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Abstract 

This paper is concerned with the development of a self-adaptive spatial discretization 
for PDEs using a wavelet basis. A Petrov-Galerkin method [LPTSl] is used to reduce 
the determination of the unknown at the new time step to the computation of SC&U 
products. These have to be d&ret&d in an appropriate way. We investigate this point 
in detail and devise an algorithm that has linear operation count with respect to the 
number of unknowns. It is tested with apline wavelets and Meyer wavelets retaining 
the latter for their better localisation at finite precision. The algorithm,is then applied 
to the one dimensional thermodiffusive equations. We show that the adaption strategy 
merits to be modified in order to take into account the particular and very strong 
nonlinearity of this problem. Finally, a supplementary Fourier discretization permits 
the computation of two dimensional flame fronts. . 
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1 Introduction 

When numerically solving partial differential equations an adequate spatial resolution is 
decisive. Hence, a current approach to set up efficient, precise, and robust methods is the 
construction of self-adaptive discretization procedures that automatically increase the spa- 
tial resolution where this is required, such as for example in boundary layer type regions 
where the solution exhibits steep gradients. Such a method has to contain the following 
three essential parts: 
a) error estimation for the actual approximate solution 
b) refinement procedure 
c) efficient solution algorithm with non-uniform spatial discretization 
We shall describe here such an unsteady, adaptive algorithm using a wavelet discretization 
in space based on the method of [LT90], [LPTSl] further extended in [BMPSl]. We will 
demonstrate that this approach is ideal for the first two of the above tasks. Concerning the 
third one we describe attempts to devise an efficient solution procedure but it will become 
clear that this point still diserves further improvements. 

Wavelets emerged in signal processing during the early 80s and have soon attracted much 
attention. It should however be noted that ideas of this type have appeared before as e.g. in 
the work of Haar, Gabor, Calderon etc. [MeSOa]. In the classical discrete case these functions 
constitute a smooth orthonormal basis posessing a hierarchy in scale and translational 
invariance. Their properties lead to simple and efficient high compression algorithms for 
signals and images by an adapted choice of the relevant amplitudes [DJLJ, [ABMD92] and 
others, This compression property is very advantageous in order to reduce the degrees of 
freedom in a numerical algorithm, and in the present paper we will follow this direction. 
Let us mention that a slightly different and complementary approach to using wavelets 
for the numerical solution of PDEs is based on the observation that differential opera- 
tors are approximately diagonalized when transforming to the description in such a basis 
[BCRSl], [JL92] leading to efficient preconditioners for iterative methods with regular space 
discretization [DK92], [LL93]. This approch is centered on the operator whereas the former 
is centered on the actual solution. 
Despite the cited attempts and many others, wavelet methods with the above objective are 
still in their infancy since although appealing from principal, a lot of technical difficulties 
have yet to be overcome. The two central questions to be adressed are how to introduce 
boundary conditions and how to cope with nonlinear terms. In our study we will focus on 
the second of these and describe an adaptive algorithm for a combustion problem. This 
kind of phenomena is known to develop very pronounced internal layers, the flames, due to 
the extremly strong nonlinearity of the reaction term. Their characteristic length, i.e. their 
thickness, is orders of magnitudes smaller than other lenght scales of the problem. This 
requires thorough spatial discretisation and error control when numerically solving these 
equations. 
We start with introducing equations and geometry together with a transformation that 
leads to an initial value problem with periodicity of the solution in space. After recalling 
some required notation, the sections 4 and 5 are devoted to a detailed discussion of the 
one dimensional algorithm. It is applied to the combustion problem in section 6. Finally, 
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the algorithm for the two dimensional case is described and illustrated by related numerical 
results. 

2 Equations and geometry 

Research on combustion phenomena is characterized by a large number of models that 
aim to make this generally very complex situation tractable for analytical and numerical 
investigation, e.g. [Wi85]. The thermodiffusive equations are one of the simplest as they 
only take into account the diffusive transport of heat and species and the reaction term: 

&T - V=T = w 

8tY - $v=y = -w 

W = &Yexp( PV- 1) 
1 + a(T - 1) 

) 

where T and Y stand for the non dimension,al reduced temperature T = (F - Tu)/(Tb - Tu) 
and species c’oncentration, respectively, both attaining values between zero and one. The Ar- 
rhenius term-for the reaction rate w contains the dimensionless activation energy /3 (Zeldovic 
number), as well as the temperature ratio (Y = (Fb - T,,)/Tb, and resides on an additional 
approximation for large p [BF70]. The overbar denotes dimensional quantities whereas the 
indices 6 and u refer to the burnt and unburnt state, respectively. All our calculations have 
been performed with p = 10 and CT = 0.8. 
The problem that we will study is the one of a two dimensional flame front propagating in 
a pre-mixed atmosphere in positive x-direction. The physical domain is R = R x [-Ly, Ly] 
with boundary conditions 

T(-oo,y,t) = 1 Ww,t) =o (2) 
Y(-m,y,t) = 0 w%YJ) = 1 

We restrict ourselves here to solutions that are periodic in y-direction, i.e. 

In the one dimensional case it is possible to determine analytically a steady solution of 
(l), (2) when considering the limit /I --+ co, i.e. the high activation energy limit. The non 
dimensional solution then is 

(4) 
1 

Toa(x) = 1 

{ 

exp(s-t) ,5 It 
,x>t 
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travelling with speed one from right to left. For finite 13, (4) is altered, and the general 
expression for the flame speed reads 

(5) 

The functions (4) have been used as initial condition in our domputations. For the two 
dimensional cases it has been perturbed sinusoidally in y-direction. The Lewis number Le 
and the lenght L, have been chosen in such a way that the plane flame is unstable and 
develops the well known thermodiffusive instability. The hypothesis (3) of periodicity in y 
then is justified by the periodicity of the physical solution near criticality and facilitates the 
numerical procedure. 
Using (5) to define a reference frame that follows the propagation of the flame leads to an 
integro-differential system (its coordinate will still be denoted 2). 
In [BL88] existence and uniqueness of a solution for the latter formulation are proven as well 
as for the original formulation (l),(2) with h omogeneous Neumann boundary conditions. 
This carries over to the y-periodic case. 
Since for physical reasons T is essentially constant in front of the flame and behind it, 
the ansatz of a decomposition into a smooth step S(z) plus a perturbation p(z, y, t) is 
reasonable, i.e. T = F + S and similarly Y = p + 1 - S leading to 

a,F + v,a,F - v=i+ = w + d,,S - qd,S 

a$ + v,azF - AV=p = 4 - Ad& + qd,S 

L;r = w(T+s,P+l-S) 

with vf from eq. (5) and w from (1). [DH90] take 

S(s) = fc 1 + tanh( 7 tan(y)) ) ; * =. (z + Lb 
LZ 

(6) 

(7) 

All its derivatives vanish at z = fLz, and T determines the slope at the origin (here T = 5 
mostly). One can now choose locations z = f L, far away from the flame and observes that 
the perturbations as well as all their derivatives become very small. Hence, p and p can be 
well approximated by a periodic function in z [DH90]. 
The boundary conditions in z are thus replaced by the condition of periodicity for the 
perturbations f and p so that these become periodic in z and y. We like to avoid the 
missleading terminology of “periodic boundary conditions” as in fact one solves a pure 
initial value problem instead of a boundary value problem now. 



3 Periodic orthonormal wavelet bases 

3.1 Multiresolution in L’(R) 

Let us recall some essential features of wavelet approximation in t2( R) that will be im- 
portant in the sequel refering to [Me90], [D92]. [C92] f or an exhaustive treatment. The 
discrete wavelet transform resides on the concept of multiresolution [Ma89], [Me891 which 
is a sequence of imbedded subspaces Vj with - in the case of L’(R) 

c; c &+1 Vj E 22 (8) 

= L2W) (9) 

fCz) E vj * f(2t) E Vj+l (11) 

A scaling function b(r) is required to exist of which the translates generate a basis in each 
Vj, via 

Vj = ~{@jt}iEZ (12) 

with 
@j;(S) = 2j’2#(2jZ - i) j,i E Z (13) 

In the classical case this basis is orthonormal, so that 

< dji, djk > R= 6ik (14) 

with < f,g >R= +~f(z)~(l)dz being the usual L2(R) inner product. The main issue 

of the wavelet appZch now is to work with the orthogonal complement spaces Wj defined 

by 
Vj+l = Vj @ WJ (15) 

Based on the function 4(z) one can find a function q(z), the so-called mother wavelet, of 
which the translates and dilates constitute orthonormal bases of the spaces Wj. 

Wj = F{+ji}iEZ W 

generated by the wavelets 

$ji(X) = 2j’2+(2jX - i) j,i E Z (17) 

Each function f E L2(R) can now be expressed as ‘_ 

f(z) = C Cj,i $j,i(z) + e C dji @j;(z) 

iEZ? I=10 iEZ 
(18) 
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where 

Cl, =< /.o,, >I? n,, =< f. L’,, >R (19) 

Of course. in numerical applications the sums in (18) are truncated which corresponds to 
the projection of f into a subspace of L> c ,5’(R). The decomposition (18) is orthogonal, 
as, by construction, 

< $'jiy ‘b/k >R = 611 6ik (20) 

< Qji*O(k >R = 0 j>l (21) 

in addition to (14). 

3.2 Regularity and local decay of wavelet coefficients 

It is well known that the local or global regularity of a function is closely related to the 
decay of its wavelet coefficients. The latter directly determines the error being made when 
truncating a wavelet sum at some scale. Depending on the type of norm and wether global 
or local characterisation is concerned, various relations of this kind have been developed. 
See [MegO], [D92], [JL92] f or an overview. Let us recall here only briefly as an example the 
case of&an cr-Lipschitz function [HT89], taken from [BMPSl] which is generalized to o 2 1 
and discussed in some detail in [MaHw92]. 

Suppose f E L*(R), then for [a, b] c R the function f is a-Lipschitz for any xc E 
bJ& i.e. VC4 - f(x0)l 5 WI”, if and only if there exists a constant A such that 
1 <fqllji> I L AZ- ja-i for any (j, i) with & ~]a, b[. 

This shows the relation between the local regularity of a function and the decay of its 
wavelet coefficients in scale. The adaptive discretization discussed in this paper is precisely 
based on taking into account spatially varying regularity of the solution through a variable 
cut off in scale of its wavelet series. 

3.3 Periodic multiresolution 

Following [PB89], [Me901 we now construct a multiresolution of L’(r), i.e. of l-periodic 
functions living on the torus r = R/23. The key point is to map a function f E L2(nZ) onto 
a function i E L*(r) by the relation 

f<4 = c f(x + n) - (22) nEZ 
(the tilde will always denote periodicity in this section). In Fourier space this relation reads 

jk = f(k) P-3) 

where 
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j(u) = J_‘,” f(r)’ exp(-2riwz)dr 

defines the continuous Fourier transform in L2( R) CI L’( #Z) and 

(24) 

the Fourier transform in L2(ZZ’). Applying this technique 

23-I 

exp( -2rriks) ds (25) 

to &ji and llji one obtains [PB89] 

ilo (26) 

ilo (27) 

Vj = {fl f(x)= C CjiJji(z)} 

i=O 

21-l 

*j = {f 1 f(z)= C dji4ji(z)} 

i=o 

where j 2 0, since Vj contains the constant functions and I&‘j = (0) for j < 0. 
The definition of a multiresolution in the periodic case carries over with only slight technical 
modifications from the nonperiodic one described above [PB89]. 

For the wavejet transform, a function f(z) E L”(r) is projected onto I?J and decomposed 
into contributions from v. and c?lj, (j = 0,. . . , J - 1). For conciseness we set 

&IO = #'00 d-lo = coo (28) 

AJ = { (j, i)l - 1 < j < J , 0 5 i < 2’ } (29) 

and write 

~.J(z> = C dji $ji(z> (30) 
(ii)EA J 

with 
dji =< f7qji >T (31) 

The decomposition (30) is orthogonal, since, by construction, the orthogonality carries over 
from (18) to the torus with 

< f,a >T= 
J 

’ f( z);( z)dz (32) 
0 

Note, that in contrast to the nonperiodic case (18) the sums over i in (26), (27) and (30) 
do not spread alI over Z and that there is a minimal j, namely jn = 0. Reqlarity relations 
carry over from the non periodic case without change. 
In the present study we apply real valued periodic spline wavelets of even order m or Meyer 
wavelets and refer to the Appendices for their-expressions. The subscript r and the tilde for 
functions and spaces derived from a periodic multiresolution will be dropped for simplicity. 
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4 The one dimensional algorithm 

The evolution equations in (6) have the form 

a,~+ L(u)- F(u) - &G(u) = 0 ; for x E [0, l] , t > 0 (33) 
u(0.t) = u(l,t) (34) 

u(x,t=O) = IQ(x) (35) 

s 

l 

with L being the leading linear differential operator in space and F and G (generally non- 
linear) functions of u. They read for the temperature equation 

L(f) = -v2f (36) 
F(T) = L;)(T, i’) + d,,S - v&S (37) 

&G(T) = -w,&T (38) 

Up to signs and the Lewis number the above also holds for the equation of the concentration. 
In this chapter we concentrate on the one dimensional case setting L = -a,,. 

c 

4.1 Discretization in time 

Equation (33) is discretised in time by a finite difference scheme of mixed type. A semi- 
implicit two-step scheme, avoids the solution of nonlinear equations by an explicit scheme 
for these terms. On the other hand the restrictive stability condition of a pure explicit 
scheme is eleminated by discretizing the linear terms L(u) with an implicit scheme. We use a 
backward scheme of 2nd order, combinded with the second order extrapolation Fn+-?(u) = e 
F(2u” - tin-l ). Due to the strong nonlinearity, we experienced slightly better precision when 
using the latter instead of the classical Adams-Bashforth-scheme of second order. We use 

UU n+' + Q"+') = iuun _ +l + Fn.n-1 t l&G’-’ (39) 

with the time step At, t” = nAt, and c = 3/(2Ar). A suitable first order scheme is employed 
for start up. 

4.2 Spatial discretization 

In this section we recall the method of [LT90] w ic is discussed in [T89] from a mathe- h h 
matical point of view. It uses in a particular way the classical method of weighted residuals 
[F72] (also termed Petrov-Galerkin method) which is based on the.definition of a space of 
trial functions XN and space of testfunctions YN. Both spaces are N-dimensional subspaces 
of a Hilbert space, here L’(T). The minimisation of the weighted residual of (39) supplied 
with the initial condition requires for u” E XN that 
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4 < (g + +n+’ _ igun + +-1 - pn-’ - &G-n--’ ) v>=o ; VU E YN (40) 

< u”,v >=< uo,v > ; tJV E YN (41) 
I 

In our case, the trial space is spanned by the wavelets of chapter 3, i.e. XN = VJ with 
N = 2J so that the unknown u” is approximated by 

The testfunctions are chosen in such a way that the Galerkin matrix turns out to be the 
‘identity [LT90]. This is achieved with, formally, 

Bji = ((a + L)-')*tiji(ji(") 

e-lvo = 0 
-1 

40,o 

; (Ai) E 4\ U-W) (43) 

(using * to indicate the adjoint) and 

YN = Van{eji)(j,i),A, C L2(r) 

In the preseit case it is possible to determine the testfunctions in Fourier space by 

Thanks to periodicity, 

< t&G;;;,-’ ,ej; >= - < G~-‘,e~i > 

(44) 

(45) 

(46) 
which amounts just to use different test functions for this term. 
Let us recall that due to the nonhomogenity of the differential operator no resealing property 
for Bji and e$ holds. Translation invariance and localisation in the frequency and physical 
space are preserved. 

The discrete equation for the function u”+’ finally writes 

< un+’ , ~ji > = < LOU” - ~cTu”-~ + Fin-‘, ej; > - < C;mvnml, 0;; > (47) 

reducing the solution of the Petrov-Galerkin equations to the calculation of appropriate 
scalar products. This avoids the inversion of a linear system as in [MPR92] which has the 
disadvantage that the stiffness matrix changes whenever the grid is modified by adaption. 
Figure 1 shows the graph of the functions 4, $, 8 and p with 

/Jji = (O - azz)@ji (48) 

for the spbne multiresolution with m = 6 in physical space and in Fourier space (in fact the 
latter are the Fourier coefficients for k = 0, . ...256 connected by lines). 
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U.U, 6.31 -  r 

Figure 1: The functions q5,$, 0 and ~1 in physical and Fourier space. 

9 



pait j-s - 
psi1 j=6 ----- 
psir j=7 ...‘. 

P  

‘Figure 2: Spline wavelets ]($j;)kl for j= 5,6,7 in logarithmic scale. 

To illustrate further discussion we add Figure 2 showing ](Gji)k] for different j in logarithmic 
scale. The “bumps” originate from the finite regularity of the spline spaces. 
They are enhanced by derivation as e.g. for ~1 (Figure 1). For Meyer wavelets the plots 
corresponding to Figure 1 look very similar so that they are omitted here. A relevant 
difference is the compact support which is illustrated by Figure 3 plotted with the same 
parameters as Figure 2. 

4.3 Adaptive discretization 

Discretizing the solution of a PDE using a wavelet basis in space is perticulary attractive 
due to the ease with which a strategy for adaption can be devised. The following procedure 
[LT90] [MPRSl] is the result of wedding the vortex method type idea of mobile wavelets 
[BHPSO] that directly considers the evolution in scale space with wavelet compression as 
used in signal processing. Consider the c -representation u, of u determined by cancelling all 
wavelet coefficients having absolute value below E . The results on the convergence of wavelet 
series to smooth functions allow to state that the error u - U, measured in the L2 norm or 
in a Sobolev norm is asymptotically of order c , similar to spectral methods [CHQZSS] (c.f. 
section 3.2). Assume now J being sufficiently large to get (uJ)~ = plc. Then the elimination 
of coefficients below e leads to an index set AJ(u, e) that defines the corresponding subspaces 
XN and YN, To account for the evolution of indices from one time step to another the set 
AJ(u, c+) is used which comprises AJ(u, c) and the neighbours of each index. The definition 
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Figure 3: Meyer wavelets l($j;)kl for j= 5,6,7 in logarithmic scale. 

of how far this neighbourhood actually reaches depends on the problem and the size of the 
time step. We choose the adjacent ones as depicted in Figure 4. 

After initialisation each time step consists of three parts 

Index set Determine AJ(u~,c) , An+’ = AJ(u~,E+) and therewith Xn+‘, Y”+’ 

right hand side Determine the right hand side in physical space using the corresponding 
index sets A” and A”-’ for u”, and u”-*, respectively, on some grid in physical space. 

(j+1,2i) (j+1,2i+l) 

(ii-l) (ii) (.Li+l) 

U-U/21) 

Figure 4: Neighbourhood of a coefficient dji in scale space. 
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This grid is choosen such that it permits to integrate for the coefficients determined 
by An+l. 

Solution Compute qi+’ for (j, i) E A”+l Note that there are no coefficients “lost” or set . 
to zero when changing,test and trial space. 

The present equations involve two unknowns, F and ?. We took the same index set An+’ = 
AJ(~, c+) u AJ(~, c+) for both equations. 
For some applications it might be useful1 to generalize the criteria for An+’ in one of the 
following ways 
- different index sets for different unknowns (here p and ?). 
- different precisions TV and EY for p and p, respectively. 
- 6 varying in space: E = E(Z) , or 6 depending on scale and space: E = ~(j, i). 
- extrapolation of type (A’+* , An) + An+l. 
We will come back to this point in section 6.2. 

L 

4.4 Evaluation of the right hand side 

In order to determine the non-linear right hand term Fn+-l it wo_uld be jdeal to stay in 
coefficient space, i.e. to calculate with the wavelet coefficients of T and Y directly. This 
however is impossible for several reasons. In [BCRSl] a wavelet procedure for the fast mul- 
tiplication of matrices is devised. If a non linear operator can be well approximated by a 
series of products (such as the term u 2 in Burgers equation) this technique may lead to ef- 
ficient computations in some cases [JL92]. S ince it requires the coefficients cji of the scaling 
function, the “non-standard form” which is applied is not efficient in the case of adap- 
tive discretization [Ch93]. ‘The use of the “standard form” requiring only the coefficients 
dji would however be possible. For the present expression (;, = &(F’,?) the periodisation 
technique complicates the situation. Furthermore, a Taylor series of the exponential term 
converges very slowly, so that the approximation by products would be bad. We therefore 
evaluated F”*“-’ and GnfnS1 in physical space on a suitable set of grid points. The sub- 
sequent calculation of the scalar products to solve (47) is discussed in detail in the next 
section. 

5 Computation of the required scalar products 

5.1 The regular wavelet transform for periodic functions 

As a starting point we recall the transformation described in (PB89] and take the occasion 
to indicate a computational trick for its acceleration. In case of a regular discretization and 
periodic functions computations can be done in physical space by periodizing the required 
filters. For long filters it is more economical, however, to use fast convolution in Fourier 
space employing FFT. The algorithm then reads 
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0. step FFT of the values {fi}i=o ,,,,, ZJ-i at the points {xi = +}i=e ,,,,, ZJ-i to the 
Fourier coefficients {jk}k=o ,,.,, 2~-1. 

1. step Interpolation using the Lagrange function SJ(Z) of the space VJ (such a function 
always exists [Wa92]) by computation in Fourier space. 

? 
2. step Application of Filters g and h in Fourier space 

I 
-  7-  

(cj-,), = hk (cJ)k k = 0,. . . ,2J - 1 (49) 

K, )k = s(z), k = 0,...,2’- 1 (50) 

3. step Instead of setting 

CJ-1,i = c;-l,zi b-1,; = d;-1,2; i= 0 ,...,2J-1 - 1 (51) 

in physical space, downsampling can be done directly in Fourier space through 
- - 

(CJ-l)k = k;-l)k + bJ-1 .;4) k+2’-1 k = 0,. . . , 2J-’ (52) 
- - - 

(dJ-I )k = (d;-, lk + &., )k+2,-1 k = 0,. . . , 2J-1 

4. stei Inverse FFT of lenght 2J-’ to get {dJ-,,;}i=o,...,2’-I-l 

(53) 

iterate steps 2 to 4 down to j = 0 

The use of (52), (53) instead of (51) leads to a speed up by a factor of 6 with respect to 
extraction of coefficients in physical space. The inverse transform is obtained by executing 
the above steps in reversed order omitting the conjugate complex in (49), (50) and replacing 
step 3 with upsampling in Fourier space. 
Remark: As in (51), a comma will be inserted between the indices without deeper meaning 
whenever suitable for readability. 

5.2 Scalar products on a regular grid 

For the purpose of calculating the scalar products dji =< f,@ji > with a regular discretiza- 
tion [LT90] divise the following hierarchical algorithm. (Application of all filters and down- 
sampling can be carried out in Fourier space as in section 5.1.) 

t 
1. step Interpolate the values fi of the function f(z) at the grid points (2; = i/2J};=o,...,z~-r 

by fJ(S) = Ci CJ,i dJ,i(z) 

, 2. Step b'Pb' the filter {aJ,i}j=&..,2J-, = {< 4J,;, OJ-I,0 >};=0,,..,2”4 to get the ampfi- 
, tudes dJml,j of u. 

3. Step Compute {CJ-l,i}i=O ,..., 2J-L-1 and {dJ-l,i}i=o ,..., 2J-1-1 off in the usual way Using 

the filters h and g, respectively. 
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4; Step APPLY the filters {aJ-l.i}i=0,...,2~-1-1 and {~J-l,i}i=~,...,~J-~-~ = {< $5-1,; , OJ-2,o > 
)i=0,...,2J-1 -1 to the {cJ-~,~} and {dJ-l,i}, respectively, then adding both contribu- 
tions to get {dJ-2,i}i=0,,,,,2,-2-1 of u. 

iterate steps 3 and 4 down to j = 0. 

The above procedure resembles the non-standard form of an operator in [BCRSl] with an 
additional approximation. It relies on the bandpass-type spectrum of the function 11, ($ji)k 
being essentially supported on ]rC] E [2’-‘,2J+‘]. Th’ IS carries over to 0 and p (c.f. Figures 
in section 4). Hence, 

1 < $'jivej-Sl,k > 1 < c(6j) (54) 

with c depending on the differerice in scale Sj and on the type of multiresolution considered. 
In particular E = 0 for 6j > 1 in the case of Meyer wavelets as to be seen in Figure 3. Figure 
2 nicely illustrates the origine of c in (54) and its decay with 6j for the spline wavelets. 

The above algorithm neglects the terms in (54) as soon as 6j > 1. This introduces an error 
of O(c) in each amplitude and hence an error of O(Jr) in the L2 norm of the computed 
solution. FOE spline wavelets with m = 6 we find c = O(10e3) [LT90]. 
This error can not be corrected by, for instance, adding supplementary basis functions 
through an adaptive procedure, since these new functions live on entirely different scales. 
Hence, it persists and determines a sort of basic noise level, adaption with higher precision 
is impossible. In cases of high precision requirements the value of c in (54) has to be re- 
duced. For spline wavelets this can be done e.g. by increasing the degree of the spline or by 
introducing a third filter (or even more) which, however, increases computation cost and 
complexity of the algorithm. 
Another aspect is that the above procedure employs a collocation projection of f onto the 
space XN = VJ and only subsequently determines the, projection based on the functions 
6ji E YN. In the asymptotic limit this is of no importance as the error is of the order of the 
truncation error. When this regular algorithm is extended by locally adding supplementary 
fine scale basis functions, however, the amplitude for the fine scales of the regular part is 
no longer small for all of the coefficients. In this case the precision may be degraded by the 
additional projection. 
The computational cost for the above algorithm is O(NlogN) with N = 2’. We like 
to indicate that the same operation count of O(N log N) is obtained when, without any 
recursion or approximation, the products dji = < f, 8ji > are directly calculated in Fourier 
space: 

1. step FFT of the values {fi}i=u ,..., 2,-t to the Fourier coefficients {fk}k-u - )..., 2~-1. 

2. step Compute fk (eJy,o)k for k = 0,. . . ,2J - 1. This is exactly the trapezoidal rule on 
a grid 2jQ = 2’ evaluated by fast correlation. 

3. step Determine {dJ-l,i}i=0,...,2J-1-1 by downsampling similar to (52) and inverse FFT. 

14 



iterate steps 2 and 3 down to j = - 1. 
In step 2 one can conserve the range for A: or benefit from locabriation of 6 in frequency 
space to save multiplications. 

With our current implementation we experienced an increase of 10% and a reduction of 
20% for the latter method with respect to the recursive procedure when J = 7 and J = 8, 
respectively. The result was free from approximation error due to neglecting the terms (54). 
In the case of spline wavelets the procedure for a regular discretization closely resembles a 
collocation method with periodic splines, just supplied with’a transform to the correspond- 
ing wavelet bases. It should be recalled that the recursive procedure has been set up to deal 
with the adaptive case where this no longer holds. For regular discretization we think it is 
more convenient to work with the basis 

(55) 

When adapting the spatial discretization one will in the present context generally use all 
basis functions @ji in some regular low scale part, i.e. for j smaller than some J, and a 
locally refined discretization for Jr 5 j < J. In that case it would be advisabel to use the 
basis 

{4Jrili-Q - ,...) 2~r-I U {$ji)i=CI ,..., 21-l ,j=J, ,..., J-1 (56) 

to reprpent the solution of the PDE. For implementation reasons we kept the pure wavelet 
basis down to j = 0 and applied the non-recursive FFT procedure in the regular part j < Jr. 

5.3 Quadrature formula 

The method described in the preceeding section is applicable only in the case of a regular 
discretization, i.e. when on a scale j all amplitudes dji =< f,flj; > are to be computed. 
Of course, if this is so for all scales and during the whole evolution in time, a Fourier 
discretization is the method of choice in the periodic case due to convergence properties 
for regular functions and computational efficiency. If, however, the solution develops steep 
gradients, the number of degrees of freedom can substanitially be reduced by an adaptive 
discretization, and one has to study the trade off between this reduction and the increasing 
cost per degree of freedom for a given type of problem. 
In the present and the following sections we will discuss an efficient way to compute the 
required scalar products in physical space (recall the neccessity of evaluating f in physical 
space mentioned in section 4). 

For testing we consider in the sequel the quantities 

Ejlk = < PjO 7 elk >Q - 6jl bk (57) 
E;,k = < a&jO, a&k >Q - bjl bk (58) 

where < ., . >Q signifies the evaluation of the integral by a quadrature rule to be specified. 
Due to the construction of p and 8 these functions are orthonormal and E and E’ are zero 
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in case of exact evaluation. All computations, exept if stated explicitly, have been performed 
with single precision in IEEE-754- 1990 standard. 

The simplest quadrature rule is the trapezoidal rule and will be used throughoutly. It reads, 
applied on a grid Jo for the dji, 

We took this procedure ‘here in order to avoid further intermediate projections. The use of 
spline quadrature in the case of spline wavelets may be another possibility, but obviously 
neither f(z)eji( z nor f, 8 or p are spline functions in that case. For the time being we ) 
therefore stick with (59). 
The first observation to be made when using (59) is th e well known aliasing effect [CHQZSS]. 
Assume f and 0j; being bandpassed with maximal frequency 2J-‘. The product f eji then is 
bandpassed with maximal frequency 2 J. Hence, j, = J+ 1 is required in (59) for evaluation, 
but then the result is exact indeed up to machine error. If the high frequency contributions 
in both functions have small amplitude the abasing error can be small leading to satisfactory 
results even with coarser grid. 
Using the whole support and the finest grid jQ = J + 1 for any product the error was 
max E = 4.2E-6 (i.e. machine precision) for Meyer wavelets and max E = 3.0 E-3 for 
spline wavelets (due to undersampling). 

5.4 Use localisation in frequency space 

If for every integral the grid with jQ = J + 1 is used as in the preceeding section, this is 
very costly. Obviously, it is interesting to use the localization of 8 appearing in Figure 1 
in order to evaluate the integral on a coarser grid if j is small. However, high frequency 
components in f would lead to aliasing errors if this being done directly. Loosly speaking 
one has to substract these parts from f before going to a coarser grid. 
Such a procedure resides on the representation of f in terms of {pji} 

f = C < f 7 @ji > Pji (60) 

ji 

These functions do not generate a multiresolution as they are not obtained by shift and 
dilation from one mother-function, but they can be used in a similar way. It can be shown 
that the spaces Mj spanned by functions of same scale j are included one in each other. 
Furthermore, in the periodic case being discussed here the functions {1/(22j) pji} form a 
Riesz basis of L2(r). As for numerical purposes j is always bounded we left out the factor 
and used the pji directly. Due to orthonormality then 

< f  ,  Oj; > = < f  -  < f,Ojl;l > /Ljlil ,  flji > 

for (j, i) # (j’, i’) which leads to the following algorithm: 
VW 
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( h’Q, /i’s) max E max E’ 
all points 9.5 E-7 2.4 E-6 
(SO;SO) 1.8 E-5 3.1 E-5 
(60;60) 6.1 E-5 3.2 E-5 
(50;50) 1.0 E-4 1.3 E-4 

Table 1: Error in the numerical orthogonality of 0 and p for truncated quadrature and 
substraction. 

0. step Set j = J, and f(j) = f. 

1. step Determine 
dj-l,i =< f(j),@j-*,i 5, 

with jQ = j + 1 for all required i. 

2. step Substract 
f  (j-1) = f(j) -  C  dj-l,i /.Lj-1,; 

(62) 

(63) 

for the values of i considered in (62). 
L 

iterate steps 1 and 2 for j down to Jr. 

regular part For j = Jr down to j = -1 use the FFT procedure of section 5.2. 

The variable step size 2 -jQ of the quadrature is essential. Consider wavelets with com- 
pact support in frequency space as the Meyer wavelets. The functions fi and p enherit the 
bandpass-type spectrum (c.f. Figure 1) so that the procedure starts with the finest grid for. 
the determination of the dJ_ l,i subsequently substracting the corresponding components 
in f. The updated function f  fJ-‘) then no longer contains high frequency contibutions so 
that the integration for the next lower level may be performed on a grid which is twice as 
large. The first Tow of Table 1 reports on the corresponding test for Meyer wavelets, the 
result is of machine error. 

Spline wavelets do not have compact support in frequency space, although the decay of the 
spectrum becomes relatively fast for large degree m, i.e. high regularity in space. Hence 
the arguments from above only hold approximatively. The precision available at most is 
determined by the result of max E = 3.0 E-3 of the previous section. In particular when 
considerable energy is contained in fine scale amplitudes error propagation leads to insuffi- 
cient numerical precision in some applications (see also following section). 

Note that with the present successive coarsening of the quadrature we employ an approxi- 
mation in physical space which is similar to neglecting the terms in (544. It avoids, however, 
the determination of the wavelet amplitudes of f  as intermediate step. 



5.5 Use localization in physical space 

The next step is to take advantage of the decay of B and ~1 in physical space for accelerating 
the computations. We therefore replace the functions $, 8, ,Y and so on by functions cut off 
at a distance R from their center defining e.g. 

5 

(64) 

The related errors of \I$$$ - $j;II in the L” and L2 norm as a function of R are plotted in 
Figure 5 and 6, respectively, computations being done in double precision. 
It is well known that spline wavelets have exponential decay in space. The Meyer wavelets 
have a decay that depends on the regularity of their Fourier transform, i.e. on the function 
U(W) appearing in the construction (c.f. Appendix B). This, however, does only determine 
the asymptotic behaviour. The plots in Figure 5 exhibit this behaviour, but they show as 
well that for moderate precision the numerical support of the Meyer wavelets, at least the 
ones we used, is smaller than the support of the spline wavelets. 
The curves in Figure 6 are particularly interesting as they compare the L2-error for given 
truncation R. Down to a fairly low error the Meyer wavelets require smaller numerical 
support than the spline wavelets with m = 6 (for m = 4 their decay is somewhat stronger,of 
course). Furthermore, an interesting numerical effect is to be observed. The L*-error had 
to be computed numerically using a particular grid. As soon as Jo 2 j + 2 all frequency 
components of the Meyer wavelets &; are captured and machine accurancy is achieved. For 
spline wavelets in contrast, coarse grids prevent from correctly sampling the high frequency 
components visible in Figure 2. The locking of precision at some level directly monitors the 
effect of using a particular grid for quadrature and subtraction. (The effect is enhanced for 
m = 4 and smaller for m > 6.) 

We can now complete the algorithm for the approximate computation of the required scalar 
products by restricting the quadrature and the substraction to a region around the center 
of Oj; and pji, respectively. This region scales with j and leads together with the successive 
sparcening described in the previous section to a constant number of grid points involved 
for each scalar product. Therefore, thanks to the localization in frequency and space, the 
procedure is linear in the number of retained coefficients dji in (42). 

5.6 Convergence 

In each time step an elliptic problem is solved by the method described so far. We now 
investigate the convergence of the spatial approximation of the solution to the exact one in 
the, following model problem: ‘\ 

uu-aanu= f (65) 
with exact solution 

UCZ = exp( -7’(2 (66) 
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Figure 5: I[@ - ~~jill~ f or s ~1 ine wavelets (m = 6) and Meyer wavelets in logarithmic scale. 

* > Figure 6: II@ - @jills for sph ‘ne wavelets (m = 6) and Meyer wavelets,in logarithmic scale. 
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Figure 7: 11~ - u,,[[z in logarithmic scale for the Fourier method, the Meyer wavelet with 
integration, subtraction on different support (KQ, h’s). 

and f determined such that u,, solves (65). Fixing r2 = 16000 and u = 150 (corresponding to 
At = 1.E - 2 which is used later) the computations have been performed in double precision 
applying the algorithm from section 5.5 with fixed J, for the regular part and increasing 
number of scales J. The error of the approximate solution is measured by 11~ - +,I) in the 
L2 norm approximated on a grid 2J+2 and ploted in Figure 7. The maximum error behaves 
in avery similar way. 
For comparison the results obtained with a classical Fourier method are given as well. These 
computations aim to indicate which precision can be achieved at most when applying the 
O(N,) algorithm with N, being the number of active coefficients. 
Figure 7 shows first of all the rapid, spectral convergence of the Fourier method. Second, 
one observes a similar behaviour for the Meyer wavelets when using the quadrature on the 
whole support. There is some loss in precision due to the smooth transition of the spectrum 
to zero at its high end. When only part of the wavelets support is taken into account the 
achievable precision locks at some value corresponding to the truncation error in space. 
If such a precision is required, however, the present algorithm can furnish the result with 
less unknowns. An indication on this fact is supplied in Table 2: After having determined 
alI amplitudes dj; and the achieved L* precision (Figure 7) we canceled all amplitudes 
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I J=8 J=9 
iv, 11% - &rll2 N, 11~ - ~42 

256 1.16 E-06 512 2.33 E-16 Fourier 
Meyer (2J+*, 2J+‘) 42 2.03 E-03 
Meyer (80,60) 42 2.06 E-03 
Meyer (50,50) 38 3.17 E-03 

Table 2: Reduction of degrees of freedom and achieved precision for the model problem (65). 

356 3.79 E-10 
56 5.66 E-04 
36 3.87 E-03 

504 7.81 E-13 
56 5.65 E-04 
36 3.86 E-03 

J = 10 
N, 11~ - ~3112 

1024 7.63 E-17 

ldjil < 6 = 1111 - uezl12 for each particular case and thus retain a smaller number of them, 
called iV,, which make up the new solution u,. 
This only results in a degradation of O(E). Table 2 reports the number of degrees of freedom 
retained and the corresponding L2 precision (no manipulation in Fourier space). 
We did not consider spline wavelets as they already failed in 5.4 for high precision require- 
ments. 

? 

i. * 

5.7 p iscussion 

There are two types of numerical errors in the algorithm discussed. One is due to adaption, 
i.e. due to neglecting coefficients of small absolute value. This is a sort of truncation error. 
The second one arises from numerical errors in the computation of the coefficients retained. 
It is the latter one that we were mainly concerned with in this section. 
Due to the normalization of the tests in sections 5.2 to 5.5, these results show the relative 
error in the computation of the wavelet amplitudes dji of the solution. When aiming to 
minimize the (absolute) L2 or Sobolev error of the whole solution one can permit larger 
relative error if ldjil is small. This would be possible e.g. for some fine scale amplitudes. 
The major goal of the described approach was to obtain a satisfactory order of operation 
counts. To this aim we tried to reduce the numerical location in space and frequency at 
best. Optimality, of course, cannot be reached due to the Heisenberg principle. The price for 
the linear operation count of the quadrature is a slight decrease in precision since errors can 
propagate through the recursion on scales. Since the computation is done from fine to coarse 
scales which often is related to small to large magnitude of coefficients, i.e. of absolute error, 
the effect of error propagation through scales seems to be of minor importance in practical 
computations (with Meyer wavelets). 
Finally, it is apparent that the constant in front of the linear order term of the operation 
count is fairly large. This is due to the large support of the employed wavelets in space. The 
Daubechies functions having relatively small and compact support do not exhibit a clear 
separation in frequency space as required here. 
The approach adopted here is to start.. -with Meyer wavelets. First .of .all their localisation 
is not as bad as believed. Second, they have compact support in frequency space. When 
subsequently truncating these functions by a cut off in space this compact support is lost, 
of course. It is however easier to have only one parameter for the required precision namely 
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Numerical parameters results 
Spectral NX = 256 points v/(t = 100) = 0.9176 
Meyer Wavelet J = 8 vt(t = 100) = 0.9191 

E = 1o-5 122 elements in A(t = 100) 
59 elements > c ? 

Meyer Wavelet J = 10 v,(t = 100) = 0.9173 
6 = lo-5 128 elements in A(t = 100) 

e 

asymptotic value 
62 elements > E 
VW 

f 
= 0.908 

Table 3: Comparison of flame velocity and required discretization in one dimension. 

the size of the support than additional complications from also truncating in Fourier space 
first. 

6 One dimensional flame computations 

6.1 Numkical precision 

To start with, the one dimensional problem is solved with the adaptive algorithm for Q = 0.8, 
p = 10, Le = 1 with L, = 30, J, = 5 and At = 0.01. The computed flame velocity can 
then serve as an indicator for the achieved numerical precision. It can be compared to an 
asymptotic value of [PSZ] and to the numerical results assembled therein. For comparision 
we also implemented the non-adaptive spectral Fourier method from [DH90]. The results 
are assembled in Table 3 (It should be recalled that all computations have been done in 
single precision.) The result of the spectral method can be considered as being close to 
optimal. We observe that with the wavelet algorithms the same precision is achieved. Note 
that the domain, i.e. L,, is fairly small so that adaptivity does not lead to reducing by more 
than a half the number of degrees of freedom. 
Figure 8 shows cuts in z-direction for T and w corresponding to the third run in Table 
3. They show that the solution is welI approximated. Furthermore, it is apparent that the 
strong nonlinearity of the reaction term leads to very steep behaviour of o even if T is 
relatively smooth. 

6.2 Higher precision for the species concentration 

The criterion choosen in section 4.3 for the choice of the required basis functions is based 
on a simple thresholding for the magnitude of the wavelet coefficients of the solution. For 
highly nonlinear problems, however, the precision of the solution can depend in a different 
way on one or the other unknown, here the temperature and concentration. This is indeed 
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. 
Figure 8: Profiles of T and w at t = 100 for Le = 1, L, = 30 with Jr = 5, J = 10 and 
At = 0.01. 
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experienced in the present case: The reaction rate w in (1) is the product of two factors one 
of which is linear in Y the other being of exponential type in T. Due to the strong decay 
of the exponential, oszillations in temperature do not result in oscillations of w. The linear 
factor, however, conserves oscillations in this quantity which are the amplified by the factor 
& when the exponential term is O(1). Hence, it is useful to require the concentration to 
be more precise in order to avoid oscillations in w which can deteriorate the result. This is 
done by different thresholds ET and cy < ET. Moreover, we choose here a spatially varying 
precision following 

c)’ = CT - 6,(1 - Y) (67) 

The result of a sample calculation with 6, = 0.99cT is depicted in Figure 9. 

6.3 An asside on the periodization technique 

In the first half of this section we make some remarks on the choice of the function S(z). 
Obviously, apart from the requirements indicated in section 2, it has to exhibit some minimal 
smoothness in order to be well represented on each instantaneous grid. Jt has furthermore 
to live on scales more or less related to the regular part of the wavelet bases when the 
bases is adaptively refined. Imagine as an extremal case S(s) = T(s,t) for some t in a 
one dimensiemal calculation. This would lead to vanishing amplitudes for the perturbation 
5? on all scales. For physical reasons the solution could change to some T(z,t + At) # 
T(z,t), thus f # 0 in the next time step requiring now large- and fine-scale amplitudes 
for its representation. Their appearance, however, is no longer related to some notion of 
neighbouring in coefficient space. Hence, with the present extrapolation technique for the 
selection of the indices of the active basis functions these cannot be found. Roughly speaking, 
S(z) should live on lower scales than the unknowns to which the discretization is adapted 
to. This safely avoids interferrence of S(s) with the adaption process. A consequence is that 
even in the one dimensional case it is not reasonable trying to optimize S(Z) by some choice 
of parameter with the aim of minimizing the number of degrees of freedom. 

Another point can be made on the coordinate transform introduced in section 2 to fix the 
flame near constant values of z. This is done at the price of additional convective terms that 
require the use of supplementary test functions 8’ which increases the computational cost by 
doubling the number of scalar products to be calculated and possibly reduces the numerical 
precision. Let us therefore make some propositions on how to avoid this transform in the 
present problem while still using periodic functions. We furnish two alternative procedures 
to periodize (l)-(3). 

procedure 1 
Solve (6) with vf = 0 for t = 0 to t = tr = nrAt. Determine the distance 

r 

J t1 n1 
Lf = 

0 
vfdt k: xv;At 

n=O 
propagated in (here negative) x-direction. Then proceed in the following steps: 

P 

(68) 
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Figure 9: Reaction rate w where the requirement (67) is met for T or Y with 
a) CT = l.E - 4 and 6, = 0, b) CT = l.E - 3 and 6, = 0.99. 
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(69) 

F*(x) = T(x,tl) - S(x + rAz) (70) ? 

Li’ = LI - rAz (71) 

T**(x,tl) = F**(x) + S(x) (73) 

with T E IN, and Az being a unit discussed in a moment. After adding the corresponding 
steps for Y this solution is then used as a starting point to continue the time integration. 
For a two step scheme both levels n and n - 1 are concerned. 
Apart from addition and substraction of S(z) everything amounts to shifts. Step (73) uses 
vanishing d&vatives of the unknowns near the boundaries as being done in section 2 before. 
Observe the-~invariance of any function in Vj and Wj+kc k > 0, with respect to shifts of 
T/2jl ,T E 8, as long as ji 5 i. Using the basis (56) alows one to benefit from this property 
reducing (72) to just an index shift by the choice Az = ‘1/2Jr. This is one of the advantages 
of (56). 

procedure 2 
This method is similar to the former, but now the flame propagates freely and is peri- 
odized with a moving periodic “step function”. Define S(z) = S(z mod 1),x E ZR, having a 
discontinuity at z = n E Z. With ti, Li, r, and T(x,tl) as before 

F”(X) = 

The discontinuity in T and 

T(x, TV) - s(z + rAx) ; z E [O, 1 - rAx] 
y(rAz, ti) ;x~[l-rAx,l] (74) 

s*(x) = 3(x + TAX) (75) 

T*(x) = p(x) + s*(s) (76) t 
Y now moves through the domain which might be felt as 

inconvenient. It however avoids index shifts and alows the use of any of the bases (55) or 
(56). 

* 

26 



7 The two dimensional method 

7.1 Discretization 

Using the time scheme as before we now extend the spatial discretization for solving the 
entire problem as defined in section 2. This is being done by a tensorproduct 

for the trial and the test space in the method of weighted residuals. These are NM-dimensional 
subspaces of L*(T x r), here. For X:1 and Y,$l we take the adaptive discretization de- 
veloped in section 5. Second, 

(78) 

which amouts to a classical Fourier method in this direction. 
The unknowns here are the Fourier coefficients with respect to y of the wavelet series with 
respect to z. For these, one has to solve a set of one dimensional problems depending on 
the wavenumber n. The nonlinear right hand side is evaluated in physical space so that 
the method is a pseudo-spectral one in y-direction. The necessity of executing FFTs in 
y-direction requires the use of the same discretization in z for all y. This drawback is only 
felt, however, if the ondulations of the flame are large. 

Finally, note that boundary conditions in y can be encorporated e.g. by replacing the Fourier 
expansion with a Chebyshev sum leading together with the tau-method [GO771 to a quasi- 
tridiagonal system in coefficient space. It would also be very interesting to employ an adap- 
tive periodic wavelet discretization as in the z-direction to obtain complete adaptivity. 

7.2 Computational results for the two dimensional flame front 

The results in this section concern the two dimensional thermodiffusive instability. It is the 
instability of a plane frame front due to different diffusive transport of heat and species the 
ratio of both being measured by the Lewis number. Starting from a plane flame with a slight 
pertubation the instability leads to a wrinkled flame as to be seen on the figures below. As 
an example we choose L, = L, = 35.91 and Le = 0.65. Figure 10 shows Temperature and 
reaction rate for the transient solution at t = 50. The cuts (Figure 11) in the reaction rate 
demonstrate the strong requirement of local resolution enhancement. 

t 
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Figure 10: Isolines of T and w at t = 50 for Le = 0.65, L, = 35.91, L, = 35.91 
with Jr = 5, J = 9, M = 48, cy = CT = l.E - 5 and At = 0.01. 

28 



?.tcfII 

I.mtlQI 

,.aatee 

I.&Tull 

!.emfN 

Figure 11: Cuts of w at z = 0 and y = 0 corresponding to Figure 10. 
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Appendix A Spline wavelets 

The nonperiodic spline multiresolution of L*(R) is defined by the following formulas from 
[PBS91 

W) = sinm( 7rt) 
(7rom Py-l(sin2(7rt)) (79) 

P 

i(r) = sinm(7rt) 

(.t>m &igF$ 
(80) 

sin2m( 7r[/2) e) = (R~/2)” 
cn-l(cos2w2)) 

P,-r(sin2(7r[/2)) P,-r(sin*(rO) 
e-i(r 

(81) 

for the cardinal Lagrange spline, the scaling function, and the mother-wavelet, respectively. 
The m-th order polynomial P, 

I 
p,(i) = 2 q zi 

i=O 
(82) 

is determined by 
P,-r(sin* 2) 

sin2m 2 = jg (2 + imy (83) 

and can be calculated via 

a& = 1 T = O,...,m (84) 

ai = 1 
$9 + 1) ( (r-- i) (2~ - 2i + 1) ur-’ - 2(r - i + l)* or:; ) i= l,...,r (85) 

The quadrature mirror filters g, h 
2?r-periodic functions 

and the interpolation filter L are obtained from the 

L(w) = 8 
W 

that read for the above expressions 

G(w) = e 
W 

H(w) = e 
W 

(86) 

L(w) = 
Jm 

P~-r(sin2 Rw) 

H(w) = fi cosm(nw) ./s 

G(w) = & sinm(?rw) 



. 

Sampling in frequency space as described in section 2 and additional scaling for L leads to 
the periodic filters in Fourier space 

required for the wavelet transform in L2(T). 

Appendix B Meyer wavelets 

The Meyer wavelets used in the present calculations are defined by the following formula 
that are taken from [P91], . 

ice = 
{ 

Eas(fu(fK/ - 1)) 
; ItI L Q 
; 5 I ItI I $ (91) 

0 ; elsewhere 

4(C) = 
exp(-ilrt) cos( ;~(-3]r] + 2) ) 
=4-W ~04 S4$l4 - 1)) (92) 
0 

The cardinal Lagrange function can be obtained from 4 by 

s(t) = cr, @?r) 
[Wa92], where e(t) denotes the sampled scaling function 

8(e) = C 4(n)exp(-2C$) 
nEZ 

(94) 

For the smooth “step function” v we have choosen the one which according to [D92] gives 
best localisation in physical domain. 

u(z) = z4 ( 35 - 842 + 70z2 - 20~~ ) (95) 

The quadrature mirror filters j, i and the interpolation filter for the periodic and nonperi- 
odic case are determined as in Appendix A. 
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