
ALTERNATIVE OPTIMIZATION METHODS FOR TRAINING
OF LARGE DEEP NEURAL NETWORKS

Thesis approved by
the Department of Computer Science
University of Kaiserslautern-Landau
for the award of the Doctoral Degree

Doctor of Natural Sciences (Dr. rer. nat.)

to

Avraam Chatzimichailidis

Date of Defense: 29.03.2023

Dean: Prof. Dr. Christoph Garth

Reviewer: Prof. Dr. Nicolas R. Gauger

Reviewer: Prof. Dr. Janis Keuper

DE-386

Abstract

Due to its performance, the field of deep learning has gained a lot of attention, with
neural networks succeeding in areas like Computer Vision (CV), Neural Language
Processing (NLP), and Reinforcement Learning (RL). However, high accuracy comes
at a computational cost as larger networks require longer training time and no longer
fit onto a single GPU. To reduce training costs, researchers are looking into the dy-
namics of different optimizers, in order to find ways to make training more efficient.
Resource requirements can be limited by reducing model size during training or de-
signing more efficient models that improve accuracy without increasing network size.

This thesis combines eigenvalue computation and high-dimensional loss surface
visualization to study different optimizers and deep neural network models. Eigen-
vectors of different eigenvalues are computed, and the loss landscape and optimizer
trajectory are projected onto the plane spanned by those eigenvectors. A new paral-
lelization method for the stochastic Lanczos method is introduced, resulting in faster
computation and thus enabling high-resolution videos of the trajectory and second-
order information during neural network training. Additionally, the thesis presents
the loss landscape between two minima along with the eigenvalue density spectrum
at intermediate points for the first time.

Secondly, this thesis presents a regularization method for Generative Adversarial
Networks (GANs) that uses second-order information. The gradient during training is
modified by subtracting the eigenvector direction of the biggest eigenvalue, prevent-
ing the network from falling into the steepest minima and avoiding mode collapse.
The thesis also shows the full eigenvalue density spectra of GANs during training.

Thirdly, this thesis introduces ProxSGD, a proximal algorithm for neural network
training that guarantees convergence to a stationary point and unifies multiple popular
optimizers. Proximal gradients are used to find a closed-form solution to the problem
of training neural networks with smooth and non-smooth regularizations, resulting in
better sparsity and more efficient optimization. Experiments show that ProxSGD can
find sparser networks while reaching the same accuracy as popular optimizers.

Lastly, this thesis unifies sparsity and neural architecture search (NAS) through the
framework of group sparsity. Group sparsity is achieved through ℓ2,1-regularization
during training, allowing for filter and operation pruning to reduce model size with
minimal sacrifice in accuracy. By grouping multiple operations together, group spar-
sity can be used for NAS as well. This approach is shown to be more robust while
still achieving competitive accuracies compared to state-of-the-art methods.

iii

Acknowledgements

First of all, this endeavor would not have been possible without my supervisor Prof.
Janis Keuper. He gave me the opportunity to pursue this path even though I had
no prior experience in the field of deep learning. I am immensely grateful for his
guidance, support, and feedback throughout this journey. I will always remember his
mentorship with fondness. I would also like to express my heartfelt thanks to Prof.
Nicolas Gauger, who was always available to help and advise me. I could not have
asked for a better professor on my academic journey. Additionally, I would like to
thank Prof. Sören Laue for his time and effort in serving as the head of my committee.

I am deeply grateful to my colleague Yang Yang, who was like a second supervisor
to me. He generously shared his time, knowledge, and expertise, helping me count-
less times and providing valuable feedback on my research. I owe him a great debt of
gratitude and I am fortunate to have had him as a colleague and friend. I would like
to express my gratitude to my friends and colleagues Kalun Ho and Ricard Durall
Lopez, with whom I not only found extraordinary friends, but also research collabo-
rators. I appreciate the countless discussions about various topics and ideas we had,
as well as the equally important hours we spent at the foosball table at our institute.

I owe a huge debt of gratitude to my parents, Nektaria Tsetsiou and Eleftherios
Chatzimichailidis, who have always supported and encouraged me throughout my
academic journey. Their unwavering belief in my abilities and their constant guidance
have been instrumental in shaping me into the person I am today. I could not have
achieved any of my goals without their love, sacrifices, and unwavering support. I
am truly blessed to have such amazing parents. I would like to express my deep
appreciation to Christina Chatzimichailidou, who has been the best sister I could
have ever hoped for. I cannot thank her enough for all the times she has been there
for me, and I know that I would not be where I am today without her. I would also
like to express my gratitude to my grandparents, Eleftheria Tsetsiou and Aristidis
Tsetsios, who came from Greece to Germany with nothing in their pockets, and who
inspire me daily to never give up on my dreams. Last but not least, I am incredibly
grateful for my partner, Georgia Blioumi. Her constant support, love, and guidance
have been instrumental in helping me reach my goals, and I cannot thank her enough.
She is a constant source of inspiration, and I feel truly blessed to have her in my life.
I hope to make her as proud of me as I am of her.

April 15, 2023, Avraam Chatzimichailidis

v

Contents

1. Introduction 1
1.1. From Machine Learning to Deep Learning 2
1.2. Overview Deep Learning . 5
1.3. Deep Learning Models . 8
1.4. Datasets . 15

2. Methods 19
2.1. Optimization Methods in Deep Learning 19
2.2. Regularization . 30
2.3. Eigenvalue Computation . 37

3. Loss Surface Visualization 53
3.1. Overview . 53
3.2. Principal Component Analysis in High-Dimensional Spaces 55
3.3. Loss Surface Visualization through Neural Network Eigenvectors . . 56
3.4. Parallelization of Loss Surface Visualization 59
3.5. Experiments . 63

4. Stabilizing GANs through Eigenvalue Regularization 69
4.1. General Adversarial Networks . 69
4.2. Mode Collapse . 74
4.3. Loss Surface of GANs . 77
4.4. NudgedAdam: Preventing GANs from Mode Collapse 79

5. Proximal Gradient Methods 85
5.1. Proximal Gradient Optimization 86
5.2. ProxSGD . 93
5.3. ProxSGD with ℓ1-Regularization 99

6. ProxSGD with ℓ2,1-Regularization 107
6.1. Overview Neural Architecture Search 107
6.2. GSparsity: ProxSGD with ℓ2,1-Regularization 111
6.3. Filter Pruning . 113
6.4. Operation Pruning . 115
6.5. Neural Architecture Search with GSparsity 117

vii

Contents

7. Conclusions and Outlook 127

Bibliography 131

A. Proof of Theorem 5.1 149

B. ResNet-50 Structure after Pruning 155

C. CIFAR-10 and CIFAR-100 on DARTS Search Space 157

D. Convergence of ProxSGD vs. SGD 159

E. GSparsity and NAS: Ablation Study 165

F. Publications in the context of this work 175

G. Curriculum Vitae 177

viii

List of Figures

1.1. Illustration of a Linearly Separable Dataset 3
1.2. Example of a Non-Linear Transformation on a Dataset 4
1.3. Illustration of the Training Pipeline in Deep Learning 5
1.4. Neural Network Training for one Epoch 7
1.5. Illustration of a Fully-Connected Layer 9
1.6. Illustration of a Convolution Layer 10
1.7. Illustration of a Batch-Normalization Layer 12
1.8. Activation Functions . 13
1.9. LeNet-5 Architecture . 14
1.10. ResNet Architecture . 15
1.11. Examples of common Deep Learning Datasets 17

2.1. Illustration of different Types of Minima 20
2.2. Depiction of different Loss Functions and their Gradient 23
2.3. Steepest Descent and Newton’s method on McCormick’s function . 27
2.4. Comparison of steepest descent and Newton’s method on Himmel-

blau’s function . 29
2.5. Depiction of Regularization Functions 31
2.6. Effect of ℓ2-Norm on the Solution 34
2.7. Difference between the Squared ℓ2-Norm and the Regular ℓ2-Norm 35
2.8. Block Soft Thresholding Operator 37
2.9. Forward Pass of the R -Operator 41
2.10. Hessian Eigenvalues and Gaussian Curvature 46
2.11. Data-Parallel Lanczos Method . 49
2.12. Iteration Parallel Stochastic Lanczos Quadrature Algorithm 50
2.13. Speedup Comparison of Parallel Stochastic Lanczos Quadrature

Methods . 51

3.1. Illustration of Projecting an Optimization Surface onto a Line 54
3.2. Comparison between different Visualization Methods 57
3.3. Loss Landscape Visualization using different Eigenvectors 58
3.4. Illustration of the Parallel Visualization Method 61
3.5. Strong Scaling Plot for the Parallel Visualization Algorithm 62
3.6. Absolute Runtime and Efficiency Plots for the Parallel Visualization

Method . 62

ix

List of Figures

3.7. LeNet-5 per Iteration Loss Landscape and Eigenvalue Visualizations 64
3.8. ResNet-32 per Iteration Loss Landscape and Eigenvalue Visualizations 66
3.9. Visualization of the Interpolation between two Minima 67

4.1. Illustration of a Generative Adversarial Network 70
4.2. Visualization of the Learning Process of GANs 72
4.3. Plots of the GANs Losses . 74
4.4. Depiction of the Difference between using KL-Divergence and Re-

verse KL-Divergence . 76
4.5. GAN Loss Landscape Visualization 78
4.6. Evolution of the Top-k Eigenvalues of GANs for different Datasets . 79
4.7. Depiction of the Idea behind NudgedAdam 80
4.8. Evolution of the Top-k Eigenvalues of NSGAN at different Epochs . 81
4.9. Spectral Density Plots of the Generator and Discriminator 82

5.1. Visualization of Functions and their Subdifferential 87
5.2. Depiction of the Subgradient Method 88
5.3. Visualization of the Trajectory of SGD on ResNet-32 with ℓ1-

Regularization . 89
5.4. Visualization of the Difference between the Subgradient Method and

Proximal Point Method . 92
5.5. Depiction of the Soft-Thresholding Function for different values of

the Parameter λ . 100
5.6. Visualization of the Trajectory of ProxSGD on ResNet-32 with ℓ1-

Regularization . 101
5.7. Performance comparison for DenseNet-201 on CIFAR-100. 104
5.8. Hyperparameters and Sparsity for DenseNet-201 on CIFAR-100. . . 105

6.1. Illustration of the Process and the Main Components used in Neural
Architecture Search . 108

6.2. Illustration of a Cell as used in Differentiable Architecture Search . 109
6.3. Accuracy and CDF Plots for Filter Pruning 116
6.4. Percentage of Parameters pruned vs. the Accuracy for Operation

pruning. 117
6.5. Illustrative Example of applying the Group Sparsity Approach to NAS 118
6.6. Example of one Architecture found by GSparsity on CIFAR-10 . . . 122
6.7. Example of one Architecture found by GSparsity on CIFAR-100 . . 123

D.1. Neural Architecture Search using SGD and ProxSGD 160
D.2. Normal cell after training with SGD with µ = 50 and fixed ε = 0.0001. 161
D.3. Reduction cell after training with SGD with µ = 50 and fixed ε =

0.0001. 162
D.4. Normal and reduction cell for µ = 50 trained with ProxSGD. 163

E.1. Resulting normal cell after training with GSparsity with µ = 0.1 and
fixed ε = 0.001. 166

x

List of Figures

E.2. Resulting network structure after training with GSparsity with µ =
0.1 and fixed ε = 0.001. 167

E.3. Resulting normal cell after training with GSparsity with µ = 1 and
fixed ε = 0.001. 168

E.4. Resulting network structure after training with GSparsity with µ = 1
and fixed ε = 0.001. 169

E.5. Resulting normal cell after training with GSparsity with µ = 10 and
fixed ε = 0.001. 170

E.6. Resulting network structure after training with GSparsity with µ= 10
and fixed ε = 0.001. 171

E.7. Resulting network structure after training with GSparsity with µ= 50
and fixed ε = 0.001. 172

E.8. Resulting network structure after training with GSparsity with µ =
100 and fixed ε = 0.001. 173

E.9. Resulting network structure after training with GSparsity with µ =
200 and fixed ε = 0.001. 173

E.10. Resulting network structure after training with GSparsity with µ =
500 and fixed ε = 0.001. 174

E.11. Resulting network structure after training with GSparsity with µ =
1000 and fixed ε = 0.001. 174

xi

Acronyms

χl Activation function of layer l
Dk Preconditioning matrix at iteration k
D Discriminator network
G Generator network
H Hessian matrix
Ka,b,p.q Value of convolutional filter of input channel p, output channel q at

filter height a and filter width b
L Lipschitz constant
Φ Spectral density
δW(w) Indicator function
ϵ Learning rate
κ Gaussian curvature
λ Eigenvalue
N(x;µ,σ) Gaussian function at x for mean µ and standard deviation σ

µ Regularization parameter
ϕ Non-linear transformation function
ρ Stepsize hyperparameter for momentum
F(k) Trajectory generated by an optimizer at iteration k
M(k) Minibatch of samples at iteration k
W Constraint set of parameters
σ Standard deviation
τ Quadratic gain of approximation subproblem
θ Trainable parameters of the generator network
ζ Trainable parameters of the discriminator network
b⋆ Filter-normalized directional vector
b Bias parameter
f ,L Objective function
g Gradient of the objective function

xiii

Acronyms

hl Output of activation function of layer l
m(k) Number of samples in a minibatch at iteration k
r Regularization function
v Momentum
w⋆ Optimal parameters
w Trainable parameters
x Input sample
y Data label
zl Output of layer l
u Eigenvector
D Dataset
F Layer function
ψ Neural network model

xiv

Chapter 1
Introduction

In recent years, the field of deep learning has gained a significant amount of interest.
World leading performance in various different tasks, like image recognition [49, 176,
235], speech recognition [15, 43], speech translation [61, 237] and playing games
of Go [202] or no-limit Texas Hold’em [33, 34] has partly been achieved thanks to
recent advances in the field of deep learning. Deep learning methods are able to tackle
a variety of problems, from image recognition on various datasets to segmentation
[145, 230, 231] and inpainting [40, 239]. Also, deep learning outperforms other
methods in different datasets on clustering [103, 156], outlier detection [85, 126]
and synthetic data generation [72, 181]. There exist many other fields where deep
learning has had a significant impact [67, 127, 201].

First developed by Frank Rosenblatt in 1958 [189], his 3-layer perceptron is one of
the earliest deep learning models. In 1990, Yann LeCun applied the backpropagation
algorithm [108] to his neural network and was able to train this model on handwritten
digits [122]. Over time, as compute power increased, it was possible to train bigger
and bigger networks and with the introduction of new deep learning models like
LSTMs [93], deep belief networks [88] and generative adversarial networks [72],
deep learning has gained significant popularity in various fields.

The reasons for the sudden spike in deep learning applications are twofold. Firstly,
an increasing amount of available data in the past years has boosted the applicability
of data driven methods like machine learning and deep learning [216]. Secondly,
computational capabilities have increased to a point where deep learning models of
reasonable size can be trained in a reasonable time frame [216]. Here, one important
component is the switch to Graphics Processing Units (GPUs) for neural network
training. GPUs have had significant increases in computational power as well as
memory in the past. Their widespread use has made deep learning more accessible
to a wide audience and their parallel compute capabilities have sped up the training
of deep learning models significantly [227].

In deep learning, artificial neural networks are trained in order to learn the relation-
ship between input and output variables. These networks have parameters that are
updated iteratively, with the goal of reducing the discrepancy between the network
prediction for different samples of a dataset and their true label. This discrepancy is
usually measured through a cost function (see Section 2 for an in-depth discussion).

1

Chapter 1: Introduction

Finding the optimal parameters of a neural network, that allow it to make correct pre-
dictions on its training set, is extremely difficult and this problem has been shown to
be NP-hard [26, 105]. Thus, neural network training boils down to finding a suitable
local minimum of the optimization surface instead. The use of an optimizer helps
navigate this surface, in order to find a point that minimizes the cost function locally.

Even though deep learning methods have achieved impressive performance on var-
ious tasks, these performance gains are starting to stagnate. As explained in [222],
neural networks have grown tremendously in their number of parameters and if they
continue to grow at this rate, they will soon hit a ceiling where hardware and mone-
tary cost for training these models would be prohibitive. This has tremendous impact
on the environment as well, as the environmental cost scales with the computation re-
quired for training the neural network model. As shown by the authors of this paper,
the computational cost for training a deep learning model scales at least quadratically
with the number of samples in the dataset. Also, using statistical learning theory,
one can show that popular error metrics like root mean square error can only drop
with 1/

√
n, where n represents the number of samples in the dataset. Combined, this

means that the computational cost scales with O(per f ormance4). By fitting the size
of deep learning models to their corresponding performance, the authors find that the
computational cost grows as a ninth-order polynomial with respect to performance.
This empirical figure is five orders of magnitude higher than the theoretically lowest
value. They also find that the computational cost is able to explain 43% of the vari-
ance in the performance. This shows that much of the performance improvement seen
in many fields of deep learning can be attributed to increases in computing power. If
this trend continues, there will soon be a hardware limit that is going to be hit. Mov-
ing from one of the current best errors of 11.5% on ImageNet [224], a challenging
classification dataset, to an error of 5% in the future, will require approximately 5
orders of magnitude more computational power and cost around 100 billion dollars
to train the deep neural network [222]. In sight of current computational limits, this
means that the field of deep learning has to come up with solutions that lower its
computational burden, or discover other methods that are able to scale closer to the
theoretical bound.

This thesis will tackle different areas in deep learning that can help lower the com-
putational burden of training neural networks. In this chapter the basic concepts of
machine learning are introduced and the connection to deep learning is made. Next,
the basic ideas behind deep learning are explored together with the usual pipeline
used for training these models. Afterwards, the structure and the different parts of
neural network models are shown, together with some important architectures that
first introduced those new concepts. The last part introduces different datasets that
serve as benchmarks for assessing the performance of various neural network mod-
els, thus making them important to the deep learning community as well as to this
thesis.

1.1. From Machine Learning to Deep Learning

Deep learning has emerged as a subfield of machine learning. Thus, it is important to
first learn the concepts of classical machine learning algorithms and to understand the

2

1.1. From Machine Learning to Deep Learning

difference between those and deep learning algorithms. Machine learning emerged
as a means of automated methods for data analysis. These methods are able to detect
pattern in the data instead of relying on a rules based approach [158].

In this thesis, the main focus is on the supervised setting, which refers to the case
where the dataset is labeled. The dataset is given by the set D = {(xi,yi)}n

i=1. The
input samples xi are called features and the yi are the corresponding labels. There are
cases, like in the unsupervised setting or in reinforcement learning, where no labels
exist.

Machine learning can be formalized as a function approximation problem [158].
Assuming that there exists some function f that maps each x to a specific label y =
f (x), the goal is to learn this function given the dataset D . For example, in binary
classification each datapoint is assigned a distinct label, with y∈ {−1,1}. For a linear
classifier this results in the following function

f (x;w,b) = sign(wTx+b) (1.1)

where w are the trainable parameters of the linear classifier and b its trainable bias
parameter. The goal is to learn the parameters in such a way that the linear classifier
is able separate the two classes of the dataset. Figure 1.1 depicts the linear classifier
on two cases. The left hand side shows the case where the data is linearly separable,
while the right hand side shows a case where the data is not linearly separable.

x0

x 1

Decision surface of linear SVM

(a) Depiction of a linear classifier on a linearly
separable dataset. The dataset is generated
using two multivariate Gaussian distributions
with equal equal covariance matrix and differ-
ent mean vectors.

x0

x 1

Decision surface of linear SVM

(b) Depiction of a linear classifier on a dataset
which is not linearly separable. The dataset
is generated by randomly sampling different
angles and restricting the radius for the differ-
ent classes.

Figure 1.1.: Depiction of a linear classifier on two different datasets. Plot (a) shows a lin-
early separable dataset, which is correctly classified, while plot (b) shows a
dataset which is not linearly separable. In this case the linear classifier is not
able to separate the two classes.

In order to still be able to classify the dataset on right hand side of Figure 1.1, a
non-linear map φ(x) can be used, that transforms the feature vectors into a new (usu-
ally high-dimensional) space where they are now linearly separable. Kernel methods
[4] offer an efficient way for converting different linear algorithms into a non-linear
version.

3

Chapter 1: Introduction

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x 1

(a) Depiction of a dataset which is not linearly
separable in two dimensions

x 0

101
x1

1 0 1

(x
0,

x 1
)

0

1

2

3

(b) Non-linear transformation of the dataset us-
ing φ(x0,x1) = (x0,x1,x2

0 +x2
1). The red plane

represents the linear decision boundary in the
transformed space.

Figure 1.2.: Depiction of the effect of a non-linear transformation on a dataset. Plot (a)
depicts the original dataset in two dimensions, while plot (b) shows the same
dataset after a non-linear transformation. This is now linearly separable in the
new space, as can be seen by the red plane between the clusters of both classes.

Using a non-linear transformation φ(x) turns Equation (1.1) into

f (x) = sign(ŵT
φ(x)+b) (1.2)

Figure 1.2 depicts how the dataset in Figure 1.2a, which is not linearly separable,
can be transformed into a linearly separable set using a polynomial function. The
transformed dataset is shown in Figure 1.2b.

Sometimes it is not clear how to choose an appropriate non-linear map, which
makes it hard to achieve good performance with classical machine learning methods.
Deep neural networks are parametrized non-linear maps φw(x), that are able to learn
a suitable feature representation from the data. One difference between classical ma-
chine learning approaches and deep learning is that while machine learning relies on
hand-crafted features, deep learning is able to automatically learn those directly from
the data. This distinction allows deep neural networks to achieve better performance
on high-dimensional complex datasets, where manually constructing features is too
complex or tedious [101]. Some of the benefits of classical machine learning algo-
rithms is that they are typically faster than deep learning models, which is especially
useful when dealing with large amounts of data. Similar to deep learning, they are
also able to work with data that is not linearly separable by using kernel methods. The
main drawback is the feature representation and for some datasets, e.g. images, it is
not clear how to choose a feature representation in order for those classical machine
learning models to work properly.

4

1.2. Overview Deep Learning

1.2. Overview Deep Learning

A sketch of the general pipeline used in deep learning is shown in Figure 1.3.

Model

Data
Pre-Processing

Training

Hyperparameter
Tuning Validation

Testing

Training Set
Validation Set

Test Set

Optimization

Figure 1.3.: Illustration of the overall training pipeline used in deep learning. The dataset is
split into a training-, validation- and test-set. These samples are pre-processed
and used for optimization of a certain model. After optimization the final
trained model is assessed by evaluating it using the test-set.

For every deep learning problem the first step is to collect some data for which
one wants to learn the relationship between the input samples and the corresponding
labels. This dataset is then pre-processed in order to handle missing or corrupted
values and to transform the data in a way that increases the efficiency of training
the neural network [161]. Afterwards, a suitable model is selected, together with
a cost function (also called loss function) which measures how close the network
predictions are to the true label. The model choice and the cost function are both
important for the problem, as a suitable choice can lead to better performance, more
stable training and better generalization to unseen data [5].

Next, the neural network is trained on the dataset. The performance of the network
can be monitored by looking at its accuracy on the training and validation data. If
the performance of the neural network is satisfactory after training, it is evaluated
using a separate dataset of unseen data which is called the test set. Otherwise, the
hyperparameters of the optimization algorithm are tuned and the model is trained
again.

Data Pre-Processing In this step of the process, the dataset is first split into a
training set, a validation set and a test set. A careful choice has to be made on how
to split the dataset into these three parts, in order to have the maximum amount of
training data with enough samples in the validation and test set in order to accurately

5

Chapter 1: Introduction

assess the network performance on unseen data. There exist methods that are able
to utilize the entire dataset during training, like k-fold cross-validation [82], though
their use is limited due to the size of the datasets and the longer training time of deep
neural networks compared to their faster machine learning counterparts. There exist
a multitude of pre-processing techniques that are used on the data. Broadly speaking,
pre-processing is utilized in order to clean, normalize or transform and augment the
data.

The original dataset can have missing values or some parts of the data can be
corrupted. There exist many different techniques for filling missing values, such as
replacing them with a constant value [80] or by using the mean of some parts of
the data [147]. Normalization refers to transformations of the features that change
their numerical values. This is done in order to make sure that the range of the
features does not vary significantly. There are different ways of transforming the
data, such as Min-max or Z-score normalization [80]. Depending on the task at
hand, sometimes other transformations are used in order to append the dataset with
additional samples. This is also referred to as data augmentation. When dealing
with images, it is common to apply random rotations and crops to an image or to flip
the image on some axis. This creates new data samples and also trains the network
to be invariant to the rotation, position and orientation of the objects in the images
[36]. Another type of data pre-processing introduces corruptions to existing samples.
These corruptions typically refer to different types and levels of noise that are added
to the samples. This ensures that the network learns robust features of the input
images and does not overfit on high frequency noise present in the samples. This
area of research is also commonly know as adversarial training [25]. The right pre-
processing and data augmentation steps can increase the accuracy of the deep learning
model [129].

Model Selection Selecting or crafting a suitable model is a crucial step in order
to achieve good performance. Different problems require different neural network
architectures and selecting the right layers can greatly improve the generalization ac-
curacy. By increasing the number of parameters and thus making the model bigger,
the accuracy can sometimes be improved as well [86, 106, 164, 165]. This has in-
flated the model size over the past years and many require distributed training [51]
over multiple GPUs in order to be able to fit the model onto the hardware.

Neural Network Training An illustration of neural network training or optimiza-
tion is shown in Figure 1.4. In this step, the different samples of the training set are
fed into the model, which returns an output distribution. The output of the network
is evaluated using the loss function. In the next step the gradient of the loss with
respect to the parameters of the model is computed. This is done in order to update
the parameters of the network in a meaningful way. The gradient is computed effi-
ciently using backpropagation [123]. This refers to the fact that the gradient at each
parameter can be efficiently computed by using the chain-rule. There exist a multi-
tude of different optimizers, where most use gradient information in order to train the
network efficiently.

Instead of pushing the entire dataset through the network in order to compute one

6

1.2. Overview Deep Learning

Dataset

Batch 1

Model ψ(w(0))

w(1) = op(w(0),g(0))
Loss Function Iteration 1

Batch M

Model ψ(w(M−1))

w(N) = op(w(M−1),g(M−1))
Loss Function Iteration M

..
.

..
.

Gradient g(0) =∇L(w(0))

Gradient g(M−1)

Figure 1.4.: Illustration of one epoch of neural network training. The samples of each batch
are fed into the model ψ and its outputs are passed to the loss function. The
gradient of the loss function with respect to the parameters of the model is com-
puted and fed into an optimizer op that updates the parameters of the model.
After all M batches are passed through the model, the model has been trained
for one epoch.

gradient, it is common to split the dataset into smaller batches of data. These batches
are fed into the neural network and only their batch-gradient is used for updating
the parameters of the model. The benefits of this approach are twofold. Firstly, the
use of mini-batches increases the test set accuracy [205]. This has been empirically
observed and is attributed to the stochasticity of the gradient information, which re-
sults in the optimizer not getting stuck in sharp minima [109] or saddle points [66].
Complementary to that observation, [206] show that the there exists a noise scale for
stochastic optimizers, where the size of the mini-batches introduces different amounts
of noise into the gradient. Similarly, this noise scale can also be tuned with the mag-
nitude of the learning rate. The authors show that instead of reducing the learning
rate, an increase in the mini-batch size can have similar effects. Secondly, the use
of mini-batches requires significantly less computation per iteration and reduces the
training time of deep neural networks on large datasets significantly [28]. Instead of
computing the gradients of all the samples in the entire dataset before updating the
parameters of the network, mini-batches only compute gradients of a few samples
at once. The gradient information of a mini-batch will on average point in the same
direction as the one computed using the entire dataset.

Each update using a single mini-batch is called an iteration during training. Once
the whole training set has been passed through the network, it has been trained for
one epoch. Usually neural networks are trained for several hundred epochs, which
means that the entire training set has been fed through the network several hundred
times.

7

Chapter 1: Introduction

Evaluation In order to be able to assess the performance of the neural network, one
has to measure how close the predictions of the network are to the observed data.
Given a training and a validation dataset, there is no guarantee that a low error on
the training dataset will also result in a low error on the validation dataset. Addi-
tionally, in classical machine learning methods one has to be cautious of the number
of parameters of the model compared to the number of samples in the training set.
While the error of the training dataset gets progressively lower with a higher number
of parameters, the validation error exhibits a U-curve shape. When the training set
error is low and the validation set error is high, the model overfits. The U-shape of
the validation set error is a result of the trade-off between bias and variance of the
model [100]. Variance refers to the amount by which the method would differ when it
is trained using a different set of training samples. Ideally, the method would always
find a very similar model and thus exhibit almost no variance at all. More complex
models with many parameters typically have higher variance. Bias on the other hand
is a result of trying to fit a simple model to a complicated dataset. This can occur
for example when trying to fit a linear model to a dataset where the features and the
labels have a non-linear relationship (see Figure 1.1b for an example). No matter how
many training samples, the simple model will never be able to accurately fit the data.
This error is due to bias. Thus, variance and bias typically are seen as competing
properties of machine learning methods [100].

Contrary to classical machine learning methods, deep learning models are almost
always overparametrized [209, 250], that is the number of parameters in the network
exceed the number of samples in the dataset. These neural networks are able to partly
overcome the overfitting issue by early stopping [19], and so the network is able to
fit to the data while reaching good accuracy on unseen datapoints [20].

The test set usually contains less samples than the training set and is used in order
to prevent implicit overfitting on the validation set [100]. This can happen whenever
different settings are tweaked during the training and validation of the model with the
goal of increasing the validation set accuracy. In order to prevent this from misrepre-
senting the true accuracy of the model on unseen data, after several different training
runs and after hyperparameter tuning on a certain model, the accuracy of the final
trained model is assessed on the test set.

1.3. Deep Learning Models

Choosing an appropriate deep learning model is crucial for achieving a good perfor-
mance. The right choice of layers can for example have an effect on the smoothness
of the loss landscape and thus make training faster [131, 194, 241]. This section
will take a closer look at some neural network architectures and discuss some of the
main ideas behind them. Unless stated otherwise, this thesis will make the distinction
between layers, which represent operations with trainable parameters and activation
functions, which do not contain any trainable parameters themselves. When building
an architecture, one has to carefully choose between different layers and activation
functions, as well as how to connect these layers with each other.

8

1.3. Deep Learning Models

The basic structure of most models is as follows:

hl = F l
wl
(zl) (1.3)

zl+1 = χl(hl) (1.4)

where zl represents the input to layer l (note that z0 = x with x the input sample)
and hl represents the output of layer l. The non-linear activation function at layer l is
represented by χl . Also, F l

wl
(zl) represents the parametrized layer function at layer

l. These parametrized functions are typically linear in their inputs. Thus, the con-
struction of neural networks usually follows a nested structure of linear, parametrized
layers followed by non-linear activation functions.

Layers The purpose of neural network layers is to learn some abstract features
from the inputs. Because most layers are linear in their inputs, their outputs are
passed through non-linear functions which enables them to learn more complex rep-
resentations. The most common types of layers found in neural networks are fully-
connected, convolutional and batch-norm layers.

Fully-connected layers take the n-dimensional input and transform it into a k-
dimensional output through multiplication with a parameter matrix:

h=Wz (1.5)

where z ∈Rn is the input vector to this layer, W ∈Rk×n is the parameter matrix of the
fully-connected layer and h ∈ Rk is the output vector. A sketch of a fully-connected
layer is shown in Figure 1.5.

...

...

z1

z2

z3

zn

h1

hk

w1,1

w
1,k

w2,1

w
2,k

w3,1

w
3,kw n,

1

wn,k

h1

h2

...
hk

w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n

...
...

. . .
...

wk,1 wk,2 · · · wk,n

z1
z2

...
zn

= ·

Figure 1.5.: Illustration of a fully-connected layer. The left-hand side is a depiction of the
fully-connected layer, which can be described through matrix multiplication as
shown on the right-hand side.

In this layer each output is connected to each input and each of those connections is

9

Chapter 1: Introduction

10
18

22
16

19
23

23
24

20

0

0

0

0

1

1 1

1

1

2
2

2
2

2
2

2
2

2

5
5

5
5

5

5
5

5
5

5

6
6 6

6 6
6

Convolutional Filter Ka,b

Input Image z

Output h

Figure 1.6.: Illustration of a convolution for an input image h with one channel and output
z with one channel as well. The convolutional filter Ka,b is depicted in red
and has one input channel dimension and one output channel dimension. The
blue colored areas in the input and output depict how the convolutional filter is
applied to different parts of the input image in order to produce the output.

scaled by a parameter. Thus the total number of parameters in this layer is n×k. This
property makes fully connected layers very expensive. For datasets where the feature
vectors are very large, like in images for example, using neural networks with only
fully connected layers can lead to extremely large networks. Another problem with
fully connected layers is that they require the input to always have the same fixed size.
This can pose a problem for datasets where the samples vary in size. One solution to
these problems, especially for image samples, is to use convolutions instead.

Convolutional layers are able to handle any input size, contrary to fully-connected
layers. They are defined by a kernel-size and the number of input and output chan-
nels. There are also parameters like stride and padding, but for the sake of clarity
these will be not covered in the description of convolution layers. The 2-dimensional
convolution with a kernel of size n×m with P input channels and Q output channels
for an input image z of size s× t with P channels is given by

hi, j,q =
n−1

∑
a=0

m−1

∑
b=0

P−1

∑
p=0

zi+a, j+b,pKa,b,p,q (1.6)

where h ∈ R(s−n+1)×(t−m+1)×Q is the output, z ∈ Rs×t×P is the input and
K ∈ Rm×n×P×Q are the trainable parameters of the convolution. An illustration of a
convolution is depicted in Figure 1.6.

Convolutional layers have allowed neural networks to increase in size compared
to neural networks that consist solely of fully-connected layers. The dimensions of

10

1.3. Deep Learning Models

the input samples also do not matter, except for the input channel dimension. Related
to this is the fact that the number of parameters of the kernel in convolutions can be
much smaller than the input image. This is also referred to as sparse interactions [76].
Since each parameter of the kernel processes different parts of the input image, this
weight-sharing greatly increases the efficiency of convolutions compared to fully-
connected layers [76, 252]. Also, weight-sharing causes the convolutional layer to be
equivariant to translations of the input. This means that any change in translation of
the input will result in an equal translation of the output [53, 111].

During training, different filters learn abstract features of the input image. The
resulting outputs are passed to the next layer which repeats this process. This way
neural networks are able to learn high-level features from the inputs. One important
concept in convolutions in that of their receptive field. The receptive field size of
a unit is the area of the input image that affects its value [208]. Fully-connected
layers cover the entire input image, since each input is connected to each output.
The resulting receptive field from convolutions on the other hand only covers part
of the input image. One can increase the receptive field size by stacking multiple
convolutional layers, thus making the network deeper. Another way is to downsample
the image by using pooling operations [149].

Batch-norm layers were first introduced in [98] and the main idea behind this
layer is to normalize the input signal. Empirical evidence suggests that neural net-
works that employ batch-norm layers have faster and more stable training [194]. Its
effectiveness has been associated to the reduction of the difference between input dis-
tributions of different layers. Recently, [194] have disputed this idea and have shown
that the reason batch-norm layers are so effective is that they make the optimization
surface of the neural network smoother. Thus, they allow for a larger learning-rate
while maintaining the same performance, which results in faster training times [194].

The batch-norm layer has trainable parameters that learn to transform the input in a
way, such that the mean and variance of the distribution are zero and one respectively.
For the i-th entry of an input feature vector the batch-norm is defined as:

h(i) = γ
(i) z(i)−µ(i)

σ(i)
+β

(i) (1.7)

where γ ∈ Rn and β ∈ Rn are the trainable parameters of the layer, µ ∈ Rn repre-
sents the mean of the incoming batch and σ ∈ Rn represents the standard deviation
of the samples inside the batch. The trainable parameters γ and β make sure that the
representation power of the neural network is not lost because of the resulting normal-
ization of the input signal at each batch-norm layer [98]. The effect of normalizing
the input features of a batch of samples is shown in Figure 1.7.

Activation Functions Most neural network layers are linear functions with respect
to their inputs. Activation functions introduce nonlinearities into the neural network,
which allows these networks to learn complex patterns in the dataset [200].

One of the most common activation functions used in deep neural networks is the
rectified linear unit (ReLU) [160]. There are many advantages to ReLU activation
functions, as listed in [247]. Using ReLU activation functions allows for successful
training of deep neural networks, which was difficult to achieve with other activa-

11

Chapter 1: Introduction

Z

6 4 2 0 2 4 6 Sample 0

Sample 1

Sample 2

Sample 3

Distribution of Feature Values

Z

6 4 2 0 2 4 6 Sample 0

Sample 1

Sample 2

Sample 3

Distribution of Feature Values after Normalization

µ = 0.56,σ = 1.78
Normalization

Figure 1.7.: Depiction of the effects of the normalization step of the batch-normalization.
In this example a batch consists of 4 samples. The distribution of their feature
values that are passed into the batch-norm layer are shown on the left. The
black lines indicate the x- and y-axis for each sample. The mean and standard
deviation of the batch is µ = 0.56 and σ = 1.78, respectively. One can see
that after batch normalization the distributions are closer to that of a normal
distribution with zero mean and unit variance. Note that in the batch-norm
layer there are parameters that scale and shift the distributions again after this
step and these are learned by the network during training.

tion functions. Also, the use of ReLUs results in faster convergence of deep neural
networks and it is faster to compute as well. Another advantage to this activation
function is that it generalizes better to unseen data. The authors of [121] show that
neural networks using only ReLU activations and the hinge loss decompose the op-
timization surface into different cells and as a result only have two types of local
minima. Either the local minimum is flat, meaning the cell has a constant loss value
or it is sharp, which means the minimum is non-differentiable.

Another common activation function is the sigmoid function [81]. This function
takes the input and squishes it down into the interval between zero and one. The
sigmoid function is commonly used after the last layer of the network, in order to
turn the output of the neural network model into probabilities. The softmax function
[27] is similar to the sigmoid function, but is instead used for multi-class predictions,
whenever the output of the network is supposed to represent a probability distribution
for the different classes present in the dataset. Three different activation functions are
depicted in Figure 1.8 on the interval x ∈ [−5,5].

LeNet-5 The LeNet-5 architecture [122] is a seven-layer convolution network de-
signed for handwritten digits recognition. The image samples have a size of 28×28.
The network is built in a way, such that the centers of the receptive field of the final
convolutional layer form a 20×20 square area. As stated by the authors, the largest
character in the dataset covers an area of 20×20 in the center of the image, thus this
makes sure that the network is able to cover the corners of the digit. The inputs are
passed through two blocks that consist of a convolution followed by a pooling layer.
After each convolution and fully-connected layer there is a tanh activation function.
After a third convolution layer the output is a one-dimensional vector of 120 units.

12

1.3. Deep Learning Models

−5 0 5

0

0.5

1

x

σ
(x
)

(a) Plot of the sigmoid func-
tion.

−5 0 5
−1

0

1

x

ta
nh
(x
)

(b) Plot of the tanh function.

−5 0 5
0

2

4

x

R
eL

U
(x
)

(c) Plot of the ReLU function.

Figure 1.8.: Visualization of three activation functions on the interval x ∈ [−5,5]. Plot (a)
depicts the sigmoid function, plot (b) the tanh function and plot (c) the ReLU
function.

This is passed through two fully-connected layers which shrink the output down to
10 dimensions. Finally, this output is passed through a softmax activation function,
which returns a distribution over the 10 class labels. An illustration of the LeNet-5
architecture is shown in Figure 1.9.

AlexNet With the introduction of larger datasets with more classes and high-
resolution images (e.g. ImageNet), neural network architectures like LeNet-5 are
not suitable anymore. The AlexNet architecture [115] was designed to perform
well for these types of datasets and outperformed the competition on ImageNet at
that time. Some key modifications made to AlexNet are the introduction of ReLU
activation functions. These are used after each convolutional and fully-connected
layer. The only exception is the very last fully-connected layer, which passes its
outputs through a softmax activation function in order to obtain a distribution over
the class labels. This network also used dropout [213] in order to prevent it from
overfitting. Dropout refers to the technique, where each parameter has a certain
probability of being set to zero during the forward propagation. This essentially
samples a different architecture each time and thus forces the network to learn more
robust features. AlexNet was also one of the earliest deep learning models to use
GPUs for its computations and it also employed model-parallelism by placing parts
of its model onto different GPUs during training.

ResNet Many deep learning models suffer from the vanishing gradient problem
[91]. This issue arises commonly in deep neural networks, and is due to many stacked
layers that each contain an activation function. The ResNet architecture [83] is built
by stacking the same cell structure and using skip-connections in order to skip over
a certain cell. These connections help combat the vanishing gradient problem and it
has been shown that they can make the optimization surface smoother [131], which
makes it easier to train the network. An illustration of skip-connections is depicted
in Figure 1.10.

There are many other model and layer types which have not been covered by this
section, such as generative adversarial networks [72], autoencoders [16, 191], recur-
rent neural networks [104, 191], transformers [226] and diffusion models [207, 210].

13

Chapter 1: Introduction

C
on

vo
lu

tio
n

Ta
nh

A
vg

.-P
oo

lin
g

C
on

vo
lu

tio
n

Ta
nh

A
vg

.-P
oo

lin
g

C
on

vo
lu

tio
n

Ta
nh

Fu
lly

C
on

ne
ct

ed

Ta
nh

Fu
lly

C
on

ne
ct

ed

So
ft

m
ax

In
pu

t

M
od

el
O

ut
pu

t

LeNet-5 Architecture

K ∈ R5×5×1×6 K ∈ R5×5×6×16 K ∈ R5×5×16×120

W ∈ R120×84

W ∈ R84×10

Figure 1.9.: Illustration of the LeNet-5 architecture. The input images have dimension
28× 28 and are padded in order to reach a size of 32× 32. The first convo-
lution layer has a kernel of size 5× 5 with one input channel and six output
channels. Each convolutional and fully-connected layer passes their output
through a non-linear activation function. The second layer described in [122]
is a subsampling layer that is very similar to the average-pooling layer [123].
This pattern repeats until the fifth layer where the outputs are fed into a fully-
connected layer. The very last layer passes the outputs through a softmax func-
tion.

14

1.4. Datasets

Layer l Layer l +1 Layer l + k Layer l + k+1. . .

skip connection

Figure 1.10.: Depiction of skip connections used in the ResNet architecture. In this figure
the output of layer l is passed into two different layers, namely layer l + 1
and layer l + k+ 1. Before passing into layer l + k+ 1, the output of layer l
is added to the output of layer l + k. Note that both, the output of layer l, as
well as the output of layer l + k have to have the same size in order to add
both together. Some works [95, 218, 219] have concatenated the outputs of
these two layers instead of adding them. This can help with the information
of lower layers flowing through the network [95]

1.4. Datasets

The use of standardized datasets in the field of deep learning serves as a benchmark
for different tasks. They are important for comparing different approaches to each
other. Throughout this thesis, there will be references to different datasets, so this
sections serves as a short overview of those.

MNIST The Modified National Institute of Standards and Technology (MNIST)
dataset [124] was introduced in 1998 and is used for handwritten digit recognition. It
is derived from the larger NIST Special Database [78], contains 10 different classes
(the numbers 0 to 9) and the dataset consists of 50000 samples where each sample
is greyscale and has dimension of 28×28. A selection of some samples is shown in
Figure 1.11 (a).

The Extended MNIST (EMNIST) dataset [45] is an extension of the MNIST dataset
that includes handwritten characters. Similar to MNIST, the images are greyscale and
have dimension 28×28. In its balanced form it contains 47 classes (10 digits and 37
letters), with 112800 samples in the training dataset and 18800 samples in the test
dataset. Five randomly chosen samples of the balanced dataset can be seen in Figure
1.11 (b).

The Kuzushiji-MNIST (KMNIST) dataset [44] aims to be a benchmark that is more
applicable to real world problems. It depicts cursive Japanese (Kuzushiji) and the full
dataset contains 3999 character types and 403242 characters. The Kuzushiji-MNIST
is a subset that contains 10 different classes with 60000 samples in the training dataset
and 10000 in the test dataset. There are bigger Kuzushiji datasets (Kuzushiji-49 and
Kuzushiji-Kanji), though they are unbalanced and not of interest in this thesis. A set
of randomly chosen samples of the dataset are depicted in Figure 1.11 (c).

CIFAR The CIFAR-10 and CIFAR-100 datasets [114] consist of 60000 images of
different objects and animals, which are of size 32×32 with three color channels. The
CIFAR-10 dataset has 10 different classes while the CIFAR-100 has 100 different

15

Chapter 1: Introduction

classes. Both datasets are split into 50000 samples in the training set and 10000
samples in the test set. The CIFAR-100 dataset is more challenging and consists of
600 images per class. These 100 classes can also be classified into 10 superclasses.
A selection of five random samples of the CIFAR-10 dataset is shown in Figure 1.11
(d).

ImageNet The ImageNet dataset [52] consists of around 15 million samples which
are classified into roughly 22000 different classes. All images have been collected
from the web and classified by humans. The ImageNet Large-Scale Visual Recog-
nition Challenge (ILSVRC) dataset was introduced in 2010 and serves as a more
challenging dataset to CIFAR-10 and CIFAR-100. This dataset is a subset of Ima-
geNet and consists of around 1.2 million training samples, 50000 validation images
and 150000 testing images 1. The images are grouped into 1000 different classes.
The samples of the dataset have three color channels and vary in their resolution,
thus they are commonly down-sampled and cropped, in order for all of them to reach
the same dimension of 256× 256. Because of its difficulty, it is common to report
the top-1 as well as the top-5 accuracy on this dataset. The top-5 accuracy counts the
classification of the network as valid if it correctly classifies the sample in its top-5
picks. Five samples of this dataset are depicted in Figure 1.11 (e).

Due to the resolution of the images and the size of the dataset, training on ImageNet
is prohibitive. On the flip side, the performance of neural networks has increased to
a point where classification on the CIFAR datasets is not as challenging anymore.
In order to find a solution to these problems, [41] introduced downsampled variants
of the ImageNet dataset, where the images have for example been downsampled to
16× 16 to form ImageNet16x16. Using downsampling, the authors construct the
datasets ImageNet16x16, ImageNet32x32 and ImageNet64x64.

In order to shrink the dataset size down and also reduce the number of classes, [57]
introduced the ImageNet-16-120 dataset, which takes the ImageNet16x16 dataset
and only uses samples from the first 120 classes. This reduces the dataset down to
151.7× 103 samples in the training dataset, 3000 samples in the validation dataset
and 3000 samples in the test dataset.

1Note that in many works this ILSVRC dataset is often times just referred to as ImageNet.

16

1.4. Datasets

Figure 1.11.: Visualization of samples from five different datasets. (a) shows five samples
of the MNIST dataset. (b) shows five samples of the EMNIST dataset while
(c) depicts five samples of the KMNIST dataset. (d) depicts five samples of
the CIFAR-10 dataset and (e) shows five samples of the ImageNet dataset.

17

Chapter 2
Methods

This chapter will introduce some key concepts and mathematical formulations in
deep learning that will also become important in later chapters. First, a general
overview over different optimization methods for deterministic gradients will be
given, with special emphasis on first- and second-order optimization. This will be ex-
panded to also cover stochastic gradient settings, which are crucial in deep learning.
Next, regularization is introduced, where the ℓ1- and ℓ2,1-regularization will become
especially important for dealing with large neural networks in later chapters. The last
part of this chapter will first introduce the Hessian as well as the R-operator, which
will later be used in combination with the Lanczos algorithm for efficient eigen-
value computation. The Lanczos and stochastic Lanczos quadrature algorithms are
introduced as an efficient method for eigenvalue computation of very large matrices.
All of those concepts and methods will come up again in the next chapter, which
will use eigenvalue computations for investigating the loss landscapes and trajecto-
ries of neural networks and their optimizers. Since very large neural networks have
too many dimensions to compute eigenvalues in reasonable time, even with these ef-
ficient Lanczos methods, this chapter will also introduce parallel versions of these
methods in order to speed up computation.

2.1. Optimization Methods in Deep Learning

The general goal in neural network training boils down to non-linear optimization,
which aims to find solutions to problems of the form:

find w⋆

such that w⋆ ∈W and w⋆ = infw∈W L(w)

where the set W ⊂ Rn in constrained optimization or W = Rn in the unconstrained
case [24]. The cost or error function L(w) is a scalar function and is a measure of
how high the error is for choosing the pointw. In this thesis, the cost function without
regularization terms will be denoted by f (w). In the presence of regularization terms
the combination of f (w) with regularization will be denoted by L(w).

19

Chapter 2: Methods

The non-convex nature of the optimization problem makes it NP-hard to find the
global minimum of the optimization surface [90]. Thus, the goal is typically not to
try and find the global minimum, but a suitable local minimum instead. A sketch
of some different types of minima that can be found in non-convex optimization is
shown in Figure 2.1.

3 2 1 0 1 2 3
w

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(w
)

Local and Global Minima of (w)

Figure 2.1.: Illustrative example of a loss function with a global minimum at w = 2, a strict
local minimum at w = 0 and a local minimum at w ∈ [−2.5,2].

In deep learning, the error function is typically a composition of a convex objective
function g(x) and a non-convex neural network ψ(w), which turns the optimization
problem for the objective function f (w) = (g◦ψ)(w) non-convex.

This thesis will focus on iterative optimization methods, such as gradient descent.
Other methods for optimization not covered in the following section include deriva-
tive free optimization [47, 112] and non-iterative optimization methods [196, 229].
Most gradient methods rely on the idea of iterative descent, which starts at some
initial guess w(0) and iteratively decreases the function f (w) at every iteration [24]:

f (w(k+1))< f (w(k)). (2.1)

At every iteration k a new direction d(k) ∈ Rn is chosen and the point at the next
iteration is given by

w(k+1) =w(k)+ εkd
(k) (2.2)

with the stepsize or learning rate εk, which scales the update direction in order to
prevent the algorithm from overshooting the minimum.

Using Taylor’s theorem, the cost function f (w) is approximated to first order

f (w(k+1)) = f (w(k))+ εk∇ f (w(k))Td(k)+o(εk). (2.3)

It can be seen from Equation (2.3), that (2.1) is satisfied whenever the direction d(k)

forms an angle greater than 90◦ with the gradient, such that

20

2.1. Optimization Methods in Deep Learning

∇ f (w)Td< 0. (2.4)

Equation (2.3) also shows that εk∇ f (w(k))Td(k) dominates the o(εk) term for small
εk. Many descent methods have the following general form [24]

w(k+1) =w(k)− εkDk∇ f (w(k)) (2.5)

with the preconditioning matrix Dk ∈ RN×N and the stepsize εk ∈ R+. In order for
the descent direction to satisfy Equation (2.4), it must hold that

∇ f (w(k))T Dk∇ f (w(k))> 0 (2.6)

which is satisfied whenever the matrix Dk is positive definite.

Convergence Properties In this paragraph the rate of convergence of gradient
methods is shown using local analysis, that is in a neighborhood of a local solution.
In this neighborhood the loss function can be accurately described by a quadratic
function [24]. This fact can be shown by using a Taylor approximation around an
optimal solution w⋆:

f (w) = f (w⋆)+
1
2
(w−w⋆)T∇2 f (w⋆)(w−w⋆)+o(∥w−w⋆∥2) (2.7)

Because local analysis assumes that w is close to an optimal solution w⋆, the
o(∥w−w⋆∥2) term will be much smaller than the other terms. Thus, near the optimal
solution the cost function can be reasonably approximated by a quadratic function.

For a quadratic function defined as

f (w) =
1
2
wT Qw (2.8)

where the positive definite matrix Q∈RN×N(Q=∇2 f (w⋆)) has a biggest eigenvalue
M and a smallest eigenvalue m, the convergence rate for steepest descent (Dk = I in
Equation (2.5)) is given as [24]

∥∥w(k+1)−w⋆
∥∥

∥∥w(k)−w⋆
∥∥ ≤

M−m
M+m

. (2.9)

Also, when the stepsize is chosen according to a line minimization rule, it can be
shown that the cost function decreases as [24]

f (w(k+1))

f (w(k))
≤
(

M−m
M+m

)2

. (2.10)

These results show that the condition number, defined by the ratio M/m, is important
for the convergence of steepest descent methods. A high condition number results
in ill-conditioned problems with slow convergence. Ideally, the condition number is
equal to 1.

21

Chapter 2: Methods

In the case of the general form in Equation (2.5), the matrix Dk transforms the
parameters and thus each iteration can be seen as the regular steepest descent algo-
rithm applied to a different coordinate system. By assigning w(k) = D1/2

k u(k), and
f (D1/2

k u) = h(u), the problem of minimizing h(u) becomes:

u(k+1) = u(k)− εk∇h(u(k)). (2.11)

This is just the steepest descent method that was introduced in Equation (2.5) with
Dk = I. When multiplied from the left by D1/2

k , Equation (2.11) becomes

w(k+1) =w(k)− εkD1/2
k ∇h(u(k)). (2.12)

Here, the relation w(k) = D1/2
k u(k) was used. Using the fact that ∇h(y(k)) =

D1/2
k ∇ f (w(k)), this turns Equation (2.11) back to Equation (2.5).
In order to find the rate of convergence of the general descent method from Equa-

tion (2.5) for a quadratic function using local analysis, instead of looking at the
biggest and smallest eigenvalue of the matrix Q, now the biggest and smallest eigen-
values of the matrix (Dk)

1
2 Q(Dk)

1
2 are relevant for convergence. This shows that

choosing Dk close to the inverse of Q will result in a condition number that is close to
one and thus result in very fast convergence. Similar results can be shown for the case
where the neighborhood of the cost function can not be approximated by a quadratic
function [24]. Even though local analysis does not say anything about how a method
behaves far away from a local solution, in practice the descent method will quickly
make progress in the early iterations and then slow down near the solution [24].

Cost Functions The cost function is a measure of the cost that the network incurs
for an incorrect decision. For example, in classification tasks the goal of the network
is to classify objects into one of many different categories. In this case the ideal cost
function is the 0-1 cost function J, which is given by

J(i, j) =

{
0 if i = j
1 if i ̸= j

for prediction i and label j. This cost function is non-convex and discontinuous, and
in order to find an optimal solution in the binary case one has to find parameters
w which minimize I (yi f (w,xi) ≤ 0) for each sample xi, where I represents the
indicator function. Finding the solution is thus exponential in the number of inputs
and therefore intractable to optimize, as there is no way of figuring out how to change
the parameters in order to minimize the cost function.

Therefore, in cases where the 0-1 cost function would be ideal, it is approximated
with more suitable functions, for example the hinge, logistic or exponential cost func-
tion. Figure 2.2 summarizes common cost functions as well as the 0-1 cost function.
The plot on the right hand side shows the gradient of each method. While the gradi-
ents of other cost functions give a sense of direction for updating the parameters, the
gradient of the 0-1 cost function is flat and thus contains no information. Commonly
used cost functions in classification include the mean squared error loss as well as the
cross-entropy loss.

22

2.1. Optimization Methods in Deep Learning

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

f(x
)

0-1 Loss
Squared Loss
Logistic Loss
Exponential Loss
Hinge Loss

(a) Plot of different loss functions. Most loss
functions try to approximate the 0-1 loss while
providing a gradient in the direction of correct
classification.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

6

4

2

0

2

g(
x)

0-1 Loss
Squared Loss
Logistic Loss
Exponential Loss
Hinge Loss

(b) The gradients show how misclassified samples
push the input toward the correct classifica-
tion. It also shows that the gradient of the 0-1
loss is zero everywhere and undefined at the
point x = 0.

Figure 2.2.: Visualization of the 0-1 loss along with the squared loss, the logistic loss, the
exponential loss and the hinge loss. Plot (a) shows the respective loss functions
plotted on the interval x ∈ [−2,2], while plot (b) shows the gradient of each
loss function.

2.1.1. First-Order Optimization

First-order optimization refers to the fact that the only information used for updating
the model are first-order derivatives with respect to the parameters of the model.

One of the simplest first-order methods is steepest descent, where the matrix Dk
of Equation (2.5) is set to the identity matrix Dk = I, which results in the following
iterative method:

w(k+1) =w(k)− εk∇ f (w(k)) (2.13)

This is one of the simplest methods, but in theory also one of the slowest to converge.
One issue that steepest descent is facing is loss landscapes that are flat in one direction
and steep in the other. In this case the steepest descent method will zig-zag slowly
toward the minimum [24].

Momentum In order to speed up the convergence of first-order methods, there exist
methods that employ a momentum term, sometimes also referred to as ”heavy-ball”
methods. The momentum method [179] accumulates gradients across iterations into
a velocity vector v. For steepest descent this results in the following update method:

v(k+1) = ρkv
(k)− εk∇ f (w(k)) (2.14)

w(k+1) =w(k)+v(k+1) (2.15)

where ρk ∈ [0,1] is the momentum parameter. A value of ρ = 0 recovers the steepest
descent method, while higher values of ρk influence how strongly past gradient values
influence the direction of the current iteration. [179] shows that using momentum can

23

Chapter 2: Methods

accelerate convergence to a local minimum in the case of deterministic gradients.
Another type of momentum method is Nesterov’s accelerated gradient method

[162], which updates the parameter vector iteratively as:

v(k+1) = ρkv
(k)− εk∇ f (w(k)+v(k)) (2.16)

w(k+1) =w(k)+v(k+1) (2.17)

The authors of [217] argue that Nesterov’s accelerated gradient method is more stable
than the classical momentum method in many situations, because Nesterov’s accel-
erated gradient method allows the velocity vector v to change more quickly during
training.

While local analysis shows faster convergence rates for momentum methods com-
pared to pure steepest descent methods, these are only achieved in the setting with
deterministic gradients. Moving to a setting where stochastic gradients are used,
[169, 232] show that the benefits from using momentum vanish when close to a local
minimum. Nevertheless, [217] detail how these methods can still result in faster con-
vergence when farther away from any local minimum. This transient phase seems to
be much more important in deep neural network optimization [50].

Deep Learning Optimizers Up until now the theory covered in this thesis consid-
ered deterministic gradients, where the entire dataset is used when computing the
gradient of the objective function. Optimization of deep neural networks usually in-
volves stochastic gradients, which are computed using mini-batches instead of the
entire dataset during one iteration. By going from deterministic to stochastic gradi-
ents, many of the convergence properties for the different methods change as well.

Most of the optimizers commonly used in deep learning are first-order methods.
The simplest is Stochastic Gradient Descent (SGD) [186] and SGD with momentum.
This optimizer is essentially the same as steepest descent, which has been described
in this section and the stochastic part in its name refers to the fact that the network is
optimized while considering only a subset of the samples of the total dataset in each
iteration. This can be viewed as steepest descent where the gradient is offset by an
additional error term [24].

Many optimizers that have become popular in recent years have been first-order
methods that are curvature adaptive. This refers to the fact that they take into account
knowledge of the geometry of previous iterations for their current update step. The
momentum methods that were introduced previously are one example of such cur-
vature adaptive algorithms. Other examples include Adagrad [58], AdaDelta [246],
RMSprop [223] and Adam [110]. All of these methods belong to adaptive gradient
based momentum algorithms, which are first-order gradient methods that can adapt
their implicit learning rates and can also include some form of momentum. The con-
vergence rate of these first-order gradient methods for non-convex objective functions
was only recently shown to be O(logT/

√
T) [38].

The main idea in Adagrad for example is to question whether all features in the
data should have the same learning rate. Infrequent features in the data are often
much more informative, while many commonly occurring ones are almost irrelevant

24

2.1. Optimization Methods in Deep Learning

[58]. In order to achieve this adaptive learning rate, the authors find that they have
to precondition the gradient with a matrix that accumulates the outer product of past
gradients:

Gk =

(
k

∑
τ=1
g(τ)

(
g(τ)
)T
)

(2.18)

Optimizing the parameters then results in

w(k+1) =w(k)− εkG−1/2
k g(k). (2.19)

One issue that Adagrad faces is that the implicit learning rate is rapidly decaying.
In order to solve this issue, other adaptive optimizers like RMSprop or Adam use
exponential moving averages (EMA) in order to achieve an adaptive learning rate,
where the matrix Gk is now given as

G̃k = (1−β)

(
k

∑
τ=1

β
k−τg(τ)

(
g(τ)
)T
)
. (2.20)

These EMA algorithms do not suffer from rapidly decaying learning rates, and for
suitable values of the hyperparameter β the matrix G̃k ≈ E[g(k)

(
g(k)
)T

] = Gk [214].
In practice, computing the outer product of the gradients is infeasible due to the

size of the resulting matrix, which scales quadratically with the number of trainable
parameters in the neural network. Therefore, all those methods approximate Gk by
only computing its diagonal entries diag(Gk). For Adagrad, this results in the follow-
ing updates:

w(k+1) =w(k)− εk√
∑

k
τ=1g

(τ)⊙g(τ)
g(k) (2.21)

where g⊙g denotes the Hadamard product between two vectors.
Note that in the Adam paper, the authors claim that their optimizer approximates

the Fisher matrix by only taking the diagonal elements of the matrix G̃k into account,
in order to precondition the gradient of the cost function [110]. The Fisher matrix is
primarily used in natural gradient methods [6], that try to optimize the parameters of
the network while also restricting the output distribution of the model from changing
too drastically between iterations.

The authors of [214] argue that this reasoning in the Adam paper is wrong. Firstly,
the empirical Fisher information matrix mentioned in the Adam paper differs from the
true Fisher information matrix and the connection to Gk is only approximately true
near an optimum. Secondly, natural gradient descent methods use the inverse of the
Fisher information matrix, while Adam uses the inverse of the square-root of matrix
Gk. This issue is not exclusive to Adam and many of these adaptive gradient based
algorithms have to use the inverse of the square-root of the matrix Gk, because the
inverse itself has been reported to result in unstable algorithms [190]. Furthermore,
there exist many misconceptions in literature regarding the Fisher matrix. It is often
argued that the empirical Fisher information matrix can be viewed as a generalized
Gauss-Newton matrix, which approximates the Hessian near an optimum. Another

25

Chapter 2: Methods

argument is that the empirical Fisher information matrix converges to the true Fisher
information matrix near an optimum. Both those arguments only hold in very special
circumstances that are rarely satisfied in practice [118].

The authors of [17] give some insight into why these curvature adaptive first-order
methods are so successful in practice. In their paper, they are able to show that one
property of adaptive gradient based algorithms is that they equalize the noise present
in the stochastic gradients in each direction. This is helpful in nonconvex problems,
because at stationary points this gradient noise is approximately isotropic, which
helps the network escape saddle points with high probability [214].

2.1.2. Second-Order Optimization

Second-order optimization expands the Taylor approximation of the objective func-
tion f (w) up to second-order [24]

f (w) = f (w(k))+(w−w(k))T∇ f (w(k))+

1
2
(w−w(k))T∇2 f (w(k))(w−w(k))+o(

∥∥∥w−w(k)
∥∥∥

2
).

(2.22)

Minimizing this expression results in the following iterative update scheme

w(k+1) =w(k)− εk
1

∇2 f (w(k))
∇ f (w(k)). (2.23)

This is also called Newton’s method. Using Dk = (∇2 f (w(k)))−1, Newton’s method
can be rewritten in the general form introduced in Equation (2.5). It does not suf-
fer from elongated minima the way that steepest descent does for example. This
is because in Newton’s method the gradient is scaled optimally (the eigenvalues of
(Dk)

1
2 Q(Dk)

1
2 are M ≈ 1 and m≈ 1 for Dk = (∇2 f (w(k)))−1 [24].

The second-order derivative of the loss function measures the curvature at a spe-
cific point. If the second-order derivative is zero, there is no curvature present and
the first-order derivative is sufficient in order to move optimally along the descent
direction. If the curvature is positive or negative, the first-order descent will result in
a lower or higher loss than expected.

An example that illustrates Newton’s method is shown in Figure 2.3. Here, both
steepest descent and Newton’s method are initialized at the same point. The objective
function is non-convex and has a global as well as a local minimum. The upper left
plot depicts steepest descent. This method is able to converge into the narrow valley
that contains the global minimum. Inside this valley the steepest descent method
starts to oscillate, which slows down its convergence toward the minimum. Newton’s
method on the other hand converges into the local minimum, where it is able to
converge to the minimum after 4 iterations. The contour lines in the plots 2.3c-2.3f
depict the optimization of the local approximation problem that is solved by Newton’s
method at each iteration.

Convergence It can be shown through local analysis close to a minimum, where
the Hessian is positive definite, that Newton’s method converges superlinearly [119].

26

2.1. Optimization Methods in Deep Learning

3 2 1 0 1 2 3 4
w1

3

2

1

0

1

2

3

4

w
2

Steepest Descent on McCormick's Function

(a) Steepest descent on McCormick’s func-
tion with learning rate ε = 0.4. Note
how steepest descent slows down inside
the narrow valley.

3 2 1 0 1 2 3 4
w1

3

2

1

0

1

2

3

4

w
2

Newton's Method on McCormick's Function

w(0)

w(1)

w(2)

w(3)

w(4)

w(5)

w(6)

w(7)

w(8)

w(9)

(b) Newton’s method on McCormick’s
function.

3 2 1 0 1 2 3 4
w1

3

2

1

0

1

2

3

4

w
2

w(0) w(1)

Newton's Method on McCormick's Function

(c) Newton’s method on McCormick’s
function in the first iteration.

3 2 1 0 1 2 3 4
w1

3

2

1

0

1

2

3

4

w
2

w(1)

w(2)

Newton's Method on McCormick's Function

(d) Newton’s method on McCormick’s
function in the second iteration.

3 2 1 0 1 2 3 4
w1

3

2

1

0

1

2

3

4

w
2

w(2)

w(3)

Newton's Method on McCormick's Function

(e) Newton’s method on McCormick’s
function in the third iteration.

3 2 1 0 1 2 3 4
w1

3

2

1

0

1

2

3

4

w
2

w(3)w(4)

Newton's Method on McCormick's Function

(f) Newton’s method on McCormick’s func-
tion in the fourth iteration.

Figure 2.3.: Steepest descent (plot (a)) and Newton’s method (plots (b)-(f)) on Mc-
Cormick’s function [3], which is defined by f (w1,w2) = sinw1 +w2 +(w1−
w2)

2−1.5w1 +2.5w2 +1 and has a global solution at w = (−0.547,−1.547)
(the red triangle in plots (a) and (b)). The initialization point for both methods
is w(0) = (−0.5,1). While steepest descent is able to converge into the global
minimum, Newton’s method only converges into the local minimum. Plots (c)-
(f) depict individual iterations of Newton’s method together with contour lines
of the local second-order approximation to the error function f (w1,w2) that is
minimized at each iteration of Newton’s method. The approximate problem
that is solved by Newton’s method is given by Equation (2.22).

27

Chapter 2: Methods

Though it is difficult to say in practice when a given point is sufficiently close to a
solution, one can expect that eventually the fast convergence rate of Newton’s method
will come into effect [24].

On the other hand, one cannot make the assumption of a positive definite Hessian
when looking at the global convergence, that is when further away from any potential
solution. There, Newton’s method has several drawbacks. Firstly, the inverse of the
Hessian (∇2 f (w(k)))−1 might not exist, which is the case whenever the Hessian is
singular (has at least one zero eigenvalue). As will be shown in the next chapter,
most neural networks have eigenspectra where the bulk of the eigenvalues is exactly
or close to zero, even close to a potential solution. Secondly, Newton’s method used
with step size of εk = 1 is not a descent direction, because the value of the cost
function of the next iteration can be higher than that of the current iteration [24].
Thirdly, as shown by the derivation in (2.22), Newton’s method only tries to solve
for ∇ f (w(k)) = 0, which is also fulfilled by maxima and saddle points. Therefore, it
is important to keep in mind that this method is not only attracted to minima. There
exist several solutions to these global problems that modify Newton’s method into a
viable gradient method, such as trust region methods [151] for example.

Figure 2.4 highlights the difference between steepest descent, a first-order method,
and Newton’s method. In this case the objective function is non-convex and both
methods are initialized at the same point. One can observe in this example how
Newton’s method struggles to converge to the minimum, while the steepest descent
method is able to converge to the optimal point. This simple example illustrates that
one has to be careful with the choice of optimization method, and sometimes second-
order methods can behave worse than the simpler first-order methods, e.g. when the
Hessian is not positive definite.

For large deep neural networks another problem arises. Due to the size of the
Hessian, it is computationally intractable to compute the inverse at every iteration.
Storing the Hessian itself is already infeasible due to its size, effectively rendering the
practicality of Newton’s method for deep learning useless. Some methods attempt to
solve these issues by only reevaluating the Hessian after every few iterations [170],
or by computing an approximation of the Hessian [69].

For difficult problems, where the Hessian is discontinuous or not positive defi-
nite near minima of interest, the rate of convergence of second-order methods like
Newton’s method can be worse than that of simpler first-order methods. Another
problem arises when the initialization starts far away from any local minima. In that
case second-order methods may progress very slowly until they get to a small neigh-
borhood of the solution where their convergence is favorable to other methods [24].
This can hint at an explanation why there has not been much practical benefit to Hes-
sian methods and their approximations and why simpler and therefore faster methods
like stochastic gradient descent still outperform these more sophisticated methods in
practice.

Another issue is the convergence rate of Newton’s method in the stochastic case.
Using local convergence analysis, [113] show that the superlinear rate of convergence
for the non-stochastic Newton’s method reduces to a linear convergence rate for a
batch size of one. This fact together with the high computational cost per iteration
do not make Newton’s method an attractive choice for many problems in non-convex

28

2.1. Optimization Methods in Deep Learning

4 2 0 2 4 6
w1

4

2

0

2

4

6

w
2

Steepest Descent on Himmels' Function

(a) Steepest descent on Himmelblau’s func-
tion.

1.5 2.0 2.5 3.0 3.5 4.0
w1

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

w
2

w(0)
w(1)

w(2) w(3)w(4)w(5)w(6)w(7)w(8)w(9)

Steepest Descent on Himmels' Function

(b) Closer look on the iterations from steep-
est descent.

4 2 0 2 4 6
w1

4

2

0

2

4

w
2

Newton's Method on Himmels' Function

(c) Newton’s method on Himmelblau’s
function.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
w1

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

w
2

w(0)

w(1)

w(2)

w(3)

w(4)

w(5)

w(6)

w(7)

w(8)

w(9)

Newton's Method on Himmels' Function

(d) Closer look on the iterations from New-
ton’s method.

Figure 2.4.: Comparison of steepest descent and Newton’s method on Himmelblau’s func-
tion [87]. Himmelblau’s function is given by f (w1,w2) = (w2

1 +w2− 11)2 +
(w1 +w2

2− 7)2 and has four different minima with the closest to initialization
being at w⋆ = (3,2). Both methods are initialized at w(0) = (2,1) and run for
9 iterations. The x- and y-axis represent the values of the two parameters of the
function.

29

Chapter 2: Methods

optimization. Though recently, [153] were able to show that a regularized subsam-
pled Newton method is able to achieve quadratic convergence on over-parameterized
models. One downside to this method is that in order to achieve this convergence it
requires an exponentially growing batch-size.

2.2. Regularization

Some problems in optimization require a constrained set of possible parameters.
These constrains are defined through equalities or inequalities. There are different
reasons for choosing to constrain the set of parameters instead of using unconstrained
optimization, some of the reasons being to stabilize the network, to shrink the net-
work size or to increase generalization performance [243].

The constrained optimization problem can be written as [24]

minimize f (w)
subject to ri(w)≤ 0 and h j(w) = 0

where ri(w) ≤ 0 represent inequality constrains and h j(w) = 0 represent equality
constrains.

By using the Karush–Kuhn–Tucker (KKT) conditions [117], this optimization
problem can also be written in terms of the generalized Lagrangian L(w)

L(w;λ,γ) = f (w)+
s

∑
i=1

λiri(w)+
q

∑
j=1

γ jh j(w) (2.24)

where λi and γ j represent regularization factors, which control the relaxation from
the constrained optimization problem.

Because the succeeding chapters will only deal with a single constrain in the La-
grangian, this thesis will just use r(w) as the regularization term, which simplifies
the above expression to

L(w;λ) = f (w)+λr(w). (2.25)

The Lagrangian can now be solved by [24]

w⋆ = argmin
w

max
λ

L(w;λ). (2.26)

As shown in the next subsections, most regularization terms used in this thesis are
norm penalties. In this case, the goal is to restrict the norm of the parameters of the
neural network model to be smaller than some predefined value C

r(w)<C. (2.27)

This turns the Lagrangian into

L(w;λ) = f (w)+λ(r(w)−C) (2.28)

In order to solve (2.26), whenever the regularization term r(w) is bigger than C,
the value of λ has to increase in order to force r(w) to shrink faster. The optimal

30

2.2. Regularization

value λ⋆ will make sure that the constraint of the regularization term in Equation
(2.27) is satisfied and that the gradient of the Lagrangian at λ⋆ and the converged
point w⋆ will be zero [24]

∇wL(w⋆;λ
⋆) = 0

∇λL(w⋆;λ
⋆) = 0.

In practice, the constant C is removed and instead of finding a suitable λ⋆ for
a predefined C, a fixed value for λ is chosen. In this thesis this fixed value will be
called the regularization constant µ. This µ will be the optimal value for some implicit
constant C′, so the network will experience some level of regularization, though this
level is not known a priori. This usually requires many different runs with different
values for µ in order to find a suitable regularization of the network. Also, by fixing
the regularization constant, the constant C can be dropped from the expression in
Equation (2.28), due to the fact that it will disappear when taking the gradient of the
loss function with respect to the parameters.

The following subsections will introduce the ℓ1-, ℓ2- and ℓ2,1-norm regularizations,
where the ℓ1- and ℓ2,1-norm regularizations will be especially important in this thesis.

w0

1

0

1
w1

1 0 1

w2

1

0

1

(a) Depiction of the ℓ1-norm.
The x-, y- and z-axis rep-
resent three parameters
w0, w1 and w2. The plot
shows the surface where
the value of the ℓ1-norm
equals one.

w0

1

0

1w1

1
0

1

w2

1

0

1

(b) Depiction of the ℓ2-norm.
The x-, y- and z-axis rep-
resent three parameters
w0, w1 and w2. The plot
shows the surface where
the value of the ℓ2-norm
equals one.

w0

1

0

1w1

1
0

1

w2

1

0

1

(c) Depiction of the ℓ2,1-
norm. The x-, y- and
z-axis represent three pa-
rameters w0, w1 and w2.
The parameters x0 and
x1 belong to the same
group, while the parame-
ter x2 belongs to a differ-
ent group. The plot shows
the contour surface where
the value of the ℓ2,1-norm
equals one.

Figure 2.5.: Plot of the ℓ1-, ℓ2- and ℓ2,1-norm. In all cases the function is depicted in three
dimensions, and the surface depicts where the value of the three parameters is
equal to one. In the case of the ℓ2,1-norm, the parameters depicted by w0 and w1
are placed into the same group, while the parameter w2 belongs to a different
group.

31

Chapter 2: Methods

2.2.1. ℓ1-Regularization

The ℓ1-regularization is most commonly used for pruning of individual weights. It
uses the ℓ1-norm and is defined as

r(w) =
N

∑
i=1
|wi| (2.29)

for a parameter vector w ∈ RN . Thus, the loss function is written as

L(w) = f (w)+µ
N

∑
i=1
|wi| (2.30)

with f (w) the original objective function and µ the regularization parameter. Since
the regularization term r(w) is not continuous at zero, optimization relies on stochas-
tic subgradient descent in order to converge to a solution.

Popular frameworks, like PyTorch [174] and TensorFlow [152] for example, use
the following rules to compute the subgradient of the ℓ1 term:

∂r(x)
∂x

=

−1 if x < 0
0 if x = 0
1 if x > 0

In order to understand the effects of ℓ1-regularization, the rest of this subsection
will follow the steps taken in [76] in order to observe how the local optimum of the
unregularized objective function changes in the presence of the regularization term.
This will be achieved by taking the quadratic approximation of the unregularized
objective function around the optimal point w∗.

The subgradient of the loss function is given by:

∇L(w) =∇ f (w)+µ× sign(w) (2.31)

where sign(w) is applied element-wise.
The quadratic approximation around the minimumw∗ of the unconstrained objec-

tive function is

f (w) = f (w∗)+
1
2
(w−w∗)T Hw∗(w−w∗). (2.32)

In order to simplify this equation, assume that the Hessian is diagonal with H =
diag(H1,1, . . . ,HN,N), where each entry is a positive number. This assumption sim-
plifies the Taylor approximation and together with the regularization term this results
in

f (w) = f (w∗)+
N

∑
i=1

[
1
2

Hi,i(wi−w∗i)
2 +µ|wi|

]
. (2.33)

This function is minimized if

wi = sign(w∗i)max{|w∗i |−
µ

Hi,i
,0}. (2.34)

32

2.2. Regularization

Whenever the value of w∗i ∈ [0,µ/Hi,i], the optimal value of the regularized weight
will be equal to zero. If the value of w∗i is higher than µ/Hi,i, it will be shifted by an
amount of µ/Hi,i. Because of the sign(w∗i) expression in front of the equation, both
cases also hold for the case where w∗i < 0.

This explains how ℓ1-regularization introduces sparsity into a neural network by
setting part of its weights exactly to zero. This property can be very beneficial, es-
pecially when dealing with very large neural networks, that require large amounts of
memory and storage. By shrinking the networks down in size, this can theoretically
make them faster and more memory efficient, while sacrificing as little accuracy as
possible.

2.2.2. ℓ2-Regularization

In ℓ2-regularization the ℓ2-norm of the weight vector w is added to the objective
function. The ℓ2-regularization is given by

r(w) =
1
2

(
N

∑
i=1

w2
i

)
(2.35)

or in vector notation, r(w) = 1
2w

Tw. Thus, the new loss function with ℓ2-
regularization has the following form

L(w) = f (w)+
µ
2

(
N

∑
i=1

w2
i

)
. (2.36)

The gradient of this expression becomes

∇L(w) =∇ f (w)+µw (2.37)

and for SGD this results in the following update step

w(k+1) =w(k)− εk∇ f (w(k))− εkµw(k)

= (1− εkµ)w(k)− εk∇ f (w(k))

Contrary to ℓ1-regularization, training a neural network with ℓ2-regularization re-
sults in a rotationally invariant algorithm [166]. Rotationally invariant algorithms are
not effective in selecting relevant features during training, with the worst case sample
complexity growing linearly in the number of irrelevant features. Thus, this form of
regularization does not make the neural network sparser, but it can result in faster
convergence and in better generalization of the neural network [130].

Following the steps of [76], the effects of this regularization are shown by making a
quadratic approximation of the unconstrained objective function around its minimum
w∗:

f (w) = f (w∗)+
1
2
(w−w∗)T Hw∗(w−w∗). (2.38)

Its derivative is given by

33

Chapter 2: Methods

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

+

Rescaling factor for w

= 0.01
= 0.1
= 1
= 10

Figure 2.6.: Depiction of how the value of w∗ is rescaled for different values of µ and
different eigenvalues λ. One can see how larger values of µ shrink the value of
w∗ further toward zero and how directions with large eigenvalues do not shrink
as drastically as directions with smaller eigenvalues.

∇ f (w) = Hw∗(w−w∗). (2.39)

The first order necessary condition for reaching the minimum is that this expression
is zero. Now the gradient of the ℓ2-regularization is added to this expression in order
to observe how this term affects the solution:

Hw∗(w−w∗)+µw = 0. (2.40)

Rearranging this equation

w = (H +µI)−1Hw∗ (2.41)

and using the fact that it is possible to decompose H into H = QΛQT , the following
result is obtained

w = Q(Λ+µI)−1
ΛQTw∗. (2.42)

One can see that along a certain eigenvector, the value of the unregularized optimum
w∗ is rescaled with λi

λi+µ . Figure 2.6 depicts how the unregularized optimum w∗ is
rescaled for different values of µ and λ.

2.2.3. ℓ2,1-Regularization

The ℓ2,1-regularization, sometimes also called group sparsity, describes the following
norm

34

2.2. Regularization

r(w) = ∑
g∈G

(|g|
∑
i=1

w2
gi

) 1
2

(2.43)

with G the set of groups and |g| the number of elements of group g. One can ease the
notation by decomposing the vector w into its L different groups with w = (wl)

L
l=1.

This turns the expression into:

r(w) =
L

∑
l=1
∥wl∥2 (2.44)

The ℓ2,1-norm is a non-smooth and convex function and serves as a natural exten-
sion to the ℓ1-norm when w is a vector. The subgradient of the ℓ2,1-norm is given by

∂∥w∥2 =

{
w
∥w∥2

, if w ̸= 0

{v|∥v∥2 ≤ 1}, otherwise
(2.45)

An important difference between the ℓ2-regularization from the previous section
and the ℓ2,1-regularization of this section is that the ℓ2-regularization uses the squared
ℓ2-norm, which makes it differentiable everywhere. This difference is depicted in
Figure 2.7.

w0

2
1

0
1

2w1

2 1 0 1 2

1
2
3
4
5
6
7
8

||w||22-Norm

(a) Depiction of the squared ℓ2-norm. The
x- and y-axis represent two parameters
x0 and x1.

w0

2
1

0
1

2w1

2 1 0 1 2

0.5

1.0

1.5

2.0

2.5

||w||2-Norm

(b) Depiction of the ℓ2-norm. The x- and y-
axis represent two parameters x0 and x1.

Figure 2.7.: Plot of the squared ℓ2- and the regular ℓ2-norm. Plot (a) depicts the squared
ℓ2-norm, which is used in ℓ2-regularization and it is differentiable everywhere.
Plot (b) depicts the regular ℓ2-norm, which is used in ℓ2,1-regularization. This
function is not differentiable at zero.

Following similar steps as in the other two regularizations, the second-order ap-
proximation around the minimum of the unconstrained objective function is written
as

35

Chapter 2: Methods

f (w) = f (w∗)+
1
2
(w−w∗)T Hw∗(w−w∗). (2.46)

Now, looking at a certain group wg, one can write the derivative as

0 ∈ Λg(wg−w⋆
g)+µ∂∥wg∥2 (2.47)

where the simplifying assumption is made that the Hessian can be decomposed into
the different groups with Hwg = Λg, with Λg = λgI a diagonal matrix that contains
the same eigenvalue along its diagonal and λg > 0. First, consider the case where
wg ̸= 0:

0 ∈ Λg(wg−w⋆
g)+µ

wg

∥wg∥2
(2.48)

Λgwg +µ
wg

∥wg∥2
= Λgw

⋆
g (2.49)

wg +µΛ
−1
g

wg

∥wg∥2
=w⋆

g (2.50)

wg +
µ
λg

wg

∥wg∥2
=w⋆

g (2.51)

wg +
µ
λg

w⋆
g∥∥w⋆

g

∥∥
2

=w⋆
g (2.52)

wg = (I− µ
λg
∥∥w⋆

g

∥∥
2

)w⋆
g (2.53)

In Equation (2.51), the left hand side is just the addition of the vector wg with its
own directional vector that is scaled by a positive constant. Thus, vector w⋆

g will
always point in the same direction and therefore the normed directional vector can be
replaced, from wg

∥wg∥2

in Equation (2.51) to w⋆
g

∥w⋆
g∥2

in Equation (2.52).

In the second case, where wg = 0, Equation (2.47) results in

0 ∈ −Λgw
⋆
g +µ{v|∥v∥2 ≤ 1}

Λgw
⋆
g ∈ µ{v|∥v∥2 ≤ 1}

∥∥Λgw
⋆
g

∥∥
2 ≤ µ

The last inequality can be further simplified by using
∥∥Λgw

⋆
g

∥∥
2 = λg

∥∥w⋆
g

∥∥
2:

λg
∥∥w⋆

g

∥∥
2 ≤ µ (2.54)

∥∥w⋆
g

∥∥
2 ≤

µ
λg

(2.55)

This result shows that group sparsity forces groups of parameters exactly to zero
whenever the ℓ2-norm of the group is below a certain threshold. Also, Equation (2.55)

36

2.3. Eigenvalue Computation

w 0

2
1

0
1

2w1

2 1 0 1 2

0.0

0.1

0.2

0.3

0.4

Block Soft Thresholding Operator with = 1.5

Figure 2.8.: Depiction of the block soft thresholding operator from Equation (2.56) with
µ = 1.5 and λ = 1.

shows that this threshold is rescaled with the eigenvalue of the group.
By combining both results for the two cases, this yields the following equation

between w and w⋆
g:

wg =

(
1− µ

λg
∥∥w⋆

g

∥∥
2

)+

w⋆
g (2.56)

where (x)+ is equivalent to max{x,0}, which in the equation above returns the zero
vector whenever

∥∥w⋆
g

∥∥
2 ≤

µ
λg

. An example of this equation for two parameters is
shown in Figure 2.8.

The implications of this equation are twofold. First, the bigger the norm of the
group, the smaller the term on the right hand side inside the brackets. This forces
groups with large ℓ2-norms less toward zero. Second, the bigger the eigenvalue cor-
responding to the group, the smaller the effect of the ℓ2,1-regularization on the group.

The hyperparameter µ indirectly controls the achieved sparsity and the higher the
value of µ, the sparser the solution will be. Due to the randomness of stochastic
algorithms and the non-convexity of the optimization problem, it is not possible to
assign a certain predefined sparsity level given some µ and the same µ can lead to
different sparsity levels. Similar to the ℓ1-norm, optimization using the ℓ2,1-norm
often relies on stochastic subgradient descent in order to be able to converge to a
solution, which can be very inefficient.

2.3. Eigenvalue Computation

This section will go step by step through all the necessary theory and concepts that
are needed in order to compute eigenvalues of the Hessian for large neural networks
and will largely follow [10].

37

Chapter 2: Methods

Given a matrix A ∈ RN×N , the general eigenvalue problem is to find eigenvalues
λ ∈ R and eigenvectors u ∈ RN , such that

Au= λu (2.57)

Eigenvectors describe directions in space that are unaffected by the transformation
induced by matrix A (up to a scaling constant). Furthermore, the corresponding
eigenvalues describe how these vectors change their magnitude and direction. Equa-
tion (2.57) is solved by

det(A−λI) = 0. (2.58)

For symmetric matrices (AT = A), it follows that their eigenvalues are real, λi ∈
R and the N eigenvectors u1, . . . ,uN are orthogonal, real valued and non-zero [24].
This symmetric matrix A can be decomposed as A = QΛQT , where the matrix Q
contains the orthonormalized eigenvectors ui, and the matrix Λ is diagonal with the
corresponding eigenvalues along its diagonal.

Computing eigenvalues and eigenvectors is important in many different fields in
science, ranging from the computation of energy levels in quantum physics [197] to
the computation of the vibrations of a string [178]. The eigenvalues of the Hessian
of a neural network are of particular interest in deep learning. These reveal the local
curvature at a given point in parameter space [125], which can give insights into the
training dynamics and potentially help guide us to find better optimizers in the future.

2.3.1. The Hessian

The Hessian and its corresponding eigenspectrum can be useful in many different
ways, for example in deriving more efficient optimizers or in analyzing different
properties of a neural network model.

The Hessian of a function f : Rn −→ R is defined as

Hi, j =
∂2 f (w)

∂wi∂w j
(2.59)

If the derivative of the function f is continuous, the order of the partial derivatives
does not matter and can be interchanged, which makes the Hessian symmetric. Be-
cause it is a real and symmetric matrix, the Hessian can be decomposed into a set of
real eigenvalues and an orthonormal basis of eigenvectors.

The eigenvalues describe the curvature along their corresponding eigenvector
[125]. Using the eigenvalues of the decomposition, it is often possible to see if the
converged point is at a maximum, minimum or saddle point. If all the eigenvalues
are positive, the function has converged into a minimum. If they are negative, the
function converged to a maximum. If there are negative and positive eigenvalues
present, the function has converged onto a saddle point. If the eigenvalues are zero,
it is not possible to tell to what point the function has converged to and one needs to
further investigate.

The Hessian matrix of a trained model can be also used for outlier identification,
to quantify other sorts of uncertainties or for model validation [137]. It has also been

38

2.3. Eigenvalue Computation

shown that the fraction of negative eigenvalues of the Hessian is related to the rate
of convergence for different optimizers in the non-convex case [99] as well as to the
overall number of critical points in a high-dimensional loss landscape [30].

The condition number C of a matrix A is given by the ratio of the biggest and the
smallest eigenvalue of A

C = max
i, j
| λi

λ j
| (2.60)

The condition number of a matrix A measures the how sensitive some function
K (x) = A−1x is to small changes in its inputs. Poor conditioning of the Hessian
makes it difficult to choose a good step size [24].

If the domain of the function is N-dimensional, the size of the Hessian matrix will
be N2. In real world examples, the dimension of the domain of common neural net-
works is high-dimensional, which results in an extremely large number of elements
of the Hessian. For a VGG-16 network [204] with 138 million parameters, its cor-
responding Hessian will have 1.9× 1016 entries. Storing this Hessian using floats
would require approximately 76 Petabytes of storage.

2.3.2. The R-Operator

The R-Operator was first introduced by [175] and is a linear operator that allows for
efficient Hessian-vector computation. The operator wraps around the forward and
backward propagation of a neural network in order to compute the Hessian-vector
product efficiently.

The Hessian-vector product Hν is computed using

(Hν)i =
n

∑
j=1

∂2 f (w)

∂w j∂wi
v j

=∇∂ f (w)

∂wi
ν.

This is just the directional derivative of the gradient of the objective function along
ν. The directional derivative of some function g along ν is given by

∇νg(w) = lim
r→0

g(w+ rν)−g(w)

r
. (2.61)

In the Hessian-vector case this means that

Hν = lim
r→0

∇ f (w+ rν)−∇ f (w)

r
(2.62)

which is the same as

Hν =
∂

∂r
∇ f (w+ rν)

∣∣∣∣
r=0

(2.63)

The R-operator with respect to the vector ν is defined as

39

Chapter 2: Methods

Rν{ f (w)}= ∂

∂r
f (w+ rν)

∣∣∣∣
r=0

(2.64)

which is the directional derivative of f along the direction ν evaluated at the current
point w. Note that it follows from this definition that Hν = Rν{∇L(w)}. Using
the properties of linear operators, computing the Hessian-vector product requires the
computation of the R-operator during a forward pass and a backward pass.

As an example, consider a fully-connected network, which is given by:

hl
i = ∑

j
wl

i, jz
l
j,

zl+1
i = χ

l
i(h

l
i)

(2.65)

where wl
i, j represents the parameters of the model at layer l, zl

j represents the j-th
input to layer l and χl(hl) the non-linear activation function at layer l. Note that
z0 = x, with x the input samples. The backward pass for layer l is given by

∂ f
∂zl

i
= ∑

m

∂ f
∂hl

m
wl

i,m,

∂ f
∂hl

i
=

∂ f
∂zl+1

i

∂χl
i(s)

∂s

∣∣∣∣
s=hl

i

,

∂ f
∂wl

i, j
=

∂ f
∂hl

i
zl

j

(2.66)

When the R-operator is now applied to the forward pass, Equations (2.65) become

R {hl
i}= ∑

j

(
vl

i, jz
l
j +wl

i, jR {zl
j}
)
,

R {zl+1
i }=

∂χl
i(s)

∂s

∣∣∣∣
s=hl

i

R {hl
i}.

(2.67)

Note that the R-operator at the inputs is R {z0} = 0 and that R {w} = v. An il-
lustration of the forward pass without and with the R-operator is depicted in Figure
2.9.

Finally, applying the R-operator during the backward pass one obtains

R
{

∂ f
∂zl

i

}
= ∑

m

(
R
{

∂ f
∂hl

m

}
wl

i,m +
∂ f
∂hl

m
ν

l
i,m

)
,

R
{

∂ f
∂hl

i

}
= R

{
∂ f

∂zl+1
i

}
∂χl

i(s)
∂s

∣∣∣∣
s=hl

i

+
∂ f

∂zl+1
i

∂2χl
i(s)

∂s2

∣∣∣∣
s=hl

i

R
{

hl
i

}
,

R

{
∂ f

∂wl
i, j

}
= R

{
∂ f
∂hl

i

}
zl

j +
∂ f
∂hl

i
R
{

zl
j

}

(2.68)

40

2.3. Eigenvalue Computation

zl

W l

hl

R

zl

W l

R zl

V l

+

hlR

Figure 2.9.: Illustration of the R -operator for a linear operator in the forward pass. Apply-
ing the operator splits the forward pass into two paths as seen on the right-hand
side.

Looking at Equation (2.68), it becomes evident why a forward pass using the R-
operator is needed, which is due to the existence of R

{
zl

j

}
and R

{
hl

i
}

in these
backward pass equations. Using this operator allows for an efficient computation of
the Hessian-vector product in O(N) instead of O(N2), without having to store the
Hessian during this process.

2.3.3. The Lanczos Algorithm

Given a symmetric matrix A, the goal is to efficiently compute (some of) its eigen-
values and eigenvectors. Here, the eigenvalues of a matrix A are represented by λi

and their corresponding eigenvectors by ui. This means that the following equation
is satisfied

Aui = λiui (2.69)

and without loss of generality assume that the eigenvalues are sorted by magnitude
|λ1| ≥ |λ2| ≥ . . . |λn|.

If A is a symmetric n×n matrix, it follows that its eigenvalues are real and it has
a set of n mutually orthogonal, real and nonzero eigenvectors u1, . . . ,un. Because
of this property, the eigenvectors form a basis in this space and any vector can be
written in terms of these eigenvectors. This means that an arbitrary vector x can be
decomposed into

x=
n

∑
i=1

ξiui. (2.70)

Another property that A satisfies is that the matrix Ak has eigenvalues λk
1,λ

k
2, . . . ,λ

k
n.

This can be shown by repeatedly multiplying the matrix A with an eigenvector.

41

Chapter 2: Methods

The simplest algorithm that is able to compute the largest eigenvalue and its corre-
sponding eigenvector is the power iteration method [157]. The basic idea behind the
power iteration method is that by multiplying a randomly chosen vector repeatedly
with the matrix A, the largest eigenvalue will eventually start to dominate. This is
shown in Equation (2.71), where the matrix Ak is multiplied by an arbitrary vector x

Akx=
n

∑
i=1

ξiλ
k
i ui. (2.71)

Here, the decomposition of x shown in Equation (2.70) was used. At iteration k, the
power iteration method is given by

x(k+1) =
Ax(k)
∥∥Ax(k)

∥∥ (2.72)

where the vector x(k) converges to the eigenvector associated with the biggest eigen-
value of matrix A.

While the power iteration method is able to compute eigenvalues, two issues arise.
One is that computations of previous iterations in the power method are discarded,
which could be used in later iterations. The second issue with with the power it-
eration method and most other methods that compute eigenvalues of a matrix, is
that they require the entire matrix to be computed. In case of very large neural net-
works, computing and storing the Hessian in infeasible, and thus most methods used
in eigenvalue computation are not suitable for this problem at hand.

One method that makes use of previous iterations and only requires Hessian-vector
products is the Lanczos algorithm [120]. The Lanczos algorithm aims to find an
invariant subspace of the Krylov space [116], which is defined as

K m(x,A) := span{x,Ax,A2x, . . . ,Am−1x} ⊂ RN . (2.73)

As evident from Definition (2.73), a natural basis of this space is
{x,Ax,A2x, . . . ,Am−1x}. This basis converges to the direction of the largest eigen-
value of A. Thus, it is badly conditioned with increasing m. Therefore, in the Lanczos
method the vectors q j of this basis are successively orthogonalized against all the oth-
ers

r j = Aq j−
j

∑
i=1
qiq

T
i Aq j (2.74)

and

q j =
r j∥∥r j
∥∥ (2.75)

This orthogonalized basis {q1,q2, . . . ,qm} is an orthonormal basis of K m+1(x,A)
and is called the Arnoldi basis. In the case of symmetric matrices A, as will be the
case in this thesis, it is also called the Lanczos basis. The Lanczos algorithm is a
method to compute an orthonormal basis of the Krylov space for a symmetric matrix
A.

42

2.3. Eigenvalue Computation

By multiplying the matrix A with the basis Qk = [q1,q2, . . . ,qk], one obtains

QT
k AQk = QT

k QkHk = Hk (2.76)

with Hk the Hessenberg matrix, which in the case of a symmetric matrix simplifies to
a tridiagonal matrix Tk. The matrix Tk has the following form

Tk =

α1 β1

β1
.
. βk−1

βk−1 αk

(2.77)

Thus, Equation (2.74) simplifies to

r j = Aq j−q j (q
T
j Aq j)︸ ︷︷ ︸
α j

−q j−1 (q j−1Aq j)︸ ︷︷ ︸
β j−1

(2.78)

It is easy to compute the eigenvalues of Tk and it can be shown that the eigenvalues
of the tridiagonal matrix Tk are also eigenvalues of A:

Tks
(k)
i = λ

(k)
i s

(k)
i

AQks
(k)
i = QkTks

(k)
i = Qkλ

(k)
i s

(k)
i

with s(k)i the i-th eigenvector of the tridiagonal matrix Tk that has been computed at
iteration k.

The pseudocode for the Lanczos algorithm is shown in Algorithm 1.

Algorithm 1 Lanczos algorithm

Require: Matrix A ∈ RN×N , initialization x
q = x/∥x∥; Q1 = [q]
r = Aq
α1 = q

T r
r = r−α1q
for j = 2,3, . . . do
v = q; q = r/β j−1; Q j = [Q j−1,q]
r = Aq−β j−1v
α j = q

Tr
r = r−α jq
β j = ∥r∥
if β j = 0 then return

(
Q ∈ RN× j;α1, . . . ,α j;β1, . . . ,β j−1

)

end if
end for

The computational cost for one iteration of the Lanczos algorithm is independent
of the index of the iteration. Each iteration requires one matrix-vector multiplication
and 7N additional floating point operations, with N the length of the rows or columns

43

Chapter 2: Methods

of the symmetric matrix A [10].
There exist other variants of the Lanczos algorithm, like the block Lanczos algo-

rithm [48] or the randomized block Lanczos algorithm [188], which are more mem-
ory efficient and have a faster convergence with respect to iterations.

2.3.4. The Stochastic Lanczos Algorithm

For problems where individual eigenvalues and their eigenvectors are not of main
interest but rather the distribution of all the eigenvalues of the matrix, the regular
Lanczos algorithm is too computationally expensive, especially in the case of very
large neural networks where million to billion different eigenvalues would have to be
computed using this method.

The stochastic Lanczos quadrature algorithm [71, 139] is a method for the ap-
proximation of the spectral density of very large matrices. The eigenvalue density
spectrum is given by:

Φ(t) =
1
N

N

∑
i=1

δ(t−λi) (2.79)

where N is the number of parameters in the network, λi is the i-th eigenvalue of the
Hessian and δ(x) is the Dirac delta function given by

δ(x) =

{
1 if x = 0
0 else

In the stochastic Lanczos quadrature algorithm, the eigenvalue density spectrum is
approximated by a sum of Gaussian functions:

Φσ(t) =
1
N

N

∑
i=1

N (t;λi,σ) (2.80)

where

N (t;λi,σ) =
1

σ
√

2π
exp(−(t−λi)

2

2σ2) (2.81)

The stochastic Lanczos quadrature algorithm uses the regular Lanczos algorithm with
full reorthogonalization [203] in order to compute eigenvalues and eigenvectors of the
Hessian and to ensure orthogonality between the different eigenvectors. The Lanczos
algorithm runs for m iterations with starting vector νi and returns a tridiagonal matrix
Tm, which is diagonalized:

Tm =ULUT (2.82)

By setting ωi = (U2
1,i)

m
i=1 and li = (Lii)

m
i=1, the resulting eigenvalues and eigenvec-

tors are used to estimate the true eigenvalue density spectrum:

Φ̂(t;νi,σ) =
m

∑
i=1

ωiN (t; li,σ) (2.83)

This process is repeated k times with different starting vectors νi for the Lanczos

44

2.3. Eigenvalue Computation

computations. The resulting approximation to the spectral density Φ̂σ(t) is

Φ̂σ(t) =
1
k

k

∑
i=1

Φ̂(t;νi,σ) (2.84)

The pseudocode for the stochastic Lanczos quadrature algorithm is shown in Al-
gorithm 2.

Algorithm 2 Stochastic Lanczos quadrature algorithm

Require: Number of iterations k, number of eigenvalues m
Initialize Gaussian vectors (ν1, ...,νk)
for i from 1 to k do

Run Lanczos with reorthogonalization for starting vector νi

Obtain tridiagonal matrix Tm

Diagonalize Tm =ULUT

Set li = (Lii)
m
i=1 and ωi = (U2

1,i)
m
i=1

Compute Φ̂(t;νi,σ) = ∑
m
i=1 ωiN (t; li,σ)

end for
Compute average Φ̂σ(t) = 1

k ∑
k
i=1 Φ̂(t;νi,σ)

return Φ̂σ(t)

2.3.5. Computing Eigenvalues of Neural Networks

At critical points of the loss function, the determinant of the Hessian can be used to
give insight into the curvature of the underlying loss landscape. Since the determi-
nant of the Hessian is equal to the multiplication of all its eigenvalues, computing the
eigenvalues can give important insight into the underlying critical point the network
has converged to. If all the eigenvalues are positive, this corresponds to a positive
determinant of the Hessian, which is turn means that the network has converged to
a minimum with a given positive curvature. In general, local curvature can only be
described by the determinant of the Hessian whenever the network has exactly con-
verged to some extremum, i.e. its gradient is zero. There has been some debate about
whether flat minima allow the network to generalize better, as has been argued by
[89, 92, 109]. The authors of [55] show that the structure of neural network models
results in many different symmetric configurations, where the model behaves exactly
the same. By looking at different examples, the authors are able to make the min-
ima of the neural network arbitrarily sharp or flat with regard to common sharpness
measures, without changing the generalization properties of the network itself. They
achieve this in a toy example by rescaling the parameters w1,w2 of a neural network
given by f (x(i);w1,w2) = relu(x(i)w1)w2 for input sample x(i). Rescaling them by
w′1 = αw1 and w′2 = w2/α for some value of the scalar α leaves the output of the
network unaffected, while the perceived sharpness of a minimum changes a certain
amount. This property of neural networks also applies to architectures which contain
convolutions.

Generally, curvature in three-dimensional space is described by the Gaussian cur-
vature [180], which is intrinsic to the surface. For a hypersurface given by z= f (x,y),

45

Chapter 2: Methods

4 2 0 2 4
x1

4

2

0

2

4
x 2

Loss Landscape (with log())
Converged Point

3.40
2.27
1.14
0.00

1.13
2.26
3.39
4.53
5.66
6.79

(a) Contour plot of the function L for α= 1.
The converged point is located at w⋆ =
(1,0.7).

40 20 0 20 40
x1

0.4

0.2

0.0

0.2

0.4

x 2

Loss Landscape (with log()) for = 10
Converged Point

3.40
2.27
1.14
0.00

1.13
2.26
3.39
4.53
5.66
6.79

(b) Contour plot of the function L for α =
10. The converged point is located at
w⋆ = (10,0.07).

4 2 0 2 4
x1

4

2

0

2

4

x 2

Product of Hessian Eigenvalues
Converged Point

79407
70583
61760
52936
44112
35288
26464
17640
8817

7

(c) Determinant of the Hessian of L . The
eigenvalues of the converged point at
w⋆ = (1,0.7) are λ1 = 9.9 and λ2 =
1.11× 10−4. The determinant of the
Hessian at w⋆ is 0.0011.

40 20 0 20 40
x1

0.4

0.2

0.0

0.2

0.4
x 2

Product of Hessian Eigenvalues for = 10
Converged Point

79407
70583
61760
52936
44112
35288
26464
17640
8817

7

(d) Determinant of the Hessian of L for α=
10. The eigenvalues of the converged
point at w⋆ = (10,0.07) are λ1 = 660
and λ2 = 1.67×10−6. The determinant
of the Hessian at w⋆ is 0.0011.

4 2 0 2 4
x1

4

2

0

2

4

x 2

Gaussian Curvature
Converged Point

18.83
16.49
14.15
11.81
9.47
7.13
4.79
2.45
0.11

2.23

(e) Gaussian curvature of L . The Gaussian
curvature at the converged point w⋆ =
(1,0.7) is 0.0011.

40 20 0 20 40
x1

0.4

0.2

0.0

0.2

0.4

x 2

Gaussian Curvature for = 10
Converged Point

3.527
2.940
2.352
1.765
1.178
0.590
0.003

0.585
1.172
1.760

(f) Gaussian curvature of L for α = 10.
The Gaussian curvature at the converged
point w⋆ = (10,0.07) is 0.0011.

Figure 2.10.: Depiction of the function L(x,y;w1,w2) = ∑
n
i=1(f (x(i);w1,w2)− y(i))2. The

neural network is given by f (x(i);w1,w2) = relu(x(i)w1)w2. Plot (a) depicts
the contours of the loss landscape of L , while plot (b) depicts the same func-
tion with the weights rescaled by w′1 = αw1 and w′2 = w2/α for α = 10. Plots
(c) and (d) show the determinant of the Hessian for α = 1 and α = 10, while
plots (e) and (f) show the Gaussian curvature for α = 1 and α = 10.

46

2.3. Eigenvalue Computation

which is embedded in three-dimensional space, a Monge patch is given by g(x,y)=
(x,y, f (x,y)). For this case, the Gaussian curvature κ is given by

κ =
(∂xx f)(∂yy f)− (∂xy f)2

(1+(∂x f)2 +(∂y f)2)2 . (2.85)

This shows how at an extremum, where ∂x f = 0 and ∂y f = 0, the curvature is de-
scribed by the determinant of the Hessian. This means that in order to have a measure
of curvature inside minima that does not change upon rescaling of the weights, one
has to multiply the eigenvalues of the Hessian in order to compute its determinant. It
is also important to note that the determinant of the Hessian gives wrong curvature
estimates at points where the gradient does not vanish. At these points the Gaussian
curvature gives the correct value of the optimization surface. The Gaussian curvature
changes when the weights are rescaled, which is due to the denominator in Equation
(2.85). At points where the gradient vanishes, the this measure is unaffected by the
rescaling of the weights.

A similar argument holds in higher dimensions, where the notion of the Gaussian
curvature can be extended to a high-dimensional hypersurface. There, this measure is
again an intrinsic property of the surface up to the sign [212, Corollary 23]. The im-
portant fact to keep in mind is that while other commonly used measures for curvature
(certain eigenvalues or the trace of the Hessian) are not intrinsic to a hypersurface,
the Gaussian curvature is. This means that isometric hypersurfaces have the same
Gaussian curvature up to the sign [212].

Figure 2.10 shows the effects of rescaling the weights. One can observe how the
overall shape of the loss landscape remains unchanged after the rescaling, while the
eigenvalues of the Hessian change drastically. Also, while the product of all the
eigenvalues remains constant, the difference between the Hessian determinant and the
Gaussian curvature across the parameter space shows how these two measures differ
substantially when the gradient is non-zero. This highlights some important aspects
when considering the curvature of minima. Firstly, the value of different eigenvalues
can be misleading and making judgements about the sharpness of certain minima
based on these values can be ill-advised. Taking the product of all the eigenvalues
removes this issue in theory, though practically the computation of the determinant
of the Hessian for large neural networks is infeasible. Another issue is that this
determinant only gives a correct curvature interpretation whenever the network has
converged to an extremum, which can make the curvature estimation based on the
Hessian away from those points incorrect.

On the practical side, the issues for computing the eigenvalues of neural networks
are twofold. Firstly, computing the Hessian for any reasonably sized neural net-
work is computationally intractable due to the number of parameters of the network.
Secondly, most common methods for computing eigenvalues of matrices require the
matrix to be stored explicitly.

The methods described in the preceding subsections solve these problems and
make it possible to compute eigenvalues of neural networks efficiently. The main
idea is to use the Lanczos method for eigenvalue computation without having to store
the entire Hessian matrix. The Lanczos method is very fast for eigenvalue com-
putation of symmetric matrices. Excluding the Hessian-vector multiplication, each

47

Chapter 2: Methods

iteration of the Lanczos algorithm for computing m eigenvalues has a computational
complexity of O(N). The remaining issue is that regular Hessian-vector multiplica-
tion has a complexity of O(N2). In total this amounts to a complexity of O(mN2),
which is too high for large neural networks. The key trick in order to be able to
compute eigenvalues of large neural networks is the use of the R-operator [175]. Us-
ing the R-operator, the Hessian-vector computation has a computational complexity
of O(N), which reduces the overall complexity of computing eigenvalues to O(mN).
For a small number of eigenvalues and eigenvectors, this computation is now feasible
even for very large neural networks.

This section also introduced the stochastic Lanczos quadrature method, which al-
lows computation of the full eigenvalue density spectrum of the Hessian. This method
uses the Lanczos algorithm [120] and as [71] shows, one can approximate the full
eigenvalue spectrum by only computing m Lanczos iteration steps and then diagonal-
izing the resulting m×m tridiagonal matrix. This procedure is repeated k times with
different starting vectors. Using the resulting eigenvalues and eigenvectors of this
tridiagonal matrix, one can approximate the full eigenvalue spectrum using Gaus-
sians to high accuracy in only O(Nmk). The first paper to apply this method for
neural networks was [172].

2.3.6. Parallelization Techniques

Even though the Lanczos and the stochastic Lanczos algorithm are better suited for
large matrices, very large neural networks are too big to compute eigenvalues in
reasonable time. Thus, the need for parallelization techniques arises. For the Lanc-
zos algorithm only the Hessian-vector product is needed instead of the full Hessian
matrix. As mentioned before, this allows for the use of the R-operator to compute
eigenvalues efficiently. Since the R-operator can essentially be treated like a forward
and backward pass of a neural network, this opens up different possibilities to employ
parallelization techniques.

By using the Message-Passing Interface Standard (MPI) [155], the Lanczos algo-
rithm can be implemented in a data-parallel fashion, as was introduced in [68]. The
dataset is distributed among the different workers and each worker accumulates its
own Hessian-vector products by using the R-operator. After each worker has finished
the computations, their resulting vector is sent to a master-worker where all the dif-
ferent vectors are summed by using the MPI Reduce operation. The pseudocode is
shown in Algorithm 3.

The data parallel approach is able to process far more samples at the same time and
thus produce more accurate estimates of the true Hessian-vector product. Since the
R-operator behaves very similar to the regular forward and backward propagation in
neural networks, future research could look into model parallelism as well. A sketch
of the data-parallel Lanczos method is depicted in Figure 2.11.

Novel Iteration-Parallel Stochastic Lanczos. This thesis also introduces another
approach to parallelize the stochastic Lanczos quadrature algorithm, that proves to
be much more scalable than the data-parallel approach up to a certain number of
workers. The basic idea is to let each worker compute one iteration of the stochastic
Lanczos quadrature algorithm for different initializations and then accumulate all the

48

2.3. Eigenvalue Computation

Algorithm 3 Data-parallel Lanczos. Calculation of Hessian-vector products Hν by
using the R-operator

Require: Vector ν and neural network model ψ(w)
Set batch size m and therefore divide the dataset D into M = |D|/m mini-batches
for i from 1 to M do

Worker W j grabs batch M(i) and starts computing the Hessian-vector product
(Hν)i = R (ψ(w,M(i)),ν)
end for
The resulting Hessian vector product gets accumulated during this loop for each
worker (Hν) j =

1
|I j| ∑r∈I j(Hν)r where I j contains the indices of batches that were

computed for worker W j

Send all resulting (Hν) j to the master-worker using Hν = MPI Reduce((Hν) j)
return Hessian vector product over all samples Hν

Dataset

W1

W2

..
.

Wp−1

Wp

(Hνi)1

(Hνi)2

..
.

(Hνi)p−1

(Hνi)p

+ W

Compute Lanczos
iteration i with
the Hessian-vector
product Hνi.

B
at

ch
1

Batch 2

Batch M-1

B
atch

M
Hνi

Figure 2.11.: Sketch of the data-parallel Lanczos method shown in Algorithm 3. There ex-
ist p different workers W j which grab different batches from the dataset and
compute the Hessian-vector product for their batch in parallel. These vec-
tors are sent to the master worker W , which uses the Hessian-vector product
from all the workers in order to compute the current iteration of the Lanczos
method. Afterwards, in the next iteration of the Lanczos method the master
worker sends the next vector νi+1 to each worker. Every worker then com-
putes the Hessian-vector product with the new vector νi+1. This last step has
been omitted from the sketch in order to preserve clarity.

results at the end on the master-worker. This approach is summarized in Algorithm
4. An illustration of this algorithm is shown in Figure 2.12.

49

Chapter 2: Methods

Algorithm 4 Parallel stochastic Lanczos quadrature algorithm with MPI

Require: Number of iterations k, number of eigenvalues m
Initialize Gaussian vectors (ν1, ...,νk) and split this set to p different workers
for νi from the set assigned to each worker do

Run Lanczos with reorthogonalization on worker W j

Obtain tridiagonal matrix Tm

Diagonalize Tm =ULUT

Set li = (Lii)
m
i=1 and ωi = (U2

1,i)
m
i=1

end for
Each worker sends its computed li and ωi from all different initializations to the
master-worker using MPI Gatherv.
Compute average on the master-worker W :
Φ̂σ(t) = 1

k ∑
k
j=1 ∑

m
i=1 ω j,iN (t; l j,i,σ

2)

return Φ̂σ(t)

Instead of parallelizing on the dataset as in the previous method, this method com-
putes the different iterations in parallel. Since each iteration is independent of the
others, the results of each worker are summed and averaged at the end in order to
obtain the result.

ν1

W1

ν2

W2

. . . νk

Wp

Lanczos with νk T k
m =UkLk(Uk)T

Φ̂σ(t) = 1
k ∑

k
j=1 ∑

m
i=1 ω j,iN (t; l j,i,σ

2)

Starting Vectors

lk,i = Lk
ii,

ωk,i = (Uk
1,i)

2

. . .

. . . l1,i,ω1,i

l2,i,ω2,i

Figure 2.12.: Sketch of the parallel stochastic Lanczos quadrature algorithm with iteration
parallelism. The k different iterations are distributed among the different
workers W j. Each iteration uses a different starting vector vs which is used as
the starting vector for the Lanczos algorithm, that runs for m iterations. After-
wards, the tridiagonal matrix T s

m is decomposed into T s
m =U sLs(U s)T using a

LU-decomposition. Next, ls,i and ωs,i are extracted from the Ls and U s matri-
ces and after all the workers have computed their corresponding values those
are summed using Equation (2.84).

Scalability. The scalability of a parallel algorithm is measured by measuring the

50

2.3. Eigenvalue Computation

speedup given by

S =
T1

Tp
, (2.86)

where T1 is the time for one process and Tp the time for p processes [182]. In this
experiment the scalability of the parallel stochastic Lanczos quadrature algorithm is
measured and each node contains two Nvidia GTX 1080ti GPUs, which are assigned
sequentially by first filling one node and then populating the next node with increas-
ing number of ranks.

The standard deviation on the datapoints is calculated as follows:

σs =

√
(

1
Tp

)2σ2
T1
+(

T1

T 2
p
)2σ2

Tp
(2.87)

Strong scaling is measured by keeping the problem size fixed and varying the num-
ber of GPUs. The parallelizable fraction of this parallel implementation is measured
according to Amdahl’s law [7]:

S =
1

(1− f)+ f/p
, (2.88)

where f is the parallelizable fraction of the implementation and p refers to the number
of GPUs working in parallel on the problem. A scaling plot of both methods, the
data-parallel and the iteration-parallel method, is depicted in Figure 2.13.

Figure 2.13.: Speedup of the stochastic Lanczos quadrature algorithm parallelized with the
data-parallel and iteration-parallel approach.

One can see that fitting Formula 2.88 to the data, one obtains a parallelizable fraction
of f = 95.5± 0.4% for the iteration-parallel method. Fitting the model to the data-
parallel approach yields a parallelizable fraction of f = 37±2%, which is worse than
the novel method.

One benefit of the iteration-parallel method, besides the speedup, is the much eas-
ier implementation than that of the data-parallel approach. But there also exist limita-

51

Chapter 2: Methods

tions to the iteration-parallel method. In the case where the number of nodes exceeds
the number of iterations, the method is not able to scale anymore. This is one strength
of the data-parallel method, which can scale in theory up to the number of samples
in the dataset, which is typically very large in deep learning.

Future research could try and combine both methods into one, where different
groups of workers compute one iteration in parallel and all workers of a specific group
compute the individual Hessian-vector products using the data-parallel approach.

52

Chapter 3
Loss Surface Visualization

Training deep neural networks boils down to very high-dimensional and non-convex
optimization problems. These are usually solved by a wide range of stochastic gradi-
ent descent methods like SGD or Adam. While these current training methods tend
to work well in practice, many gaps exist in their theoretical understanding. Some ex-
amples of these theoretical gaps include convergence and generalization guarantees,
which are induced by properties of the optimization surface (sometimes referred to as
the loss landscape). In order to gain deeper insights into the optimization surface and
how different optimizers navigate through it during training, a number of recent pub-
lications have proposed methods in order to visualize and analyze those optimization
surfaces. However, some of these proposed methods have shortcomings that hinders
their applicability. In this section, the topic of loss surface visualization is explained,
together with the potential shortcomings of certain methods. Pseudocode is provided
for efficient computation of loss surfaces and projecting training trajectories onto 2D
planes. This thesis also introduces a method for visualizing loss surfaces and trajec-
tories in a new way, improving upon the existing methods. Also, this section details
how to parallelize the visualization computations and shows several examples of use
cases. These methods, as well as their parallel versions have been released in the
toolbox GradVis. GradVis is an open source library for efficient and scalable vi-
sualization and analysis of deep neural network loss landscapes in TensorFlow and
PyTorch. It allows to plot 2D and 3D projections of optimization surfaces and trajec-
tories, as well as high resolution second-order gradient information for large neural
networks.

3.1. Overview

The main idea behind loss surface visualization is to project the high-dimensional pa-
rameter space down onto a lower-dimensional plane. The goal is to find a projection
that is able to capture a lot of information of the high-dimensional space. In general,
the objective is to find a mapping

ϕ : Rk −→Θ,
such that L ◦ϕ : Rk −→ R

53

Chapter 3: Loss Surface Visualization

such that the composition ofϕwith the loss function L results in a lower-dimensional
domain that can be visualized. The dimensionality of the domain of ϕ usually has a
value of k ∈ {1,2}.

A simple example of a 1-dimensional path is a linear interpolation between two
points in parameter space.

ϕ(t) = (1− t)w(1)+ tw(2) (3.1)

for t ∈ [0,1], where w(1) and w(2) are two points in parameter space. Figure 3.1
shows an example of projecting a 2-dimensional plane onto a 1-dimensional line.

−4 −2 0 2 4−4
−2

0
2

4

−5

0

5

w1
w2

L(
w

1,
w

2)

(a) Optimization Surface

−4 −2 0 2 4

−4

−3

−2

−1

0

t

L(
φ
(1
) (

t)
,φ

(2
) (

t)
)

(b) Projection onto a Line

Figure 3.1.: Toy example of an optimization surface with a projec-
tion onto a 1-dimensional line. Plot (a) shows the function

L(w1,w2) = exp−0.25w1−0.1w2(sin(w1)+ cos(w2))

together with a line that is parametrized in the following way:

ϕ(t) =
(
−2
t

)

Note that in this example w1 and w2 denote the different dimensions of the
parameters space and not different points in the parameter space as used in this
chapter up to this point. Plot (b) depicts the optimization function along this
parametrized line for t ∈ [−4,4].

An example for a visualization onto two dimensions is given by a plane that is
spanned by three points in parameter space

ϕ(α,β) =w(1)+α(w(2)−w(1))+β(w(3)−w(1)) (3.2)

where w(1), w(2) and w(3) are points in parameter space.
First attempts that aimed to visualize loss landscapes were presented by [73]. The

authors drew a line from the initialization point to the converged minimum. Along
this line, the loss is calculated and plotted. They were able to show that the loss along
this line follows a monotonically decreasing path. The authors of [131] introduced
a new method to visualize the loss landscape. Their main contributions include the

54

3.2. Principal Component Analysis in High-Dimensional Spaces

use of filter-wise normalization to combat the scaling invariance of the neural network
weights, using a PCA [64] to find meaningful directions in weight space and reducing
the problem onto a 2D plane instead of just a 1D line. The projection of the trajectory
onto a 2D plane was performed by spanning the plane in parameter space around the
converged point w∗ and taking the loss L(w∗+αb∗1 + βb∗2) at each point on this
plane, with b∗1 and b∗2 the directional vectors from PCA that contain most of the
information of the trajectory of the neural network during training.

Filter-Wise Normalization As previously stated in Section 2.3.5, [55] show how
non-negative homogeneous activation functions lead to scale invariance in deep neu-
ral networks. Some of the commonly used activation functions that fall into this
category are ReLUs, leaky ReLUs [150] and maxout-networks [74]. Using this prop-
erty, the authors are able to construct arbitrarily sharp minima without changing the
generalization of the network.

In deep neural network visualization, this scale invariance of the network poses a
problem. When comparing two different minima, their apparent sharpness should be
independent of the individual weight scaling. To deal with this issue, [131] introduce
filter-wise normalization. Their goal is to rescale the directional vector in order to
have the same norm for each convolutional filter.

Filter-wise normalization takes some directional vector in weight space b and
transforms it using

b∗i, j =
bi, j∥∥bi, j
∥∥

F

∥∥wi, j
∥∥

F (3.3)

where the indices i and j denote the j-th filter in the i-th convolution of the network.
The filters are normalized using the Frobenius norm. Normalizing the directional
vectors using the filter-wise normalization method scales the directional vector so
that it locally has the same magnitude as the corresponding filter. This prevents cases
in which the directional vector is much larger in certain dimensions compared to the
corresponding weight of the neural network or vise versa.

3.2. Principal Component Analysis in High-Dimensional
Spaces

Principal component analysis [64] is a dimensionality reduction technique. PCA is
a method that aims to represent data in a subspace of lower dimension with as little
loss of information as possible.

Given data x1,x2, ...,xl ∈ Rd , write the matrix containing the datapoints as X =
(x1,x2, ...,xl). Then the PCA is given as

max
Θ∈Rd×k ∑

k
j=1θ

T
j XXTθ j,

s.t. θi ⊥ θ j for i ̸= j and ∥θ1∥= ...= ∥θk∥= 1.

This can be solved via singular value decomposition (SVD) [70] of the scatter ma-
trix Sl = XXT . Note that the scatter matrix is a symmetric matrix and is therefore
diagonalizable. Sorting the resulting eigenvectors with respect to their corresponding

55

Chapter 3: Loss Surface Visualization

eigenvalue in descending order, one chooses the k eigenvectors corresponding to the
biggest eigenvalues in order to form the matrix Θ = (θ1, . . . ,θk) with Θ∈Rd×k. This
matrix of eigenvectors is used to transform the initial samples onto the new, lower
dimensional subspace

si = Θ
Txi (3.4)

with si ∈ Rk the transformed sample in the new subspace.
The authors of [131] use this approach in order to find a plane that captures most

of the information of the trajectory of the neural network during training. By taking
different points in parameter space along the training path X = (w(1),w(2), ...,w(l))
and then applying the PCA in order to project these samples down to k = 2 dimen-
sions, the authors find that these two components contain around 80% of the variance
of the original trajectory.

According to [135], the time complexity of performing a PCA on the dataset X ∈
Rd×l using SVD is O

(
2dl2 + l3 + l +dl

)
. In the context of deep neural networks,

even though the dimension of the individual datapoints is extremely large compared
to the number of datapoints (l << d), the PCA computation is still feasible.

Recently, this approach of using PCA in order to find good directions in param-
eter space has been criticised by [9]. The authors show that using PCA on high-
dimensional random walks always results in Lissajous trajectories. They argue that
the training trajectory, if plotted using PCA, always performs the same patterns,
thereby rendering the information one can extract from the trajectory useless. In
the limit of infinite dimensions, the PCA of a random walk with arbitrary noise dis-
tribution will generate a Lissajous curve when projected down onto any two PCA
components. This is also shown with a random walk with momentum, where the first
PCA component contains around 60% of the variance, while 80% of the variance
is in the first two components. This is similar to what is being observed using the
method of [131] for finding suitable directions in the parameter space of neural net-
works. Thus, even though this method apparently captures a lot of information of the
training path in the projected subspace, in reality this can be deceiving. The fact that
this method yields very similar Lissajous trajectories for every training run indicates
that no real information of interest is captured. Thus, another method is needed in
order to visualize the trajectories taken during training in a meaningful way.

3.3. Loss Surface Visualization through Neural Network
Eigenvectors

In order to solve the issue posed by using PCA on the high-dimensional network
weights (as discussed by [9]), this thesis proposes using different eigenvectors of the
Hessian of the converged neural network as directional vectors in order to plot the
loss landscape together with the trajectory. The eigenvectors are computed using the
Lanczos algorithm combined with the R-operator in order to efficiently compute the
Hessian-vector product.

Figure 3.2 compares three different methods used to find directions in the loss
surface in order to plot the trajectory. In the first method, two randomly initialized

56

3.3. Loss Surface Visualization through Neural Network Eigenvectors

vectors are chosen, with entries drawn from a normal distribution. The resulting plot
is shown in Figure 3.2a. Next, PCA is used on a set of points in the training trajectory
of the neural network in order to extract the two directions with the highest variance.
The resulting visualization is shown in Figure 3.2b. Lastly, the proposed method
of choosing eigenvectors to plot the trajectory is presented in Figure 3.2c. Here the
eigenvectors corresponding to the highest two eigenvalues of the converged point are
chosen.

(a) Loss landscape with trajec-
tory along two random di-
rections for LeNet on CI-
FAR10.

(b) Loss landscape with trajec-
tory of the same training
run, visualized along two
PCA directions with high-
est variance for LeNet on
CIFAR10, as suggested by
[131].

(c) Loss landscape with trajec-
tory of the same training
run, visualized along eigen-
vectors corresponding to the
two highest eigenvalues for
LeNet on CIFAR10.

Figure 3.2.: Depiction of the loss landscape of LeNet-5 on CIFAR-10 using three different
visualization methods. Plot (a) depicts the loss landscape along two random
directions, plot (b) depicts the use of PCA for finding directions in parameter
space and plot (c) depicts the loss landscape along the two eigenvectors which
belong to the biggest eigenvalues of the converged point.

The random direction method shown in Figure 3.2a provides little to no informa-
tion or insight into the neural network training process. All the training points of
the trajectory are projected onto a small point in space and the training path barely
moves from its initial position. The loss landscape in this projected region appears to
be very noisy and relatively flat.

On the contrary, using PCA to find meaningful directions shows the trajectory
spiraling into the minimum, which appears to be elliptical. As mentioned in Section
3.2, the path of this trajectory is entirely predictable, as it resembles one where the
PCA is taken on a high-dimensional random walk with drift ([9]). Thus, even though
it seems like the trajectory offers some insight into the training procedure, in reality
this method will always result in a similar trajectory when applied to neural networks
that have been trained using common stochastic gradient methods, thereby rendering
this method useless.

The method of using eigenvectors on the other hand shows how the trajectory
initially moves along the gradient of the loss and after reaching the valley it slowly
creeps towards the minimum. This method also makes it possible to pick interesting
eigenvalues that are more challenging for the optimizer. These could for example
be zero or negative eigenvalues, where the network seems to struggle or even ”fail”
during training. This allows monitoring how the training trajectory behaves in these
directions.

57

Chapter 3: Loss Surface Visualization

An example of how different eigenvectors can reveal different behaviors of the
neural network is shown in Figure 3.3. Figure 3.3a depicts the loss landscape visu-
alization along the two eigenvectors corresponding to the two biggest eigenvalues of
the converged point. On the other hand Figure 3.3b shows the same training run, but
visualized along the eigenvectors corresponding to the biggest and smallest eigen-
value of the converged point.

(a) Loss landscape of ResNet-32 trained on
CIFAR-10 using Adam. The two directional
vectors are the eigenvectors corresponding to
the two biggest eigenvalues of the converged
point.

(b) Loss landscape of ResNet-32 trained on
CIFAR-10 using Adam. The two directional
vectors are the eigenvectors corresponding to
the biggest and the smallest eigenvalue of the
converged point.

Figure 3.3.: Loss landscape of ResNet-32 for different choices of eigenvectors. Here a
ResNet-32 architecture is trained on CIFAR-10 using Adam. A learning rate of
0.001 was used and the network was trained for 30 iterations. Both plots were
generated using 20 % of the training samples. The plots have a grid size of 50
on each side. The black triangle indicates the network initialization, while the
red cross denotes the converged point of the network.

As shown in Figure 3.3a, the network finds itself in a locally convex optimization
problem along those two eigenvectors. On the other hand, Figure 3.3b shows that
the network initially struggles to descent into the minimum, which can be due to the
fact that the loss landscape becomes much more noisy for small batch sizes. Both
of these Figures compute the loss landscape visualization for 20% of all the train-
ing samples, while the network only sees a small fraction of those at each training
step. Nonetheless, when the network converges into the minimum in Figure 3.3b,
there are two areas above and below the converged point that have a smaller value
then the converged point. This explains the saddle point structure one would expect,
given the projection along the eigenvectors corresponding to the biggest and smallest
eigenvalue. In this case the network seems to have converged to a saddle point inside
a much larger minimum.

Computing the Loss Surface Visualization Computation of the two-dimensional
loss surface visualization starts by choosing two directional vectors d1,d2 in weight
space together with a pointw(l) in weight space that anchors the plane with φ(0,0) =
w(l). Next, the directional vectors are normalized using filter-wise normalization.

58

3.4. Parallelization of Loss Surface Visualization

In case the trajectory is visualized as well, each point of the trajectory has to be
projected onto the plane as well. Thus, for each point w(i) in the trajectory, the
following equation has to be solved for αi and βi:

ϕ(αi,βi) =w
(i) (3.5)

which in the case of a two-dimensional plane results in:

αib
∗
1 +βib

∗
2 =w

(i)−w(l) (3.6)

where b∗1 and b∗2 are the filter-normalized directional vectors b1 and b2. The last step
is to discretize the plane into a two dimensional grid. Each point of the grid refers to
a specific value of (αi,β j). At each point of the grid the corresponding loss values
are computed using zi, j = L(ϕ(αi,β j)). The pseudocode is described in Algorithm
5.

Algorithm 5 Calculate the loss landscape for a neural network with loss L for the l
weights along the trajectory (w(1), ...,w(l)). The resulting 2D landscape has N points
along each axis on the grid

Require: Weights (w(1), ...,w(l))
Calculate the directional vectors (e.g. using PCA)
b1,b2← PCA(w(1)−w(l), ...,w(l−1)−w(l))
Use filter-wise normalization
b∗1 b

∗
2← Normalize(b1,b2)

Calculate the coefficients of the training path
αi,βi← Solve for αib

∗
1 +βib

∗
2 =w

(i)−w(l) for each i
Calculate the loss values of the path points
zi← L(αib

∗
1 +βib

∗
1 +w

(l))
Calculate the loss values for each point on the grid
Make grid of N samples going from min(αi) to max(αi) for the x-direction and
min(βi) to max(βi) for the y-direction of the grid
for i from 0 to N do

for j from 0 to N do
pi = i(max(α)−min(α))/N
q j = j(max(β)−min(β))/N
zi, j← L(pib

∗
1 +q jb

∗
2 +w

(l))
end for

end forreturn (z1,1, ...,zN,N)

3.4. Parallelization of Loss Surface Visualization

To speed up computation of the loss surface visualization plots, the visualization
method can be trivially parallelized. This is achieved by assigning parts of the evalu-
ation grid to different workers. After each worker has performed the computation of
the assigned subgrid, the master-worker collects their values using MPI Gatherv. The

59

Chapter 3: Loss Surface Visualization

pseudocode for the parallelized version is shown in Algorithm 6 and a visualization
of this method is illustrated in Figure 3.4.

Algorithm 6 Parallel visualization method. Calculate the loss landscape for a neu-
ral network with loss L for the l weights along the trajectory (w(1), ...,w(l)). The
resulting 2D landscape has N points along each axis on the grid

Require: Weights (w(1), ...,w(l))
Calculate the directional vectors (e.g. using PCA)
b1, b2 ← PCA(w(1)−w(l), ...,w(l−1)−w(l))
Use filter-wise normalization
b∗1 b

∗
2← Normalize(b1,b2)

Calculate the coefficients of the training path
αi,βi← Solve for αib

∗
1 +βib

∗
2 =w

(i)−w(l) for each i
Calculate the loss values of the path points
zi← L(αib

∗
1 +βib

∗
2 +w

(l))
Calculate the loss values for each point on the grid
Make grid of N samples going from min({αi}i∈{1,...,N}) to max({αi}i∈{1,...,N}) for
x and min({βi}i∈{1,...,N}) to max({βi}i∈{1,...,N}) for y
Split grid into subgrids according to number of workers p: Xi,Yi for i = 1,...,p
Assign part of the grid to each worker
for x in Xi do

for y in Yi do
zx,y← L(xb∗1 + yb∗2 +w

(l))
end for

end for
Each worker has set of values Zi

Z←MPI Gatherv(Zi)
return Z = (z1,1, ...,zN,N)

In order to estimate the computation time, consider again the algorithm presented
in Algorithm 5. On a square grid, the toolbox evaluates the neural network on the
training samples N2 times, with N the number of points on the grid along each di-
rection. At each grid point, the neural network has to evaluate nb batches, where the
computation of each batch takes time Tin f erence. Therefore, the evaluation time for all
points on the grid is of the order of α+N2Tin f erencenb, with some overhead α for the
computation of the PCA components, as well as for performing the filter-wise nor-
malization. For large enough N this overhead is assumed to be small in comparison.

For example, performing experiments with a ResNet-32 for a batch size of 256
and 2 batches resulted in α = 8s and Tin f erence = 0.005s. Table 3.1 shows, that the
overhead α stays constant while computation time for the loss landscape scales like
N2.

Scalability As already shown in Section 2.3.6, scalability is measured by measur-
ing the speedup

S =
T1

Tp
, (3.7)

with T1 the time for one process and Tp the time for p processes. The measurements

60

3.4. Parallelization of Loss Surface Visualization

−2 −1 0 1 2−2

0

2
0

5

w1

w2

Loss Landscape

−2 −1 0 1 2−2

0

2
0

5

−2 −1 0 1 2−2

0

2
0

5

−2 −1 0 1 2−2

0

2
0

5

−2 −1 0 1 2−2

0

2
0

5

Worker
1

Worker 2

Worker 3

Worker 4

Figure 3.4.: Illustration of the parallel visualization method. The grid is shown in blue and
on the left hand side the entire visualization is depicted. The parallel visualiza-
tion method splits the grid into multiple subgrids which are distributed among
the workers and each worker computes only part of the entire grid. Afterwards
all the workers send their computations back to a master-worker.

for parallel visualization were performed on a GPU cluster where each node contains
two Nvidia GTX 1080ti GPUs which are assigned sequentially by first filling one
node and then populating the next node with increasing number of ranks.

For the parallel visualization method presented in Algorithm 6, measuring the
speedup and fitting Amdahl’s law from Equation (2.88) to the recorded datapoints
yields Figure 3.5.

61

Chapter 3: Loss Surface Visualization

Table 3.1.: Timing of loss landscape calculation and overhead for different grid sizes N
Timing in seconds

N=2 N=10 N=50 N=100
N2Tin f erencenb 0.51 12.72 320 1890
α 8.21 8.01 8.09 8.11

1 2 3 4 5 6 7 8
Number of Threads (GPUs)

1

2

3

4

5

6

7

8

Sp
ee

du
p

S

Resulting fit with f=0.9678 +- 0.0018
Linear scaling

Figure 3.5.: Strong scaling plot for the parallel visualization algorithm.

Fitting Formula 2.88 to the data results in a parallelizable fraction of f = 96.78±
0.18%. The parallelizable fraction is very high, which is likely due to the trivially
parallelizable nature of the algorithm. Additionally, Figure 3.6 plots the absolute
runtime in minutes together with the parallel efficiency of the algorithm.

1 2 3 4 5 6 7 8
Number of GPUs

4

6

8

10

12

14

16

18

Ab
so

lu
te

 ru
nt

im
e

in
 m

in

(a) Plot of the absolute runtime for the parallel vi-
sualization algorithm.

1 2 3 4 5 6 7 8
Number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ra

lle
l e

ffi
cie

nc
y

(b) Efficiency plot for the parallel visualization al-
gorithm.

Figure 3.6.: Depiction of the absolute runtime as well as the efficiency for the parallel vi-
sualization algorithm. Experiments were performed on a ResNet-32 network
trained on CIFAR-10.

As depicted in Figure 3.6a, the absolute runtime drops from around 19 minutes on
one GPU to around 3 minutes for 8 GPUs in parallel. The parallel efficiency shown

62

3.5. Experiments

in Figure 3.6b drops down to a value of about 0.8 for 7 and 8 GPUs.

3.5. Experiments

In this section several examples are presented that investigate the behavior of dif-
ferent optimizers and networks using the method of eigenvectors of the Hessian for
visualization. Using the aforementioned parallelization techniques, this allows com-
putation at each iteration of a neural network at a reasonable timeframe. Also, in
combination with the spectral densities, this offers better insight into the training
dynamics of deep neural networks.

3.5.1. SGD with Momentum

In this experiment, the loss landscape is computed together with the training trajec-
tory of a LeNet-5 architecture that has been trained on CIFAR-10. The loss landscape
visualization as well as the eigenvalue spectra are computed for each of the 196 itera-
tions of the first epoch. During training, the batch size is set to |M(k)|= 256 and the
SGD optimizer uses a learning rate of ε = 0.001 and momentum of ρ = 0.9. After
each iteration the parameters of the neural network model are saved onto the hard
drive.

For the loss landscape visualization a square grid with size N = 50 on each side
is chosen, with an additional border of 40% around the trajectory. For each point on
the grid 20% of all the samples in the training set are used and the loss landscape
is plotted along the two highest eigenvalues of the Hessian at the converged point.
The eigenvalue density plots are computed using the stochastic Lanczos quadrature
algorithm, with k = 10 iterations and m = 80 iterations of the Lanczos algorithm.
These computations were done using 20% of the CIFAR-10 samples as well.

The resulting plots are shown in Figure 3.7. Note that these only show a select
number of plots out of the 196 generated 1. Figure 3.7a depicts the network during
initialization. From a global perspective one can observe from the eigenvalue spec-
trum that at initialization the network finds itself inside a relatively flat saddle point
where most eigenvalues are close to zero. Looking at the loss landscape in the di-
rection of the two eigenvectors which correspond to the two biggest eigenvalues of
the Hessian at the converged point, it can be seen that the network is close to a local
minimum in this subspace. The network struggles to escape this flat saddle point and
only manages to converge towards minima in certain directions after 89 iterations,
which is depicted in Figure 3.7b. In this Figure, the loss landscape plot shows that
the network has converged closer toward the local minimum. The density spectrum
reveals that the bulk of eigenvalues around zero is not as concentrated anymore and
the first eigenvalues are starting to separate from it, which indicates that the network
is starting to converge into minima in certain directions.

The last iteration of the first epoch is depicted in Figure 3.7c. The density spectrum
reveals how there are several distinct eigenvalues bigger than zero that have separated
from the bulk, which indicates that the network has converged into a minimum in
those directions. Looking at the bulk at zero, this plot reveals that there are several

1A video of the full trajectory can be viewed on https://youtu.be/0AKSjp-SHlo

63

https://youtu.be/0AKSjp-SHlo

Chapter 3: Loss Surface Visualization

(a) Loss landscape and eigenvalue density plot of LeNet at initialization.

(b) Loss landscape and eigenvalue density plot of LeNet. Same training run at 89 iterations.

(c) Loss landscape and eigenvalue density plot of LeNet. Same trainig run at 195 iterations.

Figure 3.7.: Loss landscape and Hessian eigenvalue density for three out of 195 iterations.
Here a LeNet architecture is trained in CIFAR10 with using SGD with mo-
mentum. A learning rate of 0.01 was used as well as a momentum of 0.9. Both
plots were generated using 20 % of the training samples. The visualization is
depicted along two eigenvectors corresponding to the two highest eigenvalues
of the Hessian. The plot has a grid size of 50 on each side.

negative eigenvalues present, therefore the network has converged to a maximum in
these dimensions and overall it has converged to a saddle point. Looking at the loss
landscape, the network has converged into the local minimum of the subspace. The
trajectory oscillates around the minimum chaotically, which is probably a result of

64

3.5. Experiments

the fixed learning rate and the momentum which was used in the SGD optimizer. It is
also interesting to note that the loss landscape in this visualization is convex around
the entire trajectory and not only locally at the converged point.

3.5.2. Adam

This section depicts the loss landscape of a ResNet-32 trained with the Adam op-
timizer on CIFAR-10. Contrary to the SGD optimizer in Section 3.5.1, the Adam
optimizer has an adaptive learning rate. The network is trained for 60 Epochs and
the Adam optimizer uses a learning rate of ε = 6× 10−4 and momentum values of
β = (0.9,0.999). The loss surface visualization uses 15% of all the training sam-
ples and visualizes the trajectory along the two eigenvectors that correspond to the
biggest eigenvalues at the converged point. The Hessian eigenvalue density spectrum
is computed using 5% of all the training samples.

The Hessian eigenvalue spectrum for epochs 0, 6 and 59 together with the loss
landscape visualization along the eigenvectors corresponding to the two big eigen-
values is shown in Figure 3.8. The trajectory in the visualization does not oscillate as
much as in the SGD case. Once the network has converged inside the minimum, the
adaptive learning rate gets smaller.

In Figure 3.8a the network initialization is shown. Looking at the visualization plot
at the left, it appears that the network is located on the edge of a convex optimization
surface. The eigenvalue density shows that there is one distinct eigenvalue separated
from the bulk at a value of 100. Figure 3.8b shows the network at epoch 6. Now
the network has converged towards the minimum of the convex optimization surface,
as shown in the visualization on the left. The eigenvalue density plot at the right
shows that multiple eigenvalues have separated from the bulk, with the highest one
reaching a value of around 210. Lastly, the converged point in Figure 3.8c shows
that the network reaches the bottom of the visualized loss surface. There are more
then 10 distinct eigenvalues that have separated from the bulk sitting at zero, and
the highest eigenvalue has a value of close to 300. One can also note that the bulk
has shifted from a symmetric distribution to an asymmetric one, skewed toward the
positive side. This means that the network has slowly escaped some of the very flat
regions that represented maxima along the corresponding eigenvector.

3.5.3. Interpolation between Minima

In this section a LeNet-5 architecture is trained two times with different initializa-
tions. The network is trained on CIFAR-10 using SGD with momentum with a learn-
ing rate of ε = 0.01 and a momentum step size of ρ = 0.9. The batch size is set
to |M(k)| = 256 and the network is trained for 10 epochs. In order to capture both
minima, the one directional vector is chosen to be the direction from one converged
point to the other. The other direction is the eigenvector corresponding to the highest
eigenvalue of one of the minima. The visualization is computed using a square grid
of size N = 50 and 20% of all samples. In order to investigate the area between the
two minima in more detail, both are connected by a straight line. At 20 equidistant
points along this line the spectral densities are computed using the stochastic Lanc-
zos quadrature algorithm with k = 10 iterations and m = 80 iterations of the Lanczos

65

Chapter 3: Loss Surface Visualization

(a) Loss landscape and eigenvalue density plot of ResNet-32 trained on CIFAR-10 at initialization.

(b) Loss landscape and eigenvalue density plot of ResNet-32 trained on CIFAR-10 at epoch 6.

(c) Loss landscape and eigenvalue density plot of ResNet-32 trained on CIFAR-10 at epoch 59.

Figure 3.8.: Visualization of the loss landscape and the Hessian eigenvalue density of a
ResNet-32 network trained on CIFAR-10 at different Epochs. The ResNet-32
architecture has been trained with the Adam optimizer with a learning rate of
6× 10−4 and β = (0.9,0.999). For each plot 15 % of the CIFAR-10 training
samples were used for the loss landscape visualization plots and 5 % of the
samples were used for the density spectrum computations. The loss landscape
plot was crated with a grid size of 50 on each side.

66

3.5. Experiments

algorithm. The results for three different points along the line are summarized in
Figure 3.92.

(a) Interpolation between 2 minima with eigenvalue density spectrum in minimum 1

(b) Interpolation between 2 minima with eigenvalue density spectrum in between those

(c) Interpolation between 2 minima with eigenvalue density spectrum in minimum 2

Figure 3.9.: Visualization of the loss landscape and the Hessian eigenvalue density at differ-
ent points on the line connecting both minima. A LeNet architecture has been
trained with two different initializations to end up in two different minima. For
both plots 20 % of the CIFAR10 training samples were used. The loss land-
scape plot was crated with a grid size of 50 on each side.

As can be seen from the spectral densities inside both minima, the network has
converged to a saddle point, with negative eigenvalues present on the left of the bulk at
zero. There are several distinct positive eigenvalues in both cases as well, indicating
that the network has converged to a minimum in those directions. Going toward

2A video showing all points connecting the minima can be viewed on https://youtu.be/8UIwPV6yU6I

67

https://youtu.be/8UIwPV6yU6I

Chapter 3: Loss Surface Visualization

the middle of the interpolation, in between both minima, reveals that the network is
relatively flat at this point. All the distinct eigenvalues that are positive vanish except
one. The loss landscape plots show that the two minima seem to be located inside a
much bigger minimum. Both minima also have a similar shape and are separated by
a relatively flat region as is also indicated by the spectral density depicted in Figure
3.9b.

This chapter introduced the concept of visualizing the high-dimensional loss land-
scape by projecting it down onto lower-dimensional subspaces. The drawbacks of
commonly used methods were presented, like PCA for example, and an alterna-
tive method of finding meaningful directions in parameter space was introduced. By
computing the eigenvectors of different eigenvalues of interest, one can observe the
trajectory in several different ways, which can for example reveal situations where
the optimizer struggles to converge. Next, a novel parallelization method was pre-
sented that allows for fast loss landscape computation by partitioning the underlying
grid into several subgrids which are computed by the different workers. This paral-
lelization was used together with the previously introduced parallel stochastic Lanc-
zos quadrature algorithm for fast per-iteration computations of the eigenvalue den-
sity spectra and loss landscapes for large deep neural networks. Experiments reveal
several interesting behaviors of different optimizers, for example how the optimizer
bounces around inside a minimum when using a constant learning rate. Also, the loss
landscape and the corresponding eigenvalue density spectra between two different
minima was shown for the first time.

This work can be extended in several different ways. Firstly, one can try and in-
vestigate the loss landscape and eigenvalue density spectra of different parts of the
network, for example by looking at different filters in convolutions and how those
converge during training. Secondly, one can try and investigate the behavior of dif-
ferent network structures in order to understand why certain networks are easier to
train than others for example. The same can be done for various optimizers in order to
understand why some work better than others and where these struggle to converge.
Thirdly, one can try and investigate interesting phenomena, like the large batch-size
problem [94, 199] for example.

The next chapter will use the tools from this chapter together with the eigenvalue
spectra computations in order to investigate generative adversarial networks and in-
troduce a new optimizer that is able to regularize these networks for the purpose of
preventing them from mode collapse.

68

Chapter 4
Stabilizing GANs through
Eigenvalue Regularization

Unlike previous examples of neural networks that were used for image classification,
Generative Adversarial Networks (GANs) provide state-of-the-art results in image
generation. However, despite their impressive results, these types of networks still
remain very challenging to train. This is in particular caused by their non-convex
optimization space that can lead to a number of instabilities. Among them, mode
collapse stands out as one of the most daunting ones. This undesirable event occurs
when the model can only fit a few modes of the data distribution, while ignoring the
majority of them.

This section serves as a practical example of how loss surface visualization and
second-order information during training can help stabilize networks. Using second-
order gradient information, the GAN can be successfully trained without suffering
from mode collapse. To do so, the loss surface is analyzed through its Hessian eigen-
values, which reveals that mode collapse is related to the convergence of the network
towards sharp minima. In particular, the eigenvalues of the generator and the dis-
criminator are directly correlated with the occurrence of mode collapse. Finally,
motivated by these findings, a new optimization algorithm called nudged-Adam (Nu-
GAN) is designed, that uses spectral information to overcome mode collapse, leading
to empirically more stable convergence properties.

4.1. General Adversarial Networks

GANs belong to the family of unsupervised generative models [1] and consist of a
generator network (G) and a discriminator network (D). These networks are trained
within an adversarial game, in which the generator produces new samples from a
noise distribution and the discriminator tries to distinguish between real and gen-
erated samples [72]. Within this adversarial game, the generator learns to produce
new samples that are distributed according to the desired data distribution of the real
samples. Figure 4.1 presents an overview of a typical GAN network.

Training can be formulated in terms of minimax optimization of a value function

69

Chapter 4: Stabilizing GANs through Eigenvalue Regularization

Generator Network

Discriminator Network

Training Dataset

Real

Fake

Noise

Figure 4.1.: Illustration of a generative adversarial network. On the lower left side the gen-
erator network gets random noise as an input and outputs a generated image.
The discriminator network on the right side has to decide whether the image
presented to it is from the training dataset (images are taken from the CIFAR-
10 dataset [114]) or from the generator network.

V (G,D) [76]:

G∗ = argmin
G

max
D

V (G,D). (4.1)

The goal of this adversarial game is to train the generator network to generate high
quality samples that the discriminator struggles to distinguish from the real ones, thus
returning a probability of 0.5 that a given sample is fake. Since the primary interest
lies in the generator, the discriminator can be dropped after training.

Even though GANs can be very powerful in modeling the probability distribution
underlying the set of the training data, they are hard to train. Due to the adversarial
zero-sum game played by the generator and the discriminator, their optimal solution
is a Nash equilibrium [171] of this game. The generator and the discriminator are
neural network models, therefore their training is equivalent to the search of Nash
equilibria in a high-dimensional, highly non-convex optimization space. The most
common algorithm used for solving this optimization problem is gradient descent-
ascent (GDA) [163], where generator and discriminator models perform alternating
update steps using first order gradient information w.r.t. the loss function. In practice,
GDA is often combined with regularization in order to yield many state-of-the-art re-
sults on various benchmark datasets. Despite its popularity, GDA is known to suffer
from undesirable convergence properties that may lead to instabilities, divergence,
cyclic behavior, catastrophic forgetting and mode collapse [141]. This thesis will fo-
cus particularly on mode collapse, which refers to the scenario in which the generator
only produces a limited variety of samples.

70

4.1. General Adversarial Networks

Recently, many different works have tried to tackle these issues. One of the first
attempts was [181], that used convolutional neural networks in order to improve train-
ing stability as well as the visual quality of the samples that were generated. Other
works focused on improving different aspects of GAN training, with some achieving
improvements through the use of new objective functions [11, 193] and additional
regularization terms [59, 79]. Other works have advanced the theoretical understand-
ing of the training of GANs. The convergence properties of GAN training using
first-order information were investigated by [154, 159]. They show that a local anal-
ysis of the eigenvalues of the Jacobian of the loss function can provide guarantees on
local stability properties. References [22, 63] have pushed this theoretical analysis
further, by looking at the k biggest eigenvalues of the Hessian of the loss in order to
investigate the convergence and dynamics of GANs during training.

The goal of a generative model is to approximate a real data distribution pr with a
surrogate data distribution pf. One way to achieve this is to minimize the “distance”
between these two distributions. This process is shown in Figure 4.2. In order to
minimize the distance between two distributions, the original GAN formulation used
the Jensen-Shannon divergence [72, 138] between pr and pf. This is achieved using
the feedback of the discriminator. More recently, the Wasserstein distance [225] has
also been introduced and has shown to improve GAN performance compared to the
Jensen-Shannon divergence.

During the training of a GAN, the discriminator D tries to maximize the probability
of correctly classifying a given input as real or fake by updating its loss function

LD = Ex∼pr [log(D(x))] + Ez∼pz [log(1−D(G(z))], (4.2)

through stochastic gradient ascent. Here, x is a sample from the dataset and z is
drawn randomly from a specified distribution (most common examples are the normal
distribution z ∼ N (0,1) or the uniform distribution z ∼U(−1,1)). The generator
G, on the other hand, tries to minimize the probability that D classifies its generated
data correctly. This is done by updating its loss function

LG = Ez∼pz [log(1−D(G(z))] (4.3)

via stochastic gradient descent.
Thus, this joint optimization represents a minimax game between G and D, where

G learns to generate new samples that have the same distribution as pr, and D learns
to distinguish between real and generated samples. The Nash-equilibrium of this
game is reached when the generator is able to generate samples that look as if they
are drawn from the training data distribution, while the discriminator is indecisive
whether the input is generated or real, meaning that it outputs a probability of 0.5 for
each sample that is presented.

4.1.1. Training of GANs

Because the training of GANs requires joint optimization of several objectives, this
makes their convergence intrinsically different from the case of a single objective

71

Chapter 4: Stabilizing GANs through Eigenvalue Regularization

Input Samples

Gen.

Disc.

Aft
er T

rain
ing

Loss

Figure 4.2.: Visualization of the learning process of GANs. The top plot shows samples
that are drawn from a uniform distribution. These are fed into the generator,
which outputs its generated distribution. Ideally, this generated distribution is
indistinguishable from the true distribution of the data samples. The middle
right plot depicts the generated distribution of the GAN together with the true
distribution of the samples. In the next step the discriminator has to decide
which samples are to the true and which from the generated distribution. This
is depicted in the bottom plot. Afterwards, using backpropagation (red arrows),
the parameters of the discriminator and the generator are updated. This process
is repeated for a number of steps during training. Ideally, after the training, the
generator is able to generate samples that are almost indistinguishable from the
true distribution, as is shown in the left plot.

function that is frequently encountered in deep learning (e.g. classification). In gen-
eral, the optimal joint solution to a minimax game is called Nash-equilibrium. Be-

72

4.1. General Adversarial Networks

cause the objectives are non-convex, one can only expect to find local optima in the
case where local gradient information is used. These local optima are called local
Nash-equilibria (LNE) [2].

If the GAN converges into a LNE, it has reached a point for which there exists
a local neighborhood in parameter space where neither the generator nor the dis-
criminator can unilaterally decrease/increase their respective losses. This means the
network has reached a saddle point, where the gradients of the generator and discrim-
inator vanish, while their respective second derivative matrix is positive and negative
semi-definite:

||∇θLG||= ||∇ζLD||= 0,

∇2
θLG ⪰ 0 and ∇2

ζLD ⪯ 0
(4.4)

Here, θ and ζ are the weights of the generator and the discriminator respectively.

4.1.2. Evaluation of GANs

In recent years, GANs have seen a dramatic improvement in terms of image quality.
Their improvements have reached a point where it is possible to generate artificial
high-resolution faces indistinguishable from real images of humans [107]. Despite
their successes, it is not clear how to quantitatively evaluate and compare GANs, and
so far there is no consensus as to which metric can best capture strengths and limi-
tations of different models. One attempt at providing such a metric is the Inception
Score (IS), proposed by [193]. This score is the most widely adopted metric as it
provides a numerical value that reasonably correlates with the quality and diversity
of output images. The IS is based on the assumption that the generator should out-
put images that can be classified and are uniformly distributed between the different
classes. The IS ranges from zero to infinity, and higher inception scores correlate
with higher quality and diversity of output images.

In order to compute the IS, the KL-Divergence is used to compute the distance
between the label distribution of different generated samples and the marginal distri-
bution of multiple samples. Since in the ideal case there would be a uniform marginal
distribution between the classes and a more focused label distribution for individual
samples, the goal is to maximize the KL-Divergence. In the case of mode collapse,
the marginal distribution is not uniformly distributed but is shifted toward certain
classes. This will reduce the IS and thus allows evaluation of the amount of mode
collapse happening in the generator.

4.1.3. Non-Saturating GAN

In practice, GANs have been found to train better when using an alternative cost
function that ensures that the generated samples have a high probability of being
classified as real by the discriminator.

A non-saturating GAN (NSGAN) is a modified version of a GAN that trains the
generator by maximizing the alternative objective

73

Chapter 4: Stabilizing GANs through Eigenvalue Regularization

0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.5

1.0

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0

D(x)

0.0

0.2

0.4

0.6

0.8

1.0

D
(G
(z
)

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0.0

0.0 0.2 0.4 0.6 0.8 1.0

D(G(z)

2.0

1.5

1.0

0.5

0.0

Figure 4.3.: Plots of the different losses found in GANs. (Left) Generator losses, either
minimization of log(1−D(G(z)) or maximization of log(D(G(z)). (Right)
Discriminator loss, maximization of log(D(x))+ log(1−D(G(z)).

Ez∼pz [log(D(G(z))]. (4.5)

The intuition why NSGANs perform better than GANs is as follows. If the model
distribution highly differs from the data distribution, as is the case during early itera-
tions, the NSGAN is able to bring the model distribution closer to the data distribution
because the loss function generates a strong gradient. This gradient will only start to
vanish once the discriminator starts being indecisive whether the input is from the
data distribution or from the model distribution. This makes sure that the generated
samples will have already reached a distribution that is close to the data distribution
by that time. Figure 4.3 shows the loss function of the original and non-saturating
generator and discriminator, respectively.

4.2. Mode Collapse

As was explained above, mode collapse (also called mode dropping) refers to the
issue where the generator G only generates a limited amount of variety in the sam-
ples. The problem of mode collapse can arise when the discriminator is not properly
trained and thus gets easily fooled by specific images from the generator. Because of
the minimax nature of the adversarial training, the generator will exploit this weak-
ness of the discriminator by generating more samples from these classes that the dis-
criminator struggles to distinguish. On the other hand, this forces the discriminator
to only learn to detect these types of samples. In order to avoid this, the generator can
start to generate samples from a different mode and the GAN starts to cycle between
these modes [75]. This leads to the situation where both networks have overfitted
and the GAN has collapsed into generating and predicting only a few modes of the
multimodal dataset [75].

There are theoretical explanations on the appearance of mode collapse ([12, 13]).

74

4.2. Mode Collapse

Firstly, [13] finds that a discriminator network is not able to detect mode dropping if
the network has a polynomial number of parameters with respect to the dimensional-
ity of the data. Also, [12] show that the commonly used training objective in adver-
sarial training, which does not suffer as much from vanishing gradients as the original
maximum likelihood objective function, is to blame for the missing modes. As ex-
plained in [132], the traditional formulation for generative models used maximum
likelihood during training. Since maximum likelihood is the product of the individ-
ual densities of all the training examples, assigning low densities to certain examples
would reduce the maximum likelihood objective function. Due to this property, mode
dropping is discouraged and the model does not suffer from mode collapse. With this
in mind, model performance can easily be assessed through visual inspection.

The following section serves as an intuitive explanation on mode collapse in gen-
erative models and partly follows explanations from [75, 97, 221]. Using maximum
likelihood for training generative models stems from using the KL-divergence [97].
The KL-divergence measures the difference between two distributions. It is not a dis-
tance measure per se, since it is not symmetric in its inputs. In order to train a model,
such that it accurately models the underlying distribution p(x), the KL-divergence
between p(x) and the model qθ(x) is minimized

θ⋆ = argmin
θ

KL(p||qθ) (4.6)

= argmin
θ

E
x∼p

[log p(x)]− E
x∼p

[logqθ(x)] (4.7)

= argmax
θ

E
x∼p

[logqθ(x)] (4.8)

Because the first term in Equation (4.7) does not depend on the variable θ, its gra-
dient will be zero, so it can be removed from this equation. The resulting expression
in Equation (4.8) is the maximum likelihood equation. Figure 4.4a depicts a bimodal
target distribution p(x) and the model qθ(x) that has been trained using Equation
(4.7). One drawback of using maximum likelihood is that it tries to cover the entire
support of the underlying target distribution. As a consequence, the model has to
sacrifice its ability to accurately model p(x), which can result in low quality samples.

In order to deal with these issues, the reverse KL-divergence can be used [12]. It
swaps the order of the distributions in the KL-divergence such that

θ⋆ = argmin
θ

KL(qθ||p) (4.9)

= argmin
θ

E
x∼qθ

[logqθ(x)]− E
x∼qθ

[log p(x)]. (4.10)

Note that in this case the samples are drawn from the model instead of the target dis-
tribution. Therefore the second term in Equation (4.10) can not be omitted. This term
tries to maximize the expected value of the target distribution given samples from the
model distribution, meaning that any sample drawn from qθ should be close to p(x).
In theory, the model could collapse onto a single point which is extremely close to
the true distribution. The first term in Equation (4.10) prevents this from happening.

75

Chapter 4: Stabilizing GANs through Eigenvalue Regularization

10 5 0 5 10 15 20
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
De

ns
ity

KL-Divergence
p(x)
q (x)

(a) Density of the underlying data distribution p(x)
and the model distribution qθ(x) after minimiz-
ing the KL-divergence (equal to maximum like-
lihood estimation). The final parameters of the
model distribution after training for 100 itera-
tions are θ = (5.01,5.17).

10 5 0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ns

ity

Reverse KL-Divergence
p(x)
q (x)

(b) Density of the underlying data distribution p(x)
and the model distribution qθ(x) after minimiz-
ing the reverse KL-divergence. The final pa-
rameters of the model distribution after training
for 100 iterations are θ = (0.01,1.06).

Figure 4.4.: Visualization of the difference between minimizing the Kl-divergence and the
reverse KL-divergence. In both plots the target distribution is represented by
p(x), which is a mixture of Gaussians. The first Gaussian has mean µ1 = 0
and standard deviation σ1 = 1, while the second Gaussian has mean µ2 = 10
and standard deviation σ2 = 2. The model distribution qθ(x) is a Gaussian
distribution which contains two parameters θ = (µ,σ), the mean and standard
deviation of the distribution. In both cases the optimization was performed
using an Evolutionary Strategy (ES) [184] with Monte-Carlo sampling. In this
example, the distribution p(x) represents a bimodal distribution.

This term describes the negative entropy of the model distribution, therefore Equa-
tion (4.10) tries to maximize the entropy of qθ, which spreads its probability mass,
thus countering the effect of the second term.

Figure 4.4b depicts a bimodal target distribution p(x) and the model qθ(x) that has
been trained using Equation (4.10). The parameterized distribution qθ(x) learns to
accurately model one mode of the target distribution, while ignoring its second mode.
Thus, training using reverse KL-divergence can lead to more accurate samples, but it
is prone to mode collapse. For real world datasets, the true distribution p(x) is rarely
known, so evaluating Equation (4.10) is impossible.

Nowadays, generative models like GANs have shifted away from using maximum
likelihood during training and thus there is no guarantee whether the network sacri-
fices its ability to accurately model the diversity of the underlying data distribution in
order to generate samples with higher quality. GANs minimize the following general
objective function [75]:

θ⋆ = argmin
θ

max
ζ

E
x∼p,x̂∼qθ

L(fζ(x), fζ(x̂)). (4.11)

In this example the generator model is given by qθ and the discriminator model by fζ .
Similar to the above examples of the forward and reverse KL-divergence in Equations

76

4.3. Loss Surface of GANs

(4.6)-(4.10), Equation (4.11) also minimizes a divergence, given by

max
ζ

E
x∼p,x̂∼qθ

L(fζ(x), fζ(x̂)).

This divergence is learned by the discriminator network and the structure of the loss
function L determines the type of divergence. For example, [167] shows that

L(fζ(x), fζ(x̂)) =−exp(fζ(x))+1+ fζ(x̂)

is consistent with the reverse KL-divergence formulation.
Many early GANs used the following loss function

L(fζ(x), fζ(x̂)) = log fζ(x)+ log[1− fζ(x̂)]

which was also introduced in Equation (4.2). This expression is equivalent to mini-
mizing the Jensen-Shannon divergence [167], which consists of the forward and the
reverse KL-divergence and has been found to suffer from mode collapse as well.

In summary, using the maximum likelihood method results in more stable training,
prevents mode dropping and allows for an easy assessment of model performance.
The downside of using maximum likelihood can be the poor quality of the samples
generated after training, since most of the models capacity is used for covering the
entire support of the true data distribution. Moving to a method that does not require
the model to cover the entire support of the true data distribution, as seen in the
example of the reverse KL-divergence or GAN objective function, has the benefit
that the model is able to produce samples of higher quality, though it can come at the
expense of mode dropping. Also, there is no straightforward way of assessing model
performance anymore.

4.3. Loss Surface of GANs

This section introduces the loss landscape visualization of GANs. This will be helpful
for better understanding the non-convergent nature of GANs and the general problem
of LNEs. The loss landscape visualization features 2D visualization as well as plots
of the biggest eigenvalue of the generator and the discriminator during training.

The loss landscape of GANs has been studied before [22, 154] . In [22], the authors
study the training dynamics of GANs by observing their game vector-field, which
is the gradient of the generator loss and the discriminator loss taken with respect
to their respective parameters. They are able to show for real datasets that GAN
training involves rotations around local stable stationary points of the game vector-
field. Furthermore, the authors provide evidence that the generator does not converge
into a local minimum, but into a saddle point instead.

This thesis computes the loss landscape visualization of an NSGAN that is trained
for 180 epochs. Additionally, the two biggest eigenvalues of the generator and the
discriminator at the converged point are computed. These serve as the directional
vectors for the loss landscape visualization. Figure 4.5 shows the loss landscape
and the training trajectory of the NSGAN after 180 epochs. The left plot shows
the generator while the right plot displays the trajectory and loss landscape of the

77

Chapter 4: Stabilizing GANs through Eigenvalue Regularization

Figure 4.5.: Logarithmic loss landscapes with trajectory of the same training run, visualized
along eigenvectors corresponding to the two highest eigenvalues of NSGAN on
MNIST.(Left) Generator loss landscape. (Right) Discriminator loss landscape.

discriminator. These plots show that the discriminator on the right hand side starts
descending toward a minimum, while the generator on the left hand side finds itself
in a very chaotic loss landscape where it bounces around inside a certain area. These
findings are in line with the second-order literature on GANs [22].

After gaining some intuition on the training dynamics of GANs and their problem
to find and stay at an LNE, the goal is to gain insight into the issue of mode collapse.
Empirical evidence is provided of a plausible relationship between mode collapse and
the behavior of the eigenvalues of the generator and discriminator networks. This is
achieved by evaluating the spectral density of the model throughout the optimization
process. In the first experiment, the largest eigenvalues from the generator as well
as discriminator network are computed for each epoch, together with the inception
score. Several experiments are conducted, in which the original non-saturating GAN
architecture is trained on the MNIST, Kuzushiji, Fashion and EMNIST datasets. Fig-
ure 4.6 depicts the biggest eigenvalue of the generator and discriminator together with
the Inception Score for each of those datasets. There are several patterns of interest
present in each experiment:

First, the evolution of the eigenvalues of the generator and discriminator behave
visually very similar. In particular, when the discriminator exhibits an increasing ten-
dency in its eigenvalues, the generator does so as well. Second, it is observed that the
correlation between the top-k eigenvalues of the generator and discriminator is very
high. The observed correlation in all the setups ranges from 0.72 up to 0.90. Third,
there seems to exist a connection between the inception score and the behaviour of
the eigenvalues. The eigenvalues and the inception score seem to be inversely corre-
lated, as there are sections where the eigenvalues have a decreasing tendency while
the IS tends to increase and the exist other sections where it is the other way around.
Moreover, note that all the models start to suffer from mode collapse after 25 epochs
(approximately when the eigenvalues tendency changes and starts to increase).

The empirical observations found in this analysis lead to the conclusion that eigen-
values can give an indication on the state of convergence of a GAN, as pointed out
in [22]. Furthermore, experiments indicate that the eigenvalue evolution is correlated

78

4.4. NudgedAdam: Preventing GANs from Mode Collapse

0 50 100 150

100

101

Epochs

gen
disc
IS

(a) Kuzushiji dataset. Correla-
tion 0.80.

0 50 100 150

100

101

102

Epochs

gen
disc
IS

(b) Fashion dataset. Correlation
0.90.

0 50 100 150

100

101

Epochs

gen
disc
IS

(c) EMNIST dataset. Correla-
tion 0.72.

Figure 4.6.: Evolution of the top k-eigenvalues of the Hessian from generator (gen) and
discriminator (disc), and the correspondence IS over the whole training phase.
The correlation score is measured between the generator and the discriminator.

between the generator and discriminator network and these are correlated with the
likely occurrence of a mode collapse event.

4.4. NudgedAdam: Preventing GANs from Mode Collapse

Using the insights gained from the experiments in the previous section, this thesis
presents a new optimizer that aims at reducing the probability of a mode collapse
event. In order to prevent the neural network from converging into sharp minima
during the optimization, the gradient information in the direction of high eigenvalues
is removed. This keeps the network from converging into sharp minima by ignor-
ing these directions in the loss landscape and thus converging into wider minima.
NudgedAdam is an optimizer inspired by [102], that ignores gradient information
in the direction of the eigenvectors of the k biggest eigenvalues. It is based on the
Adam optimizer but can theoretically be extended to any optimizer that uses gradient
information.

Given the biggest k eigenvectors ui and the gradient g at a specific point, the eigen-
vector directions are removed by

g∗ = g−
k

∑
i=1

< g,ui > ui (4.12)

with g∗ the resulting gradient that is then used by the regular Adam optimizer. Using
this technique, it is possible to create a multitude of nudged versions of popular opti-
mizers, like SGD for example, by using g∗ instead of the true gradient g. A sketch of
how the nudged optimizer works is shown in Figure 4.7. The eigenvectors are com-
puted by using the Lanczos method together with the R-operator, which allows fast
computation of eigenvalues and eigenvectors without having to store the full Hessian.

The NSGAN is trained using the NudgedAdam optimizer for 180 epochs. The goal
is to prevent the network from suffering from mode collapse. Figure 4.8 shows the
results from this training where only the top-2 eigenvectors are subtracted from the
gradient information. The top row shows samples of the NSGAN generator trained
with the regular Adam optimizer at epoch 2, epoch 25 and epoch 160. The bottom

79

Chapter 4: Stabilizing GANs through Eigenvalue Regularization

0 1 2 3 4 5
w1

0

1

2

3

4

5

w
2 2 (39)

1 (125)

g
g *

Nudged Gradient Descent

Figure 4.7.: Depiction of the idea behind NudgedAdam. This figure depicts Himmelblau’s
function on the domain w ∈ [0,5]× [0,5]. The starting point is located at
w(0) = (3.5,3). The red and orange arrows depict the two eigenvectors u1 and
u2 respectively (Their respective eigenvalues are shown in parentheses next to
the vectors). The initial gradient g is shown in black, while the final, nudged
gradient g⋆ is shown in white. One can see that while the original gradient
points towards the center of the minimum, the nudged gradient points perpen-
dicular to it, thus avoiding the convergence into the potentially sharp minimum.

row depicts samples of the NSGAN generator trained with NudgedAdam at the same
epochs. Looking at the inception score of the NSGAN trained with each optimizer,
it becomes evident that the network trained with Adam suffers from mode collapse
while the network trained with NudgedAdam does not. This can also be seen in the
generator samples at epoch 160. The top row displays much more 1-images compared
to all the other numbers. This mode collapse is not present in the bottom row, where
the network was trained with NudgedAdam.

The full spectrum of the Hessian of the generator as well as the discriminator
at different stages of training is depicted in Figure 4.9. The first column shows the
eigenvalue spectra of the NSGAN trained with Adam. Looking at the generator spec-
trum, one interesting observation to make is that the spectrum stays symmetric during
all stages of the training. At epoch 160 there are seemingly as many negative eigen-
values present as there are positive ones. The discriminator on the other hand falls
into a minimum, with the largest eigenvalues reaching values of around 350. On the
right column, the NSGAN is trained with the NudgedAdam optimizer. There are still
negative eigenvalues present in the spectrum of the generator, which indicates that the
converged point that was reached during training is not an LNE (c.f. Formula 4.4). In
both cases, the generator only reaches a saddle point. The discriminator of the GAN
trained with the NudgedAdam optimizer converges into a minimum, though this min-
imum is much flatter than the case where the network was trained with Adam. An
interesting observation is the connection between the eigenvalue spectra and mode
collapse. In the left column, where mode collapse happened, the generator spectrum
is much more spread out around zero compared to the right column. Also, the dis-

80

4.4. NudgedAdam: Preventing GANs from Mode Collapse

Figure 4.8.: (First row) Evolution of the top-k eigenvalues of the Hessian, the IS and random
generated samples at different epochs of NSGAN on MNIST. (Second row)
Comparison of IS evolution of NSGAN and NuGAN, and random generated
samples at different epochs of NuGAN.

criminator spectrum has eigenvalues that are much higher compared to the network
trained with nudgedAdam on the right column.

Table 4.1 shows more quantitative results that show the benefit of the NudgedAdam
optimizer approach. The Table compares the inception score for both optimizers
evaluated on four different datasets. In all cases, the NudgedAdam approach achieves
a higher mean and also maximum inception score than the Adam optimizer.

Table 4.1.: Mean and max IS from the different datasets and methods (with and without
mode collapse). Higher values are better.

Methods NSGAN NuGAN
mean max mean max

MNIST 4.30 7.03 7.14 8.46
Kuzushiji 5.24 6.50 6.12 7.20
Fashion 5.74 6.82 6.35 7.20

EMNIST 3.77 7.02 8.53 7.67

These quantitative results together with the visual inspection of the image quality
suggest that the NuGAN algorithm has a direct influence on the behavior of the eigen-
values and the loss landscape of the adversarial model, resulting in the avoidance of
mode collapse.

In summary, experiments show that the algorithm does not converge to an LNE,
while still achieving good results with respect to the evaluation metric (the Inception
Score). This raises the question whether convergence to an LNE is actually needed
in order to achieve good generator performance of a GAN.

This chapter introduced the concept of generative adversarial networks and ex-
plained how these generative networks can suffer from mode collapse during training.

81

Chapter 4: Stabilizing GANs through Eigenvalue Regularization

0 100 200 300 400

10−7

10−5

10−3

10−1

101

Eigenvalue

H
es

si
an

E
ig

en
va

lu
e

D
en

si
ty

Epoch 2

gen
disc

0 100 200 300 400

10−7

10−5

10−3

10−1

101

Eigenvalue

H
es

si
an

E
ig

en
va

lu
e

D
en

si
ty

Epoch 2

gen
disc

0 100 200 300 400

10−7

10−5

10−3

10−1

101

Eigenvalue

H
es

si
an

E
ig

en
va

lu
e

D
en

si
ty

Epoch 25

gen
disc

0 100 200 300 400

10−7

10−5

10−3

10−1

101

Eigenvalue

H
es

si
an

E
ig

en
va

lu
e

D
en

si
ty

Epoch 25

gen
disc

0 100 200 300 400

10−7

10−5

10−3

10−1

101

Eigenvalue

H
es

si
an

E
ig

en
va

lu
e

D
en

si
ty

Epoch 160

gen
disc

0 100 200 300 400

10−7

10−5

10−3

10−1

101

Eigenvalue

H
es

si
an

E
ig

en
va

lu
e

D
en

si
ty

Epoch 160

gen
disc

Figure 4.9.: Plots of the whole spectrum of the Hessian at different stage of the training
on MNIST. (First column) Results on NSGAN: we can identify an abnormal
behaviour (mode collapse) in the generator at epoch 160. (Second column)
Results on NuGAN: the spectrum remains stable during the whole training.
We can observe how the discriminator for both cases finds local minima, while
the generator remains all the time in a saddle point.

Using the visualization methods introduced in the previous chapter, the eigenvalues
of the generator as well as discriminator network were computed. These reveal how
the top-k eigenvalues of both those networks are correlated with each other. Further-
more, the inception score, a measure of the amount of mode collapse in the network,
is negatively correlated with the top-k eigenvalues of the network. Using this intu-
ition, NudgedAdam was introduced, an optimizer that steers away from sharp minima

82

4.4. NudgedAdam: Preventing GANs from Mode Collapse

by removing gradient information in the direction of the eigenvectors related to the
biggest eigenvalues of the Hessian. This results in more robust GANs that do not suf-
fer from mode collapse during training. Also, for the first time, the full spectral den-
sities of the generator and discriminator eigenvalues are displayed for different stages
of training. The spectrum of the discriminator trained with NudgedAdam shows that
it has converged into a flatter minimum than the one that suffers from mode collapse.
Also, the spectrum of the generator trained with NudgedAdam reaches a saddle point
that is flatter than the generator of the GAN that has collapsed.

These results are promising and future research can extend this line of work. One
could investigate the difference between the type of GANs featured in this work and
GANs that use convolutions. These still suffered from mode collapse after training
them with NudgedAdam, therefore it would be interesting to see their eigenvalue
spectrum and how they differ from other GAN architectures. This could also result
in another type of optimizer that is able to regularize GANs that use convolutions in
order to prevent them from suffering from mode collapse.

83

Chapter 5
Proximal Gradient Methods

Proximal gradient methods belong to the class of successive convex approximation
(SCA) methods [198], which approximate the objective function with a (strongly)
convex approximation at every iteration. Contrary to second-order methods, which
try to minimize the quadratic approximation of the objective function at every it-
eration, SCA methods are not limited to quadratic approximations and any specific
structure of the objective function can be leveraged in order to design convex ap-
proximations. In theory, this algorithm only requires the first-order information in
order to converge, though incorporating approximations that preserve the structure
of the objective function can enhance its practical convergence [198]. Proximal gra-
dient methods are one way to design a surrogate objective function that is strongly
convex and can be easily computed. Thus, contrary to second-order methods, SCA
algorithms can be both more efficient to compute strongly convex approximations of
the original objective function while also being able to incorporate more information
than just solving a quadratic approximation of the original problem.

This chapter considers the problem of training structured neural networks with
nonsmooth regularization (e.g. ℓ1-norm) and constraints (e.g. interval constraints).
As shown previously, many methods aim at reducing the size of very large neural
networks with minimal sacrifice to their performance. Often times, this is achieved
through regularization terms that are non-differentiable at some points in the param-
eter domain (e.g. ℓ1-norm). This chapter will start by first explaining the issue that
arises from the commonly used subgradient method that is used for training neural
networks with nonsmooth regularization. Next, the proximal operator as well as the
proximal point algorithm and the proximal gradient method are introduced as a solu-
tion to the training of nonsmooth objective functions. All these explanations will be
in the context of the deterministic setting. Afterwards, the next subsection focuses
specifically on the training of neural networks and deals with the stochastic setting of
training neural networks. To this end, the training of neural networks is formulated
as a constrained nonsmooth nonconvex optimization problem.

Next, a convergent proximal-type stochastic gradient descent (ProxSGD) algo-
rithm is proposed. Under properly selected learning rates, it is shown that with
probability 1, every limit point of the sequence generated by the proposed ProxSGD
algorithm is a stationary point. Finally, in order to support the theoretical analysis

85

Chapter 5: Proximal Gradient Methods

and demonstrate the flexibility of ProxSGD, the last section will focus on the training
of neural networks with ℓ1-regularization and provide extensive numerical tests that
show how ProxSGD can be used to train sparse neural networks through an adequate
selection of the regularization function and constraint set.

5.1. Proximal Gradient Optimization

Many of the techniques that are used to reduce the size of large neural network models
rely on using regularization, like ℓ1-regularization, in order to introduce unstructured
sparsity into the model. Applying gradient descent methods to these objective func-
tions involves computing the gradient of a term that is not differentiable at a certain
point in its domain. The common solution to this problem is to compute the subgradi-
ent of the function, which exists even though the function itself is non-differentiable.

The subgradient g of a function f (w) at a specific point w is defined as:

f (z)≥ f (w)+gT (z−w) (5.1)

for all z ∈ dom f . The subdifferential ∂ f (w) is the set of all possible subgradients at
w, and a function is called subdifferentiable if it is subdifferentiable at allw ∈ dom f .

As an example, consider f (w) = |w|, which is non-differentiable at w = 0. Apply-
ing Equation (5.1) to this example:

|z| ≥ gz (5.2)
{

z≥ gz→ g≤ 1, if z≥ 0
−z≥ gz→ g≥−1, if z < 0

(5.3)

(5.4)

which results in g ∈ ∂ f (w = 0) = [−1,1]. Non-differentiable functions that are subd-
ifferentiable include the Hinge loss, ReLU activation functions, Max-Pooling layers
and the ℓ1-regularization. Their subdifferential is shown in Figure 5.1.

Even though the subgradient method is often times called the subgradient descent
method, it is not a descent method per se. There is no guarantee that a step in the
direction of the negative subgradient will result in a lower objective value, no matter
the step size (see [168] Chap. 6 for an in-depth discussion). An example of this can
be seen in Figure 5.2.

Applied to deep neural network training, using the visualization tools introduced
in the previous sections reveals that regular stochastic subgradient descent with mo-
mentum struggles to converge to sparse solutions for objective functions with ℓ1-
regularization. Figure 5.3 shows the trajectory of a ResNet-32 architecture trained
on CIFAR-100 for 100 epochs. In order to generate the plots two parameters were
randomly selected among all parameters of the converged network with an absolute
value smaller than 10−7. The plot depicts the trajectory along these to randomly
selected parameters. One can see that the network struggles to force the parame-
ters towards zero, and their value oscillates while slowly approaching zero. Once
the parameters are close to zero, they start to bounce around without converging ex-

86

5.1. Proximal Gradient Optimization

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
f(x

),
f(x

)

Hinge Loss f(x) = max(1 x, 0)
f(x)
Subdifferential f(x)

(a) Depiction of the Hinge loss together with its
subdifferential on the interval x ∈ [−2,2]. The
function is non-differentiable at the point x0 =
1. The subdifferential at this point is ∂ f (x0) =
[−1,0].

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

f(x
),

f(x
)

ReLU Function f(x) = max(x, 0)
f(x)
Subdifferential f(x)

(b) Depiction of the ReLU function together with
its subdifferential on the interval x ∈ [−2,2].
The function is non-differentiable at the point
x0 = 0. The subdifferential at this point is
∂ f (x0) = [0,1].

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(x
),

f(x
)

Absolute Value Function f(x) = |x|

f(x)
Subdifferential f(x)

(c) Depiction of the absolute value function to-
gether with its subdifferential on the interval
x ∈ [−2,2]. The function is non-differentiable
at the point x0 = 0. The subdifferential at this
point is ∂ f (x0) = [−1,1].

Figure 5.1.: Visualization of (a) the hinge loss, (b) the ReLU function and (c) the absolute
value function together with their corresponding subdifferentials.

actly to this value. The final value of the parameters after 100 epochs of training is
(w⋆

1,w
⋆
2) = (−1.9×10−8,−3.4×10−8).

In order to deal with non-differentiable functions that are subdifferentiable, the (lo-
cal) minimum of the objective function f (w) is evaluated by finding the zero vector
of its subdifferential ∂ f :

87

Chapter 5: Proximal Gradient Methods

4 3 2 1 0 1 2 3 4
w1

4

3

2

1

0

1

2

3

4

w
2

Subgradient at w = (1, 0)

0.35

0.86

1.61

2.58

3.79

5.22

6.88

8.77

10.89

13.24

Figure 5.2.: Depiction of the contour lines of an objective function f (w1,w2) together with
the optimum at w⋆ = (−1/3,0), and the point w = (1,0). The objective func-
tion is f (w1,w2) = max(−w1,1/2w2

1 +1/2(w2 +1)2,1/2w2
1 +1/2(w2−1)2).

At the pointw, the subgradient g ∈ ∂ f (w) is g= (1/2,1). The direction of the
next iteration implied by the subgradient method is shown by the arrow −g.
Observe that no step size will result in a reduction of the objective function.

min f (w) (5.5)

0 ∈ ∂ f (w) (5.6)

0 ∈ λ∂ f (w) (5.7)

w ∈ (I +λ∂ f)(w) (5.8)

w = (I +λ∂ f)−1(w) (5.9)

The resulting expression on the right-hand side of Equation (5.9) is the resolvent of
the subdifferential operator [173]. Points that satisfy this resolvent equation coincide
with solutions to Equation (5.5) [187]. The resolvent of the subdifferential can be
rewritten as follows:

z ∈ (I +λ∂ f)−1(w) (5.10)

w ∈ (I +λ∂ f)(z) (5.11)

0 ∈ ∂ f (z)+
1
λ
(z−w) (5.12)

0 ∈ ∂z

(
f (z)+

1
2λ
∥z−w∥2

2

)
(5.13)

z = argmin
v

(
f (v)+

1
2λ
∥v−w∥2

2

)
(5.14)

z = proxλ f (w) (5.15)

88

5.1. Proximal Gradient Optimization

1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2
w1 ×10 1

0.20

0.15

0.10

0.05

0.00

0.05

w
2

2.58

2.60

2.61

2.62

2.63

2.65

2.66

2.67

2.68

(a) Loss landscape visualization of ResNet-32 trained with stochas-
tic subgradient descent on CIFAR-100. The starting vector is
(w(0)

1 ,w(0)
2) = (−0.09,−0.15).

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
w1 ×10 3

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

w
2

2.58

2.60

2.61

2.62

2.63

2.65

2.66

2.67

2.68

(b) Closeup of the loss landscape visualization. One can see how pa-
rameter w2 slowly converges toward zero while w1 oscillates around
zero.

Figure 5.3.: Visualization of the trajectory of a ResNet-32 architecture trained on CIFAR-
100 for 100 epochs. The network was trained with a batch-size of 128, a learn-
ing rate of 4.91×10−5 and momentum of 0.9. The value of the regularization
parameter is set to µ = 0.001. The learning rate was determined using random-
search. The network reaches a final validation accuracy of 34.48%.

One can see that Equation (5.14) minimizes a convex function, which is the sum
of function f (w) and the squared ℓ2-norm, which is strongly convex. The right hand
side of the equation is called the proximal mapping of f and is defined as follows
[173]:

89

Chapter 5: Proximal Gradient Methods

proxλ f (v) = argmin
w

(
f (w)+

1
2λ
∥w−v∥2

2

)
(5.16)

There are cases where there exist closed form solutions to the proximal operator.
Some examples will be shown in the next section. The proximal operator allows for
a proper treatment when dealing with non-differentiable functions that are subdiffer-
entiable. Contrary to the commonly used subgradient method, using the proximal
operator results in true descent methods for appropriately chosen step sizes.

The proximal point algorithm [187], which allows to converge to the set of mini-
mizers of a closed proper convex function f , is given by:

w(k+1) = proxλ f (w
(k)). (5.17)

The function f is minimized by the point w⋆ if and only if

w⋆ = proxλ f (w
⋆) (5.18)

It can be shown that the proximal point algorithm can be interpreted as disappearing
Tikhonov regularization or as a backward Euler method for solving the gradient flow
for f [173].

The proximal gradient method, on the other hand, is used to converge to the set
of minimizers of a composite objective function. In order to derive the proximal
gradient method, consider the following objective:

min f (w)+ r(w) (5.19)

where f is smooth (differentiable and L-Lipschitz continuous) and r convex and non-
smooth. The proximal gradient method is derived as follows:

min f (w)+ r(w) (5.20)

0 ∈∇ f (w)+∂r(w) (5.21)

0 ∈ λ∇ f (w)+λ∂r(w) (5.22)

w ∈ λ∇ f (w)+(I +λ∂r)(w) (5.23)

w−λ∇ f (w) ∈ (I +λ∂r)(w) (5.24)

w = (I +λ∂r)−1(w−λ∇ f (w)) (5.25)

w = proxλr (w−λ∇ f (w)) (5.26)

The proximal gradient algorithm for minimizing the objective function f (w)+ r(w)
is thus given by

w(k+1) = proxλkr

(
w(k)−λk∇ f (w(k))

)
. (5.27)

Note that typically there are different ways to split the objective functions into dif-
ferent terms. Different splits will result in different implementations of the proximal
gradient method (see [18] for different examples).

The composite objective function is minimized by the point w⋆ if and only if

90

5.1. Proximal Gradient Optimization

w⋆ = proxλr (w
⋆−λ∇ f (w⋆)) . (5.28)

As explained above, the subgradient method is not a descent method and is
thus slow to converge in many situations where the objective function is non-
differentiable. This is especially true for neural network optimization, where the
network often times consists of non-differential functions like ReLU activation
functions and Max-Pooling layers, or the objective function is regularized by
non-differentiable functions, like the commonly used ℓ1-regularization.

Proximal gradient methods serve as a solution for properly handling this problem.
Faster (or any) convergence is especially valuable for very large neural networks,
where each iteration is very time consuming and resource intensive. A toy example,
which is shown in Figure 5.4, serves as a visual example of the difference in conver-
gence between the subgradient method compared to the proximal point algorithm.

The rest of this chapter will focus on the problem of training neural networks under
constraints and regularization. It is formulated as an optimization problem

minimize
w∈W⊆Rn

1
m

m

∑
i=1

fi(w,yi)

︸ ︷︷ ︸
≜ f (w)

+r(w), (5.29)

where w represents the parameter vector to optimize, yi is the i-th training exam-
ple which consists of the training input and desired output, and m is the number of
training examples. The training loss f is assumed to be smooth and nonconvex with
respect tow, the regularization r(w) is assumed to be convex but nonsmooth, proper
and lower semicontinuous, and the constraint set W is convex and compact (closed
and bounded).

Commonly, SGD is used to solve an optimization problem (5.29) when r(w) = 0
and W=Rn. At each iteration, a small batch of m training samples is randomly sam-
pled, and the resulting gradient is an unbiased estimate of the true gradient. Therefore
SGD usually moves in the descent direction, see [23]. SGD can be sped up by re-
placing the current gradient estimate with momentum that aggregates all gradients
from past iterations. Despite the success and popularity of SGD, its convergence has
been an open problem. Assuming f is convex, the convergence analysis was first
attempted in [110] and later concluded in [185]. The proof for non-convex f is given
later in [38, 128].

The regularization function r is commonly used in machine learning to promote a
certain structure in the optimal solution, such as sparsity as in feature selection and
compressed sensing, or a zero-mean-Gaussian prior on the parameters [14, 29]. It
can be interpreted as a penalty function because the value r(w⋆) will be small at the
optimal point w⋆ of problem (5.29). The Tikhonov regularization r(w) = µ∥w∥2

2
for some specified constant µ, for example, can be used to reduce ill-conditioning
and ensure that the size of the weights does not become excessively large. Another
commonly used regularization, the ℓ1-norm where r(w) = µ∥w∥1 = µ∑

n
j=1 |w j| (the

convex surrogate of the ℓ0-norm), would encourage a sparse solution. In the context
of neural networks, it is used to (i) promote a sparse neural network (SNN) to alle-
viate overfitting and to allow for improved generalization, (ii) accelerate the training

91

Chapter 5: Proximal Gradient Methods

4 2 0 2 4
w1

4

3

2

1

0

1

2

3

4

w
2

w(0)

w(1)

w(2)

Subgradient Method

0.35

0.86

1.61

2.58

3.79

5.22

6.88

8.77

10.89

13.24

(a) Subgradient method trained for 50 iterations using a decaying learning rate defined by εt = 1/t.
This method is not able to converge to the optimal point after 50 iterations. The path through the
loss landscape oscillates around the w2 = 0 axis.

4 2 0 2 4
w1

4

3

2

1

0

1

2

3

4

w
2

w(0)
Proximal Point Method

f(w) + 1/(2)||w v|| for v = (3, 3.5)

0.35

0.86

1.61

2.58

3.79

5.22

6.88

8.77

10.89

13.24

(b) Proximal point method trained for one iteration with λ = 10. This figure depicts the contour plot
of the function f (w), together with the contour lines of the objective function inside the proximal
operator for v = (3,3.5). The minimum of the function that is minimized by the proximal operator
coincides with the minimum of f (w).

Figure 5.4.: Visualization of the difference between the subgradient method and
proximal point method. The objective function is f (w1,w2) =
max(−w1,1/2w2

1 +1/2(w2 +1)2,1/2w2
1 +1/2(w2−1)2), with the opti-

mal point depicted by the red cross at w⋆ = (−1/3,0). Both methods are
initialized at w(0) = (3,3.5). Plot (a) shows the subgradient method for 50
iterations with decaying learning rate εt = 1/t. This learning rate schedule
yields the best result compared to different constant learning rates. Plot (b)
shows the proximal gradient method, which converged after one iteration. This
plot also depicts contour lines of the objective function that is minimized in
the proximal operator. In this example the scaling parameter is set to λ = 10.

92

5.2. ProxSGD

process, and (iii) prune the network to reduce its complexity, see [146] and [65] as
well as Section 2.2 for more detail.

Technically, analyzing the regularizations is difficult since several regularly used
convex regularizers, such as ℓ1-norm, are nonsmooth. When w= 0, the gradient of |w|
in current TensorFlow [152] implementations is simply set to zero. As explained in
Section 5.1, this is the stochastic subgradient descent method, which usually exhibits
slow convergence rate. Magnitude pruning and variational dropout are two further
strategies for promoting an SNN, see [65].

Although regularization can be interpreted as a constraint from the duality theory,
it is sometimes preferable to employ explicit constraints, such as ∑w2

j ≤ α, where the
summation is over the same layer’s weights. This is useful when it is already known
how to choose α. Another example is the weights’ lower and upper bounds, which are
l≤w≤u for specified l and u. Constraints, unlike regularization, do not encourage
weights to stay in a local neighborhood of the initial weight. For further information,
see Chapter 7.2 of [76]. The set W represents such explicit constraints, but stochastic
gradient algorithms pose an additional challenge because the new weight obtained
from the SGD method (with or without momentum) must be projected back to the
set W to preserve its feasibility. However, because projection is a nonlinear operator,
the random gradient’s unbiasedness would be lost. As a result, constrained problem
convergence analysis is substantially more involved than convergence analysis for
unconstrained problems.

The rest of this chapter will propose a convergent proximal-type stochastic gradi-
ent algorithm (ProxSGD) to train neural networks under nonsmooth regularization
and constraints. It turns out momentum plays a central role in the convergence anal-
ysis. The next section will establish that with probability 1, every limit point of the
sequence generated by ProxSGD is a stationary point of the nonsmooth nonconvex
problem (5.29). This is in sharp contrast to unconstrained optimization, where the
convergence of the vanilla SGD method has long been well understood while the
convergence of the SGD method with momentum was only settled recently. Never-
theless, the convergence rate of ProxSGD is not derived and is worth further investi-
gating.

5.2. ProxSGD

In this section, ProxSGD is described, a new proximal algorithm for training deep
neural networks with convergence guarantee.

Background and setup The following blanket assumptions on problem (5.29) are
made.

• fi(w,y(i)) is smooth (continuously differentiable) but not necessarily convex.

• ∇w fi(w,y(i)) is Lipschitz continuous with a finite constant Li for any y(i).
Thus ∇ f (w) is Lipschitz continuous with constant L ≜ 1

m ∑
m
i=1 Li.

• r(w) is convex, proper and lower semicontinuous (not necessarily smooth).

93

Chapter 5: Proximal Gradient Methods

• W is convex and compact.

The goal is to develop algorithms that can find a stationary point of (5.29). A
stationary point w⋆ satisfies the optimality condition: at w =w⋆,

(w−w⋆)T
∇ f (w⋆)+ r(w)− r(w⋆)≥ 0,∀w ∈W. (5.30)

When r(w) = 0 and W = Rn, the deterministic optimization problem (5.29) can
be solved using the (batch) gradient descent method for unconstrained optimization.
As previously stated, computing the gradient of the complete dataset (which com-
prises of m training samples) at each iteration is computationally expensive. Instead,
the gradient is estimated by a minibatch of mk training examples. Denote the mini-
batch by Mk: its elements are drawn uniformly from {1,2, . . . ,m} and there are mk
elements. Then the estimated gradient is

g(k) ≜
1

mk
∑

i∈Mk

∇ fi(w
(k),y(i)) (5.31)

and it is an unbiased estimate of the true gradient.

The proposed algorithm The instantaneous gradient g(k) is used to form an aggre-
gate gradient (momentum) v(k), which is updated recursively as follows

v(k) = (1−ρk)v
(k−1)+ρkg

(k), (5.32)

where ρk is the stepsize (learning rate) for the momentum and ρk ∈ (0,1] 1.
At iteration k, the following approximation subproblem is solved and its solution

is denoted as ŵ(w(k),v(k),τ(k)), or simply ŵ(k)

ŵ(k) ≜ argmin
w∈W

{
(w−w(k))Tv(k)+

1
2
(w−w(k))T diag(τ(k))(w−w(k))+ r(w)

}
.

(5.33)
A quadratic regularization term is incorporated so that the subproblem (5.33) is
strongly convex and its modulus is the minimum element of the vector τ(k), denoted
as τk and τk = min j=1,...,N(τ

(k)) j. Note that τk should be lower bounded by a positive
constant that is strictly larger than zero, so that the quadratic regularization in (5.33)
will not vanish.

The difference between two vectors ŵ(k) and w(k) specifies a direction starting at
w(k) and ending at ŵ(k). This update direction is used to refine the weight vector

w(k+1) =w(k)+ εk(ŵ
(k)−w(k)), (5.34)

where εk is a stepsize (learning rate) for the weight and εk ∈ (0,1]. The learning rate
allows choosing a specific point along this line. Note that w(k+1) is feasible as long
as w(k) is feasible, as it is the convex combination of two feasible points w(k) and
ŵ(k) while the set W is convex.

1Note that this definition differs from the aggregate gradient that is sometimes used in the definition
and implementation of optimizers like SGD with momentum or Adam, which is given by v(k) =
ρkv

(k−1)+(1−ρk)g
(k).

94

5.2. ProxSGD

The preceding steps (5.31)-(5.34) are summarized in Algorithm 7, which is re-
ferred to as proximal-type Stochastic Gradient Descent (ProxSGD), because the ex-
plicit constraintw ∈W in (5.33) can also be formulated implicitly as a regularization
function, more specifically, the indicator function δW(w). The indicator functions aid
in the projection of any solution back onto the constrained set W. If all elements of
τ(k) are equal, then ŵ(k) is exactly the proximal operator

ŵ(k) = argmin
w

{∥∥∥∥w−
(
w(k)− 1

τk
v(k)
)∥∥∥∥

2

2
+

1
τk

r(w)+δW(w)

}

≜ Prox 1
τk

r(w)+δW(w)

(
w(k)− 1

τk
v(k)
)
.

Algorithm 7 Proximal-type Stochastic Gradient Descent (ProxSGD) Method

Input: w(0) ∈W, v(−1) = 0, k = 0, T , {ρk}T
k=0, {εk}T

k=0.
for k = 0 : 1 : T do

1. Compute the instantaneous gradient g(k) based on the minibatch Mk:

g(k) =
1

mk
∑

i∈Mk

∇w fi(w
(k),y(i)).

2. Update the momentum: v(k) = (1−ρk)v
(k−1)+ρkg

(k).

3. Compute ŵ(k) by solving the approximation subproblem:

ŵ(k)= argmin
w∈W

{
(w−w(k))v(k)+

1
2
(w−w(k))T diag(τ(k))(w−w(k))+ r(w)

}
.

4. Update the weight: w(k+1) =w(k)+ εk(ŵ
(k)−w(k)).

end for

The ProxSGD optimizer in Algorithm 7 has a comparable structure to various SGD
algorithms, both without and with momentum, as shown in Table 5.1, and it allows
several existing algorithms to be interpreted as special cases of the proposed frame-
work. In SGD, for example, no momentum is used, which translates to setting ρk = 1
in Algorithm 7. The learning rate for momentum in ADAM is a constant ρ, while the
learning rate for the weight vector is given by ε/(1−ρk) for some ε, which essentially
equates to setting ρk = ρ and εk = ε/(1−ρk) in Algorithm 7. This interpretation also
implies that the proposed convergence conditions will suffice for existing methods
(although they are not meant to be the weakest conditions available in literature).

95

Chapter 5: Proximal Gradient Methods

al
go

ri
th

m
m

om
en

tu
m

w
ei

gh
t

qu
ad

ra
tic

ga
in

in
su

bp
ro

bl
em

re
gu

la
ri

za
tio

n
co

ns
tr

ai
nt

se
t

Pr
ox

SG
D

ρ
k

ε
k

τ
(k
)

co
nv

ex
co

nv
ex

,c
om

pa
ct

SG
D

(w
.m

om
en

tu
m

)
1(

ρ
)

ε
1

0
R

N

A
da

G
ra

d
1

ε
√

r k
+

δ
1†

0
R

N

R
M

SP
ro

p
1

ε
√

r k
+

δ
1‡

0
R

N

A
D

A
M

ρ
ε

1−
ρ

k

√
r k

1−
β

k
+

δ
1‡

0
R

N

A
M

SG
ra

d
ρ

ε

√
r̂

k
r̂

k
=

m
ax
(r̂

k−
1,
r

k)
‡

0
R

n

A
D

A
B

ou
nd

ρ
1

1
cl

ip
(ε

k/
√
r

k,
η

lk
,η

u k
)

‡
0

R
N

Ta
bl

e
5.

1.
:C

on
ne

ct
io

n
be

tw
ee

n
th

e
pr

op
os

ed
fr

am
ew

or
k

an
d

ex
is

tin
g

m
et

ho
ds

,w
he

re
ρ
,β
,ε

an
d

δ
ar

e
so

m
e

pr
ed

efi
ne

d
co

ns
ta

nt
s.

† r k
=

r k
−

1
+
g
(k
)
⊙
g
(k
) ,

‡ r k
=

β
r k
−

1
+
(1
−

β
)g

(k
)
⊙
g
(k
) .

96

5.2. ProxSGD

Solving the approximation subproblem (5.33) Since (5.33) is strongly convex,
ŵ(k) is unique. Generally ŵ(k) in (5.33) does not admit a closed-form expression and
should be solved by a generic solver. However, some important special cases that are
frequently used in practice can be solved efficiently.

• The trivial case is W= Rn and r = 0, where

ŵ(k) =w(k)− v
(k)

τ(k)
, (5.35)

where the vector division is understood to be element-wise. When W = Rn

and r(w) = µ∥w∥1, ŵ(k) has a closed-form expression that is known as the
soft-thresholding operator

ŵ(k) = S µ1
τ(k)

(
w(k)− v

(k)

τ(k)

)
, (5.36)

where Sa(b)≜ max(b−a,0)−max(−b−a,0) [14].

• If W= Rn and r(w) = µ∥w∥2 and τ(k) = τI for some τ, then [173]

ŵ(k) =

{ (
1−µ/∥τw(k)−v(k)∥2

)
(w(k)−v(k)/τ), if ∥τw(k)−v(k)∥2 ≥ µ,

0, otherwise.
(5.37)

If w is divided into blocks w1,w2, . . ., the ℓ2-regularization is commonly used to
promote block sparsity (rather than element sparsity by ℓ1-regularization).

•When a bound constraint l≤w ≤ u exists, ŵ(k) can be simply obtained by first
solving the approximation subproblem (5.33) without the bound constraint and then
projecting the optimal point onto the interval [l,u]. For example, when W= Rn and
r = 0,

ŵ(k) =

[
w(k)− v

(k)

τ(k)

]u

l

, (5.38)

with [w]ul = clip(w, l,u)≜ min(max(w, l),u).

• If the constraint function is quadratic: W = {w : ∥w∥2
2 ≤ 1}, ŵ(k) has a semi-

analytical expression (up to a scalar Lagrange multiplier which can be found effi-
ciently by the bisection method).

Approximation subproblem This paragraph will explain why the weights are up-
dated by solving an approximation subproblem (5.33). First, f̃ denotes the smooth
part of the objective function in (5.33). Clearly it depends onw(k) and v(k) (and thus
Mk), whilew(k) and v(k) depend on the old weightsw(0), . . . ,w(k−1) and momentum
v(0), . . . ,v(k−1). Define F(k)≜ {w(0), . . . ,w(k),M0, . . . ,Mk} as a shorthand notation
for the trajectory generated by ProxSGD. Formally write f̃ as

f̃ (w;F(k))≜ (w−w(k))Tv(k)+
1
2
(w−w(k))T diag(τ(k))(w−w(k)). (5.39)

97

Chapter 5: Proximal Gradient Methods

It follows from the optimality of ŵ(k) that

f̃ (w(k);F(k))+ r(w(k))≥ f̃ (ŵ(k);F(k))+ r(ŵ(k)).

After inserting (5.39) and reorganizing the terms, the above inequality becomes

(ŵ(k)−w(k))Tv(k)+ r(ŵ(k))− r(w(k))≤−τk∥ŵ(k)−w(k)∥2
2. (5.40)

Since ∇ f (w) is Lipschitz continuous with constant L, it follows that

f (w(k+1))+ r(w(k+1))− (f (w(k))+ r(w(k)))

≤ (w(k+1)−w(k))T
∇ f (w(k))+

L
2
∥w(k+1)−w(k)∥2

2 + r(w(k+1))− r(w(k)) (5.41)

≤ εk

(
(ŵ(k)−w(k))T

∇ f (w(k))+ r(ŵ(k))− r(w(k))+
L
2

εk∥ŵ(k)−w(k)∥2
2

)
,

(5.42)

where the first inequality follows from the descent lemma (applied to f) and the
second inequality follows from the Jensen’s inequality of the convex function r and
the update rule (5.34).

If v(k) = ∇ f (w(k)) (which is true asymptotically as is shown shortly later), by
replacing ∇ f (w(k)) in (5.42) by v(k) and inserting (5.40) into (5.42), one obtains

f (w(k+1))+ r(w(k+1))− (f (w(k))+ r(w(k)))≤ εk

(
L
2

εk− τk

)
∥ŵ(k)−w(k)∥2

2.

(5.43)
When εk <

2τk
L , the right hand side (RHS) will be negative: this will eventually be

satisfied by using a decaying εk. This implies that after each iteration, the proposed
update (5.34) will reduce the objective value of (5.29).

Momentum and algorithm convergence. The momentum (gradient averaging step)
in (5.32) turns out to be essential for ProxSGD convergence. The aggregate gra-
dient v(k) will converge to the true (unknown) gradient ∇ f (w(k)) under some mild
technical assumptions. This remark is made rigorous in the following theorem.

Theorem 5.1 Assume that the unbiased gradient g(k) has a bounded second mo-
ment

E
[
∥g(k)∥2

2 |F(k)
]
≤C, (5.44)

for some finite and positive constant C, and the sequence of stepsizes {ρk} and
{εk} satisfy

∞

∑
k=0

ρk = ∞,
∞

∑
k=0

ρ
2
k < ∞,

∞

∑
k=0

εk = ∞,
∞

∑
k=0

ε
2
k < ∞, lim

k→∞

εk

ρk
= 0. (5.45)

Then limk→∞ ∥v(k) − ∇ f (w(k))∥ = 0, and every limit point of the sequence
{w(k)} is a stationary point of (5.29) w.p.1.

98

5.3. ProxSGD with ℓ1-Regularization

Proof Under the assumptions (5.44) and (5.45), it follows from Lemma 1 of [192]
that v(k) → ∇ f (w(k)). Since the descent direction ŵ(k)−w(k) is a descent direc-
tion in view of (5.40), the convergence of the ProxSGD algorithm can be obtained
by generalizing the line of analysis in Theorem 1 of [240] for smooth optimization
problems. The detailed proof is included in the appendix.

There are some comments to consider on the convergence analysis in Theorem 5.1.
• In stochastic optimization and SGD, standard assumptions include the bounded

second moment assumption on the gradient g in (5.44) and decreasing stepsizes in
(5.45). It’s worth noting that εk should decrease faster than ρk in order for v(k) →
∇ f (w(k)) to hold. This result is more interesting from a theoretical perspective and
in practice, even the relationship εk/ρk = a for some constant a that is smaller than
1 usually yields satisfactory performance, as will be show numerically in the next
section.
• According to Theorem 5.1, the momentum v(k) converges to the (unknown) true

gradient ∇ f (w(k)), hence the ProxSGD algorithm eventually behaves similar to the
(deterministic) gradient descent algorithm. This property is essential to guarantee the
convergence of the ProxSGD algorithm.
• The quadratic gain τk in the approximation subproblem (5.33) should be lower

bounded by a positive constant to guarantee theoretical convergence (and it does not
even have to be time-varying). In practice, there are various rationales to define it (see
Table 5.1), and they lead to different empirical convergence speed and generalization
performance.
• Due to functions and layers such as the nonsmooth ReLU activation function,

batch normalization, and dropout, the technical assumptions in Theorem 5.1 may not
always be fully satisfied by the neural networks implemented in practice. Nonethe-
less, Theorem 5.1 still provides valuable guidance on the algorithm’s practical per-
formance and the choice of the hyperparameters.

5.3. ProxSGD with ℓ1-Regularization

As mentioned in Section 2.2, ℓ1-regularization helps reduce the size of large neural
networks by introducing unstructured sparsity in the parameters. The loss function
looks as follows

minimize
w

1
m

m

∑
i=1

fi(w,yi)+µ||w||1. (5.46)

Typical optimizers like SGD or Adam rely on stochastic subgradient descent in
order to train the model and thus suffer from slow convergence. Using the soft-
thresholding function introduced in Equation (5.36), the proximal operator can be
solved using a closed form solution. The soft-thresholding function is shown in Fig-
ure 5.5. Observe that the soft-thresholding with parameter λ maps any input variable
w to zero whenever |w| < λ. Any other input value will leave the variable w unaf-
fected.

99

Chapter 5: Proximal Gradient Methods

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

S
(x

)

Soft-Thresholding Function S (x)
S (x) with = 0.5
S (x) with = 1
S (x) with = 1.5

Figure 5.5.: Depiction of the soft-thresholding function for different values of the parameter
λ.

For clarity, the entire algorithm for minimizing the objective defined in Equation
(5.46) is summarized in Algorithm 8.

Algorithm 8 ProxSGD for r(w) = ∥w∥1

Input: w(0) ∈W, v(−1) = 0, k = 0, T , {ρk}T
k=0, {εk}T

k=0.
for k = 0 : 1 : T do

1. Compute the instantaneous gradient g(k) based on the minibatch Mk:

g(k) =
1

mk
∑

i∈Mk

∇w fi(w
(k),y(i)).

2. Update the momentum: v(k) = (1−ρk)v
(k−1)+ρkg

(k).

3. Compute ŵ(k):

ŵ(k) = S µ1
τ(k)

(
w(k)− v

(k)

τ(k)

)
.

4. Update the weight: w(k+1) =w(k)+ εk(ŵ
(k)−w(k)).

end for

5.3.1. Experiments

Compared to the example of stochastic subgradient descent with momentum, which
was shown in Figure 5.3, the same experiment is repeated using ProxSGD with ℓ1-
regularization. The results are depicted in Figure 5.6. The ResNet-32 architecture is
trained using the same hyperparameters as in the stochastic subgradient descent case,

100

5.3. ProxSGD with ℓ1-Regularization

only the learning rate is changed to ε = 0.06 after running a random search. One can
observe that contrary to the stochastic subgradient descent method, ProxSGD is able
to quickly converge to sparse solutions. The final value of the parameters after 100
epochs of training is (w⋆

1,w
⋆
2) = (−8.5× 10−24,2.5× 10−21), which is significantly

more sparse than what is achieved using subgradients.

1 0 1 2 3 4 5
w1 ×10 3

0.01

0.00

0.01

0.02

0.03

w
2

2.17

2.19

2.20

2.22

2.23

2.25

2.26

2.28

2.29

(a) Loss landscape visualization of ResNet-32 trained with ProxSGD
on CIFAR-100. The starting vector is (w(0)

1 ,w(0)
2) = (0.004,0.026).

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
w1 ×10 5

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

w
2

1e 5

2.17

2.19

2.20

2.22

2.23

2.25

2.26

2.28

2.29

(b) Closeup of the loss landscape visualization. One can see how both
parameters quickly converge toward zero.

Figure 5.6.: Visualization of the trajectory of a ResNet-32 architecture trained on CIFAR-
100 for 100 epochs. The network was trained with a batch-size of 128, a learn-
ing rate of ε = 0.06 and momentum of ρ = 0.9. The value of the regularization
parameter is set to µ = 0.001. The learning rate was determined using random-
search. The network reaches a final validation accuracy of 43.57%.

In the remaining subsection, the performance of ProxSGD is evaluated by training

101

Chapter 5: Proximal Gradient Methods

the DenseNet-201 network [95] on CIFAR-100 [114]. DenseNet-201 is the deepest
topology of the DenseNet family and belonged to the state-of-the-art networks in im-
age classification tasks at the time of its introduction. Three different optimizers are
used to train the network: SGD with momentum, ADAM and ProxSGD. The learning
rate is not explicitly decayed during training to ensure a fair comparison between the
different methods. Furthermore, random grid-search was used to determine the ideal
hyperparameters for each algorithm, and all curves were averaged over five runs. For
training, a batch size of 128 is chosen. For ProxSGD, the regularization parameter is
µ = 10−5, the learning rate for the weight and momentum is, respectively,

εk =
0.15

(k+4)0.5 , ρk =
0.9

(k+4)0.5 .

For ADAM, ε = 6 · 10−4 and ρ = 0.1. SGD with momentum uses a learning rate
of ε = 6 · 10−3 and a momentum of 0.9 (equivalent to ρ = 0.1). The regularization
parameter for both ADAM and SGD with momentum is µ = 10−4.

The performance of ProxSGD and other methods for DenseNet-201 trained on
CIFAR-100 is shown in Figure 5.7. ProxSGD achieves the lowest training loss after
10 epochs, as seen in Figure 5.7a. Figure 5.7b illustrates that all algorithms attain sim-
ilar accuracy, although ProxSGD outperforms the other two during the early phases
of training. ProxSGD is able to accomplish this with a much sparser network, as seen
in Figure 5.7c. When looking at the zoomed-in area of Figure 5.7c, one can see that
SGD with momentum has approximately 70% of the weights at zero, whereas most
of the weights learned by ADAM are not exactly zero (although they are very small).
ProxSGD, on the other hand, achieves a sparsity of 92-94%.

Figure 5.8 shows several ProxSGD runs with various learning rates, demonstrating
that ProxSGD is substantially more efficient in constructing a sparse neural network,
irrespective of the hyperparameters (related to the learning rate). The performance
of various different initial learning rates ε0 for ProxSGD is examined in particular.
As expected, the hyperparameters affect the achieved training loss and test accuracy,
and several lead to a worse training loss and/or test accuracy than ADAM and SGD
with momentum, as shown in Figure 5.8(a)-(b). However, looking at the cumulative
distribution functions of the weights in Figure 5.8(c), one can see that most of them
(except when they are too small: ε0 = 0.01 and 0.001) generate a much sparser neural
network than both ADAM and SGD with momentum. These observations are also
consistent with the theoretical framework in Section 5.2: interpreting ADAM and
SGD with momentum as special cases of ProxSGD implies that they have the same
convergence rate, and the sparsity is due to the explicit use of the nonsmooth ℓ1-norm
regularization.

Regarding the training time for these experiments, the use of the soft-thresholding
proximal operator in ProxSGD increases training time: the average time per epoch
for ProxSGD is 3.5 min, SGD with momentum 2.8 min and ADAM 2.9 min. In view
of the higher level of sparsity achieved by ProxSGD, this increase in computation
time is reasonable and affordable.

In summary, this chapter proposed ProxSGD, a proximal-type stochastic gradient
descent algorithm with momentum for constrained optimization problems where the
smooth loss function is augmented by a nonsmooth and convex regularization. Exper-

102

5.3. ProxSGD with ℓ1-Regularization

iments on the stochastic training of sparse neural networks show that regularization
and constraints can effectively promote structures in the learned network. More gen-
erally, incorporating regularization and constraints allows to use a more accurate and
interpretable model for the problem at hand and the proposed convergent ProxSGD
algorithm ensures efficient training. Numerical tests show that ProxSGD outper-
forms state-of-the-art algorithms, in terms of convergence speed, achieved training
loss and/or the desired structure in the learned neural networks.

There are many directions to extend this framework. One possible direction is
the development of a distributed stochastic proximal gradient method, as outlined by
[173]. SCA methods in general lend themselves to the distributed setting by making
the surrogate objective function block-separable, in which case different blocks of
variables can be updated in parallel [198]. One such example, where the surrogate
objective function can be efficiently computed in parallel, is for block-separable regu-
larization functions, which include the ℓ1-, ℓ2- and ℓ2,1-regularization [195]. Another
direction is to use another distance metric in the proximal operator definition. Prox-
SGD uses the Euclidean norm, but there exist many other norms to consider, like the
Bregmann divergence (see [31, 35]) or the entropic divergence [220]. Lastly, one can
extend ProxSGD to cover more general cases, like non-convex regularization terms,
which has been attempted by [245]. One issue with these approaches is that in many
cases it is not possible to use a closed form solution, which can severely increase
the computation time of one iteration. Other approaches have tried to leverage the
convex nature of the cost function, by using a linear approximation of the neural net-
work around the current set of parameters while preserving the convex cost function
[195]. By incorporating sparsity inducing regularization terms through a proximal
component in order to ensure strong convexity of the surrogate function, the result-
ing SCA algorithm is able to incorporate much more information of the underlying
structure of the optimization problem and in theory this should benefit its practical
convergence. Combining this idea with ProxSGD could be an interesting direction
for future research.

103

Chapter 5: Proximal Gradient Methods

0 10 20 30 40 50 60

Epochs

0

1

2

3

4

L
o
s
s Prox-SGD

Adam

SGD with momentum

(a) Training Loss

0 10 20 30 40 50 60

Epochs

0

10

20

30

40

50

60

A
c
c
u
ra
c
y

Prox-SGD

Adam

SGD with momentum

(b) Test Accuracy

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Weights value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D
F

Prox-SGD

Adam

SGD with momentum

0.0000 0.0002 0.0004
0.7

0.8

0.9

1.0

−0.0004−0.00020.0000
0.0

0.1

0.2

0.3

(c) CDF of Weights

Figure 5.7.: Performance comparison for DenseNet-201 on CIFAR-100.

104

5.3. ProxSGD with ℓ1-Regularization

0 10 20 30 40 50 60

Epochs

0

1

2

3

4

L
o
s
s

Prox-SGD ε(0)=0.3

Prox-SGD ε(0)=0.2

Prox-SGD ε(0)=0.15

Prox-SGD ε(0)=0.1

Prox-SGD ε(0)=0.09

Prox-SGD ε(0)=0.08

Prox-SGD ε(0)=0.07

Prox-SGD ε(0)=0.06

Prox-SGD ε(0)=0.01

Prox-SGD ε(0)=0.001

Adam

SGD with momentum

(a) Training Loss

0 10 20 30 40 50 60

Epochs

0

10

20

30

40

50

60

A
c
c
u
ra
c
y

Prox-SGD ε(0)=0.3

Prox-SGD ε(0)=0.2

Prox-SGD ε(0)=0.15

Prox-SGD ε(0)=0.1

Prox-SGD ε(0)=0.09

Prox-SGD ε(0)=0.08

Prox-SGD ε(0)=0.07

Prox-SGD ε(0)=0.06

Prox-SGD ε(0)=0.01

Prox-SGD ε(0)=0.001

Adam

SGD with momentum

(b) Test Accuracy

−0.0004 −0.0002 0.0000 0.0002 0.0004

Weights value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D
F

Prox-SGD ε(0)=0.3

Prox-SGD ε(0)=0.2

Prox-SGD ε(0)=0.15

Prox-SGD ε(0)=0.1

Prox-SGD ε(0)=0.09

Prox-SGD ε(0)=0.07

Prox-SGD ε(0)=0.06

Prox-SGD ε(0)=0.01

Prox-SGD ε(0)=0.001

Adam

SGD with momentum

(c) CDF of Weights

Figure 5.8.: Hyperparameters and sparsity for DenseNet-201 on CIFAR-100.

105

Chapter 6
ProxSGD with ℓ2,1-Regularization

This chapter will explore the use of ProxSGD with ℓ2,1-regularization and show how
this regularization can be used in order to do structured pruning. First, the main ideas
behind neural architecture search (NAS) will be explained and some of the limita-
tions of this field in deep learning will be highlighted. Second, using group sparsity
via ProxSGD with ℓ2,1-regularization, a unified approach for network pruning and
one-shot neural architecture search via group sparsity will be proposed. Next, exper-
iments show that this flexible optimizer is able to achieve new state-of-the-art results
for filter pruning, which refers to pruning entire filters in convolution layers. In the
succeeding section, this approach is extended to operation pruning, where each layer
(operation) or groups of operations in a neural network can be pruned individually.
Thus, group sparsity directly yields a gradient-based NAS method.

When compared to existing gradient-based algorithms, there are three advantages
to the group sparsity approach. Firstly, instead of relying on a costly bilevel optimiza-
tion problem, the NAS problem is formulated as a single-level optimization problem.
This can be solved optimally and efficiently using ProxSGD with its convergence
guarantees. Secondly, using operation-level sparsity, the network architecture can be
discretized by pruning less important operations without any performance degrada-
tion. Thirdly, this approach to NAS finds architectures that are well-performing on
a variety of search spaces and datasets. Also, this approach is robust in generating
architectures that perform well on a variety on search spaces and datasets, where the
architectures of other methods have collapsed to include only skip-connections for
example. In the last section the performance and robustness of group sparsity on
NAS, dubbed GSparsity, is shown on a variety of datasets and benchmarks.

6.1. Overview Neural Architecture Search

For new problems at hand, designing performant network architectures requires sub-
stantial efforts by human experts. As an algorithmic solution, NAS has been de-
veloped to automate the architecture search process. The main idea behind neural
architecture search is to automate the process of designing neural network architec-
tures for a given dataset. An illustrative overview of neural architecture search is

107

Chapter 6: ProxSGD with ℓ2,1-Regularization

shown in Figure 6.1.

Search Space

Search Method

Model Evaluation

Sampled
Architecture

Evaluation
result

Optimal
Architecture

Figure 6.1.: Illustration of the process and the main components used in neural architecture
search. The main components consist of the search space, the search method as
well as the model evaluation. After the search method has found a performant
architecture this candidate is returned.

As can be seen in this Figure, the main components to NAS are the search space, the
search algorithm and the evaluation strategy.

Search Space The search space refers to the types of operations that are allowed
to be used in the architecture, as well as any restrictions on the overall architecture
design. The overall architecture design usually requires some level of expert knowl-
edge, such as the number of output channels at each layer of the network or the use
of padding and strides.

While there exist architecture designs that define the network topology by hand and
let the algorithm choose the best hyperparameters of individual layers [254] (e.g. for
convolution layers: filter size, stride, number of output channels), most of the newer
approaches employ a cell-based structure. These cell-based architectures define cer-
tain types of cells and build the architecture by repeating these cells in a certain
order. This approach simplifies the architecture search to finding a good structure in-
side each cell-type and not over the whole architecture. An example of this cell based
approach is shown in Figure 6.2, which depicts one type of cell with four different
operations connecting three different nodes.

Search Algorithm A simple, yet surprisingly effective approach is to use random
search [134]. Randomly sampling different architectures given the search space and
choosing the best performing one can result in a competitive architecture. Some of
the earliest approaches of NAS were based on reinforcement learning [254] and evo-
lutionary algorithms [8, 215], which treat NAS as a black-box optimization problem.

In reinforcement learning, the agent typically tries to optimize the accuracy of a
given architecture and this is used as its reward function. The action space are the
different operations present in the search space, so the agent has to decide which
operations to keep in order to optimize the accuracy of the evaluated architecture.

108

6.1. Overview Neural Architecture Search

k−2

k−1

0

1

2

Output
Cell k−1

Output
Cell k−2

Operation 1

Operation 2

Operation 3

Operation 4

Cell k

Figure 6.2.: Illustration of a cell as used in differentiable architecture search. The cell has
two inputs, where the output of the cell k− 2 and cell k− 1 is fed into the
current cell. Apart from the two input nodes this cell has three nodes which are
connected by all the operations in the search space. The search space in this
figure consists of four different operations.

Evolutionary algorithms use a genetic algorithm that randomly mutates connections
between operations or even the type of operation itself. Also, two different parent
architectures can spawn an offspring architecture that retains different operations and
connections of the parents. One of the most popular evolutionary methods is the
AmoebaNet [183]. Compared to recent methods, the reinforcement learning and
evolutionary approaches are extremely slow, using up to 3150 GPU hours in order to
find a competitive architecture [183, 255].

A more recent approach is to use gradient based methods to find well-performing
architectures [143]. In these methods, each operation of the search space has an
associated architecture parameter. Using gradient based methods, these architecture
parameters are updated and operations are kept or removed based on the value of
those parameters.

Evaluation Strategy One of the main challenges in NAS is the architecture evalu-
ation. In theory, each architecture that is found has to be trained from scratch until
convergence, in order to be able to evaluate its performance. This represents a major
computational burden and is one of the reasons that many reinforcement learning and

109

Chapter 6: ProxSGD with ℓ2,1-Regularization

evolutionary methods are so resource intensive. There are ways to lower the training
time of the architecture, like reducing the number of samples in the dataset, or not
training until convergence, but even with these approaches the compute time is still
high (see [62] for a more in depth discussion).

The one-shot approach tries to solve this problem by sharing the weights of the
individual operations between the architectures. Commonly, the overall architecture
design is used with all of the possible operations present. In this thesis this network
will be referred to as the supernet. The supernet of a single cell-type is illustrated in
Figure 6.2, where each node is connected by all four operations of the search space.
Due to the benefits of the one-shot differential NAS approach, the remaining chapter
will only focus on this setting.

Differentiable Architecture Search The one-shot approach of NAS [21, 32, 177]
based on weight sharing enables search on a single large supernet with the goal of
finding a promising small subnet. In their paper differentiable architecture search
(DARTS) [143], the authors formulate the one-shot NAS problem as a differentiable
optimization problem that can be solved by standard stochastic algorithms. They let
the architecture parameters vary between zero and one and only choose the operations
with the biggest parameters after training, in order to obtain their final architecture.
During training, the algorithm first updates the model parameters and in the next step
updates the architecture parameters using second-order information. Thus, DARTS
is able to train much faster than reinforcement or evolutionary approaches. However,
there are several limitations to DARTS.

Firstly, modelling the importance of each operation in the architecture as a learn-
able scalar, which scales the contribution of the specific operation in the current ob-
jective function value can introduce several problems. One issue with this approach
is that the discretization of these continuous architecture parameters after training
can lead to a performance degradation [228, 248, 249]. This indicates the mis-
match between the true objective function and the one which is optimized by the
NAS algorithm. Secondly, DARTS frames the NAS problem as a bi-level optimiza-
tion problem [46]. In this approach, the upper-level architecture parameters depend
on the optimal response function value, which is defined by the lower-level solu-
tions. Since this is complex and computationally intractable to solve exactly, several
approximations have to be defined, without taking any convergence guarantees into
account. Lastly, as shown in [248], the behaviour of DARTS is not robust across
search spaces, often producing degenerate results with architectures composed by
parameterless operations only.

Many follow-up works have been proposed to overcome these limitations of
DARTS [37, 38, 228, 236, 248]. Closest to the method presented in this thesis
is the HAPG algorithm recently proposed in [234], where an additional group
sparsity regularization is applied to the architecture parameters in order to reduce
the discretization gap after the search procedure. The core difference between
the proposed algorithm and HAPG is that in unlike HAPG, the group sparsity
regularization is applied directly to the one-shot model weights. Therefore, this
makes the architecture parameters unnecessary and the NAS problem reduces to a
single-level optimization problem. Besides, the proximal algorithm used in [234]

110

6.2. GSparsity: ProxSGD with ℓ2,1-Regularization

does not have a guaranteed convergence. Another method that is close to the method
proposed in this thesis is [251], which also addresses the NAS problem from the
pruning perspective. But it is essentially pruning operations from a much larger
supernet, which is not always possible to load into GPUs with limited memory.

There are also other works that are similar in some regard to some aspect of the
proposed method in this thesis, though all have some significant drawbacks to their
method. The authors of [233] propose an algorithm to learn the connectivity pattern
in neural networks by imposing a constraint on the maximal number of edges that
the target network has to contain. In contrast to this work, the GSparsity algorithm
determines automatically what the connectivity pattern is, based on the group spar-
sity regularization on the parameters. [228] revisit the discretization step in many
famous one-shot NAS algorithms and propose a new architecture selection method
by evaluating the one-shot model after pruning some operations following a prede-
fined post-hoc heuristic. This is done implicitly with the GSparsity method in the
search routine without such heuristics.

6.2. GSparsity: ProxSGD with ℓ2,1-Regularization

In this section, GSparsity, the unified group-sparsity approach for both network prun-
ing and NAS is presented.

Let the vector w represent all of the trainable parameters of the neural network.
This vector is decomposed into different subvectorsw= (wl)

L
l=1, where eachwl rep-

resents a group of weights (e.g. all weights in the same filter of a convolutional layer)
and the total number of (non-overlapping) groups is denoted by L. As explained in
Section 5.1, in order to minimize the loss function f augmented by the group sparsity
regularization on w, the training objective of the neural network is formulated as the
following optimization problem:

minimize
w

1
|X| ∑

x∈X
f (w,x)+

L

∑
l=1

µl ∥wl∥2 , (6.1)

where x is a training sample from the training dataset X (with |X| denoting the num-
ber of training samples). Besides, the ℓ2-norm defined as ∥w∥2 ≜

√
wTw is a nons-

mooth convex function (see Figure 2.7).
The ℓ2,1-norm can encourage a group-sparse neural network. After training, most

groups will be forced to zero and can thus be safely removed from the neural network
without incurring any performance loss. Due to the fact that group sparsity is a more
structured sparsity, this can be much better exploited by hardware. This property
is a major benefit over the widely used ℓ1-norm, which only promotes unstructured
sparsity that can not be efficiently exploited by most modern hardware in order to
gain speedup during training and inference.

The regularization parameter µ in (6.1) is a predefined parameter that indirectly
controls the achieved sparsity level in the neural network: a larger µ implies that
more groups will be zero. However, due to this formulation, it is not possible to
assign a certain sparsity level a priori (for example, exactly two kernels in each filter
are zero). Furthermore, even if the same µ is used in different runs, the randomness

111

Chapter 6: ProxSGD with ℓ2,1-Regularization

in stochastic algorithms and the nonconvexity in the optimization problem renders
it possible that different optimal solutions of (6.1) exhibit different sparsity levels.
There are possibilities to relate µl to other constraints, such as hardware constraints
(e.g. FLOPs and memory access cost) [251], so the optimal solution of (6.1) will also
be bounded by these constraints.

The formulation of the optimization problem in (6.1) directly regularizes the
weights of the network. This differs from other recent works like [144], [136]
and [251], where the output of each group is scaled by a single scaling factor and
the regularization is applied to these scaling factors. There are different ways to
define the regularization parameter µl , depending on the situation at hand. The most
straightforward choice is to set each µl to the same value for all groups: µl = µ, ∀l.
Often when using the ℓ2,1-norm, in order to reduce the number of parameters, larger
groups are penalized more. This is achieved by using µl = µ ·

√
|wl|, ∀l. The idea

is that the larger the group the more unknown parameters are estimated and thus,
for larger groups, one should penalize these groups more. Though, this fact does
not imply that sometimes other penalization schemes could not work better and
whenever the size of the groups does not matter it can be beneficial to normalize the
regularization gain µ by the size of the group:

µl =
µ√
|wl|

, ∀l. (6.2)

There is no theoretical justification that favors one over another (see [244]), and for
the experiments done in this chapter it is empirically found that µl = µ,∀l works well
when the sizes of the groups are not very different, as in filter pruning and operation
pruning. However, this is not the case for NAS, where the normalization specified in
(6.2) yields the best result. The algorithm used for training the neural networks using
ProxSGD with ℓ2,1-norm regularization is shown in Algorithm 9.

If Wl = Rnl is used, the approximation subproblem in Step 3) of Algorithm 9 has
a closed form solution:

ŵ
(k)
l =

1− µl

τ
(k)
l

∥∥∥∥w
(k)
l − 1

τ
(k)
l

v
(k)
l

∥∥∥∥
2

+(
w

(k)
l −

1

τ
(k)
l

v
(k)
l

)
(6.5)

where (.)+ represents the max{0, .} function. One can see from (6.5), that all the
parameters inside a group get forced towards zero whenever

τ
(k)
l

∥∥∥∥∥w
(k)
l −

1

τ
(k)
l

v
(k)
l

∥∥∥∥∥
2

≤ µl. (6.6)

An example of the difference between using ProxSGD, which is able to efficiently
converge to a group sparse solution, and SGD with momentum is shown in Appendix
D.

112

6.3. Filter Pruning

Algorithm 9 GSparsity

Initialize: w(0) ∈W,v(−1) = 0, Total number of iterations T , Momentum param-
eter {ρk}T

k=0, learning rate {εk}T
k=0, weight vector w split into L different groups

w = (w1, . . . ,wL)
for k=0 to T do

1) Compute the instantaneous gradient g(k) based on the minibatch Mk:

g(k) =
1

mk
∑

i∈Mk

∇w fi(w
(k),x(i)) (6.3)

2) Update the momentum: v(k) = (1−ρk)v
(k−1)+ρkg

(k)

3) Compute ŵ(k) by solving the approximation subproblem:

ŵ
(k)
l = argmin

wl∈Wl

{(wl−w(k)
l)Tv

(k)
l +

τ
(k)
l
2

∥∥∥wl−w(k)
l

∥∥∥
2

2
+µl ∥wl∥2} (6.4)

4) Update the weight: w(k+1) =w(k)+ εk(ŵ
(k)−w(k))

end for

6.3. Filter Pruning

This section illustrates the performance of filter pruning for ResNet-50 [83] on Ima-
geNet 2012 using GSparsity. In order to perform filter pruning, all the parameters of
the same filter are placed into one group. This allows to prune individual filters away
inside different convolutions.

Experiment setup. Firstly, in order to determine which filters to prune away, the

ResNet-50 model is trained-with the ℓ2,1-norm regularization (µl = µ/
√
|w(k)

l |)-by
ProxSGD for 90 epochs, with the following hyperparameters: initial learning rate
ε0 = 0.001 (which is linearly decayed by 10 every 30 epochs) and momentum ρ= 0.9.
Furthermore, τ

(k)
l in (6.5) is defined as τ

(k)
l =mean

(√
r(k)/(1−βk)

)
+δ (β= 0.999,

δ = 10−8), and r(k) is the aggregate squared gradient updated iteratively as r(k) =
βr(k−1)+(1−β)(g(k))2 [110].

The ResNet-50 model consists of 4 bottleneck layers, and bottleneck layer 1/2/3/4
consists of 3/4/6/3 blocks. Each block consists of three convolutional layers. In the
experiments, only the filters of the first two layers in each block are pruned, for two
reasons: 1) the experiments show that even if all filters of the three convolutional
layers are set to be prunable, only very few filters from the last layer are actually
pruned; 2) the output of the last convolutional layer would be required to have the
same dimension as the residual layer in order to add them both together. Future
experiments could place the weights of the convolutional filters that are connected
through a residual layer in the same group, allowing them to be pruned simultane-
ously. This approach would remove this issue and could lead to better performance.

Note that the objective in filter pruning is to reduce the multiple-accumulate opera-
tions (MACs) with as little performance degradation as possible. MACs represent the

113

Chapter 6: ProxSGD with ℓ2,1-Regularization

algorithm top-1 acc MACs code available?
baseline (reported) 76.13 100% (4.12G) Y
SSS [96] (reported) 74.18 68.55% Y (MXNet)

ThiNet-70 [148] (reported) 72.04 63.21% Y (Caffe)
GSparsity (ours, µ = 0.02) 75.21 63.11% (2.60G) Y
GSparsity (ours, µ = 0.05) 74.33 50.00% (2.06G) Y

FPGM [84] (reported/reproduced) 74.83/69.69 46.50%/49.03% (2.02G) Y
Hinge [136](reported) 74.70 46.55% N
RRBP [253] (reported) 73.00 45.45% N

ResRep [54] (reproduced) 0.10 45.15% (1.86G) Y
GAL [140] (reported) 72.80 44.98% N

GSparsity (ours, µ = 0.07) 74.00 44.42% (1.83G) Y
GSparsity (ours, µ = 0.1) 73.34 42.23% (1.74G) Y

Table 6.1.: Filter pruning of ResNet-50 on ImageNet 2012.

basic operation of multiplying two numbers and adding those with an accumulator
and are a useful unit in order to gauge the computational complexity of a neural net-
work. The second and third bottleneck layers constitute 60.83% of the total MACs,
although they have only 35.55% of the total parameters. Therefore, in order to push
more filters in the second/third layers to be 0, the regularization gain is set to be
µl = µ/

√
|wl|, and it is further doubled if it is in the second/third bottleneck layers.

After training with ProxSGD is completed, the filters from the model with zero
ℓ2-norm are pruned (rather than just masked). Because the convergence of iterative
algorithms to an optimal solution w⋆ is in the sense that ∥w(k)−w⋆∥ ≤ c for an
arbitrarily small but strictly positive c, in these experiments the filters whose ℓ2-norm
is smaller than c = 10−6 are pruned. In order to achieve higher performance, the
pruned network is retrained -without the ℓ2,1-norm regularization- for 90 epochs by
SGD with momentum with an initial learning rate 0.1 (which is linearly decayed by
10 every 30 epochs), momentum 0.9 and batch size 256.

Results. The performance of the baseline (unpruned) ResNet-50 model and various
filter pruning methods is summarized in Table 6.1. The unpruned ResNet50 model
has a total of 25.56M parameters and 4.12GMACs, and this network achieves an ac-
curacy of 76.13%. For many pruning methods, the code for ResNet-50 and ImageNet
2012 is not available in the repository. It is thus impossible to verify and reproduce
their results. Besides, it is not clear how other methods have measured the MACs,
making a fair comparison difficult. As an example, FPGM in Table 6.1 reported
46.50% of the original MACs, but it is 49.03% according to the MACs calculator
used in this thesis [211].

Currently, the FPGM method is regarded as state-of-the-art because it is a recent
work achieving good results and its code is available. Nevertheless, there exists a gap
between the reported top-1 accuracy and the one that experiments could reproduce.
The gap is due to the fact that the reported top-1 accuracy is measured after masking
the zero filters in the original model, but the batch-norm following these filters are
not masked. On the one hand, it is possible to partially recover the performance if the
compressed network is retrained, and the retrained accuracy is 74.27%. On the other
hand, since the third convolutional layers in each block are also pruned, the indices

114

6.4. Operation Pruning

µ
top-1 acc

after search
top-1 acc

after retrain
MACs Params

0.01 73.99 76.01 3.22G 22.70M
0.02 73.81 75.21 2.60G 17.08M
0.03 73.49 74.93 2.36G 15.59M
0.04 72.23 74.35 2.17G 14.67M
0.05 73.00 74.33 2.06G 14.03M
0.06 72.83 74.10 1.97G 13.56M
0.07 73.01 74.00 1.92G 13.22M
0.08 72.73 73.62 1.83G 12.86M
0.09 72.47 73.41 1.77G 12.51M
0.10 72.45 73.34 1.74G 12.36M

Table 6.2.: GSparsity and filter pruning: Ablation study.

of the nonzero must be saved so that the output of the third layer can be added to the
residual layer. This additional complexity slows down the training (70 mins/epoch
vs. 48 mins/epoch in GSparsity) in retraining.

Table 6.1 shows that the proposed GSparsity method achieves the same perfor-
mance as FPGM, but its retraining cost is much lower than that of FPGM. When µ
is increased, a larger reduction in MACs is achieved and the performance is better
than other methods in literature. A closer look at the initial and final structure of the
ResNet-50 network is summarized in Appendix B.

Table 6.2 shows an ablation study that tests the performance of GSparsity with
respect to µ. It is evident that the MACs as well as the top-1 accuracy are monotonic
functions of µ, thus an appropriate value of µ achieving a target sparsity level can be
found efficiently by the bisection search.

In order to show the effects of pruning, the trade-off between accuracy and sparsity
of the proposed GSparsity is illustrated in Figure 6.3a, where the x-axis specifies the
percentage of parameters pruned from the original network, while the y-axis specifies
the achieved accuracy. When the sparsity is low, it is possible to prune filters without
any performance loss. As the target sparsity level increases, the achieved accuracy
decreases. In practice, one could either prune as many filters as possible, as long as
a target accuracy is achieved, or strive for the best accuracy, as long as the model is
smaller than a target size.

To demonstrate that the ProxSGD algorithm can converge to a group-sparse solu-
tion where most groups are exactly zero, the cumulative distribution function (CDF)
of the filters’ ℓ2 norm is examined. An example CDF from a randomly picked exper-
imental run is shown in Figure 6.3b, where one can see that about 68% of filters are
exactly zero. Nevertheless, pruning filters according to a threshold of 0.2 for exam-
ple may prune not only zero but also some nonzero filters and pruning nonzero filters
may be harmful for the performance of the pruned network.

6.4. Operation Pruning

In this section, the proposed GSparsity algorithm is used for operation pruning, where
each group consists of all parameters of the same operation.

115

Chapter 6: ProxSGD with ℓ2,1-Regularization

(a) The percentage of parameters pruned vs. the
accuracy

(b) The CDF of the filters’ norm after Search is
completed

Figure 6.3.: Plot (a) depicts the accuracy of the Resnet-50 network after retraining for dif-
ferent amounts of parameters that have been pruned using filter pruning. Plot
(b) depicts the CDF of the ℓ2-norm of the filters after the Resnet-50 network
has been searched.

Experiment setup. As a base network to be pruned, one of the networks found in
DARTS [143] is chosen: DARTS-V2, which has 3.3M parameters. To perform opera-
tion pruning, a group should consist of all trainable parameters of the same operation.
Here, an operation can also consist of many different basic operations that act as one
overall layer. For example, the dilated convolution operation consists of four suboper-
ations: ReLU, Conv2d(C in,C in), Conv2d(C in, C out), BatchNorm2d(C out).
The group should consist of the trainable parameters of all suboperations.

First, ProxSGD is used to train DARTS-V2 -with the ℓ2,1-norm regularization- on
CIFAR-10, where the regularization gain µ is identical for all groups. Various values
of µ ∈ {0.0001,0.0002,0.0005,0.002,0.004} are used to get different sparsity levels.
After training with ProxSGD is finished, operations whose ℓ2-norm is smaller than
c= 10−6 are pruned. The resulting pruned network will be retrained -without the ℓ2,1-
norm regularization- by SGD with momentum, and the retrained accuracy is reported
in the following paragraph.

Results. One can see from Table 6.3 and Figure 6.4 that when operations are
pruned away such that 38.40% of weights are pruned, the network’s retrained accu-
racy (97.45%) is almost identical to the unpruned baseline (97.50%). When 60.46%
of weights are pruned, the retrained accuracy is 97.09%, i.e., 0.41% worse than the
unpruned baseline. This tradeoff between sparsity and accuracy is observed in many
papers, and the final sparsity depends naturally on the target accuracy.

Figure 6.4 depicts the trade-off between accuracy and sparsity of GSparsity for
operation pruning. The x-axis specifies the percentage of parameters that are pruned
and the y-axis specifies the accuracy of the retrained model after pruning. Table 6.3
also shows the accuracy before and after the operations (with an ℓ2-norm smaller than
a given threshold, namely, 1e-6, 1e-3 or 0.5) are pruned. Observe that the proposed
GSparsity approach does not incur any discretization error, even when the pruning
threshold is only modestly small (such as 1e-3). Comparing the accuracies before

116

6.5. Neural Architecture Search with GSparsity

µ
accuracy

before pruning
accuracy after pruning accuracy after retraining inference

time
1e-6 1e-3 0.5 accuracy parameters

0 97.50 - - - - 100% 7.13s
0.0001 96.50 96.50 96.50 92.08 97.45 78.25% 6.73s
0.0002 96.46 96.46 96.46 75.50 97.44 61.60% 6.40s
0.0005 96.36 96.36 96.36 13.34 97.32 52.09% 6.24s
0.002 96.47 96.47 96.47 10 97.09 39.54% 4.96s
0.004 96.48 96.48 96.48 10 96.84 32.80% 4.43s

Table 6.3.: Operation pruning: The accuracy before/after operation pruning (but before re-
training, with pruning thresholds 1e-6, 1e-3 and 0.5) and after retraining (with
pruning threshold 1e-6).

Figure 6.4.: The percentage of parameters pruned vs. the accuracy for operation pruning.

and after retraining, observe that retraining can further enhance the performance of
the pruned network.

6.5. Neural Architecture Search with GSparsity

As shown in the past sections, the notion of groups provides sufficient flexibility to
achieve different levels of pruning. Depending on the specific task at hand, a group
could be a kernel or filter inside a convolution layer. Another possible group could
also be all the parameters that belong to an operation: an operation with trainable
parameters can be safely removed if all of its parameters are zero. One issue arises for
operations such as pooling and identity that do not have trainable parameters. There,
an additional scaling factor is added to the output of the parameterless operation. For
example, the 3×3 SepConv and Identity in Cell 2 in Figure 6.5(a) can be removed if
w2,1 = 0 and w2,3 = 0, respectively. As mentioned in the previous section, in case
an operation is a concatenation of several suboperations, wl should be comprised of
the trainable parameters of all suboperations. Alternatively, the trainable parameters
of suboperations can be put into separate groups, and the operation can be removed

117

Chapter 6: ProxSGD with ℓ2,1-Regularization

if any group is zero.

Cell 1

3×3 SepConv: w1,1

3×3 DilConv: w1,2

Identity w1,3

Pooling w1,4

Cell 2

3×3 SepConv: w2,1

3×3 DilConv: w2,2

Identity w2,3

Pooling w2,4

Cell 3

3×3 SepConv: w3,1

3×3 DilConv: w3,2

Identity w3,3

Pooling w3,4

(a) Supernet in Search: Cell 1 and Cell 3 are of the same type and Cell 2 is of a different type
(Operations in the same color shall be preserved or removed simultaneously.)

f(w) + µ

(∥∥∥∥∥

[
w1,1

w3,1

] ∥∥∥∥∥
2

+

∥∥∥∥∥

[
w1,2

w3,2

] ∥∥∥∥∥
2

+

∥∥∥∥∥

[
w1,3

w3,3

] ∥∥∥∥∥
2

+

∥∥∥∥∥

[
w1,4

w3,4

] ∥∥∥∥∥
2

+ ‖ w2,1 ‖2 + ‖ w2,2 ‖2 + ‖ w2,3 ‖2 + ‖ w2,4 ‖2
)

(b) Definition of groups in Search (The regularization gains {µl} are assumed to be identical for all
groups.)

Figure 6.5.: Illustrative example of applying the group sparsity approach to NAS.

This section illustrates how the concept of group sparsity can be used to perform
network architecture search. As mentioned before, one-shot approaches for NAS typ-
ically consist of two steps: Search and Evaluate. The first is the Search step, and it
is usually performed on a relatively shallow proxy supernet consisting of consecutive
cells connected in a predefined manner. This has to be done because all candidate
operations in the search space are assumed to be active in the supernet and thus its
size grows fast with the number of cells. The cells can have the same or a different
structure. To make sure that cells of the same type will have the same structure, oper-
ations of the same type (encoded in the same color in the example network in Figure
6.5(a)) should be removed or preserved simultaneously. To this end, these operations
are placed into the same group, as visualized in Figure 6.5(b). In the example net-
work shown in Figure 6.5(a), Cell 1 and Cell 3 are of the same type and Cell 2 is
of a different type. As shown in Figure 6.5 for example, since Cell 1 and Cell 3 are
assumed to be the same Cell type, the parameters of the 3×3 SepConv of Cell 1 and
Cell 3 all belong to the same group. If the ℓ2-norm of this group is forced to zero by
GSparsity, this operation will be pruned away in both cells simultaneously. Thus, this
shows that different cells can be linked together in order to generate different types
of cells. The aim of the Search step is to find the optimal structure of these cells, i.e.
the operations and the connectivity between different nodes, such that it is optimal
with respect to some objective (e.g. validation loss). If a group is zero after Search
is completed, it implies that the same operation in all cells of the same type is zero
and can thus be removed from these cells.

After this pruning step, the found cell(s) can then be stacked repetitively to form a
much deeper network. This is now possible, since most of the operations in the initial
supernet will be pruned away, reducing the overall size of the cells. In the Evaluate
step, the deeper networks will be retrained, and the one with the best performance
will be used for future inference.

Except for operations with no trainable parameters (such as pooling and identity),
the proposed formulation (6.1) does not need the architecture parameter (the so-called
α parameters in DARTS and many follow-up papers). Its implications are twofold.

118

6.5. Neural Architecture Search with GSparsity

Firstly, (6.1) is a single-level optimization problem and it is much easier to solve
than the otherwise costly bilevel optimization problem (the architecture parameter
in the upper level and the network weights in the lower level). Secondly, it is no
longer necessary to split the training dataset into two parts, one used to update the
architecture parameters and the other for the network weights. The group sparsity
regularization in (6.1) will also alleviate overfitting from which bilevel optimization
with architecture parameters may suffer.

The method proposed in [251] addresses the NAS problem from a pruning perspec-
tive, but it is essentially operation pruning: operations in different cells are pruned
independently and similar cells are not linked by grouping parameters of the same
operation across these cells. This proposed approach should be applied to the deep
network (as deep as in Evaluate) but with all candidate operations active (as in
Search). The resulting supernet is more often than not too large (much larger than
the commonly used proxy supernet in Search) for GPUs with limited memory, and
hence this approach is not always practical.

In the following subsections, the proposed GSparsity algorithm is used for NAS
and compared with state-of-the-art differentiable algorithms. All experiments follow
the NAS best practice checklist [142].

Experimental protocol. To study the robustness of GSparsity and various base-
lines, each method is run 3 times; next, each of the 3 resulting architectures are
evaluated 3 times and the means and standard deviations over the resulting 9 results
are reported. Note, that this is different from the popular strategy in existing work
(such as [143]), where the neural architecture search is repeated several (often, 4)
times and only the best architecture (in terms of the validation accuracy in Search)
is evaluated. The experiments in this section deviate from this strategy because, on
the one hand, it increases the search cost (which is proportional to the number of
searches), and, on the other hand, it does not reflect the expected performance and
stability of the search algorithm. As a consequence, the performance could be worse
than reported in the original papers. All methods have been re-run (using the au-
thors’ original implementation) on the same hardware and using the same evaluation
protocol.

6.5.1. CIFAR-10 and CIFAR-100.

Neural architecture search on the CIFAR-10 and CIFAR-100 dataset typically uses
the DARTS search space and the same architecture space. The DARTS search space
consists of the following operations: 3×3 MaxPooling, 3×3 AvgPooling, Identity,
3×3 SepConv, 5×5 SepConv, 3×3 DilConv, and 5×5 DilConv.

Architecture space and search settings. The Search is carried out on a small
supernet, where the initial inputs are passed though a convolutional layer that outputs
16 initial channels, and the supernet consists of 8 stacked cells. To apply the group
sparsity approach, the same operation in different cells of the same type is put into
the same group. There are two types of cells: normal cells and reduction cells, which
preserve and reduce the spatial resolution, respectively. Each cell consists of 2 input

119

Chapter 6: ProxSGD with ℓ2,1-Regularization

CIFAR-10 CIFAR-100

accuracy search cost accuracy search cost

DARTS (2nd) 96.98 ± 0.13 1.46 days 73.40 ± 7.79 1.33 days
P-DARTS 97.05 ± 0.20 0.25 day 83.46 ± 0.24 0.34 day

PC-DARTS 97.13 ± 0.16 0.13 day 82.57 ± 0.71 0.15 day
DrNAS 96.95 ± 0.08 0.83 day 83.15 ± 0.23 0.90 day

GDAS [56] 96.63 ± 0.12 0.18 day 80.99 ± 0.34 0.36 day
ISTA-NAS [242] 96.64 ± 0.15 0.03 day 82.25 ± 0.77 0.03 day

GAEA [133] 96.12 ± 0.29 0.22 day 79.10 ± 0.89 0.22 day
GSparsity (prop.) 97.17 ± 0.11 0.42 day 83.56 ± 0.34 0.78 day

Table 6.4.: NAS on DARTS search space for CIFAR-10/-100. All results are reproduced
from their authors’ implementations.

nodes, 4 intermediate nodes and 1 output node. Each intermediate node is connected
to the 2 input nodes and previous intermediate nodes. Nodes are connected though
the 7 different operations of the search space, which results in a total of 98 different
operations inside each cell. Figure 6.2 provides an illustration of this description with
3 intermediate nodes and 4 different operations in the search space.

The supernet is trained for 50 epochs on the full training set with 50k samples
using ProxSGD, with a learning rate of ε = 0.001 (without a learning rate scheduler)
and momentum of ρ = 0.8. The regularization gain µl is chosen according to (6.2)
with µ = 60. In order to find the architecture, the value of τ is set to τ

(k)
l = 1. This

removes the dependency of the squared gradient, as it is commonly used in optimizers
like Adam for example. The resulting algorithm is more in line with optimizers like
SGD with momentum. This approach speeds up the GSparsity method, while it is
still able to find architectures that are able to outperform NAS methods like DARTS
and DrNAS [37].

The regularization gain µ is tuned in a similar way as the bisection method. Firstly,
values of µ are tried spanning a big range (such as µ =0.1, 1, 10, 100) to determine
a small range in which the desirable µ (i.e. the desired sparsity level) lies. Then
the bisection method is repeated in the small range, for example [50,100]. One can
typically find an appropriate µ within 10 trials. Note that in order to reduce the
effort to tune µ, a seemingly obvious way is to use a small µ and only keep the top
k operations with the largest ℓ2-norm. However, this discretization step would incur
notable performance degradation. Therefore, searching for the appropriate µ will
reduce the performance degradation due to discretization and it is not an extra burden
compared to other methods.

Evaluation settings. For Evaluation, similar settings are used as in
DARTS [143]: 36 initial channels (after the first convolution), SGD with mo-
mentum (now without the ℓ2,1-norm regularization) for 600 epochs, learning rate
ε = 0.025, momentum parameter ρ = 0.9, weight decay 3e-4, an auxiliary tower
with weight 0.4, cutout regularization with length 16 and ScheduledDropPath [255]
with the maximum drop probability 0.3. In order to have a network size that is
comparable to other methods, 14 cells are stacked to form the evaluation network.

120

6.5. Neural Architecture Search with GSparsity

Results on CIFAR-10 and CIFAR-100. The comparison between the proposed
GSparsity method and seven recent NAS algorithms is summarized in Table 6.4:
DARTS [143], P-DARTS [39], PC-DARTS [238], DrNAS [37], GDAS [56], ISTA-
NAS [242] and GAEA [133].1 The GSparsity approach has the highest average
accuracy, with a low standard deviation. Note that the accuracies of the baselines,
albeit reproduced by using the authors’ original implementations, are generally
worse than reported in the respective papers. One possible reason is that, as discussed
in the experimental protocol, in these experiments the average performance based
on all architectures is considered (instead of the best architecture w.r.t. validation
performance, as done by many recent papers)2. Thus, this concludes that the
performance of GSparsity is both good and stable. Appendix C also summarizes
the results for the best performing architecture. Figure 6.6 shows the normal and
reduction cell of one of the three architectures that was found with the GSparsity
method on CIFAR-10.

Similar observations are drawn from experiments on CIFAR-100 [114]. Here, the
GSparsity method achieves the highest average accuracy of all methods. Again, there
is a gap between the reproduced results and the reported accuracy in the respective
papers for the same reasons as mentioned for the CIFAR-10 experiments. Figure 6.7
shows the normal and reduction cell of one of the three architectures that was found
with the GSparsity method.

There is also the approach, where scaling factors are appended to the operations
and then pruned (instead of directly pruning the weights). It turns out that directly
pruning weights yields better results, see Appendix C for details. An ablation study
on the effect of the regularization parameter µ on the structure of the final network is
presented in Appendix E.

6.5.2. ImageNet 2012.

The search and evaluation network on ImageNet 2012 differs from the network used
to search and evaluate CIFAR-10 and CIFAR-100. Similar to [37], [39] and [238],
three convolutions with stride 2 are used in the beginning of the network in order to
downscale the spatial resolution of the ImageNet samples to 28×28. This greatly re-
duces the size of the features in the hidden layers. Also, following the same approach
as in [37], [39] and [238], the network is trained on only 10% of the ImageNet 2012
samples during Search. The hyperparameter settings in the search phase are the same
as for the CIFAR-10 dataset. The model was trained in parallel on 4 Titan GPUs.

During Evaluation, the network is scaled to 14 cells with 48 initial channels,
following previous works ([37], [39], [238]). The network is trained for 250 epochs
using the SGD optimizer with momentum. An initial learning rate of ε = 0.5 is
used, which is decayed down to zero using a cosine annealing scheduler, momentum
ρ = 0.9, a batch-size of 512 and a weight decay value of 3e-5. The evaluation
network also uses an auxiliary tower with auxiliary weight of 0.4, as well as label
smoothing. The results are summarized in Table 6.5.

1It would be interesting to compare with HAPG [234], but the authors’ implementation is not available
yet.

2However, the performance of the best architecture that was experimentally reproduced is still worse
than originally reported (with a non-negligible gap).

121

Chapter 6: ProxSGD with ℓ2,1-Regularization

c_{k-2}

0
sep_conv_3x3

sep_conv_5x5

1

sep_conv_5x5

2
sep_conv_5x5

3

sep_conv_5x5

c_{k-1}
sep_conv_3x3

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

c_{k}

(a) Normal cell found by GSparsity for the CIFAR-10 dataset.

c_{k-2} 0sep_conv_5x5

1

sep_conv_5x5

c_{k-1}
sep_conv_5x5

sep_conv_5x5

c_{k}

2

3

(b) Reduction cell found by GSparsity for the CIFAR-10 dataset.

Figure 6.6.: Example of one architecture found by GSparsity on CIFAR-10. The restriction
on the number of operations per node has been removed. In order to match
the network size to other methods, less cells are stacked when evaluating the
architecture.

Note that because ImageNet 2012 is computationally demanding, each method in
this table was run only once. The PC-DARTS method is able to achieve the high-
est top-1 accuracy of 75.71%, followed by the GSparsity approach, which reached

122

6.5. Neural Architecture Search with GSparsity

c_{k-2}

0

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

1sep_conv_5x5

2

sep_conv_3x3

sep_conv_5x5

3sep_conv_5x5

c_{k-1}

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

dil_conv_5x5 c_{k}

dil_conv_5x5

sep_conv_5x5

(a) Normal cell found by GSparsity for the CIFAR-100 dataset.

c_{k-2}

0

sep_conv_5x5 1
sep_conv_5x5

3sep_conv_5x5

c_{k-1}
sep_conv_5x5

sep_conv_5x5

c_{k}

2

(b) Reduction cell found by GSparsity for the CIFAR-100 dataset.

Figure 6.7.: Example of one architecture found by GSparsity on CIFAR-100. The restric-
tion on the number of operations per node has been removed. In order to match
the network size to other methods, less cells are stacked when evaluating the
architecture.

75.52%. DrNas was reproduced using the authors’ implementation, but the accuracy
reached only 65.25%, and it is notably below the one reported in [37]. It takes PC-
DARTS and GSparsity roughly the same time to search for an architecture: 3.1 and
3.3 GPU days, respectively. DrNAS takes the longest with 7.3 GPU days. Also, it is
important to note that the difference in the number of parameters is mainly due to the
type of operations kept after Search is completed. For example, Identity has con-

123

Chapter 6: ProxSGD with ℓ2,1-Regularization

top-1 acc top-5 acc search cost params
DARTS* 71.09 89.83 2.9 days 5.54M

P-DARTS* 74.11 91.73 0.3 days 3.67M
GSparsity* (ours) 75.29 92.42 0.5 days 6.29M

PC-DARTS 75.71 92.68 3.1 days 5.57M
DrNAS 65.25 86.23 7.3 days 3.33M

GSparsity (ours) 75.52 92.60 3.3 days 6.22M

Table 6.5.: NAS on DARTS search space for ImageNet 2012 (*Architecture has been
searched on CIFAR-10 or CIFAR-100). All results are reproduced from their
authors’ implementations.

siderably less parameters than convolutions, and DARTS tends to keep the Identity
operation. Since each method is expected to only keep 8 operations for each cell, the
number of parameters can vary widely.

6.5.3. NAS-Bench-201 Search Space

In this subsection the GSparsity method is evaluated on the tabular NAS bench-
mark NAS-Bench-201 [57]. NAS-Bench-201 aims to serve as a NAS benchmark
and consists of a large database that contains all possible 15,625 architectures of a
specific search space and a predefined architecture structure. Every architecture in
this database has a test and validation accuracy assigned to it. This allows for a fairer
comparison between different methods, as it removes any possible differences in the
evaluation procedure. It features experiments on the three different datasets CIFAR-
10, CIFAR-100 and ImageNet-16-120.

Architecture space and search settings. NAS-Bench-201 employs a fixed cell-
based structure similar to DARTS. The search space consists of the five operations
Zero, Identity, 1×1 Convolution, 3×3 Convolution and 1×1 Average Pooling. The
architecture has only one type of searchable cell and each cell contains 4 intermediate
nodes, where each node is connected to the previous intermediate nodes. There are a
total of 15 cells in the network and after every five cells there is a residual block with
stride 2 which downsamples the spatial size and doubles the number of channels. To
search for a single cell structure, operations of the same type across different cells are
placed into the same group (cf. Figure 6.5). The network is trained with GSparsity for
100 epochs using the full training set. During training a learning rate of ε0 = 0.001
is used that is decayed down to εT = 0.0001 using a cosine annealing scheduler. The
momentum is set to ρk = 0.8 and τ

(k)
l = 1. The regularization gain µl follows (6.2)

where µ = 200.

Evaluation settings. The architectures found in the Search phase are simply
queried from the NAS-Bench-201 database to obtain validation/test accuracy. For
these experiments the performance for each architecture was queried and the table
reports the mean/standard deviation for the architectures resulting from 3 Search
runs using different seeds.

124

6.5. Neural Architecture Search with GSparsity

CIFAR-10 CIFAR-100 ImageNet-16-120

validation test validation test validation test

DARTS (1st) 49.27 ± 13.4 59.84 ± 7.84 38.57 ± 0.00 38.97 ± 0.00 18.87 ± 0.00 18.41 ± 0.00
DARTS (2nd) 58.78 ± 13.4 65.38 ± 7.84 38.57 ± 0.00 38.97 ± 0.00 18.87 ± 0.00 18.41 ± 0.00

P-DARTS 64.72 ± 19.1 71.43 ± 14.2 38.57 ± 0.00 38.97 ± 0.00 28.03 ± 13.0 27.72 ± 13.2
GAEA 83.31 ± 1.31 83.18 ± 1.20 54.94 ± 0.26 54.88 ± 0.17 29.31 ± 3.19 28.42 ± 3.31

PC-DARTS 89.46 ± 1.05 93.06 ± 0.99 67.19 ± 1.36 67.76 ± 1.00 40.57 ± 0.77 40.84 ± 0.85
DrNAS 90.20 ± 0.00 93.76 ± 0.00 67.84 ± 1.74 67.62 ± 1.69 40.78 ± 0.00 41.44 ± 0.00

GSparsity (prop.) 90.20 ± 0.00 93.76 ± 0.00 70.71 ± 0.00 71.11 ± 0.00 40.78 ± 0.00 41.44 ± 0.00

Table 6.6.: NAS on NAS-Bench-201 search space (reproduced from their authors’ imple-
mentations).

Results. Table 6.6 shows that GSparsity performs amongst the best for all three
datasets on the NAS-Bench-201 search space. DrNAS performs similar to GSparsity,
finding the same architectures on CIFAR-10 and ImageNet-16-120. On CIFAR-100
the proposed GSparsity method is able to find the best performing network compared
to the other methods.

6.5.4. Robustness of GSparsity

Many NAS methods are prone to overfit their architecture parameters, which results
in a ”collapse” of the architecture. These architectures often result in a lot of skip-
connections, and they do not perform well during evaluation. Thus, it is important
to devise NAS methods that are robust to this type of collapse. Experiments in [248]
show that DARTS performs poorly on different search spaces that only allow a subset
of operations from the original DARTS search space. In this subsection, GSparsity
is tested on the S1, S2 and S4 3 spaces from [248]. S1 consists of the same search
network as in the DARTS paper, but with only 2 operation choices per edge (refer to
Figure 9 in [248]). S2 is similar but the choices at every edge are from the set {3×3
SepConv, Identity}. S4 adds one harmful Noise operation to the set of operations in
S2.

Search Space DARTS* DARTS-ES* GSparsity (prop.)
S1 95.34 ± 0.71 96.95 ± 0.07 96.94 ± 0.14
S2 95.58 ± 0.40 96.59 ± 0.14 97.40 ± 0.11
S4 93.05 ± 0.18 95.83 ± 0.21 97.36 ± 0.12

Table 6.7.: Performance of DARTS, DARTS-ES and the proposed GSparsity on CIFAR-10
(*Results taken from Table 1 of [248]).

The search and evaluation settings are the same as for the DARTS search space, ex-
cept that ScheduledDropPath has a maximum drop probability of 0.2 in Evaluation.
Note that [248] proposed several methods to robustify DARTS, such as adaptive reg-
ularization and early stopping, which require computing the Hessian of the validation
loss w.r.t. the architecture parameters in DARTS as proxy for the flatness of the loss
landscape. These methods impose an additional overhead to Search. GSparsity does

3The search space S3 in [248] is {3×3 SepConv, Identity, Zero}. This search space is not considered,
because implicitly the operation Zero results from S2 when none of {3×3 SepConv, Identity} is
selected.

125

Chapter 6: ProxSGD with ℓ2,1-Regularization

not rely on such heuristics and therefore has much lower runtime and memory re-
quirements.

Table 6.7 evaluates the performance of GSparsity on these search spaces, com-
paring it against DARTS and DARTS-ES (DARTS with early stopping from [248]).
GSparsity performs amongst the best on all three search spaces, and substantially
better than DARTS-ES on S2 and S4, with up to 1.53% absolute test accuracy im-
provement on S4. DARTS-ES in turn clearly outperforms DARTS on all spaces. This
verifies the robustness of the proposed GSparsity algorithm.

This chapter introduced GSparsity, a unified approach for network pruning and
one-shot neural architecture search via group sparsity. Experiments show its flexibil-
ity in performing various tasks while maintaining competitive performance. GSpar-
sity is able to perform filter pruning, operation pruning as well as one-shot neural ar-
chitecture search. This method is able to find well performing architectures that can
be scaled to arbitrary size by stacking multiple cells. The benefits of this approach
for very large neural networks are twofold. Firstly, very large neural networks can
be trained from scratch with GSparsity using filter or operation pruning and the re-
sulting network can be pruned without incurring any performance degradation. This
removes the need of retraining very large neural networks after pruning in order to
maintain competitive performance. Secondly, structured sparsity can be better ex-
ploited by hardware, which can significantly speed up inference and reduce the size
of neural network architectures.

Further research can explore several different directions. The proximal algorithm
used in GSparsity lends itself for efficient distributed computing [173]. One could
develop a distributed proximal version of GSparsity for pruning and neural archi-
tecture search, which could tackle even bigger neural networks. Another possible
direction for extending this work could involve relaxing the DARTS supernet archi-
tecture. Most bi-level optimization methods have to use costly second-order methods
in order to update the architecture parameters. By keeping the same operations of dif-
ferent cells linked together, each operation of the search space for a unique cell type is
represented by one α-parameter. This reduces the overall number of parameters that
other methods have to update using second-order methods. GSparsity does not use
those α-parameter and it does not rely on second-order optimization methods, thus
one could prune each operation in each cell individually. This more flexible approach
could increase the accuracy of the model, but it is not clear how to stack the resulting
pruned cells in the evaluation network when each cell is unique. A third direction
to extend this method is to consider a more general approximation subproblem than
what is considered in ProxSGD. This would amount to solving a (strongly) convex
function iteratively for a certain number of iterations in order to find a solution. One
benefit would be a possible reduction in the number of steps until convergence. The
drawback of this approach is the use of an iterative solver, which will increase the
compute time per iteration.

126

Chapter 7
Conclusions and Outlook

Despite the impressive performance of deep neural networks, many of the recent ad-
vances in accuracy correlate with an increase in the size of these models. Nowadays,
in order to push for even higher performance, very large neural networks have been
developed by certain groups that have the resources to distribute their training onto
multiple nodes. Due to their size, each iteration during training becomes increasingly
costly. Also, very large neural networks take up a large portion of the GPU memory,
which in turn limits the number of samples that can be used in each mini-batch, which
further increases the training time. Different methods have been proposed to reduce
the number of iterations to convergence. There have also been many new proposed
optimizers that try to efficiently train large neural networks across different nodes on
a cluster.

Tools that allow for an investigation of various loss landscape properties per it-
eration can assist researchers in exploring different aspects of proposed optimizers
and neural network models. This can help in making informed decisions on future
optimizer and neural network design, which are more efficient than current methods
and models. Also, since the performance of most state-of-the-art networks correlates
with an increase in network size, cutting edge research is only possible for institu-
tions with access to huge compute resources. In order to democratize the field of
deep learning and to make it more environmentally friendly by reducing the amount
of compute used for training, the field of AutoML and NAS tries to automatically
find performant models with a reasonable size.

This thesis introduced several ways to deal with very large neural networks, by
providing tools for loss landscape investigation, which can help in the development
of more efficient optimizers and neural network models. Also, this thesis explores
the use of proximal methods, which on the one hand provide an efficient way for
shrinking the model size of neural networks through unstructured pruning, and on
the other hand allow for efficient structured pruning as well as neural architecture
search.

Firstly, this thesis contributes to the field of optimization and deep learning by
combining efficient eigenvalue computation with high dimensional loss surface visu-
alization in order to find meaningful directions in the parameter space of deep neural
networks. This allows for an investigation into the behavior of different optimizers

127

Chapter 7: Conclusions and Outlook

as well as different types of deep neural network models. In order to speed up the
computations of loss surface visualization, the different points of the input grid are
computed in parallel. Also, a novel iteration parallel evaluation method is introduced
for computing the stochastic Lanczos quadrature algorithm, which allows for more
efficient parallelization than the data parallel approach. All of these methods are
available in the GradVis toolbox, which works with the popular libraries PyTorch
and TensorFlow. Using these tools, this thesis depicts for the fist time the loss land-
scape of a neural network in the direction of various eigenvectors as well as between
two local minima.

Future possible research directions include the investigation of different types of
models and optimizers using the eigenvalues and eigenvectors. One could also in-
vestigate the eigenspectra of different parts of a network, for example how different
filters in a convolution converge during training. Also, one could investigate certain
phenomena in deep learning that are not well understood, like the large batch size
problem [199], in order to observe how the loss landscape differs for different batch
sizes. This could potentially motivate the development of a novel optimizer that does
not suffer from the large batch size problem. A third possible direction is to com-
bine the proposed method-parallel stochastic Lanczos algorithm with the previously
introduced data parallel method. This could potentially speed up the calculation of
the full eigenvalue spectrum even further.

Next, this thesis contributes to the field of GANs, by using the eigenvalue and
visualization tools in order to visualize their full eigenvalue densities at different
iterations for the first time. This allowed to observe how GANs that suffer from mode
collapse behave differently, compared to instances where the network does not suffer
from mode collapse. This lead to the introduction of NudgedAdam, an optimizer that
effectively regularizes GANs and thus prevents the networks from mode collapse.

This line of work could be extended by investigating other GAN architectures, in
order to observe how these architectures behave under mode collapse. In this work,
convolutional GANs still suffered from mode collapse, even after optimization with
NudgedAdam. Thus, observing the eigenvalue spectra of convolutional GANs and
comparing them to their fully-connected version could reveal how they differ during
optimization and possibly lead to new optimizers that prevent more types of GANs
from mode collapse.

In order to reduce the size of very large neural networks, this thesis introduced
ProxSGD, the first optimizer using proximal updates for stochastic preconditioned
gradient methods. This optimizer has a convergence guarantee and is able to unify
multiple popular optimizers into one framework. Experiments show that ProxSGD
is able to find sparser networks while reaching similar accuracies compared to com-
monly used optimizers.

This work could be extended in a number of ways. Firstly, there is no reason why
the ℓ2-norm in the proximal operator should be favored over other distance measures.
One could formulate the optimizer using the Bregman divergence [31, 60] or entropic
penalties [220]. Secondly, instead of using the quadratic objective in the ProxSGD
formulation, one could aim at solving the proximal operator using a more general
convex function. This would probably require solving the subproblem iteratively,
which slows the per iteration computation, but on the other hand this could reduce

128

Chapter 7: Conclusions and Outlook

the number of iterations to convergence. Thirdly, one could extend ProxSGD to a
distributed setting. There are several ways to define proximal gradient methods for
distributed training. One could for example use ProxSGD with ℓ1-regularization, in
order to more effectively compress the information that is sent between workers (see
[77] for a similar approach), though there are many other directions one could exploit
the proximal operator in the distributed setting [173].

Lastly, this thesis unifies sparsity and one-shot NAS through operation pruning by
using ProxSGD with ℓ2,1-regularization. Experiments show that using group sparsity
via ProxSGD achieves better results for filter pruning compared to previous heuris-
tic proximal algorithms. Also, the group sparsity approach allows for pruning entire
operations, which is achieved by grouping all trainable parameters of each operation
together. In the NAS setting, GSparsity casts the NAS problem as a single-level op-
timization problem, which renders the architecture parameters used in most one-shot
methods useless. This problem can be solved optimally by the ProxSGD algorithm,
due to its convergence guarantee. GSparsity forces the weights of non-important
groups exactly to zero and is thus able to converge to a group-sparse solution. Thus,
GSparsity does not suffer any performance degradation in the discretization step, con-
trary to previous methods. An additional benefit to this approach is that GSparsity is
robust to a ”collapse” of the architecture, which is an issue for many other methods.

The GSparsity method can be extended in multiple ways. Future research could
investigate whether Bregman divergences or entropic penalties improve performance
even further. Also, one could incorporate the partial-channel connections introduced
in PC-DARTS [238], which reduce the computation time significantly and have been
used in many recent NAS methods [37, 42]. Also, since GSparsity does not rely
on architecture parameters, one can remove the dependence on cell structure during
training, and treat each operation individually. This is very costly for other methods,
as many rely on second-order optimization of the architectural parameters in order to
converge to a solution. Lastly, one could try and use the structured pruning capabili-
ties of group sparsity for distributed training, by using structured pruning in order to
speed up time to convergence.

129

Bibliography

[1] Abukmeil, M., Ferrari, S., Genovese, A., Piuri, V., & Scotti, F. (2021). “A
survey of unsupervised generative models for exploratory data analysis and
representation learning”. ACM Comput. Surv., 54(5).

[2] Adolphs, L., Daneshmand, H., Lucchi, A., & Hofmann, T. (2019). “Local
saddle point optimization: A curvature exploitation approach”. Proceedings
of the Twenty-Second International Conference on Artificial Intelligence and
Statistics, 89, 486–495.

[3] Adorio, E. P. (2005). “Mvf - multivariate test functions library in c for un-
constrained global optimization”.

[4] Aizerman, M. A. (1964). “Theoretical foundations of the potential function
method in pattern recognition learning”. Automation and remote control, 25,
821–837.

[5] Akbari, A., Awais, M., Bashar, M., & Kittler, J. (2021). “How does loss func-
tion affect generalization performance of deep learning? application to hu-
man age estimation”. Proceedings of the 38th International Conference on
Machine Learning, 139, 141–151.

[6] Amari, S. (1998). “Natural gradient works efficiently in learning”. Neural
Computation, 10(2), 251–276.

[7] Amdahl, G. M. (1967). “Validity of the single processor approach to achiev-
ing large scale computing capabilities”. American Federation of Information
Processing Societies: Proceedings of the AFIPS ’67 Spring Joint Computer
Conference, April 18-20, 1967, Atlantic City, New Jersey, USA, 30, 483–485.

[8] Angeline, P., Saunders, G., & Pollack, J. (1994). “An evolutionary algorithm
that constructs recurrent neural networks”. IEEE Transactions on Neural Net-
works, 5(1), 54–65.

[9] Antognini, J., & Sohl-Dickstein, J. (2018). “Pca of high dimensional random
walks with comparison to neural network training”. Advances in Neural In-
formation Processing Systems, 31.

[10] Arbenz, P. (2016). “Lecture notes on solving large scale eigenvalue prob-
lems”.

[11] Arjovsky, M., Chintala, S., & Bottou, L. (2017). “Wasserstein generative ad-
versarial networks”. Proceedings of the 34th International Conference on
Machine Learning, 70, 214–223.

[12] Arjovsky, M., & Bottou, L. (2017). “Towards principled methods for training
generative adversarial networks”. 5th International Conference on Learning

131

http://dx.doi.org/10.1145/3450963
http://dx.doi.org/10.1145/3450963
http://dx.doi.org/10.1145/3450963
https://proceedings.mlr.press/v89/adolphs19a.html
https://proceedings.mlr.press/v89/adolphs19a.html
https://www.geocities.ws/eadorio/mvf.pdf
https://www.geocities.ws/eadorio/mvf.pdf
https://cs.uwaterloo.ca/~y328yu/classics/kernel.pdf
https://cs.uwaterloo.ca/~y328yu/classics/kernel.pdf
https://proceedings.mlr.press/v139/akbari21a.html
https://proceedings.mlr.press/v139/akbari21a.html
https://proceedings.mlr.press/v139/akbari21a.html
http://dx.doi.org/10.1162/089976698300017746
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1109/72.265960
http://dx.doi.org/10.1109/72.265960
https://proceedings.neurips.cc/paper/2018/file/7a576629fef88f3e636afd33b09e8289-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/7a576629fef88f3e636afd33b09e8289-Paper.pdf
https://people.inf.ethz.ch/arbenz/ewp/Lnotes/lsevp.pdf
https://people.inf.ethz.ch/arbenz/ewp/Lnotes/lsevp.pdf
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://openreview.net/pdf?id=Hk4_qw5xe
https://openreview.net/pdf?id=Hk4_qw5xe

Bibliography

Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings.

[13] Arora, S., Ge, R., Liang, Y., Ma, T., & Zhang, Y. (2017). “Generalization and
equilibrium in generative adversarial nets (GANs)”. Proceedings of the 34th
International Conference on Machine Learning, 70, 224–232.

[14] Bach, F., Jenatton, R., Mairal, J., & Obozinski, G. (2011). “Optimization with
Sparsity-Inducing Penalties”. Foundations and Trends in Machine Learning,
4(1), 1–106.

[15] Baevski, A., Zhou, Y., Mohamed, A., & Auli, M. (2020). “Wav2vec 2.0: A
framework for self-supervised learning of speech representations”. Advances
in Neural Information Processing Systems, 33, 12449–12460.

[16] Ballard, D. H. (1987). “Modular learning in neural networks.” Aaai, 647,
279–284.

[17] Balles, L., & Hennig, P. (2018). “Dissecting adam: The sign, magnitude and
variance of stochastic gradients”. Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, 80, 413–422.

[18] Beck, A. (2017). “First-order methods in optimization”. Society for Indus-
trial; Applied Mathematics.

[19] Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). “Reconciling modern
machine-learning practice and the classical bias–variance trade-off”. Pro-
ceedings of the National Academy of Sciences, 116(32), 15849–15854.

[20] Belkin, M., Hsu, D. J., & Mitra, P. (2018). “Overfitting or perfect fitting? risk
bounds for classification and regression rules that interpolate”. Advances in
neural information processing systems, 31.

[21] Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., & Le, Q. (2018).
“Understanding and simplifying one-shot architecture search”. Proceedings
of the 35th International Conference on Machine Learning, 80, 550–559.

[22] Berard, H., Gidel, G., Almahairi, A., Vincent, P., & Lacoste-Julien, S. (2020).
“A closer look at the optimization landscapes of generative adversarial net-
works”. 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020.

[23] Bertsekas, D. P., & Tsitsiklis, J. N. (2000). “Gradient convergence in gradient
methods with errors”. SIAM Journal on Optimization, 10(3), 627–642.

[24] Bertsekas, D. (1999). “Nonlinear programming”. Athena Scientific.
[25] Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Gi-

acinto, G., & Roli, F. (2013). “Evasion attacks against machine learning at
test time”. Joint European conference on machine learning and knowledge
discovery in databases, 387–402.

[26] Blum, A. L., & Rivest, R. L. (1992). “Training a 3-node neural network is
np-complete”. Neural Networks, 5(1), 117–127.

[27] Boltzmann, L. (1868). “Studien uber das gleichgewicht der lebenden kraft”.
Wissenschaftliche Abhandlungen, 1, 49–96.

[28] Bottou, L. (2010). “Large-scale machine learning with stochastic gradient
descent”. Proceedings of COMPSTAT’2010, 177–186.

132

https://proceedings.mlr.press/v70/arora17a.html
https://proceedings.mlr.press/v70/arora17a.html
http://dx.doi.org/10.1561/2200000015
http://dx.doi.org/10.1561/2200000015
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://www.aaai.org/Papers/AAAI/1987/AAAI87-050.pdf
http://proceedings.mlr.press/v80/balles18a.html
http://proceedings.mlr.press/v80/balles18a.html
http://dx.doi.org/10.1137/1.9781611974997
http://dx.doi.org/10.1073/pnas.1903070116
http://dx.doi.org/10.1073/pnas.1903070116
https://proceedings.neurips.cc/paper/2018/file/e22312179bf43e61576081a2f250f845-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e22312179bf43e61576081a2f250f845-Paper.pdf
https://proceedings.mlr.press/v80/bender18a.html
https://openreview.net/forum?id=HJeVnCEKwH
https://openreview.net/forum?id=HJeVnCEKwH
http://dx.doi.org/10.1137/S1052623497331063
http://dx.doi.org/10.1137/S1052623497331063
http://books.google.com/books?vid=ISBN9781886529007
http://dx.doi.org/10.1007/978-3-642-40994-3_25
http://dx.doi.org/10.1007/978-3-642-40994-3_25
https://proceedings.neurips.cc/paper/1988/file/3def184ad8f4755ff269862ea77393dd-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/3def184ad8f4755ff269862ea77393dd-Paper.pdf
https://publikationen.badw.de/de/003392670/pdf/CC%20BY
http://dx.doi.org/10.1007/978-3-7908-2604-3_16
http://dx.doi.org/10.1007/978-3-7908-2604-3_16

Bibliography

[29] Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2010). “Distributed
optimization and statistical learning via the alternating direction method of
multipliers”. Foundations and Trends in Machine Learning, 3(1).

[30] Bray, A. J., & Dean, D. S. (2007). “Statistics of critical points of gaussian
fields on large-dimensional spaces”. Phys. Rev. Lett., 98, 150201.

[31] Bregman, L. (1967). “The relaxation method of finding the common point
of convex sets and its application to the solution of problems in convex pro-
gramming”. USSR Computational Mathematics and Mathematical Physics,
7(3), 200–217.

[32] Brock, A., Lim, T., Ritchie, J., & Weston, N. (2018). “SMASH: One-shot
model architecture search through hypernetworks”. International Conference
on Learning Representations.

[33] Brown, N., Bakhtin, A., Lerer, A., & Gong, Q. (2020). “Combining deep re-
inforcement learning and search for imperfect-information games”. Advances
in Neural Information Processing Systems, 33, 17057–17069.

[34] Brown, N., & Sandholm, T. (2019). “Superhuman ai for multiplayer poker”.
Science, 365, eaay2400.

[35] Censor, Y., & Zenios, S. (1992). “On the proximal minimization algorithm
with d-functions”. Journal of Optimization Theory and Applications, 73,
451–464.

[36] Chen, S., Dobriban, E., & Lee, J. (2020). “A group-theoretic framework for
data augmentation”. Advances in Neural Information Processing Systems, 33,
21321–21333.

[37] Chen, X., Wang, R., Cheng, M., Tang, X., & Hsieh, C.-J. (2021). “DrNAS:
Dirichlet neural architecture search”. International Conference on Learning
Representations.

[38] Chen, X., Liu, S., Sun, R., & Hong, M. (2019). “On the convergence of a
class of ADAM-type algorithms for non-convex optimization”. International
Conference on Learning Representations.

[39] Chen, X., Xie, L., Wu, J., & Tian, Q. (2019). “Progressive differentiable
architecture search: Bridging the depth gap between search and evaluation”.
Proceedings of the IEEE International Conference on Computer Vision,
1294–1303.

[40] Chen, Y., & Hu, H. (2019). “An improved method for semantic image in-
painting with gans: Progressive inpainting”. Neural Processing Letters, 49.

[41] Chrabaszcz, P., Loshchilov, I., & Hutter, F. (2017). “A downsampled variant
of imagenet as an alternative to the CIFAR datasets”. CoRR, abs/1707.08819.

[42] Chu, X., Wang, X., Zhang, B., Lu, S., Wei, X., & Yan, J. (2021). “DARTS-:
robustly stepping out of performance collapse without indicators”. 9th Inter-
national Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021.

[43] Chung, Y.-A., Zhang, Y., Han, W., Chiu, C.-C., Qin, J., Pang, R., & Wu, Y.
(2021). “W2v-bert: Combining contrastive learning and masked language
modeling for self-supervised speech pre-training”. 2021 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), 244–250.

133

http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1103/PhysRevLett.98.150201
http://dx.doi.org/10.1103/PhysRevLett.98.150201
http://dx.doi.org/10.1016/0041-5553(67)90040-7
http://dx.doi.org/10.1016/0041-5553(67)90040-7
http://dx.doi.org/10.1016/0041-5553(67)90040-7
https://openreview.net/forum?id=rydeCEhs-
https://openreview.net/forum?id=rydeCEhs-
https://proceedings.neurips.cc/paper/2020/file/c61f571dbd2fb949d3fe5ae1608dd48b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c61f571dbd2fb949d3fe5ae1608dd48b-Paper.pdf
http://dx.doi.org/10.1126/science.aay2400
http://dx.doi.org/10.1007/BF00940051
http://dx.doi.org/10.1007/BF00940051
https://proceedings.neurips.cc/paper/2020/file/f4573fc71c731d5c362f0d7860945b88-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f4573fc71c731d5c362f0d7860945b88-Paper.pdf
https://openreview.net/forum?id=9FWas6YbmB3
https://openreview.net/forum?id=9FWas6YbmB3
http://arxiv.org/abs/1808.02941
http://arxiv.org/abs/1808.02941
http://dx.doi.org/10.1109/ICCV.2019.00138
http://dx.doi.org/10.1109/ICCV.2019.00138
http://dx.doi.org/10.1007/s11063-018-9877-6
http://dx.doi.org/10.1007/s11063-018-9877-6
http://arxiv.org/abs/1707.08819
http://arxiv.org/abs/1707.08819
https://openreview.net/forum?id=KLH36ELmwIB
https://openreview.net/forum?id=KLH36ELmwIB
http://dx.doi.org/10.1109/ASRU51503.2021.9688253
http://dx.doi.org/10.1109/ASRU51503.2021.9688253

Bibliography

[44] Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K.,
& Ha, D. (2018). “Deep learning for classical japanese literature”. CoRR,
abs/1812.01718.

[45] Cohen, G., Afshar, S., Tapson, J., & van Schaik, A. (2017). “Emnist: An
extension of mnist to handwritten letters”.

[46] Colson, B., Marcotte, P., & Savard, G. (2007). “An overview of bilevel opti-
mization”. Annals of Operations Research, 153(1), 235–256.

[47] Conn, A. R., Scheinberg, K., & Vicente, L. N. (2009). “Introduction to
derivative-free optimization” (Vol. 8). SIAM.

[48] Cullum, J., & Donath, W. E. (1974). “A block lanczos algorithm for comput-
ing the q algebraically largest eigenvalues and a corresponding eigenspace of
large, sparse, real symmetric matrices”. 1974 IEEE Conference on Decision
and Control including the 13th Symposium on Adaptive Processes, 505–509.

[49] Dai, Z., Liu, H., Le, Q. V., & Tan, M. (2021). “Coatnet: Marrying convolution
and attention for all data sizes”. CoRR, abs/2106.04803.

[50] Darken, C., & Moody, J. (1991). “Towards faster stochastic gradient search”.
Advances in Neural Information Processing Systems, 4.

[51] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato,
M., Senior, A., Tucker, P., Yang, K., Le, Q., & Ng, A. (2012). “Large scale
distributed deep networks”. Advances in Neural Information Processing Sys-
tems, 25.

[52] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). “Ima-
genet: A large-scale hierarchical image database”. 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 248–255.

[53] Dieleman, S., Fauw, J. D., & Kavukcuoglu, K. (2016). “Exploiting cyclic
symmetry in convolutional neural networks”. Proceedings of The 33rd Inter-
national Conference on Machine Learning, 48, 1889–1898.

[54] Ding, X., Hao, T., Tan, J., Liu, J., Han, J., Guo, Y., & Ding, G. (2021).
“Resrep: Lossless cnn pruning via decoupling remembering and forgetting”.
2021 IEEE/CVF International Conference on Computer Vision (ICCV),
4490–4500.

[55] Dinh, L., Pascanu, R., Bengio, S., & Bengio, Y. (2017). “Sharp minima can
generalize for deep nets”. International Conference on Machine Learning,
1019–1028.

[56] Dong, X., & Yang, Y. (2019). “Searching for a robust neural architecture in
four GPU hours”. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2019-June, 1761–1770.

[57] Dong, X., & Yang, Y. (2020). “NAS-Bench-201: Extending the scope of re-
producible neural architecture search”. International Conference on Learning
Representations.

[58] Duchi, J. C., Hazan, E., & Singer, Y. (2011). “Adaptive subgradient methods
for online learning and stochastic optimization”. J. Mach. Learn. Res., 12,
2121–2159.

[59] Durall, R., Keuper, M., & Keuper, J. (2020). “Watch your up-convolution:
Cnn based generative deep neural networks are failing to reproduce spectral

134

http://arxiv.org/abs/1812.01718
http://arxiv.org/abs/1702.05373
http://arxiv.org/abs/1702.05373
http://dx.doi.org/10.1007/s10479-007-0176-2
http://dx.doi.org/10.1007/s10479-007-0176-2
http://books.google.com/books?vid=ISBN978-0-89871-668-9
http://books.google.com/books?vid=ISBN978-0-89871-668-9
http://dx.doi.org/10.1109/CDC.1974.270490
http://dx.doi.org/10.1109/CDC.1974.270490
http://dx.doi.org/10.1109/CDC.1974.270490
https://arxiv.org/abs/2106.04803
https://arxiv.org/abs/2106.04803
https://proceedings.neurips.cc/paper/1991/file/e2230b853516e7b05d79744fbd4c9c13-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
https://proceedings.mlr.press/v48/dieleman16.html
https://proceedings.mlr.press/v48/dieleman16.html
http://dx.doi.org/10.1109/ICCV48922.2021.00447
http://proceedings.mlr.press/v70/dinh17b/dinh17b.pdf
http://proceedings.mlr.press/v70/dinh17b/dinh17b.pdf
http://dx.doi.org/10.1109/CVPR.2019.00186
http://dx.doi.org/10.1109/CVPR.2019.00186
http://arxiv.org/abs/2001.00326
http://arxiv.org/abs/2001.00326
https://dl.acm.org/doi/10.5555/1953048.2021068
https://dl.acm.org/doi/10.5555/1953048.2021068
http://dx.doi.org/10.1109/CVPR42600.2020.00791
http://dx.doi.org/10.1109/CVPR42600.2020.00791
http://dx.doi.org/10.1109/CVPR42600.2020.00791

Bibliography

distributions”. 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 7887–7896.

[60] Eckstein, J. (1993). “Nonlinear proximal point algorithms using bregman
functions, with applications to convex programming”. Mathematics of Op-
erations Research, 18(1), 202–226.

[61] Edunov, S., Ott, M., Auli, M., & Grangier, D. (2018). “Understanding back-
translation at scale”. Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, 489–500.

[62] Elsken, T., Metzen, J. H., & Hutter, F. (2019). “Neural architecture search: A
survey”. J. Mach. Learn. Res., 20, 55:1–55:21.

[63] Fiez, T., Chasnov, B., & Ratliff, L. (2020). “Implicit learning dynamics
in stackelberg games: Equilibria characterization, convergence analysis,
and empirical study”. Proceedings of the 37th International Conference on
Machine Learning, 119, 3133–3144.

[64] F.R.S., K. P. (1901). “Liii. on lines and planes of closest fit to systems of
points in space”. The London, Edinburgh, and Dublin Philosophical Maga-
zine and Journal of Science, 2(11), 559–572.

[65] Gale, T., Elsen, E., & Hooker, S. (2019). The State of Sparsity in Deep Neural
Networks.

[66] Ge, R., Huang, F., Jin, C., & Yuan, Y. (2015). “Escaping from saddle
points—online stochastic gradient for tensor decomposition”. Conference on
learning theory, 797–842.

[67] Getreuer, P., Garcia-Dorado, I., Isidoro, J., Choi, S., Ong, F., & Milanfar, P.
(2018). “Blade: Filter learning for general purpose computational photogra-
phy”. 2018 IEEE International Conference on Computational Photography
(ICCP), 1–11.

[68] Ghorbani, B., Krishnan, S., & Xiao, Y. (2019). “An investigation into neural
net optimization via hessian eigenvalue density”. CoRR, abs/1901.10159.

[69] Gill, P., Murray, W., & Wright, M. (1981). “Practical optimization”. Aca-
demic Press.

[70] Golub, G. H., & Reinsch, C. (1971). “Singular value decomposition and least
squares solutions”. Handbook for automatic computation: Volume ii: Linear
algebra (pp. 134–151). Springer Berlin Heidelberg.

[71] Golub, G. H., & Welsch, J. H. (1969). “Calculation of gauss quadrature
rules”. Mathematics of Computation, 23(106), 221–221.

[72] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., & Bengio, Y. (2014). “Generative adversarial nets”.
Advances in Neural Information Processing Systems, 27.

[73] Goodfellow, I., Vinyals, O., & Saxe, A. (2015). “Qualitatively characterizing
neural network optimization problems”. International Conference on Learn-
ing Representations.

[74] Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y.
(2013). “Maxout networks”. Proceedings of the 30th International Confer-
ence on Machine Learning, 28(3), 1319–1327.

[75] Goodfellow, I. J. (2017). “NIPS 2016 tutorial: Generative adversarial net-
works”. CoRR, abs/1701.00160.

135

http://dx.doi.org/10.1109/CVPR42600.2020.00791
http://dx.doi.org/10.1109/CVPR42600.2020.00791
http://dx.doi.org/10.1109/CVPR42600.2020.00791
http://dx.doi.org/10.1287/moor.18.1.202
http://dx.doi.org/10.1287/moor.18.1.202
http://dx.doi.org/10.18653/v1/D18-1045
http://dx.doi.org/10.18653/v1/D18-1045
http://jmlr.org/papers/v20/18-598.html
http://jmlr.org/papers/v20/18-598.html
https://proceedings.mlr.press/v119/fiez20a.html
https://proceedings.mlr.press/v119/fiez20a.html
https://proceedings.mlr.press/v119/fiez20a.html
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1080/14786440109462720
http://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1902.09574
http://proceedings.mlr.press/v40/Ge15.pdf
http://proceedings.mlr.press/v40/Ge15.pdf
http://dx.doi.org/10.1109/ICCPHOT.2018.8368476
http://dx.doi.org/10.1109/ICCPHOT.2018.8368476
http://arxiv.org/abs/1901.10159
http://arxiv.org/abs/1901.10159
http://books.google.com/books?vid=ISBN9780122839504
http://dx.doi.org/10.1007/978-3-642-86940-2_10
http://dx.doi.org/10.1007/978-3-642-86940-2_10
http://dx.doi.org/10.1090/s0025-5718-69-99647-1
http://dx.doi.org/10.1090/s0025-5718-69-99647-1
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://arxiv.org/abs/1412.6544
http://arxiv.org/abs/1412.6544
https://proceedings.mlr.press/v28/goodfellow13.html
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160

Bibliography

[76] Goodfellow, I. J., Bengio, Y., & Courville, A. (2016). “Deep learning” [http:
//www.deeplearningbook.org]. MIT Press.

[77] Grishchenko, D., Iutzeler, F., Malick, J., & Amini, M. (2021). “Distributed
learning with sparse communications by identification”. SIAM J. Math. Data
Sci., 3(2), 715–735.

[78] Grother, P. (1995). “Nist special database 19 handprinted forms and charac-
ters database”.

[79] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C.
(2017). “Improved training of wasserstein gans”. Advances in Neural Infor-
mation Processing Systems, 30.

[80] Han, J., Kamber, M., & Pei, J. (2012). “Data mining: Concepts and tech-
niques”. Elsevier Inc.

[81] Han, J., & Moraga, C. (1995). “The influence of the sigmoid function param-
eters on the speed of backpropagation learning”. International workshop on
artificial neural networks, 195–201.

[82] Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). “The
elements of statistical learning: Data mining, inference, and prediction”
(Vol. 2). Springer.

[83] He, K., Zhang, X., Ren, S., & Sun, J. (2016). “Deep residual learning for
image recognition”, 770–778.

[84] He, Y., Liu, P., Wang, Z., Hu, Z., & Yang, Y. (2019). “Filter pruning via ge-
ometric median for deep convolutional neural networks acceleration”. IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, 4340–4349.

[85] Hendrycks, D., & Gimpel, K. (2016). “A baseline for detecting mis-
classified and out-of-distribution examples in neural networks”. CoRR,
abs/1610.02136.

[86] Hestness, J., Narang, S., Ardalani, N., Diamos, G. F., Jun, H., Kianinejad, H.,
Patwary, M. M. A., Yang, Y., & Zhou, Y. (2017). “Deep learning scaling is
predictable, empirically”. CoRR, abs/1712.00409.

[87] Himmelblau, D. M. (1972). “Applied nonlinear programming”. McGraw-
Hill.

[88] Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). “A fast learning algorithm
for deep belief nets”. Neural Comput., 18(7), 1527–1554.

[89] Hinton, G. E., & van Camp, D. (1993). “Keeping the neural networks sim-
ple by minimizing the description length of the weights”. Proceedings of the
Sixth Annual ACM Conference on Computational Learning Theory, COLT
1993, Santa Cruz, CA, USA, July 26-28, 1993, 5–13.

[90] Hochbaum, D. S. (2007). “Complexity and algorithms for nonlinear opti-
mization problems”. Annals of Operations Research, 153(1), 257–296.

[91] Hochreiter, S. (1991). “Untersuchungen zu dynamischen neuronalen
Netzen”. Master’s thesis, Institut für Informatik, Technische Universität,
München, 1, 1–150.

[92] Hochreiter, S., & Schmidhuber, J. (1997a). “Flat minima”. Neural Computa-
tion, 9(1), 1–42.

136

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1137/20M1347772
http://dx.doi.org/10.1137/20M1347772
http://dx.doi.org/10.18434/T4H01C
http://dx.doi.org/10.18434/T4H01C
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
http://dx.doi.org/10.1016/C2009-0-61819-5
http://dx.doi.org/10.1016/C2009-0-61819-5
http://dx.doi.org/10.1007/3-540-59497-3_175
http://dx.doi.org/10.1007/3-540-59497-3_175
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2019.00447
http://dx.doi.org/10.1109/CVPR.2019.00447
http://arxiv.org/abs/1610.02136
http://arxiv.org/abs/1610.02136
http://arxiv.org/abs/1712.00409
http://arxiv.org/abs/1712.00409
http://books.google.com/books?vid=ISBN0070289212
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1145/168304.168306
http://dx.doi.org/10.1145/168304.168306
http://dx.doi.org/10.1007/s10479-007-0172-6
http://dx.doi.org/10.1007/s10479-007-0172-6
https://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
https://people.idsia.ch/~juergen/SeppHochreiter1991ThesisAdvisorSchmidhuber.pdf
http://dx.doi.org/10.1162/neco.1997.9.1.1

Bibliography

[93] Hochreiter, S., & Schmidhuber, J. (1997b). “Long short-term memory”. Neu-
ral Comput., 9(8), 1735–1780.

[94] Hoffer, E., Hubara, I., & Soudry, D. (2017). “Train longer, generalize better:
Closing the generalization gap in large batch training of neural networks”.
Advances in Neural Information Processing Systems, 30.

[95] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017).
“Densely connected convolutional networks”. Proceedings of the IEEE
conference on computer vision and pattern recognition, 4700–4708.

[96] Huang, Z., & Wang, N. (2018). “Data-driven sparse structure selection for
deep neural networks”. Computer Vision - ECCV 2018 - 15th European Con-
ference, Munich, Germany, September 8-14, 2018, Proceedings, Part XVI,
11220, 317–334.

[97] Huszar, F. (2015). “How (not) to train your generative model: Scheduled sam-
pling, likelihood, adversary?” CoRR, abs/1511.05101.

[98] Ioffe, S., & Szegedy, C. (2015). “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift”. CoRR, abs/1502.03167.

[99] Jain, P., & Kar, P. (2017). “Non-convex optimization for machine learning”.
Found. Trends Mach. Learn., 10(3-4), 142–336.

[100] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). “An introduction
to statistical learning” (Vol. 112). Springer.

[101] Janiesch, C., Zschech, P., & Heinrich, K. (2021). “Machine learning and deep
learning”. Electronic Markets, 31(3), 685–695.

[102] Jastrzebski, S., Kenton, Z., Ballas, N., Fischer, A., Bengio, Y., & Storkey,
A. J. (2019). “On the relation between the sharpest directions of DNN loss
and the SGD step length”. 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

[103] Ji, P., Zhang, T., Li, H., Salzmann, M., & Reid, I. (2017). “Deep subspace
clustering networks”. Advances in Neural Information Processing Systems,
30.

[104] Jordan, M. I. (1986). “Serial order: A parallel distributed processing ap-
proach. technical report, june 1985-march 1986”.

[105] Judd, J. S. (1990). “Neural network design and the complexity of learning”.
MIT Press.

[106] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R.,
Gray, S., Radford, A., Wu, J., & Amodei, D. (2020). “Scaling laws for neural
language models”. CoRR, abs/2001.08361.

[107] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020).
“Analyzing and improving the image quality of stylegan”. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 8107–
8116.

[108] Kelley, H. J. (1960). “Gradient theory of optimal flight paths”. Ars Journal,
30(10), 947–954.

[109] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P.
(2017). “On large-batch training for deep learning: Generalization gap and
sharp minima”. 5th International Conference on Learning Representations,

137

http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1007/978-3-030-01270-0_19
http://dx.doi.org/10.1007/978-3-030-01270-0_19
http://arxiv.org/abs/1511.05101
http://arxiv.org/abs/1511.05101
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://dx.doi.org/10.1561/2200000058
http://dx.doi.org/10.1007/978-1-4614-7138-7
http://dx.doi.org/10.1007/978-1-4614-7138-7
http://dx.doi.org/10.1007/s12525-021-00475-2
http://dx.doi.org/10.1007/s12525-021-00475-2
https://openreview.net/forum?id=SkgEaj05t7
https://openreview.net/forum?id=SkgEaj05t7
https://proceedings.neurips.cc/paper/2017/file/e369853df766fa44e1ed0ff613f563bd-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/e369853df766fa44e1ed0ff613f563bd-Paper.pdf
https://www.osti.gov/biblio/6910294
https://www.osti.gov/biblio/6910294
http://books.google.com/books?vid=ISBN0262100452
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
http://dx.doi.org/10.1109/CVPR42600.2020.00813
http://dx.doi.org/10.2514/8.5282
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=H1oyRlYgg

Bibliography

ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceed-
ings.

[110] Kingma, D. P., & Ba, J. (2015). “Adam: A method for stochastic optimiza-
tion”. 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[111] Kondor, R., & Trivedi, S. (2018). “On the generalization of equivariance and
convolution in neural networks to the action of compact groups”. Interna-
tional Conference on Machine Learning, 2747–2755.

[112] Kovachki, N. B., & Stuart, A. M. (2019). “Ensemble kalman inversion: A
derivative-free technique for machine learning tasks”. Inverse Problems,
35(9).

[113] Kovalev, D., Mishchenko, K., & Richtárik, P. (2019). “Stochastic newton
and cubic newton methods with simple local linear-quadratic rates”. CoRR,
abs/1912.01597.

[114] Krizhevsky, A. (2009). “Learning multiple layers of features from tiny im-
ages”, 32–33.

[115] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). “Imagenet classifica-
tion with deep convolutional neural networks”. Advances in Neural Informa-
tion Processing Systems, 25.

[116] Krylov, A. N. (1931). “On the numerical solution of the equation by which in
technical questions frequencies of small oscillations of material systems are
determined”. Izvestija AN SSSR (News of Academy of Sciences of the USSR),
Otdel. mat. i estest. nauk, 7(4), 491–539.

[117] Kuhn, H. W., & Tucker, A. W. (1951). “Nonlinear programming”. Proceed-
ings of the Second Berkeley Symposium on Mathematical Statistics and Prob-
ability, 481–492.

[118] Kunstner, F., Hennig, P., & Balles, L. (2019). “Limitations of the empirical
fisher approximation for natural gradient descent”. Advances in Neural Infor-
mation Processing Systems, 32.

[119] L. V. Kantorovich. (1949). “On newton’s method”. Collected works on ap-
proximation analysis of the Leningrad Branch of the Institute, 28, 104–144.

[120] Lanczos, C. (1950). “An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators.” Journal of research of
the National Bureau of Standards, 45, 255–282.

[121] Laurent, T., & Brecht, J. (2018). “The multilinear structure of relu networks”.
International conference on machine learning, 2908–2916.

[122] Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). “Gradient-based
learning applied to document recognition”. Proceedings of the IEEE, 86(11),
2278–2324.

[123] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., & Jackel, L. D. (1989). “Backpropagation applied to handwritten zip code
recognition”. Neural computation, 1(4), 541–551.

[124] LeCun, Y., & Cortes, C. (2010). “MNIST handwritten digit database”.
[125] Lee, J. (2006). “Riemannian manifolds: An introduction to curvature”.

Springer New York.

138

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.mlr.press/v80/kondor18a/kondor18a.pdf
https://proceedings.mlr.press/v80/kondor18a/kondor18a.pdf
https://iopscience.iop.org/article/10.1088/1361-6420/ab1c3a
https://iopscience.iop.org/article/10.1088/1361-6420/ab1c3a
http://arxiv.org/abs/1912.01597
http://arxiv.org/abs/1912.01597
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://projecteuclid.org/proceedings/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Second-Berkeley-Symposium-on-Mathematical-Statistics-and/Chapter/Nonlinear-Programming/bsmsp/1200500249
https://proceedings.neurips.cc/paper/2019/file/46a558d97954d0692411c861cf78ef79-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/46a558d97954d0692411c861cf78ef79-Paper.pdf
http://dx.doi.org/10.6028/jres.045.026
http://dx.doi.org/10.6028/jres.045.026
http://proceedings.mlr.press/v80/laurent18b/laurent18b.pdf
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf
http://yann.lecun.com/exdb/mnist/
http://books.google.com/books?vid=ISBN9780387227269

Bibliography

[126] Lee, K., Lee, K., Lee, H., & Shin, J. (2018). “A simple unified framework
for detecting out-of-distribution samples and adversarial attacks”. Advances
in Neural Information Processing Systems, 31.

[127] Lee, K., Lee, I., & Lee, S. (2018). “Propagating lstm: 3d pose estimation
based on joint interdependency”. Computer Vision – ECCV 2018: 15th Eu-
ropean Conference, Munich, Germany, September 8–14, 2018, Proceedings,
Part VII, 123–141.

[128] Lei, Y., Hu, T., & Tang, K. (2019). “Stochastic gradient descent for noncon-
vex learning without bounded gradient assumptions”.

[129] Lemley, J., Bazrafkan, S., & Corcoran, P. (2017). “Smart augmentation learn-
ing an optimal data augmentation strategy”. IEEE Access, 5, 5858–5869.

[130] Lewkowycz, A., & Gur-Ari, G. (2020). “On the training dynamics of deep
networks with l 2 regularization”. Advances in Neural Information Process-
ing Systems, 33, 4790–4799.

[131] Li, H., Xu, Z., Taylor, G., Studer, C., & Goldstein, T. (2018). “Visualizing the
loss landscape of neural nets”. Advances in Neural Information Processing
Systems, 31.

[132] Li, K., & Malik, J. (2018). “On the implicit assumptions of gans”. CoRR,
abs/1811.12402.

[133] Li, L., Khodak, M., Balcan, M., & Talwalkar, A. (2020). “Geometry-aware
gradient algorithms for neural architecture search”. CoRR, abs/2004.07802.

[134] Li, L., & Talwalkar, A. (2020). “Random search and reproducibility for neu-
ral architecture search”. Proceedings of The 35th Uncertainty in Artificial
Intelligence Conference, 115, 367–377.

[135] Li, X., Wang, S., & Cai, Y. (2019). “Tutorial: Complexity analysis of singular
value decomposition and its variants”.

[136] Li, Y., Gu, S., Mayer, C., Gool, L. V., & Timofte, R. (2020). “Group sparsity:
The hinge between filter pruning and decomposition for network compres-
sion”. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, 8015–8024.

[137] Liao, Z., & Mahoney, M. W. (2021). “Hessian eigenspectra of more realistic
nonlinear models”. Advances in Neural Information Processing Systems, 34,
20104–20117.

[138] Lin, J. (1991). “Divergence measures based on the shannon entropy”. IEEE
Trans. Inf. Theory, 37(1), 145–151.

[139] Lin, L., Saad, Y., & Yang, C. (2016). “Approximating spectral densities of
large matrices”. SIAM Rev., 58(1), 34–65.

[140] Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang, F., & Doermann,
D. S. (2019). “Towards optimal structured CNN pruning via generative adver-
sarial learning”. IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, 2790–2799.

[141] Lin, T., Jin, C., & Jordan, M. (2020). “On gradient descent ascent for
nonconvex-concave minimax problems”. Proceedings of the 37th Interna-
tional Conference on Machine Learning, 119, 6083–6093.

139

https://proceedings.neurips.cc/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/abdeb6f575ac5c6676b747bca8d09cc2-Paper.pdf
http://dx.doi.org/10.1007/978-3-030-01234-2_8
http://dx.doi.org/10.1007/978-3-030-01234-2_8
http://arxiv.org/abs/1902.00908
http://arxiv.org/abs/1902.00908
http://dx.doi.org/10.1109/ACCESS.2017.2696121
http://dx.doi.org/10.1109/ACCESS.2017.2696121
https://proceedings.neurips.cc/paper/2020/file/32fcc8cfe1fa4c77b5c58dafd36d1a98-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32fcc8cfe1fa4c77b5c58dafd36d1a98-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
http://arxiv.org/abs/1811.12402
https://arxiv.org/abs/2004.07802
https://arxiv.org/abs/2004.07802
https://proceedings.mlr.press/v115/li20c.html
https://proceedings.mlr.press/v115/li20c.html
http://dx.doi.org/10.48550/ARXIV.1906.12085
http://dx.doi.org/10.48550/ARXIV.1906.12085
http://dx.doi.org/10.1109/CVPR42600.2020.00804
http://dx.doi.org/10.1109/CVPR42600.2020.00804
http://dx.doi.org/10.1109/CVPR42600.2020.00804
https://proceedings.neurips.cc/paper/2021/file/a7d8ae4569120b5bec12e7b6e9648b86-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/a7d8ae4569120b5bec12e7b6e9648b86-Paper.pdf
http://dx.doi.org/10.1109/18.61115
http://dx.doi.org/10.1137/130934283
http://dx.doi.org/10.1137/130934283
http://dx.doi.org/10.1109/CVPR.2019.00290
http://dx.doi.org/10.1109/CVPR.2019.00290
https://proceedings.mlr.press/v119/lin20a.html
https://proceedings.mlr.press/v119/lin20a.html

Bibliography

[142] Lindauer, M., & Hutter, F. (2020). “Best practices for scientific research on
neural architecture search”. Journal of Machine Learning Research, 21(243),
1–18.

[143] Liu, H., Simonyan, K., & Yang, Y. (2019). “DARTS: Differentiable architec-
ture search”. International Conference on Learning Representations.

[144] Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., & Zhang, C. (2017). “Learning
efficient convolutional networks through network slimming”. IEEE Interna-
tional Conference on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017, 2755–2763.

[145] Long, J., Shelhamer, E., & Darrell, T. (2015). “Fully convolutional networks
for semantic segmentation”. 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 3431–3440.

[146] Louizos, C., Welling, M., & Kingma, D. P. (2018). “Learning Sparse Neu-
ral Networks through $L 0$ Regularization”. International Conference on
Learning Representations, 1–13.

[147] Luengo, J., Garcı́a, S., & Herrera, F. (2011). “On the choice of the best impu-
tation methods for missing values considering three groups of classification
methods”. Knowledge and Information Systems, 32, 77–108.

[148] Luo, J., Wu, J., & Lin, W. (2017). “Thinet: A filter level pruning method for
deep neural network compression”. IEEE International Conference on Com-
puter Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, 5068–5076.

[149] Luo, W., Li, Y., Urtasun, R., & Zemel, R. (2016). “Understanding the ef-
fective receptive field in deep convolutional neural networks”. Advances in
Neural Information Processing Systems, 29.

[150] Maas, A. L., Hannun, A. Y., Ng, A. Y. et al. (2013). “Rectifier nonlinearities
improve neural network acoustic models”. Proc. icml, 30(1), 3.

[151] Marquardt, D. W. (1963). “An algorithm for least-squares estimation of non-
linear parameters”. Journal of the Society for Industrial and Applied Mathe-
matics, 11(2), 431–441.

[152] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Jia, Y., Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, . . . Xiao-
qiang Zheng. (2015). “TensorFlow: Large-scale machine learning on hetero-
geneous systems” [Software available from tensorflow.org].

[153] Meng, S. Y., Vaswani, S., Laradji, I. H., Schmidt, M., & Lacoste-Julien, S.
(2020). “Fast and furious convergence: Stochastic second order methods un-
der interpolation”. The 23rd International Conference on Artificial Intelli-
gence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo,
Sicily, Italy], 108, 1375–1386.

[154] Mescheder, L., Nowozin, S., & Geiger, A. (2017). “The numerics of gans”.
Advances in Neural Information Processing Systems, 30.

[155] Message Passing Interface Forum. (2021). MPI: A message-passing interface
standard version 4.0.

140

http://jmlr.org/papers/v21/20-056.html
http://jmlr.org/papers/v21/20-056.html
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
http://dx.doi.org/10.1109/ICCV.2017.298
http://dx.doi.org/10.1109/ICCV.2017.298
http://dx.doi.org/10.1109/CVPR.2015.7298965
http://dx.doi.org/10.1109/CVPR.2015.7298965
http://arxiv.org/abs/1712.01312
http://arxiv.org/abs/1712.01312
http://dx.doi.org/10.1007/s10115-011-0424-2
http://dx.doi.org/10.1007/s10115-011-0424-2
http://dx.doi.org/10.1007/s10115-011-0424-2
http://dx.doi.org/10.1109/ICCV.2017.541
http://dx.doi.org/10.1109/ICCV.2017.541
https://proceedings.neurips.cc/paper/2016/file/c8067ad1937f728f51288b3eb986afaa-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/c8067ad1937f728f51288b3eb986afaa-Paper.pdf
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1137/0111030
http://tensorflow.org/
http://tensorflow.org/
http://proceedings.mlr.press/v108/meng20a.html
http://proceedings.mlr.press/v108/meng20a.html
https://proceedings.neurips.cc/paper/2017/file/4588e674d3f0faf985047d4c3f13ed0d-Paper.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

Bibliography

[156] Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., & Long, J. (2018). “A survey of
clustering with deep learning: From the perspective of network architecture”.
IEEE Access, 6, 39501–39514.

[157] Müntz, H. et al. (1913). “Solution directe de l’équation séculaire et de
quelques problemes analogues transcendants”. CR Acad. Sci. Paris, 156,
43–46.

[158] Murphy, K. P. (2013). “Machine learning : A probabilistic perspective”. MIT
Press.

[159] Nagarajan, V., & Kolter, J. Z. (2017). “Gradient descent gan optimization is
locally stable”. Advances in Neural Information Processing Systems, 30.

[160] Nair, V., & Hinton, G. E. (2010). “Rectified linear units improve restricted
boltzmann machines”. Proceedings of the 27th International Conference on
International Conference on Machine Learning, 807–814.

[161] Nawi, N. M., Atomi, W. H., & Rehman, M. (2013). “The effect of data pre-
processing on optimized training of artificial neural networks” [4th Interna-
tional Conference on Electrical Engineering and Informatics, ICEEI 2013].
Procedia Technology, 11, 32–39.

[162] Nesterov, Y. E. (1983). “A method for solving the convex programming prob-
lem with convergence rate o (1/kˆ 2)”. Dokl. akad. nauk Sssr, 269, 543–547.

[163] Neumann, J. v. (1928). “Zur theorie der gesellschaftsspiele”. Mathematische
Annalen, 100, 295–320.

[164] Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., & Srebro, N. (2018).
“Towards understanding the role of over-parametrization in generalization
of neural networks”. CoRR, abs/1805.12076.

[165] Neyshabur, B., Tomioka, R., & Srebro, N. (2015). “In search of the real in-
ductive bias: On the role of implicit regularization in deep learning”. 3rd In-
ternational Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Workshop Track Proceedings.

[166] Ng, A. Y. (2004). “Feature selection, l1 vs. l2 regularization, and rotational in-
variance”. Proceedings of the Twenty-First International Conference on Ma-
chine Learning, 78.

[167] Nowozin, S., Cseke, B., & Tomioka, R. (2016). “F-gan: Training genera-
tive neural samplers using variational divergence minimization”. Advances
in Neural Information Processing Systems, 29.

[168] Orabona, F. (2019). “A modern introduction to online learning”. CoRR,
abs/1912.13213.

[169] Orr, G. B. (1996). Dynamics and algorithms for stochastic search (Doctoral
dissertation) [UMI Order No. GAX96-08998]. USA, Oregon Graduate Insti-
tute of Science Technology.

[170] Ortega, J. M., & Rheinboldt, W. C. (1970). “Iterative solution of nonlinear
equations in several variables”. Academic Press.

[171] Osborne, M. J., & Rubinstein, A. (1994). “A Course in Game Theory”
(Vol. 1). The MIT Press.

[172] Papyan, V. (2018). “The full spectrum of deep net hessians at scale: Dynamics
with sample size”. CoRR, abs/1811.07062.

141

http://dx.doi.org/10.1109/ACCESS.2018.2855437
http://dx.doi.org/10.1109/ACCESS.2018.2855437
http://books.google.com/books?vid=ISBN978-0-262-01802-9
https://proceedings.neurips.cc/paper/2017/file/7e0a0209b929d097bd3e8ef30567a5c1-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7e0a0209b929d097bd3e8ef30567a5c1-Paper.pdf
https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf
http://dx.doi.org/10.1016/j.protcy.2013.12.159
http://dx.doi.org/10.1016/j.protcy.2013.12.159
https://vsokolov.org/courses/750/2018/files/nesterov.pdf
https://vsokolov.org/courses/750/2018/files/nesterov.pdf
http://eudml.org/doc/159291
http://arxiv.org/abs/1805.12076
http://arxiv.org/abs/1805.12076
http://arxiv.org/abs/1412.6614
http://arxiv.org/abs/1412.6614
http://dx.doi.org/10.1145/1015330.1015435
http://dx.doi.org/10.1145/1015330.1015435
https://proceedings.neurips.cc/paper/2016/file/cedebb6e872f539bef8c3f919874e9d7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/cedebb6e872f539bef8c3f919874e9d7-Paper.pdf
http://arxiv.org/abs/1912.13213
http://dx.doi.org/10.6083/M40P0WZ1
http://books.google.com/books?vid=ISBN978-0-12-528550-6
http://books.google.com/books?vid=ISBN978-0-12-528550-6
https://ideas.repec.org/b/mtp/titles/0262650401.html
http://arxiv.org/abs/1811.07062
http://arxiv.org/abs/1811.07062

Bibliography

[173] Parikh, N., & Boyd, S. (2014). “Proximal algorithms”. Found. Trends Optim.,
1(3), 127–239.

[174] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., . . .
Chintala, S. (2019). “Pytorch: An imperative style, high-performance deep
learning library”. Advances in Neural Information Processing Systems, 32.

[175] Pearlmutter, B. A. (1994). “Fast exact multiplication by the hessian”. Neural
Comput., 6(1), 147–160.

[176] Pham, H., Dai, Z., Xie, Q., & Le, Q. V. (2021). “Meta pseudo labels”.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 11557–11568.

[177] Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., & Dean, J. (2018). “Efficient
neural architecture search via parameter sharing”. Proceedings of the 35th In-
ternational Conference on Machine Learning, ICML 2018, July 10-15, 2018,
80, 4092–4101.

[178] Pólya, G. (1961). “On the eigenvalues of vibrating membranes†”. Proceed-
ings of the London Mathematical Society, s3-11(1), 419–433.

[179] Polyak, B. (1964). “Some methods of speeding up the convergence of
iteration methods”. USSR Computational Mathematics and Mathematical
Physics, 4(5), 1–17.

[180] Pressley, A. (2010). “Gauss’ theorema egregium”. Elementary differential ge-
ometry (pp. 247–268). Springer London.

[181] Radford, A., Metz, L., & Chintala, S. (2016). “Unsupervised representation
learning with deep convolutional generative adversarial networks”. 4th In-
ternational Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings.

[182] Rahm, E. (1994). “Mehrrechner-datenbanksysteme - grundlagen der verteil-
ten und parallelen datenbankverarbeitung”. Addison-Wesley.

[183] Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2019). “Regularized evolu-
tion for image classifier architecture search”. Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence and Thirty-First Innovative Appli-
cations of Artificial Intelligence Conference and Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence.

[184] Rechenberg, I. (1994). “Evolutionsstrategie — optimieren wie in der natur”.
Technik und natur (pp. 227–244). Springer Berlin Heidelberg.

[185] Reddi, S. J., Kale, S., & Kumar, S. (2018). “On the convergence of adam and
beyond”. 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings.

[186] Robbins, H., & Monro, S. (1951). “A Stochastic Approximation Method”.
The Annals of Mathematical Statistics, 22(3), 400–407.

[187] Rockafellar, R. T. (1976). “Monotone operators and the proximal point algo-
rithm”. SIAM Journal on Control and Optimization, 14(5), 877–898.

142

http://dx.doi.org/10.1561/2400000003
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://dx.doi.org/10.1162/neco.1994.6.1.147
https://openaccess.thecvf.com/content/CVPR2021/papers/Pham_Meta_Pseudo_Labels_CVPR_2021_paper.pdf
http://proceedings.mlr.press/v80/pham18a.html
http://proceedings.mlr.press/v80/pham18a.html
http://dx.doi.org/10.1112/plms/s3-11.1.419
http://dx.doi.org/10.1016/0041-5553(64)90137-5
http://dx.doi.org/10.1016/0041-5553(64)90137-5
http://dx.doi.org/10.1007/978-1-84882-891-9_10
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
https://dbs.uni-leipzig.de/publication/book/mehrrechner_datenbanksysteme
https://dbs.uni-leipzig.de/publication/book/mehrrechner_datenbanksysteme
http://dx.doi.org/10.1609/aaai.v33i01.33014780
http://dx.doi.org/10.1609/aaai.v33i01.33014780
http://dx.doi.org/10.1007/978-3-662-01104-1_10
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1137/0314056
http://dx.doi.org/10.1137/0314056

Bibliography

[188] Rokhlin, V., Szlam, A., & Tygert, M. (2009). “A randomized algorithm for
principal component analysis”. SIAM J. Matrix Anal. Appl., 31(3), 1100–
1124.

[189] Rosenblatt, F. (1958). “The perceptron: A probabilistic model for information
storage and organization in the brain.” Psychological review, 65 6, 386–408.

[190] Ruder, S. (2016). “An overview of gradient descent optimization algorithms”.
CoRR, abs/1609.04747.

[191] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal
representations by error propagation (tech. rep.). California Univ San Diego
La Jolla Inst for Cognitive Science.

[192] Ruszczynski, A. (1980). “Feasible direction methods for stochastic program-
ming problems”. Mathematical Programming, 19(1), 220–229.

[193] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen,
X., & Chen, X. (2016). “Improved techniques for training gans”. Advances
in Neural Information Processing Systems, 29.

[194] Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). “How does batch
normalization help optimization?” Advances in Neural Information Process-
ing Systems, 31.

[195] Scardapane, S., & Di Lorenzo, P. (2018). “Stochastic training of neural net-
works via successive convex approximations”. IEEE Transactions on Neural
Networks and Learning Systems, 29(10), 4947–4956.

[196] Schmidt, W. F., Kraaijveld, M., & Duin, R. P. (1991). “A non-iterative method
for training feed forward networks.” International Joint Conference on Neu-
ral Networks., 2, 19–24.

[197] Schrödinger, E. (1940). “A method of determining quantum-mechanical
eigenvalues and eigenfunctions”. Proceedings of the Royal Irish Academy.
Section A: Mathematical and Physical Sciences, 46, 9–16.

[198] Scutari, G., & Sun, Y. (2018). “Parallel and distributed successive convex
approximation methods for big-data optimization”. Multi-agent optimization:
Cetraro, italy 2014 (pp. 141–308). Springer International Publishing.

[199] Shallue, C. J., Lee, J., Antognini, J. M., Sohl-Dickstein, J., Frostig, R., &
Dahl, G. E. (2018). “Measuring the effects of data parallelism on neural net-
work training”. CoRR, abs/1811.03600.

[200] Sharma, S., Sharma, S., & Athaiya, A. (2020). “Activation functions in neu-
ral networks”. International Journal of Engineering Applied Sciences and
Technology, 04, 310–316.

[201] Shen, D., Wu, G., & Suk, H.-I. (2017). “Deep learning in medical image anal-
ysis” [PMID: 28301734]. Annual Review of Biomedical Engineering, 19(1),
221–248.

[202] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driess-
che, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M.,
Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap,
T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). “Mas-
tering the game of Go with deep neural networks and tree search”. Nature,
529(7587), 484–489.

143

http://dx.doi.org/10.1137/080736417
http://dx.doi.org/10.1137/080736417
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://arxiv.org/abs/1609.04747
http://www.cs.toronto.edu/~hinton/absps/pdp8.pdf
http://www.cs.toronto.edu/~hinton/absps/pdp8.pdf
http://dx.doi.org/10.1007/BF01581643
http://dx.doi.org/10.1007/BF01581643
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-Paper.pdf
http://dx.doi.org/10.1109/TNNLS.2017.2785361
http://dx.doi.org/10.1109/TNNLS.2017.2785361
http://homepage.tudelft.nl/a9p19/papers/ijcnn_91_training.pdf
http://homepage.tudelft.nl/a9p19/papers/ijcnn_91_training.pdf
https://www.jstor.org/stable/pdf/20490744.pdf
https://www.jstor.org/stable/pdf/20490744.pdf
http://dx.doi.org/10.1007/978-3-319-97142-1_3
http://dx.doi.org/10.1007/978-3-319-97142-1_3
http://arxiv.org/abs/1811.03600
http://arxiv.org/abs/1811.03600
http://dx.doi.org/10.33564/IJEAST.2020.v04i12.054
http://dx.doi.org/10.33564/IJEAST.2020.v04i12.054
http://dx.doi.org/10.1146/annurev-bioeng-071516-044442
http://dx.doi.org/10.1146/annurev-bioeng-071516-044442
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature16961

Bibliography

[203] Simon, H. D. (1984). “Analysis of the symmetric lanczos algorithm with
reorthogonalization methods”. Linear Algebra and its Applications, 61, 101–
131.

[204] Simonyan, K., & Zisserman, A. (2015). “Very deep convolutional networks
for large-scale image recognition”. 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings.

[205] Smith, S., Elsen, E., & De, S. (2020). “On the generalization benefit of noise
in stochastic gradient descent”. International Conference on Machine Learn-
ing, 9058–9067.

[206] Smith, S. L., Kindermans, P., Ying, C., & Le, Q. V. (2018). “Don’t decay
the learning rate, increase the batch size”. 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings.

[207] Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., & Ganguli, S. (2015).
“Deep unsupervised learning using nonequilibrium thermodynamics”. Pro-
ceedings of the 32nd International Conference on International Conference
on Machine Learning - Volume 37, 2256–2265.

[208] Solla, S. A., & Le Cun, Y. (1991). “Constrained neural networks for pattern
recognition”. Neural networks: concepts, applications and implementations.
Prentice Hall.

[209] Soltanolkotabi, M., Javanmard, A., & Lee, J. D. (2019). “Theoretical insights
into the optimization landscape of over-parameterized shallow neural net-
works”. IEEE Transactions on Information Theory, 65(2), 742–769.

[210] Song, Y., & Ermon, S. (2019). “Generative modeling by estimating gradi-
ents of the data distribution”. Advances in Neural Information Processing
Systems, 32.

[211] Sovrasov, V. (2019). Flops counter for convolutional networks in pytorch
framework.

[212] Spivak, M. (1999). “A comprehensive introduction to differential geometry
vol. 4”. Publish or Perish.

[213] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.
(2014). “Dropout: A simple way to prevent neural networks from overfitting”.
Journal of Machine Learning Research, 15(56), 1929–1958.

[214] Staib, M., Reddi, S. J., Kale, S., Kumar, S., & Sra, S. (2019). “Escaping
saddle points with adaptive gradient methods”. Proceedings of the 36th In-
ternational Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, 97, 5956–5965.

[215] Stanley, K. O., & Miikkulainen, R. (2002). “Evolving neural networks
through augmenting topologies”. Evolutionary Computation, 10(2), 99–127.

[216] Sun, C., Shrivastava, A., Singh, S., & Gupta, A. (2017). “Revisiting unrea-
sonable effectiveness of data in deep learning era”. 2017 IEEE International
Conference on Computer Vision (ICCV), 843–852.

[217] Sutskever, I., Martens, J., Dahl, G. E., & Hinton, G. E. (2013). “On the impor-
tance of initialization and momentum in deep learning”. Proceedings of the

144

http://dx.doi.org/10.1016/0024-3795(84)90025-9
http://dx.doi.org/10.1016/0024-3795(84)90025-9
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://proceedings.mlr.press/v119/smith20a/smith20a.pdf
http://proceedings.mlr.press/v119/smith20a/smith20a.pdf
https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=B1Yy1BxCZ
https://arxiv.org/abs/1503.03585
http://yann.lecun.com/exdb/publis/pdf/solla-lecun-91.pdf
http://yann.lecun.com/exdb/publis/pdf/solla-lecun-91.pdf
http://dx.doi.org/10.1109/TIT.2018.2854560
http://dx.doi.org/10.1109/TIT.2018.2854560
http://dx.doi.org/10.1109/TIT.2018.2854560
https://proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch
http://books.google.com/books?vid=ISBN091409873X
http://books.google.com/books?vid=ISBN091409873X
http://jmlr.org/papers/v15/srivastava14a.html
http://proceedings.mlr.press/v97/staib19a.html
http://proceedings.mlr.press/v97/staib19a.html
http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1162/106365602320169811
http://dx.doi.org/10.1109/ICCV.2017.97
http://dx.doi.org/10.1109/ICCV.2017.97
http://proceedings.mlr.press/v28/sutskever13.html
http://proceedings.mlr.press/v28/sutskever13.html

Bibliography

30th International Conference on Machine Learning, ICML 2013, Atlanta,
GA, USA, 16-21 June 2013, 28, 1139–1147.

[218] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., & Rabinovich, A. (2015). “Going deeper with convolutions”.
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
1–9.

[219] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). “Re-
thinking the inception architecture for computer vision”. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2818–2826.

[220] Teboulle, M. (1992). “Entropic proximal mappings with applications to non-
linear programming”. Mathematics of Operations Research, 17(3), 670–690.

[221] Theis, L., Oord, A. v. d., & Bethge, M. (2016). “A note on the evaluation of
generative models”. International Conference on Learning Representations.

[222] Thompson, N. C., Greenewald, K. H., Lee, K., & Manso, G. F. (2020). “The
computational limits of deep learning”. CoRR, abs/2007.05558.

[223] Tieleman, T., Hinton, G. et al. (2012). “Lecture 6.5-rmsprop: Divide the gra-
dient by a running average of its recent magnitude”. COURSERA: Neural
networks for machine learning, 4(2), 26–31.

[224] Touvron, H., Vedaldi, A., Douze, M., & Jegou, H. (2019). “Fixing the train-
test resolution discrepancy”. Advances in Neural Information Processing Sys-
tems, 32.

[225] Vaserstein, L. N. (1969). “Markov processes over denumerable products of
spaces, describing large systems of automata”. Problemy Peredachi Informat-
sii, 5(3), 64–72.

[226] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., & Polosukhin, I. (2017). “Attention is all you need”. Advances in
Neural Information Processing Systems, 30.

[227] Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E., & And-
ina, D. (2018). “Deep learning for computer vision: A brief review”. Intell.
Neuroscience, 2018.

[228] Wang, R., Cheng, M., Chen, X., Tang, X., & Hsieh, C.-J. (2021). “Rethinking
architecture selection in differentiable NAS”. International Conference on
Learning Representations.

[229] Wang, X., & Cao, W. (2018). “Non-iterative approaches in training feed-
forward neural networks and their applications”. Soft Comput., 22(11), 3473–
3476.

[230] Wei, Y., Liang, X., Chen, Y., Jie, Z., Xiao, Y., Zhao, Y., & Yan, S. (2016).
“Learning to segment with image-level annotations”. Pattern Recognition,
59, 234–244.

[231] Weinland, D., Ronfard, R., & Boyer, E. (2011). “A survey of vision-based
methods for action representation, segmentation and recognition”. Computer
Vision and Image Understanding, 115(2), 224–241.

[232] Wiegerinck, W., Komoda, A., & Heskes, T. (1995). “Stochastic dynamics of
learning with momentum in neural networks”. Journal of Physics A General
Physics, 27.

145

http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1287/moor.17.3.670
http://dx.doi.org/10.1287/moor.17.3.670
http://arxiv.org/abs/1511.01844
http://arxiv.org/abs/1511.01844
https://arxiv.org/abs/2007.05558
https://arxiv.org/abs/2007.05558
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://proceedings.neurips.cc/paper/2019/file/d03a857a23b5285736c4d55e0bb067c8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d03a857a23b5285736c4d55e0bb067c8-Paper.pdf
http://toomandre.com/others-articles/engmat/VASERSHTEIN.pdf
http://toomandre.com/others-articles/engmat/VASERSHTEIN.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/10.1155/2018/7068349
https://openreview.net/forum?id=PKubaeJkw3
https://openreview.net/forum?id=PKubaeJkw3
http://dx.doi.org/10.1007/s00500-018-3203-0
http://dx.doi.org/10.1007/s00500-018-3203-0
http://dx.doi.org/10.1016/j.patcog.2016.01.015
http://dx.doi.org/10.1016/j.cviu.2010.10.002
http://dx.doi.org/10.1016/j.cviu.2010.10.002
http://dx.doi.org/10.1088/0305-4470/27/13/017
http://dx.doi.org/10.1088/0305-4470/27/13/017

Bibliography

[233] Wortsman, M., Farhadi, A., & Rastegari, M. (2019). “Discovering neural
wirings”. 33rd Conference on Neural Information Processing Systems
(NeurIPS 2019).

[234] Wu, Y., Liu, A., Huang, Z., Zhang, S., & Van Gool, L. (2021). “Neural ar-
chitecture search as sparse supernet”. 2021 AAAI Conference on Artificial
Intelligence.

[235] Xie, Q., Luong, M.-T., Hovy, E., & Le, Q. V. (2020). “Self-training with noisy
student improves imagenet classification”. 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 10684–10695.

[236] Xie, S., Zheng, H., Liu, C., & Lin, L. (2019). “SNAS: Stochastic neural ar-
chitecture search”. International Conference on Learning Representations.

[237] Xu, H., Van Durme, B., & Murray, K. (2021). “BERT, mBERT, or BiBERT?
a study on contextualized embeddings for neural machine translation”. Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, 6663–6675.

[238] Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G., Tian, Q., & Xiong, H. (2020).
“PC-DARTS: partial channel connections for memory-efficient architecture
search”. 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020.

[239] Xue, H., Zhang, S., & Cai, D. (2017). “Depth image inpainting: Improving
low rank matrix completion with low gradient regularization”. Trans. Img.
Proc., 26(9), 4311–4320.

[240] Yang, Y., Scutari, G., Palomar, D. P., & Pesavento, M. (2016). “A parallel de-
composition method for nonconvex stochastic multi-agent optimization prob-
lems”. IEEE Transactions on Signal Processing, 64(11), 2949–2964.

[241] Yang, Y., Hodgkinson, L., Theisen, R., Zou, J., Gonzalez, J. E., Ramchan-
dran, K., & Mahoney, M. W. (2021). “Taxonomizing local versus global
structure in neural network loss landscapes”. Advances in Neural Informa-
tion Processing Systems, 34, 18722–18733.

[242] Yang, Y., Li, H., You, S., Wang, F., Qian, C., & Lin, Z. (2020). “Ista-nas: Ef-
ficient and consistent neural architecture search by sparse coding”. Advances
in Neural Information Processing Systems, 33, 10503–10513.

[243] Ying, X. (2019). “An overview of overfitting and its solutions”. Journal of
Physics: Conference Series, 1168, 022022.

[244] Yuan, M., & Lin, Y. (2006). “Model selection and estimation in regression
with grouped variables”. Journal of the Royal Statistical Society. Series B
(Methodological), 68(1), 49–67.

[245] Yun, J., Lozano, A. C., & Yang, E. (2020). “A general family of stochastic
proximal gradient methods for deep learning”. CoRR, abs/2007.07484.

[246] Zeiler, M. D. (2012). “ADADELTA: an adaptive learning rate method”.
CoRR, abs/1212.5701.

[247] Zeiler, M., Ranzato, M., Monga, R., Mao, M., Yang, K., Le, Q., Nguyen,
P., Senior, A., Vanhoucke, V., Dean, J., & Hinton, G. (2013). “On rectified
linear units for speech processing”. 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, 3517–3521.

146

http://arxiv.org/abs/1906.00586
http://arxiv.org/abs/1906.00586
http://arxiv.org/abs/2007.16112
http://arxiv.org/abs/2007.16112
http://dx.doi.org/10.1109/CVPR42600.2020.01070
http://dx.doi.org/10.1109/CVPR42600.2020.01070
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rylqooRqK7
http://dx.doi.org/10.18653/v1/2021.emnlp-main.534
http://dx.doi.org/10.18653/v1/2021.emnlp-main.534
https://openreview.net/forum?id=BJlS634tPr
https://openreview.net/forum?id=BJlS634tPr
http://dx.doi.org/10.1109/TIP.2017.2718183
http://dx.doi.org/10.1109/TIP.2017.2718183
http://dx.doi.org/10.1109/TSP.2016.2531627
http://dx.doi.org/10.1109/TSP.2016.2531627
http://dx.doi.org/10.1109/TSP.2016.2531627
https://proceedings.neurips.cc/paper/2021/file/9b72e31dac81715466cd580a448cf823-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/9b72e31dac81715466cd580a448cf823-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/76cf99d3614e23eabab16fb27e944bf9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/76cf99d3614e23eabab16fb27e944bf9-Paper.pdf
http://dx.doi.org/10.1088/1742-6596/1168/2/022022
http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
https://arxiv.org/abs/2007.07484
https://arxiv.org/abs/2007.07484
http://arxiv.org/abs/1212.5701
http://dx.doi.org/10.1109/ICASSP.2013.6638312
http://dx.doi.org/10.1109/ICASSP.2013.6638312

Bibliography

[248] Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., & Hutter, F. (2020).
“Understanding and robustifying differentiable architecture search”. Interna-
tional Conference on Learning Representations.

[249] Zela, A., Siems, J., & Hutter, F. (2020). “NAS-Bench-1Shot1: Benchmarking
and dissecting one-shot neural architecture search”. International Conference
on Learning Representations.

[250] Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). “Under-
standing deep learning (still) requires rethinking generalization”. Commun.
ACM, 64(3), 107–115.

[251] Zhang, X., Huang, Z., Wang, N., Xiang, S., & Pan, C. (2021). “You Only
Search Once: Single Shot Neural Architecture Search via Direct Sparse Opti-
mization”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(9), 2891–2904.

[252] Zhang, X., Xv, C., Shen, M., He, X., & Du, W. (2018/05). “Survey of convo-
lutional neural network”. Proceedings of the 2018 International Conference
on Network, Communication, Computer Engineering (NCCE 2018), 93–97.

[253] Zhou, Y., Zhang, Y., Wang, Y., & Tian, Q. (2019). “Accelerate CNN via recur-
sive bayesian pruning”. 2019 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2,
2019, 3305–3314.

[254] Zoph, B., & Le, Q. V. (2017). “Neural architecture search with reinforcement
learning”. 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.

[255] Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). “Learning transfer-
able architectures for scalable image recognition”. 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, 8697–8710.

147

https://openreview.net/forum?id=H1gDNyrKDS
https://openreview.net/forum?id=SJx9ngStPH
https://openreview.net/forum?id=SJx9ngStPH
http://dx.doi.org/10.1145/3446776
http://dx.doi.org/10.1145/3446776
http://dx.doi.org/10.1109/TPAMI.2020.3020300
http://dx.doi.org/10.1109/TPAMI.2020.3020300
http://dx.doi.org/10.1109/TPAMI.2020.3020300
http://dx.doi.org/10.2991/ncce-18.2018.16
http://dx.doi.org/10.2991/ncce-18.2018.16
http://dx.doi.org/10.1109/ICCV.2019.00340
http://dx.doi.org/10.1109/ICCV.2019.00340
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg
http://dx.doi.org/10.1109/CVPR.2018.00907
http://dx.doi.org/10.1109/CVPR.2018.00907

Appendix A
Proof of Theorem 5.1

Proof The claim limk→∞ ∥v(k)−∇ f (w(k))∥ = 0 is a consequence of [192, Lemma
1]. To see this, one just needs to verify that all the technical conditions therein are
satisfied by the problem at hand. Specifically, Condition (a) of [192, Lemma 1] is
satisfied because W is closed and bounded. Condition (b) of [192, Lemma 1] is
exactly (5.44). Conditions (c)-(d) of [192, Lemma 1] come from the stepsize rules in
(5.45) of Theorem 5.1. Condition (e) of [192, Lemma 1] comes from the Lipschitz
property of ∇ f and stepsize rule in (5.45) of Theorem 5.1.

The following intermediate result is needed to prove the limit point of the sequence
w(k) is a stationary point of (5.29).

Lemma There exists a constant L̂ such that
∥∥∥ŵ(w(k1),ξk1)− ŵ(w(k2),ξk2)

∥∥∥≤ L̂
∥∥∥w(k1)−w(k2)

∥∥∥+ e(k1,k2),

and limk1,k2→∞ e(k1,k2) = 0 w.p.1.

Proof Assume without loss of generality (w.l.o.g.) that τk = τ1, and the approxima-
tion subproblem (5.33) reduces to

ŵ(k) ≜ argmin
w∈X

{
(w−w(k))Tv(k)+

τ

2
∥w−w(k)∥2

2 + r(w)
}
.

It is further equivalent to

min
w∈X,r(w)≤y

{
(w−w(k))Tv(k)+

τ

2
∥w−w(k)∥2

2 + y
}
, (A.1)

where the (unique) optimal w and y is (ŵ(k) and r(ŵ(k))), respectively.
Assume w.l.o.g. that k2 > k1. It follows from first-order optimality condition that

(w− ŵ(k1))T (v(k1)+ τ(ŵ(k1)−w(k1)))+ y− r(ŵ(k1))≥ 0,∀w,y such that r(w)≤ y
(A.2a)

(w− ŵ(k2))T (v(k2)+ τ(ŵ(k2)−w(k2)))+ y− r(ŵ(k2))≥ 0,∀w,y such that r(w)≤ y.
(A.2b)

149

Appendix A: Proof of Theorem 5.1

Setting (w,y) = (ŵ(k2),r(ŵ(k2))) in (A.2a) and (w,y) = (ŵ(k1),r(ŵ(k1))) in (A.2b),
and adding them up, one obtains

(ŵ(k1)−ŵ(k2))T (v(k1)−v(k2))−τ(w(k1)−w(k2))T (ŵ(k1)−ŵ(k2))≤−τ∥ŵ(k1)−ŵ(k2)∥2
2.

(A.3)
The term on the left hand side can be lower bounded as follows:

〈
ŵ(k1)− ŵ(k2),v(k1)−∇ f (w(k1))−v(k2)+∇ f (w(k2))

〉

+
〈
ŵ(k1)− ŵ(k2),∇ f (w(k1))−∇ f (w(k2))

〉
− τ
〈
ŵ(k1)− ŵ(k2),w(k1)−w(k2)

〉

≥ −
∥∥ŵ(k1)− ŵ(k2)

∥∥(εk1 + εk2)− (L+ τ)
∥∥ŵ(k1)− ŵ(k2)

∥∥∥∥w(k1)−w(k2)
∥∥ (A.4)

where the inequality comes from the Lipschitz continuity of ∇ f (w), with
εk ≜

∥∥v(k)−∇ f (w(k))
∥∥.

Combining the inequalities (A.3) and (A.4)
∥∥ŵ(k1)− ŵ(k2)

∥∥≤ (L+ τ)τ−1∥∥w(k1)−w(k2)
∥∥+ τ

−1(εk1 + εk2),

which leads to the desired (asymptotic) Lipschitz property:
∥∥ŵ(k1)− ŵ(k2)

∥∥≤ L̂
∥∥w(k1)−w(k2)

∥∥+ e(k1,k2),

with L̂ ≜ τ−1(L+ τ) and e(k1,k2) ≜ τ−1(εk1 + εk2), and limk1→∞,k2→∞ e(k1,k2) = 0
w.p.1.

Define U(w)≜ f (w)+ r(w). Following the line of analysis from (5.41) to (5.42),
one obtains

U(w(k+1))−U(w(k)) (A.5)

≤ εk((ŵ
(k)−w(k))T (∇ f (w(k))+ r(ŵ(k))− r(w(k)))+

L
2

ε
2
k

∥∥ŵ(k)−w(k)
∥∥2

= εk(ŵ
(k)−w(k))T (∇ f (w(k))−v(k)+v(k)+ r(ŵ(k))− r(w(k)))+

L
2

ε
2
k

∥∥ŵ(k)−w(k)
∥∥2

≤ − εk

(
τ− L

2
εk

)∥∥ŵ(k)−w(k)
∥∥2

+ εk
∥∥ŵ(k)−w(k)

∥∥∥∥∇ f (w(k))−v(k)
∥∥, (A.6)

where in the last inequality (5.40) was used together with the Cauchy-Schwarz in-
equality.

Next, it is shown by contradiction that liminfk→∞

∥∥ŵ(k)−w(k)
∥∥ = 0 w.p.1. Sup-

pose liminfk→∞

∥∥ŵ(k)−w(k)
∥∥ ≥ χ > 0 with a positive probability. Then one can

find a realization such that at the same time
∥∥ŵ(k)−w(k)

∥∥ ≥ χ > 0 for all k and
limk→∞

∥∥∇ f (w(k))− v(k)
∥∥ = 0; focus next on such a realization. Using

∥∥ŵ(k) −
w(k)

∥∥≥ χ > 0, the inequality (A.6) is equivalent to

U(w(k+1))−U(w(k))≤−εk

(
τ− L

2
εk−

1
χ

∥∥∥∇ f (w(k))−v(k)
∥∥∥
)∥∥ŵ(k)−w(k)

∥∥2
.

(A.7)

150

Appendix A: Proof of Theorem 5.1

Since limk→∞

∥∥∇ f (w(k))−v(k)
∥∥= 0, there exists a k0 sufficiently large such that

τ− L
2

εk−
1
χ

∥∥∥∇ f (w(k))−v(k)
∥∥∥≥ τ̄ > 0, ∀k ≥ k0. (A.8)

Therefore, it follows from (A.7) and (A.8) that

U(w(k))−U(wk0)≤−τ̄χ
2
∑

k
n=k0

ε
n+1, (A.9)

which, in view of ∑
∞
n=k0

εn+1 = ∞, contradicts the boundedness of {U(w(k))}. There-
fore it must be liminfk→∞

∥∥ŵ(k)−w(k)
∥∥= 0 w.p.1.

Let us show by contradiction that limsupk→∞

∥∥ŵ(k)−w(k)
∥∥ = 0 w.p.1. Suppose

limsupk→∞

∥∥ŵ(k)−w(k)
∥∥ > 0 with a positive probability. Next, focus on a real-

ization along with limsupk→∞

∥∥ŵ(k)−w(k)
∥∥ > 0, limk→∞

∥∥∇ f (w(k))− v(k)
∥∥ = 0,

liminfk→∞

∥∥ŵ(k)−w(k)
∥∥= 0, and limk1,k2→∞ e(k1,k2) = 0, where e(k1,k2) is defined

in Lemma 1. It follows from limsupk→∞

∥∥ŵ(k)−w(k)
∥∥ > 0 and liminfk→∞

∥∥ŵ(k)−
w(k)

∥∥ = 0 that there exists a δ > 0 such that
∥∥△w(k)

∥∥ ≥ 2δ (with △w(k) ≜ ŵ(k)−
w(k)) for infinitely many k and also

∥∥△w(k)
∥∥ < δ for infinitely many k. Therefore,

one can always find an infinite set of indexes, say T , having the following properties:
for any k ∈ T , there exists an integer ik > k such that

∥∥∥△w(k)
∥∥∥< δ,

∥∥∥△w(ik)
∥∥∥> 2δ, δ≤

∥∥∥△w(n)
∥∥∥≤ 2δ,k < n < ik. (A.10)

Given the above bounds, the following holds: for all k ∈ T ,

δ≤
∥∥∥△w(ik)

∥∥∥−
∥∥∥△w(k)

∥∥∥

≤
∥∥∥△w(ik)−△w(k)

∥∥∥=
∥∥∥(ŵ(ik)−w(ik))− (ŵ(k)−w(k))

∥∥∥
≤
∥∥ŵ(ik)− ŵ(k)

∥∥+
∥∥w(ik)−w(k)

∥∥

≤ (1+ L̂)
∥∥w(ik)−w(k)

∥∥+ e(ik,k)

≤ (1+ L̂)∑ik−1
n=k εn

∥∥∥△w(n)
∥∥∥+ e(ik,k)

≤ 2δ(1+ L̂)∑ik−1
n=k εn + e(ik,k), (A.11)

implying that
liminf
T ∋k→∞

∑
ik−1
n=k εn ≥ δ̄1 ≜

1

2(1+ L̂)
> 0. (A.12)

Proceeding as in (A.11): for all k ∈ T ,
∥∥∥△w(k+1)

∥∥∥−
∥∥∥△w(k)

∥∥∥≤
∥∥∥△w(k+1)−△w(k)

∥∥∥≤ (1+ L̂)εk

∥∥∥△w(k)
∥∥∥+ e(k,k+1),

which leads to

(1+(1+ L̂)εk)
∥∥∥△w(k)

∥∥∥+ e(k,k+1)≥
∥∥∥△w(k+1)

∥∥∥≥ δ, (A.13)

where the second inequality follows from (A.10). It follows from (A.13) that there

151

Appendix A: Proof of Theorem 5.1

exists a δ̄2 > 0 such that for sufficiently large k ∈ T ,

∥∥∥△w(k)
∥∥∥≥ δ− e(k,k+1)

1+(1+ L̂)εk
≥ δ̄2 > 0. (A.14)

Here, after assuming w.l.o.g. that (A.14) holds for all k ∈ T (in fact one can always
restrict {w(k)}k∈T to a proper subsequence).

The next step is showing that (A.12) is in contradiction with the convergence of
{U(w(k))}. Invoking (A.6), for all k ∈ T ,

U(w(k+1))−U(w(k))≤−εk

(
τ− L

2
εk

)∥∥ŵ(k)−w(k)
∥∥2

+ εkδ
∥∥∇ f (w(k))−v(k)

∥∥

≤−εk

(
τ− L

2
εk−

∥∥∇ f (w(k))−v(k)
∥∥

δ

)
∥∥ŵ(k)−w(k)

∥∥2

+ εkδ
∥∥∇ f (w(k))−v(k)

∥∥2
, (A.15)

and for k < n < ik,

U(w(n+1))−U(w(n))≤−εn

(
τ− L

2
εn−

∥∥∇ f (w(n))−v(n)
∥∥

∥∥ŵ(n)−w(n)
∥∥

)
∥∥ŵ(n)−w(n)

∥∥2

≤−εn

(
τ− L

2
εn−

∥∥∇ f (w(n))−v(n)
∥∥

δ

)
∥∥ŵ(n)−w(n)

∥∥2
,

(A.16)

where the last inequality follows from (A.10). Adding (A.15) and (A.16) over n =
k+1, . . . , ik−1 and, for k ∈ T sufficiently large (so that τ−Lεk/2−δ−1

∥∥∇ f (w(n))−
v(n)
∥∥≥ τ̂ > 0 and

∥∥∇ f (w(k))−v(k)
∥∥< τ̂δ̄2

2/δ), this results in

U(w(ik))−U(w(k))
(a)
≤ −τ̂∑

ik−1
n=k εn

∥∥ŵ(n)−w(n)
∥∥2

+ εkδ
∥∥∇ f (w(k))−v(k)

∥∥
(b)
≤ −τ̂ δ̄

2
2 ∑

ik−1
n=k+1εn− εk

(
τ̂δ̄

2
2−δ

∥∥∇ f (w(k))−v(k)
∥∥
)

(c)
≤ −τ̂ δ̄

2
2 ∑

ik−1
n=k+1εn, (A.17)

where (a) follows from τ− Lεk/2− δ−1
∥∥∇ f (w(n))− v(n)

∥∥ ≥ τ̂ > 0; (b) is due to
(A.14); and in (c)

∥∥∇ f (w(k))−v(k)
∥∥< τ̂δ̄2

2/δ was used. Since {U(w(k))} converges,
it must be liminf

T ∋k→∞
∑

ik−1
n=k+1εn = 0, which contradicts (A.12). Therefore, it must be

limsupk→∞

∥∥ŵ(k)−w(k)
∥∥= 0 w.p.1.

Finally, a proof is given that every limit point of the sequence
{
w(k)

}
is a sta-

tionary solution of (5.29). Let w⋆ be the limit point of the convergent subsequence{
w(k)

}
k∈T . Taking the limit of (A.2a) over the index set T (and replacing w.l.o.g. y

by r(w))

152

Appendix A: Proof of Theorem 5.1

lim
T ∋k→∞

(w− ŵ(k))T (v(k)+ τ

(
ŵ(k)−w(k)

)
)+ r(w)− r(ŵ(k))

= (w−w⋆)T
∇ f (w⋆)+ r(w)− r(w⋆)≥ 0, ∀w ∈ X,

where the last equality follows from: i) limk→∞

∥∥∇ f (w(k))− v(k)
∥∥ = 0, and ii)

lim k→∞

∥∥ŵ(k)−w(k)
∥∥ = 0. This is the desired first-order optimality condition and

w⋆ is a stationary point of (5.29).

153

Appendix B
ResNet-50 Structure after Pruning

In this section the resulting network structure of ResNet-50 after filter pruning is
summarized. The structure of the unpruned ResNet-50 network is shown in Table
B.1. It consists of 4 layers, where each layer contains a certain number of blocks.
Each block contains three different convolutions. In the experiments from Section
6.3, the ResNet-50 model is trained on ImageNet-2012 using GSparsity. Table B.2
depicts the resulting pruned networks, which have been trained using GSparsity with
µ ∈ {0.02,0.05,0.07,0.10}. Note that the filter height and width are removed from
each cell in Table B.2 in order to save space.

Layers Blocks Conv1 Conv2 Conv3

Layer 1
Block 1 1×1,64 3×3,64 1×1,256
Block 2 1×1,64 3×3,64 1×1,256
Block 3 1×1,64 3×3,64 1×1,256

Layer 2

Block 1 1×1,128 3×3,128 1×1,512
Block 2 1×1,128 3×3,128 1×1,512
Block 3 1×1,128 3×3,128 1×1,512
Block 4 1×1,128 3×3,128 1×1,512

Layer 3

Block 1 1×1,256 3×3,256 1×1,1024
Block 2 1×1,256 3×3,256 1×1,1024
Block 3 1×1,256 3×3,256 1×1,1024
Block 4 1×1,256 3×3,256 1×1,1024
Block 5 1×1,256 3×3,256 1×1,1024
Block 6 1×1,256 3×3,256 1×1,1024

Layer 4
Block 1 1×1,512 3×3,512 1×1,2048
Block 2 1×1,512 3×3,512 1×1,2048
Block 3 1×1,512 3×3,512 1×1,2048

Table B.1.: The structure of the unpruned ResNet-50 network that is used for training on
ImageNet-2012. Each cell contains the filter height× filter height as well as the
number of output channels.

155

Appendix B: ResNet-50 Structure after Pruning

µ
=

0.
02

µ
=

0.
05

µ
=

0.
07

µ
=

0.
10

L
ay

er
s

B
lo

ck
s

C
on

v1
C

on
v2

C
on

v3
C

on
v1

C
on

v2
C

on
v3

C
on

v1
C

on
v2

C
on

v3
C

on
v1

C
on

v2
C

on
v3

L
ay

er
1

B
lo

ck
1

14
32

25
6

7
33

25
6

7
32

25
6

5
31

25
6

B
lo

ck
2

54
63

25
6

44
56

25
6

43
57

25
6

36
50

25
6

B
lo

ck
3

56
64

25
6

44
64

25
6

40
64

25
6

33
63

25
6

L
ay

er
2

B
lo

ck
1

72
12

7
51

2
42

11
0

51
2

32
10

2
51

2
24

88
51

2
B

lo
ck

2
14

51
51

2
9

45
51

2
8

50
51

2
6

40
51

2
B

lo
ck

3
60

93
51

2
34

72
51

2
32

58
51

2
30

54
51

2
B

lo
ck

4
97

12
4

51
2

59
12

1
51

2
51

11
8

51
2

41
11

6
51

2

L
ay

er
3

B
lo

ck
1

22
1

25
3

10
24

16
1

23
8

10
24

13
8

23
6

10
24

12
4

22
2

10
24

B
lo

ck
2

81
16

0
10

24
51

13
0

10
24

42
11

8
10

24
39

10
5

10
24

B
lo

ck
3

10
1

20
2

10
24

64
17

6
10

24
57

17
0

10
24

52
16

1
10

24
B

lo
ck

4
10

8
10

2
10

24
61

16
0

10
24

52
16

0
10

24
40

14
3

10
24

B
lo

ck
5

91
15

8
10

24
54

13
0

10
24

42
11

7
10

24
34

10
0

10
24

B
lo

ck
6

13
7

20
4

10
24

92
17

8
10

24
80

16
0

10
24

72
15

0
10

24

L
ay

er
4

B
lo

ck
1

51
2

51
2

20
48

51
2

51
2

20
48

50
0

51
2

20
48

46
8

51
2

20
48

B
lo

ck
2

46
1

51
0

20
48

22
4

49
1

20
48

17
2

46
4

20
48

13
3

42
9

20
48

B
lo

ck
3

44
70

20
48

11
5

20
48

10
4

20
48

9
3

20
48

Ta
bl

e
B

.2
.:

Fi
na

ls
tr

uc
tu

re
of

R
es

N
et

-5
0

af
te

rt
ra

in
in

g
w

ith
G

Sp
ar

si
ty

on
th

e
Im

ag
eN

et
-2

01
2

da
ta

se
t.

T
hi

s
Ta

bl
e

de
pi

ct
s

th
e

re
su

lti
ng

ou
tp

ut
ch

an
ne

ls
of

th
e

di
ff

er
en

tc
on

vo
lu

tio
ns

fo
r

fo
ur

di
ff

er
en

tv
al

ue
s

of
µ.

Pl
ea

se
re

fe
r

to
Ta

bl
e

B
.1

fo
r

th
e

st
ru

ct
ur

e
of

th
e

un
pr

un
ed

ne
tw

or
k.

T
he

fil
te

r
he

ig
ht

an
d

w
id

th
ha

ve
be

en
om

itt
ed

in
th

is
Ta

bl
e

to
sa

ve
sp

ac
e.

156

Appendix C
CIFAR-10 and CIFAR-100 on
DARTS Search Space

Accuracy of the best performing architecture As previously mentioned, this the-
sis deviates from the commonly used practice of only reporting the average accuracy
of the model with the best performance. In Table C.1 the results obtained from Table
6.4 are used to find the best performing architecture for each method on CIFAR-10
and CIFAR-100. On CIFAR-10, observe that PC-DARTS is able to reach the highest
accuracy with 97.38 ± 0.08, followed closely by P-DARTS with 97.25 ± 0.07 and
the proposed method GSparsity with 97.24 ± 0.03. On CIFAR-100, the proposed
method is able to find the best performing architecture, which reaches an average
accuracy of 84.04 ± 0.28, followed by P-DARTS with 83.62 ± 0.19.

CIFAR-10 Accuracy CIFAR-100 Accuracy
DARTS (2nd) 97.09 ± 0.09 81.05 ± 0.23

P-DARTS 97.25 ± 0.07 83.62 ± 0.19
PC-DARTS 97.38 ± 0.08 83.38 ± 0.20

DrNAS 96.98 ± 0.07 83.41 ± 0.18
GDAS 96.77 ± 0.11 81.41 ± 0.40

ISTA-NAS 96.86 ± 0.02 83.17 ± 0.17
GAEA 96.57 ± 0.04 80.34 ± 0.05

GSparsity (prop.) 97.24 ± 0.03 84.04 ± 0.28

Table C.1.: Accuracy of the best architecture found by different NAS methods for the
DARTS space. Each method has been run three times, and each of those three
architectures that have been found have been evaluated three times. This table
summarizes the performance of the best architecture out of the three that have
been search by each method, contrary to Table 6.4, which shows the average
accuracy of all three architectures.

Pruning weights vs. pruning switches This paragraph investigates the approach
where scaling factors (which act as a switch) are appended to the operations and then
pruned (instead of weights). It turns out that the magnitudes of the scaling factors are

157

Appendix C: CIFAR-10 and CIFAR-100 on DARTS Search Space

very sensitive to the value of µ and they are either all active or all zero. For example,

• when µ = 3.66, all scaling factors are active.

• when µ = 3.67, all scaling factors are zero.

• when µ = 3.69, all scaling factors are active.

Therefore, it is more beneficial to directly prune the weights, which is not as sensitive
to changes in the value of µ. See Appendix E for an ablation study where weights are
directly pruned.

158

Appendix D
Convergence of ProxSGD vs. SGD

This section compares the convergence of ProxSGD and SGD with ℓ2,1-regularization
in the NAS setting. For this experiment the weight decay is set to a fixed value of
µ = 50 and a network architecture is searched using the proposed GSparsity method.
For SGD the best performing hyperparameters are chosen after a variety of learning
rates are searched. The momentum stays fixed at ρ= 0.9. The results are summarized
in Figure D.1.

Observe that GSparsity outperforms SGD with a lower training objective and a
higher validation accuracy. The biggest difference is observed in the cell architec-
ture though, which is depicted in Figures D.2 and D.3 for SGD and Figure D.4 for
ProxSGD. One can see that while GSparsity is able to converge to a sparse solution,
with 44 non-zero operations in the normal cell and 11 operations in the reduction
cell, SGD does not converge to a sparse solution. There are 96 remaining operations
in the normal cell and 95 remaining operations in the reduction cell.

159

Appendix D: Convergence of ProxSGD vs. SGD

Figure D.1.: Neural architecture search using SGD and ProxSGD (denoted by GSparsity).

160

Appendix D: Convergence of ProxSGD vs. SGD

c_{k-2}

0

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

2

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

3

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

Figure D.2.: Normal cell for µ = 50 trained with SGD. There are 96 non-zero operations in
this cell after pruning.

161

Appendix D: Convergence of ProxSGD vs. SGD

c_{k-2}

0

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

dil_conv_3x3

dil_conv_5x5

2

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

dil_conv_3x3

dil_conv_5x5

3

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

Figure D.3.: Reduction cell for µ = 50 trained with SGD. There are 95 non-zero operations
in this cell after pruning.

162

Appendix D: Convergence of ProxSGD vs. SGD

c_{k-2}

0

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

2

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

3

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

c_{k-1}

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

c_{k}

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

(a) Normal cell with 44 non-zero operations.

c_{k-2}

0

sep_conv_5x5

1

sep_conv_5x5

2

sep_conv_5x5

3

sep_conv_5x5

c_{k-1}

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5sep_conv_5x5

sep_conv_5x5 c_{k}

sep_conv_5x5

(b) Reduction cell with 11 non-zero operations.

Figure D.4.: Normal and reduction cell for µ = 50 trained with ProxSGD.

163

Appendix E
GSparsity and NAS: Ablation Study

In order to see the effect of the regularization parameter µ on the structure of the final
network, the found architecture for µ ∈ [0.1,1,10,50,100,200,500,1000] is depicted
in Figures (E.1)-(E.11). During training of each model with GSparsity, the learning
rate has been kept at a fixed value of ε = 0.001. One can observe that the number
of non-zero operations decreases monotonically with the value of µ. For µ = 0.1, the
number of non-zero operations in the normal cell is 98, and in the reduction cell there
are 64 operations. On the other hand, for a very large value of µ the network prunes
all of the operations in both cells, as can be seen in Figure E.11 for µ = 1000. For
small values of µ, the resulting number of operations is more sensitive for changes
in its value. For example, going from µ = 0.1 to µ = 1, a change of only ∆µ = 0.9,
the total number of non-zero operations is reduced by 42. But going from µ = 100 to
µ = 200 only reduces the number of non-zero operations by 10.

165

Appendix E: GSparsity and NAS: Ablation Study

c_{k-2}

0

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

2

max_pool_3x3

avg_pool_3x3
skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

3

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

max_pool_3x3

avg_pool_3x3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

Figure E.1.: Resulting normal cell after training with GSparsity with µ = 0.1 and fixed
ε = 0.001. All 98 operations are still present in this cell after pruning.

166

Appendix E: GSparsity and NAS: Ablation Study

c_{k-2}

0

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

2

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

Figure E.2.: Resulting reduction cell after training with GSparsity with µ = 0.1 and fixed
ε = 0.001. There are 64 non-zero operations in this cell after pruning.

167

Appendix E: GSparsity and NAS: Ablation Study

c_{k-2}

0

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

2

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

3

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

Figure E.3.: Resulting normal cell after training with GSparsity with µ = 1 and fixed ε =
0.001. There are 56 non-zero operations in this cell after pruning.

168

Appendix E: GSparsity and NAS: Ablation Study

c_{k-2}

0

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

2

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

Figure E.4.: Resulting reduction cell after training with GSparsity with µ = 1 and fixed
ε = 0.001. There are 64 non-zero operations in this cell after pruning.

169

Appendix E: GSparsity and NAS: Ablation Study

c_{k-2}

0

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

2

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

3

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

Figure E.5.: Resulting normal cell after training with GSparsity with µ = 10 and fixed ε =
0.001. There are 56 non-zero operations in this cell after pruning.

170

Appendix E: GSparsity and NAS: Ablation Study

c_{k-2}

0

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

2

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

3

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k-1}

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

c_{k}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

Figure E.6.: Resulting reduction cell after training with GSparsity with µ = 10 and fixed
ε = 0.001. There are 64 non-zero operations in this cell after pruning.

171

Appendix E: GSparsity and NAS: Ablation Study

c_{k-2}

0

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

1

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

2

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

3

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

c_{k-1}

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

c_{k}

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

dil_conv_5x5

(a) Normal cell with µ = 50. There are 44 non-zero operations in this cell after pruning.

c_{k-2}

0

sep_conv_5x5

1

sep_conv_5x5

2

sep_conv_5x5

3

sep_conv_5x5

c_{k-1}

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5sep_conv_5x5

sep_conv_5x5 c_{k}

sep_conv_5x5

(b) Reduction cell with µ = 50. There are 11 non-zero operations in this cell after pruning.

Figure E.7.: Resulting network structure after training with GSparsity with µ= 50 and fixed
ε = 0.001.

172

Appendix E: GSparsity and NAS: Ablation Study

c_{k-2}

0

sep_conv_5x5

1
sep_conv_5x5 2

sep_conv_5x5

3

sep_conv_5x5

c_{k-1}

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5
sep_conv_5x5

sep_conv_5x5
c_{k}

sep_conv_5x5

sep_conv_5x5

sep_conv_5x5

(a) Normal cell with µ = 100. There are 14 non-zero operations in this cell after pruning.

c_{k-2}

0
sep_conv_5x5

1sep_conv_5x5

c_{k-1}
sep_conv_5x5

c_{k}

2

3

(b) Reduction cell with µ = 100. There are 3 non-zero operations in this cell after pruning.

Figure E.8.: Resulting network structure after training with GSparsity with µ = 100 and
fixed ε = 0.001.

c_{k-2}

0

sep_conv_5x5
1

sep_conv_5x5

2sep_conv_5x5

c_{k-1} sep_conv_5x5

sep_conv_5x5

c_{k}

3

(a) Normal cell with µ = 200. There are 5
non-zero operations in this cell after prun-
ing.

c_{k-2}
0

sep_conv_5x5

c_{k-1}
sep_conv_5x5 c_{k}

1

2

3

(b) Reduction cell with µ = 200. There are
2 non-zero operations in this cell after
pruning.

Figure E.9.: Resulting network structure after training with GSparsity with µ = 200 and
fixed ε = 0.001.

173

Appendix E: GSparsity and NAS: Ablation Study

c_{k-2}
0

sep_conv_5x5

c_{k-1}
sep_conv_5x5 c_{k}

1

2

3

(a) Normal cell with µ = 500. There are 2
non-zero operations in this cell after prun-
ing.

c_{k-2}

c_{k-1} 3max_pool_3x3
avg_pool_3x3

0

1

2

c_{k}

(b) Reduction cell with µ = 500. There are
2 non-zero operations in this cell after
pruning.

Figure E.10.: Resulting network structure after training with GSparsity with µ = 500 and
fixed ε = 0.001.

c_{k-2}

c_{k-1}

0

1

2

3

c_{k}

(a) Normal cell with µ = 1000. There are
0 non-zero operations in this cell after
pruning.

c_{k-2}

c_{k-1}

0

1

2

3

c_{k}

(b) Reduction cell with µ = 1000. There are
0 non-zero operations in this cell after
pruning.

Figure E.11.: Resulting network structure after training with GSparsity with µ = 1000 and
fixed ε = 0.001.

174

Appendix F
Publications in the context of this
work

• Gradvis: Visualization and second order analysis of optimization surfaces
during the training of deep neural networks
A. Chatzimichailidis, J. Keuper, F.J. Pfreundt, N.R. Gauger
In IEEE/ACM Workshop on Machine Learning in High Performance Comput-
ing Environments (MLHPC) (pp. 66-74). IEEE (2019)

• Combating Mode Collapse in GAN Training: An Empirical Analysis using
Hessian Eigenvalues.
R. Durall, A. Chatzimichailidis, P. Labus, J. Keuper
In Proceedings of the 16th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2021,
Volume 4: VISAPP. (pp. 211-218) (2021)

• ProxSGD: Training Structured Neural Networks under Regularization
and Constraints
Y. Yang, Y. Yuan, A. Chatzimichailidis, RJG van Sloun, L. Lei, S. Chatzinotas
In International Conference on Learning Representations. (2019)

• Group Sparsity: A Unified Framework for Network Pruning and Neural
Architecture Search
A. Chatzimichailidis, A. Zela, S. Shalini, P. Labus, J. Keuper, F. Hutter, Y.
Yang
In CVPR2021-NAS: Computer Society Conference on Computer Vision and
Pattern Recognition: Workshop on Neural Architecture Search. (2021)

• GSparsity: Unifying Network Pruning and Neural Architecture Search by
Group Sparsity
A. Chatzimichailidis, A. Zela, J. Keuper, Y. Yang
In International Conference on Automated Machine Learning (Late-Breaking
Workshop). (2022)

175

Appendix F: Publications in the context of this work

The author also contributed to

• MSM: Multi-stage Multicuts for Scalable Image Clustering
K. Ho, A. Chatzimichailidis, M. Keuper, J. Keuper
In International Conference on High Performance Computing Workshop: Ma-
chine Learning on HPC Systems (MLHPCS) (pp. 267-284) (2021)

176

Appendix G
Curriculum Vitae

Work Experience

2021–today Research Scientist Fraunhofer ITWM
Department for High Performance Computing, GreenByIT Group

Education
2018–2021 PhD Student TU Kaiserslautern
2016–2017 Master of Science in Physics ETH Zürich

Master Thesis: Studies on time dependent activity distributions for the SAFIR project

Supervisor: Prof. Dr. Günther Dissertori

2013–2016 Bachelor of Science in Physics ETH Zürich

177

Appendix G: Curriculum Vitae

178

	Abstract
	Contents
	1 Introduction
	1.1 From Machine Learning to Deep Learning
	1.2 Overview Deep Learning
	1.3 Deep Learning Models
	1.4 Datasets

	2 Methods
	2.1 Optimization Methods in Deep Learning
	2.1.1 First-Order Optimization
	2.1.2 Second-Order Optimization

	2.2 Regularization
	2.2.1 1-Regularization
	2.2.2 2-Regularization
	2.2.3 2,1-Regularization

	2.3 Eigenvalue Computation
	2.3.1 The Hessian
	2.3.2 The R-Operator
	2.3.3 The Lanczos Algorithm
	2.3.4 The Stochastic Lanczos Algorithm
	2.3.5 Computing Eigenvalues of Neural Networks
	2.3.6 Parallelization Techniques

	3 Loss Surface Visualization
	3.1 Overview
	3.2 Principal Component Analysis in High-Dimensional Spaces
	3.3 Loss Surface Visualization through Neural Network Eigenvectors
	3.4 Parallelization of Loss Surface Visualization
	3.5 Experiments
	3.5.1 SGD with Momentum
	3.5.2 Adam
	3.5.3 Interpolation between Minima

	4 Stabilizing GANs through Eigenvalue Regularization
	4.1 General Adversarial Networks
	4.1.1 Training of GANs
	4.1.2 Evaluation of GANs
	4.1.3 Non-Saturating GAN

	4.2 Mode Collapse
	4.3 Loss Surface of GANs
	4.4 NudgedAdam: Preventing GANs from Mode Collapse

	5 Proximal Gradient Methods
	5.1 Proximal Gradient Optimization
	5.2 ProxSGD
	5.3 ProxSGD with 1-Regularization
	5.3.1 Experiments

	6 ProxSGD with 2,1-Regularization
	6.1 Overview Neural Architecture Search
	6.2 GSparsity: ProxSGD with 2,1-Regularization
	6.3 Filter Pruning
	6.4 Operation Pruning
	6.5 Neural Architecture Search with GSparsity
	6.5.1 CIFAR-10 and CIFAR-100.
	6.5.2 ImageNet 2012.
	6.5.3 NAS-Bench-201 Search Space
	6.5.4 Robustness of GSparsity

	7 Conclusions and Outlook
	Bibliography
	A Proof of Theorem 5.1
	B ResNet-50 Structure after Pruning
	C CIFAR-10 and CIFAR-100 on DARTS Search Space
	D Convergence of ProxSGD vs. SGD
	E GSparsity and NAS: Ablation Study
	F Publications in the context of this work
	G Curriculum Vitae

