
Automatically Detecting
and Mitigating Issues in

Program Analyzers

Thesis approved by
the Department of Computer Science
University of Kaiserslautern-Landau
for the award of the Doctoral Degree

Doctor of Engineering (Dr.-Ing.)

to

Muhammad Numair Mansur

Date of Defense: March 31, 2023

Dean: Christoph Garth

Reviewer: Maria Christakis

Reviewer: Rupak Majumdar

Reviewer: Michael Pradel

DE-386

Abstract
In recent years, the formal methods community has made significant progress towards the
development of industrial-strength static analysis tools that can check properties of real-world
production code. Such tools can help developers detect potential bugs and security vulnerabilities
in critical software before deployment. While the potential benefits of static analysis tools are
clear, their usability and effectiveness in mainstream software development workflows often
comes into question and can prevent software developers from using these tools to their full
potential. In this dissertation, we focus on two major challenges that can limit their ability to be
incorporated into software development workflows.

The first challenge is unintentional unsoundness. Static program analyzers are complicated
tools, implementing sophisticated algorithms and performance heuristics. This makes them
highly susceptible to undetected unintentional soundness issues. These issues in program
analyzers can cause false negatives and have disastrous consequences e.g., when analyzing
safety critical software. In this dissertation, we present novel techniques to detect unintentional
unsoundness bugs in two foundational program analysis tools namely SMT solvers and Datalog
engines. These tools are used extensively by the formal methods community, for instance,
in software verification, systematic testing, and program synthesis. We implemented these
techniques as easy-to-use open source tools that are publicly available on Github. With the
proposed techniques, we were able to detect more than 55 unique and confirmed critical
soundness bugs in popular and widely used SMT solvers and Datalog engines in only a few
months of testing.

The second challenge is finding the right balance between soundness, precision, and perfor-
mance. In an ideal world, a static analyzer should be as precise as possible while maintaining
soundness and being sufficiently fast. However, to overcome undecidability issues, these tools
have to employ a variety of techniques to be practical for example, compromising on the sound-
ness of the analysis or approximating code behavior. Static analyzers therefore are not trivial to
integrate into any usage scenario with different program sizes, resource constraints and SLAs.
Most of the times, these tools also don’t scale to large industrial code bases containing millions
of lines of code. This makes it extremely challenging to get the most out of these analyzers and
integrate them into everyday development activities, especially for average software develop-
ment teams with little to no knowledge or understanding of advanced static analysis techniques.
In this dissertation we present an approach to automatically tailor an abstract interpreter to
the code under analysis and any given resource constraints. We implemented our technique
as an open source framework, which is publicly available on Github. The second contribution
of this dissertation in this challenge area is a technique to horizontally scale analysis tools
in cloud-based static analysis platforms by splitting the input to the analyzer into partitions
and analyzing the partitions independently. The technique was developed in collaboration with
Amazon Web Services and is now being used in production in their CodeGuru service.

i

Acknowledgements
During the past few years, I met many people who, directly or indirectly,
supported me through this time. I would like to thank them all.

First and foremost, I am very grateful to my advisor Maria Christakis
for her continuous support, kindness, patience, and generous feedback.
Without her, this thesis would not have been possible. Thank you Maria for
giving me the opportunity of being your first Ph.D. student and for being
an amazing mentor, colleague, teacher, and friend. I hope you are proud of
this work. It was a pleasure working with you and I hope we will continue
to collaborate in the future.

I am also very grateful to Valentin Wüstholz, who was a close collab-
orator during my Ph.D. years. This work would not have been the same
without him. Thank you Valentin for your insightful comments, feedback,
and ideas.

I also want to express my gratitude towards Nico Rosner and Martin
Schäf, with whom I had a great internship experience at Amazon Web
Services.

I would also like to thank my co-authors: Thomas Cottenier, Antonio
Filieri, Matthias Heizmann, Linghui Luo, Benjamin Mariano, Jorge A.
Navas, Nico Rosner, Martin Schäf, Christian Schilling, Aritra Sengupta,
Willem Visser, and Fuyuan Zhang. I am also thankful to Irmak Saglam
for all the help and support and to all my friends, colleagues, and ex-
colleagues at MPI-SWS, especially Aman, Ana, Anne, Ashwani, Azalea,
Burcu, Cedric, Clothilde, Damien, Daniel, Felix, Filip, Hasan, Iason, Ivan
G., James, Khushraj, Kimaya, Laura, Leo, Lovro, Mariam, Mahmoud,
Marco M., Marco P., Marko, Mehrdad, Michalis, Murat, Nastaran, Nina,
Rajarshi, Ram, Rosa, Satya, Simin, Sofia, Soham, Stratis, Utkarsh, and
Xuan.

I also want to thank the reviewers Maria Christakis, Rupak Majumdar,
and Michael Pradel for taking the time to review this dissertation and to
the head of my PhD committee Annette Bieniusa.

Many thanks to our amazing administrative staff at MPI-SWS, including
Corinna, Geraldine, Mouna, Roslyn, Susanne, Vera, Mary-Lou, Christian,
Pascal, Tobias, Torsten, and Andy.

Lastly, I would like to thank my parents, my brother, and my sister for
their eternal love, prayers, and support. Wherever I am today, it’s because
of them.

This dissertation is dedicated to my late grandfather Sheikh M. Amin.
He is one of the biggest inspirations of my life. I hope he is proud of me.

ii

List of Publications
Related Publications
This dissertation is based on the following publications.

1. Muhammad Numair Mansur, Benjamin Mariano, Maria Christakis, Jorge
A. Navas, and Valentin Wüstholz. Automatically tailoring abstract interpre-
tation to custom usage scenarios. In CAV, volume 12760 of LNCS, pages
777–800. Springer, 2021.

2. Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and
Fuyuan Zhang. Detecting critical bugs in SMT solvers using blackbox
mutational fuzzing. In ESEC/FSE, pages 701–712. ACM, 2020.

3. Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz.
Metamorphic testing of datalog engines. In ESEC/FSE, pages 639–650.
ACM, 2021.

4. Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz.
Dependency-Aware Metamorphic Testing of Datalog Engines. Accepted in
ISSTA, ACM, 2023.

5. Maria Christakis, Thomas Cottenier, Antonio Filieri, Linghui Luo, Muham-
mad Numair Mansur, Lee Pike, Nico Rosner, Martin Schäf, Aritra Sen-
gupta, and Willem Visser. Input splitting for cloud-based static application
security testing platforms. In ESEC/FSE, pages 1367–1378. ACM, 2022.

Other Publications
The following paper was published during my PhD studies, but is not included in
this dissertation.

1. Maria Christakis, Matthias Heizmann, Muhammad Numair Mansur, Chris-
tian Schilling, and Valentin Wüstholz. Semantic fault localization and sus-
piciousness ranking. In TACAS, volume 11427 of LNCS, pages 226–243.
Springer, 2019.

iii

Contents

1 Introduction 2
1.1 Detecting Unintentional Unsoundness Bugs in Program Analyzers 5

1.1.1 Detecting Soundness Bugs in SMT Solvers 7
1.1.2 Detecting Soundness Bugs in Datalog Engines 8

1.2 Balancing Soundness, Precision, and Performance in Static Analysis 10
1.2.1 Maximizing Precision while Adhering to Time Constraints 11
1.2.2 Splitting Analysis Inputs to Balance Soundness, Precision,

and Performance . 12
1.3 Outline and Publication Details 14

I Detecting Unintentional Unsoundness 15

2 Detecting Critical Soundness Bugs in SMT Solvers 17
2.1 Introduction . 17
2.2 Overview . 19
2.3 Our Approach . 23

2.3.1 Fuzzing Technique . 25
2.3.2 Instance Minimization 26

2.4 Implementation . 27
2.5 Experimental Evaluation . 28

2.5.1 Solver Selection . 28
2.5.2 Logic Selection . 29
2.5.3 Benchmark Selection 29
2.5.4 Experimental Setup . 31
2.5.5 Experimental Results 31

2.6 Threats to Validity . 36
2.7 Related Work . 37
2.8 Summary and Remarks . 39

3 Metamorphic Testing of Datalog Engines Using Conjunctive Queries 40
3.1 Introduction . 40
3.2 Overview . 42
3.3 Background . 45

iv

3.4 Metamorphic Transformations 48
3.5 ADD Transformations . 48
3.6 MOD Transformations . 52
3.7 REM Transformations . 53

3.7.1 Transformation Sequences 55
3.8 Beyond Conjunctive Queries 56

3.8.1 NEG Transformation 57
3.9 Implementation . 58
3.10 Experimental Evaluation . 58

3.10.1 Experimental Setup . 59
3.10.2 Experimental Results 59

3.11 Threats to Validity . 64
3.12 Related Work . 64
3.13 Summary and Remarks . 66

4 Dependency-Aware Metamorphic Testing of Datalog Engines 67
4.1 Introduction . 67
4.2 Background . 68

4.2.1 Datalog Programs . 69
4.2.2 Precedence Graphs . 70

4.3 Overview . 71
4.4 Graph Annotator . 73
4.5 Graph Transformer . 75

4.5.1 Graph Rewrite Rules 75
4.5.2 Specifying Metamorphic Transformations 77
4.5.3 Example Metamorphic Transformations 79

4.6 Implementation . 84
4.7 Experimental Evaluation . 85

4.7.1 Setup . 86
4.7.2 Results . 86
4.7.3 Threats to Validity . 89

4.8 Related Work . 90
4.9 Summary and Remarks . 90

II Balancing Soundness, Precision, and Performance 91

5 Automatically Tailoring Abstract Interpretation to Custom Usage
Scenarios 93
5.1 Introduction . 93
5.2 Overview . 95
5.3 A Generic Abstract Interpreter 97
5.4 Our Technique . 99

5.4.1 Recipe Optimization 99

v

5.4.2 Recipe Evaluation . 100
5.4.3 Recipe Generation . 101

5.5 Experimental Evaluation . 103
5.5.1 Implementation . 104
5.5.2 Benchmark Selection 104
5.5.3 Results . 105
5.5.4 Threats to Validity . 113

5.6 Related Work . 113
5.7 Summary and Remarks . 114

6 Input Splitting for Cloud-Based Static Application Security Testing
Platforms 116
6.1 Introduction . 116
6.2 Motivating Example . 119
6.3 The SPLITMERGE Strategy . 122
6.4 Experimental Evaluation . 126

6.4.1 Experimental Settings 127
6.4.2 Experimental Results 129

6.5 Related Work . 134
6.6 Summary and Remarks . 136

7 Conclusion and Future Work 138

References 141

vi

List of Algorithms

1 Core fuzzing procedure in STORM. 24
2 Depth-minimization procedure in STORM. 26
3 ADD transformations . 50
4 MOD transformations . 52
5 REM transformations . 55
6 Optimization engine. 100
7 A recipe-generator instantiation. 102
8 Generate initial partitions . 124
9 Split . 125
10 Merge partitions . 126

vii

List of Figures

1.1 A simple program demonstrating the undecidability of live vari-
able analysis. 11

2.1 Overview of the three STORM phases. 20
2.2 Original seed instance from SMT-COMP 2019 on the top, and

simplified instance revealing critical bug in Z3’s Z3str3 string
solver on the bottom. 21

2.3 Simplified instance revealing critical bug in Z3’s
dom-simplify tactic on the top, and logically equiva-
lent instance not revealing the bug on the bottom. 22

2.4 Median number of iterations to find bugs with different configura-
tions of STORM. Each bar corresponds to a configuration with a
certain depth and assertion bound. 33

2.5 Median time (in seconds) to find bugs with different configura-
tions of STORM. Each bar corresponds to a configuration with a
certain depth and assertion bound. 34

3.1 A simple Datalog program. 42
3.2 Pictorial view and transitive closure of edge. 43
3.3 Overview of our approach. 44
3.4 Generated program snippet for testing µZ. 45
3.5 Generated program snippet for testing Soufflé. 45
3.6 Containment mapping θ from Q1 to Q2 induces a mapping of

subgoals. No mapping exists from Q2 to Q1. 47
3.7 Example of ADDEQU transformation. 49
3.8 Example of ADDCON transformation. 51
3.9 Example of MODEXP transformation. 51
3.10 Example of MODCON transformation. 53
3.11 Example of REMEXP transformation. 54
3.12 Example of REMEQU transformation. 56
3.13 All bugs reported in the three Datalog engines from May 1, 2020

to Feb 15, 2021. 62
3.14 Generated program snippet for testing DDlog. 63

4.1 Precedence graph (a) for a simple Datalog program (b). 70

viii

4.2 Overview of our approach. 72
4.3 Annotated precedence graph for generating the program of Fig. 4.1. 74
4.4 An example EQU-AddRelNode transformation. 79
4.5 An example EQU-AddRelEdges transformation. 80
4.6 An example EQU-AddSelfEdge transformation. 81
4.7 An example CON-AddRelEdge transformation. 82
4.8 An example EXP-AddRelEdge transformation. 84

5.1 Overview of our framework. 96
5.2 Generic architecture of an abstract interpreter. 98
5.3 Comparing logico-numerical domains in CRAB. A domain d1 is

less precise than d2 if there is a path from d1 to d2 going upward,
otherwise d1 and d2 are incomparable. 103

5.4 Comparison of the number of assertions verified with the best
recipe generated by each optimization algorithm and with the
default recipe, for varying timeouts. 107

5.5 Comparison of the number of assertions verified by a tailored vs.
the default recipe. 108

5.6 Comparison of the total time (in sec) that each algorithm requires
for all iterations, for varying timeouts. 108

5.7 Comparison of the number of assertions verified with the best
recipe generated by the different optimization algorithms, for
different numbers of iterations. 109

5.8 Effect of different settings on the precision and performance of
the abstract interpreter. (DW: NUM DELAY WIDEN, NI: NUM -
NARROW ITERATIONS, WT: NUM WIDEN THRESHOLDS, AS:
array smashing, B: backward analysis, D: abstract domain, O:
ingredient ordering). 110

5.9 Occurrence of domains (in %) in the best recipes for all assertion
types. 111

5.10 Difference in the safe assertions across commits. 112

6.1 Simplified version of an OWASP test that uses a shared class. The
method doSomething is referenced 347 times in different OWASP
tests. 121

6.2 Dependency graphs of P. 123
6.3 LOC of the 17 open source Python projects with dependency

analysis and analysis time used by Bandit. 132
6.4 Time used by dependency analysis compared to time used by Bandit.134

ix

List of Tables

2.1 Classes of bugs in SMT solvers. GT stands for ground truth and
SR for solver result. 19

2.2 The tested logics per solver and the number of seed instances per
logic. 30

2.3 Previously unknown, unique, and confirmed critical bugs found
by STORM in the tested SMT solvers. 32

2.4 Size of original and minimized bug-revealing instances. Instance
size is shown in terms of the number of bytes / number of asser-
tions / maximum formula depth. 35

2.5 Code coverage increase as more instances are generated by STORM. 36

3.1 Query bugs detected by queryFuzz. 59
3.2 By-product bugs detected by queryFuzz. 61
3.3 Categorization of Soufflé bugs into the components in which they

were found. 62

4.1 Remaining metamorphic transformations implemented in DL-
Smith (grouped by oracles EQU, CON, and EXP). 78

4.2 Query bugs detected by DLSmith. 87
4.3 Code coverage achieved by seeds alone, queryFuzz, DLSmith

with empty seeds, and DLSmith. L represents line coverage, and F
function coverage. 89

4.4 Average running time (in seconds) of DLSmith when executing its
first two phases. 89

5.1 CRAB settings and their possible values as used in our experi-
ments. Default settings are shown in bold. 104

5.2 Overview of projects. 105
5.3 Benchmark characteristics (20 files per project). The last three

columns show the number of functions, assertions, and LLVM
instructions in the analyzed files. 106

6.1 Score (based on precision and recall) and analysis time for several
SAST tools on the OWASP Benchmark v1.1. Data taken from the
OWASP Benchmark public repository. 120

x

6.2 Comparing both SIZELIMITING and SPLITMERGE to baselines
on OWASP, Juliet and Maven. The percentages in the rows
for SIZELIMITING and SPLITMERGE strategies correspond to the
reduction (or gain) in the number of findings, total time and mem-
ory usage when compared with NoSplit-UT. Best Possible La-
tency column shows the speedup achieved with SIZELIMITING

and SPLITMERGE strategies. In the cases where NoSplit-UT
failed to give a result within 24 hours, we report the speedup as ∞x
and the number of findings as N/A. 130

6.3 Timeout, crash and success rates of analysis runs. 131

1

Chapter 1

Introduction

The importance of correct, robust, and secure software systems is increasingly
vital for the smooth functioning of our society. From remote working and online
education to autonomous vehicles and space travel, software plays a profound
role in our modern way of life. Although these systems are incredibly effective
in understanding, computing, and manipulating complex data, they do have one
weakness: they are developed by human beings. And humans make mistakes.
Since developing these software systems is a notoriously difficult task, any rea-
sonably complex piece of software inevitably contains bugs. Depending on the
application domain, these bugs can have serious consequences. For example, in
2022 Tesla Motors had to recall 130,000 vehicles due to a software issue in its
infotainment system which could cause the CPU to overheat and affect critical
functions, increasing the risk of a crash. In 2016, anonymous hackers were able to
exploit a combination of vulnerabilities in The DAO’s (Decentralized Autonomous
Organization) smart contracts [182] and were able to steal over $50 million USD
worth of Ether from the Ethereum blockchain. Finding bugs in modern software
systems is, therefore, a question of safeguarding life and property.

Recent years have seen tremendous progress in the development and industrial
adoption of rigorous techniques and tools to automatically detect bugs in software
and ensure its correctness. Static program analysis is one such technique to
automatically reason about the runtime behavior of a program without actually
running it. It is a powerful approach that can be used to detect a wide range of
security vulnerabilities and enables program optimization in compilers, automatic
parallelization and, if accurate enough, correctness verification. Static program
analyzers are tools that implement program analysis techniques and are used to
analyze other programs for flaws.

Over the past couple of years, the formal methods community has made sig-
nificant progress towards the development of industrial-strength static program
analyzers that can check properties of real-world production code. These tools can
help developers detect potential bugs and security vulnerabilities in critical soft-
ware systems before deployment without executing them. Tools such as Coverity

2

Scan [2], FindBugs [21], Klocwork [7], fault prediction [158] and Infer [59, 60]
analyze hundreds of thousands of lines of open-source and industrial code every
day. Since 2014, using Infer, developers at Meta were able to catch and fix over
100,000 issues before they ever reached production code [87]. Infer participates
as a bot during the code review process for Android and iOS apps for Facebook,
Instagram, Messenger, and WhatsApp, as well as on their backend C++ and Java
code.

While the potential benefits of analyzers are obvious, their usability and ef-
fectiveness in mainstream software development workflows still often comes
into question and can prevent average software development teams from using
these tools to their full potential. This is because the undecidability of the halting
problem makes formal reasoning about program properties difficult. In fact, Rice
has shown that all non-trivial questions about the behavior of a program are unde-
cidable [219]. One common theme in static analysis is that to remain computable,
one can only provide approximate answers. In practice, this is achieved with a
sacrifice in terms of soundness or completeness. This means that a static analysis
technique might either miss a bug (false negative) or report correct code as having
a bug (false positive), might not handle certain language features or can only
report certain types of bugs. Developers, however, expect static program analyzers
to satisfy a particularly challenging set of requirements [68]:

– Soundness: The tool should not report any false negatives.

– Precision: The tool should be as precise as possible and return a minimum
number of false positives.

– Scalability: The tool should scale to millions of lines of code.

– Automation: The tool should be push-button, i.e., it should be able to
configure itself automatically to the code under analysis and any given
resource constraints.

– Efficiency/performance: The tool should not get in the way of the develop-
ment cycle, i.e., it should report the results within the SLA (service-level
agreement), which is typically minutes.

Decades of research have yielded the discovery of novel algorithms, data struc-
tures, and design principles that make static program analysis more precise,
scalable, and faster than ever before. Practical program analyzers have to make
tradeoffs (e.g., in soundness, precision, or performance) to maintain a delicate bal-
ance between returning the minimum number of false negatives/positives, scaling
to very large industrial codebases, being highly automatic and having minimum
overhead for the developers. Designing, implementing and deploying program
analyzers, therefore, is an extremely challenging task. This makes them extremely
complicated pieces of software with a high likelihood of having bugs themselves
(challenge 1) or tradeoffs not suitable for every piece of code under every usage

3

scenario (challenge 2). In this dissertation, we focus our attention on these two
challenges that can limit the ability of static program analyzers to be incorporated
into mainstream software development workflows.

Challenge 1 is unintentional unsoundness. Program analyzers are complicated
tools, implementing sophisticated algorithms and performance heuristics. This
makes them highly susceptible to undetected unintentional soundness issues.
These issues in program analyzers can cause false negatives and have disastrous
consequences e.g., when analyzing software used for electronic voting, financial
systems, transportation, or secure communications. For example, Astrée was used
to verify the absence of runtime errors in flight control software for Airbus A340
and A380 [45, 80]. Unintentional soundness bugs in Astree’s implementation
could result in the verification of buggy flight control software. Bugs in program
analyzers may also hamper developer productivity and trust. Rigorous testing
of program analyzers before they are used to verify properties of real-world
production code is, therefore, an important but still largely unexplored area of
research in the testing and formal methods communities.

Challenge 2 is finding the right balance between soundness, precision, and
performance. In an ideal world, static analysis should be as precise as possible
while maintaining soundness and being sufficiently fast. However, to overcome
undecidability issues, static analysis tools have to employ a variety of techniques
to be practical, for example, compromising on the soundness of the analysis or
approximating code behavior. If compromising soundness is not an option, we
have to rely on code approximation techniques to improve performance. Typically,
the closer the approximation is to the actual code behavior, the less efficient and
the more precise the analysis is, that is, the fewer false positives it reports. For less
tight approximations, the analysis tends to become more efficient but less precise.
For very large codebases, approximation might still not be a viable solution and
in order to improve performance, many analysis techniques therefore also often
trade soundness in order to improve performance, making them efficient and
effective bug and vulnerability detection tools. Finding the right balance between
the precision, soundness, and performance of the analysis results for a particular
code base under certain resource constraints and different usage scenarios to
get the most out of a program analyzer can be a challenging task for software
developers, most of whom lack an advanced understanding of these analyzers.

4

1.1. Detecting Unintentional Unsoundness Bugs
in Program Analyzers

Program analyzers are complex tools that implement complex algorithms and
data structures. Typically, analyzers are implemented as a pipeline of interacting
components e.g., lexical analysis of the source code, parsing the source code and
generating an intermediate representation, applying optimizations and transfor-
mations to the intermediate representation and passing it along to often several
self-contained core analysis components which are already very complex by
themselves. This means that program analyzers are all the more likely to contain
correctness issues themselves. The most dangerous kind of correctness issue in
an analyzer is a critical bug, which we define as a bug leading to a wrong anal-
ysis result, e.g., returning ‘correct’ for an ‘incorrect’ program. Critical bugs in
program analyzers can have disastrous consequences for the security and safety
of our modern digital infrastructure. For example, Amazon Web Services (AWS)
developed and uses Zelkova [22], a static Access Control Policy (ACP) analyzer.
Users specify ACPs to define access permissions to IT resources in the cloud. An
ACP expressively specifies what resources can be accessed, by whom, and under
what conditions. A policy misconfiguration can result in unauthorized access
to critical resources, posing a serious security risk to any organization. Zelkova
works by encoding ACPs into SMT formulas and then uses off-the-shelf SMT
solvers Z3 [84] and CVC4 [32] (we use program-analyzer components, like SMT
solvers, as analyzers in this dissertation) to verify their properties. Zelkova is
extensively used both within AWS and by its customers to verify ACPs across
a wide range of AWS services and is invoked many millions of times daily. A
critical bug in Z3 (returning ‘SAT’ for an ‘UNSAT’ formula) can result in Zelkova
verifying a misconfigured ACP. Therefore, it is vitally important to guarantee the
reliability of program analyzers.

The difficulties in correctly implementing program analyzers lead to several
challenges in proving the absence of critical bugs in their implementation. In
the past, efforts to fully verify large critical software systems have proven to be
quite expensive. For example, CompCert [156], a verified high-assurance com-
piler for a subset of C language, which is about 15K lines of code, required
6 person-years to write 100K lines of specifications. Different components in
modern program analysis toolchains, cumulatively, are already surpassing a mil-
lion lines of code [30, 84, 120]. Fully verifying a program analysis toolchain is,
therefore, practically infeasible. Automated test-generation techniques, on the
other hand, can be effectively used to find hard-to-detect critical bugs in modern
program analyzers without providing absolute correctness guarantees. Over the
years, many techniques have been proposed to facilitate the automated testing of
complex program analyzers. However, each of these techniques comes with its
own limitations.

Random fuzzing [187] is a black box software testing technique that works by

5

generating massive amounts of normal and abnormal inputs and then detecting
exceptions by feeding the generated inputs and monitoring the execution states.
Compared to other techniques, fuzzing is easier to quickly deploy and requires
little to no knowledge of the target application. However, the semantic richness
of the input that analyzers have to deal with puts random fuzzing at a major
disadvantage. Generating input programs with non-trivial behavior with random
fuzzing is very difficult. However, to reach deep into the analyzer’s pipeline,
such non-trivial programs are often required. For example, an input program
must first pass all the syntactic, semantic, and type checks before it can reach
the transformation and analysis phase. Another limitation is that this approach
can only detect crash bugs where the analyzer does not return any result. Such
bugs are far less serious than critical bugs, since they can, for instance, result in
verifying incorrect safety-critical code. Fortunately, the semantics of the source
language taken as input by program analyzers is usually specified, either informally
in a language specification or formally, e.g., SMT-LIB. Grammar based testing
[73,176,243] techniques use these language specifications to generate syntactically
and semantically valid inputs, for example, Csmith [266], which generates random
C programs to stress-test compilers. Csmith has also been applied to find bugs in
static analyzers, for example, Farma-C [82].

Specification-based testing (e.g., [56, 185]) involves specifying a precise and
detailed description of an analyzer’s functionality and testing it against the pro-
vided specification. Similar to verification, fully specifying large software systems
is highly non-trivial and can require a prohibitive amount of time and effort.

Differential testing of program analyzers [141, 148, 207, 262] involves running
multiple analyzers that are expected to produce the same output on a single input
program. If disagreement exists on the analysis results, then a bug in at least
one of the analyzers has been detected. Differential testing-based approaches
have proven to be very effective in detecting bugs in program analyzers. This
approach has the advantage that no oracle for test results is needed. The key
idea this technique exploit is that multiple deterministic implementations of the
same specification must all produce the same result for the same input. If two
implementations produce different outputs, one of them must be faulty. In case of
three or more implementations, majority voting can be used to determine which
implementations are wrong. However, differential testing is not well suited for
emerging domains where multiple implementations of a new analysis technique
do not exist yet or for domains without standardization where no two analyzers
accept the same input. This is the case with Datalog engines [112]. For Datalog,
there is no unified syntax and each engine supports a different dialect of the
language.

Metamorphic testing [55, 168, 169, 263, 271] works by producing test cases
after applying some kind of metamorphosis to the existing test cases, using known
properties of the program analyzer under test to infer a relationship between the
output of the original and the transformed test case. The relationship between
the outputs is characterized with metamorphic relations and these relations are

6

used to circumvent the oracle problem. Metamorphic testing lies in the middle
of the spectrum between specification-based and differential testing. It relies on
the idea that it is easier to reason about the relations between the results of an
analyzer than to fully formalize its input-output behavior. For example, consider
an SMT solver S and two logical formulas ϕ and φ . Then running the solver on ϕ

i.e., S(ϕ) should yield the same satisfiability result as S(ϕ ∨φ) if φ is known to
be unsatisfiable.

1.1.1. Detecting Soundness Bugs in SMT Solvers

SMT solvers are extensively used in formal methods, most notably in software
verification (e.g., Boogie [30] and Dafny [155]), systematic test case generation
(e.g., KLEE [58] and Sage [107]) and program synthesis (e.g., Alive [165]).
Solvers, such as CVC4 [32] and Z3 [84], evaluate the satisfiability of SMT
instances and are extremely complex in their implementation. Due to their high
degree of complexity, it is all the more likely that SMT solvers contain correctness
issues, and due to their wide applicability in software reliability, these issues may
be catastrophic.

A bug in an SMT solver is called a refutational soundness bug if the solver
returns unsat (i.e., unsatisfiable) for a satisfiable (sat) SMT instance. A bug
is called a solution soundness bug if the solver returns sat (i.e., satisfiable)
for unsatisfiable instances. We call refutational soundness bugs critical for two
main reasons. First, such bugs may cause unsoundness in program analyzers
that rely on SMT solvers. Second, it is much harder to safeguard against these
bugs. Specifically, consider that, when an instance is found to be sat, the solver
typically provides a model, that is, an assignment to all free variables in the
instance such that it is satisfiable. Therefore, such bugs could be detected by
simply evaluating the instance under the model generated by the solver (assuming
that the model is correct). If this evaluation returns false, then there is a solution
soundness bug.

In the dissertation, we present a technique for detecting critical bugs in any SMT
solver [169]. Our technique does not require a grammar to synthesize instances
from scratch. Instead, it takes inspiration from state-of-the-art mutational fuzzers
(e.g., AFL [11]) and generates new SMT instances by mutating existing ones,
called seeds. The key novelty is that our approach generates satisfiable instances
from any given seed. As a result, our technique detects a critical bug whenever an
SMT solver returns unsat for one of our generated instances. We implement our
technique in a tool called STORM1, which has the additional ability to effectively
minimize the size of bug-revealing instances to facilitate debugging. The tool is
open source and publicly available on Github.

1https://github.com/Practical-Formal-Methods/storm

7

https://github.com/Practical-Formal-Methods/storm

1.1.2. Detecting Soundness Bugs in Datalog Engines

Datalog [112] is a declarative, logic-based query language that is syntactically
a subset of Prolog. Datalog is expressive, yet concise, and as a result, it is used
as a domain-specific language in several application domains, such as natural-
language processing [194], bio-informatics [145, 232], big-data analytics [118,
134], networking [164], program analysis [48, 83, 110, 195, 261], robotics [213],
generic graph databases [239], and security [49, 50, 111, 251].

Datalog queries are evaluated by Datalog engines e.g., Soufflé [136], bddb-
ddb [260], DDlog [228], µZ [125]. These engines are complex, especially since
they typically employ advanced query transformation, optimization, and compila-
tion techniques to improve their performance and scalability. As a result of this
complexity, Datalog engines are prone to bugs. Such bugs, called query bugs, may
compromise the soundness of upstream program analyzers, having potentially
detrimental consequences in safety-critical settings. As an example, imagine a
static analyzer that uses Datalog to implement a may-alias (or must-alias) analy-
sis. A query bug that results in computing fewer (or more) aliases could lead to
missing critical bugs in the analyzed software.

Finding such bugs, however, is impossible without an oracle, that is, a specifi-
cation of the expected results. Differential testing [180] could overcome the oracle
problem by running multiple Datalog engines on the same input programs and
looking for disagreement in the results. In our context, this would be extremely
difficult since there is no unified syntax for Datalog, and each engine understands
a (very) different dialect; for instance, Soufflé [136] enables large-scale, logic-
oriented programming, whereas Formulog [37] provides support for constructing
and reasoning about SMT formulas.

In this dissertation, we present the first two automatic test-case generation
approaches for detecting query bugs in Datalog engines. The proposed techniques
use metamorphic testing [66] to circumvent the lack of an oracle. In our context,
metamorphic testing would transform a Datalog program such that the result of
the transformed program has an a-priori known relationship to the result of the
original program. For example, the new result could be equivalent to the original
result, it could be contained in the original result, or it could contain the original
result.

The first approach is based on concepts in database theory, and in particular,
formal properties of conjunctive queries. Despite their simplicity, conjunctive
queries constitute an important class of database queries due to their theoretical
properties. Specifically, while many fundamental problems in query optimization
and minimization are computationally hard—or even undecidable—for general
forms of queries, they are feasible for conjunctive queries. An example of such a
problem is query containment. The key insight behind our approach is to leverage
properties of conjunctive queries to develop metamorphic transformations for
full-blown Datalog programs.

8

In the second approach, we propose a general metamorphic testing technique
that leverages rich precedence information stored in the precedence graph of a
Datalog program. Every Datalog program has an associated precedence graph that
captures dependencies between relations in the program. Precedence graphs are
used, for example, to determine if the Datalog program is stratifiable. Stratification
allows us to provide well-defined semantics to evaluate a Datalog program and
hence most Datalog engines only support stratifiable Datalog programs.

We implemented both approaches in two different tools and were able to
detect 29 query bugs in mature Datalog implementations. The first approach is
implemented in a tool called queryFuzz2 and the second approach is implemented
in a tool called DLSmith3. Both tools are open-source and publicly available on
Github.

2https://github.com/Practical-Formal-Methods/queryFuzz
3https://github.com/Practical-Formal-Methods/dlsmith

9

https://github.com/Practical-Formal-Methods/queryFuzz
https://github.com/Practical-Formal-Methods/dlsmith

1.2. Balancing Soundness, Precision, and Perfor-
mance in Static Analysis

Static analysis is the process of checking interesting program properties without
actually running the program, in order to improve code quality or detect errors.
In contrast to dynamic analysis, where we reason about a specific execution or a
set of executions, in sound static analysis, we reason about all executions of the
program. This allows us to reason about the universal properties of a program that
hold for all inputs. Static analysis is used to detect errors ranging from a simple
crash bug to severe security vulnerabilities. Following is a non-exhaustive list of
errors that can be detected using static analysis:

– Null pointer dereference, i.e., a pointer with NULL value is used as though
it contains a valid memory address.

– Buffer overflow, i.e., the amount of data in a memory location exceeds its
storage capacity.

– Array out of bounds, i.e., accessing an array index that is negative, greater
than, or equal to the size of the array.

– Memory leaks, i.e., program fails to return memory which is no longer
needed.

– Invalid arithmetic operation, e.g., division by zero.

– Non-terminating loop, i.e., the exit condition of a loop will never evaluate
to false.

– SQL injection, i.e., an insertion of a malicious executable SQL query is
possible via the input data from an untrusted client.

Static analysis, however, has fundamental limitations. Consider for example a
live variable analysis. A variable x is live at a statement s iff on some execution
of the program, x is used after s is executed without being redefined. For the
program in Fig. 1.1, it might seem obvious that the variable x is live at line 2, but
suppose that function f() never returns. In that case, the value of x is not needed.
In other words, x is live if f() halts. Since the halting problem is undecidable,
so is the live variable problem, at least if we want precise results. In fact, Rice’s
theorem [219] shows that all interesting or non-trivial questions about the behavior
of a program are undecidable.

To be practical, program analyzers have to employ a number of techniques, for
example, compromising on the soundness or completeness of the analysis. That
means that the analyzer might miss a bug (false negative) or report the correct
code as having a bug (false positive). Some analyzers approximate code behavior.
Performance is another reason for this approximation. As mentioned before,

10

1 read(y);
2 x = y;
3 f();
4 return x;

Figure 1.1: A simple program demonstrating the undecidability of live vari-
able analysis.

software developers expect program analyzers to return a minimum number of
false positives while scaling to millions of lines of code and returning the results
in minutes. Program analyzers, therefore, use sophisticated heuristics that take
into account, for example, the size of the codebase, the allowed resources (e.g.,
time and memory), or the tolerance to false positives, etc. But these heuristics can
and sometimes do fail, hampering developer’s productivity and damaging trust in
the tool.

As the size, complexity, and importance of software systems grow, so does the
need for practical and easy-to-use tools that can provide us with a mechanism to
check software correctness and increase the confidence of both the developers and
the users. Large software companies are making significant efforts in integrating
automatic static analysis tools in their software development life cycle. Infer is
a static analysis tool developed at Meta that reports bugs ranging from memory
safety, to concurrency, to security, and many more specialized errors suggested by
Meta developers [87]. Infer is integrated into the continuous integration system at
Meta and participates as a bot during the code review process.

Static analysis tools however are not trivial to integrate into any usage scenario
with different program sizes, resource constraints, and SLAs. Most of the time,
these tools also don’t scale to large industrial code bases containing millions of
lines of code. This makes it extremely challenging to get the most out of these
analyzers and integrate them into everyday development activities, especially for
average software development teams with little to no knowledge or understanding
of advanced static analysis techniques.

1.2.1. Maximizing Precision while Adhering to Time Con-
straints

Recent years have seen tremendous progress in the development and industrial
adoption of static analyzers. Notable successes include Meta’s Infer [59, 60]
and AbsInt’s Astrée [45]. Many analyzers, such as these, are based on abstract
interpretation [76], a technique that abstracts the concrete program semantics
and reasons about its abstraction. Most abstract interpreters offer a wide range of
abstract domains that impact the precision and performance of the analysis.

In addition to the domains, abstract interpreters usually provide a large number

11

of options, for instance, whether backward analysis should be enabled or how
quickly a fixpoint should be reached. In fact, the sheer number of option combina-
tions is bound to overwhelm users, especially non-expert ones. To make matters
worse, the best option combinations may vary significantly depending on the code
under analysis and the resources, such as time or memory, that users are willing
to spend.

In light of this, we suspect that most users resort to using the default options
that the analysis designer pre-selected for them. However, these are definitely not
suitable for all code. Moreover, they do not adjust to different stages of software
development, e.g., running the analysis in the editor should be much faster than
running it in a continuous integration (CI) pipeline, which in turn should be
much faster than running it prior to a major release. As a result, the widespread
adoption of abstract interpreters is severely hindered, which is unfortunate since
they constitute an important class of practical analyzers.

To address this issue, in this dissertation, we present the first technique that
automatically tailors a generic abstract interpreter to a particular piece of code
and specific resource constraints. The key idea behind our technique is to phrase
the problem of customizing the abstract-interpretation configuration to a given
usage scenario as an optimization problem. Specifically, different configurations
are compared using a cost function that penalizes those that prove fewer properties
or require more resources. The cost function can guide the configuration search of
a wide range of existing optimization algorithms.

We implement our technique in a framework called TAILOR, which configures
a generic abstract interpreter for a given usage scenario using a given optimization
algorithm. This enables the abstract interpreter to prove as many properties as
possible within the resource limit without requiring any expertise on behalf of the
user. TAILOR is open-source and publicly available on Github4.

1.2.2. Splitting Analysis Inputs to Balance Soundness, Pre-
cision, and Performance

With the increasing popularity of DevSecOps development practices, Static Ap-
plication Security Testing (SAST) is increasingly becoming the responsibility of
developers rather than security experts. Many development teams do not have
the expertise to configure and maintain their own static analysis infrastructure
and prefer SAST platforms that offer a variety of static analyses on demand. This
is creating a growing demand for easy-to-use cloud-based Static Application
Security Testing (SAST) platforms such as the Software Assurance Marketplace
(SWAMP) [151] or ShipShape [229], that provide a simple interface through
which developers can submit their code and receive recommendations on how to
improve their code.

4https://github.com/Practical-Formal-Methods/tailor.

12

https://github.com/Practical-Formal-Methods/tailor

Internally, such platforms may employ a variety of static analysis tools, such
as [10, 13, 59, 60, 71, 214, 220] and are typically run as a cloud-based service,
in which individual analysis tools are containerized and instantiated on-demand
on cloud-based machines. Developers expect such platforms to handle inputs
(codebases) of arbitrary size and complexity, and still deliver results within a
certain time window. This is especially true for customers that integrate SAST
platforms in their continuous integration and deployment (CI/CD) pipelines.

To maintain a predictable response time, SAST platforms face the challenge
that they need to scale to different input sizes, and that, every time they add a
new analysis tool, they have to ensure that the new tool does not slow down the
response time for existing customers. Vertical scaling by adding more memory or
faster machines is not a cost-effective solution to the risk of running out of time
or space when analyzing complex inputs. Provisioning machines large enough to
handle the most complex analysis inputs would make the service unnecessarily
expensive for customers that analyze smaller and simpler codebases.

Much research has been conducted on various optimization strategies to im-
prove the scalability of specific analysis engines, such as summarization of method
calls [20,217,226], caching and reuse of partial results from prior analyses [5,19],
and incremental analysis [72, 253]. However, when operating a SAST platform,
modifying the individual tools may not be an option because the tools might be
proprietary or maintaining forks with custom modifications may be too costly.

In this dissertation, we propose a technique to horizontally scale analysis tools
in a static analysis platform by splitting the input codebase into partitions such
that the amount of code in each partition is below a provided bound. The different
partitions can then be analyzed on parallel cloud instances of a given analysis
tool. Depending on the complexity of the static analyzer, the partition size can be
adjusted to curtail the overall response time. Such a horizontal scaling strategy
can be configured per analysis tool, but without modifying the tool itself. More
complex tools can be configured to handle smaller pieces of code than lightweight
tools to ensure that the overall latency of the platform does not change when a
new complex tool gets added.

We evaluate how this splitting process affects the precision and soundness
of different static analysis tools and how the computational cost of analyzing
partitions in parallel relates to the cost of analyzing the entire input program. The
experimental results show that simple splitting strategies can effectively reduce the
running time and memory usage per partition without significantly affecting the
findings produced by the tool. The technique was developed in collaboration with
Amazon Web Services and is now being used in production in their CodeGuru
service5.

5https://aws.amazon.com/codeguru/

13

https://aws.amazon.com/codeguru/

1.3. Outline and Publication Details
This dissertation is based on publications that I authored with my collaborators
over the course of my Ph.D. studies. The following list presents an outline of the
dissertation and the publication upon which each chapter is based on:

1. Chapter 2 presents STORM, a novel blackbox mutational fuzzing technique
for detecting critical soundness bugs in SMT solvers. In three months of
testing, STORM detected 29 critical soundness bugs in three mature SMT
solvers and 15 different logics. This work was published in ESEC/FSE’20
under the title Detecting Critical bugs in SMT Solvers Using Black Box
Mutational Fuzzing [169].

2. Chapter 3 presents queryFuzz, the first metamorphic-testing approach
for detecting critical bugs in Datalog engines. queryFuzz detected 13
previously unknown critical bugs in three popular Datalog engines. This
work was published in ESEC/FSE’21 under the title Metamorphic Testing
of Datalog Engines [168].

3. Chapter 4 presents DLSmith, a powerful and general metamorphic testing
framework for Datalog engines. DLSmith overcomes the limitations in
queryFuzz and is the most comprehensive and effective metamorphic test-
ing approach for detecting critical bugs in Datalog engines to date. DLSmith
detected 16 previously unknown soundness bugs in four Datalog engines.
Accepted in ISSTA’23 under the title Dependency-Aware Metamorphic
Testing of Datalog Engines [171].

4. Chapter 5 presents TAILOR, a tool that automatically tailors a generic
abstract interpreter to the code under analysis and any given resource con-
straints. This work was published in CAV’21 under the title Automatically
Tailoring Abstract Interpretation to Custom Usage Scenarios [170].

5. Chapter 6 presents an approach to scale static analysis tools in cloud-
based static analysis platforms. The approach is currently being used at
Amazon Web Services in their CodeGuru service. This work was published
in ESEC/FSE’22 under the title Input Splitting for Cloud-Based Static
Application Security Testing Platforms [69].

14

Part I

Detecting Unintentional
Unsoundness

15

16

Chapter 2

Detecting Critical Soundness
Bugs in SMT Solvers

Formal methods use SMT solvers extensively for deciding formula satisfiability,
for instance, in software verification, systematic test generation, and program
synthesis. However, due to their complex implementations, solvers may contain
critical bugs that lead to unsound results. Given the wide applicability of solvers
in software reliability, relying on such unsound results may have detrimental
consequences. In this chapter, we present STORM, a novel blackbox mutational
fuzzing technique for detecting critical bugs in SMT solvers. We ran our fuzzer
on seven mature solvers and found 29 previously unknown critical bugs. STORM
was also used in testing new features of popular solvers before deployment.

2.1. Introduction
The Satisfiability Modulo Theories (SMT) problem [33] is the decision problem
of determining whether logical formulas are satisfiable with respect to a variety of
background theories. More specifically, an SMT formula generalizes a Boolean
SAT formula by supplementing Boolean variables with predicates from a set of
theories. As an example, a predicate could express a linear inequality over real
variables, in which case its satisfiability is determined with the theory of linear
real arithmetic. Other theories include bitvectors, arrays, and integers [101], to
name a few.

SMT solvers, such as CVC4 [32] and Z3 [84], are complex tools for evaluating
the satisfiability of SMT instances. A typical SMT instance contains assertions
of SMT formulas and a satisfiability check (see Figs. 2.2 and 2.3 for examples).
SMT solvers are extensively used in formal methods, most notably in software
verification (e.g., Boogie [30] and Dafny [155]), systematic test case generation
(e.g., KLEE [58] and Sage [107]), and program synthesis (e.g., Alive [165]). Due

17

to their high degree of complexity, it is all the more likely that SMT solvers contain
correctness issues, and due to their wide applicability in software reliability, these
issues may be detrimental.

Tab. 2.1 shows classes of bugs that may occur in SMT solvers. We restrict the
classification to bugs that manifest themselves as an incorrect solver result. For
bugs in class A, the solver is unsound and returns unsat (i.e., unsatisfiable) for
instances that are satisfiable. These bugs are known as refutational soundness
bugs in the SMT community. Class B refers to bugs where the solver returns sat
(i.e., satisfiable) for unsatisfiable instances. These bugs are known as solution
soundness bugs. A solver is incomplete when it returns unknown for an instance
that lies in a decidable theory fragment. We categorize such bugs in class C.
Finally, bugs in class D indicate crashes, where the solver does not return any
result, for example, in case of an assertion failure or a segmentation fault.

We call bugs in class A critical for two main reasons. First, such bugs may
cause unsoundness in program analyzers that rely on SMT solvers. As an example,
consider a software verifier (e.g., Dafny [155]) or a test case generator (e.g.,
KLEE [58]) that checks reachability of an error location by querying an SMT
solver. If the solver unsoundly proves that the error is unreachable (e.g., returns
unsat for the path condition to the error), then the verifier will verify incorrect
code and the testing tool will not generate inputs that exercise the error.

Second, it is much harder to safeguard against bugs in class A than bugs in
other classes. Specifically, consider that, when an instance is found to be sat, the
solver typically provides a model, that is, an assignment to all free variables in the
instance such that it is satisfiable. Therefore, bugs in class B could be detected by
simply evaluating the instance under the model generated by the solver (assuming
that the model is correct). If this evaluation returns false, then there is a B bug.
Bugs in class C are detected whenever the solver returns unknown for an instance
that lies in a decidable theory fragment, and bugs in class D are detected when the
solver crashes.

In this chapter, we present a general blackbox fuzzing technique for detecting
critical bugs in any SMT solver. Our technique does not require a grammar
to synthesize instances from scratch. Instead, it takes inspiration from state-of-
the-art mutational fuzzers (e.g., AFL [11]) and generates new SMT instances
by mutating existing ones, called seeds. The key novelty is that our approach
generates satisfiable instances from any given seed. As a result, our fuzzer detects
a critical bug whenever an SMT solver returns unsat for one of our generated
instances. We implement our technique in an open-source tool called STORM,
which has the additional ability to effectively minimize the size of bug-revealing
instances to facilitate debugging.

Contributions. This chapter makes the following contributions:

1. We present a novel blackbox mutational fuzzing technique for detecting
critical bugs in SMT solvers.

18

Table 2.1: Classes of bugs in SMT solvers. GT stands for ground truth and
SR for solver result.

GT
SR

sat unsat unknownCrash

sat A C D
unsat B C D

2. We implement our technique in an open-source fuzzer1 that was used for
testing new features of solvers before deployment.

3. We evaluate the effectiveness of our fuzzer on seven mature solvers and 43
logics. Over a three months testing phase, we found 29 previously unknown
critical bugs in three solvers (or nine solver variants) and 15 different logics.

Outline. The rest of this chapter is organized as follows. The next section gives
an overview of our approach. Sect. 2.3 explains the technical details, and Sect. 2.4
describes our implementation. We present our experimental evaluation in Sect. 2.5,
discuss related work in Sect. 2.7, and give concluding remarks in Sect. 2.8.

2.2. Overview
To give an overview of our fuzzing technique for SMT solvers, we first describe
a few interesting examples of STORM in action and then explain what happens
under the hood on a high level.

In action. One of the critical bugs2 found by STORM was in Z3’s QF LIA
logic, which stands for quantifier-free linear integer arithmetic. We opened a
GitHub issue to report this bug, which resulted in an eight-comment discussion
between two Z3 developers on how to resolve it. Note that eight comments (or in
fact any discussion) on how to fix a bug is typically uncommon. From the GitHub
issues we have seen, developers simply acknowledge an issue or additionally ask
for a minimized SMT instance. The issue was closed but re-opened a day later
with more comments on what still needs to be fixed. The issue was closed for the
last time three days after that. Based on our understanding and explanations by
the developers, this bug was triggered by applying Gomory’s cut on an input that
did not satisfy a fundamental assumption of the cut. STORM was able to generate
an instance that violated this assumption and led to misapplying Gomory’s cut.
The fix in Z3 included changing the implementation of the cut.

1https://github.com/Practical-Formal-Methods/storm
2https://github.com/Z3Prover/z3/issues/2871

19

https://github.com/Practical-Formal-Methods/storm
https://github.com/Z3Prover/z3/issues/2871

assert f

check-sat

Phase 1: Seed fragmentation

Seed S

∧

f1

f2 f3

∨

Formula f

f1:F f2:F f3:T

f:F

Initial pool

Phase 2: Formula
generation

¬f1:T f2 ∧ f3:F

Construction pool

¬f1 ∧ f3:T

¬(¬f1 ∧ f2):T

assert ¬f2
assert ¬f1 ∧ f3
check-sat

Phase 3: Instance
generation

New instance

¬f2:T

f2 ∨ f3:T

Figure 2.1: Overview of the three STORM phases.

STORM detected another critical bug3 in Z3’s Z3str3 string solver [40]. Accord-
ing to a developer of Z3str3, the bug existed for a long time before STORM found
it. During this time, it remained undetected even though Z3str3 was being tested
with fuzzers exclusively targeting string solvers [46, 55]. A simplified version of
the SMT instance that revealed the bug is shown in Fig. 2.2b. (We will discuss it
in detail later in this section.)

A third critical bug4 was found in Z3’s tactic for applying dominator sim-
plification rules. The instance that was generated by STORM and revealed the

3https://github.com/Z3Prover/z3/issues/2994
4https://github.com/Z3Prover/z3/issues/3052

20

https://github.com/Z3Prover/z3/issues/2994
https://github.com/Z3Prover/z3/issues/3052

1 (declare-const S String)
2 (assert (str.in.re S (re.++ re.allchar (re.++
3 (str.to.re "7;") (re.++ re.allchar
4 (str.to.re "aa"))))))
5 (assert (not (str.in.re S (re.union re.allchar
6 (str.to.re "X'jafa")))))
7 (check-sat)

(a) Original instance.

1 (declare-const S String)
2 (assert
3 (let ((a (str.in.re S (re.++ re.allchar (re.++
4 (str.to.re "7;") (re.++ re.allchar
5 (str.to.re "aa"))))))
6 (let ((b (not (str.in.re S (re.union re.allchar
7 (str.to.re "X'jafa"))))))
8 (let ((c (and (not b) (not a))))
9 (not c))))))

10 (check-sat)

(b) Bug revealing instance.

Figure 2.2: Original seed instance from SMT-COMP 2019 on the top, and
simplified instance revealing critical bug in Z3’s Z3str3 string solver on the
bottom.

bug spanned 194 lines. The minimization component of STORM reduced this
instance to 15 lines. A simplified version of the instance is shown in Fig. 2.3b.
(We discuss it later in this section.) A developer of the buggy tactic asked us which
application generated this instance, thinking that it was a tool he developed during
his PhD thesis. When we mentioned that it was STORM, he replied “What? Your
random generator could have done my PhD thesis?? &@#%, you should have
told me sooner :)”. This demonstrates STORM’s ability to generate realistic SMT
instances that can be difficult to distinguish from instances produced by client
applications of SMT solvers.

In Sect. 2.5, we describe in more detail our experience of using STORM to
test both mature solver implementations as well as new features before their
deployment.

Under the hood. We now give a high-level overview of our fuzzing technique,
which operates in three phases. Fig. 2.1 depicts each of these phases.

The first phase, seed fragmentation, takes as input a seed SMT instance S. For
instance, imagine an instance with multiple assertions. Each assertion contains
a logical formula, such as f in the figure, potentially composed of Boolean sub-

21

1 (declare-fun A () Bool)
2 (declare-fun B () Bool)
3

4 (assert (not B))
5 (assert (not (and (not A) B)))
6 (assert A)
7

8 (check-sat-using dom-simplify)

(a) Original instance.

1 (declare-fun A () Bool)
2 (declare-fun B () Bool)
3

4 (assert (and (not B) A))
5

6 (check-sat-using dom-simplify)

(b) Bug revealing instance.

Figure 2.3: Simplified instance revealing critical bug in Z3’s dom-simplify
tactic on the top, and logically equivalent instance not revealing the bug on
the bottom.

formulas (i.e., predicates), such as f2∨ f3, f1, f2, and f3 in the figure. Initially,
STORM generates a random assignment of all free variables in the formulas in
S. Then, STORM recursively fragments the formulas in S into all their possible
sub-formulas. For example, f is broken down into f1 and f2∨ f3, each of these
is in turn broken down into its Boolean sub-formulas, and so on. The valuation
(i.e., truth value) of each (sub-)formula, T or F , is computed based on the random
assignment. All formulas together with their valuations are inserted in an initial
pool as shown in the figure.

The second phase, formula generation, uses the formulas in the initial pool
to build new formulas. The valuation of each new formula is computed based
on the valuations of its constituent initial formulas. All new formulas with their
valuations are inserted in a construction pool as shown in the figure. For instance,
initial formulas f2 and f3 are used to construct a new formula f2∧ f3.

The third phase, instance generation, uses formulas from both pools to generate
new SMT instances. The reason for having the two pools is to be able to control the
frequency with which initial and constructed formulas appear in the new instances.
Instances generated during this phase have a different Boolean structure than
the seeds. However, their basic building blocks, that is, the initial formulas that
could not be fragmented further, remain unchanged. This is what allows STORM
to generate realistic instances. In addition, all new instances are satisfiable by

22

construction.
Therefore, a critical bug is detected whenever an SMT solver returns unsat for

a STORM-generated instance. In such a case, STORM uses instance minimization
to minimize the size of the instance revealing the bug.

Examples. Fig. 2.2a shows a seed instance from the international SMT com-
petition SMT-COMP 2019 [6]. Starting from this seed, STORM generated the
(simplified) instance shown in Fig. 2.2b, which revealed the critical bug in Z3str3
described above. Z3str3 derives length constraints from regular-expression mem-
bership predicates. The bug that STORM exposed here is that such a length
constraint, which is implied by membership in a regular expression, was not
asserted by the string solver.

It is easy to see that the first asserted formula in Fig. 2.2a corresponds to
variable a in Fig. 2.2b, while the second asserted formula in Fig. 2.2a corresponds
to variable b in Fig. 2.2b. Therefore, the seed essentially checks for satisfiability
of a∧ b. In Fig. 2.2b, c is equivalent to ¬a∧¬b, and the instance checks for
satisfiability of ¬c, thus, of a∨b. This shows that even small mutations to the
Boolean structure of a formula can be effective in revealing critical issues in
solvers. In fact, such mutations can result in triggering different parts of a solver’s
implementation, e.g., different simplifications, heuristics, or optimizations.

This is also evidenced by the example in Fig. 2.3. The instance in Fig. 2.3a
reveals the critical bug in Z3’s dom-simplify tactic described earlier. It essen-
tially checks the satisfiability of ¬B∧¬(¬A∧B)∧A, which is logically equivalent
to ¬B∧ A. Observe, however, that the logically equivalent formula, shown in
Fig. 2.3b, does not trigger the bug.

Consequently, the benefit of fuzzing the Boolean structure of seed instances is
two-fold. First, it is effective in detecting critical issues in solvers. Such issues
are by definition far more serious and complex than other types of bugs, such as
crashes, since they can, for instance, result in verifying incorrect safety-critical
code. Second, fuzzing only the Boolean structure of seeds helps generate realistic
SMT instances. This is confirmed by the above comments on the tactic bug from
the Z3 developer who thought that the STORM instance was generated by his
own PhD tool. This was also confirmed by other solver developers with whom we
interacted.

2.3. Our Approach
We now describe our fuzzing technique and how it solves two key challenges in de-
tecting critical bugs in SMT solvers: (1) how to generate non-trivial SMT instances,
and (2) how to determine if a critical bug is exposed. The latter demonstrates how
STORM addresses the oracle problem [31] in the context of soundness testing for
solvers. Finally, we describe how we minimize bug-revealing instances to reduce
their size. This step significantly facilitates debugging for solver developers.

23

Algorithm 1: Core fuzzing procedure in STORM.
1 procedure POPULATEINITIALPOOL(S,Dmax)
2 A← GETASSERTS(S)
3 M← RANDASSIGNMENT(A)
4 P← EMPTYPOOL()
5 for i = pred ∈ S to
6 if ¬EXCEEDSDEPTH(pred,Dmax) then
7 v← ISTRUE(M,pred)
8 P← ADD(P,pred,v)
9 return P

10

11 procedure FUZZ(S,NC,NM,Dmax,Amax)
12 // Phase 1: Seed fragmentation
13 Pinit ← POPULATEINITIALPOOL(S,Dmax)
14

15 // Phase 2: Formula generation
16 Pconstr ← EMPTYPOOL()
17 while SIZE(Pconstr)< NC do
18 f1,v1 ← RANDFORMULA(Pinit,Pconstr)
19 op← RANDOP()
20 if op = AND then
21 f2,v2 ← RANDFORMULA(Pinit,Pconstr)
22 f ← AND(f1, f2)
23 v← v1∧ v2
24 else
25 f ← NOT(f1)
26 v←¬v1

27 if ¬EXCEEDSDEPTH(f ,Dmax) then
28 Pconstr ← ADD(Pconstr, f,v)
29

30 // Phase 3: Instance generation
31 B← EMPTYLIST()
32 m← 0
33 while m < NM do
34 // Number of generated assertions
35 ac← (RANDINT()%Amax)+1
36 A← EMPTYLIST()
37 while 0 < ac do
38 f ,v← RANDFORMULA(Pinit,Pconstr)
39 if ¬v then
40 // Negation of f to guarantee assertion satisfiability
41 f ← NOT(f)
42 A← APPEND(A, f)
43 ac← ac−1
44 // Invocation of SMT solver under test
45 r← CHECKSAT(A)
46 // Test oracle
47 if r = UNSAT then
48 B← APPEND(B,A)
49 m← m+1
50 return B

24

2.3.1. Fuzzing Technique
Given an SMT instance as seed input, our fuzzing approach proceeds in three
main phases: (1) seed fragmentation, (2) formula generation, and (3) instance
generation. Seed fragmentation extracts sub-formulas from the seed. These will be
used as building blocks for generating new formulas in the second phase. Lastly,
instance generation creates new, satisfiable SMT instances based on the generated
formulas, invokes the SMT solver under test on each of these instances, and uses
the solver result as part of the test oracle to detect critical bugs.

Alg. 1 describes these three phases in detail. Function FUZZ takes the initial
seed S and several additional parameters that bound the fuzzing process (explained
below). As a first step, the function populates an initial pool Pinit of formulas
(line 13) with formula fragments of the seed S.

To this purpose, function POPULATEINITIALPOOL extracts all assertions in
the seed and generates a random assignment M, i.e., an assignment of values to
free variables. In our implementation, we use a separate SMT solver (i.e., different
from the one under test) to generate a model for the assertions (or their negation
if the assertions are unsatisfiable). Next, we iterate over all predicates (i.e., tree-
shaped Boolean sub-formulas as in Fig. 2.1) in the seed. We use assignment M to
evaluate those predicates for which the tree depth does not exceed a bound Dmax.
This valuation v is crucial for subsequent phases of the fuzzing process, and we
add both the formula pred and v to the initial pool, which is essentially a map
from formulas to valuations. Note that, by fragmenting the seed, the initial pool
already contains a large number of non-trivial formulas that would be difficult to
generate from scratch (e.g., with a grammar-based fuzzer).

In the second phase, we populate the construction pool Pconstr by adding NC
new formulas of maximum depth Dmax. These formulas are generated randomly
by selecting one of two Boolean operators, logical AND (lines 21–23) and NOT
(lines 25–26). Note that this set of operators is functionally complete, thus allowing
us to generate any Boolean formula. We construct a new formula f by conjoining
two existing formulas (f1 and f2 with valuations v1 and v2) in the case of AND and
negating an existing formula (f1 with valuation v1) in the case of NOT . Existing
formulas are randomly selected from the pools. Before adding the resulting
formula f to the construction pool, we derive its valuation v from the valuations
of its sub-formulas (lines 23 and 26).

In essence, the second phase enriches the set of existing formulas by generating
new ones without requiring a complete grammar for all syntactic constructs.
Instead, we use a minimal, but functionally complete, grammar for Boolean
formulas. This significantly simplifies formula generation without sacrificing
expressiveness. Note that a separate pool for newly constructed formulas allows
having control over how many of them are used in the instances generated in the
third phase. In Fig. 2.2b, this step is responsible for generating the formulas on
lines 8 and 9 that ultimately amount to checking the satisfiability of a∨b.

Once the two pools are populated, we use them to generate NM SMT instances

25

Algorithm 2: Depth-minimization procedure in STORM.
1 procedure MINIMIZEDEPTH(S,NC,NM,Dmin,Dmax,Amax)
2 if Dmax ≤ Dmin then
3 return S
4 D← (Dmin +Dmax)/2
5 B← FUZZ(S,NC,NM,D,Amax)

6 if 0 < SIZE(B) then
7 Smin ← SELECTSEEDWITHSMALLESTDEPTH(B)
8 return MINIMIZEDEPTH(Smin,NC,NM,Dmin,D,Amax)

9 return MINIMIZEDEPTH(S,NC,NM,D+1,Dmax,Amax)

that we feed to the solver under test. To assemble a new instance A, we create up
to Amax assertions (ac on line 35) by randomly picking formulas from the pools. If
the valuation of a selected formula is true, we directly assert it, otherwise we assert
its negation. This ensures that all assertions are satisfiable. Of course, the same
holds for instance A consisting of these assertions in addition to a satisfiability
check. We now leverage this fact when feeding the SMT instance to the solver
under test (line 45). The oracle reveals a critical bug if the solver returns UNSAT .

2.3.2. Instance Minimization
In practice, our fuzzing technique often generates bug-revealing instances that
are very large, containing deeply nested formulas and several assertions. This can
considerably complicate debugging for solver developers.

Adapting established minimization techniques based on delta debugging [270]
might seem like a natural fit for this use case. However, the special nature of critical
bugs complicates this task in comparison to other classes of bugs, such as crashes.
For minimizing crashing instances, it is sufficient to minimize the original instance
(e.g., by dropping assertions) while preserving the crash. In contrast, for instances
that exhibit a critical bug, the behavior that should be preserved is more involved,
that is, the instance should be minimized such that the buggy solver still returns
unsat while the ground truth remains sat. This requires either satisfiability-
preserving minimizations or a trusted second solver that can act as a ground-truth
oracle by rejecting minimizations that do not preserve satisfiability. Unfortunately,
the only state-of-the-art delta debugger for SMT instances, ddSMT [198], does not
preserve satisfiability. (Note that ddSMT is the successor of deltaSMT [4], which
was used to minimize instances generated by FuzzSMT [51].) Moreover, a second
trusted solver is not always available (e.g., for new theories or solver-specific
features and extensions).

To overcome these limitations, we developed a specialized minimization tech-
nique that directly leverages the bounds of our fuzzing procedure to obtain smaller
instances (see Alg. 2 for depth minimization). By repeatedly running the fuzzing
procedure on a buggy seed instance, this algorithm attempts to find the minimum

26

values for Dmax and Amax that still reveal a critical bug. It uses binary search to first
minimize the number of assertions (analogous to MINIMIZEDEPTH in Alg. 2) and
subsequently the depth of asserted formulas. Note that the fuzzing procedure may
report multiple bug-revealing instances, and we recursively minimize the smallest
with respect to the bound being minimized (line 8). Our evaluation shows that this
technique works more reliably than leveraging ddSMT and a second solver (see
Sect. 2.5.5).

2.4. Implementation
Seeds. STORM uses the Python API in Z3 to manipulate SMT formulas for
generating new instances. It can, therefore, only fuzz instances within the logics
supported by Z3. In practice, this is not an important restriction since Z3 supports
a very large number of logics. Moreover, STORM requires seeds to be expressed
in an extension of the SMT-LIB v2 input format [9] supported by Z3. Note that
SMT-LIB is the standard input format used across solvers.

Random assignments. STORM uses Z3 to generate a random model for a
given seed (line 3 of Alg. 1). Note, however, that bugs in Z3 resulting in a wrong
model do not affect our fuzzer. In fact, given any assignment, our technique just
requires correct valuations for predicates in the initial pool. In theory, computing
these valuations is relatively straightforward since the assignment provides con-
crete values for all free variables; simply substituting variables with values should
be sufficient for quantifier-free predicates. In practice, we use Z3 to compute
predicate valuations and have not encountered any bugs in this solver component.

Random choices. Our implementation provides concrete instantiations of
functions RANDOP and RANDFORMULA from Alg. 1 as follows. RANDOP re-
turns AND with probability 50% and NOT otherwise. Function RANDFORMULA

selects a formula from one of the pools uniformly at random, but with probability
30% from the initial pool and from the construction pool otherwise.

Incremental mode. Many solvers support a feature called incremental mode.
It allows client tools to push and pop constraints when performing a large number
of similar satisfiability queries (e.g., checking feasibility of paths with a common
prefix during symbolic execution). To efficiently support this mode, solvers typi-
cally use dedicated algorithms that reuse results from previous queries; in fact,
SMT-COMP [6] features a separate track to evaluate these algorithms. To test
incremental mode, STORM is able to generate SMT instances that contain push
and pop instructions in addition to regular assertions.

27

2.5. Experimental Evaluation
In this section, we address the following research questions:

RQ1: How effective is STORM in detecting new critical bugs in SMT solvers?

RQ2: How effective is STORM in detecting known critical bugs in SMT solvers?

RQ3: How do the assertion and depth bounds of STORM impact its effectiveness?

RQ4: How effective is our instance minimization at reducing the size of bug-
revealing instances?

RQ5: To what extent do STORM-generated instances increase code coverage of
SMT solvers?

We make our implementation open source5. To support open science, we
include all data, source code, and documentation necessary for reproducing our
experimental results.

2.5.1. Solver Selection
We used STORM to test seven popular SMT solvers, which support the SMT-LIB
input format [9] and regularly participate in the international SMT competition
SMT-COMP [6]. Specifically, we selected Boolector [201], CVC4 [32], Math-
SAT5 [70], SMTInterpol [67], STP [102], Yices2 [91], and Z3 [84].

In addition to the above mature implementations, STORM was also used to test
new features of solvers. In particular, the developers of Yices2 asked us to test the
new bitvector theory in the MCSAT solver [138] of Yices2, which is based on the
model-constructing satisfiability calculus [85]. MCSAT is an optional component
of Yices2, which is dedicated to quantifier-free non-linear real arithmetic. STORM
did not find bugs in this new theory of MCSAT, and the theory was integrated
with the main version of Yices2 shortly after. In our experimental evaluation, it is
therefore tested as part of Yices2.

Moreover, the developers of Z3 asked us to test a new arithmetic solver (we
refer to it as Z3-AS), which they had been preparing for the last two years. It
came with better non-linear theories and replaced the legacy arithmetic solvers in
Z3. According to the Z3 developers, STORM could help expedite the integration
of this new feature by finding bugs early, which it did. Since Z3-AS was later
integrated in the main version of Z3, and we tested it independently, we include it
separately in our evaluation.

Due to the success of STORM in detecting intricate critical bugs in Z3-AS, the
Z3 developers described our fuzzer as being “extremely useful” and asked us to
test Z3’s debug branch (let us refer to it as Z3-DBG). Z3-DBG implemented a

5https://github.com/Practical-Formal-Methods/storm

28

https://github.com/Practical-Formal-Methods/storm

variety of new solver features in which STORM also detected a critical bug (see
Sect. 2.5.5).

Finally, the developers of the Z3str3 string solver [40] asked us to provide them
with STORM-generated string instances. They became aware of STORM since it
detected several critical issues in Z3str3, which we reported. Note that Z3str3 is
developed by the same group of people as StringFuzz [46]. We, therefore, suspect
that STORM found bugs in Z3str3 that StringFuzz could not find, especially since
StringFuzz does not target critical bugs. The STORM-generated instances that we
provided (in addition to the bug-revealing ones that we reported) were used as
a regression test suite during the development of performance enhancements in
Z3str3. According to a developer of Z3str3, our instances helped reveal critical
bugs introduced by these enhancements. Most of these bugs were due to missing
or incorrect axioms in Z3str3.

2.5.2. Logic Selection
In our experimental evaluation, for each solver, we identified well supported logics
based on its participation in SMT-COMP 2019 [6]. In certain cases, we also added
logics identified as error-prone by the solver developers, such as QF FP. In general
however, STORM can handle the intersection of all logics supported by the SMT-
LIB v2 input format and all logics supported by Z3. The latter constraint emerges
because our implementation relies on Z3’s APIs for generating the mutated SMT
instances (see Sect. 2.4).

Tab. 2.2 shows the tested logics for each solver. (The second column and second
to last row of the table should be ignored for now.) The logic abbreviations are
explained in the SMT-LIB standard [9], but generally speaking, the following
rules hold. QF stands for quantifier-free formulas, A for arrays, AX for arrays
with extensionality, BV for bitvectors, FP for floating-point arithmetic, IA for
integer arithmetic, RA for real arithmetic, IRA for integer real arithmetic, IDL
for integer difference logic, RDL for rational difference logic, L before IA, RA,
or IRA for the linear fragment of these arithmetics, N before IA, RA, or IRA for
the non-linear fragment, UF for the extension that allows free sort and function
symbols, S for strings, and DT for datatypes.

2.5.3. Benchmark Selection
For our experiments, we used as seeds all non-incremental SMT-LIB instances
in SMT-COMP 2019 [6]. We also used all SMT-LIB instances in the regression
test suites of CVC4, Yices2, and Z3. The second column of Tab. 2.2 shows how
many seeds correspond to each tested logic. The second to last row of the table
(“Unsp.”) refers to instances in which the logic is unspecified—the solver may
use any.

In general, we only tested each solver with logics, and thus instances, it supports.

29

Table 2.2: The tested logics per solver and the number of seed instances per
logic.

SMT Solvers
Logic Seeds Boolector CVC4 MathSAT5 SMTInterpol STP Yices2 Z3

ALIA 42 ✓ ✓ ✓
AUFNIA 3 ✓ ✓
LRA 2444 ✓ ✓ ✓
QF ALIA 42 ✓ ✓ ✓ ✓
QF AUFNIA 3 ✓ ✓ ✓
QF DT 1602 ✓ ✓
QF LRA 1049 ✓ ✓ ✓ ✓
QF RDL 261 ✓ ✓ ✓
QF UFIDL 444 ✓ ✓ ✓
QF UFNRA 38 ✓ ✓ ✓ ✓
UFDTLIA 327 ✓ ✓
AUFDTLIA 728 ✓ ✓
AUFNIRA 1490 ✓ ✓
NIA 14 ✓ ✓
QF ANIA 8 ✓ ✓ ✓
QF AX 555 ✓ ✓ ✓ ✓ ✓
QF FP 40418 ✓ ✓ ✓
QF NIA 23901 ✓ ✓ ✓ ✓
QF S 24323 ✓ ✓
QF UFLIA 580 ✓ ✓ ✓ ✓
UFLIA 9524 ✓ ✓ ✓
AUFLIA 3273 ✓ ✓ ✓
BV 5750 ✓ ✓ ✓
NRA 3813 ✓ ✓
QF AUFBV 49 ✓ ✓ ✓ ✓
QF BV 3872 ✓ ✓ ✓ ✓ ✓
QF IDL 843 ✓ ✓ ✓ ✓
QF NIRA 3 ✓ ✓ ✓ ✓
QF UF 7481 ✓ ✓ ✓ ✓
QF UFLRA 936 ✓ ✓ ✓ ✓
UF 7596 ✓ ✓ ✓
UFLRA 17 ✓ ✓ ✓
AUFLIRA 2268 ✓ ✓ ✓
LIA 388 ✓ ✓ ✓
QF ABV 8310 ✓ ✓ ✓ ✓
QF AUFLIA 1310 ✓ ✓ ✓
QF BVFP 17196 ✓ ✓ ✓
QF LIA 2104 ✓ ✓ ✓ ✓
QF NRA 4067 ✓ ✓ ✓ ✓
QF UFBV 1238 ✓ ✓ ✓ ✓
QF UFNIA 478 ✓ ✓ ✓ ✓
UFDT 4527 ✓ ✓
UFNIA 4446 ✓ ✓
Unsp. 5825 – – – – – – –

Total 193586 5 43 10 17 1 19 43

30

For seeds without a specified logic, we only generated mutations of those that
each solver could handle.

2.5.4. Experimental Setup
For our experiments, we used the following setting for STORM unless stated
otherwise: Dmax = 64, Amax = 64, NC between 200 and 1500, and NM between
300 and 1000 (see Alg. 1). Both NC and NM were adjusted dynamically within
the above ranges based on the size of the initial pool. The goal was to use larger
values for larger initial pools, and thus, larger seeds.

We performed all experiments on a 32-core Intel ® Xeon ® E5-2667 v2
CPU @ 3.30GHz machine with 256GB of memory, running Debian GNU/Linux
10 (buster).

Comparison with state of the art. Except for a single tool [55], all existing
SMT solver testing tools at the time did not use oracles to detect critical bugs. They,
therefore, required differential testing of multiple solvers to identify such bugs. In
RQ2, we evaluate the effectiveness of STORM at detecting existing critical bugs,
including the publicly reported bugs found by the most closely related tool at the
time [55]. Recall that this tool supports only the theory of strings.

2.5.5. Experimental Results
We now discuss our experimental results for each of the above research questions.

RQ1: New critical bugs. Tab. 2.3 shows critical bugs found by STORM in
the SMT solvers we tested between November 2019 and February 2020. The
first column of the table shows the solvers. We list Z3str3 separately as it is not
the default string solver in Z3. The second column denotes whether bugs were
found in the incremental mode of a solver, which essentially corresponds to a
different solver variant. The third column lists the logics in which bugs were
found, and the last column shows the number of bugs. During our three months
of testing, STORM detected 29 critical bugs in three mature solvers (or nine
solver variants) and 15 different logics.

All of these bugs were previously unknown, unique, and confirmed by the
solver developers. Out of the 29 critical bugs, 27 were fixed in the latest solver
versions at the time of writing this dissertation. Note that the bugs were only
detected by STORM-generated instances, i.e., none were detected by the seeds. In
addition to the bugs in the table, STORM was also able to detect known bugs as
well as other issues (i.e., of classes C and D) as a by-product, which we do not
report here.

The feedback from solver developers is very positive, and we have been dis-
cussing it throughout the chapter. As another example, a Yices2 developer told

31

Table 2.3: Previously unknown, unique, and confirmed critical bugs found by
STORM in the tested SMT solvers.

SMT Incremental Logics Critical
Solver Mode Bugs

MathSAT5
QF FP

2
QF BVFP

Yices2
QF UFIDL

2
QF UF

Yices2 ✓
QF UFIDL

2
QF UFLRA

Z3

QF UFLIA

8

QF BV
UF
LIA
QF BVFP
QF LIA

Z3 ✓
QF FP

3
QF S

Z3str3 QF S 6

Z3-AS

AUFNIRA

4
QF NIA
AUFLIRA
QF NRA

Z3-AS ✓ AUFNIRA 1

Z3-DBG QF NIA 1

us that STORM found real bugs and that it is especially useful to have the ability
to test the incremental mode of solvers. He also mentioned that they used to run
FuzzSMT [51] on all theories, and that now this fuzzer runs continuously on
new theories generating “infinite” instances. FuzzSMT, however, does not target
critical bugs, and for this reason, they ran VoteSMT [12] to differentially test
solvers and detect incorrect Yices2 results. Despite this, STORM detected four
new critical bugs in Yices2.

Another Yices2 developer commented on the severity of two of the bugs that
STORM found. He mentioned that one was in the pre-processing component and
“easy to fix (and an obvious mistake in retrospect) but it was in a part of Yices that
had probably not been exercised much”. “The other one was much more tricky to
trace and fix, it was related to a combination of features and optimization in the
E-graph, not localized to a single module”.

RQ2: Known critical bugs. In this research question, we evaluate the effec-
tiveness of STORM in reproducing known critical bugs. We, therefore, collected

32

4 8 16 32 64
0

250

500

750

1,000
939.60

528.50

420.80

169.00

76.10

853.40

728.70

485.50

169.80

53.60

995.50

703.70

528.60

190.30

54.40

947.40

724.10

559.60

197.80

54.20

975.30

762.30

451.80

227.00

46.30

Assertion bound Amax

N
um

be
r

of
ite

ra
tio

ns
to

bu
g

Depth bound Dmax 4 8 16 32 64

Figure 2.4: Median number of iterations to find bugs with different configu-
rations of STORM. Each bar corresponds to a configuration with a certain
depth and assertion bound.

all critical bugs that were reported for the solvers under test during the three-
month period between Nov 15 and Feb 15, 2020. We focused only on bugs with
a subsequent fix (i.e., closed issues on GitHub). Out of the seven solvers, we
exclude MathSAT5 because it is closed source, and bugs may only be reported via
email. We also exclude Boolector, SMTInterpol, and STP because no critical bugs
were reported for these solvers during the above time period. For the remaining
three solvers, CVC4, Yices2, and Z3, there were 6, 1, and 14 critical bugs with a
fix, respectively, after excluding all the bugs that we reported.

We ran STORM on the solver version in which each bug was found. Since
developers typically add fixed bugs to their regression tests, we removed all
seeds that revealed any of these bugs (without being mutated). We collected all
generated instances for which each solver incorrectly returned unsat. To ensure
that STORM actually found the reported bug (and not a different one), we ran all
bug-revealing instances against the first solver version with the corresponding fix.
If the solver now returned sat for at least one of the instances, we counted the
bug as reproduced.

For each of the three solvers, STORM was able to reproduce 1 (CVC4), 1
(Yices2), and 4 (Z3) critical bugs, so 6 out of a total of 21. Therefore, if STORM
had run on these solver versions, it would have prevented approximately
1/3 of the critical-bug reports in a three-month period. Given that during this
period we reported 10 additional bugs detected by STORM in these solvers, it is
possible that our fuzzer would have been able to reproduce more bugs if it had
run longer or if it was being run continuously.

We also ran STORM on the publicly reported critical bugs found by Bugariu
and Müller [55] (regardless of when they were reported). STORM was able to
reproduce them.

33

4 8 16 32 64
0

35

70

105

140

114.60

99.20

53.70

19.20
12.50

125.90

97.00

62.50

16.50
11.90

138.90

99.10

55.30

18.60

11.60

128.70

94.10

56.20

16.80
11.70

123.00

90.10

52.90

22.70

11.60

Assertion bound Amax

Ti
m

e
to

bu
g

(in
se

co
nd

s)
Depth bound Dmax 4 8 16 32 64

Figure 2.5: Median time (in seconds) to find bugs with different configurations
of STORM. Each bar corresponds to a configuration with a certain depth and
assertion bound.

RQ3: Fuzzing bounds. To evaluate the effect of the fuzzing bounds of
STORM, we only considered closed bugs. We used all 19 closed bugs reported
by us from RQ1 except for those in Z3-AS (the original commits could not be
retrieved due to a rebase in the branch) for a remaining of 14 bugs. In addition,
we used all reproduced bugs from RQ2 for a total of 21 bugs.

For each of these bugs, we randomly selected a seed file that had allowed
STORM to detect the bug in RQ1 or RQ2. We performed eight independent runs
of STORM (with random seeds different from the ones used in RQ1 and RQ2 to
avoid bias) to evaluate the effect of the different fuzzing bounds. STORM was
unable to reproduce one Yices2 bug from RQ1 with any of the eight random seeds;
we therefore do not include it in the results shown in Fig. 2.4.

For the assertion and depth bounds Amax and Dmax, we used five different
settings: 4, 8, 16, 32, and 64. Fig. 2.4 shows the median number of iterations (i.e.,
generated instances) until the bug was found for different combinations of these
settings. We can observe that a large assertion bound reduces the number of
iterations significantly (e.g., up to 12x for Dmax = 4). In contrast, the trend for
the depth bound is less clear, which suggests that it has a less significant effect
and is mostly useful for minimizing instances. We can observe very similar trends
when comparing the median time to find the bug (see Fig. 2.5).

RQ4: Instance minimization. We now evaluate the effectiveness of our
instance minimization. To this end, we collect all instances revealing the 20 bugs
of RQ3 that are generated by STORM with its default configuration (Sect. 2.5.4).

The results of minimizing these instances using binary search (BS) and delta
debugging (ddSMT [198]) are shown in Tab. 2.4. We perform eight independent
minimization runs and report median results. Instance size is measured in terms of
the number of bytes, the number of assertions, and the maximum formula depth
in an assertion. A dash for ddSMT means either that the instance could not be

34

Table 2.4: Size of original and minimized bug-revealing instances. Instance
size is shown in terms of the number of bytes / number of assertions / maxi-
mum formula depth.

Bug Unminimized Minimized Minimized
ID Instances by BS by ddSMT

1 23430/ 64/ 5 20801/ 61/ 5 321/ 4/ 0
2 3756/ 6/ 12 3756/ 6/ 12 –/ –/ –
3 9641/ 20/ 8 5276/ 19/ 9 –/ –/ –
4 66209/ 33/ 56 13086/ 8/ 2 –/ –/ –
5 64071/ 44/ 27 24326/ 24/ 6 –/ –/ –
6 37943/ 51/ 2 4247/ 5/ 0 575/ 4/ 0
7 19408/ 64/ 3 1025/ 5/ 2 –/ –/ –
8 19235/ 27/ 2 4002/ 5/ 0 –/ –/ –
9 23659/ 51/ 4 2004/ 5/ 0 –/ –/ –

10 4275/ 6/ 1 1514/ 5/ 1 –/ –/ –
11 39585/ 64/ 16 5832/ 16/ 2 –/ –/ –
12 22017/ 58/ 5 1013/ 5/ 2 –/ –/ –
13 180082/ 62/ 8 7210/ 5/ 2 –/ –/ –
14 7934/ 10/ 8 4431/ 10/ 5 –/ –/ –
15 72490/ 50/ 0 5455/ 5/ 2 –/ –/ –
16 35725/ 33/ 3 2591/ 5/ 2 –/ –/ –
17 17180/ 21/ 57 1146/ 5/ 0 421/ 1/ 0
18 10176/ 14/ 0 2586/ 14/ 0 –/ –/ –
19 16812/ 51/ 4 13137/ 33/ 6 –/ –/ –
20 16826/ 30/ 1 5163/ 5/ 1 601/ 7/ 0

minimized or that ddSMT does not support a construct in the instance. As outlined
in Sect. 2.3.2, we had to adapt ddSMT for this use case by invoking a second
solver to reject minimizations that would not preserve satisfiability; we used the
version of the solver that fixed the corresponding bug for this purpose.

Despite these adaptations, we observed that ddSMT could not minimize the
instances for bugs 2, 3, 4, 5, 13, 14, and 18. We suspect that its search space
of possible minimizations might not contain more complex transformations that
would be required to both preserve satisfiability and the bug. We observed the
same outcome when running ddSMT on instances that were first minimized using
binary search.

For bugs 10, 11, and 19, ddSMT does not support str.to.re and str.at,
which are supported by Z3str3. For bugs 7, 8, 9, 12, 15, and 16, ddSMT does not
support check-sat-using, which is supported by Z3. Recall that STORM
accepts seed instances expressed in the extension of the SMT-LIB format that is
supported by Z3 (Sect. 2.4), whereas ddSMT only supports the standard.

Overall, this experiment shows that our minimization procedure works more
reliably and is able to significantly reduce buggy instances (median reduction
of 82.7%). However, for the cases where both procedures produced results, the

35

Table 2.5: Code coverage increase as more instances are generated by STORM.

Generated Line Function
Instances Coverage Coverage

0 58219 26256
100 66945 30498
200 67063 30524
300 67119 30547
400 67208 30598
500 67759 30861

ddSMT-based minimization procedure was able to produce smaller instances. This
is not entirely surprising given that BS uses the fuzzer, which treats predicates not
containing other predicates (i.e., ground- or leaf-predicates) as atomic building
blocks. For instance, for bug 17, the instance that was minimized with BS contains
several complex ground-predicates that ddSMT is able to minimize further. We
expect that more involved combinations of the two approaches could produce
even better results.

RQ5: Code coverage. A Yices2 developer mentioned that they use fuzzer-
generated instances to enrich their regression tests such that they achieve higher
coverage. In this research question, we therefore evaluate whether STORM is able
to increase coverage.

We selected one of the solvers (Z3) and four random logics in which we
found bugs (QF UFLIA, AUFNIRA, UF, LIA). We then computed the line
and function coverage when running Z3 on all the instances from SMT-COMP
2019 [6] for these logics (10054 seeds). The result is shown in the first row of
Tab. 2.5. At the same time, we randomly selected 5 instances from each logic and
ran STORM with NM = 500 and a single new random seed to generate exactly
500 new instances for each of the 20 seed instances. Tab. 2.5 shows that, as
more instances are generated, coverage increases noticeably (9540 more lines and
4605 more functions after only 500 generated instances). This demonstrates that
running STORM on only a small number of seed instances is able to result in
a noticeable coverage increase over a large number of instances from a well
known benchmark set.

2.6. Threats to Validity
We identify the following threats to the validity of our experiments.

Selection of seeds. STORM requires seed instances as input, and our results
do not necessarily generalize to other seeds [240]. However, we selected as seeds

36

instances from SMT-COMP 2019 [6] as well as regression test suites of solvers.
We believe that our selection is sufficiently broad to mitigate this threat. In addition,
we make our tool open source so it may be run with different seeds.

Selection of solvers. The bugs found by STORM depend on the solvers and
logics that we tested. However, we selected a wide range of different, mature
solvers and logics to mitigate this threat.

Randomness in fuzzing. A common threat when evaluating fuzzers is related
to the internal validity [240] of their results. To mitigate systematic errors that
may be introduced due to random choices of our fuzzer, we used random seeds to
ensure deterministic results and performed experiments for eight different seeds.

2.7. Related Work
SMT solvers are core components in many program analyzers, and as a result,
their reliability is of crucial importance. Although it is feasible to verify SAT
and SMT algorithms [97, 157, 172], it is challenging and time consuming to
verify even very basic SAT- or SMT-solver implementations. Verifying highly
complex and high-performance solver implementations, such as CVC4 [32] and
Z3 [84], is completely impractical. For these reasons, there is a growing interest in
testing such solvers, alongside related efforts that focus on testing entire program
analyzers.

Testing SAT and SMT solvers. FuzzSMT [51] focuses on finding crashes
of SMT solvers for bitvector and array instances. It uses grammar-based blackbox
fuzzing to generate crash-inducing instances and minimizes any such instances
with delta debugging [4, 270]. Brummayer et al. [52] extend this line of work to
SAT and QBF solvers. In contrast, STORM performs mutational fuzzing, and its
minimization procedure leverages the fuzzer and its bounds regarding the number
of assertions and the formula depth.

StringFuzz [46] targets testing of string solvers. In addition to randomly gen-
erating syntactically valid instances using a grammar, it is also able to mutate or
transform formulas in existing instances. However, since not all of its transfor-
mations preserve satisfiability, it is not easily possible to leverage metamorphic
testing [31] to detect critical bugs. In contrast to both FuzzSMT and StringFuzz,
the satisfiability of all STORM-generated instances is known.

Previously to STORM, Bugariu and Müller [55] proposed an automated testing
technique that synthesizes SMT instances for the string theory. The true satisfiabil-
ity of the generated instances is derived by construction and used as a test oracle.
In contrast, STORM performs mutational fuzzing and supports a wide range of
theories.

37

In a subsequent work to STORM, Winterer et al. [89] introduced type aware
mutation for SMT instances, a technique that replaces operators in existing SMT
instances with operators of conforming types to generate well-typed mutant in-
stances. These mutant instances are then used as test cases for differential testing
to detect soundness bugs in SMT solvers. The approach is further generalized
in [208]. In contrast to our work, the approach does not have a test oracle, i.e., to
detect a bug, it relies on a disagreement between two SMT solvers. Another subse-
quent work by Winterer et al. [263] introduces semantic fusion, an approach that
combines two equisatisfiable SMT instances (both instances are either satisfiable
or unsatisfiable) into a new equisatisfiable one. Similar to our approach, semantic
fusion uses seed SMT instances to generate new instances. However, in contrast
to our approach, the satisfiability of the seed instances must be known in advance.

A subsequent work by Yao et al. [268] presents a metamorphic testing-based
approach that takes a seed SMT instance φ and tests an SMT solver by identifying
the inconsistency between the satisfiability result of φ and its equi-satisfiable
mutants. These mutants are generated using predefined mutation rules. The key
idea behind the approach is: an over-approximation of a satisfiable instance is
satisfiable and an under-approximation of an unsatisfiable instance is unsatisfiable.
STORM in contrast can generate a satisfiable formula independently of the satisfi-
ability status of the seed formula. In another recent work, Yao et al. [267] present
a feedback-driven grammar-based fuzzing technique that also considers the con-
figuration space of the SMT solver during the fuzzing campaign. For a generated
SMT instance, the fuzzer attempts to explore the configuration space of a solver
by mutating the solver options. STORM does not need a grammar to generate
new SMT instances and focuses on detecting critical soundness issues in default
and the most widely used solver configurations. Furthermore, STORM-generated
SMT instances can also be used with different options to detect soundness bugs in
different solver configurations.

Recently Scott et al. [234] proposed a reinforcement learning based fuzzing
system to detect performance issues in SMT solvers. The technique only focuses
on the theory of strings and floating-point arithmetic. In contrast, STORM mainly
targets critical soundness issues in SMT solvers and is not limited to a theory.
Bringolf et al. [177] presented an approach to detect incompleteness bugs in
SMT solvers by mutating an SMT instance using local satisfiability preserving
transformations. An incompleteness bug is reported if the solver unexpectedly
returns unknown. STORM targets critical soundness bugs in SMT solvers that
are the hardest to detect and may cause unsoundness in program analyzers that
rely on these solvers.

Unlike the above approaches that test solvers by generating input instances for
their textual interface in either SMT-LIB or some solver-specific format, Artho
et al. [18] and Niemetz et al. [199, 200] developed model-based API testing
frameworks for SAT and SMT solvers to test a solver’s application programming
interface. They focus on testing various API parameters and solver options. These
frameworks generate a random but valid sequence of solver API calls based on a

38

customizable API model.

Testing program analyzers. Kapus and Cadar [141] combine random pro-
gram generation with differential testing [180] to find bugs in symbolic-execution
engines. Their technique is inspired by existing compiler-testing techniques (e.g.,
Csmith [266]) and used to test KLEE [58], CREST [3], and FuzzBALL [174].

Cuoq et al. [82] use randomly generated programs to test the Frama-C static-
analysis platform [74]. Bugariu et al. [56] present a fuzzing technique for detecting
soundness and precision issues in implementations of abstract domains—the core
components of abstract interpreters [76]. They use algebraic properties of abstract
domains as test oracles and find bugs in widely used domains. Recently, Taneja
et al. [248] proposed a testing technique for identifying soundness and precision
issues in static dataflow analyses by comparing results with a sound and maximally
precise SMT-based analysis; they rely on the SMT solver to provide correct results.

Zhang et al. [271] develop a practical and automated fuzzing technique to
test software model checkers. They focus on testing control-flow reachability
properties of programs. More specifically, they synthesize valid branch reachability
properties using concrete program executions and then fuse individual properties
of different branches into a single safety property.

Klinger et al. [148] propose an automated technique to test the soundness and
precision of program analyzers in general. Their approach is based on differential
testing. From seed programs, they generate program-analysis benchmarks on
which they compare the results of different analyzers.

2.8. Summary and Remarks
In this chapter, we have presented a novel fuzzing technique for detecting critical
bugs in SMT solvers—key components of many state-of-the-art program analyzers.
Conceptually, STORM is a blackbox mutational fuzzer that uses fragments of
existing SMT instances to generate new, realistic instances. Its formula-generation
phase takes inspiration from grammar-based fuzzers; it leverages a minimal, but
functionally complete, grammar for Boolean formulas to generate new formulas
from fragments found in seeds. Finally, it solves the oracle problem by generating
instances that are satisfiable by construction.

39

Chapter 3

Metamorphic Testing of Datalog
Engines Using Conjunctive
Queries

Datalog is a popular query language with applications in several domains. Like
any complex piece of software, Datalog engines may contain bugs. The most
critical ones manifest as incorrect results when evaluating queries—we refer to
these as query bugs. Given the wide applicability of the language, query bugs
may have detrimental consequences, for instance, by compromising the soundness
of a program analysis that is implemented and formalized in Datalog. In this
chapter, we present the first metamorphic-testing approach for detecting query
bugs in Datalog engines. We ran our tool on three mature engines and found 13
previously unknown query bugs, some of which are deep and revealed critical
semantic issues.

3.1. Introduction
Datalog [113] is a declarative, logic-based query language that is syntactically
a subset of Prolog. Datalog is expressive, yet concise, and as a result, it is used
as a domain-specific language in several application domains, such as natural-
language processing [194], bio-informatics [145, 232], big-data analytics [118,
134], networking [164], program analysis [48, 83, 110, 195, 261], robotics [213],
generic graph databases [239], and security [49, 50, 111, 251].

Query evaluation is performed by Datalog engines, prominent examples of
which include Soufflé [136], bddbddb [260], DDlog [228], µZ [125], and Log-
icBlox [17]. However, as any complex piece of software, Datalog engines may
contain bugs, resulting in incorrect query results. An incorrect result may manifest
by including wrong entries or by missing entries that should have been included.

40

We refer to such bugs as query bugs.
Depending on the application domain, query bugs may have detrimental conse-

quences. In particular, when a buggy Datalog engine is used in program analysis,
it could compromise soundness of the verification process; in other words, it could
cause an analyzer to verify incorrect software. As an example, imagine a static
analyzer that uses Datalog to implement a may-alias (or must-alias) analysis. A
query bug that results in computing fewer (or more) aliases could lead to missing
critical bugs in the analyzed software.

In this chapter, we present the first automatic test-case generation approach for
detecting query bugs in Datalog engines. A major challenge in finding such bugs
is the lack of an oracle specifying expected query results. This problem may be
overcome with a technique known as differential testing [180]. Differential testing
would involve running multiple Datalog engines on a common set of programs and
comparing their results for discrepancies. In our context, this would be extremely
difficult as there exists no unified standard for Datalog syntax; as a result, many
different dialects have emerged.

Our approach circumvents the lack of an oracle using an alternative technique,
namely metamorphic testing [66]. It works by transforming a Datalog program
such that the new result has an a-priori known relationship to the result of the
original program. Examples of such a relationship are that the new result should
be equivalent to the original, contained in the original, or containing the original.
To ensure that these oracles are known in advance, we design metamorphic
transformations based on database theory, and in particular, formal properties of
conjunctive queries.

Despite their simplicity, conjunctive queries constitute an important class of
database queries due to their theoretical properties. Specifically, while many fun-
damental problems in query optimization and minimization are computationally
hard—or even undecidable—for general forms of queries, they are feasible for
conjunctive queries. An example of such a problem is query containment, which
we discuss in Sect. 3.3. The key insight behind our approach is to leverage proper-
ties of conjunctive queries to develop metamorphic transformations for full-blown
Datalog programs.

We implement our approach in a tool called queryFuzz, which we use to
test three mature Datalog engines. Not only did we find previously unknown
query bugs in all engines, but we also detected 81% of all reported query bugs
in the period between May 2020 till February 2021. Moreover, as we describe in
Sect. 3.10, some of these bugs were hidden deep in the engine stack and revealed
critical semantic issues.

Contributions. The contributions of this chapter are as follows:

1. We present the first metamorphic-testing approach for detecting query bugs
in Datalog engines.

41

1 // declarations
2 edge(X:number, Y:number).
3 reachable(X:number, Y:number).
4 .output reachable
5

6 // facts
7 edge(1,2).
8 edge(2,3).
9 edge(4,2).

10 edge(2,5).
11

12 // rules
13 reachable(X,Y) :- edge(X,Y).
14 reachable(X,Z) :- edge(X,Y), reachable(Y,Z).

Figure 3.1: A simple Datalog program.

2. We implement our approach in an open-source tool1, queryFuzz. We are
already working closely with the developers of the mature Datalog engines
in order to integrate queryFuzz in their development cycles.

3. We evaluate the effectiveness of queryFuzz by testing three popular Datalog
engines. Our tool detected 13 previously unknown query bugs in all three
engines as well as many other bugs as a by-product.

Outline. The next section gives an overview of our approach. Sect. 3.3 provides
background on properties of conjunctive queries, Sect. 3.4 explains the technical
details of our approach for these queries, and Sect. 3.8 generalizes the approach
to full-blown Datalog programs. In Sect. 3.9, we describe the implementation of
queryFuzz. We present our experimental evaluation in Sect. 3.10, discuss related
work in Sect. 3.12, and conclude in Sect. 3.13.

3.2. Overview
Datalog is a logic programming language where programs comprise a finite set
of rules over relations. Input relations are given in the form of facts; they are
also commonly referred to as extensional database (EDB) relations. Intensional
database (IDB) relations are defined by logic rules, and one of them is specified
as output. Fig. 3.1 shows an example of a simple Datalog program. The rules on

1https://github.com/Practical-Formal-Methods/queryFuzz

42

https://github.com/Practical-Formal-Methods/queryFuzz

1

3

2

5

4

(a) Pictorial view

(1,2),(1,3),(1,5),(2,3)
(2,5),(4,2),(4,5),(4,3)

(b) Transitive closure

Figure 3.2: Pictorial view and transitive closure of edge.

lines 13 and 14 define IDB relation reachable, which is specified as output on
line 4 and computes the transitive closure of input relation edge.

Pictorially, edge represents the graph in Fig. 3.2a. There is an edge from node
x to node y if edge(x,y) is a fact. Execution of this program is essentially a
sequence of derivations, where each step adds an edge tuple to the output relation
until a fixed point is reached. Fig. 3.2b shows the final tuples in reachable.

Approach. Using the above example as seed, we now give an overview of our
metamorphic-testing approach for Datalog engines. Fig. 3.3 illustrates its main
stages.

The first stage, Program Generation, generates a diverse set of programs to be
transformed. It takes as input a (possibly empty) seed program, such as that of
Fig. 3.1, and outputs a new program. In case the seed is empty, the new program
is randomly generated based on a Datalog grammar. If the seed is not empty, this
stage automatically extends it with randomly generated IDB relations using both
existing and newly generated facts and rules (again based on a grammar). This is
essentially a generalization of the above case where the seed is empty. One of the
program relations is then specified as output.

The second stage, Program Transformation, applies metamorphic transforma-
tions to the newly generated program (or directly to the seed if the first stage is
skipped). These transformations change rules of the program such that—when
computing its output using a Datalog engine—the new result has an a-priori
known relationship to the old result. In particular, the new result may contain the
old one (as computed by program exp.dl in Fig. 3.3), it may be equivalent to
the old one (as computed by equ.dl), or it may be contained in the old result (as
computed by con.dl). For example, a transformation in which the new result
should be equivalent to the old one is changing line 13 of Fig. 3.1 to the following:

reachable(X,Y) :- edge(X,Y), edge(W,Y).

As we will see in the next section, this change appears to be introducing a join,
which however has no effect on the result. Another transformation could be applied
to line 14 as follows:

reachable(X,Z) :- edge(X,X), reachable(X,Z).

43

Program
Generation

gen.dl

gen

exp.dl

equ.dl

exp

equ

⊇
gen

gen

≢
bug report

seed.dl

con.dl
con gen

⊆

Bug Detection

Program
Transformation

1 2

3

Figure 3.3: Overview of our approach.

In this case, the new result should be contained in the old one—in fact, the new
result should be empty as there are no edges from a node to itself.

Finally, the third stage, Bug Detection, uses these relationships between new
and old results (shown in blue and yellow, respectively, in Fig. 3.3) as oracles in
order to detect query bugs in the underlying Datalog engine. For instance, imagine
that, after transforming line 13 of Fig. 3.1 as described above, the Datalog engine
returns all but one of the tuples shown in Fig. 3.2b. Since this transformation
ensures that the new result is equivalent to the old one, a query bug has been
detected. Note that a query bug is also detected if the old result is incorrect as
long as the expected relationship to the new result does not hold.

Query bugs. In the rest of this section, we present two query bugs detected by
queryFuzz in existing Datalog engines. We provide a complete list of detected
bugs and more details in Sect. 3.10.

Fig. 3.4 shows a program snippet that was generated by queryFuzz in order
to test µZ [125], the Datalog engine of the Z3 SMT solver [84] supporting the
bddbddb [260] dialect. Relation r (line 4) is defined to compute all tuples in in2
whose second element is in in1. Tuple (25,10) is the only one that satisfies
this definition. Output relation out (line 5) obtains the first element of each tuple
in r, that is, it computes 25. This is also the result that is returned by µZ. Now,
consider the following transformation applied by queryFuzz to line 5:

out(F) :- r(F,C), r(F,A), r(F,B).

The result of the new program should still be 25, but µZ returns values 7–63. We
reported this bug on Z3’s GitHub issue tracker2, and it was immediately confirmed
and fixed. In fact, a Z3 developer commented: “These are good latent bugs. They
exercise some edge cases that slipped through the cracks until now.”

The code snippet in Fig. 3.5 was also generated by queryFuzz, this time when
testing the Soufflé Datalog engine [136]. Relation out is the output relation of

2https://github.com/Z3Prover/z3/issues/4870

44

https://github.com/Z3Prover/z3/issues/4870

1 in1(49). in1(10).
2 in2(25,10). in2(16,13). in2(24,22).
3

4 r(V,M) :- in2(V,M), in1(M).
5 out(F) :- r(F,C).

Figure 3.4: Generated program snippet for testing µZ.

1 HqV(a) :- MZV(a,b), MZV(c,d).
2 gQk(jW) :- MZV(jW,jW).
3 QOq(aS,GF) :- MZV(GF,GF), gQk(M), HqV(aS), MZV(aS,M).
4 RwL(qr) :- QOq(u,qr), gQk(u), gQk(u).
5 out(jB,ym) :- gQk(h), RwL(ym), MZV(h,jB).

Figure 3.5: Generated program snippet for testing Soufflé.

the program. When line 1 is changed to

Hqv(a) :- MZV(a,b).

the program result should remain the same. However, we found that the result
of the original program contained 240 entries, whereas that of the transformed
program contained 306. We reported this query bug3, which was immediately
fixed.

These types of bugs, detected by queryFuzz, are extremely difficult for unsus-
pecting users to notice and might compromise upstream applications that rely on
a Datalog engine.

3.3. Background
In this section, we review key concepts from database theory, and in particular
query optimization, that form the basis of our metamorphic transformations.

A database schema R is a set of relations R. The arity of a relation is the number
of attributes in the relation. For example, edge and reachable in Fig. 3.1 are
relations of arity 2. An attribute in a relation can take values from a domain D. Let
R be a relation of arity m. A fact over R is an expression of the form R(a1, ...,am),
where ai ∈ Di for every i = 1, . . . ,m, e.g., edge(1,2) in Fig. 3.1. An instance
of relation R is a finite set of facts over R. A database instance I over a database
schema R is a collection of relational instances over the relations R ∈ R.

A conjunctive query (CQ) is a single non-recursive function-free Horn rule,

3https://github.com/souffle-lang/souffle/issues/1453

45

https://github.com/souffle-lang/souffle/issues/1453

e.g., every rule in Figs. 3.4 and 3.5 is a CQ. This is the simplest type of query that
can be expressed over a database schema. Syntactically, a conjunctive query Q is
an expression of the form

P(U⃗)← R1(U⃗1), . . . ,Rn(U⃗n)

where U⃗ and U⃗i (1≤ i≤ n) are vectors of variables and constants. Any variable
appearing in U⃗ must also appear in some U⃗i. The expression to the left of← is the
head of the query, and the expression to the right is the body. Each Ri(U⃗i) in the
body of the query is a subgoal, and Ri ∈ R is a relation. Note that subgoals can
refer to the same relation. The set of answers for query Q w.r.t a database instance
I is denoted by Q(I).

Given two syntactically different CQs, we now define query equivalence and
containment.

Definition 1 (Query Equivalence). Two conjunctive queries Q1 and Q2 are equiva-
lent, denoted by Q1≡Q2, iff for every database instance I, we have Q1(I) =Q2(I).

Definition 2 (Query Containment). Conjunctive query Q1 is contained in con-
junctive query Q2, denoted by Q1 ⊆ Q2, iff for every database instance I, we have
Q1(I)⊆ Q2(I).

It is straightforward to see that if Q1 ⊆ Q2 and Q2 ⊆ Q1, then Q1 ≡ Q2. A
decidable procedure for checking query containment [62] involves determining
whether there exists a so-called containment mapping between two queries.

Definition 3 (Substitution). A substitution θ is a mapping from a set of variables
V to a set of variables V ′.

Definition 4 (Containment Mapping). A substitution θ is a containment mapping
from conjunctive query Q2 to conjunctive query Q1, if Q2 can be transformed by
means of θ to become Q1.

Formally, given two CQs

P(U⃗)← R1(U⃗1), . . . ,Rn(U⃗n) (Q1)

P′(⃗V)← S1(V⃗1), . . . ,Sm(V⃗m) (Q2)

θ is a containment mapping from Q2 to Q1 if:

1. θ(P′(⃗V)) = P(U⃗), and

2. ∀i ∈ {1, . . . ,m} · ∃ j ∈ {1, . . . ,n} · θ(Si(V⃗i)) = R j(U⃗ j).

In words, a containment mapping maps variables of Q2 to variables of Q1 such
that

1. the head of Q2 becomes the head of Q1, and

2. each subgoal of Q2 becomes some subgoal of Q1.

Theorem 1. Let Q1 and Q2 be conjunctive queries. Q2 is contained in Q1 (Q2 ⊆
Q1) iff there exists a containment mapping from Q1 to Q2.

46

W

X

Y

Z

X

Y

X

Y

W

Z

θ

(a) Containment mapping θ from Q1 to
Q2.

Q1 p(X) :- a(X,Y), a(Y,W), a(Z,W).

Q2 p(X) :- a(X,Y), a(Y,X).

Q1 p(X) :- a(X,Y), a(Y,W), a(Z,W).

θ⊆

(b) Mapping of head and subgoals induced by θ .

Figure 3.6: Containment mapping θ from Q1 to Q2 induces a mapping of
subgoals. No mapping exists from Q2 to Q1.

As an example, consider the two CQs below (in Datalog syntax):

p(X) :- a(X,Y), a(Y,W), a(Z,W). // Q1
p(X) :- a(X,Y), a(Y,X). // Q2

Q2 is contained in Q1 (Q2 ⊆ Q1) because there exists a containment mapping θ

from Q1 to Q2 (shown using solid arrows in Fig. 3.6a; dotted arrows should be
ignored for now). This is indeed a containment mapping because the head of Q1
is the head of Q2 and each subgoal of Q1 becomes a subgoal of Q2 (shown using
solid arrows in Fig. 3.6b). On the other hand, Q1 is not contained in Q2 (Q1 ⊈ Q2)
because there does not exist a containment mapping from Q2 to Q1, shown with
dotted arrows in the figure. If X and Y are mapped to themselves (see Fig. 3.6a),
then the head and first subgoal of Q2 become the head and first subgoal of Q1, but
the second subgoal of Q2 cannot become any subgoal of Q1 (see Fig. 3.6b; red
dotted arrows denote invalid subgoal mappings).

47

3.4. Metamorphic Transformations
Using the equivalence and containment properties of CQs, we now present their
metamorphic transformations. Note that, in this section, we keep the presentation
simple by describing a single transformation to a single conjunctive query. In
practice however, our approach can perform sequences of transformations to
multiple, more general queries (see Sects. 3.7.1 and 3.8 for more details).

Since any conjunctive query may be expressed as a Datalog rule, we refer to
CQs as rules in the following. Given a Datalog rule Q, our metamorphic rule
transformations are categorized into three types:

Addition (ADD): Q is transformed into ADD(Q) = Q′ by adding a subgoal.

Modification (MOD): Q is transformed into MOD(Q) = Q′ by the modifying a
variable.

Removal (REM): Q is transformed into REM(Q) = Q′ by removing a subgoal.

Each of these transformation types may result in any of the following three
outcomes:

Expansion (EXP): Original rule Q is contained in the transformed rule Q′, i.e.,
Q⊆ Q′.

Equivalence (EQU): Original rule Q is equivalent to the transformed rule Q′,
i.e., Q≡ Q′.

Contraction (CON): Transformed rule Q′ is contained in the original rule Q, i.e.,
Q′ ⊆ Q.

We refer to these outcomes as oracles.
Based on the above, a rule transformation combines a transformation type with

an oracle. For instance, ADDCON refers to adding a subgoal to a rule Q such that
the resulting rule Q′ is contained in Q. Next, we describe these transformations in
detail.

3.5. ADD Transformations
The ADD transformations add a subgoal R(v1, . . . ,vn) to a rule Q, where v1, . . . ,vn

are variables—we ignore constants for simplicity.
ADDEXP. The ADDEXP transformation ensures that Q is contained in the

resulting rule Q′, i.e., Q ⊆ Q′. However, note that it is not possible to obtain a
Q′ such that Q ⊂ Q′ by adding a subgoal. The reason is that, when adding a
subgoal to Q, there is always a containment mapping from Q to Q′, i.e., Q′ ⊆ Q.
This is because the head of Q is the head of Q′, and each subgoal of Q is in
Q′. Consequently, even if there existed a containment mapping in the desirable

48

X

Y

X

Y

Z

X

Y

θ σ

(a) Containment mapping θ from Q to Q′ and mapping σ from Q′ to Q.

Q p(X) :- a(X,Y), a(Y,X).

Q′ p(X) :- a(X,Y), a(Y,X), a(Z,X).

Q p(X) :- a(X,Y), a(Y,X).

θ

σ

⊆
⊆

(b) Mapping of head and subgoals induced by θ and σ .

Figure 3.7: Example of ADDEQU transformation.

direction, i.e., Q ⊆ Q′, then the two queries would be equivalent, a case that is
already covered by ADDEQU.

ADDEQU. Given that a containment mapping from Q to Q′ always exists, the
ADDEQU transformation guarantees that Q≡ Q′ by ensuring there also exists a
containment mapping from Q′ to Q. Intuitively, ADDEQU adds a new subgoal
to Q while avoiding introducing new joins among the existing subgoals, thus
preserving the original result. To ensure the existence of a containment mapping
from Q′ to Q when adding a subgoal R(v1, . . . ,vn) to Q, relation R must already
exist in the body of Q.

Example. Fig. 3.7 shows an example of an ADDEQU transformation. The
new subgoal a(Z,X) (shown in green) maps to a(Y,X) when respecting the
containment mapping σ from Q′ to Q. Although it might appear that the new
subgoal introduces a join, this join does not restrict the original result (as computed
by the original subgoals) any further.

Algorithm. The algorithm performing this transformation is shown in procedure
ADDEQU of Alg. 3. First, we extract the head and body of rule Q (line 2). Then, a
random subgoal g and its arity n are retrieved from body (lines 3–4). On lines 5–8,
we replace each of m variables in g with a fresh variable, where m is a random
number from 1 to n. Each call to function FRESHVAR returns a new variable
that is not already present in Q. This guarantees that no new joins are introduced.

49

Algorithm 3: ADD transformations
1 procedure ADDEQU(Q)
2 head,body← Q
3 g← RANDSUBGOAL(body)
4 n← ARITY(g)
5 m← RANDINTRANGE(1,n)
6 for (i← 0, i < m, i++) do
7 j← RANDINTRANGE(0,n−1)
8 g.args[j]← FRESHVAR(Q)

9 return head← body,g.
10 procedure ADDCON(Q,relations)
11 g.rel← RANDRELATION(relations)
12 n← ARITY(g)
13 vars← EXTRACTALLVARS(Q)
14 for (i← 0, i < n, i++) do
15 g.args[i]← RANDVAR(vars)
16 head,body← Q
17 if g ∈ body then
18 return none
19 return head← body,g.

Subgoal g is finally appended to body, and new rule Q′ is returned (line 9). In the
example of Fig. 3.7, we replace variable Y in subgoal a(Y,X) of Q with fresh
variable Z and append this new subgoal to Q in order to generate Q′.

ADDCON. The ADDCON transformation ensures that rule Q′ is contained
in original rule Q, i.e., Q′ ⊆ Q. Intuitively, ADDCON adds a new subgoal to Q
introducing new joins, thus potentially contracting the original result. To differen-
tiate this transformation from ADDEQU, we ensure that a containment mapping
does not exist from Q′ to Q, i.e., Q ⊈ Q′. Note, however, that the absence of
such a mapping does not mean that Q′ produces a strictly contracted result. In
other words, Q′ ⊂ Q does not always hold; for example, for an empty database
instance, the result of Q′ is still equivalent to that of Q. To ensure the absence of
a containment mapping from Q′ to Q when adding a subgoal R(v1, . . . ,vn) to Q,
relation R must either not already exist in the body of Q, or if it does, its variables
should prevent it from being mapped to any subgoal in Q.

Example. Fig. 3.8 shows an example of an ADDCON transformation. The
new subgoal a(Y,Y) (shown in green) corresponds to relation a, which already
appears in the body of Q. Despite this, the new subgoal does not map to any
subgoal in Q since variable Y may not be mapped to both X and Y.

Algorithm. The algorithm is shown in procedure ADDCON of Alg. 3. As a first
step, we create a subgoal g by randomly selecting a relation from the set of all
relations in the program (line 11). On line 12, we retrieve its arity n. Then, all

50

Q p(X) :- a(X,Y), a(Y,X).

Q′ p(X) :- a(X,Y), a(Y,X), a(Y,Y).

Q p(X) :- a(X,Y), a(Y,X).

θ⊆

Figure 3.8: Example of ADDCON transformation.

variables of query Q are extracted in vars (line 13), and we initialize each argument
of g with a random variable from vars (lines 14–15). Using variables in Q for this
initialization guarantees that new joins are introduced unless g already appears in
body. If so, we discard it (lines 17–18), otherwise, we append g to body and return
new rule Q′ (line 19). Note that, when none is returned, our implementation tries
again. In the example of Fig. 3.8, we select relation a, initialize its arguments with
variable Y, and append this new subgoal to Q.

X

Y

X

Y

W

Z

X

Y

σ

(a) Containment mapping σ from Q′ to Q.

Q p(X) :- a(X,Y), a(Y,X).

Q′ p(X) :- a(X,Y), a(Y,W).

Q p(X) :- a(X,Y), a(Y,X).

σ⊆

(b) Mapping of head and subgoals induced by σ .

Figure 3.9: Example of MODEXP transformation.

51

Algorithm 4: MOD transformations
1 procedure MODEXP(Q)
2 head,body← Q
3 vars← EXTRACTREUSEDVARS(body)
4 v← RANDVAR(vars)
5 body′← REPLACERANDOCCURRENCE(body,v,FRESHVAR(Q))
6 return head← body′

7 procedure MODCON(Q)
8 vars← EXTRACTALLVARS(Q)
9 if |vars|< 2 then

10 return none
11 v← RANDVAR(vars)
12 w← RANDVAR(vars\{v})
13 Q′← REPLACEVAR(Q,v,w)
14 return Q′

3.6. MOD Transformations
The MOD transformations modify a rule Q by renaming a variable appearing in
its subgoals.

MODEXP. Intuitively, this transformation expands the result of Q by renaming
a variable in a way that removes existing joins. This is achieved by creating a
surjective containment mapping from Q′ to Q, i.e., Q⊆Q′. Note that the mapping
may not be bijective as this would make MODEXP equivalent to MODEQU.

Example. Fig. 3.9 shows an example of a MODEXP transformation, where
variable X of subgoal a(Y,X) is renamed to W.

Algorithm. The algorithm for this transformation is shown in procedure MOD-
EXP of Alg. 4. We first extract variables vars that appear more than once in body
of rule Q (line 3). A random variable v from vars is selected (line 4), and we
replace a random occurrence of v in body with a fresh variable to get body′ (line
5). Replacing an occurrence of a reused variable with a fresh one guarantees that
existing joins are removed. Finally, we return head← body′ as transformed rule
Q′ (line 6). In the example of Fig. 3.9, we choose variable X, which appears twice
in the body of Q, and replace its second occurrence with fresh variable W.

MODEQU. The MODEQU transformation ensures that the result of Q is equiv-
alent to that of Q′ by creating a bijective containment mapping between the two
rules. A way to guarantee the existence of such a mapping is by replacing all
occurrences of a variable in Q with those of a fresh variable. Note that this is a
very simple transformation, which we include here mainly for completeness.

MODCON. Analogously to the MODEXP transformation, MODCON renames
a variable in Q such that there exists a surjective (and not bijective) containment
mapping from Q to Q′.

Example. Fig. 3.10 shows an example of a MODCON transformation, where all

52

X

Y
X

X

Y

θ

(a) Containment mapping θ from Q to Q′.

Q p(X) :- a(X,Y), a(Y,X).

Q′ p(X) :- a(X,X), a(X,X).

Q p(X) :- a(X,Y), a(Y,X).

θ⊆

(b) Mapping of head and subgoals induced by θ .

Figure 3.10: Example of MODCON transformation.

occurrences of variable Y are renamed to X.
Algorithm. The algorithm is shown in procedure MODCON of Alg. 4. As a

first step, we extract all variables vars in Q (line 8). If there are fewer than two,
we return none (lines 9–10). Otherwise, two (different) variables v and w are
randomly selected from vars (lines 11–12), and we replace all occurrences of v in
Q with w to get Q′ (line 13). This ensures that new joins are introduced.

3.7. REM Transformations
The REM transformations remove a subgoal R(v1, . . . ,vn) from a rule Q. Analo-
gously to the ADD transformations, when removing the subgoal, there is always a
containment mapping σ from Q′ to Q, i.e., Q⊆Q′. This is because the head of Q′

is the head of Q, and each subgoal of Q′ is in Q.
REMEXP. This transformation checks the existence of a containment mapping

from Q to Q′. If such a mapping does not exist, then Q′ ̸⊆ Q and Q⊆ Q′ (due to
σ), that is, the result of Q is expanded. Note that, in general, the problem of check-
ing query containment is NP-complete. However, we can design a containment
checker with linear-time complexity because Q′ is derived from Q by removing
one subgoal. Therefore, it is only necessary to check whether this subgoal of Q

53

X

Y

Z

X

Y

Z

(a) No containment mapping from Q to Q′.

Q p(Z) :- t(Z), r(X,Y), r(Y,X).

Q′ p(Z) :- t(Z), r(Y,X).

(b) Dropped subgoal may not be mapped to any subgoal in Q′.

Figure 3.11: Example of REMEXP transformation.

may be mapped to any subgoal of Q′.
Example. Consider the example in Fig. 3.11. Removing the second subgoal

of Q (shown in green) prevents the existence of a mapping from Q to Q′ since it
would require each of the variables X and Y of Q to be mapped to more than one
variable of Q′. Consequently, this is a successful REMEXP transformation.

Algorithm. The algorithm for this transformation is shown in procedure REM-
EXP of Alg. 5. First, we randomly select a subgoal g from the body of Q (line 13)
and remove it to get Q′ (line 15). We then check the existence of a containment
mapping from Q to Q′ (line 16). This is done by simply checking if the removed
subgoal g may be mapped to any subgoal in Q′. If no such mapping exists, then
we return transformed rule Q′, otherwise we return none.

The algorithm for checking the existence of a containment mapping from Q to
Q′, where Q′ is derived from Q by removing a subgoal g is shown in procedure
EXISTSCONTAINMENT of Alg. 5. As a first step, we extract all variables vars
in Q and vars′ in Q′ (lines 2–3). We then compute the set of removed variables
rmVars (line 4). Function REPLACEWITHWILDCARD (line 5) creates a pattern
expression p from g such that the first occurrence of each variable in g is replaced
with a wildcard if the variable is also in rmVars. Any subsequent occurrences
of the same variable are replaced with a back-reference to the first match; this
ensures that equality constraints between variables are captured. In the example
of Fig. 3.11, rmVars is empty, so p is g, that is, r(X,Y). If any g′ in the body of
Q′ matches this pattern, then g may be mapped to a subgoal in Q′ and a mapping
exists (lines 10–15). Otherwise, a mapping does not exist (line 10) as in Fig. 3.11.

54

Algorithm 5: REM transformations
1 procedure EXISTSCONTAINMENT(Q,Q′,g)
2 vars← EXTRACTALLVARS(Q)
3 vars′← EXTRACTALLVARS(Q′)
4 rmVars← vars\ vars′

5 p← REPLACEWITHWILDCARD(g,rmVars)
6 head′,body′← Q′

7 for each g′ ∈ body′ do
8 if g′ matches p then
9 return true

10 return false
11 procedure REMEXP(Q)
12 head,body← Q
13 g← RANDSUBGOAL(body)
14 Q′.head← head
15 Q′.body← body\{g}
16 if ¬ EXISTSCONTAINMENT(Q,Q′,g) then
17 return Q′

18 return none

REMEQU. If, after removing a subgoal of Q, a containment mapping θ from
Q to Q′ does exist, then we have a REMEQU transformation because both Q′ ⊆ Q
and Q⊆ Q′ hold. The former holds due to θ and the latter due to σ .

Example. Fig. 3.12 shows an example of a REMEQU transformation.
Algorithm. This algorithm is analogous to the one for REMEXP (see Alg. 5).

For this transformation however, we return Q′ when a containment mapping from
Q to Q′ does exist, i.e., EXISTSCONTAINMENT on line 16 is not negated. In the
example of Fig. 3.12, rmVars is a singleton containing variable W, thus pattern p
on line 5 of Alg. 5 is r(*,X), where * is a wildcard. Subgoal r(Y,X) in Q′

matches this pattern, and as a result, a mapping exists.
REMCON. Analogously to ADDEXP, this transformation can only be the same

as REMEQU.

3.7.1. Transformation Sequences
Until now, we have focused on applying a single transformation to a single
rule, which is a conjunctive query. However, our approach is also able to apply
sequences of transformations to such a rule.

More specifically, a rule macro-transformation T may be composed of a se-
quence of micro-transformations [t1, . . . , tn] as the ones that we described so
far. However, every micro-transformation ti ∈ T must preserve the intended or-
acle for the rule (i.e., EXP, EQU, CON). In particular, for an expanding macro-

55

W

X

Y

Z

X

Y

Z
θ

(a) Containment mapping θ from Q to Q′.

Q p(Z) :- t(Z), r(W,X), r(Y,X).

Q′ p(Z) :- t(Z), r(Y,X).

θ⊆

(b) Mapping of head and subgoals induced by θ .

Figure 3.12: Example of REMEQU transformation.

transformation TEXP, in which Q ⊆ Q′, the sequence of micro-transformations
may have oracles EQU or EXP, but not CON. Analogously, for a contracting
macro-transformation TCON, in which Q′ ⊆ Q, the micro-transformations may
have oracles EQU or CON, but not EXP. For an equivalent macro-transformation
TEQU, in which Q≡ Q′, all micro-transformations must also have EQU oracles.

In the following section, we generalize our approach from a single conjunctive
query to a Datalog program, containing rules that are not necessarily CQs.

3.8. Beyond Conjunctive Queries
Let us first show how the oracle of a rule (macro-)transformation generalizes to
any positive-Datalog program, i.e., any program without negation. To do this,
we need to explain monotonicity of conjunctive queries. Intuitively, when adding
more entries to a database instance, a monotonic query never produces a smaller
result.

Definition 5 (Monotonicity). A conjunctive query Q over a database schema R
is monotonic iff, for every two instances I and J of R, it holds that Q(I)⊆ Q(J)
when I ⊆ J.

In a program P, the output relation is called a Datalog query, QP. Suppose
our approach transforms a rule Q in P to get new rule Q′, and therefore, new

56

program P′ and Datalog query Q′P. Now, the same oracle that should hold between
Q and Q′ should also hold between QP and Q′P. This is because, in positive
Datalog, all rules are monotonic. Therefore, due to the fixed-point computation,
any change in the result of Q propagates monotonically to all rules that (directly
or transitively) depend on Q. Ultimately, this includes the final Datalog query, and
thus, the program result. Consequently, we may “lift” our oracles from individual
conjunctive queries to full-blown positive-Datalog programs. Naturally, this also
allows us to transform more than one rule in a positive-Datalog program as long
as all transformations have the same intended oracle.

Let us now explain how our approach handles any Datalog program (not
only positive ones). Of course, the EQU oracle trivially extends to any program.
However, queryFuzz is able to accept any Datalog program for all oracles: it
enforces that all rules depending on a transformed rule Q′ are monotonic (e.g.,
they do not contain any negated subgoals). Intuitively, should the result of a
rule Q′ “flow” into a non-monotonic rule, the effect on the program result could
be “flipped”, for instance, it could be contracted instead of expanded. This is
undesirable as it could lead to false positives. To handle negation, existing Datalog
engines impose a computation order on relations. More specifically, relations are
assigned to strata via a process known as stratification [25, 225]. Lower strata
are computed before higher ones during the fixed-point computation. Therefore,
queryFuzz works on any Datalog program by only transforming rules that are in a
higher stratum than any rules containing negation. As a consequence, no results
of transformed rules can “flow” into non-monotonic rules.

Note that many Datalog dialects support rules with more expressive language
features, such as comparison operators, aggregate functions, disjunctions, and re-
cursion. While our transformations target the restricted subset of pure conjunctive
queries (see Sect. 3.3), they may also be applied to more expressive dialects as
long as the monotonicity constraints described above are maintained. In fact, our
implementation does handle such dialects.

Based on the above, in the rest of this section, we present another transformation
in queryFuzz, which is specific to Datalog programs (unlike the transformations
in Sect. 3.4, which target CQs in general).

3.8.1. NEG Transformation
A NEG transformation changes a program P into an equivalent but further stratified
program P′ by introducing a double negation in a rule Q. In particular, introducing
a negation causes the Datalog engine to split a stratum in two. When this negation
is double, we guarantee the EQU oracle (i.e., the transformation is NEGEQU).

We introduce so-called safe negations, i.e., every variable in a negated subgoal
must also appear in a positive subgoal. (Unsafe rules are traditionally not allowed
in Datalog as they do not restrict all variables to finite domains.) As an example,
consider:

57

p(X,Y) :- a(X,Y), b(Y,Z), c(Z). // Q

NEGEQU selects a subgoal g in Q, say c(Z), and replaces it with a new negated
subgoal, say !neg(Z). Relation neg is defined to have the same body as Q but
with a negated g, thus introducing a double negation:

neg(Z) :- a(X,Y), b(Y,Z), !c(Z).
p(X,Y) :- a(X,Y), b(Y,Z), !neg(Z). // Q'

One can easily see that queries Q and Q′ are equivalent when thinking about the
transformation logically: a ∧ b ∧¬ neg≡ a ∧ b ∧(¬ a ∨¬ b ∨ c)≡ a ∧ b ∧ c.
Such a transformation partitions the original stratum of relation p into two, where
the stratum of p is strictly greater than that of c. Note that Datalog traditionally
disallows NEG transformations when g (in this case c) has a cyclic dependency
on the head of Q (in this case p), which would require them to be defined in the
same stratum.

3.9. Implementation
We implemented queryFuzz in a total of 5,300 lines of Python. It supports
three Datalog dialects, namely Soufflé [136], bddbddb [260] (used by µZ), and
DDlog [228]. In the rest of this section, we discuss how we implement the bug-
detection stage of our approach.

Bug detection. During bug detection, queryFuzz compares the result of a
program (gen in Fig. 3.3) with that of its transformation (exp, equ, or con in
the figure). However, a program result could potentially contain millions of entries.
This is especially true for randomly generated programs. To efficiently check an
oracle, queryFuzz uses Datalog rules that decide result containment.

For instance, the rules that check EQU oracles are the following:

equ1(Z) :- gen(Z), !equ(Z).
equ2(Z) :- equ(Z), !gen(Z).

The first rule checks whether gen ⊆ equ and the second whether equ ⊆ gen. A
bug is detected if the result of either equ1 or equ2 is non-empty.

3.10. Experimental Evaluation
In this section, we address the following research questions:

RQ1: How effective is queryFuzz in detecting previously unknown query bugs
in Datalog engines?

RQ2: Is the number of detected bugs significant?

RQ3: How deep are the detected bugs?

RQ4: What are characteristics of the detected bugs?

58

Table 3.1: Query bugs detected by queryFuzz.

Bug Datalog Metamorphic Bug
ID Engine Transformations Status

1 Soufflé ADD fixed
2 Soufflé REM, REM, REM, MOD fixed
3 Soufflé MOD, ADD, ADD confirmed
4 Soufflé NEG fixed
5 Soufflé MOD, ADD, ADD confirmed
6 Soufflé MOD, ADD, MOD, REM confirmed
7 Soufflé REM, MOD, ADD confirmed
8 Soufflé ADD, ADD, MOD confirmed
9 µZ ADD, MOD, ADD fixed
10 µZ ADD, ADD, ADD, MOD fixed
11 µZ ADD, MOD fixed
12 µZ MOD, ADD confirmed
13 DDlog ADD, ADD, ADD confirmed

RQ5: How efficient is queryFuzz?

3.10.1. Experimental Setup
We tested Soufflé, µZ, and DDlog, three popular and mature Datalog engines
that are publicly available on GitHub. We completed the development of the first
version of queryFuzz, with a subset of the metamorphic transformations and
limited support for different language features, in May 2020, and initially focused
on testing Soufflé. We only added support for the dialects of µZ and DDlog in
late Dec 2020 to evaluate the generality of our transformations.

To avoid burdening developers and reporting duplicate issues, we only filed
reports for bugs that were clearly different than the ones we had already reported
until these were fixed. Of course, this hinders bug reporting, but it was greatly
appreciated by the developers.

3.10.2. Experimental Results
We now discuss our experimental results for each of the above research questions.

RQ1: Query bugs. Tab. 3.1 shows the list of unique query bugs detected
by queryFuzz in the Datalog engines we tested. Note that we confirmed bug
uniqueness with the engine developers themselves. The first column of the table
assigns an identifier to each bug; all identifiers link to the corresponding bug
reports on the GitHub issue tracker of each engine. The second column of the

59

https://github.com/souffle-lang/souffle/issues/1453
https://github.com/souffle-lang/souffle/issues/1463
https://github.com/souffle-lang/souffle/issues/1467
https://github.com/souffle-lang/souffle/issues/1679
https://github.com/souffle-lang/souffle/issues/1732
https://github.com/souffle-lang/souffle/issues/1738
https://github.com/souffle-lang/souffle/issues/1740
https://github.com/souffle-lang/souffle/issues/1848
https://github.com/Z3Prover/z3/issues/4844
https://github.com/Z3Prover/z3/issues/4870
https://github.com/Z3Prover/z3/issues/4879
https://github.com/Z3Prover/z3/issues/4893
https://github.com/vmware/differential-datalog/issues/878

table shows the engine in which the bug was found, the third the sequence of
metamorphic transformations that revealed the bug, and the last column shows
the current status of the bug (i.e., open, confirmed, or fixed).

Overall, queryFuzz detected 13 previously unknown query bugs in all three
engines. All bugs have been confirmed by the developers, and 6 have already
been fixed. Bugs 3 and 5 are labeled as questions on the issue tracker even though
developers have confirmed them. The reason is that they reveal a deep semantic
issue in logic programming that cannot be easily addressed (see RQ4). As shown
in the third column of the table, each of our metamorphic transformations (i.e.,
ADD, MOD, REM, and NEG) contributed to detecting at least one query bug.
Moreover, the fact that each tested engine implements its own Datalog dialect
speaks to the generality of these transformations. Note, however, that our public
bug reports do not show all the applied transformations as we tried to localize
issues as much as possible and aid developers in debugging; our tool repository4

contains instructions on how to reproduce all bug-revealing transformations.
In addition to query bugs, queryFuzz also detected several crash bugs as a

by-product; they are shown in Tab. 3.2. Even though such bugs are less critical,
they expose robustness issues, and developers were still interested in them. In
fact, a developer of Soufflé said: “Bug reports like this are definitely welcome,
especially because they might also point to other potential issues in our setup.
[These issues] have already been super useful.”

In general, we found many more bugs in Soufflé in comparison to the other
engines. However, this does not necessarily mean that Soufflé is more buggy. A
reason is that we tested it for a longer period of time (see Sect. 3.10.1). Another
reason is that the Z3 developers generally have very limited bandwidth to devote
to µZ as they are working on a new core SMT engine—we, therefore, decided
against filing more bugs for the time being. In addition, DDlog is quite slow as it
compiles every input program into a Rust project; this also slows down the testing
process (see RQ5).

RQ2: Significance of bug numbers. To evaluate the significance of our bug-
finding results, we compare the number of query bugs detected by queryFuzz to
the total number of such bugs reported from May 1, 2020 to Feb 15, 2021. For this
research question, we consider all three engines, and we collect the total number
of reported bugs from their GitHub issue trackers. We inspect issues since May 1,
2020 because this is when we started testing Soufflé.

The results are shown in Fig. 3.13. In the considered time period, a total of 16
query bugs were reported in the three Datalog engines we tested, and queryFuzz
detected 13 of them (81%). This ratio, though very high, is not surprising since
query bugs are very hard to detect without an oracle. In the same time period,
41 crash bugs were reported, and queryFuzz detected 14 of them (34%) as a
by-product.

RQ3: Bug depth. To understand the depth of the detected bugs, we analyzed

4https://github.com/Practical-Formal-Methods/queryFuzz

60

https://github.com/souffle-lang/souffle/issues/1467
https://github.com/souffle-lang/souffle/issues/1732
https://github.com/Practical-Formal-Methods/queryFuzz

Table 3.2: By-product bugs detected by queryFuzz.

Bug Datalog Bug Type Bug
ID Engine Status

14 Soufflé floating-point exception confirmed
15 Soufflé aborted evaluation fixed
16 Soufflé segmentation fault fixed
17 Soufflé segmentation fault fixed
18 Soufflé segmentation fault fixed
19 Soufflé segmentation fault fixed
20 Soufflé segmentation fault fixed
21 Soufflé assertion failure fixed
22 Soufflé assertion failure fixed
23 Soufflé assertion failure fixed
24 Soufflé assertion failure fixed
25 Soufflé assertion failure confirmed
26 Soufflé compiler error fixed
27 µZ performance bug fixed

all Soufflé bugs together with the engine developers. In general, they revealed
issues across the stack.

The Soufflé engine essentially consists of the following components, from front-
to back-end: (1) ASTGEN for parsing and abstract-syntax-tree (AST) generation,
(2) ASTOPT for AST analysis and optimization, (3) ASTRAM for translation from
AST to relational-algebra machine (RAM), (4) RAMOPT for RAM optimization,
and (5) INTSYN for interpretation or synthesis. The interpreter evaluates its RAM
input, whereas the synthesizer translates RAM into C++ code, which is then
compiled and executed.

Tab. 3.3 categorizes all Soufflé bugs into the engine component in which they
were found—ignore bugs A, B, C, D, and E for now. Note that no bugs were
found in ASTGEN and that we include a row INFRA, referring to infrastructure
bugs, e.g., in utilities, that could affect the entire stack. As shown in the table,
queryFuzz detected bugs in all components except ASTGEN, which is the most
shallow.

We compare the depth of these bugs with that of bugs detected using of-the-
shelf fuzzers and reported from May 1, 2020 to Feb 15, 2020. There were 6 such
bugs, 3 of which were detected with Radamsa [8] and the other 3 with AFL [11].
One of the Radamsa bugs5 was not confirmed by the developers, who labeled it
as ‘wontfix’. The other 5 bugs are shown in Tab. 3.3 as A, B, C, D, and E. They
revealed issues in the ASTGEN and ASTOPT components of Soufflé, which are

5https://github.com/souffle-lang/souffle/issues/1757

61

https://github.com/souffle-lang/souffle/issues/1477
https://github.com/souffle-lang/souffle/issues/1770
https://github.com/souffle-lang/souffle/issues/1731
https://github.com/souffle-lang/souffle/issues/1745
https://github.com/souffle-lang/souffle/issues/1774
https://github.com/souffle-lang/souffle/issues/1790
https://github.com/souffle-lang/souffle/issues/1818
https://github.com/souffle-lang/souffle/issues/1744
https://github.com/souffle-lang/souffle/issues/1769
https://github.com/souffle-lang/souffle/issues/1796
https://github.com/souffle-lang/souffle/issues/1817
https://github.com/souffle-lang/souffle/issues/1832
https://github.com/souffle-lang/souffle/issues/1858
https://github.com/Z3Prover/z3/issues/4874
https://github.com/souffle-lang/souffle/issues/1756
https://github.com/souffle-lang/souffle/issues/1758
https://github.com/souffle-lang/souffle/issues/1775
https://github.com/souffle-lang/souffle/issues/1776
https://github.com/souffle-lang/souffle/issues/1777
https://github.com/souffle-lang/souffle/issues/1756
https://github.com/souffle-lang/souffle/issues/1758
https://github.com/souffle-lang/souffle/issues/1775
https://github.com/souffle-lang/souffle/issues/1776
https://github.com/souffle-lang/souffle/issues/1777
https://github.com/souffle-lang/souffle/issues/1757

0 10 20 30 40 50

Crash bugs

Query bugs

Number of reported bugs

queryFuzz others

14

13

27

3

Figure 3.13: All bugs reported in the three Datalog engines from May 1, 2020
to Feb 15, 2021.

at the top of the stack—for instance, bugs A and E crash the engine during, or
even before, parsing. The reason why queryFuzz bugs are much deeper is that it
generates valid Datalog programs and its oracle-driven transformations are more
likely to reveal semantic issues. Note that we do not further compare our approach
with other off-the-shelf fuzzers as they are not able to detect query bugs due to
lack of oracles.

RQ4: Bug characteristics. To demonstrate the nature of the detected bugs, we
now provide a few interesting bug samples.

Bug 1 was found in Soufflé’s ASTOPT component, and specifically, in the
minimization pass that simplifies the program by removing equivalent rules and
subgoals. This pass missed a corner case for singleton relations, i.e., with arity 1.
The program and transformation that revealed this bug are discussed in Sect. 3.2
(see Fig. 3.5). Bug 4 was detected in the same component, but in its magic-set
transformation [25, 28, 35, 225], which aims to derive only those facts that are
relevant for the program’s Datalog query. Our approach revealed this bug using a
NEG transformation. The rule in which the negation was introduced depended on
another rule containing a comparison operator, which in turn caused a mislabeling

Table 3.3: Categorization of Soufflé bugs into the components in which they
were found.

Soufflé Bug IDsComponent

ASTGEN A, E
ASTOPT 1, 2, 3, 4, 5, 15, 17, 20, 21, 25, B, C, D
ASTRAM 8, 22, 23, 24
RAMOPT 19
INTSYN 6, 7, 14, 26
INFRA 16, 18

62

https://github.com/souffle-lang/souffle/issues/1756
https://github.com/souffle-lang/souffle/issues/1777
https://github.com/souffle-lang/souffle/issues/1453
https://github.com/souffle-lang/souffle/issues/1679
https://github.com/souffle-lang/souffle/issues/1756
https://github.com/souffle-lang/souffle/issues/1777
https://github.com/souffle-lang/souffle/issues/1453
https://github.com/souffle-lang/souffle/issues/1463
https://github.com/souffle-lang/souffle/issues/1467
https://github.com/souffle-lang/souffle/issues/1679
https://github.com/souffle-lang/souffle/issues/1732
https://github.com/souffle-lang/souffle/issues/1770
https://github.com/souffle-lang/souffle/issues/1745
https://github.com/souffle-lang/souffle/issues/1818
https://github.com/souffle-lang/souffle/issues/1744
https://github.com/souffle-lang/souffle/issues/1832
https://github.com/souffle-lang/souffle/issues/1758
https://github.com/souffle-lang/souffle/issues/1775
https://github.com/souffle-lang/souffle/issues/1776
https://github.com/souffle-lang/souffle/issues/1848
https://github.com/souffle-lang/souffle/issues/1769
https://github.com/souffle-lang/souffle/issues/1796
https://github.com/souffle-lang/souffle/issues/1817
https://github.com/souffle-lang/souffle/issues/1790
https://github.com/souffle-lang/souffle/issues/1738
https://github.com/souffle-lang/souffle/issues/1740
https://github.com/souffle-lang/souffle/issues/1477
https://github.com/souffle-lang/souffle/issues/1858
https://github.com/souffle-lang/souffle/issues/1731
https://github.com/souffle-lang/souffle/issues/1774

1 PQRI(v) :- Z(v), Z(nbj).
2 PLEY(o) :- PQRI(x), Z(o), Z(x).
3 NFUV(q) :- Z(fym), PLEY(q).
4 OUT(t) :- NFUV(ssz), PLEY(arv), PLEY(t).

Figure 3.14: Generated program snippet for testing DDlog.

of relations as positive. Naturally, correct positive labeling is essential to the
stratification process. Bug 2 revealed another issue in the magic-set transformation.
In general, developers mentioned that implementing optimization passes on the
AST is quite complex for a feature-rich Datalog dialect. They also expressed the
need for verifying the correctness of such passes, as done by Bégay et al. [36].

According to developers, bugs 3 and 5 reveal an important semantic issue in
logic programming. There is no clear execution order of instructions, which may
result in numerical-stability issues in the presence of floating-point numbers. For
these bugs to be fixed, the developers would have to build symbolic machinery that
dictates the order of optimizations and instructions such that numerical stability is
maximized. However, this is an open research problem, which is why these bugs
were labeled as questions.

Bug 7 was detected in Soufflé’s INTSYN component, at the very bottom of the
stack. According to the developers, the problem lies in a data-structure representa-
tion for relations, namely brie [137], which does not properly implement element
insertion and count. This bug existed at least since an old release of Soufflé (of
1.5 years ago at the time). A developer commented about this bug: “I don’t know
how it could have been missed until now, but that’s the first time I’ve seen anyone
point this out.” Bug 6 revealed a different issue with the same data structure; in
this case, the computation of lower and upper bound values of its elements was
incorrect.

Bug 8 was found in the ASTRAM component of Soufflé. Our transformation
caused a silent internal failure in this component, which manifested itself with an
incorrect result. A developer commented: “Well spotted! Great work!”

Bug 13, was detected in DDlog after randomly generating the program in
Fig. 3.14 and then adding two subgoals to rule PLEY:

PLEY(o) :- PQRI(x), Z(o), Z(x), PQRI(z), PQRI(x).

The original program repeatedly computes Cartesian products of the different rela-
tions and generates a non-empty result. However, after the above transformation,
which should preserve the original result, the new program generates an empty
result. This is because DDlog stores all intermediate relations as multi-sets, where
the multiplicity of each element is the number of times it was derived. Currently,
multiplicities are stored as 32-bit integers to reduce the memory footprint of the
program, and the above transformation caused an integer overflow, manifesting
itself as an empty result. This bug was confirmed by the developers, who are
considering several solutions to the problem, such as using 64-bit integers to

63

https://github.com/souffle-lang/souffle/issues/1463
https://github.com/souffle-lang/souffle/issues/1467
https://github.com/souffle-lang/souffle/issues/1732
https://github.com/souffle-lang/souffle/issues/1740
https://github.com/souffle-lang/souffle/issues/1738
https://github.com/souffle-lang/souffle/issues/1848
https://github.com/vmware/differential-datalog/issues/878

store multiplicities, internally converting multi-sets to sets using the distinct
operator in Rust, or statically analyzing the program to estimate the number of
derivations.

RQ5: Performance. Regarding the performance of queryFuzz, it expectedly
varies significantly depending on the tested Datalog engine. On average, Soufflé
requires 0.078 seconds to run a test (12.9 tests per second) in interpreter mode and
12 seconds in synthesizer mode, DDlog needs 1.2 minutes per test, and µZ 0.1
seconds (10 tests per second). On average, the first stage of queryFuzz generates
47.6 programs per second, and the second stage performs 303 transformations
per second. As shown from these numbers, the performance bottleneck are the
engines themselves.

3.11. Threats to Validity
We identified two threats to the validity of our experiments.

Selection of seeds. Our approach may use seeds as input, and its effectiveness
in bug finding could depend on their selection. However, we used non-empty seeds
only when testing Soufflé, and we selected all of its semantically valid regression
tests6. Our seed selection is, therefore, sufficiently broad to mitigate this threat.
Moreover, queryFuzz does not require non-empty seeds as, in their absence, it
generates random Datalog programs (see Sect. 3.2). In fact, 7 of the detected bugs
were found using non-empty seeds.

Selection of Datalog engines. The detected bugs also depend on our selection
of Datalog engines. However, we chose three mature engines, which even support
different dialects, to mitigate this threat and demonstrate the generality of our
approach.

3.12. Related Work
In this chapter, we present the first testing approach for detecting query bugs
in Datalog engines. It uses metamorphic testing to solve the common problem
of finding a suitable oracle [31] taking inspiration from query optimization in
database theory. Of course, query optimization has been studied in other domains
as well, such as in Datalog or Prolog (e.g., [108, 215, 230, 257]). However, opti-
mization targets a goal different than ours, that of finding an equivalent query that
performs faster. In contrast, queryFuzz tests Datalog engines by exploring a state
space of queries that are not necessarily equivalent, let alone more optimal. In the
following, we focus on testing work from related areas, such as database systems,
compilers, and program analyzers.

Metamorphic testing. Metamorphic testing [66] is an effective technique to test

6We selected all tests in the ‘evaluation’, ‘example’, and ‘semantic’ folders under
https://github.com/souffle-lang/souffle/tree/master/tests.

64

https://github.com/souffle-lang/souffle/tree/master/tests

software systems without user-provided oracles. It works by mutating test cases
via metamorphic relations that allow inferring the expected output of the mutated
test cases. Over the years, it has been used to test a variety of systems, from
web services [61], over compilers [153], to machine-learning applications [265].
Segura et al. [235] conducted a comprehensive survey on metamorphic testing in
different domains.

Testing database systems. Database-management systems lie at the heart
of most large-scale software applications today. Ensuring their correctness and
robustness is of critical importance and has been a focus of many researchers and
practitioners for decades.

In 1998, Slutz [244] proposed a technique, based on differential testing, to
detect bugs in database systems. Another approach—also based on differential
testing—was used by Jinho et al. to detect performance bugs [139]. Jepsen [146],
developed by Kingsbury, is a practical tool for detecting safety bugs in distributed
database systems; these can occur due to asynchronous interactions between
components, data loss due to networking issues, node failures, etc. Recently,
Rigger and Su proposed a series of testing techniques [221–223], which they
implemented in a tool called SQLancer. Their tool detected hundreds of bugs in
various relational database systems.

Fuzzing is also applied to detect crashes and other robustness issues in database
systems. For instance, SQLsmith [236] is a popular SQL-query generator that
has detected hundreds of crashes in widely used database systems. Other query-
generation approaches include ones relying on constraint solvers [53, 143, 144,
192, 212, 255], symbolic execution [42, 163], and reverse query processing [41].

Testing compilers. Compiler testing is another important and active research
area [65,159,246,266]. Le et al. proposed a metamorphic-testing technique [153],
known as equivalence modulo inputs (EMI), which mutates a seed program to
generate equivalent programs. The technique and its extensions [154, 247, 272]
have detected hundreds of bugs in GCC and Clang. A related approach was
also used to test graphics shader compilers [90, 159]. Livinskii et al. recently
developed a technique for generating expressive programs without undefined
behavior to test C and C++ compilers [162]. The programs are then compiled
using different compilers, and their outputs are compared to detect bugs. Recently,
such techniques have also been extended to compilers for specialized domains,
such as deep learning [161, 264] and quantum computers [206].

Testing program analyzers. Work on detecting bugs—in particular soundness
bugs—in implementations of program-analysis techniques [57] has received sig-
nificant attention in recent years. Various different approaches have been proposed
to test a wide range of analysis techniques, such as model checking [271], abstract
interpretation [148], symbolic execution [141], or dataflow analysis [248], as
well as their underlying components, such as abstract domains [56] or constraint
solvers [55, 169, 252, 262, 263].

65

3.13. Summary and Remarks
We have presented the first approach for metamorphic testing of Datalog engines.
Our tool, queryFuzz, detected 13 previously unknown query bugs in three different
engines. Query bugs are critical since, unlike crashes, they typically remain
undetected. Given that Datalog is frequently used to formalize and implement
security analyses or verification tools, such bugs can be catastrophic. As a result,
we received overwhelmingly positive reactions from engine developers about the
bugs we reported, several of which revealed deep—sometimes even fundamental—
issues.

66

Chapter 4

Dependency-Aware Metamorphic
Testing of Datalog Engines

In this chapter, we present another powerful metamorphic testing technique to find
query bugs in Datalog engines. The technique uses rich precedence information
capturing dependencies among relations in a Datalog program. This enables much
more general and effective metamorphic transformations than the ones presented
in chapter 3. We implement our approach in a tool called DLSmith, which detected
16 previously unknown query bugs in four Datalog engines.

4.1. Introduction
As discussed in chapter 3, Datalog engines are complex, especially since they
typically employ advanced query transformation, optimization, and compilation
techniques to improve their performance and scalability. As a result of this com-
plexity, Datalog engines are prone to query bugs. A query bug causes the engine
to return incorrect results that, for example, contain more, fewer, or different
entries than they should. These bugs are severe—they may compromise the sound-
ness of an upstream program analyzer, leading to catastrophic consequences in
safety-critical settings.

In chapter 3, we presented the first ever metamorphic testing approach to detect
query bugs in Datalog engines and implemented it in a tool called queryFuzz. The
technique, however, is limited in the metamorphic transformations it can perform.
In particular, it selects an existing rule in a given Datalog program and carefully
modifies it without considering the surrounding program. More specifically, its
transformations only consist in adding an atom to a rule, removing an atom from
a rule, or modifying a rule variable. queryFuzz requires that such changes do not
introduce negation and may only be performed for a specific set of rules (i.e.,
those at the highest stratum) such that the resulting program is still valid. In short,

67

transformations in queryFuzz are limited to ones that can be performed locally
without considering the entire program.

The technique introduced in this chapter overcomes these limitations by in-
ferring an annotated precedence graph for a given Datalog program, capturing
rich information about any dependencies among program relations. Hence, this
graph provides a global view of the program, thereby allowing for more radical
transformations, including adding entirely new rules, removing existing rules, and
handling negation. At the same time, our approach incorporates all existing query-
Fuzz transformations. In other words, we significantly extend the range of possible
transformations, and thus, increase the effectiveness of metamorphic testing in
finding query bugs in Datalog engines. Moreover, by defining all our transforma-
tions on the annotated precedence graph, our approach can easily support many
Datalog dialects.

We implemented this approach in our tool called DLSmith, which we used to
test six Datalog engines, each supporting a different dialect. DLSmith detected 16
previously unknown query bugs in four of these engines. All bugs were confirmed
and eleven were fixed; only two could have been found by queryFuzz. An engine
developer commented: “The bugs found are hidden deep inside the query plan
generation and optimization pipeline. Due to the complexity of Datalog rules
and data for triggering the error, the bugs are very hard to find with regular unit
testing. Automatic tools are extremely helpful to identify the issue and improve the
robustness of our Datalog engine.”

Contributions. This chapter makes the following contributions:

1. We present the most comprehensive and effective metamorphic testing
approach for detecting query bugs in Datalog engines to date.

2. We implemented our approach in a publicly available tool called DLSmith.

3. We evaluated DLSmith on six Datalog engines supporting different dialects;
our tool detected 16 previously unknown query bugs in four of these engines
and received very positive feedback from their developers.

Outline. The next section provides necessary background. Sect. 4.3 gives an
overview of our approach, while Sects. 4.4 and 4.5 explain the technical details of
its key components. In Sect. 4.6, we describe the implementation of DLSmith. We
present our experimental evaluation in Sect. 4.7, discuss related work in Sect. 4.8,
and conclude in Sect. 4.9.

4.2. Background
In this section, we give an overview of Datalog programs and their associated
precedence graphs.

68

4.2.1. Datalog Programs
Rules. A term is either a variable x,y,z, . . . or a constant a,b,c, An atom is an
expression of the form R(U⃗), where R is a relation symbol of arity m and U⃗ is an
m-vector of terms, e.g., M(x,y,a). A ground atom is an atom without variables,
e.g., M(a1, . . . ,am), where ai are constants. A Datalog rule is an expression of the
form

R(U⃗)← R1(U⃗1), . . . ,Rn(U⃗n).

where Ri(U⃗i) for 1 ≤ i ≤ n are atoms. Note that atoms can refer to the same
relation. The expression to the left of← is the head of the rule, and the expression
to the right is the body. Any variable appearing in U⃗ must also appear in some U⃗i.
A relation R can have more than one rule, each of which is identified by a unique
rule number k, where k ranges between 1 and the total number of rules for the
relation.

Programs. As discussed in chapter 3, relation symbols are divided in two
categories. First, there are input relations whose contents are given in the form of
facts (ground atoms). These are commonly referred to as extensional database
(EDB) relations. We use F to denote the set of facts. Second, there are intensional
database (IDB) relations that are defined by Datalog rules, and one of them is
specified as output. A Datalog program P is a finite set of facts and Datalog rules.
P is recursive if a relation symbol appears in both the head and the body of a rule.
For example, the following is a recursive Datalog program with three facts and
two rules:

// facts (representing edges)
E(1,2). E(2,3). E(3,4).
// rules (computing the transitive closure of E)
C(x,z) :- E(x,z).
C(x,z) :- C(x,y), C(y,z).

The input to the program is E (EDB relation) and the output, C (IDB relation),
represents the transitive closure of the edge relation E.

Stratified Datalog. A stratification of a Datalog program assigns a non-negative
integer, called a stratification number or stratum, to every IDB relation in the
program such that, for every rule, the following hold.

– For every positive (i.e., not negated) atom Ri in the rule body, the stratum
of Ri is greater than or equal to the stratum of rule head R.

– For every negative (i.e., negated) atom Ri in the rule body, the stratum of
Ri is strictly greater than the stratum of rule head R.

Stratification allows providing well defined semantics for evaluating Datalog
programs [160], and consequently, most Datalog engines only support stratifiable
programs. The evaluation of a program starts with the highest stratum, for which
a fixpoint is computed. The computed results of any IDB relation in the highest

69

stratum are then used in the second highest stratum. The process is repeated until
all strata are traversed.

P is a stratified Datalog program if it does not contain recursion involving
negation. For example, the following program is not stratifiable because relation
P negatively depends on relation L, which again depends on P:
L(a) :- M(a), P().
P(a) :- R(a), not L(a).

4.2.2. Precedence Graphs
A Datalog program P has an associated directed graph, called precedence graph
and denoted by GP. GP has a node for each relation in the program and an edge
from node N to M whenever a relation N is in the body of a certain rule and
relation M is the head of the same rule. A precedence graph is, therefore, used

A

B

− +

+
C−B

(a)

1 // declarations
2 edge(X:number, Y:number).
3 reachable(X:number, Y:number).
4 .output reachable
5

6 // facts
7 edge(1,2).
8 edge(2,3).
9 edge(4,2).

10 edge(2,5).
11

12 // rules
13 reachable(X,Y) :- edge(X,Y).
14 reachable(X,Z) :- edge(X,Y), reachable(Y,Z).

(b)

Figure 4.1: Precedence graph (a) for a simple Datalog program (b).

70

to capture dependencies between relations in the program. If a relation appears
positively in the rule body, the corresponding edge is annotated with label +,
otherwise with −. When P is non-recursive, its precedence graph is by definition
acyclic. As an example, consider the program in Fig. 4.1 with its associated
precedence graph.

Definition 6 (Precedence Graph). Given a Datalog program P, a precedence
graph GP = (V,E,θ ,λ) is a directed, labeled hyper-graph, where V is a set of
nodes. Each node in V represents a unique relation in P. Function θ : Q→ V
assigns a relation in Q to a node in V , where Q is the set of all relations in
P. E ⊆ (VxV) is a set of directed edges. Function λ : E → sign, where sign is
{+,−}, assigns labels to edges.

4.3. Overview
In this section, we give an overview of our approach (shown in Fig. 4.2), which
is divided into four phases. On a high level, it uses a seed program to generate
a random annotated precedence graph, applies metamorphic transformations on
this graph, and compares the results of the programs corresponding to these two
graphs.

The first phase takes as input a seed Datalog program S and produces a random
precedence graph GP. It does so by first extracting all relation symbols in S. For
each relation symbol, it generates a graph node, called a seed node. Next, it
randomly generates a number of new nodes, called generated nodes. GP is then
produced using these seed and generated nodes. Note, however, that no incoming
edges are added to seed nodes, that is, the corresponding rules remain unchanged—
this allows handling complex seed programs containing unique language features
(e.g., SMT formulas in Formulog rules). Since program S in Fig. 4.2 consists
of only one relation, GP contains one seed node (fib); node a is randomly
generated.

The second phase takes S and GP as input and produces a corresponding
program P as well as its result OP. To achieve this, the graph annotator first
uses GP to generate an annotated precedence graph GP, which extends GP by
decorating its nodes and edges with properties. S and GP are then used by the
program generator to produce P, which is in turn executed to compute OP. Note
that the construction of GP by the graph annotator ensures that P is stratifiable
and passes all syntactic, semantic, and type checks of the target Datalog engine.

Under the hood, the program generator starts by creating a new relation for each
node in GP. Relations created from seed nodes are called seed relations, and all
others are generated relations. Rules for a seed relation are copied directly from
S (since the corresponding seed node in GP has no incoming edges). Rules for a
generated relation are created based on the incoming edges of the corresponding
node. Edge properties in GP (number, sign, and vars) are directly reflected in
program syntax. For example, when considering the edge from fib to a, its

71

Random Graph
Generator

fib(x, a+b):-
 fib(x-1, a),
 fib(x-2, b),
 x > 1.

S

number: 1

sign: +

vars: (x, x)

fib

a stratum: 0

ancestry: +

GP

fib(x, a+b):-
 fib(x-1, a),
 fib(x-2, b),
 x > 1.
a(x, x):- fib(x, x).

output a

P

fib(x,a+b):-
 fib(x-1, a),
 fib(x-2, b),
 x > 1.
a(x, x):- fib(x, x).
a(x, y):- a(x, y),
 fib(y, y).

output a

GP

fib
fib

a

Program
Generator

Graph
Transformer

Program
Generator

PEQU

OP

1

2

2 2

2

2

3

Extract
Relations

1

1

2

fib

number: 1

sign: +

vars: (x, x)

fib

stratum: 0

ancestry: +

number: 2

sign: +

vars: (y, y)

a
number: 2

sign: +

vars: (x, y)

GPEQU

a

stratum: 0

ancestry: +

stratum: 0

ancestry: +

aa
3

Graph 
Annotator

3

3

3

≢
OPEQU

OP

3

4

Bug
Report

4

Figure 4.2: Overview of our approach.

properties denote that atom fib(x,x) (vars) appears positively (sign) in the
first rule (number) for relation a. Node properties (stratum and ancestry) are
semantic; they are computed using a lightweight static analysis on GP.

The third phase takes S and GP as input and produces a new program Ptr,
which constitutes a metamorphic transformation of P, as well as its result OPtr .
In particular, we transform P to obtain Ptr such that OPtr has a known relation
with OP. Examples of such relations are equivalent, contracting, and expanding
transformations, i.e., OP ≡ OPEQU , OP ⊇ OPCON , and OP ⊆ OPEXP . This is achieved

72

with the graph transformer, which applies graph rewrite rules on GP to obtain GPtr ,
while again ensuring that no incoming edges are added to seed nodes. Next, the
program generator, which is the same as in the previous phase, converts GPtr into
transformed program Ptr. In the end, Ptr is executed to compute OPtr . In Fig. 4.2, the
graph transformer adds two edges from fib to a to generate a metamorphically
equivalent annotated precedence graph GPEQU .

The fourth phase compares results OP and OPtr according to oracle tr. A bug
report is generated when the oracle does not hold.

The following two sections explain the key components of our approach in
more detail, namely, the graph annotator and the graph transformer.

4.4. Graph Annotator
Recall that, in the second phase of our approach, the graph annotator takes as
input a randomly generated precedence graph, GP, and produces an annotated
precedence graph, GP, by decorating the nodes and edges in GP with property-
value pairs. Such graphs are also known as property graphs.

Fig. 4.3 shows an annotated precedence graph for generating the program of
Fig. 4.1. As in a standard precedence graph, we represent each relation symbol in
the program by a node, called relational node. Each relational node maintains two
properties: stratum and ancestry. The output relation in the program, which is a
relational node in the graph, is additionally called an output node—the output node
is shown with a double line in the figure. We call edges between relational nodes
relational edges. Each relational edge maintains three properties: number, sign,
and vars. We represent a ground atom (i.e., fact) by a distinct type of node, called
fact node—fact nodes are shown with dotted lines in the figure. We associate each
fact node with a relational node using a fact edge. We denote fact values as labels
in fact nodes, e.g., label “1,2” for fact A(1,2). Fact nodes and fact edges are
property-less.

Definition 7 (Annotated Precedence Graph). Given a Datalog program P, an
annotated precedence graph, denoted by GP = (V,VF ,O,E,EF ,θ ,θF ,λ ,µ), is
a directed, attributed hyper-graph. V is the set of relational nodes, VF the set
of fact nodes, and O ∈ V the output node. E ⊆ (VxV) is the set of relational
edges and EF ⊆ (VFxV) the set of fact edges. There is a fact edge from every
node u ∈ VF to some node v ∈ V . Function θ : Q→ V assigns a relation in Q
to a relational node in V , where Q is the set of all relations in P. Similarly,
θF : F→VF assigns a fact in F to a fact node in VF , where F is the set of all facts
in P. Relational nodes are assigned properties using function λ : VxKv→ valsv,
where Kv = {stratum,ancestry} is the set of node property keys and valsv the set of
node property values such that stratum ∈ N and ancestry ∈ {+,−,?,none}. For
output node O, λ is defined to assign stratum = 0 and ancestry =+. Relational
edges are assigned properties using function µ : ExKe → valse, where Ke =
{number,sign,vars} is the set of edge property keys and valse the set of edge

73

A

B C

number: 2

sign:

vars: (x, y)

+number: 1

sign:

vars: (y, x)

−

number: 1

sign:

vars: (x, y)

+

stratum: 1

ancestry: −

number: 2

sign:

vars: (x, y, y)

−
stratum: 0

ancestry: +

stratum: 1

ancestry: ?

1,2
2,3

3,4

B

Figure 4.3: Annotated precedence graph for generating the program of
Fig. 4.1.

property values such that number ∈ N, sign ∈ {+,−}, and vars is a tuple of
variables and/or constants.

On a high level, extending a standard precedence graph to an annotated one
involves three steps: (1) randomly adding fact nodes and edges, (2) randomly
generating properties for relational edges, and (3) inferring properties for relational
nodes.

Fact nodes and edges. A fact node represents a ground atom of a relation. A
fact edge e f from a fact node F to a relational node N denotes that F represents
a ground atom of relation N. In Fig. 4.3, we have three fact nodes connected to
relational node A; these represent the three facts in the program of Fig. 4.1.

Relational-edge properties. As in standard precedence graphs, there is a
relational edge e from a relational node N to a relational node M if N appears in
the body of a rule r and M is the head of the same rule. Property number for e is k,
where k is the rule number for r. sign is + if N appears positively in r, otherwise it
is −. vars is U⃗i if N is the ith atom in the body of r. Note that these properties are
syntactic; they are later used by the program generator to produce a valid Datalog
program.

In Fig. 4.3, we have an edge from B to B with property values number = 1,
sign = +, and vars = (x,y). In the program of Fig. 4.1, we therefore have a
recursive relation B, where B appears positively in the first rule with variables (x,y).
In Fig. 4.3, we also have an edge from C to B with property values number = 2,
sign =−, and vars = (x,y,y). As a result, in Fig. 4.1, relation C appears negatively
in the second rule for B with variables (x,y,y).

We call an edge e positive if property sign =+, otherwise we call it negative.
We call a path between two relational nodes in G a dataflow path (denoted by π).
π from N to M is positive if the number of negative edges in π is even, otherwise
π is negative. It is important to note that data flows monotonically along any
dataflow path between N and M. In the case of a positive path, an increase or

74

decrease in data in N increases or decreases (although not necessarily strictly) the
data in M, respectively. In the case of a negative path, an increase or decrease in
data in N decreases or increases (although not necessarily strictly) the data in M,
respectively.

Relational-node properties. Property ancestry for a node N is + if all (possibly
infinite) dataflow paths from N to output node O are positive; ancestry for N is −
if all (possibly infinite) paths from N to O are negative; ancestry is ? if there is
at least one positive and one negative path from N to O; and ancestry is none if
there is no dataflow path from N to O. We say that a node is in positive ancestry
of O if ancestry is + for that node, the node is in negative ancestry if ancestry
is −, the node is in unknown ancestry if ancestry is ?, and the node is not in the
ancestry if ancestry is none. We compute the value of ancestry for a node N by
performing a backward depth-first traversal of G from O to N.

Property stratum for N is the stratification number of N. Essentially, it is the
largest number of negative edges along any path from N to O in G. Note that,
in a stratified Datalog program, all relations have a finite stratum, that is, the
precedence graph of a stratified program has no cycle that contains a negative
edge. For example, in Fig. 4.3, C has stratum = 1 and ancestry =− since there
is a negative path from C to B with one negative edge. A has ancestry =? since
there is at least one positive and one negative path from A to B.

Relational-node properties are semantic; they are computed by the graph an-
notator with a lightweight static analysis of G and are later used by the graph
transformer to apply valid metamorphic transformations.

4.5. Graph Transformer
In this section, we define several primitive rewrite rules for annotated precedence
graphs, introduce a methodology for specifying metamorphic transformations
using these rules, and provide concrete example transformations.

4.5.1. Graph Rewrite Rules
Graph rewriting transforms a host graph, in our context the annotated precedence
graph G = (V,VF ,O,E,EF ,θ ,θF ,λ ,µ), by adding, removing, or altering the prop-
erties of graph elements (nodes or edges) using declaratively defined rules. A
graph rewrite rule R(∗∗g,∗∗atr) is a variadic function, i.e., a function of indefinite
arity, that takes as input a number of host graph elements (represented as ∗∗g) and
rewrite attributes (represented as ∗∗atr); it returns a result graph Gtr.

ADD rewrite rules

ADD rewrite rules transform G by adding a relational node, a fact node, or a
relational edge between two existing relational nodes.

75

ADDRELNODE. Given a graph G = (V,VF ,O,E,EF ,θ ,θF ,λ ,µ), this rule
adds a relational node n with property values nvals to G; we denote it as
RADDRELNODE(∗∗g,∗∗atr), where ∗∗g = {n} and ∗∗atr = {nvals}. The result graph
is Gtr = (V ′,VF ,O,E,EF ,θ

′,θF ,λ
′,µ), where V ′ =V ∪{n} and θ ′,λ ′ only differ

from θ ,λ by including n.
ADDFACT. Given a graph G = (V,VF ,O,E,EF ,θ ,θF ,λ ,µ), this rule adds a

fact node f and a fact edge e f from f to relational node v ∈ V ; we denote it
as RADDFACT(∗∗g,∗∗atr), where ∗∗g = { f ,v} and ∗∗atr = /0. The result graph is
Gtr = (V,V ′F ,O,E,E ′F ,θ ,θ

′
F ,λ ,µ), where V ′F =VF ∪ f , E ′F = EF ∪e f , and θ ′F only

differs from θF by including f .
ADDRELEDGE. Given a graph G=(V,VF ,O,E,EF ,θ ,θF ,λ ,µ), this rule adds

a relational edge er with property value evals from u to v, where u,v ∈ V ; we
denote it as RADDRELEDGE(∗∗g,∗∗atr), where ∗∗g = {u,v} and ∗∗atr = {evals}.
The result graph is Gtr = (V,VF ,O,E ′,EF ,θ ,θF ,λ ,µ

′), where E ′ = E ∪er and µ ′

only differs from µ by including er.

DEL rewrite rules

DEL rewrite rules transform G by deleting a relational node, a fact node, or a
relational edge between two existing relational nodes.

DELRELNODE. Given a graph G = (V,VF ,O,E,EF ,θ ,θF ,λ ,µ), this
rule deletes a node v ∈ V along with its edges; we denote it as
RDELRELNODE(∗∗g,∗∗atr), where ∗∗g = {v} and ∗∗atr = /0. The result graph is
Gtr = (V ′,VF ,O,E ′,EF ,θ

′,θF ,λ
′,µ ′), where V ′ =V \ v, E ′ = E \Ev if Ev is the

set of incoming and outgoing edges of v, and θ ′,λ ′ only differ from θ ,λ by
excluding v.

DELFACT. Given a graph G = (V,VF ,O,E,EF ,θ ,θF ,λ ,µ), this rule deletes a
fact node f associated with relational node v ∈V and the fact edge e f from f to v;
we denote it as RDELFACT(∗∗g,∗∗atr), where ∗∗g= { f ,v} and ∗∗atr = /0. The result
graph is Gtr = (V,V ′F ,O,E,E ′F ,θ ,θ

′
F ,λ ,µ), where V ′F =VF \ f , E ′F = EF \e f , and

θ ′F only differs from θF by excluding f .
DELRELEDGE. Given a graph G = (V,VF ,O,E,EF ,θ ,θF ,λ ,µ),

this rule deletes a relational edge e ∈ E; we denote the rule as
RDELRELEDGE(∗∗g,∗∗atr), where ∗∗g = {e} and ∗∗atr = /0. The result graph is
Gtr = (V,VF ,O,E ′,EF ,θ ,θF ,λ ,µ

′), where E ′ = E \ e and µ ′ only differs from µ

by excluding e.

MOD rewrite rules

MOD rewrite rules transform G by modifying property values of an existing
relational node or edge.

MODRELNODE. Given a graph G = (V,VF ,O,E,EF ,θ ,θF ,λ ,µ), this
rule modifies the property values of a node v ∈ V ; we denote it as

76

RMODRELNODE(∗∗g,∗∗atr), where ∗∗g = {v} and ∗∗atr = {nvals}. The result graph
is Gtr = (V,VF ,O,E,EF ,θ ,θF ,λ

′,µ), where λ ′ only differs from λ by assigning
property values nvals to v.

MODRELEDGE. Given a graph G = (V,VF ,O,E,EF ,θ ,θF ,λ ,µ), this
rule modifies the property values of an edge e ∈ E; we denote it as
RMODRELEDGE(∗∗g,∗∗atr), where ∗∗g = {e} and ∗∗atr = {evals}. The result graph
is Gtr = (V,VF ,O,E,EF ,θ ,θF ,λ ,µ

′), where µ ′ only differs from µ by assigning
property values evals to e.

4.5.2. Specifying Metamorphic Transformations
Recall that the graph transformer (see Fig. 4.2) applies graph rewrite rules on the
annotated precedence graph GP of program P to obtain GPtr , which will then be
converted into transformed program Ptr. Here, tr is the metamorphic relation that
holds between the output of P (OP) and that of Ptr (OPtr). Specifically, we have

– OP ≡ OPEQU for equivalent transformations,

– OP ⊇ OPCON for contracting transformations, and

– OP ⊆ OPEXP for expanding transformations.

We enforce relation tr by applying a graph rewrite rule R on a set of graph
elements that satisfy a precondition φ . In general, we define a metamorphic
transformation as a triple

assume(φ(∗∗g))

∗∗atr = GP.generate attributes(∗∗arg)
GPtr = GP.R(∗∗g,∗∗atr)

assert(out(GP) ≈tr out(GPtr))

stating that if precondition φ holds for graph elements ∗∗g, then applying rewrite
rule R on ∗∗g establishes a relation tr between the output of P (out(GP)) and
that of Ptr (out(GPtr)). In this context, designing a metamorphic transformation
essentially consists in defining precondition φ , one or more rewrite rules, and an
attribute generation scheme implemented in method generate attributes.

As an example, consider rewrite rule RADDRELEDGE(u,v,evals), which adds an
edge e from relational node u to relational node v. In the transformed program
Ptr, this means that a new atom is added in a rule for R, where R = θ−1(v) is
the relation corresponding to v. When u ∈V , where V is the set of all relational
nodes in GP, and v ∈Vnone, where Vnone is the set of all nodes that are not in the
ancestry of the output node O, we have an equivalent (EQU) transformation. This

77

Table 4.1: Remaining metamorphic transformations implemented in DLSmith
(grouped by oracles EQU, CON, and EXP).

Transformation Description
EQU-ADDFACT Adds a fact node to a relational node that is

not in the ancestry of the output
EQU-DELFACT Deletes a fact node from a relational node that

is not in the ancestry of the output
EQU-DELRELNODE Deletes a relational node that is not in the

ancestry of the output
EQU-DELRELEDGE Deletes an incoming relational edge from a

node that is not in the ancestry of the output
CON-ADDFACT Adds a fact node to a relational node that is in

negative ancestry of the output
CON-DELFACT Deletes a fact node from a relational node that

is in positive ancestry of the output
CON-DELRELEDGES Deletes all incoming relational edges from a

node that is in positive ancestry of the output
EXP-ADDFACT Adds a fact node to a relational node that is in

positive ancestry of the output
EXP-DELFACT Deletes a fact node from a relational node that

is in negative ancestry of the output
EXP-DELRELEDGE Deletes an incoming relational edge from a

node that is in positive ancestry of the output

is because there is no dataflow path from v to O, and thus, when adding e from u
to v, there is still no data flowing to O through e. We represent this transformation
as follows.

assume(u ∈ GP.get all nodes()
∧

v ∈ GP.get nodes with ancestry(none))

evals = GP.generate attributes(u,v)
GPEQU = GP.RADDRELEDGE(u,v,evals)

assert(out(GP) ≡ out(GPEQU))

Method get all nodes retrieves all nodes in the annotated precedence graph,
whereas method get nodes with ancestry retrieves all nodes with a par-
ticular ancestry, in this case none. Method generate attributes returns
values for properties number, sign, and vars of new edge e.

78

a

number: 1

sign:

vars: (x)

+

P

a(x)
b(x) :- a(x)

PEQU

a(x)
c(x)
b(x) :- a(x)

a

number: 1

sign:

vars: (x)

+

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: none

bb bb

c

GP GPEQU

Figure 4.4: An example EQU-AddRelNode transformation.

4.5.3. Example Metamorphic Transformations
We now present a sample of the transformations implemented in DLSmith—these
are the transformations that detected query bugs in the Datalog engines we tested.
For the remaining transformations in DLSmith, see Tab. 4.1.

EQU-ADDRELNODE. This is an equivalent transformation adding a new
relational node (see Fig. 4.4 for an example).

assume(true)

nvals = {stratum : 0, ancestry : none}
GPEQU = GP.RADDRELNODE(n,nvals)

assert(out(GP) ≡ out(GPEQU))

Here, {stratum : 0, ancestry : none} is the implementation of
generate attributes. Recall that property stratum of a node is the
largest number of negative edges along any path from the node to the output in
the annotated precedence graph. Here, since ancestry is none, there is no path
from the new node to the output, and thus, stratum must be 0.

EQU-ADDRELEDGES. This is an equivalent transformation adding a positive
and a negative relational edge between two existing nodes (see Fig. 4.5 for an

79

number: 2

sign:

vars: (x)

+

number: 2

sign:

vars: (x)

−

GP GPEQU

P PEQU

a(x)
c(x)
b(x) :- a(x)
b(x) :- c(x), !c(x)

a(x)
c(x)
b(x) :- a(x)

a

number: 1

sign:

vars: (x)

+

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: none

bb

a

number: 1

sign:

vars: (x)

+

bb

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 1

ancestry: ?

c
c

Figure 4.5: An example EQU-AddRelEdges transformation.

example). In particular, it adds two edges e and e′ from relational node u to
relational node v in GP, where sign = + for e and sign = − for e′. Node v may
be any relational node in GP, but to ensure that the resulting program PEQU is
stratifiable, node u may not be a descendant of v.

assume(v ∈ GP.get all nodes()
∧

u ∈ GP.get all nodes()\GP.get descendants(v))

k = GP.get max rule number(v)+1
args = GP.generate vars(v,k)
evals = {number : k, sign : +, vars : args}
evals′ = {number : k, sign :−, vars : args}
s = GP.get stratum(v)+1
a = if GP.get ancestry(v)== none then none else ?
nvals = {stratum : s, ancestry : a}
GPEQU = GP.RADDRELEDGE(u,v,evals)
GPEQU = GPEQU .RADDRELEDGE(u,v,evals′)
GPEQU = GPEQU .RMODRELNODE(u,nvals)

assert(out(GP) ≡ out(GPEQU))

Note that adding two such edges to any node makes the corresponding rule

80

a

number: 1

sign:

vars: (x)

+

P

a(x)
b(x) :- a(x)

PEQU

a(x)
b(x) :- a(x)
b(x) :- b(x)

a

number: 1

sign:

vars: (x)

+

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: +bb

GP GPEQU

bb number: 2

sign:

vars: (x)

+

Figure 4.6: An example EQU-AddSelfEdge transformation.

compute an empty result. Therefore, for the transformation to be equivalent, we
apply it on a new rule of an existing relation R, where R = θ−1(v). Method
get max rule number retrieves the total number of existing rules for R, and
thus, k must be get max rule number(v)+ 1. Method generate vars
generates random variables, which however satisfy the type constraints of R.
Finally, we update the properties of node u to reflect the added edges—stratum
is incremented by 1 due to the negative edge, and if there is a path from v to the
output, then ancestry becomes ? due to the edges having different sign values.

EQU-ADDSELFEDGE. This transformation adds a positive self edge e to an
existing relational node v, that is, the edge connects v to itself (see Fig. 4.6 for
an example). Similarly to EQU-ADDRELEDGES, for the transformation to be
equivalent, we apply it on a new rule of an existing relation.

assume(v ∈ GP.get all nodes())

k = GP.get max rule number(v)+1
args = GP.generate vars(v,k)
evals = {number : k, sign : +, vars : args}
GPEQU = GP.RADDRELEDGE(v,v,evals)

assert(out(GP) ≡ out(GPEQU))

EQU-FACTINLINE. This transformation removes all incoming edges to a
relational node v. Removing these edges effectively removes all rules for relation

81

PCON

GP

P

a(x)
c(x)
b(x) :- a(x)

a

number: 1

sign:

vars: (x)

+

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: none

bb

GPCON

number: 1

sign:

vars: (x)

+

a(x)
c(x)
b(x) :- a(x), c(x)

a

number: 1

sign:

vars: (x)

+

bb

stratum: 0

ancestry: +

stratum: 0

ancestry: +stratum: 0

ancestry: +

c
c

Figure 4.7: An example CON-AddRelEdge transformation.

R = θ−1(v). For the output of PEQU to remain equivalent to the output of P, the
removed rules are replaced with the corresponding facts that these rules would
compute—we retrieve these facts by executing the rules for R. In particular, the
transformation creates a fact node for each retrieved fact and associates it with v
using the ADDFACT rewrite rule.

assume(v ∈ GP.get all nodes())

E = GP.get incoming edges(v)
GPEQU = GP

foreach e ∈ E : GPEQU = GPEQU .RDELRELEDGE(e)
F = GP.get facts(v)
foreach f ∈ F : GPEQU = GPEQU .RADDFACT(f ,v)
GPEQU = GPEQU .annotate()

assert(out(GP) ≡ out(GPEQU))

At the end of this radical transformation, we re-annotate the resulting graph since
all ancestors of v might now have different stratum and ancestry values.

CON-ADDRELEDGE. This is a contracting transformation that adds a positive
relational edge e from u to v, where v is in positive ancestry of output node O
and u either has the same stratification number as v or is not an ancestor of v at

82

all (see Fig. 4.7 for an example). This is to ensure that e does not introduce a
cycle with negation between u and v, thus rendering the transformed program
unstratifiable. Adding an incoming edge to v corresponds to adding an atom in
any rule for relation R = θ−1(v), which contracts the result of R—adding an atom
is essentially a conjunction in Datalog. Since data flows monotonically from R to
the output relation, this transformation will also contract the result of the program.

assume(v ∈ GP.get nodes with ancestry(+)
∧

u ∈ GP.get nodes with stratum(v)
⋃

(GP.get all nodes()\ GP.get ancestors(v)))

k = generate number(1,GP.get max rule number(v))
args = GP.generate vars(v,k)
evals = {number : k, sign : +, vars : args}
s = GP.get stratum(v)
a = GP.get ancestry(u)
nvals = {stratum : s, ancestry : a}
GPCON = GP.RADDRELEDGE(u,v,evals)
GPCON = GPCON .RMODRELNODE(u,nvals)

assert(out(GP) ⊇ out(GPCON))

EXP-ADDRELEDGE. This is an expanding transformation that adds a positive
relational edge e from u to v (see Fig. 4.8 for an example). Similar to the previous
transformation, v is in positive ancestry of output node O, and u either has the
same stratification number as v or is not an ancestor of v at all. Contrary to
the previous transformation, adding e creates a new rule for relation R = θ−1(v),
which expands the result of R—adding a rule is essentially a disjunction in Datalog.
Consequently, the program result is also expanded.

assume(v ∈ GP.get nodes with ancestry(+)
∧

u ∈ GP.get nodes with stratum(v)
⋃

(GP.get all nodes()\ GP.get ancestors(v)))

k = GP.get max rule number(v)+1
args = GP.generate vars(v,k)
evals = {number : k, sign : +, vars : args}
s = GP.get stratum(v)
a = GP.get ancestry(u)
nvals = {stratum : s, ancestry : a}
GPEXP = GP.RADDRELEDGE(u,v,evals)
GPEXP = GPEXP .RMODRELNODE(u,nvals)

assert(out(GP) ⊆ out(GPEXT))

83

GP

a

number: 1

sign:

vars: (x)

+

stratum: 0

ancestry: +

stratum: 0

ancestry: +

stratum: 0

ancestry: none

bb

c

GPEXP

number: 2

sign:

vars: (x)

+
a

number: 1

sign:

vars: (x)

+

bb

stratum: 0

ancestry: +

stratum: 0

ancestry: +stratum: 0

ancestry: +

c

PEXPP

a(x)
c(x)
b(x) :- a(x)

a(x)
c(x)
b(x) :- a(x)
b(x) :- c(x)

Figure 4.8: An example EXP-AddRelEdge transformation.

4.6. Implementation
We implemented DLSmith in a total of 6,300 lines of Python code. It currently
supports six Datalog dialects, namely, Ascent [231], DDlog [228], Flix [167],
Formulog [37], Scallop [128], and Soufflé [136]. In the rest of this section, we
discuss how to implement new metamorphic transformations as well as the existing
queryFuzz transformations [168] in DLSmith.

Implementing new transformations. The transformations described in the
previous section require (on average) 40 lines of Python code to implement. Im-
plementing a transformation for an already supported Datalog engine involves
the following steps: (1) expressing a precondition, (2) retrieving the graph ele-
ments satisfying the precondition, (3) generating attributes for the graph rewrite
rules(s), (4) calling the graph rewrite rule(s), and (5) expressing a postcondition.
Implementing a transformation for a new engine additionally requires extracting
relations from seed programs and generating programs from annotated precedence
graphs.

Implementing queryFuzz transformations. queryFuzz implements metamor-
phic transformations based on formal properties of conjunctive queries, namely,
query containment and equivalence. As described earlier however, these trans-
formations are limited since the approach does not have a global view of the
program being transformed. On the other hand, DLSmith subsumes queryFuzz—
not only can all queryFuzz transformations be expressed using the specifications
in Sect. 4.5, but its transformations can now also be applied in any stratum of

84

the Datalog program. In particular, this is how queryFuzz transformations can be
expressed in DLSmith:

– ADD transformations add an atom R(v1, . . . ,vn) to a rule of relation Q.
These can be expressed in DLSmith by adding a relational edge e from
a relational node u to a relational node v, where u = θ(R) and v = θ(Q),
using rewrite rule RADDRELEDGE.

– MOD transformations modify a rule of relation Q by renaming a variable
appearing in its atoms. These can be expressed in DLSmith by modifying
property vars of the incoming edges to a node v, where v = θ(R), using
rewrite rule RMODRELEDGE.

– REM transformations remove an atom R(v1, . . . ,vn) from a rule of relation
Q. These can be expressed in DLSmith by removing a relational edge e from
a relational node u to a relational node v, where u = θ(R) and v = θ(Q),
using rewrite rule RDELRELEDGE.

– NEG transformations replace an atom R(v1, . . . ,vn) in a rule of relation Q
with the negated atom of a new relation, say neg. For instance, the following
rule

p(X, Y) :- a(X, Y), b(Y, Z), c(Z).

is transformed into

neg(Z) :- a(X, Y), b(Y, Z), not c(Z).
p(X, Y) :- a(X, Y), b(Y, Z), not neg(Z).

Relation neg is defined to have the same body as the rule for Q but with a
negated R, thereby introducing double negation. These transformations are
always equivalent and may be expressed in DLSmith by generating a new
relational node for neg, adding edges for the atoms of neg, and adjusting
the edges for the atoms of Q.

4.7. Experimental Evaluation
In this section, we address the following research questions:

RQ1: How effective is DLSmith in detecting previously unknown query bugs in
diverse Datalog engines?

RQ2: What are characteristics of the detected bugs?

RQ3: How effective is DLSmith in terms of code coverage?

RQ4: How efficient is DLSmith?

85

4.7.1. Setup
We tested six mature Datalog engines, namely, Ascent, DDlog, Flix, Formulog,
Scallop, and Soufflé. All engines are publicly available on GitHub. We completed
the implementation of the first version of DLSmith in January 2022 and started
our testing campaign with Soufflé. Until September 2022, we added support for
the remaining five engines as well as for more transformations. On average, we
spent about 1.5 months testing each engine. As seeds, we used semantically valid
test cases from the engine repositories.

We performed all experiments on a 32-core Intel ® Xeon ® E5-2667 v2
CPU @ 3.30GHz machine with 256GB of memory, running Debian GNU/Linux
10 (buster).

4.7.2. Results
We now discuss our findings for each research question.

RQ1: Query bugs in diverse engines. We tested six active Datalog imple-
mentations, each supporting a different dialect. We give a brief overview of these
engines next.

Ascent can integrate with arbitrary application logic written in the Rust program-
ming language. In particular, it allows Datalog rules to call into Rust code
and vice versa.

DDlog is used for incremental computation. Specifically, developers declaratively
specify a desired input-output mapping, and DDlog uses it to synthesize an
efficient incremental implementation.

Flix is a functional, imperative, and logic programming language, which looks
like Scala and provides support for algebraic data types, pattern matching,
higher order functions, etc. In Flix, Datalog programs are first class values,
and Datalog constraints have more expressive power.

Formulog is a domain-specific dialect with support for constructing and reason-
ing about SMT formulas.

Scallop is a Datalog-based neuro-symbolic programming language, supporting
discrete, probabilistic, and differential reasoning modes. Rules may be
integrated with machine-learning models, facts may have associated proba-
bilities, results may be computed with a success probability, etc.

Soufflé is a fast and scalable dialect, whose syntax was inspired by bddbddb [260]
and µZ in Z3 [125]. Its primary goal is speed, thereby tailoring program
execution to multi-core servers with large memory.

86

Table 4.2: Query bugs detected by DLSmith.

Bug Datalog Metamorphic Bug
ID Engine Transformation Status
1 Soufflé EQU-ADDRELEDGES Fixed
2 Soufflé EQU-ADDRELEDGES Fixed
3 Soufflé EQU-ADDRELEDGES Fixed
4 Soufflé ADDEQU Fixed
5 Soufflé ADDEQU Fixed
6 Soufflé EQU-ADDRELEDGES Confirmed
7 Formulog EQU-ADDSELFEDGE Fixed
8 Ascent ADDEQU Fixed
9 Scallop CON-ADDRELEDGE Fixed

10 Scallop CON-ADDRELEDGE Fixed
11 Scallop EXP-ADDRELEDGE Fixed
12 Scallop CON-ADDRELEDGE Fixed
13 Scallop EQU-ADDRELEDGES Confirmed
14 Soufflé EQU-ADDRELEDGES Confirmed
15 Soufflé EQU-FACTINLINE Confirmed
16 Soufflé EQU-ADDRELNODE, Confirmed

EQU-ADDRELEDGES

Tab. 4.2 shows the list of unique and previously unknown query bugs detected
by DLSmith. The first column of the table provides an identifier for each bug and
links to the (anonymized) bug report on GitHub. The second column shows the
engine where the bug was found, the third the metamorphic transformation that
was applied, and the last column the status of the bug. In total, DLSmith detected
16 query bugs in four engines, all of which are confirmed by the developers and
eleven are fixed.

Note that ADDEQU (bugs 4, 5, 8) is a queryFuzz transformation implemented
in DLSmith. Out of all detected bugs, only bugs 4 and 8 could have been detected
by queryFuzz. Bug 5 is detected with a queryFuzz transformation, which however
is not applied at the highest stratum—this is only possible in DLSmith. Also note
that our tool applies sequences of transformations, and bug 16 required a sequence
of two transformations to be detected.

RQ2: Characteristics of detected bugs. To better understand the character-
istics of the detected bugs, we now discuss them in detail.

Soufflé. Bugs 1, 2, 5, and 15 were found in the implementation of the eqrel
(equivalence relation) data structure. According to the developers, they recently
applied performance-related changes to this code, which is perhaps when these
bugs were introduced. Bug 3 was due to the incorrect implementation of utility
function range in the presence of unsigned bounds. Bug 4 was caused by a
mistake in the implementation of subsumption for the btree delete data

87

https://github.com/souffle-lang/souffle/issues/2163
https://github.com/souffle-lang/souffle/issues/2176
https://github.com/souffle-lang/souffle/issues/2182
https://github.com/souffle-lang/souffle/issues/2189
https://github.com/souffle-lang/souffle/issues/2190
https://github.com/souffle-lang/souffle/issues/2168
https://github.com/HarvardPL/formulog/issues/12
https://github.com/s-arash/ascent/issues/3
https://github.com/scallop-lang/scallop-lang.github.io/issues/3
https://github.com/scallop-lang/scallop-lang.github.io/issues/6
https://github.com/scallop-lang/scallop-lang.github.io/issues/7
https://github.com/scallop-lang/scallop-lang.github.io/issues/18
https://github.com/scallop-lang/scallop-lang.github.io/issues/19
https://github.com/souffle-lang/souffle/issues/2300
https://github.com/souffle-lang/souffle/issues/2302
https://github.com/souffle-lang/souffle/issues/2309
https://github.com/souffle-lang/souffle/issues/2163
https://github.com/souffle-lang/souffle/issues/2176
https://github.com/souffle-lang/souffle/issues/2190
https://github.com/souffle-lang/souffle/issues/2300
https://github.com/souffle-lang/souffle/issues/2182
https://github.com/souffle-lang/souffle/issues/2189

structure. The developers called it a “nasty bug to find and fix”. Bug 6 was detected
in the code generation mechanism for the interpreter. Currently, the interpreter
checks floating point number equivalence via bitwise comparison rather than
floating point comparison. The developers confirmed the issue but need time to
resolve it. Bug 14 was again caused by floating point equivalence checking in
the brie data structure. This bug, however, only manifested in compiler mode.
Bug 16 was also found in brie; it manifested when using “auto-scheduling” for
automatic performance tuning.

Formulog. Bug 7 was a non-deterministic query bug in the procedure for
computing strata, which incorrectly depended on non-deterministic hash values.
As a result, relations ended up being computed in the wrong order.

Ascent. Bug 8 occurred because of an atom having a repeated variable in a rule
body. This case was not taken into account when reordering atoms at runtime to
increase performance.

Scallop. Bugs 9 and 11 were due to incorrect optimization conditions in the
query plan optimizer. Bug 10 was related to incorrect variable deduplication in
the query plan generator. Bug 12 revealed an issue with incorrect optimization of
negative atoms, and bug 13 was caused by incorrectly detecting a negative cycle
between two relations.

RQ3: Code coverage. In this research question, we evaluate the code coverage
achieved by DLSmith. We first compare it with the coverage achieved by hand-
crafted tests in the engine repositories, which we use as seeds for DLSmith. We
also compare with queryFuzz when using the same seeds and with DLSmith when
using empty seeds. The results are shown in Tab. 4.3 for Soufflé (written in C++)
and Scallop (written in Rust), where we detected the most bugs. Note that, for
this experiment, the total number of seeds for Soufflé is 240 and for Scallop 39.
When running DLSmith and queryFuzz, for each seed program (empty or not),
we generate 500 transformed programs.

As shown in the table, DLSmith is the most effective, while DLSmith-Empty
(with empty seeds) is the least effective. When comparing DLSmith to running the
seeds alone for Scallop, we observe a 4.8% and 7.5% increase in line and function
coverage, respectively. For Soufflé, we observe a 4.1% and 2.8% increase in line
and function coverage, respectively. When comparing DLSmith to queryFuzz
for Scallop, we observe a 3.9% and 6.7% increase in line and function coverage,
respectively. For Soufflé, we observe a 2.7% and 2.3% increase in line and function
coverage, respectively.

RQ4: Performance. The performance of DLSmith depends on the Datalog
engine under test. At the end of the second phase in Fig. 4.2, DLSmith on average
generates a program per 0.006 seconds (or 163 programs per second). However,
as expected, it is slowed down by the engine running each of these programs,
and Tab. 4.4 shows by how much. The second column computes the average

88

https://github.com/souffle-lang/souffle/issues/2168
https://github.com/souffle-lang/souffle/issues/2300
https://github.com/souffle-lang/souffle/issues/2309
https://github.com/HarvardPL/formulog/issues/12
https://github.com/s-arash/ascent/issues/3
https://github.com/scallop-lang/scallop-lang.github.io/issues/3
https://github.com/scallop-lang/scallop-lang.github.io/issues/7
https://github.com/scallop-lang/scallop-lang.github.io/issues/6
https://github.com/scallop-lang/scallop-lang.github.io/issues/18
https://github.com/scallop-lang/scallop-lang.github.io/issues/19

Table 4.3: Code coverage achieved by seeds alone, queryFuzz, DLSmith
with empty seeds, and DLSmith. L represents line coverage, and F function
coverage.

Datalog Seeds queryFuzz
Engine L F L F
Scallop 18,056 2,709 18,201 2,729
Soufflé 63,452 40,350 64,298 40,544

DLSmith-Empty DLSmith
L F L F

Scallop 11,388 1,826 18,915 2,912
Soufflé 50,180 30,205 66,027 41,484

Table 4.4: Average running time (in seconds) of DLSmith when executing its
first two phases.

Datalog Running
Engine Time

Ascent 17.221
DDlog 612.121
Flix 240.031
Formulog 1.512
Scallop 0.146
Soufflé 0.734

time of generating and running a single program (i.e., executing the first two
phases of Fig. 4.2). The graph transformer in the third phase of Fig. 4.2 on average
generates a transformed annotated precedence graph per 0.00035 seconds (or
2857 transformed annotated precedence graphs per second), where the maximum
transformation sequence length is 100. Note that these averages are computed
over three runs of DLSmith, each seeded with 500 programs.

4.7.3. Threats to Validity
Our experimental results, and especially the detected query bugs, depend on the
Datalog engines we tested as well as the seed programs that DLSmith takes as input.
Regarding the former, we selected six diverse and active Datalog implementations.
Regarding the latter, we used all (syntactically and semantically) valid test cases
from the engine repositories as seeds for DLSmith. We also perform an experiment
using only empty seeds to show their effect on our code coverage results.

89

4.8. Related Work
In this chapter, we presented the most comprehensive approach to detecting query
bugs in Datalog engines. Our approach uses metamorphic testing to address the
oracle problem [31] by first generating a Datalog program from its corresponding
annotated precedence graph and transforming the program by transforming its
annotated precedence graph using graph rewrite rules.

Graphs are a powerful and general notation that is used to express and model
complex systems in a variety of areas in computer science, including software
engineering [126], software security [54], program slicing [64], computer net-
works [181], and bioinformatics [209], to name a few. Graph rewriting [211] is
used to formalize how a complex structure represented by a graph evolves over
time. Together with graph transformation [26, 27, 210], it has been extensively
studied in the graph theory community.

In chapter 3, we presented the first metamorphic testing approach to detect
bugs in Datalog engines [168]. We have already discussed the most closely related
areas of work in section 3.12.

4.9. Summary and Remarks
In this chapter, we have presented DLSmith, another powerful approach for de-
tecting query bugs in Datalog engines using dependency-aware metamorphic test
oracles. The test oracles presented in this chapter use rich precedence information
capturing dependencies among relations in the program. DLSmith detected 16 pre-
viously unknown query bugs in four Datalog engines, and our evaluation showed
that only two of these bugs could have been detected using queryFuzz.

90

Part II

Balancing Soundness, Precision,
and Performance

91

92

Chapter 5

Automatically Tailoring Abstract
Interpretation to Custom Usage
Scenarios

In recent years, there has been significant progress in the development and in-
dustrial adoption of static analyzers, specifically of abstract interpreters. Such
analyzers typically provide a large, if not huge, number of configurable options
controlling the analysis precision and performance. A major hurdle in integrating
them in the software development life cycle is tuning their options to custom
usage scenarios, such as a particular code base or certain resource constraints.

In this chapter, we propose a technique that automatically tailors an abstract
interpreter to the code under analysis and any given resource constraints. We
implement this technique in a framework, TAILOR, which we use to perform an
extensive evaluation on real-world benchmarks. Our experiments show that the
configurations generated by TAILOR are vastly better than the default analysis
options, vary significantly depending on the code under analysis, and most remain
tailored to several subsequent code versions.

5.1. Introduction
Static analysis inspects code, without running it, in order to prove properties or
detect bugs. Typically, static analysis approximates code behavior, for instance,
because checking the correctness of most properties is undecidable. Performance
is another important reason for this approximation. Typically, the closer the
approximation is to the actual code behavior, the less efficient and the more
precise the analysis is, that is, the fewer false positives it reports. For less tight
approximations, the analysis tends to become more efficient but less precise.

Recent years have seen tremendous progress in the development and industrial

93

adoption of static analyzers. Notable successes include Facebook’s Infer [59, 60]
and AbsInt’s Astrée [45]. Many popular analyzers, such as these, are based on
abstract interpretation [76], a technique that abstracts the concrete program
semantics and reasons about its abstraction. In particular, program states are
abstracted as elements of abstract domains. Most abstract interpreters offer a
wide range of abstract domains that impact the precision and performance of the
analysis. For instance, the Intervals domain [75] is typically faster but less precise
than Polyhedra [81], which captures linear inequalities among variables.

In addition to the domains, abstract interpreters usually provide a large number
of other options, for instance, whether backward analysis should be enabled or
how quickly a fixpoint should be reached. In fact, the sheer number of option
combinations (over 6 million in our experiments) is bound to overwhelm users,
especially non-expert ones. To make matters worse, the best option combinations
may vary significantly depending on the code under analysis and the resources,
such as time or memory, that users are willing to spend.

In light of this, we suspect that most users resort to using the default options
that the analysis designer pre-selected for them. However, these are definitely not
suitable for all code. Moreover, they do not adjust to different stages of software
development, e.g., running the analysis in the editor should be much faster than
running it in a continuous integration (CI) pipeline, which in turn should be much
faster than running it prior to a major release. The alternative of enabling the (in
theory) most precise analysis can be even worse, since in practice it often runs out
of time or memory as we show in our experiments. As a result, the widespread
adoption of abstract interpreters is severely hindered, which is unfortunate since
they constitute an important class of practical analyzers.

Our approach. To address this issue, we present the first technique that auto-
matically tailors a generic abstract interpreter to a custom usage scenario. With
the term custom usage scenario, we refer to a particular piece of code and specific
resource constraints. The key idea behind our technique is to phrase the problem
of customizing the abstract-interpretation configuration to a given usage scenario
as an optimization problem. Specifically, different configurations are compared
using a cost function that penalizes those that prove fewer properties or require
more resources. The cost function can guide the configuration search of a wide
range of existing optimization algorithms. This problem of tuning abstract in-
terpreters can be seen as an instance of the more general problem of algorithm
configuration [129]. In the past, algorithm configuration has been used to tune
algorithms for solving various hard problems, such as SAT solving [130,131], and
more recently, training of machine-learning models [38, 95, 249].

We implement our technique in an open-source framework called TAILOR1,
which configures a given abstract interpreter for a given usage scenario using a

1The framework’s implementation can be found on Github at https://github.
com/Practical-Formal-Methods/tailor and an installation at https://
doi.org/10.5281/zenodo.4719604.

94

https://github.com/Practical-Formal-Methods/tailor
https://github.com/Practical-Formal-Methods/tailor
https://doi.org/10.5281/zenodo.4719604
https://doi.org/10.5281/zenodo.4719604

given optimization algorithm. As a result, TAILOR enables the abstract interpreter
to prove as many properties as possible within the resource limit without requiring
any domain expertise on behalf of the user.

Using TAILOR, we find that tailored configurations vastly outperform the default
options pre-selected by the analysis designers. In fact, we show that this is possible
even with very simple optimization algorithms. Our experiments also demonstrate
that tailored configurations vary significantly depending on the usage scenario—in
other words, there cannot be a single configuration that fits all scenarios. Finally,
most of the generated configurations remain tailored to several subsequent code
versions, suggesting that re-tuning is only necessary after major code changes.

Contributions. In this chapter, we make the following contributions:

1. We present the first technique for automatically tailoring abstract inter-
preters to custom usage scenarios.

2. We implement our technique in an open-source framework called TAILOR.

3. Using a state-of-the-art abstract interpreter, CRAB [116], with millions
of configurations, we show the effectiveness of TAILOR on real-world
benchmarks.

5.2. Overview
We now illustrate the workflow and tool architecture of TAILOR and provide
examples of its effectiveness.

Terminology. In the following, we refer to an abstract domain with all its
options (e.g., enabling backward analysis or more precise treatment of arrays etc.)
as an ingredient.

As discussed earlier, abstract interpreters typically provide a large number of
such ingredients. To make matters worse, it is also possible to combine different
ingredients into a sequence (which we call a recipe) such that more properties are
verified than with individual ingredients. For example, a user could configure the
abstract interpreter to first use Intervals to verify as many properties as possible
and then use Polyhedra to attempt verification of any remaining properties. Of
course, the number of possible configurations grows exponentially in the length
of the recipe (over 6 million in our experiments for recipes up to length 3).

Workflow. The high-level architecture of TAILOR is shown in Fig. 5.1. It takes
as input the code to be analyzed (i.e., any program, file, function, or fragment), a
user-provided resource limit, and optionally an optimization algorithm. We focus
on time as the constrained resource in this chapter, but our technique could be
easily extended to other resources, such as memory.

The optimization engine relies on a recipe generator to generate a fresh recipe.
To assess its quality in terms of precision and performance, the recipe evaluator
computes a cost for the recipe. The cost is computed by evaluating how precise
and efficient the abstract interpreter is for the given recipe. This cost is used by the

95

code + resources +
optimization algorithm

TAILOR

Optimization
Engine

Recipe
Generator

Recipe
Evaluator

Static
Analyzer

tailored recipe

recipe

cost
ingr. +
current
results

new
results

Figure 5.1: Overview of our framework.

optimization engine to keep track of the best recipe so far, i.e., the one that proves
the most properties in the least amount of time. TAILOR repeats this process for a
given number of iterations to sample multiple recipes and returns the recipe with
the lowest cost.

Zooming in on the evaluator, a recipe is processed by invoking the abstract
interpreter for each ingredient. After each analysis (i.e., one ingredient), the
evaluator collects the new verification results, that is, the verified assertions. All
verification results that have been achieved so far are subsequently shared with the
analyzer when it is invoked for the next ingredient. Verification results are shared
by converting all verified assertions into assumptions. After processing the entire
recipe, the evaluator computes a cost for the recipe, which depends on the number
of unverified assertions and the total analysis time.

In general, there might be more than one recipe tailored to a particular us-
age scenario. Naı̈vely, finding one requires searching the space of all recipes.
Sect. 5.4.3 discusses several optimization algorithms for performing this search,
which TAILOR already incorporates in its optimization engine.

Examples. As an example, let us consider the usage scenario where a user runs
the CRAB abstract interpreter [116] in their editor for instant feedback during
code development. This means that the allowed time limit for the analysis is very
short, say, 1 sec. Now assume that the code under analysis is a program file2 of the
multimedia processing tool FFMPEG, which is used to evaluate the effectiveness of
TAILOR in our experiments. In this file, CRAB checks 45 assertions for common
bugs, i.e., division by zero, integer overflow, buffer overflow, and use after free.

Analysis of this file with the default CRAB configuration takes 0.35 sec to
complete. In this time, CRAB proves 17 assertions and emits 28 warnings about
the properties that remain unverified. For this usage scenario, TAILOR is able to
tune the abstract-interpreter configuration such that the analysis time is 0.57 sec
and the number of verified properties increases by 29% (i.e., 22 assertions are

2https://github.com/FFmpeg/FFmpeg/blob/master/libavformat/idcin.c

96

https://github.com/FFmpeg/FFmpeg/blob/master/libavformat/idcin.c

proved). Note that the tailored configuration uses a completely different abstract
domain than the one in the default configuration. As a result, the verification
results are significantly better, but the analysis takes slightly longer to complete
(although remaining within the specified time limit). In contrast, enabling the most
precise analysis in CRAB verifies 26 assertions but takes over 6 min to complete,
which by far exceeds the time limit imposed by the usage scenario.

While it takes TAILOR 4.5 sec to find the above configuration, this is time well
invested; the configuration can be re-used for several subsequent code versions.
In fact, in our experiments, we show that generated configurations can remain
tailored for at least up to 50 subsequent commits to a file under version control.
Given that changes in the editor are typically much more incremental, we expect
that no re-tuning would be necessary at all during an editor session. Re-tuning
may be beneficial after major changes to the code under analysis and can happen
offline, e.g., between editor sessions, or in the worst case overnight.

As another example, consider the usage scenario where CRAB is integrated in a
CI pipeline. In this scenario, users should be able to spare more time for analysis,
say, 5 min. Here, let us assume that the analyzed code is a program file3 of the
CURL tool for transferring data by URL, which is also used in our evaluation. The
default CRAB configuration takes 0.23 sec to run and only verifies 2 out of 33
checked assertions. TAILOR is able to find a configuration that takes 7.6 sec and
proves 8 assertions. In contrast, the most precise configuration does not terminate
even after 15 min.

Both scenarios demonstrate that, even when users have more time to spare,
the default configuration cannot take advantage of it to improve the verification
results. At the same time, the most precise configuration is completely impractical
since it does not respect the resource constraints imposed by these scenarios.

5.3. A Generic Abstract Interpreter
Many successful abstract interpreters (e.g., Astrée [45], C Global Surveyor [256],
Clousot [94], CRAB [116], IKOS [47], Sparrow [203], and Infer [60]) follow the
generic architecture in Fig. 5.2. In this section, we describe its main components
to show that our approach should generalize to such analyzers.

Memory domain. Analysis of low-level languages such as C and LLVM-
bitcode requires reasoning about pointers. It is, therefore, common to design
a memory domain [189] that can simultaneously reason about pointer aliasing,
memory contents, and numerical relations between them.

Pointer domains resolve aliasing between pointers, and array domains reason
about memory contents. More specifically, array domains can reason about individ-
ual memory locations (cells), infer universal properties over multiple cells, or both.
Typically, reasoning about individual cells trades performance for precision unless
there are very few array elements (e.g., [106, 189]). In contrast, reasoning about

3https://github.com/curl/curl/blob/master/lib/cookie.c

97

https://github.com/curl/curl/blob/master/lib/cookie.c

Memory Domain

Pointer Domains Array Domains

Logico/Numerical Domains

Analysis Engine

Abstract Transformers

Fixpoint Computation

Forward/Backward
Analysis

Intra/Inter-
Proc. Analysis

CFG/Call-
Graph Builder

Assertion
Checker

Figure 5.2: Generic architecture of an abstract interpreter.

multiple memory locations (summarized cells) trades precision for performance.
In our evaluation, we use Array smashing domains [45] that abstract different
array elements into a single summarized cell. Logico-numerical domains infer
relationships between program and synthetic variables, introduced by the pointer
and array domains, e.g., summarized cells.

Next, we introduce domains typically used for proving the absence of runtime
errors in low-level languages. Boolean domains (e.g., flat Boolean, BDDApron [1])
reason about Boolean variables and expressions. Non-relational domains (e.g., In-
tervals [75], Congruence [109]) do not track relations among different variables, in
contrast to relational domains (e.g., Equality [142], Zones [188], Octagons [190],
Polyhedra [81]). Due to their increased precision, relational domains are typically
less efficient than non-relational ones. Symbolic domains (e.g., Congruence clo-
sure [63], Symbolic constant [191], Term [103]) abstract complex expressions
(e.g., non-linear) and external library calls by uninterpreted functions. Non-convex
domains express disjunctive invariants. For instance, the DisInt domain [94] ex-
tends Intervals to a finite disjunction; it retains the scalability of the Intervals
domain by keeping only non-overlapping intervals. On the other hand, the Boxes
domain [115] captures arbitrary Boolean combinations of intervals, which can
often be expensive.

Fixpoint computation. To ensure termination of the fixpoint computation,
Cousot and Cousot introduce widening [76, 78], which usually incurs a loss of
precision. There are three common strategies to reduce this precision loss, which

98

however sacrifice efficiency. First, delayed widening [45] performs a number of
initial fixpoint-computation iterations in the hope of reaching a fixpoint before
resorting to widening. Second, widening with thresholds [152, 186] limits the
number of program expressions (thresholds) that are used when widening. The
third strategy consists in applying narrowing [76, 78] a certain number of times.

Forward and backward analysis. Classically, abstract interpreters analyze
code by propagating abstract states in a forward manner. However, abstract in-
terpreters can also perform backward analysis to compute the execution states
that lead to an assertion violation. Cousot and Cousot [77, 79] define a forward-
backward refinement algorithm in which a forward analysis is followed by a
backward analysis until no more refinement is possible. The backward analysis
uses invariants computed by the forward analysis, while the forward analysis does
not explore states that cannot reach an assertion violation based on the backward
analysis. This refinement is more precise than forward analysis alone, but it may
also become very expensive.

Intra- and inter-procedural analysis. An intra-procedural analysis analyzes
a function ignoring the information (i.e., call stack) that flows into it, while an
inter-procedural analysis considers all flows among functions. The former is much
more efficient and easy to parallelize, but the latter is usually more precise.

5.4. Our Technique
This section describes the components of TAILOR in detail; Sects. 5.4.1, 5.4.2,
5.4.3 explain the optimization engine, recipe evaluator, and recipe generator
(Fig. 5.1).

5.4.1. Recipe Optimization
Alg. 6 implements the optimization engine. In addition to the code P and the
resource limit rmax, it also takes as input the maximum length of the generated
recipes lmax (i.e., the maximum number of ingredients), a function to generate
new recipes GENERATERECIPE (i.e., the recipe generator from Fig. 5.1), and four
other parameters, which we explain later.

A tailored recipe is found in two phases. The first phase aims to find the best
abstract domain for each ingredient, while the second tunes the remaining analysis
settings for each ingredient (e.g., whether backward analysis should be enabled).
Parameters idom and iset control the number of iterations of each phase. Note that
we start with a search for the best domains since they have the largest impact on
the precision and performance of the analysis.

During the first phase, the algorithm initializes the best recipe recbest with an
initial recipe recinit (line 3). The cost of this recipe is evaluated with function
EVALUATE, which implements the recipe evaluator from Fig. 5.1. The subsequent
nested loop (line 5) samples a number of recipes, starting with the shortest recipes

99

Algorithm 6: Optimization engine.
1 procedure OPTIMIZE(P,rmax, idom, iset,recinit,GENERATERECIPE,ACCEPT)
2 // Phase 1 (optimize domains)
3 recbest := reccurr := recinit

4 costbest := costcurr := EVALUATE(P, rmax, recbest)
5 for (l← 0, l <= lmax, l++) do
6 for (i← 1, i <= idom · l, i++) do
7 recnext := GENERATERECIPE(reccurr, l)
8 costnext := EVALUATE(P, rmax, recnext)
9 if costnext < costbest then

10 recbest,costbest := recnext, costnext

11 if ACCEPT(costcurr, costnext) then
12 recbest,costbest := recnext, costnext

13

14 // Phase 2 (optimize settings)
15 for (i← 0, i <= lmax, i++) do
16 recmut := MUTATESETTINGS(recbest)
17 costmut := EVALUATE(P, rmax, recmut)
18 if costmut < costbest then
19 recbest,costbest := recmut , costmut

20 return recbest

(l := 1) and ending with the longest recipes (l := lmax). The inner loop generates
idom ingredients for each ingredient in the recipe (i.e., idom · l total iterations) by
invoking function GENERATERECIPE, and in case a recipe with lower cost is
found, it updates the best recipe (lines 9–10). Several optimization algorithms,
such as hill climbing and simulated annealing, search for an optimal result by
mutating some of the intermediate results. Variable reccurr stores intermediate
recipes to be mutated, and function ACCEPT decides when to update it (lines 11–
12).

As explained earlier, the purpose of the first phase is to identify the best
sequence of abstract domains. The second phase (lines 14–19) focuses on tuning
the other settings of the best recipe so far. This is done by randomly mutating
the best recipe via MUTATESETTINGS (line 16), and updating the best recipe if
better settings are found (lines 18–19). After exploring iset random settings, the
best recipe is returned to the user (line 20).

5.4.2. Recipe Evaluation
The recipe evaluator from Fig. 5.1 uses a cost function to determine the quality
of a fresh recipe with respect to the precision and performance of the abstract
interpreter. This design is motivated by the fact that analysis imprecision and

100

inefficiency are among the top pain points for users [68].
Therefore, the cost function depends on the number of generated warnings w

(that is, the number of unverified assertions), the total number of assertions in the
code wtotal, the resource consumption r of the analyzer, and the resource limit rmax

imposed on the analyzer:

cost(w,wtotal,r,rmax) =

w+

r
rmax

wtotal
, if r ≤ rmax

∞, otherwise

Note that w and r are measured by invoking the abstract interpreter with the
recipe under evaluation. The cost function evaluates to a lower cost for recipes
that improve the precision of the abstract interpreter (due to the term w/wtotal).
In case of ties, the term r/rmax causes the function to evaluate to a lower cost for
recipes that result in a more efficient analysis. In other words, for two recipes
resulting in equal precision, the one with the smaller resource consumption is
assigned a lower cost. When a recipe causes the analyzer to exceed the resource
limit, it is assigned infinite cost.

5.4.3. Recipe Generation
In the literature, there is a broad range of optimization algorithms for different
application domains. To demonstrate the generality and effectiveness of TAILOR,
we instantiate it with four adaptations of three well-known optimization algorithms,
namely random sampling [175], hill climbing (with regular restarts) [227], and
simulated annealing [147, 184]. Here, we describe these algorithms in detail, and
in Sect. 5.5, we evaluate their effectiveness.

Before diving into the details, let us discuss the suitability of different kinds
of optimization algorithms for our domain. There are algorithms that leverage
mathematical properties of the function to be optimized, e.g., by computing deriva-
tives as in Newton’s iterative method. Our cost function, however, is evaluated
by running an abstract interpreter, and thus, it is not differentiable or continuous.
This constraint makes such analytical algorithms unsuitable. Moreover, evaluating
our cost function is expensive, especially for precise abstract domains such as
Polyhedra. This makes algorithms that require a large number of samples, such as
genetic algorithms, less practical.

Now recall that Alg. 6 is parametric in how new recipes are generated (with
GENERATERECIPE) and accepted for further mutations (with ACCEPT). Instanti-
ations of these functions essentially constitute our search strategy for a tailored
recipe. In the following, we discuss four such instantiations. Note that, in theory,
the order of recipe ingredients matters. This is because any properties verified by
one ingredient are converted into assumptions for the next, and different assump-
tions may lead to different verification results. Therefore, all our instantiations are
able to explore different ingredient orderings.

101

Algorithm 7: A recipe-generator instantiation.
1 procedure GENERATERECIPE(rec, lmax)
2 act := RANDOMACTION({ADD: 0.2, MOD: 0.8}))
3 if act = ADD∧LEN(rec)< lmax then
4 ingrnew := RANDOMPOSETLEASTINCOMPARABLE(rec)
5 recmut := ADDINGREDIENT(rec, ingrnew)
6 else
7 ingr := RANDOMINGREDIENT(rec)
8 actm := RANDOMACTION({GT: 0.5, LT: 0.3, INC: 0.2})
9 if actm = GT then

10 ingrnew := POSETGREATERTHAN(ingr)
11 else if actm = LT then
12 ingrnew := POSETLESSTHAN(ingr)
13 else
14 recrem := REMOVEINGREDIENT(rec, ingr)
15 ingrnew := RANDOMPOSETLEASTINCOMPARABLE(recrem)
16 recmut := REPLACEINGREDIENT(rec, ingr, ingrnew)
17

18 if ¬POSETCOMPATIBLE(recmut) then
19 recmut := GENERATERECIPE(rec, lmax)
20 return recmut

Random sampling. Random sampling (RS) just generates random recipes of a
certain length. Function ACCEPT always returns false as each recipe is generated
from scratch, and not as a result of any mutations.

Domain-aware random sampling. RS might generate recipes containing ab-
stract domains of comparable precision. For instance, the Octagons domain is
typically strictly more precise than Intervals. Thus, a recipe consisting of these
domains is essentially equivalent to one containing only Octagons.

Now, assume that we have a partially ordered set (poset) of domains that defines
their ordering in terms of precision. An example of such a poset for a particular
abstract interpreter is shown in Fig. 5.3. An optimization algorithm can then
leverage this information to reduce the search space of possible recipes.

Given such a poset, we therefore define domain-aware random sampling
(DARS), which randomly samples recipes that do not contain abstract domains of
comparable precision. Again, ACCEPT always returns false.

Simulated annealing. Simulated annealing (SA) searches for the best recipe
by mutating the current recipe reccurr in Alg. 6. The resulting recipe (recnext),
if accepted on line 12, becomes the new recipe to be mutated. Alg. 7 shows an
instantiation of GENERATERECIPE, which mutates a given recipe such that the
poset precision constraints are satisfied (i.e., there are no domains of comparable
precision). A recipe is mutated either by adding new ingredients with 20% proba-
bility or by modifying existing ones with 80% probability (line 2). The probability

102

boxes term(disInt)

disInt

polyhedra

octagons

zones term(int) ric

intervals bool

Figure 5.3: Comparing logico-numerical domains in CRAB. A domain d1 is
less precise than d2 if there is a path from d1 to d2 going upward, otherwise
d1 and d2 are incomparable.

of adding ingredients is lower to keep recipes short.
When adding a new ingredient (lines 4–5), Alg. 7 calls RANDOMPOSETLEAST-

INCOMPARABLE, which considers all domains that are incomparable with the
domains in the recipe. Given this set, it randomly selects from the domains with
the least precision to avoid adding overly expensive domains. When modifying a
random ingredient in the recipe (lines 7–16), the algorithm can replace its domain
with one of three possibilities: a domain that is immediately more precise (i.e.,
not transitively) in the poset (via POSETGREATERTHAN), a domain that is im-
mediately less precise (via POSETLESSTHAN), or an incomparable domain with
the least precision (via RANDOMPOSETLEASTINCOMPARABLE). If the resulting
recipe does not satisfy the poset precision constraints, our algorithm retries to
mutate the original recipe (lines 18–19).

For simulated annealing, ACCEPT returns true if the new cost (for the mutated
recipe) is less than the current cost. It also accepts recipes whose cost is higher
with a certain probability, which is inversely proportional to the cost increase and
the number of explored recipes. That is, recipes with a small cost increase are
likely to be accepted, especially at the beginning of the exploration.

Hill climbing. Our instantiation of hill climbing (HC) performs regular restarts.
In particular, it starts with a randomly generated recipe that satisfies the poset
precision constraints, generates 10 new valid recipes, and restarts with a random
recipe. ACCEPT returns true only if the new cost is lower than the best cost, which
is equivalent to the current cost.

5.5. Experimental Evaluation
To evaluate our technique, we aim to answer the following research questions:

103

Table 5.1: CRAB settings and their possible values as used in our experiments.
Default settings are shown in bold.

Setting Possible Values
NUM DELAY WIDEN {1,2,4,8,16}
NUM NARROW ITERATIONS {1,2,3,4}
NUM WIDEN THRESHOLDS {0,10,20,30,40}
BACKWARD ANALYSIS {OFF,ON}
ARRAY SMASHING {OFF,ON}
ABSTRACT DOMAINS all domains in Fig. 5.3

RQ1: Is our technique effective in tailoring recipes to different usage scenarios?

RQ2: Are the tailored recipes optimal?

RQ3: How diverse are the tailored recipes?

RQ4: How resilient are the tailored recipes to code changes?

5.5.1. Implementation
We implemented TAILOR by extending CRAB [116], a parametric framework for
modular construction of abstract interpreters4. We extended CRAB with the ability
to pass verification results between recipe ingredients as well as with the four
optimization algorithms discussed in Sect. 5.4.3.

Tab. 5.1 shows all settings and values used in our evaluation. The first three
settings refer to the strategies discussed in Sect. 5.3 for mitigating the precision
loss incurred by widening. For the initial recipe, TAILOR uses Intervals and the
CRAB default values for all other settings (in bold in the table). To make the search
more efficient, we selected a representative subset of all possible setting values.

CRAB uses a DSA-based [117] pointer analysis and can, optionally, reason
about array contents using array smashing. It offers a wide range of logico-
numerical domains, shown in Fig. 5.3. The bool domain is the flat Boolean
domain, ric is a reduced product of Intervals and Congruence, and term(int)
and term(disInt) are instantiations of the Term domain with intervals
and disInt, respectively. Although CRAB provides a bottom-up inter-procedural
analysis, we use the default intra-procedural analysis; in fact, most analyses
deployed in real usage scenarios are intra-procedural due to time constraints [68].

5.5.2. Benchmark Selection
For our evaluation, we systematically selected popular and (at some point) active C
projects on GitHub. In particular, we chose the six most starred C repositories with

4CRAB is available at https://github.com/seahorn/crab.

104

https://github.com/seahorn/crab

Table 5.2: Overview of projects.

Project Description
CURL Tool for transferring data by URL
DARKNET Convolutional neural-network framework
FFMPEG Multimedia processing tool
GIT Distributed version-control tool
PHP-SRC PHP interpreter
REDIS Persistent in-memory database

over 300 commits that we could successfully build with the Clang-5.0 compiler.
We give a short description of each project in Tab. 5.2.

For analyzing these projects, we needed to introduce properties to be verified.
We, thus, automatically instrumented these projects with four types of assertions
that check for common bugs; namely, division by zero, integer overflow, buffer
overflow, and use after free. Introducing assertions to check for runtime errors
such as these is common practice in program analysis and verification.

As projects consist of different numbers of files, to avoid skewing the results
in favor of a particular project, we randomly and uniformly sampled 20 LLVM-
bitcode files from each project, for a total of 120. To ensure that each file was
neither too trivial nor too difficult for the abstract interpreter, we used the number
of assertions as a complexity indicator and only sampled files with at least 20
assertions and at most 100. Additionally, to guarantee all four assertion types
were included and avoid skewing the results in favor of a particular assertion type,
we required that the sum of assertions for each type was at least 70 across all
files—this exact number was largely determined by the benchmarks.

Overall, our benchmark suite of 120 files totals 1346 functions, 5557 assertions
(on average 4 assertions per function), and 667,927 LLVM instructions (Tab. 5.3).

5.5.3. Results
We now present our experimental results for each research question. We performed
all experiments on a 32-core Intel ® Xeon ® E5-2667 v2 CPU @ 3.30GHz
machine with 264GB of memory, running Ubuntu 16.04.1 LTS.

RQ1: Is our technique effective in tailoring recipes to different usage sce-
narios? We instantiated TAILOR with the four optimization algorithms described
in Sect. 5.4.3: RS, DARS, SA, and HC. We constrained the analysis time to simu-
late two usage scenarios: 1 sec for instant feedback in the editor, and 5 min for
feedback in a CI pipeline. We compare TAILOR with the default recipe (DEF), i.e.,
the default settings in CRAB as defined by its designer after careful tuning on a
large set of benchmarks over the years. DEF uses a combination of two domains,

105

Table 5.3: Benchmark characteristics (20 files per project). The last three
columns show the number of functions, assertions, and LLVM instructions
in the analyzed files.

Project Functions Assertions LLVM Instructions
CURL 306 787 50541
DARKNET 130 958 55847
FFMPEG 103 888 27653
GIT 218 768 102304
PHP-SRC 268 1031 305943
REDIS 321 1125 125639
Total 1346 5557 667927

namely, the reduced product of Boolean and Zones. The other default settings are
in Tab. 5.1.

For this experiment, we ran TAILOR with each optimization algorithm on
the 120 benchmark files, enabling optimization at the granularity of files. Each
algorithm was seeded with the same random seed. In Alg. 6, we restrict recipes
to contain at most 3 domains (lmax = 3) and set the number of iterations for each
phase to be 5 and 10 (idom = 5 and iset = 10).

The results are presented in Fig. 5.4, which shows the number of assertions that
are verified with the best recipe found by each algorithm as well as by the default
recipe. All algorithms outperform the default recipe for both usage scenarios,
verifying almost twice as many assertions on average. The random-sampling
algorithms are shown to find better recipes than the others, with DARS being
the most effective. Hill climbing is less effective since it gets stuck in local cost
minima despite restarts. Simulated annealing is the least effective because it slowly
climbs up the poset toward more precise domains (see Alg. 7). However, as we
explain later, we expect the algorithms to converge on the number of verified
assertions for more iterations.

Fig. 5.5 gives a more detailed comparison with the default recipe for the
time limit of 5 min. In particular, each horizontal bar shows the total number of
assertions verified by each algorithm. The orange portion represents the assertions
verified by both the default recipe and the optimization algorithm, while the green
and red portions represent the assertions only verified by the algorithm and default
recipe, respectively. These results show that, in addition to verifying hundreds of
new assertions, TAILOR is able to verify the vast majority of assertions proved by
the default recipe, regardless of optimization algorithm.

In Fig. 5.6, we show the total time each algorithm takes for all iterations. DARS

takes the longest. This is due to generating more precise recipes thanks to its
domain knowledge. Such recipes typically take longer to run but verify more
assertions (as in Fig. 5.4). On average, for all algorithms, TAILOR requires only

106

DARS RS HC SA DEF
0

700

1,400

629 606 567 547
346

953 944 914 912

457

N
um

be
r

of
ve

ri
fie

d
as

se
rt

io
ns

1sec 5min

Figure 5.4: Comparison of the number of assertions verified with the best
recipe generated by each optimization algorithm and with the default recipe,
for varying timeouts.

30 sec to complete all iterations for the 1-sec timeout and 16 min for the 5-min
timeout. As discussed in Sect. 5.2, this tuning time can be spent offline.

Fig. 5.7 compares the total number of assertions verified by each algorithm
when TAILOR runs for 40 (idom = 5 and iset = 10) and 80 (idom = 10 and iset = 20)
iterations. The results show that only a relatively small number of additional
assertions are verified with 80 iterations. In fact, we expect the algorithms to
eventually converge on the number of verified assertions, given the time limit and
precision of the available domains.

As DARS performs best in this comparison, we only evaluate DARS in the
remaining research questions. We use a 5-min timeout.

RQ1 takeaway: TAILOR verifies between 1.6− 2.1× the assertions
of the default recipe, regardless of optimization algorithm, timeout, or
number of iterations. In fact, even very simple algorithms (such as RS)
significantly outperform the default recipe.

RQ2: Are the tailored recipes optimal? To check the optimality of the tailored
recipes, we compared them with the most precise (and least efficient) CRAB config-
uration. It uses the most precise domains from Fig. 5.3 (i.e., bool, polyhedra,
term(int), ric, boxes, and term(disInt)) in a recipe of 6 ingredients
and assigns the most precise values to all other settings from Tab. 5.1. We gener-
ously gave a 30-min timeout to this recipe.

For 21 out of 120 files, the most precise recipe ran out of memory (264GB). For
86 files, it terminated within 5 min, and for 13, it took longer (within 30 min)—in
many cases, this was even longer than TAILOR’s tuning time in Fig. 5.6. We
compared the number of assertions verified by our tailored recipes (which do not
exceed 5 min) and by the most precise recipe. For the 86 files that terminated

107

0 500 1,000

DARS

RS

HC

SA
O

pt
im

iz
at

io
n

al
go

ri
th

m
s

TAILOR Both DEF

575

578

535

526

378

366

379

386

79

91

78

71

Figure 5.5: Comparison of the number of assertions verified by a tailored vs.
the default recipe.

within 5 min, our recipes prove 618 assertions, whereas the most precise recipe
proves 534. For the other 13 files, our recipes prove 119 assertions, whereas the
most precise recipe proves 98.

Consequently, our (in theory) less precise and more efficient recipes prove more
assertions in files where the most precise recipe terminates. Possible explanations
for this non-intuitive result are: (1) Polyhedra coefficients may overflow, in which
case the constraints are typically ignored by abstract interpreters, and (2) more
precise domains with different widening operations may result in less precise
results [16, 193].

We also evaluated the optimality of tailored recipes by mutating individual
parts of the recipe and comparing to the original. In particular, for each setting
in Tab. 5.1, we tried all possible values and replaced each domain with all other
comparable domains in the poset of Fig. 5.3. For example, for a recipe including
zones, we tried octagons, polyhedra, and intervals. In addition, we

DARS RS HC SA
0

800

1,600

31.4 31.1 30.2 27.8

1,069.9 1,001.5 1,010.9

755.1

To
ta

lt
im

e
(s

ec
on

ds
) 1sec 5min

Figure 5.6: Comparison of the total time (in sec) that each algorithm requires
for all iterations, for varying timeouts.

108

DARS RS HC SA
0

700

1,400

953 944 914 912974 977 944 933
N

um
be

r
of

ve
ri

fie
d

as
se

rt
io

ns
40 iterations 80 iterations

Figure 5.7: Comparison of the number of assertions verified with the best
recipe generated by the different optimization algorithms, for different num-
bers of iterations.

tried all possible orderings of the recipe ingredients, which in theory could produce
different results. We observed whether these changes resulted in a difference in
the precision and performance of the analyzer.

Fig. 5.8 shows the results of this experiment, broken down by setting. Equal (in
orange) indicates that the mutated recipe proves the same number of assertions
within ±5 seconds of the original. Positive (in green) indicates that it either
proves more assertions or the same number of assertions at least 5 seconds faster.
Negative (in red) indicates that the mutated recipe either proves fewer assertions
or the same number of assertions at least 5 seconds slower.

The results show that, for our benchmarks, mutating the recipe found by
TAILOR rarely led to an improvement. In particular, at least 93% of all mutated
recipes were either equal to or worse than the original recipe. In the majority
of these cases, mutated recipes are equally good. This indicates that there
are many optimal or close-to-optimal solutions and that TAILOR is able to find one.

RQ2 takeaway: As compared to the most precise recipe, TAILOR
verified more assertions across benchmarks where the most precise
recipe terminated. Furthermore, mutating recipes found by TAILOR
resulted in improvement only for less than 7% of recipes.

RQ3: How diverse are the tailored recipes? To motivate the need for opti-
mization, we must show that tailored recipes are sufficiently diverse such that they
could not be replaced by a well-crafted default recipe. To better understand the
characteristics of tailored recipes, we manually inspected all of them.

TAILOR generated recipes of length greater than 1 for 61 files. Out of these, 37
are of length 2 and 24 of length 3. For 77% of generated recipes, NUM DELAY -
WIDEN is not set to the default value of 1. Additionally, 55% of the ingredients

109

DW NI WT AS B D O
0

50

100
Pe

rc
en

ta
ge

of
m

ut
at

ed
re

ci
pe

s
Equal Negative Positive

Figure 5.8: Effect of different settings on the precision and performance
of the abstract interpreter. (DW: NUM DELAY WIDEN, NI: NUM NARROW -
ITERATIONS, WT: NUM WIDEN THRESHOLDS, AS: array smashing, B: back-
ward analysis, D: abstract domain, O: ingredient ordering).

enable array smashing, and 32% enable backward analysis.
Fig. 5.9 shows how often (in percentage) each abstract domain occurs in a best

recipe found by TAILOR. We observe that all domains occur almost equally often,
with 6 of the 10 domains occurring in between 9% and 13% of recipes. The most
common domain was bool at 18%, and the least common was intervals at
5%. We observed a similar distribution of domains even when instrumenting the
benchmarks with only one assertion type, e.g., checking for integer overflow.

We also inspected which domain combinations are frequently used in the
tailored recipes. One common pattern is combinations between bool and
numerical domains (18 occurrences). Similarly, we observed 2 occurrences of
term(disInt) together with zones. Interestingly, the less powerful variants
of combining disInt with zones (3 occurrences) and term(int) with
zones (6 occurrences) seem to be sufficient in many cases. Finally, we observed
8 occurrences of polyhedra or octagons with boxes, which are the most
precise convex and non-convex domains. Our approach is, thus, not only useful
for users, but also for designers of abstract interpreters by potentially inspiring
new domain combinations.

RQ3 takeaway: The diversity of tailored recipes prevents replacing
them with a single default recipe. Over half of the tailored recipes
contain more than one ingredient, and ingredients use a variety of
domains and their settings.

RQ4: How resilient are the tailored recipes to code changes? We expect

110

bool

18.2%

ric

12.3%
term(int)

11.8%

polyhedra
11.3%

term(disInt)

10.8%

octagons

10.8%

boxes

9.3%
zones

5.9% disInt

4.9%
intervals

4.7%

Figure 5.9: Occurrence of domains (in %) in the best recipes for all assertion
types.

tailored recipes to be resilient to code changes, i.e., to retain their optimality across
several changes without requiring re-tuning. We now evaluate if a recipe tailored
for one code version is also tailored for another, even when the two versions are
50 commits apart.

For this experiment, we took a random sample of 60 files from our benchmarks
and retrieved the 50 most recent commits per file. We only sampled 60 out of 120
files as building these files for each commit is quite time consuming—it can take
up to a couple of days. We instrumented each file version with the four assertion
types described in Sect. 5.5.2. It should be noted that, for some files, we retrieved
fewer than 50 versions either because there were fewer than 50 total commits or
our build procedure for the project failed on older commits. This is also why we
did not run this experiment for over 50 commits.

We analyzed each file version with the best recipe, Ro, found by TAILOR for
the oldest file version. We compared this recipe with new best recipes, Rn, that
were generated by TAILOR when run on each subsequent file version. For this
experiment, we used a 5-min timeout and 40 iterations.

Note that, when running TAILOR with the same optimization algorithm and
random seed, it explores the same recipes. It is, therefore, very likely that recipe
Ro for the oldest commit is also the best for other file versions since we only
explore 40 different recipes. To avoid any such bias, we performed this experiment
by seeding TAILOR with a different random seed for each commit. The results are
shown in Fig. 5.10.

In Fig. 5.10, we give a bar chart comparing the number of files per commit that
have a positive, equal, and negative difference in the number of verified assertions,

111

0 9 19 29 39 49
0

10

20

30

40

50

60

Commits after oldest commit

N
um

be
r

of
fil

es
Equal Negative Positive

Figure 5.10: Difference in the safe assertions across commits.

where commit 0 is the oldest commit and 49 the newest. An equal difference (in
orange) means that recipe Ro for the oldest commit proves the same number of
assertions in the current file version, fn, as recipe Rn found by running TAILOR
on fn. To be more precise, we consider the two recipes to be equal if they differ
by at most 1 verified assertion or 1% of verified assertions since such a small
change in the number of safe assertions seems acceptable in practice (especially
given that the total number of assertions may change across commits). A positive
difference (in green) means that Ro achieves better verification results than Rn,
that is, Ro proves more assertions safe (over 1 assertion or 1% of the assertions
that Rn proves). Analogously, a negative difference (in red) means that Ro proves
fewer assertions. We do not consider time here because none of the recipes timed
out when applied on any file version.

Note that the number of files decreases for newer commits. This is because not
all files go forward by 50 commits, and even if they do, not all file versions build.
However, in a few instances, the number of files increases going forward in time.
This happens for files that change names, and later, change back, which we do not
account for.

For the vast majority of files, using recipe Ro (found for the oldest commit) is
as effective as using Rn (found for the current commit). The difference in safe
assertions is negative for less than a quarter of the files tested, with the average
negative difference among these files being around 22% (i.e., Ro proved 22%
fewer assertions than Rn in these files). On the remaining three quarters of the files
tested however, Ro proves at least as many assertions as Rn, and thus, Ro tends to
be tailored across code versions.

Commits can result in both small and large changes to the code. We therefore
also measured the average difference in the number of verified assertions
per changed line of code with respect to the oldest commit. For most files,

112

regardless of the number of changed lines, we found that Ro and Rn are equally
effective, with changes to 1000 LOC or more resulting in little to no loss in
precision. In particular, the median difference in safe assertions across all changes
between Ro and Rn was 0 (i.e., Ro proved the same number of assertions safe
as Rn), with a standard deviation of 15 assertions. We manually inspected a
handful of outliers where Ro proved significantly fewer assertions than Rn

(difference of over 50 assertions). These were due to one file from GIT where Ro is
not as effective because the widening and narrowing settings have very low values.

RQ4 takeaway: For over 75% of files, TAILOR’s recipe for a previous
commit (from up to 50 commits previous) remains tailored for future
versions of the file, indicating the resilience of tailored recipes across
code changes.

5.5.4. Threats to Validity
We have identified the following threats to the validity of our experiments.

Benchmark selection. Our results may not generalize to other benchmarks.
However, we selected popular GitHub projects from different application domains
(see Tab. 5.2). Hence, we believe that our benchmark selection mitigates this threat
and increases generalizability of our findings.

Abstract interpreter and recipe settings. For our experiments, we only used
a single abstract interpreter, CRAB, which however is a mature and actively
supported tool. The selection of recipe settings was, of course, influenced by
the available settings in CRAB. Nevertheless, CRAB implements the generic
architecture of Fig. 5.2, used by most abstract interpreters, such as those mentioned
at the beginning of Sect. 5.3. We, therefore, expect our approach to generalize to
such analyzers.

Optimization algorithms. We considered four optimization algorithms, but
in Sect. 5.4.3, we explain why these are suitable for our application domain.
Moreover, TAILOR is configurable with respect to the optimization algorithm.

Assertion types. Our results are based on four types of assertions. However,
these cover a wide range of runtime errors that are commonly checked by static
analyzers.

5.6. Related Work
The impact of different abstract-interpretation configurations has been previously
evaluated [259] for Java programs and partially inspired this work. To the best of
our knowledge, we are the first to propose tailoring abstract interpreters to custom
usage scenarios using optimization.

However, optimization is a widely used technique in many engineering disci-
plines. In fact, it is also used to solve the general problem of algorithm configu-

113

ration [129], of which there exist numerous instantiations, for instance, to tune
hyper-parameters of learning algorithms [38, 95, 249] and options of constraint
solvers [130, 131]. Existing frameworks for algorithm configuration differ from
ours in that they are not geared toward problems that are solved by sequences
of algorithms, such as analyses with different abstract domains. Even if they
were, our experience with TAILOR shows that there seem to be many optimal or
close-to-optimal configurations, and even very simple optimization algorithms
such as RS are surprisingly effective (see RQ2); similar observations were made
about the effectiveness of random search in hyper-parameter tuning [39].

In the rest of this section, we focus on the use of optimization in program
analysis. It has been successfully applied to a number of program-analysis prob-
lems, such as automated testing [99, 100], invariant inference [238], and compiler
optimizations [233].

Recently, researchers have started to explore the direction of enriching program
analyses with machine-learning techniques, for example, to automatically learn
analysis heuristics [121, 132, 216, 242]. A particularly relevant body of work
is on adaptive program analysis [122–124], where existing code is analyzed to
learn heuristics that trade soundness for precision or that coarsen the analysis ab-
stractions to improve memory consumption. More specifically, adaptive program
analysis poses different static-analysis problems as machine-learning problems
and relies on Bayesian optimization to solve them, e.g., the problem of selectively
applying unsoundness to different program components (e.g., different loops in
the program) [124]. The main insight is that program components (e.g., loops) that
produce false positives are alike, predictable, and share common properties. After
learning to identify such components for existing code, this technique suggests
components in unseen code that should be analyzed unsoundly.

In contrast, TAILOR currently does not adjust soundness of the analysis. How-
ever, this would also be possible if the analyzer provided the corresponding
configurations. More importantly, adaptive analysis focuses on learning analysis
heuristics based on existing code in order to generalize to arbitrary, unseen code.
TAILOR, on the other hand, aims to tune the analyzer configuration to a custom
usage scenario, including a particular program under analysis. In addition, the
custom usage scenario imposes user-specific resource constraints, for instance by
limiting the time according to a phase of the software-engineering life cycle. As
we show in our experiments, the tuned configuration remains tailored to several
versions of the analyzed program. In fact, it outperforms configurations that are
meant to generalize to arbitrary programs, such as the default recipe.

5.7. Summary and Remarks
In this chapter, we have proposed a technique and framework that tailors a generic
abstract interpreter to custom usage scenarios. We instantiated our framework
with a mature abstract interpreter to perform an extensive evaluation on real-world

114

benchmarks. Our experiments show that the configurations generated by TAILOR
are vastly better than the default options, vary significantly depending on the code
under analysis, and typically remain tailored to several subsequent code versions.

115

Chapter 6

Input Splitting for Cloud-Based
Static Application Security
Testing Platforms

As software development teams adopt DevSecOps practices, application security
is increasingly the responsibility of development teams, who are required to set
up their own Static Application Security Testing (SAST) infrastructure. Since
development teams often do not have the necessary infrastructure and expertise to
set up a custom SAST solution, there is an increased need for cloud-based SAST
platforms that operate as a service and run a variety of static analyzers. Adding a
new static analyzer to a cloud-based SAST platform can be challenging because
static analyzers greatly vary in complexity, from linters that scale efficiently to
interprocedural dataflow engines that use cubic or even more complex algorithms.
Careful manual evaluation is needed to decide whether a new analyzer would slow
down the overall response time of the platform or may timeout too often.

We explore the question of whether this can be simplified by splitting the
input to the analyzer into partitions and analyzing the partitions independently.
Depending on the complexity of the static analyzer, the partition size can be
adjusted to curtail the overall response time. We report on an experiment where we
run different analysis tools with and without splitting the inputs. The experimental
results show that simple splitting strategies can effectively reduce the running
time and memory usage per partition without significantly affecting the findings
produced by the tool.

6.1. Introduction
With the increasing popularity of DevSecOps development practices, Static Ap-
plication Security Testing (SAST) shifts further to the left in the software de-

116

velopment life-cycle and becomes the responsibility of developers rather than
security experts. This creates a growing demand for easy-to-use solutions. Many
development teams do not have the capacity or expertise to configure and maintain
their own static analysis infrastructure and prefer SAST platforms that offer a
variety of static analyses on demand. Open-source platforms, such as the Software
Assurance Marketplace (SWAMP) [151] or ShipShape [229], and their commer-
cial alternatives offer a convenient abstraction. They provide a simple interface
through which developers submit code and build artifacts (in their languages of
choice) and receive recommendations on how to improve the code. Internally,
such cloud-based SAST platforms may employ a variety of static analysis tools,
such as [5, 10, 13, 71, 214, 220].

SAST platforms typically are run as a cloud-based service, and the individual
analysis tools are containerized and instantiated on-demand on cloud-based ma-
chines. Developers expect such a SAST platform to handle inputs (codebases) of
arbitrary complexity, and still deliver results within a certain time window. This is
especially true for customers that integrate SAST platforms in their continuous
integration and deployment (CI/CD) pipelines.

To maintain a predictable response time, SAST platforms face the challenge
that they need to be able to scale to different sizes of inputs, and that, every time
they add a new analysis tool, they have to ensure that the new tool does not slow
down the response time for existing customers.

Vertical scaling by adding more memory or faster machines is not a cost-
effective solution to the risk of running out of time or space when analyzing
complex inputs. Provisioning machines large enough to handle the most complex
analysis inputs would make the service unnecessarily expensive for customers
that analyze smaller and simpler codebases. In the cloud, a large number of small
machines is significantly less expensive than a small number of high-performance
machines [237]. Moreover, since many SAST tools have superlinear time com-
plexity [5, 217], even the most powerful machine will eventually not suffice.
Much research has been conducted on adding various optimizations to improve
the scalability of specific analysis engines, such as summarization of method
calls [20,217,226], caching and reuse of partial results from prior analyses [5,19],
and incremental analysis [72, 253]. However, when operating a SAST platform,
modifying the individual tools may not be an option because the tools might be
proprietary or maintaining forks with custom modifications may be too costly.

Thus, a horizontal scaling strategy to distribute and balance the analysis load is
still needed. Horizontal scaling needs to split up inputs into pieces such that each
analysis tool employed by the platform can handle its input within the expected
response time. The different pieces can then be analyzed on parallel instances of a
given analysis tool. Such a horizontal scaling can be configured per analysis tool,
but without modifying the tool itself. More complex tools can be configured to
handle smaller pieces of code than light-weight tools to ensure that the overall
latency of the platform does not change when a new complex tool gets added.

In this chapter, we present an approach to horizontally scale analysis tools in a

117

static analysis platform. Our approach takes as input a program and a bound for
the size of code that should be analyzed by each single machine. It then employs
a configurable splitting strategy to split the input program into partitions such that
the amount of code in each partition is below the provided bound. We evaluate
how this splitting process affects the accuracy of different static analysis tools and
how the computational cost of analyzing partitions in parallel relates to the cost of
analyzing the entire input program.

Splitting code into partitions comes with several challenges. The first challenge
is that information may be lost because dependent code fragments are placed in
separate partitions. This may impact the precision and recall of static analysis tools.
For example, a real defect arising from the interaction between two classes may
become a false negative if those classes end up in different partitions. Similarly, the
evidence that a vulnerability has been correctly mitigated may become invisible
when defect and mitigation split across partitions, yielding a false positive. This
leads to our first research question; RQ1: What is the impact of splitting a program
and analyzing the partitions in isolation on a tool’s accuracy?

The second challenge when splitting code into partitions is that the complexity
of static analysis may not be tied just to the size of the code. For example, data-
flow analysis is cubic in the size of data-flow facts that are tracked [218]. That is,
if data-flow facts are not evenly distributed across the program, splitting may not
reduce the overall time or memory consumption of data-flow analysis if all facts
end up in the same partition. Other analysis techniques, such as bi-abduction used
by INFER [60], may require a different type of partitioning since their complexity
is not tied to data-flow facts. Hence, we cannot guarantee that analyzing a partition
uses less time or memory than analyzing the original program. So our second
research question is RQ2: How do static analyzers perform on the partitions
compared to the original program in terms of time and memory usage?

A third challenge is to find a splitting strategy that works for different kinds
of static analysis tools. Splitting strategies may have different complexities for
static analysis tools targeting different languages. E.g., identifying the direct
dependencies of a Java class file is roughly constant since it is sufficient to look
at the constant pool [43]. In Python, however, one has to iterate over the entire
syntax tree of a file to determine its dependencies. A splitting strategy that takes
dependencies into consideration is computationally more expensive for Python
than for Java. Thus, our third research question is RQ3: What kinds of static
analysis tools would benefit from splitting strategies discussed in the chapter?

To answer these three research questions, we implement a splitting approach
that works with two different strategies to create partitions. The first strategy,
SIZELIMITING, naı̈vely splits the input program into partitions based on an
upper bound S on the number of files (or classes) per partition. Sorted files in
lexicographical order are added to a partition until this bound S is reached and then,
a new partition is started. The second strategy, SPLITMERGE, uses dependency
information between the files of the input program to create partitions that include
the necessary dependencies of a file. In SIZELIMITING, all partitions are disjoint,

118

while in SPLITMERGE, partitions can overlap.
We apply these two splitting strategies to a set of benchmark programs and

analyze the resulting partitions with the static analysis tools RAPID [92] and IN-
FER [60]. We evaluate the impact of both splitting strategies over non-splitting on
these analysis tools in terms of reported findings and computational performance.

Contributions. The contributions of this chapter are as follows:

1. We motivate why input splitting is a relevant problem for SAST platforms
and why additional research in this area is required.

2. We present experimental results that input splitting can work in practice
with different SAST tools.

3. We show that with a proper selection of splitting strategy, all evaluated
SAST tools can benefit from splitting. Yet finding the right splitting strategy
depends on the complexity of the used SAST tool. While tools like RAPID

and INFER which perform complex analyses benefit most from dependency-
guided-splitting strategy like SPLITMERGE in terms of reduction in latency,
memory consumption and minimizing the loss of findings, for inexpensive
linter-like or intra-procedural analyses such as Bandit, a naive strategy like
SIZELIMITING may be more beneficial.

We do not claim that any of the proposed strategies are optimal, nor that
splitting is the only way to increase the maximum tractable problem size. Instead,
this evaluation demonstrates how a lightweight splitting strategy can already
significantly improve latency, scalability, and cost-effectiveness of cloud-based
SAST platforms. For the future, we envision that such strategies can be used
to reduce the cost of integrating new static analysis tools into a SAST platform.
Moreover, instead of developing and benchmarking explicit splitting strategies for
every new tool, a splitting algorithm could be generalized to adjust the splitting
strategy based on the number of observed timeouts.

6.2. Motivating Example
We motivate the need for splitting with an example from the OWASP Benchmark1.
This standard benchmark for Java SAST tools consists of 2,740 test cases for
different types of security vulnerabilities. Each test case is a single Java file. The
benchmark also has an additional 162 Java files that contain common helper
classes which are used by multiple test cases.

The benchmark’s public repository also includes score cards that show the
performance of different SAST tools, an excerpt of which is displayed in Table 6.1.
For example, the open-source tool FindSecBugs [205] (v1.4.6) analyzes the

1https://github.com/OWASP-Benchmark/BenchmarkJava/tree/
53878cc8751e348b63de951b91a6d47cf29121d8/

119

https://github.com/OWASP-Benchmark/BenchmarkJava/tree/53878cc8751e348b63de951b91a6d47cf29121d8/
https://github.com/OWASP-Benchmark/BenchmarkJava/tree/53878cc8751e348b63de951b91a6d47cf29121d8/

Table 6.1: Score (based on precision and recall) and analysis time for several
SAST tools on the OWASP Benchmark v1.1. Data taken from the OWASP
Benchmark public repository.

Tool Name OWASP Score Total Time
FBwFindSecBugs v1.4.6 39.10% 0:02:02
SonarQube Java Plugin v3.14 33.34% 0:05:30
Commercial SAST-01 16.74% 2:55:20
Commercial SAST-02 30.60% 135:23:38
Commercial SAST-03 24.89% 1:52:00
Commercial SAST-04 32.64% 13:54:20

benchmark in just over two minutes and obtains a score of 39.1% – the OWASP
score is based on the precision and recall of a tool’s findings, with 100% for
finding all and only the (known) vulnerabilities and 0% for only false positives
and false negatives. FindSecBugs performs a lightweight analysis based on type
propagation and thus scales linearly with the size of the program. For other tools
in the benchmark’s score cards, we can see that scalability may be an issue. The
tools denoted as SAST-01 to SAST-04 in Table 6.1 have running times ranging
from hours to days. Delays of such magnitude might be unacceptable for CI/CD
customers.

If we provide a static analysis platform that runs multiple tools as a portfolio,
customers would have to wait for the slowest tool to terminate before getting the
final results (there are usually postprocessing steps, like de-duplication, before the
unified results are returned). This makes it harder to add new tools, like SAST-02,
to the portfolio. Hence, we would like a mechanism to split the program under
analysis into smaller partitions, assuming that the analysis tool that we want to
integrate terminates faster on (most) partitions so we can analyze these partitions in
parallel and return results without increasing the latency of our analysis platform.

That is, for OWASP, we would like to split the 2,740 test cases into a set
of partitions, each of them bounded by some size S that ensures our analysis
terminates within an acceptable amount of time. We would also like each partition
to contain the subset of the shared 162 classes that are used by any of the tests
in that partition. Finally, we would like to minimize the number of partitions,
since a very large number of very small partitions would amplify the impact of
per-partition overhead, thus decreasing efficiency.

We illustrate the idea of splitting and the different splitting strategies using the
listing in Figure 6.1, a simplified version of the test BenchmarkTest01025.
The test contains a CWE22 (Path Traversal) vulnerability: the value received
from request.getHeader is used in a relative pathname without input val-
idation. An attacker could provide an input like ../../etc/passwd to try
to access sensitive data. This test calls helper method doSomething in class
Test1, which is one of the 162 classes that are used by multiple tests. This

120

1 public class Thing1 implements ThingInterface {
2 public String doSomething(String i) {
3 String r = i;
4 return r;
5 }
6 }
7

8 // Simplified version of the OWASP BenchmarkTest 01025
9 public class BenchmarkTest01025 extends HttpServlet {

10 public void doPost(HttpServletRequest req,
11 HttpServletResponse response)
12 throws Exception {
13 String p = req.getHeader("foo");
14 String bar = new Thing1().doSomething(p);
15 File fileTarget = new File("./tmp", bar);
16 response.getWriter().println("...");
17 }
18 }

Figure 6.1: Simplified version of an OWASP test that uses a shared class. The
method doSomething is referenced 347 times in different OWASP tests.

method is called by a total of 347 tests in the OWASP benchmark, such as
BenchmarkTest01026 and BenchmarkTest01029.

Suppose the available compute instances (virtual machines) allow a certain
tool to analyze up to 100 files before it risks exceeding the SLA (Service Level
Agreement) time limit. This means we must split the OWASP benchmark into a
set of partitions, each of them of size at most S≤ 100.
Naı̈ve splitting (SIZELIMITING). First, we discuss a naı̈ve strategy called SIZE-
LIMITING which splits the codebase into non-overlapping subsets of up to S files
each. To ensure determinism, the files are sorted in lexicographical order with
respect to their names. Splitting is then performed on the sorted files. For the
OWASP benchmark, which has 2,740 test classes and 162 shared classes (for a
total of 2,902 files), this may produce, for example, 29 partitions of size 100 and
one partition of size 2.

Since method doSomething in class Test1 is called by 347 tests, we know
these tests will be distributed over at least 4 partitions. That is, all but one of these
partitions will not have access to the implementation of doSomething when
running the static analysis. Depending on the analysis tool and its assumption
on missing methods, this may result in a loss of findings, if the analysis under-
approximates; or it may lead to false positives, if the analysis over-approximates;
or it may crash the tool.

For this example, we need a splitting strategy that is able to create overlapping
partitions to reduce the number of unavailable code dependencies in each partition.

121

In the following sections we outline such a strategy, called SPLITMERGE, and
then evaluate its effect on the number of findings compared to the naı̈ve strategy
and to not splitting at all. We also evaluate the overhead of computing partitions
and possibly reanalyzing code that is shared between partitions.

6.3. The SPLITMERGE Strategy
We aim to distribute the analysis of a program P, consisting of n files2 F =
{ f1, ..., fn}, by splitting the program into partitions R = {r1, . . . ,rm} (with m≤ n)
such that each partition ri contains no more than S files and can be analyzed
independently with the target analysis tools. We ensure that the union of all
partitions contains all files (∪iri = F). In general, partitions are not required to be
disjoint, i.e., the same file may be replicated across multiple ones.
Algorithm overview. SPLITMERGE consists of three steps. Initially, a partition
is created for each file in the codebase, which includes the file itself and its
transitive dependencies up to a distance k. The distance k is a parameter of
SPLITMERGE that allows to trade-off the size vs the degree of self-containment
of the initial partitions. For the example in Figure 6.1, for k = 2, the initial
partitions are {BenchmarkTest01025,Thing1,ThingInterface} and
{Thing1,ThingInterface}.

The second step – Split – ensures none of the initial partitions exceeds the
maximum size S by splitting any partition exceeding the size limit, while doing its
best effort to preserve the dependency relations it contains. This step replicates the
nodes with high degree of connectivity in all the split subsets, with the intuition
that units with high connectivity are likely to carry semantic information shared
by multiple subproblems.

Finally, the third step – merge – takes as input a set of partitions of size less or
equal than S and performs two tasks: 1) eliminate redundant partitions subsumed
by others and 2) merge small partitions into larger ones to balance the load and fur-
ther increase self-containment. A partition is redundant if it is entirely contained
into another. In our example, the partition {Thing1,ThingInterface} can
be dropped since the remaining partitions entirely cover its files and local depen-
dencies. Merging small partitions to maximize the size of their union, constrained
by this size being smaller than S, can be framed as a restricted instance of a
bin-packing problem [135, 173]. The optimal solution to this problem converges
to the smallest number of partitions with approximately uniform size S that cover
the input codebase and is expected to balance the analysis load by assigning one
partition to each executor.

In the remainder of this section we will detail each step of SPLITMERGE, with
the help of a simplified example.

2In this chapter we focus on files as the elementary units to partition for analysis,
which is a suitable setting for Java and Python. Our splitting strategy can in principle be
applied to other language-specific units.

122

A B

CD

E F

(a) Initial dependency graph of program P.

A B

CD

E F

(b) Dependency graph of P augmented with transitive relations up to radius k = 2
(red dashed edges).

Figure 6.2: Dependency graphs of P.

Running example. Consider an example program P containing six files:
A,B,C,D,E,F . The dependencies among these files are described in Figure 6.2a,
where a directed edge (x,y) from x to y denotes that x depends on y (symmetri-
cally, that y is a dependency of x). Such dependencies can typically be computed
statically in linear time with the size of P, using tools such as JDeps [204] for Java
or Snakefood [44] for Python. In the following, we will refer to files and vertices,
and dependencies and edges interchangeably via the dependency graph.
Step 1: Initial partitions. This step produces an initial set of partitions of the
program P aiming at preserving local dependencies. Given a program P composed
of a finite set of files F = { f0, f1, . . .} and a neighborhood radius k > 0, Alg. 8
constructs for each file a partition including the file itself and its neighbors up to
distance k. A large value for k makes the algorithm more conservative in preserving
dependency information. However, it also increases redundancy and the likelihood
to produce partitions larger than the size limit S. In Alg. 8, after computing the
dependency graph, the first loop augments the dependency relation to include
edges linking a vertex to its neighbors up to distance k, while the second loop
builds one partition per vertex including it transitive dependencies up to distance
k. For a sparse enough dependency graph with n vertices and k << n, which is
a common situation in practical systems where coupling should be minimized,
the algorithm runs in nearly Θ(n); the worst case complexity would be O(n3) for
k ≈ n and a fully connected graph (by reduction to computing the graph transitive
closure), although it is unlikely for any realistic program to resemble this situation.
The function computeDependencyGraph returns the vertices and edges of

123

Algorithm 8: Generate initial partitions
1 procedure GENERATEINITIALPARTITIONS(F , k)
2 (V,E)← COMPUTEDEPENDENCYGRAPH(F)
3 // augment dependency relation
4 for each v ∈ V do
5 neighbors← VERTICESWITHINDISTANCE(v,k)
6 for each n ∈ neighbors do
7 E← E∪ (v,n)
8 // build intial partitions
9 E← /0

10 for each v ∈ V do
11 r← {v}
12 for each v ∈ V do
13 E← r∪{u}
14 R← R∪ r
15 return R

the dependency graph. Each vertex of the graph corresponds to one file of the
program under analysis.
Example. The dependency graph of our example program P is shown in Figure 6.2a.
After the execution of the first loop in Alg. 8 with k = 2, the dependency relation
is augmented with the transitive dependencies shown in red in Figure 6.2b – (A,
C) and (E, B). The resulting initial partitions are thus:

{A, B, C}, {B, C}, {C}, {D, B, C}, {E, A, B, C, D, F}, {F}

Step 2: Split. Some initial partitions may have size larger than the maximum
S. This is especially likely for larger values of the neighborhood radius k. This
step aims at splitting an oversized partition ri into smaller sets that fit within the
size limit. However, uniformly splitting ri into the minimum number or necessary
disjoint subsets is likely to delete relevant dependency information. Instead, we
deliberately produce a non-minimal number of subsets allowing redundancy to
preserve dependency information. In particular, for a partition ri that exceeds
the maximum size (|ri| > S), we sort the vertices in descending degree of con-
nectivity (number of incoming and outgoing edges) and identify two sets of
vertices: high-connectivity, which includes the p (a percentage) of vertices with
the largest degrees of connectivity, and low-connectivity ones, which includes
the rest of the vertices. The underlying intuition is that files involved with many
dependency chains are likely to be relevant for the analysis of most subsets of
ri. Therefore, Alg. 9 first identifies these two sets and then partitions the low-
connectivity vertices uniformly into small enough subsets to allow adding to each
such subset the high-connectivity vertices. This operation is formalized in the
split function, which is applied on each partition whose size exceeds S (line 12

124

Algorithm 9: Split
1 procedure SPLITPARTITIONS(G, R, p, S)
2 for each r ∈ R do
3 if |r|> S then
4 R← (R\{r})∪SPLIT(r,p,G,S)
5 return R

6 procedure SPLIT(r, p, G, S)
7 (VT ,ET)← EXTRACTSUBGRAPH(G,r)
8 VTS ← SORTBYDEGREEDESC(VT)
9 // the p highest degree nodes are replicated in each subset

10 pr ←
⌊
p · |r|

⌋
11 if |r|> S then
12 pr ←

⌊
p ·S

⌋
13 // high-connectivity
14 hdn← [vTs0, . . . ,vTspr]
15 // low-connectivity
16 ldn← [vTspr+1, . . .]

17 nSubsets←
⌊ |r| − pr

S − pr

⌋
+1

18 // Divide ldn uniformly into nSubsets parts
19 ldn← {ldn0, ldb1, . . . , ldnnSubsets−1}
20 return {hdn∪ ldn0,hdn∪ ldb1, . . . ,hdn∪ ldnnSubsets−1}

handles the corner case of the chosen p not small enough to ensure splitting all
oversized partitions.)
Example. Consider S = 4. The partition {E,A,B,C,D,F} exceeds this size. In
Figure 6.2b, vertex E has a degree of connectivity 5, B and C have degree 4, A
and D have degree 3, F has degree 1. Let p = 1/3, E and B are selected as the
high-connectivity vertices, leading to new partitions {E,B,A,C},{E,B,D,F} as
replacement of {E,A,B,C,D,F} (where vertices with the same degree have been
sorted alphabetically).
Step 3: Merge. The last step of SPLITMERGE reduces the redundancy introduced
by the previous steps and computes the final partition (Alg. 10). Some parti-
tions computed by the first two steps may be subsumed by others. For example,
{B,C} ⊆ {A,B,C} in the partitions for our program P. In these situations, the
information contained in the larger set subsumes the information in any of its
subsets. The subsets can therefore be discarded, without loss of information (first
loop in Alg. 10).

The second part of this step aims at grouping together partitions for the sake
of balancing the analysis load distribution across multiple executors. This can be
framed as an instance of the bin packing problem [173], where a set of items –
the partitions – have to fit within the minimum number of bins of size S. While

125

Algorithm 10: Merge partitions
1 procedure MERGE(G, R, p, S)
2 for each ri ∈ R do
3 if ∃rj ∈ R s.t. ri ⊆ rj and i ̸= j then
4 R← R\{ri}
5 return NEXTFIT(R,S)

6 procedure NEXTFIT(R, S)
7 Ts ← SORTBYSIZEASC(R)
8 R′← /0
9 r← /0

10 for each t ∈ Ts do
11 if |r|+ |t| ≤ S then
12 r← r∪ t
13 else
14 R′← R′∪ r
15 r← {t}
16 R′← R′∪ r
17 return R′

finding the optimal solution is NP-hard, many heuristics have been proposed to
efficiently compute near-optimal solutions [135]. Among these, we adopted next
fit [23], which has a time complexity of O(n logn) in the number of partitions
n (due to sorting). Although, it may result in up to twice the optimal number
of partitions, its fast execution time is preferred for the sake of minimizing the
maximum analysis latency. Different algorithms can replace nextFit to trade
off latency for a smaller number of parallel executors.
Example. In our small-size example, the merge phase would result in the final
partitioning already after the redundancy reduction phase, since any further merg-
ing by nextFit would result in an oversized partition. The final partitions are:
{D,B,C},{E,B,A,C},{E,B,D,F}.

After the three steps of SPLITMERGE, the resulting partitions satisfy the desired
properties: (1) each partition is smaller than the prescribed size S, i.e., |ri| ≤ S; (2)
the union of the partitions contains all files of the input program, i.e., ∪iri = F . In
the next section, we introduce our empirical evaluation on the impact of splitting
strategies in comparison to non-splitting strategies.

6.4. Experimental Evaluation
In this section we report on our experiments using SPLITMERGE with three
analysis tools on a portfolio of Java and Python benchmarks. Our evaluation will
revolve around the following three research questions:

126

RQ1: What is the impact of splitting a program and analyzing the partitions in
isolation on a tool’s accuracy?

RQ2: How do static analyzers perform on the partitions compared to the
original program in terms of time and memory usage?

RQ3: What kinds of static analysis tools would benefit from splitting strategies
discussed in the chapter?

6.4.1. Experimental Settings
Static analysis tools. We used two industrial static analysis tools with interproce-
dural analysis capabilities –RAPID [92] and INFER [5]. RAPID is a tool developed
at AWS that performs IFDS/IDE-based [217] type-state analysis to detect incorrect
usage of cloud-service APIs. INFER is a static analysis tool developed at Facebook
that uses separation logic to detect memory-related issues such as null pointer
exceptions, resource leaks, and concurrency race conditions. A third set of experi-
ments will instead use Bandit [13], a static analysis tool to find common security
issues in Python. Unlike the other tools in our experiments, Bandit processes each
source code file individually.
Benchmark programs. We use three different benchmark suites in our experi-
ment:

– The OWASP Benchmark (v1.2) [14] (OWASP), a well-known Java-based
web application designed to evaluate the accuracy, coverage, and speed of
automated software vulnerability detection tools. It contains 2,740 labeled
test cases that demonstrate common web app vulnerabilities, including,
e.g., command injection, weak cryptography, path traversal.

– The Juliet Test Suite For Java [202] (Juliet), created by the NSA’s Center
for Assured Software (CAS) specifically for testing static analysis tools. It
comprises 28,881 test cases that contain vulnerabilities for 112 different
CWEs.

– Open-source packages from Maven Central [178] (Maven): Starting from
a set of 26,142 open-source Java. packages randomly sampled from Maven,
we ran RAPID on all packages and, for each package, recorded the number
of “seeds” (elements in the codebase that may lead to potential findings).
This can be done in linear time. We filtered out packages with no seeds,
since their analysis with RAPID is very inexpensive. We also removed
any packages that crashed the tool. To make the splitting problem more
challenging, out of the 4,611 remaining packages we selected those with at
least 1,500 classes. That left us with 138 Maven packages.

Baseline and experiments. We evaluate the SPLITMERGE splitting strategy in
comparison with the naı̈ve SIZELIMITING splitting strategy described in Sect. 6.2,
and also against two baseline configurations that do not perform any splitting:

127

– No Splitting, Unlimited Time (NoSplit-UT): no splitting, 16Gb memory,
24h timeout. This strategy approximates the absence of latency constraints.
We use the findings reported with NoSplit-UT as reference to assess
accuracy drops due to splitting.

– No Splitting, Unlimited Memory (NoSplit-UM): no splitting, 144Gb
memory, 10 minutes timeout. This strategy imposes the same timeout we
will use for splitting, but allows the analyzers to use virtually unlimited
memory (no tool saturated the available memory in our experiments).

SPLITMERGE and SIZELIMITING are allowed 16Gb of memory and 10 minutes
timeout. We run all the experiments on Amazon EC2 C5.18xlarge instances (72
vCPUs, 144Gb RAM). We do not limit the number of cores a tool can use. We
use Amazon Linux as operating system and ulimit to enforce memory limits.
Performance metrics. To evaluate our research questions, we collect the follow-
ing metrics throughout the experimental campaign:

– Total findings: The number of unique findings reported by each tool, used
as a proxy to detect accuracy losses. When different splitting strategies
are applied, we compare the number of findings against the baselines to
estimate the impact of splitting. Notably, a tool may also report false posi-
tive findings in either the baseline or after splitting. In general, we do not
have a reliable means to discriminate between true and false positives and
for the sake of this work we pragmatically assume that, ideally, a splitting
strategy should result in exactly the same set of findings as NoSplit-UT;
differences would suggest an impact on the accuracy of the tool.

– Best possible latency: The longest analysis time for any of the partitions of
the input program. This is the minimum waiting time for the user, excluding
other network and service invocation latency.

– Total time: Cumulative analysis time for all partitions. An index of the cu-
mulative cost in computation time. Its value is related to the computational
overhead induced by the redundancy allowed when splitting.

– Peak heap usage: The maximum Java heap memory used by an analysis
tool written in Java. In our experiment, this metric is only measured for
RAPID, which is written in Java.

– Peak memory/max resident set size (RSS): The maximum amount of
memory held by the process running an analysis tool at any time.

– Number of partitions: The number of partitions produced by a strategy
for a given benchmark.

– Sum of partition sizes: The sum of storage size for all partitions produced
in an experiment.

128

Configuration. SPLITMERGE is executed with: maximum partition size S = 500,
neighborhood radius k = 2, and the percentage of high-connectivity vertices
p = 0.1. These configuration values control the trade-off between latency, total
CPU time, maximum memory, and impact on precision. For the experiments
reported in this chapter, we prescribed a maximum allowed latency of 10 minutes
and a maximum of 16Gb of memory per tool process and systematically swept
the configuration space to make sure the selected configuration comfortably
allows analyzing a partition within our prescribed latency and memory limits. We
acknowledge that different latency and resource constraints, benchmarks, and
analysis tools may require different tuning of the parameters.

6.4.2. Experimental Results
We now present our experimental results for each research question.

RQ1: What is the impact of splitting a program and analyzing
the partitions in isolation on a tool’s accuracy?
We answer this question by looking at the total findings detected by the analyzers
shown in Tab. 6.2 reporting on the OWASP, Juliet, and Maven benchmarks.
In the table, X means the analyzer did not terminate within the given timeout or
crashed, thus no results were reported. On all three benchmarks, SPLITMERGE

allows both RAPID and INFER to detect more findings in comparison to SIZELIM-
ITING.

Regarding accuracy, we take the results of NoSplit-UT as the baseline for
comparison (except for RAPID on Juliet, where this strategy did not produce
a result). On OWASP, SPLITMERGE allowed RAPID to detect exactly the same
number of findings (3,326) as with NoSplit-UT, without losing accuracy. We
also compared the output of the tool with both strategies: the set of findings is
exactly the same. In contrast, we lost 509 (3,326− 2,817) findings with the naı̈ve
splitting strategy SIZELIMITING, corresponding to 15% (509/3,326) of the total
findings that can be detected by RAPID without splitting. For INFER, splitting
the original code using SIZELIMITING impacts its recall negatively, as INFER

detected much fewer findings compared with non-splitting strategies (230 vs. 401).
In contrast, SPLITMERGE allowed INFER to detect exactly the same findings as
with non-splitting strategies.

On Juliet, RAPID did not finish the analysis using non-splitting strategies,
which gave us no baseline to assess the impact of splitting on its accuracy, besides
observing that SPLITMERGE returned more findings than SIZELIMITING. Simi-
larly to OWASP, splitting also resulted in loss of findings on Juliet for INFER. It
also turns out that INFER crashed (exited with non-zero return code) when analyz-
ing the partitions. As shown in Table 6.3, the crash rate is 2% with SIZELIMITING

and 6% with SPLITMERGE. We conjecture INFER is less tolerant to absences of
dependent classes in comparison to RAPID, but further investigation is needed.

129

Ta
bl

e
6.

2:
C

om
pa

ri
ng

bo
th

SI
Z

E
L

IM
IT

IN
G

an
d

SP
L

IT
M

E
R

G
E

to
ba

se
lin

es
on

O
W
A
S
P

,J
u
l
i
e
t

an
d
M
a
v
e
n

.T
he

pe
rc

en
ta

ge
si

n
th

e
ro

w
sf

or
SI

Z
E

L
IM

IT
IN

G
an

d
SP

L
IT

M
E

R
G

E
st

ra
te

gi
es

co
rr

es
po

nd
to

th
e

re
du

ct
io

n
(o

r
ga

in
)i

n
th

e
nu

m
be

r
of

fin
di

ng
s,

to
ta

l
tim

e
an

d
m

em
or

y
us

ag
e

w
he

n
co

m
pa

re
d

w
ith

N
o
S
p
l
i
t
-
U
T

.B
es

tP
os

si
bl

e
L

at
en

cy
co

lu
m

n
sh

ow
s

th
e

sp
ee

du
p

ac
hi

ev
ed

w
ith

SI
Z

E
L

IM
IT

IN
G

an
d

SP
L

IT
M

E
R

G
E

st
ra

te
gi

es
.I

n
th

e
ca

se
sw

he
re
N
o
S
p
l
i
t
-
U
T

fa
ile

d
to

gi
ve

a
re

su
lt

w
ith

in
24

ho
ur

s,
w

e
re

po
rt

th
e

sp
ee

du
p

as
∞

x
an

d
th

e
nu

m
be

r
of

fin
di

ng
sa

sN
/A

.

St
ra

te
gy

To
ta

l
B

es
tP

os
si

bl
e

To
ta

lT
im

e
Pe

ak
H

ea
p

Pe
ak

M
em

or
y

N
o.

of
Su

m
of

Fi
nd

in
gs

L
at

en
cy

(m
in

)
(m

in
)

U
sa

ge
(M

B
)

M
ax

R
SS

(M
B

)
Pa

rt
.

Pa
rt

.S
iz

es
R

A
P

ID
IN

F
E

R
R

A
P

ID
IN

F
E

R
R

A
P

ID
IN

F
E

R
R

A
P

ID
R

A
P

ID
IN

F
E

R
(M

B
)

O
W
A
S
P

N
o
S
p
l
i
t
-
U
T

3,
32

6
40

1
55

.5
1.

3
55

.5
1.

3
2,

21
5

5,
94

0.
8

21
2.

2
1

24
.8

N
o
S
p
l
i
t
-
U
M

X
40

1
X

1.
3

X
1.

3
X

X
21

3.
6

1
24

.8

S
IZ

E
L

IM
IT

IN
G

2,
81

7
23

0
1

0.
01

6.
8

0.
7

27
1

5,
40

6.
8

81
.8

10
24

.8
(-

15
%

)
(-

42
%

)
(5

5x
)

(1
30

x)
(-

87
.7

%
)

(-
46

.1
%

)
(-

87
.7

%
)

(-
8.

9%
)

(-
61

.4
%

)

S
P

L
IT

M
E

R
G

E
3,

32
6

40
1

1.
4

0.
01

8.
6

0.
9

30
4

5,
99

7.
2

79
.9

14
25

.6
(0

%
)

(0
%

)
(3

9x
)

(1
30

x)
(-

84
.5

%
)

(-
30

.7
%

)
(-

86
.2

%
)

(+
0.

9%
)

(-
62

.3
%

)
J
u
l
i
e
t

N
o
S
p
l
i
t
-
U
T

X
14

,1
83

X
2.

4
X

24
.2

X
X

2,
84

4.
9

1
24

9.
7

N
o
S
p
l
i
t
-
U
M

X
X

X
X

X
X

X
X

X
1

24
9.

7

S
IZ

E
L

IM
IT

IN
G

7,
75

8
12

,4
56

1.
6

0.
09

10
1.

1
37

.1
1,

85
5.

7
7,

09
8.

5
13

1.
5

95
24

9.
7

(N
/A

)
(-

12
%

)
(∞

x)
(2

6x
)

(N
/A

)
(+

34
.7

%
)

(N
/A

)
(N

/A
)

(-
95

.3
%

)

S
P

L
IT

M
E

R
G

E
8,

80
3

13
,8

66
6

0.
08

18
5.

4
41

.1
2,

62
3.

6
7,

93
3.

4
13

5.
8

15
1

29
8.

7
(N

/A
)

(-
2%

)
(∞

x)
(3

0x
)

(N
/A

)
(+

45
.5

%
)

(N
/A

)
(N

/A
)

(-
95

.2
%

)
M
a
v
e
n

N
o
S
p
l
i
t
-
U
T

1,
19

3
31

,2
46

32
.3

2.
5

76
7.

4
30

7.
4

14
,7

30
.9

17
,5

01
1,

77
6

13
8

4,
20

5
N
o
S
p
l
i
t
-
U
M

1,
18

6
32

,1
72

10
1.

0
52

1.
8

27
0.

3
14

,0
12

.0
48

,8
02

1,
79

0
13

8
4,

21
3

S
IZ

E
L

IM
IT

IN
G

99
1

18
,0

87
9.

1
1.

0
13

7
19

0.
2

11
,4

83
.4

16
,8

61
96

4
77

8
4,

38
1

(-
17

%
)

(-
42

%
)

(3
.5

x)
(2

.5
x)

(-
82

.1
%

)
(-

38
.1

%
)

(-
22

%
)

(-
3.

6%
)

(-
45

.7
%

)

S
P

L
IT

M
E

R
G

E
1,

11
3

31
,7

93
8.

5
1.

0
54

3.
2

71
5.

1
12

,1
81

.7
17

,1
82

1,
02

5
2,

64
1

15
,7

56
(-

6.
7%

)
(+

1.
7%

)
(3

.8
x)

(2
.5

x)
(-

30
.3

%
)

(+
13

2%
)

(-
17

.0
3%

)
(-

1.
8%

)
(-

42
.2

%
)

130

Table 6.3: Timeout, crash and success rates of analysis runs.

Strategy RAPID INFER RAPID INFER RAPID INFER

Timeout Crash Success
OWASP

NoSplit-UT 0% 0% 0% 0% 100% 100%
NoSplit-UM 100% 0% 0% 0% 0% 100%
SIZELIMITING 0% 0% 0% 20% 100% 80%
SPLITMERGE 0% 0% 0% 0% 100% 100%

Juliet
NoSplit-UT 100% 0% 0% 0% 0% 100%
NoSplit-UM 100% 100% 0% 0% 0% 0%
SIZELIMITING 0% 0% 0% 2% 100% 98%
SPLITMERGE 0% 0% 0% 6% 100% 94%

Maven
NoSplit-UT 0% 4% 0% 24% 100% 72%
NoSplit-UM 0% 4% 0% 22% 100% 74%
SIZELIMITING 0% 0.4% 0% 9.6% 100% 90%
SPLITMERGE 0% 1% 0% 16% 100% 83%

For the Maven benchmark, we conducted an experiment for each of the 138
Maven packages separately and aggregated the results (which show 138 partitions
for the no-split strategies corresponding to the 138 packages analyzed). From
the results on Maven, we can see that SPLITMERGE has less negative impact
on both INFER and RAPID’s findings compared to SIZELIMITING, i.e., RAPID

only lost 6.7% ((1,193-1,113)/1,193) of the findings using SPLITMERGE, while
it is 17% ((1,193-991)/1,193) using SIZELIMITING. On the other hand, INFER

detected more findings with SPLITMERGE than NoSplit-UT, as it crashed less
frequently (Table 6.3).

We remark once again that the number of findings is a coarse proxy to evaluate
the differential accuracy, while assessing precision and recall of the different tools
would require scoring each tool’s output against a ground truth to establish which
findings are true and false, which is beyond the scope of this study.

RQ1 takeaway: Splitting the original program can sometimes negatively im-
pact a tool’s accuracy. However our experiments show that smarter splitting
strategies like SPLITMERGE can controllably reduce accuracy loss. For very
large codebases (e.g., Juliet) and strict resource constraints, splitting may be
the only option if we want to retrieve any findings, since the tools do not scale
and thus end up returning no findings at all.

131

Figure 6.3: LOC of the 17 open source Python projects with dependency
analysis and analysis time used by Bandit.

RQ2: How do static analyzers perform on the partitions com-
pared to the original program in terms of time and memory
usage?
After evaluating the accuracy loss of splitting, with this research question, we
evaluate analysis time and resource demand. A benefit of splitting a program and
analyzing each partition in isolation is the possibility of running an instance of the
analysis tool on each partition in parallel, thus reducing the user’s waiting time.
The best possible latency of analyzing partitions is the maximum analysis time
required to analyze any such partitions. On all three benchmark suites, both RAPID

and INFER achieved much better latency with splitting strategies on both SAST
benchmarks (OWASP and Juliet) and real-world applications (Maven). Using
SPLITMERGE, the analyzers achieved more than 2x speedup (RAPID: 32.3/8.5,
INFER: 2.5/1.0) on the Maven packages in comparison to NoSplit-UT. Since
RAPID is written in Java, we also measured the peak heap usage from the JVM
and observed that with SPLITMERGE, RAPID used less than 13.7% of the peak
heap consumption of NoSplit-UT on OWASP and 82% on Maven. We also
measured the maximum resident set memory size, which indicates a significant
reduction of peak memory consumption also for INFER.

RQ2 takeaway: Splitting the codebase allows us to analyze the partitions in
parallel. On all three benchmark suites, our experiments show that splitting sig-
nificantly reduced the latency for both analysis tools. Splitting also significantly
reduced the memory required to analyze the benchmark suites compared to
non-splitting.

RQ3: What kinds of static analysis tools would benefit from
splitting strategies discussed in the chapter?
Comparing the results of RAPID and INFER, the first observation is that splitting
allowed RAPID to analyze Juliet, which was intractably large for the non-

132

splitting strategies. We also observed that RAPID is more tolerant than INFER with
partitions that miss dependencies. On OWASP and Juliet, splitting increased the
number of crashes (Table 6.3), resulting in a reduction of the number of findings.
On Maven we observed the opposite effect, where analyzing the 138 packages
individually led to more crashes than grouping all their sources and splitting them
with SIZELIMITING or SPLITMERGE. However, for most benchmark applications,
the difference in number of findings with and without splitting was limited for
both RAPID and INFER, while RAPID was much faster in analyzing all subjects,
significantly reducing both the best possible latency (by 73-97% with SPLIT-
MERGE) and the total computation time (29-84% with SPLITMERGE). Also for
INFER the best possible latency dropped by 60-99%, while the total computation
time remained around the same order of magnitude, taking into account that the
different number of crashes between NoSplit-UT and SPLITMERGE make it
difficult to discern how much computation time ultimately led to results rather
than crashing. INFER also showed a significant reduction in memory demand, up
to 95% on Juliet.
A worst-case scenario for SPLITMERGE. To better define the target application
scope of a dependency-aware splitting strategy like SPLITMERGE, we report on an
additional experiment using Bandit [13], a static analysis tool for Python. Bandit
processes each source file independently by building an abstract syntax tree and
inspecting it for error patterns. While the previous experiments analyzed Java
applications, SPLITMERGE is not restricted to a specific language, provided that
the user can specify the elementary code units to partition (e.g., files, modules, or
classes) and can identify their dependencies. In the case of Python, dependencies
between its classes can be extracted using Snakefood [44] and Importlab [93].

We ran the three tools of the analysis pipeline (Snakefood, Importlab, and
Bandit) on 17 popular Python open-source projects 3 and recorded the analysis
time. Figure 6.3 shows the lines of code (LOC, bars) vs analysis time for each
program (line). The analysis pipeline including dependency analysis and Bandit
shows, as expected, very high scalability, taking only about 3 minutes to analyze
tensorflow, the largest program in the set. The breakdown of the time required
for each step of this analysis pipeline is shown in Figure 6.4, from which it is
evident that dependency analysis takes a significant proportion of the pipeline
time, up to 73% for youtube, while Bandit only takes a smaller fraction of the
pipeline time.

This experiment represents a worst-case scenario for SPLITMERGE—the anal-
ysis does not benefit from preserving dependency information, thus dropping the
benefits of SPLITMERGE’s heuristics. To parallelize Bandit’s analysis it would
be more effective to use SIZELIMITING, avoiding the overhead of dependency
analysis, which, contrary to the case of costlier interprocedural analyses with
RAPID and INFER, does not pay off with Bandit’s per-file analysis.

3
https://dev.to/biplov/17-popular-python-opensource-projects-on-github-21ae

133

https://dev.to/biplov/17-popular-python-opensource-projects-on-github-21ae

Figure 6.4: Time used by dependency analysis compared to time used by
Bandit.

RQ3 takeaway: Our experiments show that splitting is useful to limit the
per-machine resource consumption of static analysis tools and different tools
require different splitting strategies. Inter-procedural analyses benefit most from
splitting even with a naive strategy like SIZELIMITING. For example, splitting
the input codebase allowed RAPID to analyze code much faster than without
splitting. Whereas for INFER, the most prominent benefit of splitting was the
reduction in memory usage. Our experiments also show that for inexpensive
linter-like or intra-procedural analyses such as Bandit, SIZELIMITING may be
more beneficial than dependency-guided-splitting strategy like SPLITMERGE.

6.5. Related Work
SAST platforms. Several SAST platforms in the literature provide static analysis
as a service and present a simple interface to developers that allows them to
run a variety of static analysis tools. One of the earliest platforms is Review
Bot [24], which integrates FindBugs [96], PMD, and CheckStyle into the code
review process. Review Bot runs in the code review process on changes small
enough to be reviewed by humans, and the tools are fast linting tools, so it did not
have an immediate need for splitting.

The Khasiana1 web portal [196] integrates three static analyzers (FindBugs [96],
Safe [105], and Xylem [197]) under a unified service interface. It focuses on
discussing the usefulness of the reported findings. The tools are evaluated on
hand-picked projects in which scalability is not an issue.

Two more recent platforms are Software Assurance Marketplace

134

(SWAMP) [151] and Google’s Tricorder [229] (and its open-source ver-
sion, ShipShape). These platforms focus on making it easy to plug in additional
analyzers. They provide orchestration as well as aggregation and management
of recommendations. They do not focus on how to deal with large inputs. Our
splitting approach is agnostic to the specific SAST platform and could be applied
to Khasiana1, SWAMP, or Tricorder/ShipShape as well.

An approach that shares a similar motivation to ours is implemented by Chee-
tah [88] which integrates several static analysis tools into an IDE. Cheetah achieves
fast response times by gradually increasing the scope of the analysis: it starts by
analyzing only the method currently being edited in the IDE, then increases the
scope to class, package, and project level. This allows them to deliver some results
early on while gradually increasing the precision if the user is willing to wait
for it. In this chapter, rather than gradually increasing the scope until reaching a
time limit, we reduce the scope by splitting—simplifying the input, to get results
within certain resource constraints.

A wide range of static program analysis problems can be viewed as in-
stances of the Context-Free Language (CFL) Reachability problem [218],
e.g., inter-procedural dataflow analysis [217], control flow analysis [254], set-
constraints [149], specification-inference [34], shape analysis [218], object-flow
analysis [269], pointer and alias analysis [166, 273], and program slicing [127]
to name a few. Unfortunately, the worst case time complexity for solving CFL-
reachability problems is O(n3), which is known as the ”cubic bottleneck” [119].
As a result, highly precise analysis of large-scale software is challenging. In the
literature, most work only focuses on very specific optimizations to a particular
analysis that are not applicable in general.
Splitting input representation. Singh et al. proposed a technique to speed anal-
ysis with Polyhedra domain in abstract interpretation by partitioning variables
into subsets such that the constraints only exist between variables in the same sub-
set [241]. To mitigate the path explosion problem in symbolic execution, Trabish
et al. [250] introduced chopped symbolic execution, an approach in which users
can identify unimportant parts in the code, and the symbolic analysis tries to avoid
those parts. Barnat et al. [29] propose a distributed algorithm for model checking
LTL-formulas. The algorithm works by first partitioning and then exploring the
state space in parallel. In model checking based on symbolic state representation,
the technique in [114] partitions BDDs into smaller BDDs (each representing
a subset of states) which are subsequently given to different processes. Kumar
et al. [150] present a technique for distributed explicit state model checking to
improve run time performance.
Parallel/distributed static analysis. The problem of scaling static analysis to
potentially very large inputs is also discussed in [104] where the authors present
a distributed call-graph construction algorithm designed to run in the cloud. We
share the motivation that static analysis needs to be elastic to scale to very large
inputs but our approach is designed to be agnostic to specific static analysis tools
and techniques. Mendez-Lojo et al. [183] proposed a technique to parallelize

135

inclusion-based points-to analysis by formulating it in terms of constraint graph
rewrite rules. Su et al. [245] introduced a parallel solution to CFL-reachability
based pointer analysis by avoiding redundant graph traversals using data sharing
and query scheduling. Rodriguez et al. [224] presented an actor-model-based
parallel algorithm for solving IFDS data-flow problems. Albarghouthi et al. [15]
proposed a framework to parallelize top down inter-procedural analysis using the
MapReduce paradigm. Facebook uses INFER [60] based on bi-abduction which is
modular—generates summaries for methods in the program and compositional—
composes summaries at call sites. Nevertheless, as we show in our experiments,
even a modular analysis like INFER does not scale to large or complex inputs under
practical resource constraints. BigSpa [274] provides a data-parallel algorithm
for CFL-reachability based static analysis. Graspan [258] and Grapple [275] are
single-machine, disk-based tools that model specific static analysis problems, taint
analysis and type-state analysis respectively, as transitive closure computation on
graphs.

The above approaches parallelize or distribute the analysis workload in a way
that is specific to the tool or technique at hand. Most of them modify the existing
tool. In our case, we do not introduce any changes to the SAST tools; an important
design goal is to be able to add new off-the-shelf tools and update existing tools (as
new versions are released) without having to maintain our own modified versions
of them.
Automated refactoring. The goal of splitting is to break a large program into
smaller units that are sufficiently self-contained to be analyzed in isolation. This
is similar to the refactoring problem of breaking up a monolithic system into
smaller components. An overview of such refactoring techniques is given in [98].
Recently, we see approaches based on machine learning (e.g., [86]), dynamic
analysis (e.g., [140]), and static analysis (e.g., [179]). The splitting problem
discussed in this chapter is simpler than the problem of automatically refactoring
in the sense that our partitions do not need to be functioning programs; they just
need to to be sufficiently self-contained for analysis purposes.
Graph partitioning and communities. There is a rich body of work [133] on
graph clustering for community detection in networks studied as graphs, e.g.,
social networks, academic citation networks, and collaboration networks—which
might provide a theoretical grounding for future research. However, to the best
of our knowledge this line of work currently focuses on preserving maximal
connectivity, as opposed to our goal of attaining an effective trade-off between
preserving connectivity and load-balancing partitions.

6.6. Summary and Remarks
We discussed how splitting of static analysis inputs can be used to effectively
limit the maximum resource consumption of an analysis tool. We motivated that
this is an important problem when operating a SAST platform, as adding new

136

analysis tools to the platform must not increase the maximum latency for existing
customers.

Our evaluation shows that the splitting strategy has a significant impact on the
outcome of the static analysis tool and that not all strategies are suitable for all
tools. We showed that, for more complex (super-linear) static analysis tools, more
advanced splitting strategies are needed to minimize the effect on the reported
number of findings. For inexpensive linter-style tools like Bandit, we see that the
overhead of a complex splitting strategy outweighs the benefits and that a simple
splitting strategy is sufficient.

137

Chapter 7

Conclusion and Future Work

The aim of the work presented in this dissertation is to improve software correct-
ness and reliability making it easier and more practical for developers of all skill
levels to incorporate state of the art static program analyzers in their software
development workflow. While the potential benefits of program analyzers are clear,
their usability and effectiveness in mainstream software development workflows
often comes into question and can prevent software developers from using these
tools to their full potential. Practical program analyzers, therefore, have to make
tradeoffs (e.g., in soundness, precision, or performance) to maintain a delicate bal-
ance between returning the minimum number of false negatives/positives, scaling
to very large industrial codebases, being highly automatic, and having minimum
overhead for the developers.

Designing, implementing, and deploying program analyzers, is an extremely
challenging task. This makes them extremely complicated pieces of software with
a high likelihood of having correctness bugs themselves (challenge 1) or tradeoffs
not suitable for every piece of code under every usage scenario (challenge 2). In
this dissertation, we focus our attention on improving the state of the art in these
two challenge areas that can prevent typical software development teams from
using these tools to their full potential.

Detecting unintentional unsoundness. In the first part of this dissertation, we
present algorithms to detect correctness bugs in fundamental program analysis
components such as SMT solvers and Datalog engines. Correctness bugs in these
components can compromise the results computed by an upstream program ana-
lyzer. This can have disastrous consequences e.g., when analyzing software used
for electronic voting, financial systems, transportation, or secure communication.

In chapter 2, we presented a general blackbox fuzzing technique for detecting
critical bugs in any SMT solver. In contrast to existing work at the time, our
technique does not require a grammar to synthesize SMT instances from scratch.
Instead, it takes inspiration from state-of-the-art mutational fuzzers and generates
new instances by mutating existing ones. We implemented the technique in an

138

open-source tool called STORM, which has the additional ability to effectively
minimize the size of bug-revealing instances to facilitate debugging. In only
three months of testing, with STORM, we were able to detect 29 previously
unknown critical bugs in three mature SMT solvers and 15 different logics. In
this chapter, we focused our attention on detecting refutational soundness bugs
(the solver returns unsat for a satisfiable instance) because such bugs are the
most difficult to detect. However, in the future, STORM can be extended to detect
solution soundness bugs (the solver returns sat for an unsatisfiable instance). We
also plan to extend STORM by integrating complementary techniques proposed
subsequently to our work. For example, the fuzzing technique presented in STORM
can be combined with OpFuzz that fuzzes operators in an SMT instance.

In chapter 3, we presented the first ever metamorphic testing based approach
to detect query bugs in Datalog engines. The approach is based on the formal
properties of conjunctive queries. Despite their simplicity, conjunctive queries
constitute an important class of database queries due to their theoretical properties.
We implemented our approach in an open source tool called queryFuzz, which
we used to test three mature Datalog engines. queryFuzz detected 13 previously
unknown query bugs in all three Datalog engines. In future work, we also plan to
use the transformations presented in this chapter to test other data query systems
since many first-order queries can be written as conjunctive queries.

In chapter 4, we presented a metamorphic testing approach that allows us to
define much more general and effective transformations than the ones presented
in chapter 3. This is because queryFuzz can only apply transformations locally
without considering the entire program. The approach presented in chapter 4
uses an annotated precedence graph, that captures rich semantic and syntactic
information about a given Datalog program. This graph allows us to define more
radical program-wide transformations that also incorporates all existing queryFuzz
transformations. In the future, we plan to explore ways of extending the annotated
precedence graph with dialect-specific features e.g., aggregates.

Balancing soundness, precision, and performance. In the second part of
this dissertation, we introduce techniques to reduce friction in the integration of
program analyzers in everyday software development workflows. Smoothly inte-
grating and tuning an advanced program analyzer for a particular codebase under
certain resource constraints and different usage scenarios can be a challenging
task for software developers, most of whom lack an advanced understanding of
these analyzers.

In chapter 5, we presented a technique that can automatically tailor a generic
abstract interpreter to the code under analysis and any given resource constraints.
The key idea behind our approach is to phrase the problem of customizing the
abstract-interpretation configuration to a given usage scenario as an optimization
problem. Our experiments show that configurations generated by our technique
vastly outperform the default options pre-selected by the analysis designers. We
implemented our approach in an open-source framework called TAILOR and

139

demonstrate its effectiveness using a state-of-the-art abstract interpreter CRAB,
with millions of configurations, on real-world benchmarks. In the future, we plan
to explore the challenges that an inter-procedural analysis would pose, for instance,
by using a different recipe for computing a summary of each function or each
calling context.

In chapter 6, we presented an approach to horizontally scale static analysis tools
in cloud-based static analysis platforms. Our approach takes as input a program
to be analyzed and a bound for the size of code that should be analyzed by each
single cloud instance. It then employs a configurable splitting strategy to split the
input program into partitions such that the amount of code in each partition is
below a provided bound. Our experiments show that splitting the input code base
into partitions and analyzing each partition in a separate cloud instance can be an
effective strategy to scale static analysis tools in static analysis platforms. We show
that with a proper selection of a splitting strategy, all evaluated static analyzers can
benefit from such an approach. The approach was developed in collaboration with
Amazon Web Services and is currently being used in production in their CodeGuru
service. We believe that, in the future, the process of picking a splitting strategy
and tuning the parameters when adding a tool to a cloud-based static analysis
platform can be fully automated. A tool can be run with different configurations
on regression data to identify the best combination of strategy and configuration.
Also, the configuration parameters for each tool can be re-adjusted on the fly as
the available hardware improves or the static analysis tools get updated.

140

References
1. The BDDAPRON logico-numerical abstract domains library.

http://www.inrialpes.fr/pop-art/people/bjeannet/
bjeannet-forge/bddapron.

2. Coverity scan. https://scan.coverity.com/.
3. CREST: Concolic test generation tool for C. http://www.burn.im/

crest/.
4. DeltaSMT. http://fmv.jku.at/deltasmt.
5. Infer. http://fbinfer.com.
6. The international satisfiability modulo theories competition. https://

smt-comp.github.io.
7. Klocwork. http://www.klocwork.com.
8. Radamsa. https://gitlab.com/akihe/radamsa.
9. The satisfiability modulo theories library. http://smtlib.cs.uiowa.

edu.
10. SonarQube. http://www.sonarqube.org.
11. Technical “whitepaper” for AFL. http://lcamtuf.coredump.cx/

afl/technical_details.txt.
12. VoteSMT. http://fmv.jku.at/votesmt.
13. Bandit. https://bandit.readthedocs.io/en/latest/,

2008.
14. OWASP. https://owasp.org/www-project-benchmark/,

2022.
15. Aws Albarghouthi, Rahul Kumar, Aditya V. Nori, and Sriram K. Rajamani.

Parallelizing top-down interprocedural analyses. In PLDI, pages 217–228.
ACM, 2012.

16. Gianluca Amato and Marco Rubino. Experimental evaluation of numerical
domains for inferring ranges. ENTCS, 334:3–16, 2018.

17. Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan
Olteanu, Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. Design
and implementation of the LogicBlox system. In SIGMOD, pages 1371–
1382. ACM, 2015.

18. Cyrille Artho, Armin Biere, and Martina Seidl. Model-based testing for ver-
ification back-ends. In TAP, volume 7942 of LNCS, pages 39–55. Springer,
2013.

19. Steven Arzt and Eric Bodden. Reviser: Efficiently updating ide-/ifds-based
data-flow analyses in response to incremental program changes. In ICSE,
page 288–298. ACM, 2014.

20. Steven Arzt and Eric Bodden. Stubdroid: Automatic inference of precise
data-flow summaries for the android framework. In ICSE, pages 725–735,
2016.

21. Nathaniel Ayewah, William W. Pugh, J. David Morgenthaler, John Penix,

141

http://www.inrialpes.fr/pop-art/people/bjeannet/bjeannet-forge/bddapron
http://www.inrialpes.fr/pop-art/people/bjeannet/bjeannet-forge/bddapron
https://scan.coverity.com/
http://www.burn.im/crest/
http://www.burn.im/crest/
http://fmv.jku.at/deltasmt
http://fbinfer.com
https://smt-comp.github.io
https://smt-comp.github.io
http://www.klocwork.com
https://gitlab.com/akihe/radamsa
http://smtlib.cs.uiowa.edu
http://smtlib.cs.uiowa.edu
http://www.sonarqube.org
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://fmv.jku.at/votesmt
https://bandit.readthedocs.io/en/latest/
https://owasp.org/www-project-benchmark/

and YuQian Zhou. Evaluating static analysis defect warnings on production
software. In PASTE, pages 1–8. ACM, 2007.

22. John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew
Gacek, Kasper Søe Luckow, Neha Rungta, Oksana Tkachuk, and Carsten
Varming. Semantic-based automated reasoning for AWS access policies
using SMT. In FMCAD, pages 1–9. IEEE, 2018.

23. Brenda S Baker and Edward G Coffman, Jr. A tight asymptotic bound for
next-fit-decreasing bin-packing. JADM, 2(2):147–152, 1981.

24. Vipin Balachandran. Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommendation.
In ICSE, page 931–940. IEEE, 2013.

25. Isaac Balbin, Graeme S. Port, Kotagiri Ramamohanarao, and Krishna-
murthy Meenakshi. Efficient bottom-up computation of queries on stratified
databases. JLP, 11:295–344, 1991.

26. Paolo Baldan, Andrea Corradini, and Barbara König. A static analysis
technique for graph transformation systems. In CONCUR, volume 2154 of
LNCS, pages 381–395. Springer, 2001.

27. Paolo Baldan and Barbara König. Approximating the behaviour of graph
transformation systems. In ICGT, volume 2505 of LNCS, pages 14–29.
Springer, 2002.

28. François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman.
Magic sets and other strange ways to implement logic programs. In PODS,
pages 1–15. ACM, 1986.

29. Jiri Barnat, Lubos Brim, and Jitka Strı́brná. Distributed LTL model-
checking in SPIN. In SPIN, volume 2057 of LNCS, pages 200–216. Springer,
2001.

30. Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for object-oriented
programs. In FMCO, volume 4111 of LNCS, pages 364–387. Springer,
2005.

31. Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin
Yoo. The oracle problem in software testing: A survey. TSE, 41:507–525,
2015.

32. Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.
In CAV, volume 6806 of LNCS, pages 171–177. Springer, 2011.

33. Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. In
Handbook of Model Checking, pages 305–343. Springer, 2018.

34. Osbert Bastani, Saswat Anand, and Alex Aiken. Specification inference
using context-free language reachability. In POPL, pages 553–566. ACM,
2015.

35. Catriel Beeri and Raghu Ramakrishnan. On the power of magic. JLP,
10:255–299, 1991.

142

36. Pierre-Léo Bégay, Pierre Crégut, and Jean-François Monin. Developing
and certifying Datalog optimizations in Coq/MathComp. In CPP, pages
163–177. ACM, 2021.

37. Aaron Bembenek, Michael Greenberg, and Stephen Chong. Formulog:
Datalog for SMT-based static analysis. In OOPSLA, pages 141:1–141:31.
ACM, 2020.

38. James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Al-
gorithms for hyper-parameter optimization. In NIPS, pages 2546–2554,
2011.

39. James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. JMLR, 13:281–305, 2012.

40. Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. Z3str3: A string solver
with theory-aware heuristics. In FMCAD, pages 55–59. IEEE Computer
Society, 2017.

41. Carsten Binnig, Donald Kossmann, and Eric Lo. Reverse query processing.
In ICDE, pages 506–515. IEEE Computer Society, 2007.

42. Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Özsu. QAGen:
Generating query-aware test databases. In SIGMOD, pages 341–352. ACM,
2007.

43. Andrew Binstock. Gitleaks: a SAST tool for detecting and prevent-
ing hardcoded secrets like passwords, api keys, and tokens in git repos-
itories. https://blogs.oracle.com/javamagazine/post/
java-class-file-constant-pool, 2022.

44. Martin Blais. Snakefood. https://furius.ca/snakefood/doc/
snakefood-doc.html, 2007.

45. Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static
analyzer for large safety-critical software. In PLDI, pages 196–207. ACM,
2003.

46. Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz Kabir,
and Vijay Ganesh. StringFuzz: A fuzzer for string solvers. In CAV, volume
10982 of LNCS, pages 45–51. Springer, 2018.

47. Guillaume Brat, Jorge A. Navas, Nija Shi, and Arnaud Venet. IKOS: A
framework for static analysis based on abstract interpretation. In SEFM,
volume 8702 of LNCS, pages 271–277. Springer, 2014.

48. Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specifica-
tion of sophisticated points-to analyses. In OOPSLA, pages 243–262. ACM,
2009.

49. Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, François Gauthier,
Vincent Gramoli, Ralph Holz, and Bernhard Scholz. Vandal: A scalable
security analysis framework for smart contracts. CoRR, abs/1809.03981,
2018.

50. Neville Brent, Lexiand Grech, Sifis Lagouvardos, Bernhard Scholz, and

143

https://blogs.oracle.com/javamagazine/post/java-class-file-constant-pool
https://blogs.oracle.com/javamagazine/post/java-class-file-constant-pool
https://furius.ca/snakefood/doc/snakefood-doc.html
https://furius.ca/snakefood/doc/snakefood-doc.html

Yannis Smaragdakis. Ethainter: A smart contract security analyzer for
composite vulnerabilities. In PLDI, pages 454–469. ACM, 2020.

51. Robert Brummayer and Armin Biere. Fuzzing and delta-debugging SMT
solvers. In SMT, pages 1–5. ACM, 2009.

52. Robert Brummayer, Florian Lonsing, and Armin Biere. Automated testing
and debugging of SAT and QBF solvers. In SAT, volume 6175 of LNCS,
pages 44–57. Springer, 2010.

53. Nicolas Bruno, Surajit Chaudhuri, and Dilys Thomas. Generating queries
with cardinality constraints for DBMS testing. TKDE, 18:1721–1725, 2006.

54. Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Detecting self-
mutating malware using control-flow graph matching. In DIMVA, volume
4064 of LNCS, pages 129–143. Springer, 2006.

55. Alexandra Bugariu and Peter Müller. Automatically testing string solvers.
In ICSE, pages 1459–1470. ACM, 2020.

56. Alexandra Bugariu, Valentin Wüstholz, Maria Christakis, and Peter Müller.
Automatically testing implementations of numerical abstract domains. In
ASE, pages 768–778. ACM, 2018.

57. Cristian Cadar and Alastair F. Donaldson. Analysing the program analyser.
In ICSE, pages 765–768. ACM, 2016.

58. Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex systems pro-
grams. In OSDI, pages 209–224. USENIX, 2008.

59. Cristiano Calcagno and Dino Distefano. Infer: An automatic program
verifier for memory safety of C programs. In NFM, volume 6617 of LNCS,
pages 459–465. Springer, 2011.

60. Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim
Purbrick, and Dulma Rodriguez. Moving fast with software verification. In
NFM, volume 9058 of LNCS, pages 3–11. Springer, 2015.

61. W. K. Chan, S. C. Cheung, and Karl R. P. H. Leung. Towards a metamorphic
testing methodology for service-oriented software applications. In QSIC,
pages 470–476. IEEE Computer Society, 2005.

62. Ashok K. Chandra and Philip M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In STOC, pages 77–90. ACM,
1977.

63. Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation with
alien expressions and heap structures. In VMCAI, volume 3385 of LNCS,
pages 147–163. Springer, 2005.

64. J.-L. Chen, F.-J. Wang, and Y.-L. Chen. An object-oriented dependency
graph for program slicing. In TOOLS, pages 121–130. IEEE Computer
Society, 1997.

65. Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang,
Dan Hao, and Lu Zhang. A survey of compiler testing. Comput. Surv.,

144

53:4:1–4:36, 2020.
66. Tsong Yueh Chen, S. C. Cheung, and Siu-Ming Yiu. Metamorphic testing:

A new approach for generating next test cases. Technical Report HKUST–
CS98–01, HKUST, 1998.

67. Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An
interpolating SMT solver. In SPIN, volume 7385 of LNCS, pages 248–254.
Springer, 2012.

68. Maria Christakis and Christian Bird. What developers want and need from
program analysis: An empirical study. In ASE, pages 332–343. ACM, 2016.

69. Maria Christakis, Thomas Cottenier, Antonio Filieri, Linghui Luo, Lee
Pike, Nico Rosner, Martin Schäf, Aritra Sengupta, and Willem Visser. Input
splitting for cloud-based static application security testing platforms. In
ESEC/FSE, pages 1367–1378. ACM, 2022.

70. Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and
Roberto Sebastiani. The MathSAT5 SMT solver. In TACAS, volume
7795 of LNCS, pages 93–107. Springer, 2013.

71. Justin Collins. Brakeman: a static vulnerability scanner specifically de-
signed for Ruby on Rails applications. https://brakemanscanner.
org/.

72. Christopher L. Conway, Kedar S. Namjoshi, Dennis Dams, and Stephen A.
Edwards. Incremental algorithms for inter-procedural analysis of safety
properties. In CAV, pages 449–461. Springer, 2005.

73. David Coppit and Jiexin Lian. yagg: an easy-to-use generator for structured
test inputs. In David F. Redmiles, Thomas Ellman, and Andrea Zisman,
editors, ASE, pages 356–359. ACM, 2005.

74. Loı̈c Correnson, Pascal Cuoq, Florent Kirchner, Virgile Prevosto, Armand
Puccetti, Julien Signoles, and Boris Yakobowski. Frama-C User Manual,
2011. http://frama-c.com//support.html.

75. Patrick Cousot and Radhia Cousot. Static determination of dynamic proper-
ties of programs. In ISOP, pages 106–130. Dunod, 1976.

76. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In POPL, pages 238–252. ACM, 1977.

77. Patrick Cousot and Radhia Cousot. Abstract interpretation and application
to logic programs. JLP, 13:103–179, 1992.

78. Patrick Cousot and Radhia Cousot. Comparing the Galois connection
and widening/narrowing approaches to abstract interpretation. In PLILP,
volume 631 of LNCS, pages 269–295. Springer, 1992.

79. Patrick Cousot and Radhia Cousot. Refining model checking by abstract
interpretation. Autom. Softw. Eng., 6:69–95, 1999.

80. Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. The astreé analyzer. In ESOP,
LNCS, pages 21–30. Springer, 2005.

145

https://brakemanscanner.org/
https://brakemanscanner.org/
http://frama-c.com//support.html

81. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear
restraints among variables of a program. In POPL, pages 84–96. ACM,
1978.

82. Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto, John
Regehr, Boris Yakobowski, and Xuejun Yang. Testing static analyzers
with randomly generated programs. In NFM, volume 7226 of LNCS, pages
120–125. Springer, 2012.

83. Oege de Moor, Damien Sereni, Mathieu Verbaere, Elnar Hajiyev, Pavel
Avgustinov, Torbjörn Ekman, Neil Ongkingco, and Julian Tibble. .QL:
Object-oriented queries made easy. In GTTSE, volume 5235 of LNCS,
pages 78–133. Springer, 2007.

84. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
TACAS, volume 4963 of LNCS, pages 337–340. Springer, 2008.

85. Leonardo de Moura and Dejan Jovanovic. A model-constructing satisfia-
bility calculus. In VMCAI, volume 7737 of LNCS, pages 1–12. Springer,
2013.

86. Utkarsh Desai, Sambaran Bandyopadhyay, and Srikanth Tamilselvam.
Graph neural network to dilute outliers for refactoring monolith application.
In AAAI, pages 72–80. AAAI, 2021.

87. Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W.
O’Hearn. Scaling static analyses at Facebook. CACM, 62:62–70, 2019.

88. Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin
Smith, and Emerson Murphy-Hill. Just-in-time static analysis. In ISSTA,
page 307–317. ACM, 2017.

89. Winterer Dominik, Zhang Chengyu, and Su Zhendong. On the unusual
effectiveness of type-aware operator mutations for testing SMT solvers. In
OOPSLA, pages 1–25. ACM, 2020.

90. Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson.
Automated testing of graphics shader compilers. PACMPL, 1:93:1–93:29,
2017.

91. Bruno Dutertre. Yices 2.2. In CAV, volume 8559 of LNCS, pages 737–744.
Springer, 2014.

92. Michael Emmi, Liana Hadarean, Ranjit Jhala, Lee Pike, Nicolás Rosner,
Martin Schäf, Aritra Sengupta, and Willem Visser. Rapid: Checking API
usage for the cloud in the cloud. In ESEC/FSE, pages 1416–1426. ACM,
2021.

93. Martin DeMello et al. Importlab. https://github.com/google/
importlab, 2017.

94. Manuel Fähndrich and Francesco Logozzo. Static contract checking with
abstract interpretation. In FoVeOOS, volume 6528 of LNCS, pages 10–30.
Springer, 2010.

95. Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient
hyperparameter optimization at scale. In ICML, volume 80 of PMLR, pages

146

https://github.com/google/importlab
https://github.com/google/importlab

1436–1445. PMLR, 2018.
96. Cormac Flanagan, K Rustan M Leino, Mark Lillibridge, Greg Nelson,

James B Saxe, and Raymie Stata. Extended static checking for java. In
PLDI, pages 234–245, 2002.

97. Jonathan Ford and Natarajan Shankar. Formal verification of a combination
decision procedure. In CADE, volume 2392 of LNCS, pages 347–362.
Springer, 2002.

98. Jonas Fritzsch, Justus Bogner, Alfred Zimmermann, and Stefan Wagner.
From monolith to microservices: A classification of refactoring approaches.
In DEVOPS, volume 11350 of LNCS, pages 128–141. Springer, 2018.

99. Zhoulai Fu and Zhendong Su. Mathematical execution: A unified approach
for testing numerical code. CoRR, abs/1610.01133, 2016.

100. Zhoulai Fu and Zhendong Su. Achieving high coverage for floating-point
code via unconstrained programming. In PLDI, pages 306–319. ACM,
2017.

101. Vijay Ganesh. Decision Procedures for Bit-Vectors, Arrays and Integers.
PhD thesis, Stanford University, USA, 2007.

102. Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and
arrays. In CAV, volume 4590 of LNCS, pages 519–531. Springer, 2007.

103. Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and
Peter J. Stuckey. An abstract domain of uninterpreted functions. In VMCAI,
volume 9583 of LNCS, pages 85–103. Springer, 2016.

104. Diego Garbervetsky, Edgardo Zoppi, and Benjamin Livshits. Toward full
elasticity in distributed static analysis: The case of callgraph analysis. In
ESEC/FSE, page 442–453. ACM, 2017.

105. Emmanuel Geay, Eran Yahav, and Stephen Fink. Continuous code-quality
assurance with safe. In PEPM, pages 145–149. ACM, 2006.

106. Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina Narodytska, Jorge A.
Navas, Noam Rinetzky, Leonid Ryzhyk, and Mooly Sagiv. Simple and
precise static analysis of untrusted Linux kernel extensions. In PLDI, pages
1069–1084. ACM, 2019.

107. Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated
whitebox fuzz testing. In NDSS, pages 151–166. The Internet Society, 2008.

108. Markian M. Gooley and Benjamin W. Wah. Efficient reordering of Prolog
programs. In ICDE, pages 110–117. IEEE Computer Society, 1988.

109. Philippe Granger. Static analysis of arithmetical congruences. International
Journal of Computer Mathematics, 30:165–190, 1989.

110. Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey
Rybalchenko. Synthesizing software verifiers from proof rules. In PLDI,
pages 405–416. ACM, 2012.

111. Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz,
and Yannis Smaragdakis. MadMax: Surviving out-of-gas conditions in
Ethereum smart contracts. PACMPL, 2:116:1–116:27, 2018.

147

112. Sergio Greco and Cristian Molinaro. Datalog and Logic Databases. Morgan
& Claypool, 2015.

113. Sergio Greco and Cristian Molinaro. Datalog and Logic Databases. Morgan
& Claypool, 2015.

114. Orna Grumberg, Tamir Heyman, Nili Ifergan, and Assaf Schuster. Achiev-
ing speedups in distributed symbolic reachability analysis through asyn-
chronous computation. In IFIP, volume 3725 of LNCS, pages 129–145.
Springer, 2005.

115. Arie Gurfinkel and Sagar Chaki. Boxes: A symbolic abstract domain of
boxes. In SAS, volume 6337 of LNCS, pages 287–303. Springer, 2010.

116. Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A.
Navas. The SeaHorn verification framework. In CAV, volume 9206 of
LNCS, pages 343–361. Springer, 2015.

117. Arie Gurfinkel and Jorge A. Navas. A context-sensitive memory model for
verification of C/C++ programs. In SAS, volume 10422 of LNCS, pages
148–168. Springer, 2017.

118. Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu,
Paraschos Koutris, Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk,
Jingjing Wang, Andrew Whitaker, Shengliang Xu, Magdalena Balazinska,
Bill Howe, and Dan Suciu. Demonstration of the Myria big data manage-
ment service. In SIGMOD, pages 881–884. ACM, 2014.

119. Nevin Heintze and David A. McAllester. On the cubic bottleneck in subtyp-
ing and flow analysis. In LICS, pages 342–351. IEEE, 1997.

120. Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Software
model checking for people who love automata. In CAV, volume 8044 of
LNCS, pages 36–52. Springer, 2013.

121. Kihong Heo, Hakjoo Oh, and Hongseok Yang. Learning a variable-
clustering strategy for octagon from labeled data generated by a static
analysis. In SAS, volume 9837 of LNCS, pages 237–256. Springer, 2016.

122. Kihong Heo, Hakjoo Oh, and Hongseok Yang. Resource-aware program
analysis via online abstraction coarsening. In ICSE, pages 94–104. IEEE
Computer Society/ACM, 2019.

123. Kihong Heo, Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. Adaptive
static analysis via learning with Bayesian optimization. TOPLAS, 40:14:1–
14:37, 2018.

124. Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. Machine-learning-guided se-
lectively unsound static analysis. In ICSE, pages 519–529. IEEE Computer
Society/ACM, 2017.

125. Krystof Hoder, Nikolaj Bjørner, and Leonardo de Moura. µZ—An efficient
engine for fixed points with constraints. In CAV, volume 6806 of LNCS,
pages 457–462. Springer, 2011.

126. Susan Horwitz and Thomas W. Reps. The use of program dependence
graphs in software engineering. In ICSE, pages 392–411. ACM, 1992.

148

127. Susan Horwitz, Thomas W. Reps, and David W. Binkley. Interprocedural
slicing using dependence graphs. In PLDI, pages 35–46. ACM, 1988.

128. Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik,
Le Song, and Xujie Si. Scallop: From probabilistic deductive databases to
scalable differentiable reasoning. In NeurIPS, pages 25134–25145, 2021.

129. Frank Hutter. Automated Configuration of Algorithms for Solving Hard
Computational Problems. PhD thesis, The University of British Columbia,
Canada, 2009.

130. Frank Hutter, Domagoj Babic, Holger H. Hoos, and Alan J. Hu. Boosting
verification by automatic tuning of decision procedures. In FMCAD, pages
27–34. IEEE Computer Society, 2007.

131. Frank Hutter, Holger H. Hoos, and Thomas Stützle. Automatic algorithm
configuration based on local search. In AAAI, pages 1152–1157. AAAI,
2007.

132. Sehun Jeong, Minseok Jeon, Sung Deok Cha, and Hakjoo Oh. Data-driven
context-sensitivity for points-to analysis. PACMPL, 1:100:1–100:28, 2017.

133. Di Jin, Zhizhi Yu, Pengfei Jiao, Shirui Pan, Dongxiao He, Jia Wu, Philip
Yu, and Weixiong Zhang. A survey of community detection approaches:
From statistical modeling to deep learning. TKDE, 2021.

134. Seo Jiwon, Guo Stephen, and Lam Monica S. SociaLite: Datalog exten-
sions for efficient social network analysis. In ICDE, pages 278–289. IEEE
Computer Society, 2013.

135. David S Johnson. Near-optimal bin packing algorithms. PhD thesis,
Massachusetts Institute of Technology, 1973.

136. Herbert Jordan, Bernhard Scholz, and Pavle Subotic. Soufflé: On synthesis
of program analyzers. In CAV, volume 9780 of LNCS, pages 422–430.
Springer, 2016.

137. Herbert Jordan, Pavle Subotic, David Zhao, and Bernhard Scholz. Brie:
A specialized trie for concurrent Datalog. In PPoPP, pages 31–40. ACM,
2019.

138. Dejan Jovanovic, Clark Barrett, and Leonardo de Moura. The design
and implementation of the model-constructing satisfiability calculus. In
FMCAD, pages 173–180. IEEE Computer Society, 2013.

139. Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woon-Hak Kang.
APOLLO: Automatic detection and diagnosis of performance regressions
in database systems. VLDB, 13:57–70, 2019.

140. Anup K. Kalia, Jin Xiao, Rahul Krishna, Saurabh Sinha, Maja Vukovic,
and Debasish Banerjee. Mono2micro: A practical and effective tool for
decomposing monolithic java applications to microservices. In ESEC/FSE,
page 1214–1224. ACM, 2021.

141. Timotej Kapus and Cristian Cadar. Automatic testing of symbolic execution
engines via program generation and differential testing. In ASE, pages
590–600. IEEE Computer Society, 2017.

149

142. Michael Karr. Affine relationships among variables of a program. Acta Inf.,
6:133–151, 1976.

143. Shadi Abdul Khalek, Bassem Elkarablieh, Yai O. Laleye, and Sarfraz Khur-
shid. Query-aware test generation using a relational constraint solver. In
ASE, pages 238–247. IEEE Computer Society, 2008.

144. Shadi Abdul Khalek and Sarfraz Khurshid. Automated SQL query gener-
ation for systematic testing of database engines. In ASE, pages 329–332.
ACM, 2010.

145. Ross D. King. Applying inductive logic programming to predicting gene
function. AI Mag., 25:57–68, 2004.

146. Kyle Kingsbury. Jepsen. https://jepsen.io.
147. Scott Kirkpatrick, C. Daniel Gelatt Jr., and Mario P. Vecchi. Optimization

by simulated annealing. Science, 220:671–680, 1983.
148. Christian Klinger, Maria Christakis, and Valentin Wüstholz. Differentially

testing soundness and precision of program analyzers. In ISSTA, pages
239–250. ACM, 2019.

149. John Kodumal and Alexander Aiken. The set constraint/cfl reachability
connection in practice. In PLDI, pages 207–218. ACM, 2004.

150. Rahul Kumar and Eric G. Mercer. Load balancing parallel explicit state
model checking. ENTCS, 128:19–34, 2005.

151. James A. Kupsch, Barton P. Miller, Vamshi Basupalli, and Josef Burger.
From continuous integration to continuous assurance. In STC, pages 1–8,
2017.

152. Lies Lakhdar-Chaouch, Bertrand Jeannet, and Alain Girault. Widening with
thresholds for programs with complex control graphs. In ATVA, volume
6996 of LNCS, pages 492–502. Springer, 2011.

153. Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equiv-
alence modulo inputs. In PLDI, pages 216–226. ACM, 2014.

154. Vu Le, Chengnian Sun, and Zhendong Su. Finding deep compiler bugs via
guided stochastic program mutation. In OOPSLA, pages 386–399. ACM,
2015.

155. K. Rustan M. Leino. Dafny: An automatic program verifier for functional
correctness. In LPAR, volume 6355 of LNCS, pages 348–370. Springer,
2010.

156. Xavier Leroy. Formal verification of a realistic compiler. CACM, 52:107–
115, 2009.

157. Stéphane Lescuyer and Sylvain Conchon. A reflexive formalization of a
SAT solver in Coq. In TPHOLs, 2008.

158. Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou,
and E. James Whitehead Jr. Does bug prediction support human developers?
findings from a Google case study. In ICSE, pages 372–381. ACM, 2013.

159. Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donald-
son. Many-core compiler fuzzing. In PLDI, pages 65–76. ACM, 2015.

150

https://jepsen.io

160. Vladimir Lifschitz. On the declarative semantics of logic programs with
negation. In Foundations of Deductive Databases and Logic Programming,
pages 177–192. Morgan Kaufmann, 1988.

161. Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit
Panda, and Lingming Zhang. Finding deep-learning compilation bugs with
NNSmith. CoRR, abs/2207.13066, 2022.

162. Vsevolod Livinskii, Dmitry Babokin, and John Regehr. Random testing for
C and C++ compilers with YARPGen. PACMPL, 4:196:1–196:25, 2020.

163. Eric Lo, Carsten Binnig, Donald Kossmann, M. Tamer Özsu, and Wing-Kai
Hon. A framework for testing DBMS features. VLDB, 19:203–230, 2010.

164. Boon Thau Loo, Tyson Condie, Minos N. Garofalakis, David E. Gay,
Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy
Roscoe, and Ion Stoica. Declarative networking. CACM, 52:87–95, 2009.

165. Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr.
Provably correct peephole optimizations with Alive. In PLDI, pages 22–32.
ACM, 2015.

166. Yi Lu, Lei Shang, Xinwei Xie, and Jingling Xue. An incremental points-to
analysis with cfl-reachability. In CC, volume 7791 of LNCS, pages 61–81.
Springer, 2013.

167. Magnus Madsen and Ondrej Lhoták. Safe and sound program analysis with
FLIX. In ISSTA, pages 38–48. ACM, 2018.

168. Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz.
Metamorphic testing of datalog engines. In ESEC/FSE, pages 639–650.
ACM, 2021.

169. Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and
Fuyuan Zhang. Detecting critical bugs in SMT solvers using blackbox
mutational fuzzing. In ESEC/FSE, pages 701–712. ACM, 2020.

170. Muhammad Numair Mansur, Benjamin Mariano, Maria Christakis, Jorge A.
Navas, and Valentin Wüstholz. Automatically tailoring abstract interpre-
tation to custom usage scenarios. In CAV, volume 12760 of LNCS, pages
777–800. Springer, 2021.

171. Muhammad Numair Mansur, Valentin Wüstholz, and Maria Christakis.
Dependency-aware metamorphic testing of datalog engines. In ISSTA.
ACM, 2023.

172. Filip Maric. Formal verification of a modern SAT solver by shallow embed-
ding into Isabelle/HOL. TCS, 411:4333–4356, 2010.

173. Silvano Martello and Paolo Toth. Knapsack problems: algorithms and
computer implementations. John Wiley & Sons, Inc., 1990.

174. Lorenzo Martignoni, Stephen McCamant, Pongsin Poosankam, Dawn Song,
and Petros Maniatis. Path-exploration lifting: Hi-Fi tests for Lo-Fi emulators.
In ASPLOS, pages 337–348. ACM, 2012.

175. I. Mátyáš. Random optimization. Avtomat. i Telemekh., 26:246–253, 1965.
176. Peter M. Maurer. Generating test data with enhanced context-free grammars.

151

IEEE Software, 7(4):50–55, 1990.
177. Bringolf Mauro, Winterer Dominik, and Su Zhendong. Finding and under-

standing incompleteness bugs in smt solvers. In ASE. ACM, 2022.
178. Maven. List of Maven Packages. https://gist.github.com/

linghuiluo/1b82866051e4c4ebb0fd065549f60100, 2022.
179. Genc Mazlami, Jürgen Cito, and Philipp Leitner. Extraction of microser-

vices from monolithic software architectures. In Ilkay Altintas and Shiping
Chen, editors, ICWS, pages 524–531. IEEE, 2017.

180. William M. McKeeman. Differential testing for software. Digital Technical
Journal, 10:100–107, 1998.

181. John M. McQuillan. Graph theory applied to optimal connectivity in
computer networks. Comput. Commun. Rev., 7:13–41, 1977.

182. Muhammad Izhar Mehar, Charles Louis Shier, Alana Giambattista, El-
gar Gong, Gabrielle Fletcher, Ryan Sanayhie, Henry M. Kim, and Marek
Laskowski. Understanding a revolutionary and flawed grand experiment in
blockchain: The DAO attack. JCIT, 21(1):19–32, 2019.

183. Mario Méndez-Lojo, Augustine Mathew, and Keshav Pingali. Parallel
inclusion-based points-to analysis. In OOPSLA, pages 428–443. ACM,
2010.

184. Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,
Augusta H. Teller, and Edward Teller. Equation of state calculations by
fast computing machines. The Journal of Chemical Physics, 21:1087–1092,
1953.

185. Jan Midtgaard and Anders Møller. QuickChecking static analysis properties.
Softw. Test., Verif. Reliab., 27, 2017.

186. Bogdan Mihaila, Alexander Sepp, and Axel Simon. Widening as abstract
domain. In NFM, volume 7871 of LNCS, pages 170–184. Springer, 2013.

187. Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of the
reliability of UNIX utilities. Commun. ACM, 33(12):32–44, 1990.

188. Antoine Miné. A few graph-based relational numerical abstract domains.
In SAS, volume 2477 of LNCS, pages 117–132. Springer, 2002.

189. Antoine Miné. Field-sensitive value analysis of embedded C programs with
union types and pointer arithmetics. In LCTES, pages 54–63. ACM, 2006.

190. Antoine Miné. The Octagon abstract domain. HOSC, 19:31–100, 2006.
191. Antoine Miné. Symbolic methods to enhance the precision of numerical

abstract domains. In VMCAI, volume 3855 of LNCS, pages 348–363.
Springer, 2006.

192. Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte. Generating targeted
queries for database testing. In SIGMOD, pages 499–510. ACM, 2008.

193. David Monniaux and Julien Le Guen. Stratified static analysis based on
variable dependencies. ENTCS, 288:61–74, 2012.

194. Raymond J. Mooney. Inductive logic programming for natural language
processing. In ILP, volume 1314 of LNCS, pages 3–22. Springer, 1996.

152

https://gist.github.com/linghuiluo/1b82866051e4c4ebb0fd065549f60100
https://gist.github.com/linghuiluo/1b82866051e4c4ebb0fd065549f60100

195. Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection
for Java. In PLDI, pages 308–319. ACM, 2006.

196. Mangala Gowri Nanda, Monika Gupta, Saurabh Sinha, Satish Chandra,
David Schmidt, and Pradeep Balachandran. Making defect-finding tools
work for you. In ICSE, page 99–108. ACM, 2010.

197. Mangala Gowri Nanda and Saurabh Sinha. Accurate interprocedural null-
dereference analysis for java. In ICSE, pages 133–143. IEEE, 2009.

198. Aina Niemetz and Armin Biere. ddSMT: A delta debugger for the SMT-LIB
v2 format. In SMT, pages 36–45, 2013.

199. Aina Niemetz, Mathias Preiner, and Clark W. Barrett. Murxla: A modular
and highly extensible API fuzzer for SMT solvers. In CAV, volume 13372
of LNCS, pages 92–106. Springer, 2022.

200. Aina Niemetz, Mathias Preiner, and Armin Biere. Model-based API testing
for SMT solvers. In SMT, page 10 pages, 2017.

201. Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2,
BtorMC and Boolector 3.0. In CAV, volume 10981 of LNCS, pages 587–595.
Springer, 2018.

202. NIST. Juliet Test Suite for Java. https://samate.nist.gov/SRD/
testsuite.php, 2022.

203. Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi.
Design and implementation of sparse global analyses for C-like languages.
In PLDI, pages 229–238. ACM, 2012.

204. Oracle. JDeps - Java Platform, Standard Edition Tools Reference. https:
//docs.oracle.com/javase/9/tools/jdeps.htm, 2022.

205. OWASP. FindSecBugs: the SpotBugs plugin for security audits of Java web
applications. https://find-sec-bugs.github.io/, 2022.

206. Matteo Paltenghi and Michael Pradel. Bugs in quantum computing plat-
forms: An empirical study. PACMPL, 6:1–27, 2022.

207. Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhendong Su. Gener-
ative type-aware mutation for testing SMT solvers. Proc. ACM Program.
Lang., 5(OOPSLA):1–19, 2021.

208. Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhendong Su. Gener-
ative type-aware mutation for testing SMT solvers. Proc. ACM Program.
Lang., 5(OOPSLA):1–19, 2021.

209. Georgios A. Pavlopoulos, Maria Secrier, Charalampos N. Moschopoulos,
Theodoros G. Soldatos, Sophia Kossida, Jan Aerts, Reinhard Schneider,
and Pantelis G. Bagos. Using graph theory to analyze biological networks.
BioData Min., 4, 2011.

210. Karl-Heinz Pennemann. Development of correct graph transformation
systems. In ICGT, volume 5214 of LNCS, pages 508–510. Springer, 2008.

211. Detlef Plump. On termination of graph rewriting. In WG, volume 1017 of
LNCS, pages 88–100. Springer, 1995.

212. Meikel Poess and John M. Stephens. Generating thousand benchmark

153

https://samate.nist.gov/SRD/testsuite.php
https://samate.nist.gov/SRD/testsuite.php
https://docs.oracle.com/javase/9/tools/jdeps.htm
https://docs.oracle.com/javase/9/tools/jdeps.htm
https://find-sec-bugs.github.io/

queries in seconds. In VLDB, pages 1045–1053. Morgan Kaufmann, 2004.
213. David Poole. Logic programming for robot control. In IJCAI, pages

150–157. Morgan Kaufmann, 1995.
214. Praetorian, Inc. Gokart: a security-oriented static analysis for Golang

with a focus on minimizing false positives. https://github.com/
praetorian-inc/gokart/.

215. Raghu Ramakrishnan, Catriel Beeri, and Ravi Krishnamurthy. Optimizing
existential Datalog queries. In PODS, pages 89–102. ACM, 1988.

216. Veselin Raychev, Martin T. Vechev, and Andreas Krause. Predicting pro-
gram properties from ‘big code’. CACM, 62:99–107, 2019.

217. Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL, page 49–61. ACM, 1995.

218. Thomas W. Reps. Program analysis via graph reachability. In ISLP, pages
5–19. MIT, 1997.

219. H. G. Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical Society, 74:358–
366, 1953.

220. Zachary Rice. Understanding the constant pool inside a Java class file.
https://github.com/zricethezav/gitleaks/.

221. Manuel Rigger and Zhendong Su. Detecting optimization bugs in database
engines via non-optimizing reference engine construction. In ESEC/FSE,
pages 1140–1152. ACM, 2020.

222. Manuel Rigger and Zhendong Su. Finding bugs in database systems via
query partitioning. PACMPL, 4:211:1–211:30, 2020.

223. Manuel Rigger and Zhendong Su. Testing database engines via pivoted
query synthesis. In OSDI, pages 667–682. USENIX, 2020.

224. Jonathan Rodriguez and Ondrej Lhoták. Actor-based parallel dataflow
analysis. In CC, volume 6601 of LNCS, pages 179–197. Springer, 2011.

225. Kenneth A. Ross. Modular stratification and magic sets for Datalog pro-
grams with negation. In PODS, pages 161–171. ACM, 1990.

226. Atanas Rountev, Mariana Sharp, and Guoqing Xu. Ide dataflow analysis in
the presence of large object-oriented libraries. In CC, pages 53–68. Springer,
2008.

227. Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Pearson Education, 2010.

228. Leonid Ryzhyk and Mihai Budiu. Differential Datalog. In Datalog, volume
2368 of CEUR, pages 56–67. CEUR-WS.org, 2019.

229. Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and
Collin Winter. Tricorder: Building a program analysis ecosystem. In ICSE,
page 598–608. IEEE, 2015.

230. Yehoshua Sagiv. Optimizing Datalog programs. In Foundations of Deduc-
tive Databases and Logic Programming, pages 659–698. Morgan Kauf-
mann, 1988.

154

https://github.com/praetorian-inc/gokart/
https://github.com/praetorian-inc/gokart/
https://github.com/zricethezav/gitleaks/

231. Arash Sahebolamri, Thomas Gilray, and Kristopher K. Micinski. Seamless
deductive inference via macros. In CC, pages 77–88. ACM, 2022.

232. José Carlos Almeida Santos, Houssam Nassif, David Page, Stephen H.
Muggleton, and Michael J. E. Sternberg. Automated identification of
protein-ligand interaction features using inductive logic programming: A
hexose binding case study. BMC Bioinform., 13:162, 2012.

233. Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimiza-
tion. In ASPLOS, pages 305–316. ACM, 2013.

234. Joseph Scott, Federico Mora, and Vijay Ganesh. Banditfuzz: A
reinforcement-learning based performance fuzzer for SMT solvers. In
VSTTE, volume 12549 of LNCS, pages 68–86. Springer, 2020.

235. Sergio Segura, Gordon Fraser, Ana B. Sánchez, and Antonio Ruiz Cortés.
A survey on metamorphic testing. TSE, 42:805–824, 2016.

236. Andreas Seltenreich. SQLsmith. https://github.com/anse1/
sqlsmith.

237. Amazon Web Services. Elastic Compute Cloud (EC2). https://aws.
amazon.com/ec2.

238. Rahul Sharma and Alex Aiken. From invariant checking to invariant in-
ference using randomized search. In CAV, volume 8559 of LNCS, pages
88–105. Springer, 2014.

239. Alexander Shkapsky, Kai Zeng, and Carlo Zaniolo. Graph queries in a
next-generation Datalog system. VLDB, 6:1258–1261, 2013.

240. Janet Siegmund, Norbert Siegmund, and Sven Apel. Views on internal and
external validity in empirical software engineering. In ICSE, pages 9–19.
IEEE Computer Society, 2015.

241. Gagandeep Singh, Markus Püschel, and Martin T. Vechev. Making numeri-
cal program analysis fast. In PLDI, pages 303–313. ACM, 2015.

242. Gagandeep Singh, Markus Püschel, and Martin T. Vechev. Fast numerical
program analysis with reinforcement learning. In CAV, volume 10981 of
LNCS, pages 211–229. Springer, 2018.

243. Emin Gün Sirer and Brian N. Bershad. Using production grammars in
software testing. In DSL, pages 1–13. ACM, 1999.

244. Donald R. Slutz. Massive stochastic testing of SQL. In VLDB, pages
618–622. Morgan Kaufmann, 1998.

245. Yu Su, Ding Ye, and Jingling Xue. Parallel pointer analysis with cfl-
reachability. In ICPP, pages 451–460. IEEE Computer Society, 2014.

246. Chengnian Sun, Vu Le, and Zhendong Su. Finding and analyzing compiler
warning defects. In ICSE, pages 203–213. ACM, 2016.

247. Chengnian Sun, Vu Le, and Zhendong Su. Finding compiler bugs via live
code mutation. In OOPSLA, pages 849–863. ACM, 2016.

248. Jubi Taneja, Zhengyang Liu, and John Regehr. Testing static analyses for
precision and soundness. In CGO, pages 81–93. ACM, 2020.

249. Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.

155

https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2

Auto-WEKA: Combined selection and hyperparameter optimization of
classification algorithms. In KDD, pages 847–855. ACM, 2013.

250. David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar.
Chopped symbolic execution. In ICSE, pages 350–360. ACM, 2018.

251. Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Bünzli, and Martin T. Vechev. Securify: Practical security analysis
of smart contracts. In CCS, pages 67–82. ACM, 2018.

252. Muhammad Usman, Wenxi Wang, and Sarfraz Khurshid. TestMC: Testing
model counters using differential and metamorphic testing. In ASE, pages
709–721. IEEE Computer Society, 2020.

253. Jens Van der Plas, Quentin Stiévenart, Noah Van Es, and Coen De Roover.
Incremental flow analysis through computational dependency reification.
In SCAM, pages 25–36, 2020.

254. Dimitrios Vardoulakis and Olin Shivers. CFA2: A context-free approach
to control-flow analysis. In ESOP, volume 6012 of LNCS, pages 570–589.
Springer, 2010.

255. Manasi Vartak, Venkatesh Raghavan, and Elke A. Rundensteiner. QRelX:
Generating meaningful queries that provide cardinality assurance. In SIG-
MOD, pages 1215–1218. ACM, 2010.

256. Arnaud Venet and Guillaume P. Brat. Precise and efficient static array
bound checking for large embedded C programs. In PLDI, pages 231–242.
ACM, 2004.

257. Jian Wang, Jungsoon P. Yoo, and Thomas J. Cheatham. Efficient reordering
of C-PROLOG. In Conference on Computer Science, pages 151–155. ACM,
1993.

258. Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan
Amiri Sani. Graspan: A single-machine disk-based graph system for inter-
procedural static analyses of large-scale systems code. In ASPLOS, page
389–404. ACM, 2017.

259. Shiyi Wei, Piotr Mardziel, Andrew Ruef, Jeffrey S. Foster, and Michael
Hicks. Evaluating design tradeoffs in numeric static analysis for Java. In
ESOP, volume 10801 of LNCS, pages 653–682. Springer, 2018.

260. John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using
Datalog with binary decision diagrams for program analysis. In APLAS,
volume 3780 of LNCS, pages 97–118. Springer, 2005.

261. John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. In PLDI, pages 131–144.
ACM, 2004.

262. Dominik Winterer, Chengyu Zhang, and Zhendong Su. On the unusual
effectiveness of type-aware operator mutations for testing SMT solvers.
PACMPL, 4:193:1–193:25, 2020.

263. Dominik Winterer, Chengyu Zhang, and Zhendong Su. Validating SMT
solvers via semantic fusion. In PLDI, pages 718–730. ACM, 2020.

156

264. Dongwei Xiao, Zhibo Liu, Yuanyuan Yuan, Qi Pang, and Shuai Wang.
Metamorphic testing of deep learning compilers. Proc. ACM Meas. Anal.
Comput. Syst., 6:15:1–15:28, 2022.

265. Xiaoyuan Xie, Joshua Wing Kei Ho, Christian Murphy, Gail E. Kaiser,
Baowen Xu, and Tsong Yueh Chen. Application of metamorphic testing to
supervised classifiers. In QSIC, pages 135–144. IEEE Computer Society,
2009.

266. Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and under-
standing bugs in C compilers. In PLDI, pages 283–294. ACM, 2011.

267. Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai Shi, Rongxin Wu,
and Charles Zhang. Fuzzing SMT solvers via two-dimensional input space
exploration. In ISSTA, pages 322–335. ACM, 2021.

268. Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai Shi, Rongxin Wu,
and Charles Zhang. Skeletal approximation enumeration for SMT solver
testing. In ESEC/FSE, pages 1141–1153. ACM, 2021.

269. Hao Yuan and Patrick Th. Eugster. An efficient algorithm for solving the
dyck-cfl reachability problem on trees. In ESOP, volume 5502 of LNCS,
pages 175–189. Springer, 2009.

270. Andreas Zeller. Why Programs Fail, Second Edition: A Guide to Systematic
Debugging. Morgan Kaufmann, 2009.

271. Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and
Zhendong Su. Finding and understanding bugs in software model checkers.
In ESEC/FSE, pages 763–773. ACM, 2019.

272. Qirun Zhang, Chengnian Sun, and Zhendong Su. Skeletal program enu-
meration for rigorous compiler testing. In PLDI, pages 347–361. ACM,
2017.

273. Xin Zheng and Radu Rugina. Demand-driven alias analysis for C. In POPL,
pages 197–208. ACM, 2008.

274. Zhiqiang Zuo, Rong Gu, Xi Jiang, Zhaokang Wang, Yihua Huang, Linzhang
Wang, and Xuandong Li. Bigspa: An efficient interprocedural static analysis
engine in the cloud. In IPDPS, pages 771–780, 2019.

275. Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming Lu, Kai
Wang, Guoqing Harry Xu, Linzhang Wang, and Xuandong Li. Grapple: A
graph system for static finite-state property checking of large-scale systems
code. In EuroSys. ACM, 2019.

157

Curriculum Vitae

Research Interests
I am broadly interested in automatic testing, debugging, security, formal analysis, and verification of complex
software systems. The overarching goal of my research is to improve software correctness and reliability by
making it easier and practical for developers of all skill levels to incorporate state of the art formal methods
tools in their software development workflow.

Education
06/2018 - 11/2022 Max Planck Institute for Software Systems, Kaiserslautern, Germany
. Doctoral Researcher in Computer Science, advised by Prof. Maria Christakis

04/2014 - 04/2018 University of Freiburg, Freiburg, Germany
. Masters of Science in Computer Science

09/2009 - 08/2013 National University of Sciences and Technology, Islamabad, Pakistan
. Bachelors of Engineering in Computer Engineering

Employment
11/2022 - present. Amazon Web Services, Berlin, Germany
. Applied Scientist in Automated Reasoning Group

06/2018 - 11/2022 Max Planck Institute for Software Systems, Kaiserslautern, Germany
. Doctoral Researcher in Computer Science

06/2021 - 10/2021 Amazon Web Services, Berlin, Germany
. Applied Scientist Intern in Automated Reasoning Group

Publications
1. Maria Christakis, Matthias Heizmann, Muhammad Numair Mansur, Christian Schilling, and Valentin

Wüstholz. Semantic fault localization and suspiciousness ranking. In TACAS, volume 11427 of LNCS,
pages 226–243. Springer, 2019.

158

2. Muhammad Numair Mansur, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. Detecting
critical bugs in SMT solvers using blackbox mutational fuzzing. In ESEC/FSE, pages 701–712. ACM,
2020.

3. Muhammad Numair Mansur, Benjamin Mariano, Maria Christakis, Jorge A. Navas, and Valentin
Wüstholz. Automatically tailoring abstract interpretation to custom usage scenarios. In CAV, volume
12760 of LNCS, pages 777–800. Springer, 2021.

4. Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz. Metamorphic testing of
datalog engines. In ESEC/FSE, pages 639–650. ACM, 2021.

5. Maria Christakis, Thomas Cottenier, Antonio Filieri, Linghui Luo, Muhammad Numair Mansur, Lee
Pike, Nico Rosner, Martin Schäf, Aritra Sengupta, and Willem Visser. Input splitting for cloud-based
static application security testing platforms. In ESEC/FSE, pages 1367–1378. ACM, 2022.

6. Muhammad Numair Mansur, Valentin Wüstholz, Maria Christakis. Dependency-Aware Metamorphic
Testing of Datalog Engines. In ISSTA, ACM, 2023.

159

