-level breakdown of the filesystem size per package in
Figure 5.1, the relevant main contributors are the following.

1. linux ≈ 56MB

2. systemd ≈ 20MB

3. gnuradio ≈ 96MB (including the following subitems)

58

5. Usecase analysis for SATOS

python-scipy (Optimized scientific computing algorithms)

openblas (Basic Linear Algebra Library)

python-numpy (Fundamental mathematical functions)

python3

lapack (Linear Algebra Library)

OTA updates The bundles generated by RAUC are squashfs system images
compressed using zlib [59]. They currently require ≈ 100MB of storage which
is an acceptable size to transfer over network.

59

6. Future Work

With the groundwork for DISCOSAT done and the system running on a stable
base, the following research topics could be of interest in the future.

6.1. Work areas

Some interesting future work areas arose during this thesis. First of all, the
Yocto Project®build environment was primarily discarded due to its high entry
barrier, but a comparison between these two approaches could be of interest
for future projects. Moreover, provisioning the probe is a manual process and
could benefit from automation in the future to ease deployment. Ideally, the
PKI device secrets used in this process could be stored in a secure environment
like a Trusted Platform Module (TPM) or similar to keep them secure and un-
tampered with by third parties. Moreover, firmware updates for the clients
contain the entire rootfs image. A delta-update approach based on a copy of the
installed system might be worth investigating to minimize download size over
cellular links. Additionally, no remote access to the probes exists. Therefore the
design of a secure remote web shell for management and troubleshooting might
be worth investigating. Lastly, an additional solution for binary task payloads
similar to the Compute Core used by F@h could improve job execution per-
formance. Moreover, they would also allow reconfiguring a probe through a
smaller appfs update package that only contains the required files for executing
the task.

6.2. Pending implementations

APOGEEs entire system management and task scheduling capabilities are pend-
ing implementation with the concepts learned and adapted from F@h and RIPE
NCC Atlas. Moreover, SATOS itself needs some more maintenance work to
be ready for real-world usage. Most notably, it needs automated USB storage
mounting and a ramdisk based research data storage.

60

7. Conclusion

In this thesis, it became clear that no one-fits-all solution for a SBC powered
ASSN exists. Moreover, such networks always depend on a particular software-
decoding stack with specific adjustments due to their limited processing power.
Current related literature does not include the software foundation work needed
for an adaptable implementation. Hence, the SATOS operating system for the
DISCOSAT ASSN was designed and implemented in a reproducible Buildroot
build environment. It provides state-of-the-art system management software
with tight integration into the D-Bus message bus, offering network connec-
tivity (wired, WiFi, LTE), sensor localization (GNSS), and time synchroniza-
tion (NTP + GNSS). Furthermore, SDR related software like GNU Radio 3.9,
gr-osmosdr and gr-iridium with support for the HackRF One platform is avail-
able on the probe. Moreover, it allows for easy extension through simple-to-
understand Makefile configuration mechanisms and comes with many advan-
tages over a standard Linux operating system approach. To achieve this, SATOS
combines adaptability with maintainability through a well-defined tree layout,
allowing true logical separation of the required build system configuration. Ad-
ditionally, a degree of failsafe operation is provided, as the minimal system im-
age used by SATOS allows storing and updating two full copies of the system
on the device. The small encrypted update packages are delivered through an
A/B slot-based Over The Air-Update mechanism allowing reconfiguration and
updating of existing probes remotely. All in all, with the future addition of
the system and task management daemon APOGEE, SATOS provides a reliable
and open-source software foundation for GNU Radio based satellite data sniff-
ing powered by Single Board Computers.

61

Acronyms

AArch64 64-bit ARM cpu architecture
APN Access Point Name
ASSN Adaptable Satellite Sniffing Network
BOINC Berkeley Open Infrastructure for Network

Computing
CA Certificate Authority
CC Compute Core
CERN Conseil Européen pour la Recherche Nucléaire
crond Command Run On Daemon
D-Bus Desktop Bus
DISCOSAT Distributed Computer Systems Satellite Oper-

ating System
F@h Folding@Home
FLOPS Floating Point Operations Per Second
GNSS Global Navigation Satellite System
GPIO General Purpose Input Output
Iridium® Iridium satellite constellation
JSON JavaScript Object Notation
LEO Low Earth Orbit
LTS Long Term Support
MITM Man In The Middle
MMC Multi Media Card
MQ Message Queuing
MS/s Mega Samples per Second
NMEA National Marine Electronics Association
NTP Network Time Protocol
OpenWRT Open wireless router
OTA Over The Air
PKI Public Key Infrastructure
QPSK Quadrature Phase Shift Keying
RAUC Robust Auto-Update Controller
RIPE NCC Réseaux IP Européens Network Coordination

Centre

62

Acronyms

RIR Regional Internet Registry
ROM Read Only Memory
RPI Raspberry Pi
RTC Real Time Clock
SATOS Satellite probe Operating System
SBC Single Board Computer
SDR Software Defined Radio
SHM Shared Memory
SMA Sub-Miniature Version A
SSH Secure Shell Protocol
SWUpdate Software Update for Embedded System
telnetd Teletype Network daemon
TPM Trusted Platform Module
U-Boot Universal Boot Loader
UART Universal Asynchronous Receiver/Transmitter
VC Volunteer Computing
WU Work Unit

63

A. Source code listings

1 void Unit :: downloadResponse (const JSON :: ValuePtr &data) {
2 // Check certificate , F@H usage & signature
3 auto request = data ->get(" request ");
4 auto assign = data ->get(" assignment ");
5 auto wu = data ->get("wu");
6 string cert = wu -> getString (" certificate ");
7 string inter = wu -> getString (" intermediate ");
8 string sig64 = wu -> getString (" signature ");
9 wu = wu ->get("data");

10 string sigData = request -> toString () + assign -> toString () + wu ->
toString ();

11

12 // <Martin Boeh > The following calls App :: validate later in the
chain

13 app. checkBase64SHA256 (cert , inter , sig64 , sigData , "WS");
14 ...
15 // Check data hash
16 if (wu -> getString (" sha256 ") != Digest :: base64 (wuData , " sha256 "))
17 THROW("WU data hash does not match");
18 ...
19 }
20

21 void App :: validate (const Certificate &cert ,
22 const Certificate & intermediate) const {
23 CertificateChain chain;
24 chain.add(intermediate);
25 CertificateStore store;
26 store.add(caCert);
27 CertificateStoreContext (store , cert , chain). verify ();
28 }

Listing A.1: F@h work unit signature checks [15]

1 // A payload for creating a crontab line would be
2 CRONTAB /home/atlas/crons /7
3

4 // File: ripe -atlas -probe - busybox / networking / telnetd .c
5 # define CMD_CRONTAB " CRONTAB "
6 # define CMD_CRONLINE " CRONLINE "
7 # define CMD_ONEOFF " ONEOFF "

64

A. Source code listings

8 # define CMD_REBOOT " REBOOT "
9 ...

10

11 // It gets parsed by the telnetd code:
12 len= strlen (CMD_CRONTAB);
13 if (strncmp (line , CMD_CRONTAB , len) == 0)
14 {
15 r= start_crontab (ts , line);
16 ...
17 ts ->state= DO_CRONTAB ;
18 goto skip3;
19 }
20

21 // This is followed up with a measurement (this is for a ping)
22 CRONLINE 240 342 1577836800 UNIFORM 14 evping -6 -c 3 -A "2001" -O

/home/atlas/data/new /7 ipv6addr
23

24 // A firmware update looks like this:
25 FIRMWARE_APPS 4550
26 1 b0fb537ec86f99c9247bf84bce29570ddf53ca9f82cd0efa8f21196ffe9d6b2

app_tlmr3020_4550 .img.bz2

Listing A.2: RIPE NCC Atlas telnetd protocol excerpt taken from [22] and [20]

65

A. Source code listings

1 test -n "${ BOOT_ORDER }" || setenv BOOT_ORDER "A B"
2 test -n "${ BOOT_A_LEFT }" || setenv BOOT_A_LEFT 3
3 test -n "${ BOOT_B_LEFT }" || setenv BOOT_B_LEFT 3
4 test -n "${ bootargs_satos }" || setenv bootargs_satos rootwait

console =tty1 console =ttyAMA0 ,115200 fsck. repair =yes panic =2
5

6 setenv bootargs_a "root =/ dev/ mmcblk0p2 rootfstype =ext4 ro"
7 setenv bootargs_b "root =/ dev/ mmcblk0p3 rootfstype =ext4 ro"
8

9 # Preserve origin bootargs
10 setenv bootargs_rpi
11 setenv fdt_org ${ fdt_addr }
12 fdt addr ${ fdt_org }
13 fdt get value bootargs_rpi / chosen bootargs
14

15 setenv bootargs
16 for BOOT_SLOT in "${ BOOT_ORDER }"; do
17 if test "x${ bootargs }" != "x"; then
18 # skip remaining slots
19 elif test "x${ BOOT_SLOT }" = "xA"; then
20 if test ${ BOOT_A_LEFT } -gt 0; then
21 setexpr BOOT_A_LEFT ${ BOOT_A_LEFT } - 1
22 echo " Trying to boot slot A, ${ BOOT_A_LEFT } attempts

remaining . Loading kernel ..."
23 if load ${ devtype } ${ devnum }:2 ${ kernel_addr_r } boot/Image;

then
24 setenv bootargs "${ bootargs_satos } ${ bootargs_rpi } ${

bootargs_a } rauc.slot=A"
25 fi
26 fi
27 elif test "x${ BOOT_SLOT }" = "xB"; then
28 if test ${ BOOT_B_LEFT } -gt 0; then
29 setexpr BOOT_B_LEFT ${ BOOT_B_LEFT } - 1
30 echo " Trying to boot slot B, ${ BOOT_B_LEFT } attempts

remaining . Loading kernel ..."
31 if load ${ devtype } ${ devnum }:3 ${ kernel_addr_r } boot/Image;

then
32 setenv bootargs "${ bootargs_satos } ${ bootargs_rpi } ${

bootargs_b } rauc.slot=B"
33 fi
34 fi
35 fi
36 done
37

38 setenv fdt_addr
39 if test -n "${ bootargs }"; then
40 saveenv
41 else
42 echo "No valid slot found , resetting tries to 3"

66

A. Source code listings

43 setenv BOOT_A_LEFT 3
44 setenv BOOT_B_LEFT 3
45 saveenv
46 reset
47 fi
48

49 echo " Starting kernel "
50 booti ${ kernel_addr_r } - ${ fdt_org }
51

52 echo "Boot failed , resetting ..."
53 reset

Listing A.3: U-Boot script for failsafe booting (inspired by RAUC)[60]

67

A. Source code listings

1 # Changes in package /gr - osmosdr / Config .in
2 config BR2_PACKAGE_GR_OSMOSDR_HACKRF
3 bool " Osmocom HACKRF support "
4 depends on BR2_PACKAGE_HACKRF
5 help
6 Enable Osmocom HackRF support
7

8 # Compile time def. added in package /gr - osmosdr /gr - osmosdr .mk
9 ifeq ($(BR2_PACKAGE_GR_OSMOSDR_HACKRF),y)

10 # Enable the hackrf backend
11 GR_OSMOSDR_CONF_OPTS += -DENABLE_HACKRF =ON
12

13 # Depend on the hackrf driver / firmware package
14 GR_OSMOSDR_DEPENDENCIES += hackrf
15 else
16 GR_OSMOSDR_CONF_OPTS += -DENABLE_HACKRF =OFF
17 endif
18

19 # If python is selected , add the host -python -six dependency
20 ifeq ($(BR2_PACKAGE_GR_OSMOSDR_PYTHON),y)
21 ...
22 GR_OSMOSDR_DEPENDENCIES += python3 host -python -six
23 ...
24 endif

Listing A.4: gr-osmosdr HackRF support

68

A. Source code listings

1 #!/ bin/bash
2 set -e
3

4 RAUC_PKI_OPTIONS ="--cert ${ BR2_EXTERNAL_SATOS_PATH }/ ota/dev -ca.pem
--key ${ BR2_EXTERNAL_SATOS_PATH }/ ota/dev -key.pem"

5 RAUC_CERT_NAME ="${ BR2_EXTERNAL_SATOS_PATH }/ ota/dev -ca.pem"
6 RAUC_BUNDLE_BASE_FILENAME ="satos -${ BOARD_NAME }-${ VERSION }"
7

8 if [" $DEPLOYMENT_MODE " == " production "]; then
9 RAUC_PKI_OPTIONS ="--cert ${ BR2_EXTERNAL_SATOS_PATH }/ ota/prod -

ca.pem --key ${ BR2_EXTERNAL_SATOS_PATH }/ ota/prod -key.pem"
10 RAUC_CERT_NAME ="${ BR2_EXTERNAL_SATOS_PATH }/ ota/prod -ca.pem"
11 fi
12

13

14 function rauc_generate_root_bundle {
15 ROOTFS_PATH =${ BINARIES_DIR }/${ RAUC_BUNDLE_BASE_FILENAME }-

rootfs .raucb
16 [-e ${ ROOTFS_PATH }] && rm -rf ${ ROOTFS_PATH }
17 [-e ${ BINARIES_DIR }/temp - rootfs] && rm -rf ${ BINARIES_DIR }/

temp - rootfs
18 mkdir -p ${ BINARIES_DIR }/temp - rootfs
19

20 cat >> ${ BINARIES_DIR }/temp - rootfs / manifest .raucm << EOF
21 [update]
22 compatible =satos -${ BOARD_NAME }
23 version =${ VERSION }
24 [bundle]
25 format = verity
26 [image. rootfs]
27 filename = rootfs .ext4
28 EOF
29

30 ln -L ${ BINARIES_DIR }/ rootfs .ext4 ${ BINARIES_DIR }/temp - rootfs /
31

32 # Generate OTA for rootfs
33 ${ HOST_DIR }/ bin/rauc bundle ${ RAUC_PKI_OPTIONS } ${ BINARIES_DIR

}/temp - rootfs / ${ ROOTFS_PATH }
34 }
35

36

37 function rauc_generate_boot_bundle {
38 # Generate a RAUC update bundle for the boot filesystem
39 BOOTFS_PATH =${ BINARIES_DIR }/${ RAUC_BUNDLE_BASE_FILENAME }-

bootfs .raucb
40 [-e ${ BOOTFS_PATH }] && rm -rf ${ BOOTFS_PATH }
41 [-e ${ BINARIES_DIR }/temp - bootfs] && rm -rf ${ BINARIES_DIR }/

temp - bootfs
42 mkdir -p ${ BINARIES_DIR }/temp - bootfs

69

A. Source code listings

43

44 cat >> ${ BINARIES_DIR }/temp - bootfs / manifest .raucm << EOF
45 [update]
46 compatible =satos -${ BOARD_NAME }
47 version =${ VERSION }
48 [bundle]
49 format = verity
50 [image. bootloader]
51 filename =boot.vfat
52 EOF
53

54 ln -L ${ BINARIES_DIR }/ boot.vfat ${ BINARIES_DIR }/temp - bootfs /
55

56 # Generate rauc bundle for bootfs
57 ${ HOST_DIR }/ bin/rauc bundle ${ RAUC_PKI_OPTIONS } ${ BINARIES_DIR

}/temp - bootfs / ${ BOOTFS_PATH }
58 }
59

60

61 function rauc_copy_keyring {
62 cp "${ RAUC_CERT_NAME }" "${ TARGET_DIR }/ etc/rauc/ keyring .pem"
63 }

Listing A.5: RAUC helper script for bundle creation (based on br2rauc)[53]

70

B. Logs and Configs

board
common # Files used by multiple boards .

busybox . fragment # Busybox config fragment
device_table .txt # Special permissions for systemfiles
rootfs - overlay # Overlay for the file system

etc
chrony .conf # chronyd configuration
NetworkManager # NM configuation

NetworkManager .conf
system - connections

congstar . nmconnection # SIM conf.
raspberrypi # Files for multiple RPI models

linux. fragment # Conf. Fragment for the Linux Kernel
uboot. fragment # Conf. Fragment for U-Boot
uboot.ush # Bootloader script containing the A/B logic
rpi3 -64 # Config files/ scripts for RPI 3 (aarch64)

config_fw .txt # RPI firmware configuration
genimage -rpi3 -64. cfg # Filesystem layout
post -[build|image].sh # Device specific scripting
rootfs - overlay

etc
rauc # OTA - Firmware updater configuration

...
buildroot # Custom BR fork submodule
configs # Configuration files for supported boards

rpi3_64_defconfig
package # Definitions for our new packages , used by BR

disco - apogee
gr - iridium

Config .in # Contains deps. and optional parameters
gr - iridium .hash # Contains source hashes for integrity
gr - iridium .mk # Makefile , tells BR how to build

...
scripts # Generic scripts for image building

post -[build|image].sh # see above , just generalized
rauc.sh # Helper for the OTA - Firmware update images

71

B. Logs and Configs

src # Custom packages available in source code
apogee # Submodule for our system daemon

Listing B.1: Buildroot structure of SATOS

72

B. Logs and Configs

1 image boot.vfat {
2 vfat {
3 files = {
4 "bcm2710 -rpi -3-b.dtb",
5 "bcm2710 -rpi -3-b-plus.dtb",
6 "bcm2837 -rpi -3-b.dtb",
7 "rpi - firmware / bootcode .bin",
8 "rpi - firmware / cmdline .txt",
9 "rpi - firmware / config .txt",

10 "rpi - firmware / fixup_cd .dat",
11 "rpi - firmware / start_cd .elf",
12 "rpi - firmware / overlays ",
13 "boot.scr",
14 "u-boot.bin"
15 }
16 }
17

18 size = 32M
19 }
20

21 image data.ext4 {
22 name = "data"
23 ext4 {
24 use - mke2fs = true
25 label = "data"
26 features = "^64 bit"
27 }
28 size = 512M
29 }
30

31 image satos_rpi3_64_sdcard .img {
32 hdimage {
33 }
34

35 partition boot0 {
36 partition -type = 0xC
37 bootable = true
38 image = "boot.vfat"
39

40 # Leave some space for the U-Boot environment
41 offset = 64K
42 }
43

44 partition boot1 {
45 image = "boot.vfat"
46 in -partition -table = false
47

48 # 32M + 64K
49 offset = 32832K

73

B. Logs and Configs

50 }
51

52 partition rootfs0 {
53 partition -type = 0x83
54 image = " rootfs .ext4"
55 }
56

57 partition rootfs1 {
58 partition -type = 0x83
59 image = " rootfs .ext4"
60 }
61

62 partition data {
63 partition -type = 0x83
64 image = "data.ext4"
65 }
66 }

Listing B.2: Buildroot configuration for genimage defining probe partitions

74

B. Logs and Configs

1 discosatspy
2 State: running
3 Jobs: 0 queued
4 Failed : 0 units
5 Since: Thu 1970 -01 -01 00:00:02 UTC; 52 years 2 months ago
6 CGroup : /
7 init.scope
8 1 /sbin/init
9 system .slice

10 ModemManager . service
11 176 /usr/sbin/ ModemManager
12 218 /usr/ libexec /qmi -proxy
13 NetworkManager . service
14 178 /usr/sbin/ NetworkManager --no - daemon
15 chrony . service
16 206 /usr/sbin/ chronyd -n
17 dbus. service
18 177 /usr/bin/dbus - daemon --system --address =

systemd : --nofork --nopidfile --systemd - activation --syslog -
only

19 gpsd. service
20 340 /usr/sbin/gpsd -n /dev/ ttyUSB1
21 polkit . service
22 180 /usr/lib/polkit -1/ polkitd --no -debug
23 rauc. service
24 181 /usr/bin/rauc --mount =/ run/rauc service
25 system - serial \ x2dgetty .slice
26 serial - getty@ttyAMA0 . service
27 182 -sh
28 356 systemctl status
29 357 less
30 systemd - journald . service
31 117 /usr/lib/ systemd /systemd - journald
32 systemd - networkd . service
33 144 /usr/lib/ systemd /systemd - networkd
34 systemd - resolved . service
35 183 /usr/lib/ systemd /systemd - resolved
36 systemd -udevd. service
37 134 /usr/lib/ systemd /systemd -udevd
38 wpa_supplicant . service
39 185 /usr/sbin/ wpa_supplicant -u

Listing B.3: systemctl status output on a DISCOSAT probe

75

B. Logs and Configs

1 driftfile /data/ chrony /drift
2 makestep 1 3
3

4 # The pool used for ntp synchronization
5 pool 0. pool.ntp.org iburst
6

7 # Enable rtc syncing if we have an real time clock
8 rtcsync
9

10 # This uses shared memory and contains the calibrated EST offset .
11 refclock SHM 0 refid NMEA offset 2.94e-2 precision 1e-3 poll 3

Listing B.4: chrony configuration file

76

B. Logs and Configs

1 [connection]
2 id= congstar
3 uuid=a1385913 -6ccc -4d83 -bd3a -272325 d6c60c
4 type=gsm
5 autoconnect =false
6 metered =1
7 permissions =
8

9 [gsm]
10 apn= internet . telekom
11 password =cs
12 username = congstar
13

14 [ipv4]
15 dns - search =
16 method =auto
17

18 [ipv6]
19 addr -gen -mode=stable - privacy
20 dns - search =
21 method =auto
22

23 [proxy]

Listing B.5: NetworkManager config for a Congstar SIM card

77

B. Logs and Configs

1 # hackrf_br_rpi3 .conf
2 [osmosdr - source]
3 # Center frequency for iridium l band
4 center_freq =1623000000
5

6 # Turn on the pre -amp
7 gain =14
8

9 # Moderate gains
10 if_gain =40
11 bb_gain =20
12

13 # Decrease sample -rate to 3 MS/s due to perf. issues on the RPI3b+
14 sample_rate =3000000
15

16 # Bandwidth defaults to auto which is sample_rate / 1.72
17 # bandwidth =1750000

Listing B.6: The gr-iridium config for RPI and the HackRF One

78

B. Logs and Configs

1 [system]
2 compatible =satos -rpi3 -64
3 mountprefix =/ run/rauc
4 statusfile =/ data/rauc.db
5 bootloader =uboot
6 bundle - formats =-plain
7

8 [keyring]
9 path =/ etc/rauc/ keyring .pem

10

11 [slot. bootloader .0]
12 device =/ dev/ mmcblk0
13 type=boot -mbr - switch
14 region -start =64K
15 region -size =64M
16

17 [slot. rootfs .0]
18 device =/ dev/ mmcblk0p2
19 type=ext4
20 bootname =A
21

22 [slot. rootfs .1]
23 device =/ dev/ mmcblk0p3
24 type=ext4
25 bootname =B

Listing B.7: RAUC configuration (based on br2rauc)[53]

79

B. Logs and Configs

1 WARNING : your SDR seems to be losing samples . ~303k samples lost
(8%)

2 O1647882413 | i: 0/s | i_avg: 3/s | q_max: 0 | i_ok: 0% |
o: 0/s | ok: 0% | ok: 0/s | ok_avg : 0% | ok:
2 | ok_avg : 0/s | d: 0

3 WARNING : your SDR seems to be losing samples . ~164k samples lost
(4%)

4 OOO1647882414 | i: 0/s | i_avg: 3/s | q_max: 0 | i_ok: 0%
| o: 0/s | ok: 0% | ok: 0/s | ok_avg : 0% | ok:

2 | ok_avg : 0/s | d: 0
5 WARNING : your SDR seems to be losing samples . ~404k samples lost

(10%)
6 OO1647882415 | i: 0/s | i_avg: 3/s | q_max: 0 | i_ok: 0%

| o: 0/s | ok: 0% | ok: 0/s | ok_avg : 0% | ok:
2 | ok_avg : 0/s | d: 0

7 WARNING : your SDR seems to be losing samples . ~306k samples lost
(8%)

8 OO1647882416 | i: 0/s | i_avg: 3/s | q_max: 0 | i_ok: 0%
| o: 0/s | ok: 0% | ok: 0/s | ok_avg : 0% | ok:

2 | ok_avg : 0/s | d: 0
9 WARNING : your SDR seems to be losing samples . ~249k samples lost

(6%)
10 OOO1647882417 | i: 0/s | i_avg: 3/s | q_max: 0 | i_ok: 0%

| o:

Listing B.8: SATOS RPI sample loss at 4 MS/s

80

Bibliography

[1] L. Doolittle, H. Ma, and M. S. Champion, “Digital low-level rf control
using non-iq sampling,” in Proceedings of LINAC, Citeseer, vol. 568, 2006,
p. 570.

[2] G. S. GADGETS, Hackrf one, https://greatscottgadgets.com/hackrf/
one/. (visited on 03/29/2022).

[3] K. Maine, C. Devieux, and P. Swan, “Overview of iridium satellite net-
work,” in Proceedings of WESCON’95, Nov. 1995, pp. 483–. DOI: 10.1109/
WESCON.1995.485428.

[4] S. R. Pratt, R. A. Raines, C. E. Fossa, and M. A. Temple, “An operational
and performance overview of the iridium low earth orbit satellite sys-
tem,” IEEE Communications Surveys, vol. 2, no. 2, pp. 2–10, 1999. DOI: 10.
1109/COMST.1999.5340513.

[5] H. Liu, A. Ghafoor, and P. Stockmann, “A new quadrature sampling and
processing approach,” IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 25, no. 5, pp. 733–748, Sep. 1989, ISSN: 1557-9603. DOI: 10.1109/
7.42090.

[6] GNU Radio Website. [Online]. Available: http://www.gnuradio.org (vis-
ited on 03/29/2022).

[7] R. P. Hudhajanto, H. Wijanarko, M. Arifin, et al., “Low cost nano satellite
communication system using gnuradio, hackrf, and raspberry pi,” in 2018
International Conference on Applied Engineering (ICAE), 2018, pp. 1–4. DOI:
10.1109/INCAE.2018.8579395.

[8] G. J. Minden, J. B. Evans, L. Searl, et al., “Kuar: A flexible software-defined
radio development platform,” in 2007 2nd IEEE International Symposium
on New Frontiers in Dynamic Spectrum Access Networks, Apr. 2007, pp. 428–
439. DOI: 10.1109/DYSPAN.2007.62.

[9] Boost c++ libraries, https://www.boost.org/. (visited on 03/29/2022).

81

https://greatscottgadgets.com/hackrf/one/
https://greatscottgadgets.com/hackrf/one/
https://doi.org/10.1109/WESCON.1995.485428
https://doi.org/10.1109/WESCON.1995.485428
https://doi.org/10.1109/COMST.1999.5340513
https://doi.org/10.1109/COMST.1999.5340513
https://doi.org/10.1109/7.42090
https://doi.org/10.1109/7.42090
http://www.gnuradio.org
https://doi.org/10.1109/INCAE.2018.8579395
https://doi.org/10.1109/DYSPAN.2007.62
https://www.boost.org/

Bibliography

[10] G. Oligeri, S. Sciancalepore, and R. Di Pietro, “Gnss spoofing detection
via opportunistic iridium signals,” in Proceedings of the 13th ACM Con-
ference on Security and Privacy in Wireless and Mobile Networks, ser. WiSec
’20, Linz, Austria: Association for Computing Machinery, 2020, pp. 42–52,
ISBN: 9781450380065. DOI: 10.1145/3395351.3399350. [Online]. Avail-
able: https://doi.org/10.1145/3395351.3399350.

[11] M. Schäfer, M. Strohmeier, V. Lenders, I. Martinovic, and M. Wilhelm,
“Demonstration abstract: Opensky: A large-scale ads-b sensor network
for research,” in Proceedings of the 13th International Symposium on Infor-
mation Processing in Sensor Networks (IPSN ’14), Berlin, Germany: IEEE
Press, Apr. 2014, pp. 313–314, ISBN: 978-1-4799-3146-0. [Online]. Available:
https://opensky-network.org/files/publications/ipsn2014_demo.
pdf.

[12] A. Beberg, D. Ensign, G. Jayachandran, S. Khaliq, and V. Pande, “Fold-
ing@home: Lessons from eight years of volunteer distributed comput-
ing,” May 2009, pp. 1–8. DOI: 10.1109/IPDPS.2009.5160922.

[13] Folding@Home, A significant milestone – 100 petaflops, https://foldingathome.
org/2016/07/19/a-significant-milestone-100-petaflops/?lng=en.
(visited on 03/29/2022).

[14] D. P. Anderson, “BOINC: A platform for volunteer computing,” CoRR,
vol. abs/1903.01699, 2019. arXiv: 1903.01699. [Online]. Available: http:
//arxiv.org/abs/1903.01699.

[15] FoldingAtHome, Fah-client-bastet, https://github.com/FoldingAtHome/
fah-client-bastet. (visited on 03/29/2022).

[16] M. K. Robert Kisteleki, Ripe atlas probes as iot devices, https://labs.ripe.
net/author/kistel/ripe-atlas-probes-as-iot-devices/, Oct. 2017.
(visited on 03/29/2022).

[17] R. NCC, Ripe atlas - statistics, https : / / atlas . ripe . net/. (visited on
03/29/2022).

[18] Busybox website, https://busybox.net/. (visited on 03/29/2022).

[19] Ripe atlas telnetd source code, https://github.com/RIPE-NCC/ripe-atlas-
probe - busybox / blob / fb8bc976a326f894b16e859124dd27e865fd3ccc /
networking/telnetd.c. (visited on 03/29/2022).

[20] Ripe atlas source code repositories, https://github.com/RIPE-NCC/. (visited
on 03/29/2022).

82

https://doi.org/10.1145/3395351.3399350
https://doi.org/10.1145/3395351.3399350
https://opensky-network.org/files/publications/ipsn2014_demo.pdf
https://opensky-network.org/files/publications/ipsn2014_demo.pdf
https://doi.org/10.1109/IPDPS.2009.5160922
https://foldingathome.org/2016/07/19/a-significant-milestone-100-petaflops/?lng=en
https://foldingathome.org/2016/07/19/a-significant-milestone-100-petaflops/?lng=en
https://arxiv.org/abs/1903.01699
http://arxiv.org/abs/1903.01699
http://arxiv.org/abs/1903.01699
https://github.com/FoldingAtHome/fah-client-bastet
https://github.com/FoldingAtHome/fah-client-bastet
https://labs.ripe.net/author/kistel/ripe-atlas-probes-as-iot-devices/
https://labs.ripe.net/author/kistel/ripe-atlas-probes-as-iot-devices/
https://atlas.ripe.net/
https://busybox.net/
https://github.com/RIPE-NCC/ripe-atlas-probe-busybox/blob/fb8bc976a326f894b16e859124dd27e865fd3ccc/networking/telnetd.c
https://github.com/RIPE-NCC/ripe-atlas-probe-busybox/blob/fb8bc976a326f894b16e859124dd27e865fd3ccc/networking/telnetd.c
https://github.com/RIPE-NCC/ripe-atlas-probe-busybox/blob/fb8bc976a326f894b16e859124dd27e865fd3ccc/networking/telnetd.c
https://github.com/RIPE-NCC/

Bibliography

[21] P. Homburg, Releasing ripe atlas measurements source code, https://labs.
ripe.net/author/philip_homburg/releasing-ripe-atlas-measurements-
source-code/, Oct. 2013. (visited on 03/29/2022).

[22] ——, Ripe ncc atlas internals, https : / / www . ietf . org / proceedings /
interim/2013/10/14/nmrg/slides/slides- interim- 2013- nmrg- 1-
0.pdf, Oct. 2013. (visited on 03/29/2022).

[23] D. Project, Snapshot.debian.org, https://snapshot.debian.org/. (visited
on 03/29/2022).

[24] The yocto project®, https://www.yoctoproject.org/. (visited on 03/29/2022).

[25] The yocto project®- overview, https://www.yoctoproject.org/software-
overview/. (visited on 03/29/2022).

[26] Buildroot, The buildroot user manual, https://buildroot.org/downloads/
manual/manual.html. (visited on 03/29/2022).

[27] Buildroot lts 2022.02 source code, https://github.com/buildroot/buildroot/
tree/2022.02. (visited on 03/29/2022).

[28] G. Goavec-Merou, “Gnuradio running on embedded boards: Porting to
buildroot,” Proceedings of the GNU Radio Conference, vol. 1, no. 1, 2021.
[Online]. Available: https://pubs.gnuradio.org/index.php/grcon/
article/view/86.

[29] Openwrt - about, https://openwrt.org/about. (visited on 03/29/2022).

[30] J. Diamond and K. Martin, “Managing a Real-time Embedded Linux Plat-
form with Buildroot,” in Proc. of International Conference on Accelerator and
Large Experimental Physics Control Systems (ICALEPCS’15), Melbourne, Aus-
tralia, 17-23 October 2015, (Melbourne, Australia), ser. International Con-
ference on Accelerator and Large Experimental Physics Control Systems,
doi:10.18429/JACoW-ICALEPCS2015-WEPGF096, Geneva, Switzerland:
JACoW, Dec. 2015, pp. 926–929, ISBN: 978-3-95450-148-9. DOI: doi:10.
18429 / JACoW - ICALEPCS2015 - WEPGF096. [Online]. Available: http : / /
jacow.org/icalepcs2015/papers/wepgf096.pdf.

[31] E. Blázquez, S. Pastrana, Á. Feal, et al., “Trouble over-the-air: An analysis
of fota apps in the android ecosystem,” in 2021 IEEE Symposium on Secu-
rity and Privacy (SP), May 2021, pp. 1606–1622. DOI: 10.1109/SP40001.
2021.00095.

83

https://labs.ripe.net/author/philip_homburg/releasing-ripe-atlas-measurements-source-code/
https://labs.ripe.net/author/philip_homburg/releasing-ripe-atlas-measurements-source-code/
https://labs.ripe.net/author/philip_homburg/releasing-ripe-atlas-measurements-source-code/
https://www.ietf.org/proceedings/interim/2013/10/14/nmrg/slides/slides-interim-2013-nmrg-1-0.pdf
https://www.ietf.org/proceedings/interim/2013/10/14/nmrg/slides/slides-interim-2013-nmrg-1-0.pdf
https://www.ietf.org/proceedings/interim/2013/10/14/nmrg/slides/slides-interim-2013-nmrg-1-0.pdf
https://snapshot.debian.org/
https://www.yoctoproject.org/
https://www.yoctoproject.org/software-overview/
https://www.yoctoproject.org/software-overview/
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://github.com/buildroot/buildroot/tree/2022.02
https://github.com/buildroot/buildroot/tree/2022.02
https://pubs.gnuradio.org/index.php/grcon/article/view/86
https://pubs.gnuradio.org/index.php/grcon/article/view/86
https://openwrt.org/about
https://doi.org/doi:10.18429/JACoW-ICALEPCS2015-WEPGF096
https://doi.org/doi:10.18429/JACoW-ICALEPCS2015-WEPGF096
http://jacow.org/icalepcs2015/papers/wepgf096.pdf
http://jacow.org/icalepcs2015/papers/wepgf096.pdf
https://doi.org/10.1109/SP40001.2021.00095
https://doi.org/10.1109/SP40001.2021.00095

Bibliography

[32] A. Sforzin, F. G. Mármol, M. Conti, and J.-M. Bohli, “Rpids: Raspberry pi
ids — a fruitful intrusion detection system for iot,” in 2016 Intl IEEE Con-
ferences on Ubiquitous Intelligence Computing, Advanced and Trusted Com-
puting, Scalable Computing and Communications, Cloud and Big Data Com-
puting, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CB-
DCom/IoP/SmartWorld), Jul. 2016, pp. 440–448. DOI: 10.1109/UIC- ATC-
ScalCom-CBDCom-IoP-SmartWorld.2016.0080.

[33] Waveshare, Sim7600ce-t/e-h/a-h/sa-h/g-h 4g modules, https://www.waveshare.
com/wiki/SIM7600E-H_4G_HAT, 2022. (visited on 03/29/2022).

[34] Buildroot lts 2022.02 rpi partitioning, https://github.com/buildroot/
buildroot/blob/2022.02/board/raspberrypi/genimage-raspberrypi3-
64.cfg. (visited on 03/29/2022).

[35] I. Amirtharaj, T. Groot, and B. Dezfouli, “Profiling and improving the
duty-cycling performance of linux-based iot devices,” Journal of Ambient
Intelligence and Humanized Computing, vol. 11, no. 5, pp. 1967–1995, May
2020, ISSN: 1868-5145. DOI: 10 . 1007 / s12652 - 019 - 01197 - 2. [Online].
Available: https://doi.org/10.1007/s12652-019-01197-2.

[36] The u-boot documentation, https://u-boot.readthedocs.io/en/latest/.
(visited on 03/29/2022).

[37] Upstream raspberry pi 4 b support github.com/lategoodbye/rpi-zero, https://
github.com/lategoodbye/rpi-zero/issues/43. (visited on 03/29/2022).

[38] Raspberry pi foundation linux kernel, https://github.com/raspberrypi/
linux/tree/0efbe86e7248ad9b80a42b37a91c44860f91eee4. (visited on
03/29/2022).

[39] K. Rao, J. Wang, S. Yalamanchili, Y. Wardi, and H. Ye, “Application-specific
performance-aware energy optimization on android mobile devices,” in
2017 IEEE International Symposium on High Performance Computer Architec-
ture (HPCA), Feb. 2017, pp. 169–180. DOI: 10.1109/HPCA.2017.32.

[40] D. Mills, “Internet time synchronization: The network time protocol,” IEEE
Transactions on Communications, vol. 39, no. 10, pp. 1482–1493, Oct. 1991,
ISSN: 1558-0857. DOI: 10.1109/26.103043.

[41] Gpsd cgps, https : / / gpsd . gitlab . io / gpsd / cgps . html. (visited on
03/29/2022).

[42] Gnu radio swig to pybind11 transition, https://github.com/gnuradio/
greps/blob/main/grep-0015-remove-swig.md. (visited on 03/29/2022).

[43] Gr-iridium: 3.8 maintenance error, https://github.com/muccc/gr-iridium/
issues/125. (visited on 03/29/2022).

84

https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0080
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0080
https://www.waveshare.com/wiki/SIM7600E-H_4G_HAT
https://www.waveshare.com/wiki/SIM7600E-H_4G_HAT
https://github.com/buildroot/buildroot/blob/2022.02/board/raspberrypi/genimage-raspberrypi3-64.cfg
https://github.com/buildroot/buildroot/blob/2022.02/board/raspberrypi/genimage-raspberrypi3-64.cfg
https://github.com/buildroot/buildroot/blob/2022.02/board/raspberrypi/genimage-raspberrypi3-64.cfg
https://doi.org/10.1007/s12652-019-01197-2
https://doi.org/10.1007/s12652-019-01197-2
https://u-boot.readthedocs.io/en/latest/
https://github.com/lategoodbye/rpi-zero/issues/43
https://github.com/lategoodbye/rpi-zero/issues/43
https://github.com/raspberrypi/linux/tree/0efbe86e7248ad9b80a42b37a91c44860f91eee4
https://github.com/raspberrypi/linux/tree/0efbe86e7248ad9b80a42b37a91c44860f91eee4
https://doi.org/10.1109/HPCA.2017.32
https://doi.org/10.1109/26.103043
https://gpsd.gitlab.io/gpsd/cgps.html
https://github.com/gnuradio/greps/blob/main/grep-0015-remove-swig.md
https://github.com/gnuradio/greps/blob/main/grep-0015-remove-swig.md
https://github.com/muccc/gr-iridium/issues/125
https://github.com/muccc/gr-iridium/issues/125

Bibliography

[44] Vector-optimized libary of kernels, https://www.libvolk.org/. (visited on
03/29/2022).

[45] Gnu radio issue 5455, https://github.com/gnuradio/gnuradio/issues/
5455. (visited on 03/29/2022).

[46] Mirror of the satos buildroot fork, https://github.com/MartB/buildroot-
satos. (visited on 03/29/2022).

[47] Gr-iridium source code repository, https://github.com/muccc/gr-iridium/
tree/2022-02-02_maint-3.9. (visited on 03/29/2022).

[48] Scipy - website, https://scipy.org/. (visited on 03/29/2022).

[49] Buildroot patchworks python-scipy, https://patchwork.ozlabs.org/project/
buildroot / patch / 20220222125724 . 11079 - 4 - guillaume . bressaix @
gmail.com/. (visited on 03/29/2022).

[50] Networkmanager, https://networkmanager.dev/. (visited on 03/29/2022).

[51] Go d-bus bindings for networkmanager, https://github.com/Wifx/gonetworkmanager.
(visited on 03/29/2022).

[52] Linux wpa_supplicant, https : / / w1 . fi / wpa _ supplicant/. (visited on
03/29/2022).

[53] Cdsteinkuehler/br2rauc: Buildroot + rauc, https://github.com/cdsteinkuehler/
br2rauc. (visited on 03/29/2022).

[54] Rauc reference, https://rauc.readthedocs.io/en/latest/reference.
html. (visited on 03/29/2022).

[55] Go d-bus, https://github.com/godbus/dbus. (visited on 03/29/2022).

[56] Introduction to dbus, https://www.freedesktop.org/wiki/IntroductionToDBus/.
(visited on 03/29/2022).

[57] Gpsd, https://gpsd.gitlab.io/gpsd/gpsd.html. (visited on 03/29/2022).

[58] Haos buildroot external makefile, https://github.com/home-assistant/
operating-system/blob/7.5/Makefile. (visited on 03/29/2022).

[59] L.-C. Duca, A. Duca, and C. Popescu, “Ota secure update system for iot
fleets,” International Journal of Advanced Networking and Applications, vol. 13,
no. 03, pp. 4988–4992, 2021. DOI: 10.35444/ijana.2021.13307.

[60] Rauc - uboot.sh, https://github.com/rauc/rauc/blob/v1.6/contrib/
uboot.sh. (visited on 03/29/2022).

85

https://www.libvolk.org/
https://github.com/gnuradio/gnuradio/issues/5455
https://github.com/gnuradio/gnuradio/issues/5455
https://github.com/MartB/buildroot-satos
https://github.com/MartB/buildroot-satos
https://github.com/muccc/gr-iridium/tree/2022-02-02_maint-3.9
https://github.com/muccc/gr-iridium/tree/2022-02-02_maint-3.9
https://scipy.org/
https://patchwork.ozlabs.org/project/buildroot/patch/20220222125724.11079-4-guillaume.bressaix@gmail.com/
https://patchwork.ozlabs.org/project/buildroot/patch/20220222125724.11079-4-guillaume.bressaix@gmail.com/
https://patchwork.ozlabs.org/project/buildroot/patch/20220222125724.11079-4-guillaume.bressaix@gmail.com/
https://networkmanager.dev/
https://github.com/Wifx/gonetworkmanager
https://w1.fi/wpa_supplicant/
https://github.com/cdsteinkuehler/br2rauc
https://github.com/cdsteinkuehler/br2rauc
https://rauc.readthedocs.io/en/latest/reference.html
https://rauc.readthedocs.io/en/latest/reference.html
https://github.com/godbus/dbus
https://www.freedesktop.org/wiki/IntroductionToDBus/
https://gpsd.gitlab.io/gpsd/gpsd.html
https://github.com/home-assistant/operating-system/blob/7.5/Makefile
https://github.com/home-assistant/operating-system/blob/7.5/Makefile
https://doi.org/10.35444/ijana.2021.13307
https://github.com/rauc/rauc/blob/v1.6/contrib/uboot.sh
https://github.com/rauc/rauc/blob/v1.6/contrib/uboot.sh

	Introduction
	Objective
	Motivation
	Outline

	DISCOSAT fundamentals
	Goals
	Stakeholders
	Requirements and constraints
	Maintainability / Adaptability
	System requirements
	Hardware constraints

	System overview

	Literature Review
	Distributed Computing Projects
	Folding@Home
	RIPE Atlas

	Operating Systems
	Limitations
	Buildroot

	DISCOSAT ASSN
	Design
	Aspects not covered
	Sensor Network
	Probe
	System and peripheral management
	On-Device Processing

	Implementation
	Development status
	SATOS - External Tree
	Hardware and Peripherals
	Basic operating system setup
	Time/Location synchronisation
	GNU Radio
	Network connectivity
	OTA-Updates
	APOGEE - Client daemon

	Usage
	Image building
	Initial installation
	Probe access
	Data capture

	Usecase analysis for SATOS
	Useability
	Adding new packages
	Modifying configurations
	Adding new boards
	Firmware Updates

	Maintainability
	Adaptability
	Operating system size

	Future Work
	Work areas
	Pending implementations

	Conclusion
	Acronyms
	Source code listings
	Logs and Configs

