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Abstract
Fachbereich Mathematik

Development and numerical study of efficient solvers for single-phase steady
flows in tight porous media

by Vladislav PIMANOV

Single-phase flows are attracting significant attention in Digital Rock Physics (DRP),
primarily for the computation of permeability of rock samples. Despite the active
development of algorithms and software for DRP, pore-scale simulations for tight
reservoirs — typically characterized by low multiscale porosity and low permeability
— remain challenging. The term "multiscale porosity" means that, despite the high
imaging resolution, unresolved porosity regions may appear in the image in addition
to pure fluid regions. Due to the enormous complexity of pore space geometries,
physical processes occurring at different scales, large variations in coefficients, and
the extensive size of computational domains, existing numerical algorithms cannot
always provide satisfactory results.
Even without unresolved porosity, conventional Stokes solvers designed for comput-
ing permeability at higher porosities, in certain cases, tend to stagnate for images of
tight rocks. If the Stokes equations are properly discretized, it is known that the Schur
complement matrix is spectrally equivalent to the identity matrix. Moreover, in the
case of simple geometries, it is often observed that most of its eigenvalues are equal to
one. These facts form the basis for the famous Uzawa algorithm. However, in complex
geometries, the Schur complement matrix can become severely ill-conditioned, hav-
ing a significant portion of non-unit eigenvalues. This makes the established Uzawa
preconditioner inefficient. To explain this behavior, we perform spectral analysis of
the Pressure Schur Complement formulation for the staggered finite-difference dis-
cretization of the Stokes equations. Firstly, we conjecture that the no-slip boundary
conditions are the reason for non-unit eigenvalues of the Schur complement matrix.
Secondly, we demonstrate that its condition number increases with increasing the
surface-to-volume ratio of the flow domain. As an alternative to the Uzawa precon-
ditioner, we propose using the diffusive SIMPLE preconditioner for geometries with
a large surface-to-volume ratio. We show that the latter is much more efficient and
robust for such geometries. Furthermore, we show that the usage of the SIMPLE pre-
conditioner leads to more accurate practical computation of the permeability of tight
porous media.
As a central part of the work, a reliable workflow has been developed which includes
robust and efficient Stokes-Brinkman and Darcy solvers tailored for low-porosity mul-
ticlass samples and is accompanied by a sample classification tool. Extensive studies
have been conducted to validate and assess the performance of the workflow. The
simulation results illustrate the high accuracy and robustness of the developed flow
solvers. Their superior efficiency in computing permeability of tight rocks is demon-
strated in comparison with the state-of-the-art commercial solver for DRP.
Additionally, the Navier-Stokes solver for binary images from tight sandstones is dis-
cussed.





v

RHEINLAND-PFÄLZISCHE TECHNISCHE UNIVERSITÄT KAISERSLAUTERN-LANDAU

Zusammenfassung
Fachbereich Mathematik

Development and numerical study of efficient solvers for single-phase steady
flows in tight porous media

by Vladislav PIMANOV

Einphasenströmungen sind von großem Interesse in der digitalen Gesteinsphysik (en-
glisch DRP), hauptsächlich für die Berechnung der Permeabilität von Gesteinsproben.
Trotz der aktiven Entwicklung von Algorithmen und Software für DRP, bleiben Simu-
lationen auf der Porenskala für dichte Reservoirs – in der Regel charakterisiert durch
eine niedrige Mehrskalen-Porosität und niedrige Permeabilität - herausfordernd. Der
Begriff "Mehrskalen-Porosität" beschreibt hierbei das Phänomen, dass trotz hoher
Bildauflösung der Probe zusätzlich zu reinen Fluid Regionen auch poröse Regio-
nen im Bild vorhanden sind. Aufgrund der Komplexität der Porenraumgeometrien,
physikalischer Prozesse, die auf mehreren Längenskalen ablaufen, starker Variation in
Koeffizienten und der enormen Größe des Berechnungsbereiches können existierende
numerische Algorithmen nicht immer zufriedenstellende Ergebnisse liefern.
Selbst wenn der Porenraum voll aufgelöst wird, stagnieren konventionelle Stokes-
Löser, die für die Berechnung der Permeabilität für höhere Porosität entwickelt wur-
den, in manchen Fällen bei dichten Gesteinsproben. Für entsprechende Diskretisierun-
gen der Stokes-Gleichungen ist wohlbekannt, dass das Schur-Komplement Spektral
äquivalent zur Identitätsmatrix ist. Weiterhin wird für simple Geometrien häufig
beobachtet, dass ein Großteil der Eigenwerte den Wert eins annimmt. Diese Fest-
stellungen formen die Basis des bekannten Uzawa-Algorithmus. In komplexen Ge-
ometrien kann jedoch ein signifikanter Anteil der Eigenwerte des Schur-Komplements
Nichteinheitswerte annehmen, wodurch die Matrix schlecht konditioniert ist. Dadurch
wird der etablierte Uzawa-Preconditioner ineffizient. Um dieses Verhalten zu erk-
lären, wird in dieser Arbeit eine Spektralanalyse für die Druck-Schur-Komplement-
Formulierung mit Finite-Differenzen-Diskretisierung der Stokes-Gleichungen auf ver-
setzten Gittern durchgeführt. Zunächst wird eine Vermutung gerechtfertigt, wonach
die Nichteinheits-Eigenwerte des Schur-Komplements durch no-slip Randbedingun-
gen hervorgerufen werden. Anschließend wird demonstriert, dass die Konditionszahl
mit steigendem Verhältnis von Oberfläche zu Volumen der Fluiddomäne steigt. Als
Alternative zum Uzawa-Preconditioner wird der diffusive SIMPLE-Preconditioner für
Geometrien mit hohem Oberflächen-zu-Volumen-Verhältnis vorgeschlagen. Es wird
gezeigt, dass dieser für solche Geometrien deutlich effizienter und robuster ist. Weit-
erhin wird gezeigt, dass die Berechnung der Permeabilität dichter, poröser Medien
durch Einsatz des SIMPLE-Preconditioners mit höherer Genauigkeit durchgeführt
werden kann.
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Einen zentralen Punkt dieser Arbeit stellt die Entwicklung eines zuverlässigen Work-
flows mit robusten und effizienten Stokes-Brinkman sowie Darcy Lösern dar, die spez-
ifisch für Proben mit niedriger Porosität designt wurden. Zusätzlich beinhaltet der
Workflow ein Klassifizierungstool für Proben. Ausgiebige Studien zur Validierung
und Ermittlung der Performanz des Workflows werden durchgeführt. Die Simula-
tionsergebnisse verdeutlichen die hohe Genauigkeit und Robustheit der entwickelten
Fluid Löser. Ihre überlegende Effizienz für die Berechnung der Permeabilität dichter
Gesteine wird durch Vergleich mit dem state-of-the-art kommerziellen Löser für DRP
deutlich gemacht.
Zusätzlich wird eine Erweiterung zu einem Navier-Stokes Löser für Binärbilder von
dichtem Sandstein diskutiert.
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Chapter 1

Introduction

1.1 Tight reservoirs: industrial motivation

Leading oil companies in the global energy sector are expected to continue their sig-
nificant efforts to achieve consistent and commercially viable production from tight
and ultra-tight hydrocarbon resources. These resources often have initial reserves
that are substantially larger than those of conventional resources. Despite all tech-
nological achievements, the development of unconventional resources might yet be
a risky investment if it is not supported well with detailed and accurate reservoir
studies [1]. Given the demands of reservoir studies and the associated challenges,
the development of techniques, methods, and instruments for the thorough evalua-
tion of unconventional hydrocarbon resources has emerged as a critical research area
[2]. Regardless of many attempts that have been made to modify the conventional
methods of core analysis suitable to be applied for the evaluation of unconventional
hydrocarbon resources [3], they are still time-consuming, expensive, and inaccurate
[4]. It is mainly due to the existence of sub-micron pores and throats that have strong
effects on the storage and flow of tight and ultra-tight oil and gas resources [5, 6].
To fit the risk attitude of the decision-makers, applying modern methods of core anal-
ysis like Digital Rock Physics (DRP) has mainly been focused on over the last decade
[7, 8]. Besides the fact that DRP is an efficient cost control and risk management
method, it allows the researchers to perform multiple numerical experiments on ex-
actly the same sample and implement various analyses simultaneously [9, 10].
Single-phase flows have gained significant attention in Digital Rock Physics area, par-
ticularly in the context of computing the permeability of rock samples. Numerous
commercial [11, 12, 13] and academic [14, 15, 16, 17] flow solvers have been de-
veloped to address this area of research. These solvers are actively employed in
solving a wide range of scientific, environmental, and industrial problems, as well as
in benchmark studies [18, 19]. Despite the continuous advancement of algorithms
and software in DRP, simulating pore-scale processes in tight reservoirs, character-
ized by low, multiscale porosity, remains a formidable challenge. Even in cases where
the rocks do not exhibit multiscale porosity, conventional Stokes solvers designed for
computing permeability at higher porosities may struggle to converge when applied
to images of tight rocks. Moreover, the motivation for solving the Stokes problem for
samples with low porosity arises when considering specific geothermal applications,
certain ceramic filters, catalytic filters, and other man-made porous materials. As a
result, the demand for advanced, customized algorithms in this area has significantly
increased in recent years. Though less frequent, there is also a need to solve the
Navier-Stokes equations at the pore scale in the case of faster flows.
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1.2 Digital Rock Physics

Digital Rock Physics combines microtomographic imaging with advanced numerical
simulations of effective material properties. A key application of DRP lies in the
oil and gas industry, where understanding the characteristics of reservoir rocks is
practically important. Specifically, in this study we focus on determining the flow
permeability of porous rock samples.
The general DRP pipeline is as follows:

1. Image Acquisition: Rock sample is imaged using high-resolution 3D techniques
like X-ray micro-computed tomography (µCT). The image captures the rock’s
pore structure and grain configuration in detail.

2. Image Processing: The acquired image undergo processing to distinguish be-
tween solid, void (pore), and possibly gray (unresolved porosity) regions. This
stage involves noise reduction, segmentation, and filtering to ensure a clear
differentiation between the rock’s different components.

3. Digital Representation: The processed image is converted into a digital model,
typically represented by a 3D array or grid. This digital model, often called as
"digital rock" or "digital twin", represents the rock’s microstructure and serves
as an input data for subsequent flow simulations.

4. Fluid Flow Simulations: Simulations are conducted on the digital rock to es-
timate its absolute permeability. This encompasses solving the (Navier-)Stokes
or the Stokes-Brinkman equations, depending on the flow regime, complexity
of the pore network, and appearance of unresolved porosity regions.

5. Validation: The computed permeability from simulations is validated by com-
paring it with laboratory measurements conducted on the real rock sample.

For this thesis, the focus is on the stages 3 and 4, with the stages 1 and 2 being
briefly covered in Chapter 3. Validation through a physical experiment is not within
the scope of this work. Instead, validation is achieved through comparisons with
commercial flow solvers, which have been validated through experiments.
The primary task considered in the study is to calculate the absolute permeability of
tight porous media in the context of slow Stokes and Stokes-Brinkman flows. The
absolute permeability is an effective property of the porous material. A key to com-
puting permeability is the Darcy’s law, which can be written as follows:

⟨u⟩ = −keff

µ
(∇p− f), (1.1)

where keff denotes absolute permeability, µ is the viscosity, ⟨u⟩ is the Darcy velocity,
∇p is the pressure gradient, and f is a possible density force.
According to the Darcy’s law (1.1), performing numerical experiment to calculate per-
meability typically consists in determining either the mean velocity given a pressure
gradient, or determining the pressure gradient given a mean velocity. In both cases,
it is required to study how flow propagates through porous samples at pore-scale
(micro-scale) resolution.
The following specifics of our problem should be outlined in this context:

• In our industrial application, the flow geometry is known approximately as it
is captured by Computer Tomography (CT). In this case, solving the underlying
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equations with high accuracy is not necessary. Our primary objective is com-
putation of the absolute permeability of porous samples (see Section 2.2.3 for
details), and typically one percent accuracy in computing the objective func-
tional is sufficient.

• Methods that are efficient for solving PDEs in simple domains like squares may
not perform well when applied to our complex domains.

• Due to limited scanning accuracy, grid convergence is usually not studied when
solving PDEs in geometries derived from CT images. The goal is to efficiently
solve the problem in a geometry with a fixed resolution that coincides with the
voxelized CT image.

1.3 Structure of the thesis

We distinguish two classes of images as they significantly influence the underlying
physical scenario and the equations which govern the flow:

1. Binary images (only solid and void).

2. Multiclass images (grayscale).

The grayscale images can be seen as a continuum relaxation between the solid and
void phases of binary images. Namely, as an input data we consider 3-dimensional
arrays where each element, called voxel, has a prescribed porosity value between 0%
(completely solid) and 100% (completely void). Such grayscale images provide a
more comprehensive insight than binary segmentations. During our study, we focus
on the Stokes equations in the case of binary images and on the Stokes-Brinkman
equations in the case of multiclass images. The primary objectives of this work are
twofold:

1. To develop and theoretically analyze an efficient flow solver for pore-scale
single-phase Stokes flows in binary images from tight sandstones.

2. To create a reliable workflow for computing absolute permeability of multiclass
images derived from tight sandstones.

The structure of the thesis is as follows:

• In Chapter 2, we consider the Stokes problem for binary images from tight
porous media, with the contributions detailed in Section 2.1.4.

• In Chapter 3, we explore the Stokes-Brinkman equations for multiclass images
and investigate their approximation with the Darcy equation. The presented
workflow, including the image classifier, is described in Section 3.3.

• Generalization from the Stokes to the Navier-Stokes equations in the case of
binary images is covered in Chapter 4, with the main contributions listed in
Section 4.1.

• Summary is provided in Chapter 5.
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Chapter 2

Stokes equations in tight porous
media

2.1 Problem statement

Let’s consider a bounded, open domain Ωf ⊂ Rd, where d = 2, 3. This domain
represents the region in which the fluid flow propagates. Within Ωf , we consider the
steady-state Stokes equations, given as follows:

−∆u+∇p = f in Ωf ,

−∇ · u = 0 in Ωf ,
(2.1)

where u is the fluid velocity, p is the fluid pressure, and f is the volumetric force
driving the flow. The Boundary Value Problem (BPV) for the Stokes equations (2.1)
is obtained by additionally imposing boundary conditions on the boundary ∂Ωf =
Γ0∩Γext, where Γext denotes the exterior boundary which is discussed later in Section
2.2.2. We consider the no-slip plus no-penetration boundary conditions on Γ0, which
is simply the zero Dirichlet condition imposed on the velocity:

u = 0 on Γ0. (2.2)

The discretization of the BVP (2.1),(2.2) leads to a block system of linear equations
of the following form:

A
[
uh

ph

]
=

[
fh
0

]
, A =

[
A BT

B 0

]
. (2.3)

Here the vectors uh, ph, fh denote the discretized velocity, pressure, force, respec-
tively, and the subscript h denotes the mesh size parameter. The matrices A and B
are discrete counterparts of the negative velocity Laplacian operator and the negative
divergence operator. The matrix BT denotes the discrete pressure gradient opera-
tor, which is adjoint to the negative divergence operator under proper discretization.
Importantly, the no-slip boundary condition (2.2) is incorporated into the matrix A.

2.1.1 Pressure Schur complement approach

A variety of methods for solving the system (2.3) can be roughly divided into two cat-
egories: coupled methods, in which the system is solved in the full form, and reduced
methods, in which one of the variables is first eliminated from the equations and then
restored. In what follows, we consider the Pressure Schur Complement formulation,
according to the terminology from [20], which reduces the coupled system (2.3) to
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an equivalent system for the pressure:

Sph = gh, (2.4)

where S is the Schur complement of the matrix A and gh is the right-hand-side in the
reduced equation, which are defined as follows:

S = BA−1BT , gh = BA−1fh. (2.5)

Once the pressure is computed, the velocity can be recovered by solving the following
system for the velocity:

Auh = fh −BT ph. (2.6)

In the present Chapter, we examine the impact of the no-slip boundary condition
(2.2) on the conditioning of the Schur complement system (2.4), particularly when
the surface-to-volume ratio of the flow domain Ωf is high. The surface-to-volume
ratio refers to the ratio between the surface area of the no-slip boundary Γ0 and the
volume of the flow domain Ωf . Note, high surface-to-volume ratio is a distinctive
feature for one of our critical applications — namely, computation of permeability
of tight porous media. Importantly, our findings are not confined to this specific
application.

2.1.2 Motivation: ill-conditioning of the Schur complement matrix

Specific samples from our practical applications for d = 3 are depicted in Fig. 2.1. In
this context, Ωf represents the void space of a porous medium (colored in black), and
Γ0 denotes the boundary between Ωf and the solid domain Ωs, colored in grey. Along
with the no-slip boundary Γ0, the computational domain here includes the outer
faces of the cube, which constitute the exterior boundary Γext. However, we apply
the periodic boundary conditions on these faces, which do not impact the spectrum
of the matrix S, though are also incorporated into the matrix A from (2.3). The
complete formulation of the flow experiment considered in our study is provided in
the subsequent Section 2.2, which includes a rigorous definition of the domains Ωf ,
Ωs and of the periodic boundary conditions applied to the exterior boundary Γext. It
is worth mentioning , that prescribing the Dirichlet boundary condition on the entire
boundary Γ0, along with the exterior periodic conditions, results in a special class
of flow problems. For such flows, the pressure is determined only up to a constant
nullspace, which requires special attention, as outlined later in Section 2.3.
If the Stokes equations (2.1) are properly discretized such that the discrete operators
preserve important properties of the continuous ones, then, up to a constant in the
nullspace, the Schur complement matrix S is known to be spectrally equivalent to
the identity operator acting on the discrete pressure space. For example, in the con-
text of the Finite Element Method, the equivalence to the pressure mass matrix takes
place with the right choice of the LBB-stable elements (see, e.g., [22]). The spectral
equivalence to the identity means that the minimal nonzero eigenvalue of the Schur
complement matrix S, as well as its effective condition number, are bounded from
below and above under the mesh refinement process, i.e. when h → 0. Moreover,
in practice it is often observed that most of the eigenvalues of S are equal to one
(in the case of simple geometries). These facts form the basis for the famous Uzawa
and Uzawa-like algorithms [23, 24, 25, 20, 26, 27], which are considered classical
algorithms for solving the steady Stokes problem (2.1) and rely essentially on the
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S A B

C D E

FIGURE 2.1: Binary images of porous media samples. The black color
represents the void space Ωf , where the fluid propagates, and the grey
color represents the impermeable solid Ωs. Samples A to E are ultra-
tight images from [21], and S is a moderate porosity image of Berea

sandstone. For further details about the samples, see Table 2.1.

preconditioning of S with the identity. Despite recent progress in developing effi-
cient iterative methods for solving the Stokes problem, the Uzawa algorithm remains
popular in science and engineering, especially when accelerated by Krylov subspace
methods. However, in complex geometries, the Schur complement matrix can be-
come severely ill-conditioned, having a significant portion of non-unit eigenvalues.
This makes the established Uzawa preconditioner inefficient.
In fact, when solving the Stokes problem, the spectrum of S depends on the boundary
conditions imposed. Based on our study, we conjecture that this is due to the no-slip
boundary condition (2.2), the spectrum of the Schur complement matrix contains
eigenvalues which are not equal to one. Thus, when one solves problems with a
small surface-to-volume ratio, which is the case most commonly considered in papers
analyzing iterative solvers for Stokes problems, only a small part of eigenvalues of
the Schur complement are not equal to one. This justifies using a diagonal matrix or
even the identity matrix as a preconditioner.
Numerous computational studies demonstrate the efficiency of the Uzawa algorithms
in the case of simple geometries. A number of reviews and theoretical studies are
dedicated to this subject advancing the knowledge in the area, see, e.g. [23, 28, 29].
Even a superlinear convergence of the Krylov-Uzawa algorithm can be established for
general smooth geometries, see [27]. Unfortunately, for our practical application, we
found that the Uzawa algorithm is not efficient. We observe that the Schur comple-
ment matrix S can become severely ill-conditioned, when computing flows in com-
plex geometries like those representing the pore-space of tight rock sample, certain
membranes, etc.. We conjecture that this issue arises due to a high surface-to-volume
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ratio. In particular, we demonstrate this issue in Section 2.5.1 for specific rock sam-
ples from Fig.2.1, for which the condition number of S is greater than 105. Therefore,
development of customized methods is required for solving Stokes problems in such
geometries.

2.1.3 Preconditioners under investigation

The SIMPLE and the Uzawa preconditioners for the Schur complement matrix, de-
noted Ŝsimple and Ŝuzawa, are investigated in this Chapter. They can be written as
follows:

Ŝsimple = BÂ−1
simpleB

T , Âsimple = diag(A), Ŝuzawa = I. (2.7)

In fact, the preconditioner Ŝsimple is widely-known in the CFD community since the
same approximation is used in the SIMPLE iterative method (Semi-Implicit Method
for Pressure Linked Equations), which is one of the classical methods for solving the
stationary Navier-Stokes equations [30, 31, 32, 33, 34, 35], but not for the Stokes
equations.
Recently, it was demonstrated in [36] that adding discrete diffusion to the established
Uzawa preconditioner significantly reduces the number of iterations in the case of
channel-dominated domains. Optimal weights for the diffusion and the identity op-
erators in the proposed preconditioner are discussed there. Broad computational ex-
periments are performed and discussed, varying geometries, weights, finite elements
spaces. It is stated that the convergence strongly depends on the geometry complex-
ity, with the channel width and aspect ratio considered as important parameters. In
our case, unlike [36], we omit the identity in the considered SIMPLE preconditioner.
Earlier in [37], we demonstrated that the diffusion-like SIMPLE preconditioner in
the case of complex geometries from tight porous media performs very well. In the
present article, we investigate several important aspects which were not discussed in
[36] and [37]. We show that the condition number of the Schur complement matrix
depends on the surface-to-volume ratio, since the number of its non-unit eigenval-
ues is related to the surface on which no-slip boundary conditions are prescribed.
Furthermore, comparing the performance of the two preconditioners, we emphasize
also the fact that the SIMPLE preconditioner allows for more accurate and robust
computation of the permeability. Some other differences could be mentioned. Finite
element discretization is used in [36], and iterative method (MINRES) with block
diagonal preconditioner is applied for the coupled system. We use staggered finite-
difference discretization of the Stokes equations, and apply the Conjugate Gradient
method for the Schur complement system. As mentioned above, we identify certain
geometric characteristics of the domain which are indicators for the performance of
the respective Stokes solvers. Only 2D synthetic problems are considered in [36],
while we perform also simulations on 3D samples from real tight reservoirs.

2.1.4 Chapter outline and contributions

The remainder of the Chapter is organized as follows. Section 2.2 is dedicated to
the formulation of the flow experiment. The description of the considered iterative
methods, namely the CG-Uzawa and CG-SIMPLE algorithms, is provided in Section
2.3. Validation of the developed solvers is presented in Section 2.4. In Section 2.5,
we present and discuss the results of the computational experiments. These can be
summarized as follows.
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1. In Section 2.5.1, we investigate 3D binary samples from Fig. 2.1. Specifically,
the samples with high surface-to-volume ratio coming from tight reservoirs. For
these 3D samples, we compare the performance of the CG-SIMPLE and CG-
Uzawa iterative methods and confirm by our numerical experiments that:

• The preconditioner Ŝsimple provides orders of magnitude lower condition
numbers than Ŝuzawa hence ensuring robust and fast convergence of the
CG-SIMPLE method while the CG-Uzawa method tends to stagnate;

• Furthermore, we demonstrate that the CG-SIMPLE provides more accurate
practical computation of the absolute permeability.

2. We explain this behavior in Section 2.5.2, by performing a systematic study us-
ing synthesized 2D geometries - random packings of squares. For the considered
synthetic geometries, we numerically demonstrate that:

• The condition number cond(S) of the Schur complement matrix increases
linearly with increasing the surface-to-volume ratio;

• The condition number cond(Ŝ−1
simpleS) of the Schur complement matrix pre-

conditioned with the SIMPLE preconditioner decreases super-linearly with
increasing the surface-to-volume ratio.

3. Additionally, for the considered synthetic geometries, we compute the full spec-
trum of the Schur complement matrix and observe that the number of its non-
unit eigenvalues is determined by the number of boundary nodes where the
Dirichlet boundary condition on the tangential velocity is imposed, and by the
connectivity of the flow domain Ωf .

Finally, in Section 2.6, in the case of simplest geometry we give theoretical justifica-
tion of the results numerically observed in Section 2.5 .

2.2 Flow experiment on CT images

2.2.1 Representing pore-space geometries: binary images

In this subsection, we describe how the fluid region of a rock sample or a sample
of other porous material, denoted as Ωf in (2.1), is represented using voxel grids.
Additionally, we formulate the periodic boundary conditions typical for the DRP flow
experiment and provide the formula for computing absolute permeability.
In 3D, we represent CT images by the cubic domain Ωh = [0, L]3, where L[m] is the
physical size of a sample. The image is decomposed into n3 voxels, where n is the
number of voxels (image resolution) in each dimension:

Ωh =
⋃

(i,j,k)∈In
ω(i,j,k), (2.8)

where In = {(i, j, k) : i, j, k ∈ 1, . . . ,n} denotes a three-dimensional index set, and
the voxels ω(i,j,k) are defined as cubic regions of the length h = L/n:

ω(i,j,k) = [(i− 1)h; ih]× [(j − 1)h; jh]× [(k − 1)h; kh].

The entire image Ωh is subdivided into two parts:

Ωh = Ω
f
h ∪ Ω

s
h, (2.9)
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that corresponds to a disjoint decomposition of the index set In:

In = Inf ⊔ Ins , (2.10)

such that:
Ω
s
h =

⋃
(i,j,k)∈Ins

ω(i,j,k), Ω
f
h =

⋃
(i,j,k)∈Inf

ω(i,j,k). (2.11)

It should be noted, that arbitrary complex porous geometries can be approximated
in such a way. Example of voxel-based geometries for the case d = 3 and d = 2
are shown in Figs. 2.1 and 2.7, respectively. In the solid region, denoted Ωs

h, the
fluid does not propagate since impermeable solid is considered here. So, the Stokes
problem (2.1) is formulated in the fluid region Ωf

h, and the no-slip boundary Γ0 from
(2.2) is given as follows:

Γ0 = Ω
f
h ∩ Ω

s
h. (2.12)

It should be emphazized, that the voxel-based geometry as defined in (2.8) serves
as the computation grid to discretize the Stokes problem in Ωf

h. The subscript h
here reflects the fact that the computational domain is inherently discretized since it
comes from a binary CT image. In our work, we utilize the classical fully-staggered
finite difference method, also known as the MAC scheme. Namely, the pressure ph is
discretized at the centers of the voxels ω(i,j,k), while the velocity uh is discretized on
the voxel faces. Discretization in the case of simplest geometry is described in Section
2.6. Discretization for general voxel geometries used in our practical computations
is not covered in the thesis and can be found, for example, in [38]. For a detailed
description, see, for instance, [39, 38, 40].

2.2.2 Exterior periodic boundary conditions

As it was previously mentioned, apart from the interior boundary Γ0 (2.12) between
solid and fluid regions, the entire boundary of Ωf

h comprises an additional exterior
part Γext. According to the homogenization theory, periodic boundary conditions are
typically imposed on the exterior faces of the domain (see, e.g., [41]). As it was
previously mentioned, they do not influence the spectrum of the matrix S. Consid-
ering the right-handed Cartesian coordinate system shown in Fig. 2.2, we define six
boundaries, which are the outer faces of the entire cube domain Ωh from (2.8):

Γx=0, Γy=0, Γz=0,

Γx=L, Γy=L, Γz=L.
(2.13)

Then, the exterior boundary Γext is given as follows:

Γext = (Γx=0 ∪ Γx=L ∪ Γy=0 ∪ Γy=L ∪ Γz=0 ∪ Γz=L) ∩ Ω
f
h. (2.14)

In the DRP flow experiment, typically one direction is selected as the flow direction
and two other are selected as the tangential directions. Without loss of generality, we
assume that z direction is fixed as the flow direction, and x, y directions as the tan-
gential ones. In the tangential directions, we impose the periodic boundary condition
for both the velocity and pressure. For the x direction, we have:

u|Γx=0 = u|Γx=L
, p|Γx=0 = p|Γx=L

on Γext,



2.2. Flow experiment on CT images 11

FIGURE 2.2: The right-handed Cartesian coordinate system in 3D.

and, similarly, the periodic boundary condition is imposed for the y direction. In z
direction, additionally a pressure difference should be accounted which drives the
flow:

u|Γz=0 = u|Γz=L
, p|Γz=0 = p|Γz=L

+ dp on Γext, (2.15)

where dp is a given pressure jump. In the case of periodic boundary conditions, the
geometry is assumed to be periodic too. Namely, periodicity of the flow domain Ωh

f

in all three directions can be expressed as follows:

(i, j, k) ∈ Inf =⇒ (n− i, j, k), (i,n− j, k), (i, j, n− k) ∈ Inf . (2.16)

In the case when the geometry Inf is not periodic, it can be periodized by symmetric

reflection. It is important to emphasize, that the flow domain Ωf
h must be connected

to ensure the well-posedness of the formulated BVP (2.1). Additionally, the constraint∫
Ωf

h
p = 0 on the pressure is typically assumed for uniqueness of the solution.

Note, other than periodic boundary conditions for the DRP flow experiment are dis-
cussed in Appendix 2.A.

2.2.3 Computing permeability

The computation of the permeability tensor according to the homogenization theory
can be found, for example in [41]. However, for brevity we consider an equivalent
approach most often used in engineering literature [42]. For the selected flow di-
rection, z, the respective component of the permeability tensor, denoted kzz[m

2], is
determined according to the Darcy’s law, which is given as follows:

Q

A
= −kzz

µ
· dp
L
, (2.17)

where µ[Pa ·s] is the viscosity, Q[m3/s] is the volumetric flow rate, A[m2] is the cross-
sectional area of the sample, L[m] is the thickness of the sample in the flow direction
where the pressure drop dp[Pa] is applied. Note, we consider µ = 1[Pa · s] since
it does not influence the permeability. The flow over the unit area is computed as
follows:

Q

A
≈ ⟨uz⟩. (2.18)
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Here, the Darcy’s velocity ⟨uz⟩ is calculated by averaging the respective velocity com-
ponent over the entire volume of the porous sample [43]:

⟨uz⟩ =
1

|Ωh|

∫
Ωf

h

uz. (2.19)

In practice, for reasons of numerical stability in finite precision arithmetic, we com-
pute the non-dimensional permeability, denoted k̂zz, by taking L = 1[m] in (2.8). The
physical permeability can then be computed by scaling as follows:

kzz = k̂zzL
2.

When the periodic boundary conditions (2.15) are imposed in the flow direction z,
the problem is actually solved for the periodic part of the pressure, while its gradient
∇p = dp

L goes to the volumetric force f in the equation (2.1). For Ωh having the
unit length L = 1[m], the unit pressure drop dp = 1[Pa] corresponds to the unit
volume force f = (0, 0, 1)T applied in the flow direction [44]. So, the permeability
kzz equals the Darcy (averaged) velocity ⟨uz⟩ in this case. Note, that in order to
compute permeabilities kxx and kyy for the x and y flow directions, two additional
computations for f = (1, 0, 0)T and f = (0, 1, 0)T are required. We omit here the
discussion on computing the off diagonal elements of the permeability tensor.

2.3 Iterative methods and preconditioning

2.3.1 Outer iterations: CG-SIMPLE and CG-Uzawa algorithms

Iterative methods for solving the Stokes problem (2.1) can generally be classified into
two categories:

• Methods in which iterations are performed for the coupled system (2.3) in its
full form.

• Methods in which iterations are performed for the reduced Schur complement
system (2.4).

In both categories, efficient techniques are required to solve systems involving the
matrices A and S. Concerning the velocity Laplacian matrix A, its inverse can be ef-
fectively applied through multigrid methods, such as the Algebraic Multigrid method
(AMG) [45], which can handle intricate geometries. In the present work, our fo-
cus is on the Schur complement matrix S, so we consider the reduced formulation
(2.4). Note, the relation between the reduced methods under investigation and their
coupled analogues is discussed in Section 2.B in the Appendix.
Since the matrix S is positive semi-definite, following Axelsson (Section 3.1 in [27]),
we employ the Conjugate Gradient (CG) method as a Krylov subspace accelera-
tor. However, in contrast to [27], we use the preconditioned version of CG (as
described in, e.g., [46], Section 9.2). The specific form of the Preconditioned Con-
jugate Gradient (PCG) method considered in our study is formulated in Algorithm
1. By CG-Uzawa and CG-SIMPLE, we denote the Algorithm 1 for the precondi-
tioners Ŝ = Ŝuzawa and Ŝ = Ŝsimple defined in (2.7), respectively. Obviously, when
the identity is used as a preconditioner, the preconditioned and unpreconditioned
CG coincide. It should be noted, that in the Stokes case, the spectrum of Ŝsimple is
qualitatively different from the spectrum of S. Namely, the matrix Ŝsimple behaves
essentially as the pressure Laplacian matrix BBT , so its condition number increases
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Algorithm 1 Preconditioned CG, adapted from Axelsson [27]

Require: tolerance εS , initial guess p0h
Ensure: Approximate solution ph for the system (2.4)

1: Compute the initial residual r0h = Sp0h − gh
2: Solve Ŝz0h = r0h for z0h
3: Set d0h = z0h, k = 0
4: while not converged do
5: Apply Sdkh = qkh for qkh

6: αk =
(rkh)

T zkh
(dkh)

T qkh
7: pk+1

h = pkh + αkd
k
h

8: rk+1
h = rkh + αkq

k
h

9: Solve Ŝzk+1
h = rk+1

h for zk+1
h

10: If ∥zk+1
h ∥/∥z0h∥ < εS , exit loop

11: βk =
(rk+1

h )T zk+1
h

(rkh)
T zkh

12: dk+1
h = zk+1

h + βkd
k
h, k = k + 1

13: end while
14: Return pk+1

h as the approximate solution

quadratically as the grid resolution decreases. However, such spectral behavior turns
out to be justified in the case of tight geometries in the presence of narrow channels
where the nature of flow is predominantly diffusive.

Remark 2.3.1. In the original work by Axelsson, the CG-Uzawa algorithm is formulated
for the regularized version of the system (2.3). We do not employ any regularization as
there is no necessity for it. It is also worth noting, the MAC scheme is stable in LBB sense,
see e.g. [47] and references therein.

Remark 2.3.2. As mentioned earlier, in the case of periodic boundary conditions (2.15),
the matrix S has a constant nullspace. However, the CG method converge to the normal
solution as soon as the corresponding system is consistent [48]. Because S is singular,
instead of considering its inverse, we have to actually consider its pseudo-inverse. For
clarity of notation, we use Ŝ−1 instead of Ŝ† throughout the text. The term condition
number here is used in the sense of effective condition number.

Remark 2.3.3. It should be noted, that in the exact arithmetic the Algorithm 1 can be
also considered as the regular CG applied for the symmetrically preconditioned Schur
complement system [49], which can be written as follows:

Ŝ− 1
2SŜ− 1

2 p̂h = Ŝ− 1
2 gh,

where:
(Ŝ− 1

2 )2 = Ŝ−1, p̂h = Ŝ
1
2 ph.

However, it is not required to compute the Cholesky decomposition Ŝ = Ŝ
1
2 Ŝ

1
2 of the

preconditioner Ŝ , but only to apply Ŝ−1 in this case. Indeed, the spectrum of a non-
symmetric matrix Ŝ−1S coincides with the spectrum of Ŝ− 1

2SŜ− 1
2 , since S and Ŝ are

both symmetric.
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2.3.2 Stopping criteria

According to Algorirhm 1, the preconditioned residual norm is used as the stopping
criteria for the outer iterative process, see line 10 there. Specifically, given an input
tolerance εS , the outer PCG iterations stop as soon as:

∥Ŝ−1r#h ∥/∥Ŝ−1r0h∥ < εS , (2.20)

where the superscript # denotes the final iteration number, and rkh denotes the resid-
ual on the kth outer iteration, given as follows:

rkh = Spkh − gh. (2.21)

Using the preconditioned residual norm is considered more natural because the pre-
conditioned CG method minimizes the norm of the preconditioned residuals at each
step [46, 50]. However, in our numerical experiments, for the CG-SIMPLE method,
we additionally monitor the unpreconditioned residual norm. This helps us to com-
pare with the CG-Uzawa method, where the unpreconditioned norm is monitored.
Moreover, when studying synthetic 2D geometries in Section 2.5.2, we use the un-
preconditioned residual norm directly as the stopping criteria for consistency of the
comparison; Note, similar approach was used in [36].

2.3.3 Inner iterations

On each step of the outer iterations, applying the matrix S requires solution of an
auxiliary problem to recover intermediate velocity from the intermediate pressure.
We use the PCG method for solving with the velocity Laplacian matrix A, so formally
we deal with inexact version of the outer PCG method [25, 24]. Thus, we have a
two-level inner-outer iterative process: at each step of the outer PCG iteration for S,
inner PCG iterations for A are performed. In our numerical experiments, we use the
preconditioned relative residual norm as the stopping criteria for the inner iterations
with the matrix A. Namely, given an input tolerance εA, the inner PCG iteration for
computing uh = A−1fh stops as soon as:

∥(Â)−1r#A∥/∥(Â)−1r0A∥ < εA, (2.22)

where rkA denotes the residual on the kth inner iteration, given as follows:

rkA = Auk
h − fh. (2.23)

Additionally, at each step of the outer CG-SIMPLE iteration, we have to solve the
system with the preconditioner matrix Ŝsimple. Again, we use the Preconditioned
Conjugate Gradient for solving with the preconditioner Ŝ. It should be noted that, as
well as the pressure Schur complement matrix S, the pressure Neumann Laplacian
Ŝsimple has constant in the nullspace, so a special care is required. As for the stopping
criteria, we use the preconditioned relative residual norm for inner iterations with
the matrix Ŝsimple. For example, given an input tolerance εŜ , the inner CG iteration
for computing ph = (Ŝsimple)

−1gh stops as soon as:

∥( ˆ̂Ssimple)
−1r#

Ŝ
∥/∥( ˆ̂Ssimple)

−1r0
Ŝ
∥ < εŜ , (2.24)
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where rk
Ŝ

denotes the residual on the kth inner iteration, given as follows:

rk
Ŝ
= (Ŝsimple)p

k
h − gh. (2.25)

For building preconditioners Â and ˆ̂
Ssimple for the Laplacian matrices A and Ŝsimple,

we use the implementation BoomerAMG [51] from HYPRE library.

Algebraic Multigrid Method

When we solve system (2.4) using Algorithm 1, most of the time is spent on inverting
matrices A and Ŝ at each step of the outer iterations. The overall efficiency of the
method is determined by the efficiency of the constructed preconditioners for A and
Ŝ. Multigrid methods are proven to work well for elliptic problems. However, the
classical Geometric Multigrid method is not easy to apply in the case of complex pore-
scale geometry. The Algebraic Multigrid approach generalizes the principles of the
Geometric Multigrid method for complex geometries and discontinuous coefficients
[45]. Recent advances in monolithic multigrid methods for the Stokes problem are
noteworthy here, as detailed in references such as [52, 53, 54, 55, 56, 57]. However,
the application of monolithic multigrid to the coupled matrix A is non-trivial and
remains an active research topic. In real-world scenarios, efficient solvers for the
Stokes equations usually employ multigrid only for the viscous term. This is because
the Schur complement is generally believed to be well-represented by the identity
operator, for instance, the weighted mass matrix in the Finite Element Method (FEM)
[58, 59, 60].

Discussion on flexible Krylov subspace methods

According to Algorithm 1, we do not employ a flexible version of the Krylov subspace
method for the outer iterative process, although we do not compute exact solutions
during the inner iterations in our practical applications (in 3D). This approach aligns
with the consensus among numerous researchers, who assert that if the inner itera-
tions are solved with sufficient accuracy, there is no necessity for a flexible version of
the outer iterative method. Moreover, we consider Axelsson’s assertion [27], Section
3.1, p.615, which claims that the CG-accelerated inner-outer Uzawa algorithm, used
for solving the Schur complement formulation of the Stokes problem, is not sensitive
to the tolerance used for inner iterations. At least it is less sensitive then the classical,
not accelerated Uzawa algorithm. Our observations also confirm that the CG-SIMPLE
and CG-Uzawa algorithms converge well when a reasonable tolerance for the inner
iterations is maintained.

2.4 Validation of the developed Stokes solver

The accuracy of the developed Stokes solver is validated by comparing it with data
from the literature and with simulations performed with validated solvers. For valida-
tion, 3D CT images of real rock samples and synthetic 2D geometries are employed.
The absolute permeability serves as an objective functional, which is of interest in
our practical application. The results presented in this section are computed using
the CG-SIMPLE Algorithm 1. However, the CG-Uzawa solver produces identical re-
sults, as the only variation lies in the preconditioners for these two solvers. The
primary goal here is to validate the underlying discretization scheme.
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2.4.1 3D rock samples from tight reservoirs

Preliminaries: samples and notations

We consider six 3D images: five ultra-tight samples A−E earlier considered in [21],
and one image of the classical Berea’s sandstone with medium porosity [37]. The
corresponding pore space images are depicted on Fig. 2.1 using the Geodict visual-
ization tool. The samples A − E are scanned with resolution 1.2 mkm and have the
size n = 600, and the sample S is scanned with the resolution 4 mkm and has the size
n = 300. Detailed information about the samples can be found in Table 2.1, which
includes the reference permeability krefzz computed according to (2.17) solving (2.4)
for the respective samples with the CG-SIMPLE with very high accuracy, the number
of fluid voxels Vf = |Inf |, and the porosity ϕ, defined as follow:

ϕ = (Vf/V) · 100%, (2.26)

where V = |In| = nd is the total number of voxels. Additionally, for each sample we
compute the surface-to-volume ratio which is defined as follows:

σs = (Vs
surf/Vf ) · 100%, (2.27)

where the surface area Vs
surf of the no-slip boundary is determined as the number of

near-boundary solid voxels, i.e., solid voxels face-adjacent with the fluid domain:

Vs
surf = |Insurf |, Insurf = {(i, j, k) ∈ Ins : ω(i,j,k) ∩ Ωf ̸= ∅}. (2.28)

TABLE 2.1: Description of 3D samples A − S depicted in Fig. 2.1
including the problem size n, reference permeabilities krefzz , the number
of fluid voxels Vf , the porosity ϕ, and the surface-to-volume ratio σs.

A B C D E S
size n 600 600 600 600 600 300

perm. krefzz , mD 0.65 0.80 0.34 11.4 0.74 6.61 · 103
# pores Vf , mln. 12.5 9.4 11.4 20.9 13.9 5.7

porosity ϕ, % 5.8 4.4 5.3 9.7 6.4 21.1
s-t-v ratio σs, % 74 56 70 55 61 28

Validation with commercial software GeoDict

In this section, we study 3D rock samples from our practical applications discribed in
the previous subsection. We compare the performance of the CG-SIMPLE algorithm
with the performance of the commercial solver GeoDict (GeoDict 2023 Service Pack
4 Standard Edition) [12], which is considered the state-of-the-art solver for DRP.
Inside GeoDict, we used GeoDict (LIR) flow solver [61]. Note, we have designed our
computational experiments to closely match the settings for both solvers. As for the
boundary consitions, for both solvers, we applied periodic boundary conditions in the
flow direction and the no-slip boundary conditions in the tangential direction.
The results of the simulations are presented in Table 2.2 for different stopping criteria
(convergence tolerance). First of all, the results indicate that the permeabilities calcu-
lated by GeoDict are in good agreement with those computed using the CG-SIMPLE
algorithm. Additionally, we provide the computational times measured on an iso-
lated computational node with 48 CPU kernels. It’s worth noting that the GeoDict
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(LIR) solver leverages adaptive grid coarsening, making it highly efficient for higher
porosities. However, despite the use of adaptive grids, GeoDict (LIR) exhibits inferior
performance compared to CG-SIMPLE when dealing with low porosity samples.

TABLE 2.2: Cross-validation of the developed Stokes solver with Geo-
Dict (LIR) for binary images A−S described in Table 2.1 and pictured
in Fig. 2.1. Comparison of the absolute permeability computed for

different stopping criteria and computational time.

A, ϕ = 5.8 , σs = 74

GeoDict (LIR) SCoPeS-S (CG-SIMPLE)
Tol. Perm [mDa] CPU Time [sec] Tol. εS Perm [mDa] CPU time [sec]

2 · 10−1 0.99 486 10−1 1.61 76+166
5 · 10−2 0.81 861 10−2 0.69 77+402
1 · 10−2 0.64 3092 10−3 0.66 75+589

B, ϕ = 4.4 , σs = 56

GeoDict (LIR) SCoPeS-S (CG-SIMPLE)
Tol. Perm [mDa] CPU Time [sec] Tol. εS Perm [mDa] CPU time [sec]

1 · 10−1 0.79 937 10−2 0.83 69+322
1 · 10−2 0.78 1801 10−3 0.81 68+548

C, ϕ = 5.3 , σs = 70

GeoDict (LIR) SCoPeS-S (CG-SIMPLE)
Tol. Perm [mDa] CPU Time [sec] Tol. εS Perm [mDa] CPU time [sec]

1 · 10−1 0.37 1069 10−2 0.36 75+383
1 · 10−2 0.31 3137 10−3 0.35 77+719

D, ϕ = 9.7 , σs = 55

GeoDict (LIR) SCoPeS-S (CG-SIMPLE)
Tol. Perm [mDa] CPU Time [sec] Tol. εS Perm [mDa] CPU time [sec]

1 · 10−1 9.6 964 10−2 11.4 157+747
1 · 10−2 10.2 1546 10−3 11.4 161+1261

E, ϕ = 6.4 , σs = 61

GeoDict (LIR) SCoPeS-S (CG-SIMPLE)
Tol. Perm [mDa] CPU Time [sec] Tol. εS Perm [mDa] CPU time [sec]

1 · 10−1 0.76 2083 10−2 0.82 104+650
1 · 10−2 0.74 3173 10−3 0.74 108+1124

S, ϕ = 21.1 , σs = 28

GeoDict (LIR) SCoPeS-S (CG-SIMPLE)
Tol. Perm [mDa] CPU Time [sec] Tol. εS Perm [mDa] CPU time [sec]

1 · 10−2 6.71 · 103 54 10−2 6.62 · 103 48+325
1 · 10−3 6.66 · 103 125 10−3 6.61 · 103 49+582

2.4.2 Validation on synthetic geometry - periodic array of spheres

The developed Stokes solver is next validated on the classic example of flow around
periodic arrangements of solid spheres. Imposing periodic boundary conditions in all
three directions, one can consider only a single sphere. The computed permeability
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FIGURE 2.3: Velocity magnitude streamlines for periodic arrange-
ments of spheres; size L = 1, sphere diameter D = 0.5, resolution

n = 160.

is compared with numerical and analytical results from [62] and [63]. An exem-
plary computation is visualized in Figure 2.3. The results are summarized in Table
2.3. The simulation results show that The developed method correctly computes the
permeability. Also, convergence with respect to the grid size is clearly observed.

TABLE 2.3: Dimensionless permeability k̂zz for periodic array of imper-
meable spheres. D and N denote the diameter of the spheres (with
respect to the unit length of the cube) and the number of voxels in one

direction, respectively.

D N=40 N=80 N=160 J&T (ref [62]) S&A (ref [62], [63])

0.1 9.74 · 10−1 9.01 · 10−1 9.02 · 10−1 9.15 · 10−1 9.11 · 10−1

0.2 3.77 · 10−1 3.78 · 10−1 3.80 · 10−1 3.84 · 10−1 3.82 · 10−1

0.4 1.21 · 10−1 1.22 · 10−1 1.23 · 10−1 1.25 · 10−1 1.23 · 10−1

0.6 4.44 · 10−2 4.43 · 10−2 4.43 · 10−2 4.58 · 10−2 4.45 · 10−2

0.8 1.29 · 10−2 1.31 · 10−2 1.31 · 10−2 1.38 · 10−2 1.32 · 10−2

1.0 2.48 · 10−3 2.51 · 10−3 2.51 · 10−3 2.67 · 10−3 2.52 · 10−3

2.5 Convergence study and spectral analysis of the CG-Uzawa
and CG-SIMPLE algorithms

In the present Section, computational experiments are conducted to numerically in-
vestigate:

• Possible correlation between the surface-to-volume ratio and the condition num-
ber of the preconditioned\unpreconditioned Schur complement matrix;

• Possible correlation between the number of boundary nodes where no-slip bound-
ary conditions are imposed and the number of non-unit eigenvalues of the Schur
complement matrix.
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• The performance of the Uzawa and SIMPLE preconditioners in solving the Schur
complement problem (2.4), especially in complex geometries with high surface-
to-volume ratio;

• The performance of two preconditioners in computing the permeability of rep-
resentative 3D and 2D samples according to (2.17);

Two sets of experiments are considered.
In the first set, 3D CT images of rock samples from tight reservoirs (characterized
by low porosity) are analyzed. The performance of the inexact Uzawa and SIMPLE
preconditioners in conjunction with the Conjugate Gradient method for the Schur
complement matrix is compared. It is observed that the SIMPLE preconditioner is
more efficient for this class of problems. A correlation between the surface-to-volume
ratio and the condition number of the Schur complement matrix is established. Addi-
tionally, the permeability computed using both preconditioners is compared, showing
that the CG-SIMPLE method offers a more robust and accurate calculation.
In the second set of experiments, a more detailed examination of the two precondi-
tioners is conducted, using synthetic 2D geometries and exact inner iterations. Be-
sides comparing the performance of the preconditioners, we perform an in-depth
study of the spectra of the Schur complement matrix. Based on the obesravtions,
it is conjectured that the no-slip boundary conditions primarily cause the non-unit
eigenvalues of the Schur complement matrix. For the synthetic samples examined,
it is clearly observed that an increase in the surface-to-volume ratio results in an in-
creased condition number of the Schur complement matrix. Conversely, there is an
inverse dependence when the Schur complement matrix is preconditioned with the
SIMPLE.

2.5.1 3D rock samples from tight reservoirs

Performance of the preconditioners in solving the Schur complement system
and in computing permeability

In this section, we study the performance of the CG-Uzawa and CG-SIMPLE algo-
rithms for the pore space images of real rock samples from tight reservoirs (see Fig.
2.1). As the stopping criteria for the outer CG iterations, we use εS = 10−3 for
both the CG-Uzawa and CG-SIMPLE algorithms. The relative preconditioned residual
norm, as defined in (2.20), is used here. For the inner iterations, we use a higher pre-
cision εA = 10−6 in both cases. Also, for the CG-SIMPLE algorithm we use εŜ = 10−6

for solving with the SIMPLE preconditioner Ŝsimple. The reference permeabilities krefzz

were computed using the CG-SIMPLE algorithm with higher precision εS = 10−5,
εA = 10−8, εŜ = 10−8. Such inexact solves for A and Ŝsimple make it difficult to
rigorously analyze the underlying numerical methods. However, the purpose of this
section is to demonstrate convergence problems with the established Uzawa precon-
ditioner that occur in practical permeability calculations when computing flows in
tight porous media. So, we compare methods for the settings that we usually use in
our practical calculations.
The convergence history for the selected tolerances is presented in Fig. 2.4, where
the relative unpreconditioned residual norm ∥Ŝ−1rkS∥/∥Ŝ−1r0S∥ is shown on the top
graph. Furthermore, the relative permeability error, defined as:

ek = |kkzz − krefzz |/krefzz , (2.29)

is shown in Fig. 2.4 on the bottom graph.
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FIGURE 2.4: Convergence history of the CG-SIMPLE and CG-Uzawa
algorithms for 3D samples A−S described in the Table 2.1. Precondi-
tioned relative residual norm ∥Ŝ−1rkS∥/∥Ŝ−1r0S∥ (top) and the perme-

ability error ek defined in (2.29) (bottom) are shown.
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FIGURE 2.5: Convergence history of the CG-SIMPLE algorithm for 3D
samples A − S described in the Table 2.1. Unpreconditioned rela-
tive residual norm ∥rkS∥/∥r0S∥ decreases monotonically compared with
preconditioned residual norm ∥Ŝ−1rkS∥/∥Ŝ−1r0S∥ (compare with Fig.

2.4).

The convergence summary can be found in Table 2.4, which includes the number of
iterations, the required computational time, and the permeability error e# computed
on the final iteration. Additionally, we provide estimations for the condition numbers
of the preconditioned and unpreconditoned Schur complement matrices, computed
for free during the outer CG iterations using Lanczos algorithm.

TABLE 2.4: Summary of the results for CG-Uzawa and CG-SIMPLE al-
gorithms for 3D samples A − S described in the Table 2.1 including
relative permeability error on the final iteration e#, the total compu-
tational time, the number of iterations, and the estimated condition

numbers.

A B C D E S
CG-Uzawa:

perm. error e#, % 0.221 0.146 0.585 0.029 0.403 0.0002
total comp. time, hrs 8.5 5.0 6.2 10.9 7.3 0.8

# iters 1238 802 946 809 849 136
≈ cond(S) 7.1 · 105 2.1 · 105 3.7 · 105 2.2 · 105 3.4 · 105 3.4 · 103

CG-SIMPLE:
perm. error e#, % 0.019 0.020 0.031 0.005 0.047 0.0005

total comp. time, hrs 0.3 0.3 0.3 0.7 0.5 0.3
# iters 22 23 27 24 26 31

≈ cond(Ŝ−1
simpleS) 0.9 · 102 1.2 · 102 1.4 · 102 1.1 · 102 1.8 · 102 2.4 · 102

The following hardware was used in our numerical experiments: 48x MPI compute
node (Dell PowerEdge M640), dual Intel Xeon Gold 6132 ("Skylake") @ 2.6 GHz, i.e.
28 CPU cores per node. The computational times shown in Table 2.4 were obtained
using 8 CPU nodes.
Several observations can be drawn from the results presented in Table 2.4. For the
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considered low porosity, high surface-to-volume ratio images, the SIMPLE precon-
ditioner appears to perform better than the Uzawa preconditioner, as it converges
robustly while the CG-Uzawa tends to stagnate. Firstly, despite the CG-SIMPLE al-
gorithm being more expensive (approximately x1.5) per iteration, its total computa-
tional time is smaller compared to the CG-Uzawa because significantly fewer number
of iterations is required. Secondly, the estimated condition number for the precondi-
tioned Schur complement matrix is about three orders of magnitude smaller for the
SIMPLE preconditioner than for the Uzawa preconditioner. For moderate porosity
(sample S), the condition number for both preconditioners is comparable. Thirdly,
the CG-SIMPLE computes the permeability much more accurately for the considered
samples. Actually, achieving even 10% accuracy in computing permeability is not
always possible with the established CG-Uzawa method.
It is worth mentioning, that for the CG-SIMPLE algorithm oscillations may appear in
the permeability error (see Fig. 2.4, sample S). This is the case when inner tolerance
εŜ for inverting preconditioner Ŝ = Ŝsimple is not small enough. However, despite
these oscillations, the permeability error continues to decrease, albeit not monotoni-
cally. This confirms our conjecture that using flexible Krylov method is not necsesary
in our case. Note, similar oscillations may appear if inner tolerance εA for inverting
A when applying S is not small enough. It is also worth mentioning that the unpre-
conditioned residual for the CG-SIMPLE algorithm always decreases monotonically
in our numerical experiments (i.e. even when oscillations appear in the permeability
error). In Fig. 2.5 in the Appendix, we show the unpreconditioned residual for the
CG-SIMPLE algorithm corresponding to the stopping criteria εS = 10−3 in the pre-
conditioned residual norm, as it is shown in Fig. 2.4. Note, the unpreconditioned
residual norm is suppressed only up to 10−2 in this case. We investigate this issue
in the subsequent section for synthetic 2d geometries, where we use the unprecon-
ditioned residual norm directly as the stopping criteria for the preconditioned CG
for both methods. Detailed comparison of preconditioned/unpreconditioned resid-
uals for CG-SIMPLE and CG-Uzawa for different thresholds εS = 10−1, εS = 10−2,
εS = 10−3 is shown in Tables 2.8, 2.9, 2.10 in the Appendix, respectively.

Correlation between the surface-to-volume ratio and the condition number of
the Schur complement matrix

In Fig. 2.6, we show that for the considered samples A − S there is a strong cor-
relation between the surface-to-volume ratio σs (2.27) and the estimated condition
number of the unpreconditioned Schur complement matrix. This is also confirmed
by the number of iterations for the CG-Uzawa algorithm. However, the dependence
in the case of the Schur complement matrix preconditioned with the SIMPLE is not
so distinctive here, so we perform a more rigorous study in the subsequent Section
2.5.2.

2.5.2 2D synthetic geometries - periodic array of randomly shifted squares

To identify consistent patterns that affect the performance of the methods under con-
sideration in complex pore space domains, we consider synthetic 2D geometries with
a transparent generation process and directly available geometric information (such
as porosity, no-slip surface area, etc). As in the 3D case, we present and discuss the
convergence of the two algorithms, as well as the accuracy with which the perme-
ability is computed. Additionally, for the considered synthetic samples we compute
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FIGURE 2.6: Correlation between surface-to-volume ratio and esti-
mated condition number for the samples A− S described in the Table

2.1.

(A) geometry (B) pressure (C) velocity magnitude

FIGURE 2.7: Example of synthetic 2D geometry: array of randomly
shifted square obstacles for N = 7, ns = 40, navg = 10, nmin = 2.

and analyse the full spectra of the preconditioned and unpreconditioned Schur com-
plement matrices.

Generation of synthetic 2D geometries.

We study flows passing around arrays of solid square obstacles randomly placed in a
fluid bed. First of all, a uniform voxel (pixel in 2D) grid is generated in Ω as described
in Section 1. For ease of generation, we consider square obstacles of the same size,
and each obstacle is located in the center of the square cell, or is slightly shifted, so
that a cell contains the obstacle and a part of the flow domain around it. The obstacles
do not touch the boundary of the cell. Each generated geometry is defined by four
integer parameters (N,nc, navg, nmin), where N and nc determine the number of cells
in one direction and their size measured in voxels, while the parameters navg and
nmin control the average and minimal thicknesses (in voxels) of the fluid channels
between two adjacent solid squares. Note, that the cells and the obstacles in all cases
are adjusted to the introduced computational grid, so that each voxel is fully occupied
either by fluid or by solid. An example for N = 7, nc = 50, navg = 10, nmin = 2 is
presented in Fig. 2.7a. Formally, we have a domain of the total size n × n, n = Nnc
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which represents an N ×N array of cells of the size nc×nc; each cell contains a solid
square of the size (nc−navg)×(nc−navg) with the origin (nc/2+r1, nc/2+r2), where
r1, r2 ∈ [−(navg − nmin)/2, (navg − nmin)/2] are (integer) random shifts. It should be
noted, that randomness is necessary to observe non-trivial solutions which take place
in the case of fully periodic arrays.

Performance of the preconditioners in solving the Schur complement system
and in computing permeability

In the present section, we investigate the effect of surface-to-volume ratio on the con-
vergence of the algorithms by varying the average thickness of the channels of the
synthetic 2D geometries. Namely, we randomly generated five geometries according
to the procedure described in the previous subsection for N = 7, nc = 50, nmin = 2,
and navg = {4, 6, 8, 10, 12}. Detailed information about the samples can be found in
Table 2.5, which includes the reference permeability krefxx , the number of fluid vox-
els Vf , the porosity ϕ (2.26), and the surface-to-volume ratio σs (2.27). It should
be noted, that the average channel thickness for synthetic 2D geometries is directly
related to the surface-to-volume ratio for general porous media.

TABLE 2.5: Description of the synthetic 2D geometries with variable
channel thicknesses navg including the problem size n, reference per-
meabilities krefxx , the number of fluid voxels Vf , the porosity ϕ, and the

surface-to-volume ratio σs.

navg = 4 navg = 6 navg = 8 navg = 10 navg = 12

size n 350 350 350 350 350
perm. krefxx 1.0 · 10−6 3.2 · 10−6 7.3 · 10−6 1.5 · 10−5 2.5 · 10−5

# pores Vf , thsnd. 18.8 27.6 36.0 44.1 51.8
porosity ϕ, % 15.4 22.6 29.4 36.0 42.3

s-t-v ratio σs, % 46.9 30.5 22.3 17.3 14.0

As the stopping criteria for the outer CG iterations, we use εS = 10−3 for both the
CG-SIMPLE and CG-Uzawa algorithms. In contrast to the previous subsection, we
consider the unpreconditioned relative residual here. Considering residuals in the
same norm allows for straightforward comparison between the two algorithms. A de-
tailed comparison of preconditioned/unpreconditioned residuals for the CG-SIMPLE
and CG-Uzawa for different thresholds εS = 10−2, εS = 5 · 10−3, εS = 10−3 is shown
in Tables 2.11, 2.12, 2.13 in the Appendix, respectively. As for the inner iterations,
in this experiment we use the machine epsilon εA = εŜ = 10−13. In particular, this
means that the exact Uzawa is used here. The convergence history for selected tol-
erances is presented in Fig. 2.8, where the relative unpreconditioned residual norm
∥rkh∥/∥r0h∥ is shown on the left and the permeability error ek defined in (2.29) is
shown on the right.
The convergence summary can be found in Table 2.6, which includes the number of
iterations until convergence, the required computational time, and the permeability
error e# computed on the final iteration. In addition, we show the effective condition
numbers of the preconditioned and unpreconditoned Schur complement matrices,
which are computed using a direct method. Similar observations to those made for
the 3D simulations can be made from the results presented in Table 2.6. Again,
the CG-SIMPLE algorithm requires less iterations and less total computational time
compared to the CG-Uzawa for samples with larger surface-to-volume ratio. When
decreasing surface-to-volume ratio, the CG-Uzawa tends to show better performance.
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FIGURE 2.8: Convergence history of the CG-SIMPLE and CG-Uzawa al-
gorithms for the synthetic 2D geometries with variable channel thick-
nesses navg described in the Table 2.5. Unpreconditioned relative
residual norm ∥rkh∥/∥h0

S∥ (right) and relative permeability error ek

defined in (2.29) (left) are shown.

As in the 3D case, the CG-SIMPLE more accurately computes the permeability, which
is clearly seen from the left graph in Fig. 2.8. This may seem counterintuitive since
the residuals have the same norm for both algorithms, as illustrated in the right graph
of Fig. 2.8. This phenomenon requires a deeper theoretical investigation, which is
beyond the scope of this paper. We currently hypothesize that the primary reason
is that the iterative solutions computed by the two algorithms belong to different
Krylov subspaces. Furthermore, it is evident from Tables 2.11, 2.12, 2.13 that as
the tolerance εS for the outer iterations decreases, the difference in permeability
calculations decreases as well.

TABLE 2.6: Convergence summary of the CG-Uzawa and CG-SIMPLE
algorithms for the synthetic 2D geometries with variable channel
thicknesses navg described in the Table 2.5 including the permeabil-
ity error on the final iteration e#, the total computational time, the

number of iterations, and the condition numbers.

navg = 4 navg = 6 navg = 8 navg = 10 navg = 12
(StV=46.9) (StV=30.5) (StV=22.3) (StV=17.3) (StV=14.0)

CG-Uzawa:
perm. error e#, % 5.4 · 10−5 4.4 · 10−5 4.3 · 10−5 3.6 · 10−5 3.4 · 10−5

total comp. time, s 6.5 6.0 5.8 5.0 4.7
# iters 138 98 81 61 52
cond(S) 4.7 · 103 2.3 · 103 1.3 · 103 7.7 · 102 5.3 · 102

CG-SIMPLE:
perm. error e#, % 1.4 · 10−6 1.5 · 10−6 1.5 · 10−6 1.5 · 10−6 1.5 · 10−6

total comp. time, s 1.4 2.4 3.5 4.6 5.7
# iters 15 22 29 35 40

cond(Ŝ−1
simpleS) 3.4 · 101 8.6 · 101 1.6 · 102 2.6 · 102 3.4 · 102

It is important to note that for the 2D geometries under consideration, the conver-
gence of the CG-Uzawa algorithm closely follows a linear asymptote. Specifically, the
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convergence factor is determined by the effective condition number:√
cond(S)− 1√
cond(S) + 1

≈ 1− 2√
cond(S)

, for cond(S) ≫ 1. (2.30)

Taking into account λmax(S) = 1, (2.30) becomes:

1−
√

λmin(S)

1 +
√

λmin(S)
, (2.31)

where λmin(S) > 0 is the smallest non-zero eigenvalue. Recall, the linear convergence
factor for the CG-Uzawa formulated in operator setting (see, e.g., [27]) is given as
follows:

1− γ

1 + γ
, (2.32)

where γ denotes the inf-sup constant. Comparing (2.31) with (2.32), we observe the
parallel between λmin(S) and γ2.
Notably, for the CG-SIMPLE, the convergence is super-linear, which means some clus-
tering of eigenvalues. Similar spectral clustering is reported in [36].

Correlation between the surface-to-volume ratio and the condition number of
the Schur complement matrix

In Fig. 2.9, for the considered 2D geometries with variable channel thicknesses, we
show the dependence between the surface-to-volume ratio σs (2.27) and the con-
dition number of the unpreconditioned/preconditioned Schur complement matrix.
The main conclusion that we draw is that the condition number of the Schur comple-
ment matrix increases linearly when increasing the surface-to-volume ratio. However,
unlike the 3D case, for the considered here synthetic 2D geometries, the inverse de-
pendence is also clearly observed for the Schur complement matrix preconditioned
with the SIMPLE. Specifically, the condition number of the preconditioned matrix
decreases super-linearly with increasing surface-to-volume ratio. Moreover, we con-
jecture that the condition number of the Schur complement matrix is influenced by
the number of non-unit eigenvalues in its spectrum. In the next subsection, we show
that the large ratio of non-unit eigenvalues in the spectrum of the Schur complement
matrix is directly related to the large surface-to-volume ratio.

Number of non-unit eigenvalues of the Schur complement matrix and no-slip
surface area

In the present section, for the synthetic 2D geometries, we show the relation between
surface-to-volume ratio and the number of non-unit eigenvalues of the Schur comple-
ment matrix. We consider various configurations of synthetic 2D geometries. First,
we vary the number of squares N , which determines the degree of connectivity of the
flow domain Ωf

h. Second, for each N we vary the surface area Vs
surf defined in (2.28).

For the selected configurations, we compute the full spectrum of the Schur comple-
ment matrix S and calculate the number of its eigenvalues, denoted Nev, which are
not equal to one (including the zero eigenvalue). The results are presented in Fig-
ure 2.10, where we show the dependence between the surface area Vs

surf and the
number of non-unit eigenvalues Nev. For the considered here class of geometries, we
observe that the following empirical formula for the number of non-unit eigenvalues
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(A) Uzawa (B) SIMPLE

FIGURE 2.9: Correlation between surface-to-volume ratio and condi-
tion number for the synthetic 2D samples with various channel thick-

nesses navg described in the Table 2.5.

FIGURE 2.10: Dependence of the number of non-unit eigenvalues of
the Schur complement matrix Nev on the connectivity of the flow do-
main and the surface area of the no-slip boundary Vs

surf defined in
(2.28). The number of square obstacles N in one dimension is shown

by color, total N2 obstacles.

holds:
Nev = Vs

surf + 3N2 − 1. (2.33)

Note, the surface area Vs
surf coincides with the number of boundary nodes (i.e., the

nodes lying on Γ0), where the Dirichlet b.c. on the tangential velocity component is
imposed (see Section 2.6 for rigorous explanation). In particular, the formula (2.33)
reveals that for a simply-connected domain, the surface-to-volume ratio equals the
ratio of non-unit to unit eigenvalues of the Schur complement matrix. Thus, the
greater is the ratio, the further the Schur complement is from the identity, and the
worse is the performance of the Uzawa preconditioner.
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2.6 Theoretical justification in the case of simplest geome-
try

In the previous Section 2.5, it was shown numerically that there is a correlation
between the surface-to-volume ratio and 1) the condition number of the Schur com-
plement matrix S, 2) the ratio of non-unit to unit eigenvalues of S. The primary
aim of the present Section is to provide theoretical justification of these results. In-
vestigating these results theoretically in complex domains is difficult, therefore we
investigate them in the case of simplest geometry - the square in 2D. We describe the
fully-staggered finite-difference discretization of the Stokes equations in subsection
2.6.2. In the case of square domain, the tensor-structured grids can be considered for
the discretization which allow for the underlying discrete operators to be assembled
in a simple way using the Kronecker matrix product. Note, the present Section is
accompanied with the 50-lines Python code provided in the Appendix 2.C.

2.6.1 Primary and auxiliary Stokes BVPs under considiration

Let us recall the Stokes equations formulated in a bounded open domain Ω ⊂ R2:

−∆u+∇p = 0 in Ω,

−∇ · u = 0 in Ω,
(2.34)

where u = (u, v)T denotes the fluid velocity and p is the fluid pressure. Let us further
denote n the outward unit normal of the boundary ∂Ω. Then, one can uniqely write
the following decomposition for the velocity vector field u:

u = u⊥ + u∥,

where u⊥ = (n ·u)n and u∥ = u−u⊥ denote the normal and tangential components,
respectively. First, we consider the no-penetration boundary condition imposed on
the entire boundary ∂Ω, which is given as follows:

u⊥ = 0 on ∂Ω. (2.35)

Second, we prescribe the tangential component of the velocity as follows:

u∥ = uD on ∂Ω. (2.36)

In the present Section, the BVP (2.34)-(2.36) is considered as the primary problem
of interest. It is the Dirichlet problem for the Stokes equation, and the no-penetration
condition (2.35) is sufficient for its well-posedness. Thus, in contrast to the flow
experiment described in Section 2.2.2, the inflow and outflow boundaries are not
considered here. This simplification is motivated by our aim to study the impact of the
no-slip boundary conditions on the spectrum of the Schur complement matrix, which
is not influenced by the periodic boundary conditions. It should be noted, that the
boundary condition (2.35) when imposed on the entire boundary ∂Ω characterizes a
special class of flow problems, called the enclosed flow problems (terminology from
[64], Ch. 5, P. 215). For the enclosed flows, the pressure is determined only up to a
constant nullspace.
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Instead of (2.36), we may consider the Neumann boundary condition imposed on the
tangential velocity, which is given as follows:

∂u∥/∂n̂ = gN on ∂Ω. (2.37)

In the present Section, the BVP (2.34),(2.35),(2.37) is denoted as the auxiliary prob-
lem.

Remark 2.6.1. Note, that for the case uD = 0 the boundary conditions (2.35),(2.36)
are the no-slip conditions, and for the case gN = 0, boundary conditiones (2.35),(2.37)
are the free-slip conditions described in Section 2.A.

Remark 2.6.2. Also, the well-known lid-driven cavity problem is a special case of the
just described primary BVP with uD = (0, 1)T on the top boundary (i.e. y = 0) and
uD = 0 on the other boundaries. The lid driven cavity solution for n = 128 is pictured
in Fig. 2.12, which is computed using Python code provided in Section 2.C.

Corresponding Laplacian BVPs

Along with the primary and auxiliary BVPs for the Stokes equation, we also con-
sider the corresponding BVPs for the Laplacian equation, obtained by discarding the
divergence-free constraint in (2.34). The Laplacian BVP corresponding to the primary
Stokes problem is given as follows:

−∆u = 0 in Ω,

u⊥ = 0 on ∂Ω,

u∥ = uD on ∂Ω,

(2.38)

and the Laplacian BVP corresponding to the auxiliary problem is given as follows:
−∆u = 0 in Ω,

u⊥ = 0 on ∂Ω,

∂u∥/∂n̂ = gN on ∂Ω.

(2.39)

Section outline

Discretization of the primary (enclosed Dirichlet) BVP is considered in a specific way.
Namely, it is considered as a perturbation of the auxiliary (enclosed Neumann) prob-
lem. This is motivated by the fact that, in the auxiliary Neumann case, several neat
properties hold. Firstly, as described in Section 2.6.3, the Discrete Helmholtz-Hodge
orthogonal Decomposition (DHHD) holds true for the discrete curl and discrete di-
vergence operators. Secondly, the corresponding velocity vector Laplacian matrix is
decomposed into the direct sum under this decomposition (see Corollary 2.6.10.1).
These properties imply that the Schur complement matrix for the auxiliary problem,
as well as its inverse, up to a constant factor in the nullspace, equals the identity
matrix acting on the discrete pressure space (see Section 2.6.3 for details).
The results regarding structure of the Schur complement matrix are described in Sec-
tion 2.6.3. Specifically, we demonstrate that the Schur complement matrix assembled
for the primary problem, as well as its inverse, can be considered as a rank-r correc-
tion of the Schur complement matrix assembled for the auxiliary problem. Moreover,
the rank r is determined by the number of the tangential velocity nodes affected by
the Dirichlet boundary condition. The main result is formulated in Theorem 2.6.12;
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it is related to the case when all the velocity nodes are affected by the Dirichlet con-
dition. In this limiting case, a particularly simple structure of the Schur complement
matrix is explicitly derived, which implies several practical outcomes (see Section
2.6.3).

2.6.2 Finite difference discretization on fully-staggered grids

In what follows, we consider Ω from (2.34) to be a unit two-dimensional domain
with the following tensor-product structure:

Ω = ω × ω ⊂ R2, (2.40)

where ω denotes a unit one-dimensional interval:

ω = (0, 1) ⊂ R. (2.41)

Given the problem size n and the corresponding grid size h = 1/n, we consider
the classical fully-staggered finite difference scheme [39, 40, 38], for which the dis-
cretized velocities uh = (uh, vh)

T , the discretized pressure ph, and the discretized
velocity curl, denoted qh, live on different grids. Namely, we discretize Ω from (2.40)
with four different tensor-product grids:

Ωu
h = ωh × ωh, Ωv

h = ωh × ωh,

Ωp
h = ωh × ωh, Ωq

h = ωh × ωh,

Ω∗
h ⊂ Q2, for ∗ = u, v, p, q.

(2.42)

where ωh and ωh denote the aligned grid and the shifted (by h/2) grid, respectively,
which are discretizations of the interval ω from (2.41), given as follows:

ωh =
1

n
(1, . . . ,n− 1), ωh =

1

n
(0, . . . ,n− 1) +

1

2n
, ωh, ωh ⊂ Q. (2.43)

For illustration of the fully-staggered grids (2.42) for n = 4, see Fig. 2.11. It is worth
noting, that such fully-staggered discretization is known to be structure-preserving in
the sense that many fundamental structures of the continuous model, e.g. mass and
momentum conservation laws, are preserved at the discrete level. The term structure-
preserving is typically used in the context of mimetic discretizations of the divergence
and gradient operators, see, e.g., [65, 66, 67]. For earlier introduction of the mimetic
approach see, e.g., [68].
Formally, we have the discrete functions belonging to different discrete spaces:

Uh = {uh : Ωu
h → R}, Vh = {vh : Ωv

h → R},
Ph = {ph : Ωp

h → R}, Qh = {qh : Ωq
h → R}. (2.44)

We identify these discrete spaces Uh, Vh, Ph, and Qh with the vector spaces Rn(n−1),
R(n−1)n, Rnn, and R(n−1)(n−1), respectively. Then, the underlying discrete operators
can be assembled using the Kronecker matrix product (see, e.g., [69]). For example,
the discrete identity operators Iu : Uh → Uh, Iv : Vh → Vh, Ip : Ph → Ph, Iq : Qh →
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FIGURE 2.11: Fully-staggered grids for n = 4. The systems from
(2.48) are written for the interior nodes marked by circles. Bold cir-
cles denote the fully interior nodes; empty circles denote the near-
boundary interior nodes with perturbed stencil. Solid squares denote
the nodes lying on the boundary ∂Ω where the functions uD

h and gN
h

are prescribed; empty squares denote the phantom nodes, which are
used for discretization but eliminated using linear interpolation.

FIGURE 2.12: Lid-driven cavity problem. Velocity solution computed
for n = 128. The 50-lines Python code is provided in Section 2.C.
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Qh are constructed using the Kronecker product as follows:

Iu = Iωh ⊗ Iωh , Iu ∈ Rn(n−1)×n(n−1),

Iv = Iωh ⊗ Iωh , Iv ∈ R(n−1)n×(n−1)n,

Ip = Iωh ⊗ Iωh , Ip ∈ Rnn×nn,

Iq = Iωh ⊗ Iωh , Iq ∈ R(n−1)(n−1)×(n−1)(n−1),

(2.45)

where Iωh and Iωh are the identity matrices given as follows:

Iωh = In−1 ∈ R(n−1)×(n−1), Iωh = In ∈ Rn×n. (2.46)

Note, the matrices Iωh and Iωh correspond to the discrete identity operators acting
on the one-dimensional functions discretized on the aligned grid ωh and the shifted
grid ωh from (2.43), respectively.
Finally, the velocity vector identity operator is composed as follows:

Iu =

[
Iu

Iv

]
, Iu : (Uh,Vh)

T → (Uh,Vh)
T . (2.47)

Remark 2.6.3. Formally, in two dimensions, the discrete functions from (2.44) are
represented as 2-dimensional tensors, and the corresponding operators are represented as
4-dimensional tensors. However, we work with matrices and vectors, assuming flattering
of the 2-dimensional grid functions in the row-major order, which is a default order for
python and C languages.

Remark 2.6.4. Note, the sparse Kronecker product is assumed in (2.45) and later in
the text. See Section 2.C for python code example.

Discretization of the primary Stokes BVP

After finite-difference discretization of the primary and auxiliary BVPs for the Stokes
equation (2.34) using fully-staggered grids (2.42), we obtain the following block
systems:

AD

[
uh

ph

]
=

[
ũD
h

0

]
, AN =

[
uh

ph

]
=

[
g̃N
h

0

]
, (2.48)

where ũD
h , g̃N

h ∈ (Uh,Vh)
T are discretizations of the boundary terms uD,gN from

(2.36),(2.37), respectively. Note, the tilde sign here is used to emphasize that ũD
h

and g̃N
h are defined in the interior nodes, but not on the boundary nodes. Moreover,

they are nonzero only on the near-boundary interior nodes, as we explain later in the
text. The matrices AN, AD have the following saddle-point structure:

AN =

[
AN BT

B

]
, AD =

[
AD BT

B

]
,

where the matrices B : (Uh,Vh)
T → Ph and BT : Ph → (Uh,Vh)

T represent the
discrete counterparts of the velocity (negative) divergence and the pressure gradient
operator. The matrices AD,AN : (Uh,Vh)

T → (Uh,Vh)
T are the discrete counterparts

of the velocity vector Laplacian operators corresponding to the Laplacian BVPs (2.38)
and (2.39), respectively.
It should be noted, that the matrix B depends solely on the normal boundary condi-
tion (2.35), which makes it identical for both the primary and auxiliary BVPs. How-
ever, for the discrete Laplacian operators, we have A = AD or A = AN depending
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on whether the condition (2.36) or (2.37) is imposed on the tangential velocity com-
ponent.
Next, we describe how the boundary conditions (2.35), (2.36), and (2.37) are in-
corporated into the matrices. Lets consider the grids represented in Fig. 2.11. The
systems for both primary and auxiliary BVPs from (2.48) are written for the interior
nodes, marked by circles (both solid and empty), hence the matrices AD and AN

have equal sizes. All the interior nodes are subdivided into two parts: the fully inte-
rior nodes, marked by solid circles, and the near-boundary interior nodes, marked by
empty circles. Also, the solid squares denote the nodes lying precisely on the bound-
ary ∂Ω where the functions uD and gN are prescribed. Finally, the empty squares
denote the phantom nodes, which are used for discretization but eliminated using
linear interpolation as discussed in the end of the Section.
Let us further unfold the discrete vector Laplacians as follows:

AD =

[
Au

D

Av
D

]
, Au

D : Uh → Uh, Av
D : Vh → Vh,

and:

AN =

[
Au

N

Av
N

]
, Au

N : Uh → Uh, Av
N : Vh → Vh.

For the fully interior nodes, all four discrete Laplacian operators Au
D, A

v
D, A

u
N , Av

N

have the full 5-point stencil, given as follows:

1

h2

 −1
−1 4 −1

−1

 (2.49)

However, for the near-boundary interior nodes, the stencil is perturbed. Namely, for
the matrices Au

D, A
u
N , the stencils for the interior nodes near to the top boundary (i.e.

y = 0) become:
1

h2

(
−1 3 −1

−1

)
,

1

h2

(
−1 5 −1

−1

)
,

respectively, and the stencils for the interior nodes near to the bottom boundary (y =
1) become:

1

h2

(
−1

−1 3 −1

)
,

1

h2

(
−1

−1 5 −1

)
.

Similarly, for the matrices Av
D, A

v
N , the stencils for the interior nodes near to the left

boundary (x = 0) become:

1

h2

−1
3 −1

−1

 ,
1

h2

−1
5 −1

−1

 ,

respectively, and the stencils for the interior nodes near to the right boundary (x = 1)
become:

1

h2

 −1
−1 3

−1

 ,
1

h2

 −1
−1 5

−1

 .

According to these observations, the discrete Dirichlet velocity Laplacian operator
AD can be assembled as a diagonal perturbation of the discrete Neumann velocity
Laplacian operator AN. Namely, we have:
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Proposition 2.6.5.

AD = AN +
2

h2
Iu∼, (2.50)

where the diagonal perturbation matrix is given as follows:

Iu∼ =

[
Iu∼

Iv∼

]
=

[
Iωh∼ ⊗ Iωh

Iωh ⊗ Iωh∼

]
, Iu∼ : (Uh,Vh)

T → (Uh,Vh)
T , (2.51)

where Iωh is defined in (2.46), and Iωh∼ is defined as follows:

Iωh
∼ =


1

0
. . .

0
1

 , Iωh
∼ ∈ Rn×n.

It should be noted, that the perturbation matrix Iu∼ has only r = rank(Iu∼) non-zeros
on the diagonal which corresponds to the number of near-boundary interior nodes
(i.e. to the number of velocity nodes affected by the tangential boundary condition
(2.36) imposed on ∂Ω):

r = 4(n− 1) = O(n). (2.52)

Note, the number of near-boundary interior nodes (empty circles), the number of
boundary nodes (solid squares), and the number of phantom nodes (empty squares)
are all equal to r. Then, the corresponding discrete space for the boundary data can
be written as follows:

Γh = Rr.

Let us further consider the following decomposition of the velocity perturbation ma-
trix Iu∼:

Iu∼ = UTU, (2.53)

where U ∈ Rr×(n(n−1)+(n−1)n) : (Uh,Vh)
T → Γh is the operator which extracts the

near-boundary interior nodes, and UT ∈ R(n(n−1)+(n−1)n)×r : Γh → (Uh,Vh)
T is

its (pseudo-)inverse, i.e. the operator which prolongates with zeros from the near-
boundary interior nodes to all interior nodes.
Finally, let uD

h , gN
h ∈ Γh denote the vectors obtained after discretization of the func-

tions uD, gN from (2.36),(2.37) on the boundary nodes (solid squares). Then, the
right-hand-side vectors from (2.48) are given as follows:

ũD
h =

2

h2
UTuD

h , g̃N
h =

1

h
UTgN

h .

The above relations can be obtained using full stencil (2.49) for the near-boundary
interior nodes with subsequent elimination of the phantom variables. Namely, let
ûΓ
h ∈ Γh denotes the velocities defined on the phantom nodes (empty squares), and

uΓ
h ∈ Γh denotes the velocities defined on the near-boundary interior nodes (which

are included into the systems). Then, in the case of the Dirichlet boundary condition
(2.36), the phantom variables can be eliminated using linear interpolation as follows:

ũΓ
h + ûΓ

h

2
= uD

h ,
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and in the case of the Neumann boundary condition (2.37), they can be eliminated
as follows:

ũΓ
h − ûΓ

h

h
= gN

h ,

Assembling operators AN and B for the auxiliary Stokes BVP

Most of the Lemmas in the present subsection are well-known for mimetic discretiza-
tions in the case of infinite domains. We formulate their analogues for the auxiliary
(enclosed Neumann) BVP. Note, the semi-staggered discretization using Kronecker
product was written in [70, 71].
The discrete operators for the auxiliary problem have a simple structure such that the
block matrices AN and B from (2.3) can be assembled using the Kronecker matrix
product from a single matrix B:

B =
1

h


1

−1 1
. . . . . .

−1 1
−1

 , B ∈ Rn×(n−1). (2.54)

Note, the matrix B can be considered as a discrete one-dimensional first-order deriva-
tive operator (from aligned grid to shifted) with zero Dirichlet boundary conditions.
Lets consider the first-order continuous differential operators (assuming infinite do-
main):

div(u) = ∇ · u = ux + vy, curl(u) = ∇× u = uy − vx,

grad(p) = ∇p = (px, py)
T , curl(q) = ∇× q = (−qy, qx)

T .
(2.55)

In what follows, we describe how the discrete analogues of these continuous opera-
tors are assembled, including boundary conditions for the auxiliary BVP.
Firstly, the discrete co-directional derivatives of the velocity, denoted Bu

x : Uh → Ph

and Bv
y : Vh → Ph, are assembled as follows:

Bu
x = Iωh ⊗ B, Bu

x ∈ Rnn×n(n−1),

Bv
y = B⊗ Iωh , Bv

y ∈ Rnn×(n−1)n,

and the discrete derivatives of the velocity curl, denoted Bq
x : Qh → Vh and Bq

y :
Qh → Uh, are assembled as follows:

Bq
x = Iωh ⊗ B, Bq

x ∈ R(n−1)n×(n−1)(n−1),

Bq
y = B⊗ Iωh , Bq

y ∈ Rn(n−1)×(n−1)(n−1).

Then, the discrete (negative) divergence of the velocity is composed as follows:

B =
[
−Bu

x −Bv
y

]
, (2.56)

and the discrete curl of the velocity curl is composed as follows:

CT =

[
−Bq

y

Bq
x

]
, CT : Qh → (Uh,Vh)

T . (2.57)
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Note, the boundary condition curl(u) = 0 on ∂Ω is included in CT , which is naturally
satisfied for the enclosed Neumann problem. Next, for the discrete gradient of the
pressure, we have: [

Bp
x

Bp
y

]
=

[
−(Bu

x)
T

−(Bv
y)

T

]
= BT , (2.58)

and for the discrete curl of the velocity, we have:[
Bu
y −Bv

x

]
=

[
−(Bq

y)T (Bq
x)T

]
= CT T

= C, C : (Uh,Vh)
T → Qh. (2.59)

It is worth noting, that the relation (2.58) reflects the fact that the pressure gradi-
ent operator, by definition, is conjugate to the negative divergence velocity operator.
Thus, the following property is always satisfied:

Lemma 2.6.6. [
Bu
x Bv

y

] [−Bq
y

Bq
x

]
= 0, (2.60)

which mimics the continuous property for the infinite domain:

∇ · (∇× q) = 0.

Proof.

BCT =− Bu
xB

q
y +Bv

yB
q
x =

− (Iωh ⊗ B)(B⊗ Iωh) + (B⊗ Iωh)(Iωh ⊗ B) =

− B⊗ B+ B⊗ B = 0.

However, the relation (2.59) is not valid in general, but only for certain "energy-
conserving" formulations. In fact, it is the fulfillment of the relation (2.59) that entails
the discrete Helmholtz-Hodge decomposition for the enclosed Neumann problem,
which is discussed in Section 2.6.3. So, the following relation is satisfied:

Lemma 2.6.7. [
Bu
y −Bv

x

] [Bp
x

Bp
y

]
= 0, (2.61)

which mimics the continuous property for the infinite domain:

∇× (∇p) = 0.

Proof.
CBT = (BCT )T = 0T = 0.

We also state the following equalities:

Lemma 2.6.8.
Bp
yB

u
x = Bq

xB
u
y , Bp

xB
v
y = Bq

yB
v
x.

which mimics the continuous relations for the infinite domain:

uxy = uyx, vyx = vxy.
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Proof.

−Bp
yB

u
x = Bv

y
TBu

x = (B⊗ Iωh)T (Iωh ⊗ B) =

= (BT ⊗ Iωh)(Iωh ⊗ B) = BT ⊗ B = (Iωh ⊗ B)(BT ⊗ Iωh) =

= (Iωh ⊗ B)(B⊗ Iωh)T = Bq
xB

q
y
T = −Bq

xB
u
y .

The discrete velocity Laplacian operator AN is assembled as follows:

Proposition 2.6.9.
AN = BTB + CTC. (2.62)

which mimics the continuous identity for the infinite domain:

−∆ = −∇∇ · + ∇×∇× .

Proof.

BTB+CTC =

=

[−Bp
xBu

x −Bp
xBv

y

−Bp
yBu

x −Bp
yBv

y

]
+

[−Bq
yBu

y Bq
yBv

x

Bq
xBu

y −Bq
xBv

x

]
=

=

[−Bp
xBu

x − Bq
yBu

y

−Bq
xBv

x − Bp
yBv

y

]
=

[
Au

N

Av
N

]
= AN.

2.6.3 Structure of the Schur complement matrix

In the present Section, we investigate the structure of the Schur complement matri-
ces:

SN = BA−1
N BT , SD = BA−1

D BT , (2.63)

corresponding to the velocity Laplacian matrices AN, AD defined in (2.62), (2.50)
for the enclosed Dirichlet and Neumann Laplacian BVPs formulated in Section 2.6.1,
respectively.

Discrete Helmoltz-Hodge Decomposition (DHHD)

The Helmholz-Hodge decomposition states that any vector field can be uniquely rep-
resented as the sum of a non-divergent field and a non-rotating field. It turns out, that
for the discrete divergence matrix B from (2.56) and the discrete curl matrix C from
(2.57), the discrete analogue of the Helmholtz-Hodge decomposition is preserved,
which can be formulated as follows:

Theorem 2.6.10.
(Uh,Vh)

T = KerB⊕KerC, (2.64)

and
rB = dim(KerB) = n2 − 1, rC = dim(KerC) = (n− 1)2. (2.65)

Proof. Firstly, from Lemma 2.6.6 or 2.6.7, we have:

ImCT ⊂ KerB,
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which implies:
(KerC)⊥ ⊂ KerB, (2.66)

since (KerC)⊥ = ImCT . Secondly, let us take x ∈ (Uh,Vh)
T such that x ∈ KerB ∩

KerC, then we have x ∈ Ker(BTB) ∩ Ker(CTC). Thus, using the representation
(2.62), we have:

(BTB)x+ (CTC)x = ANx = 0,

which implies that x = 0, since the matrix AN has full rank. Therefore, we have
shown that KerB ∩ KerC = 0, which completes the proof of the decomposition
(2.64), taking into account the relation (2.66). Next, in order to prove the dimension
relations (2.65), we note that the fully-staggered finite-difference discretization of
the pressure gradient operator BT defined in (2.58) has a one-dimensional nullspace
spanned by the constant vector 1, which is defined as follows:

1 = h(1, . . . , 1)T ∈ Ph, |1|2 = 1. (2.67)

It is also worth mentioning that rB = rank(BTB) and rC = rank(CTC).

Several important conclusions can be drawn from Theorem 2.6.10. The most impor-
tant one (see Corollary 2.6.10.1) is that the discrete Neumann velocity Laplacian op-
erator AN expands into the direct sum with respect to the discrete Helmholtz-Hodge
decomposition (2.64). In what follows, we consider the Singular Value Decomposi-
tion (SVD) of the underlying operators.
Lets consider the reduced SVD decomposition of the matrix B:

B = VBΣBU
T
B,

with matrices with orthogonal columns:

VB =
[
p1B p2B . . . prBB

]
, UB =

[
u1
B u2

B . . . urB
B

]
,

and the reduced SVD decomposition of the matrix C:

C = VCΣCU
T
C ,

with matrices with orthogonal columns:

VC =
[
q1C q2C . . . qrCC

]
, UC =

[
u1
C u2

C . . . urC
C

]
,

where rB and rC are the ranks given in (2.65). Then, we have:

(KerB)⊥ = ImBT = L(u1
B,u

2
B, . . . ,u

rB
B ),

(KerC)⊥ = ImCT = L(u1
C ,u

2
C , . . . ,u

rC
C ).

From the equation (2.64), we also have (KerC)⊥ = KerB and (KerB)⊥ = KerC, so
it can be rewritten as follows:

(Uh,Vh) = L(u1
C ,u

2
C , . . . ,u

rC
C )⊕ L(u1

B,u
2
B, . . . ,u

rB
B ).

The Moore-Penrose pseudo-inverses of B and C are defined as follows using SVD
decompositions:

C† = UCΣ
−1
C VT

C ,
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B† = UBΣ
−1
B VT

B.

We also define:

PKerB = C†C = UC(Σ
−1
C VT

CVCΣC)U
T
C = UCU

T
C , (2.68)

PKerC = B†B = UB(Σ
−1
B VT

BVBΣB)U
T
B = UBU

T
B, (2.69)

which are orthogonal projectors:

P2
KerB = PKerB = PT

KerB,

P2
KerC = PKerC = PT

KerC.

From (2.64), we have:

PKerBPKerC = PKerCPKerB = 0,

PKerB + PKerC = Iu.
(2.70)

Also, swapping the matrices and their pseudo-inverses, we have:

CC† = Iq, BB† = Ip − (1 · 1T ). (2.71)

Corollary 2.6.10.1. The discrete Neumann velocity Laplacian operator AN defined
in (2.62) expands into direct sum with respect to the Helmholtz-Hodge decomposition
(2.64), namely:

AN = (PKerCANPKerC) + (PKerBANPKerB), (2.72)

and for the inverse, we have:

A−1
N = (PKerCANPKerC)

† + (PKerBANPKerB)
†. (2.73)

Proof. First, for the matrices BTB and CTC, we have the following SVD decomposi-
tions:

BTB = UBΣB(V
T
BVB)ΣBU

T
B = UBΣ

2
BU

T
B,

CTC = UCΣC(V
T
CVC)ΣCU

T
C = UCΣ

2
CU

T
C .

For the second term of (2.72), we have:

PKerBANPKerB =

= UCU
T
C(UBΣ

2
BU

T
B +UCΣ

2
CU

T
C)UCU

T
C =

= UC(U
T
CUB)Σ

2
B(U

T
BUC)U

T
C +UC(U

T
CUC)Σ

2
C(U

T
CUC)U

T
C =

= UC(0)Σ
2
B(0)U

T
C +UC(I)Σ

2
C(I)U

T
C =

= CTC.

Similarly, we have for the first term of (2.72):

PKerCANPKerC = BTB,

which proves the first part of theorem.
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For the inverse, we have:

A−1
N = (BTB+CTC)−1 =

= (UBΣ
2
BU

T
B +UCΣ

2
CU

T
C)

−1 =

= (
[
UB UC

] [Σ2
B

0

] [
UT

B

UT
C

]
+
[
UB UC

] [0
Σ2
C

] [
UT

B

UT
C

]
)−1 =

= (
[
UB UC

] [Σ2
B

Σ2
C

] [
UT

B

UT
C

]
)−1 =

=
[
UB UC

] [Σ−2
B

Σ−2
C

] [
UT

B

UT
C

]
=

=
[
UB UC

] [Σ−2
B

0

] [
UT

B

UT
C

]
+
[
UB UC

] [0
Σ−2
C

] [
UT

B

UT
C

]
=

= UBΣ
−2
B UT

B +UCΣ
−2
C UT

C =

= (BTB)† + (CTC)†,

which completes the proof.

The following block matrix is of special interest:

Q =

[
B
C

]
, Q : (Uh,Vh)

T → (Ph,Qh)
T . (2.74)

The matrix Q ∈ RN+1×N is nearly square matrix of the size N if we denote N = (n−
1)n+n(n−1) = 2n(n−1) the number of velocity nodes. Indeed, for the dimension of
the divergency-vorticity space (Ph,Qh)

T , we have n2+(n−1)2 = 2n(n−1)+1 = N+1.
Moreover, from Theorem 2.6.10, the matrix Q is non-singular in the sense that it has
full column rank. Using this matrix Q, for the Dirichlet and Neumann Laplacians,
defined in (2.50) and (2.62), we have the following decomposition:

AN = QTQ, AD = QTQ+
2

h2
Iu∼. (2.75)

Note, the decomposition (2.75) leads to a simple way to show positive definitness of
the discrete vector Laplacians. Namely, for all uh ∈ (Uh,Vh)

T , uh ̸= 0, we have:

(ANuh,uh) = (QTQuh,uh) = (Quh,Quh) > 0,

(ADuh,uh) = (QTQuh,uh) +
2

h2
(Iu∼uh,uh) =

= (Quh,Quh) +
2

h2
(Iu∼uh,uh) > 0.

Structure of SN

In this subsection, we demonstrate that the Neumann Schur complement matrix SN

from (2.63) is reduced to the pressure identity operator Ip defined in (2.45), up to a
one-dimensional constant nullspace.

Corollary 2.6.10.2. For the Neumann Schur complement matrix, we have the following
explicit representation:

SN = Ip − (1 · 1T ), (2.76)

where 1 ∈ Ph is the pressure constant defined in (2.67).
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Proof. Using decomposition (2.73), we have:

SN = BA−1
N BT = B((BTB)† + (CTC)†)BT =

= B(BTB)†BT = BB†(BB†)T =

= (BB†)2 = BB†,

where the resulting matrix BB† is, by definition (2.71), an orthogonal projector onto
the kernel of the discrete gradient operator BT , which completes the proof. Alterna-
tive proof using SVD can be written as follows:

BA−1
N BT = B((BTB)† + (CTC)†)BT =

= VBΣBU
T
B(UBΣ

−2
B UT

B +UCΣ
−2
C UT

C)UBΣBV
T
B =

= VBΣB(U
T
BUB)Σ

−2
B (UT

BUB)ΣBV
T
B+

+VBΣB(U
T
BUC)Σ

−2
B (UT

CUB)ΣBV
T
B =

= VBV
T
B = Ip − (1 · 1T ).

Finally, for the inverse of SN , by definition, we have:

Corollary 2.6.10.3.
S†
N = SN , S†

N : Ph → Ph. (2.77)

Thus, it has been shown that the Neumann Schur complement matrix SN , as well as
its inverse S†

N , equals the identity operator Ip acting on the discrete pressure space
Ph, up to a one-dimensional kernel of the discrete pressure gradient operator BT .

Structure of SD

The matrix SD = BA−1
D BT , as well as its inverse S†

D, can be written as rank-r pertur-
bations of the identity matrices SN and S†

N defined in (2.76) and (2.77), respectively:

Theorem 2.6.11.

SD = SN − (UB†)T (K1)
−1(UB†), (2.78a)

S†
D = S†

N + (UB†)T (K2)
−1(UB†), (2.78b)

where r-dimensional kernels K1,K2 ∈ Rr×r are defined as follows:

K1 = U(
h2

2
Iu + (BTB)† + (CTC)†)UT ,

K2 = U(
h2

2
Iu + (CTC)†)UT .

Proof. For the proof we use Sherman–Morrison–Woodbury formula [72], which states
that the inverse of a rank-r correction of some matrix can be computed by doing a
rank-r correction to the inverse of the original matrix. Let A ∈ Rn×n, C ∈ Rr×r,
U ∈ Rn×r, V ∈ Rr×n, then for the inverse of A, we have:

(A+ UTCU)−1 = A−1 −A−1UT (C−1 + UA−1UT )−1UA−1. (2.79)
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Taking into account the representation formula (2.50) and the decomposition (2.53),
the Woodbury formula for the inverse of AD gives:

A−1
D = A−1

N −A−1
N UT (

h2

2
Ir +UANUT )−1UA−1

N =

= A−1
N − (UA−1

N )T (K1)
−1(UA−1

N ),

where Ir is identity matrix of size r × r. Then, for the Dirichlet Schur complement,
we have:

SD = BA−1
D BT = BA−1

N BT − (UA−1
N BT )T (K1)

−1(UA−1
N BT ),

which completes the proof of (2.78a), taking into account that:

A−1
N BT = ((BTB)† + (CTC)†)BT = (BTB)†BT = B†.

In order to proof (2.78b), we exploit the Woodbury formula once again for the inverse
of SD under the representation (2.78a):

S†
D − S†

N =

= (S†
N )(UB†)T [((K1)

−1)−1 + (UB†)(S†
N )(UB†)T ]−1(UB†)(S†

N )

= (UB†)T [U(
h2

2
Iu + (BTB)† + (CTC)† − (BTB)†)UT ]−1(UB†)

= (UB†)T (K2)
−1(UB†),

which completes the proof.

From Theorem 2.6.11, it can be seen that the number of non-unit eigenvalues of
the Schur complement matrix corresponds to the rank r, i.e. the number of the
near-boundary interior nodes with perturbed stencil. In Table 2.7, we also provide
comparison with numerical experiment (recall the relation (2.33)).

size, n n2 Nev r = 4(n− 1)

32 1024 124 124
64 4096 252 252

128 16386 508 508
256 65536 1020 1020

TABLE 2.7: n is size of the problem, n2 is the total number of eigenval-
ues of S, Nev is the number of non-unit eigenvalues computed numer-
ically using Python code provided in Section 2.C, and r is the number

of the near-boundary interior nodes defined in 2.52.

All spectral bounds for SD and S−1
D can be derived from Theorem 2.6.11.

Limiting case: surface-to-volume ratio → 1

Let us consider the limiting case, when the perturbation matrix Iu∼ defined in (2.51)
has full rank and coincides with the vector velocity identity matrix Iu defined in
(2.47):

Iu∼ = Iu.
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For examples, this corresponds to the case n = 2 for the square domain. Then, the
inverse of the Dirichlet Schur complement matrix defined in (2.78b) is reduced as
follows:

Theorem 2.6.12.

S†
lim = (B(AN +

2

h2
Iu)−1BT )† = S†

N +
2

h2
(BBT )†, (2.80)

where the matrix (BBT ) : Ph → Ph is the pressure Laplacian with the Neumann
boundary conditions and the constant nullspace (2.67).

Proof. First, the velocity identity matrix can be decomposed under the DHHD using
(2.70) as follows:

Iu = B†B+C†C.

Next, for U = UT = Iu, we have:

K−1
2 = (

h2

2
(B†B+C†C) + (CTC)†)−1,

then, using orthogonality of B and C, we have for Slim:

S†
lim − S†

N = (B†)T (
h2

2
B†B)†(B†) =

2

h2
(B†)TB† =

2

h2
(BBT )†.

This explains why the SIMPLE preconditioner and the preconditioner presented in
[36] works well for geometries with high s-t-v ratio. Indeed, for Iu∼ → Iu, we have
S†
D → S†

lim. The result is straightforward to generalize for voxel-based geometries.
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Appendix for Chapter 2

2.A Exterior boundary conditions for DRP flow experiment

In the main text in Section 2.2.2 the periodic boundary conditions were described for
all three direction according to homogenization theory. In this section we formulate
additional setting of the flow experiments which are used in our computational ex-
periments and are implemented in the code. Similarly, we assume that z direction is
the flow direction, and x, y directions are the tangential ones. We further subdivide
the exterior boundary Γext defined in (2.14) into three parts:

Γext = Γin ∪ Γout ∪ Γt, (2.81)

where Γt denotes the tangential exterior boundary:

Γt = (Γx=0 ∪ Γx=1 ∪ Γy=0 ∪ Γy=1) ∩ Ω
f
h, (2.82)

and Γin, Γout denote the inflow, outflow boundaries, respectively:

Γin = Γz=0 ∩ Ω
f
h, Γout = Γz=1 ∩ Ω

f
h. (2.83)

Let us further denote n̂ the outward unit normal of the boundary Γext. Then, one can
uniqely write the following decomposition for the velocity vector field u:

u = u⊥ + u∥, (2.84)

where u⊥ = u⊥û⊥ = (n̂ ·u)n̂ and u∥ = u−u⊥ = u∥û∥ = (n̂×u)× n̂ are the normal
and tangential components, respectively.

2.A.1 Boundary conditions in tangential directions

Except of the periodic boundary conditions, several options can be considered for the
tangential boundary Γt:

1. The first option is to impose the no-slip plus no-penetration boundary condition,
which is the zero Dirichlet b.c. imposed on the velocity:

u = 0 on Γt. (2.85)

2. The second option is to impose the free-slip boundary condition, which again
includes the no-penetration boundary condition imposed on the normal compo-
nent of the velocity:

u⊥ = (u · n̂) = 0 on Γt. (2.86)

and for the tangential part of the normal traction force we prescribe zero value
as follows:

(∇u · n̂− pn̂)∥ = ∂u∥/∂n̂ = 0 on Γt. (2.87)
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2.A.2 Boundary conditions in flow direction

In order to define other then periodic boundary conditions in the direction of flow, we
assume that there always exist fluid transient regions at the inlet Γin (inflow region)
and at the outlet Γout (outflow region). Formally, we have Γin = Γz=0 ⊂ Ω

h
f and

Γout = Γz=1 ⊂ Ω
h
f . These transient regions are assumed to be large enough to en-

sure stationary behaviour of the flow at the exterior boundaries of the computational
domain.
On the boundary Γout, we consider the outflow boundary conditions, given as follows:

(∇u · n̂− pn̂)⊥ = ∂u⊥/∂n̂− p = pout, u∥ = 0 on Γout, (2.88)

where pout is a given outflow pressure, which is typically assumed zero.
On the boundary Γin, we consider two boundary conditions. Firstly, the inflow Dirich-
let boundary condition, which is given as follows:

u⊥ = uin, u∥ = 0 on Γin, (2.89)

where uin is a given normal velocity. Secondly, similarly to the outflow boundary
conditions (2.88), we define the inflow boundary conditions as follows:

(∇u · n̂− pn̂)⊥ = ∂u⊥/∂n̂+ p = pin, u∥ = 0 on Γin, (2.90)

where pin is a given inflow pressure which drives the flow.
In the DRP flow experiment, except of the periodic boundary conditions (2.15), we
consider several other combinations for the boundary conditions imposed in the flow
direction:

1. The first option is to combine the Dirichlet boundary condition (2.89) on Γin

and the outflow BC (2.88) on Γout. This combination is also sometimes called
as Velocity-Inlet-Pressure-Outlet (VIPO) in DRP.

2. The second option is to combine the inflow boundary condition (2.90) on Γin

and the outflow boundary condition (2.88) on Γout. Similarly to VIPO, this
combination can be called as Pressure-Inlet-Pressure-Outlet (PIPO).

2.B On the coupled analogues of the CG-SIMPLE and CG-
Uzawa algorithms

A wide class of preconditioners for the stationary Stokes equations (see, e.g., [23,
29, 73, 74, 33]), including the classical SIMPLE and Uzawa algorithms in their cou-
pled forms, can be constructed by discarding one or more factors in the following
approximation of the matrix A from (2.3):

Â = L̂D̂Û =

[
Iu

BÂ−1
1 Ip

] [
Â2

−Ŝ

] [
Iu Â−1

3 BT

Ip

]
, (2.91)

where Â1, Â2, Â3 are (possibly different) approximations of A, and Ŝ is an approx-
imation of the Schur complement matrix S from (2.5). Popular options are block
lower triangular, block diagonal, and block upper triangular preconditioners:

L̂D =

[
Â

B −Ŝ

]
, D̂ =

[
Â

−Ŝ

]
, D̂U =

[
Â BT

−Ŝ

]
, (2.92)
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where Â is an approximations of A.
Let us consider the stationary iteration corresponding to an operator splitting A =
Â− (Â− A), given as follows:[

uk+1
h

pk+1
h

]
=

[
uk
h

pkh

]
+ Â−1(

[
fh
gh

]
− A

[
uk
h

pkh

]
). (2.93)

For certain choices of the preconditioner Â, the coupled iteration (2.93) can be equiv-
alently rewritten as the preconditioned Richardson iteration for the reduced system
(2.4):

pk+1
h = pkh + αŜ−1(gSh − Spkh), (2.94)

where α > 0 is a parameter of the Richardson iteration.
In subsection 2.B.1 and 2.B.2, we show how the classical non-Krylov-accelerated ver-
sions of the Uzawa and SIMPLE algorithms can be equivalently written as stationary
iterations in either coupled or reduced form.

2.B.1 Classical Uzawa algorithm

We consider the classical Uzawa algorithm in the following form (see., e.g., [23]):
Auk+1

h = fh −BT pkh,

Ŝuzawaδp
k
h = αuzawa(Buk+1

h − gh),

pk+1
h = pkh + δpkh,

(2.95)

where αuzawa is a relaxation parameter of the algorithm, and Ŝuzawa is given in (2.7).

Proposition 2.B.1. Firstly, as it is shown in [75], the Uzawa iteration (2.95) can be
regarded as a stationary iteration of the form (2.93) with a preconditioner Â given as
follows:

Â = Âuzawa =

[
A

B −(1/αuzawa)Ŝuzawa

]
, (2.96)

which corresponds to a block lower triangular preconditioner L̂D defined in (2.92) if we
take:

Ŝ = (1/αuzawa)Ŝuzawa, Â = A. (2.97)

Secondly, the Uzawa iteration (2.95) is equivalent to the Richardson iteration (2.94)
(see, e.g. [23]), if we take:

Ŝ = Ŝuzawa, α = αuzawa. (2.98)

2.B.2 Classical SIMPLE algorithm

Let us now consider the classical SIMPLE algorithm in the following form [30, 33]:

Au
k+ 1

2
h = fh −BT pkh,

Ŝsimpleδp
k
h = αsimple(Bu

k+ 1
2

h − gh),

Âsimpleδu
k
h = −BT δpkh,

pk+1
h = pkh + δpkh,

uk+1
h = u

k+ 1
2

h + δuk
h,

(2.99)
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where αsimple is a pressure damping parameter of the algorithm and Ŝsimple is defined
in (2.7).

Proposition 2.B.2. Firstly, as it is shown in [33], the iterative process (2.99) can be
regarded as a stationary iteration of the form (2.93) with a preconditioner Â given as
follows:

Â = Âsimple =

[
A

B −(1/αsimple)Ŝsimple

] [
Iu Â−1

simpleB
T

Ip

]
, (2.100)

which corresponds to a preconditioner Â of the block structure (2.91) if we take:

Â1 = Â2 = Â, Â3 = Âsimple, Ŝ = (1/αsimple)Ŝsimple. (2.101)

Secondly, the SIMPLE iteration (2.99) is equivalent to the Richardson iteration (2.94)
(see, e.g. [20]), if we take:

Ŝ = Ŝsimple, α = αsimple. (2.102)

It should be noted, that different splittings of A in the coupled iterations (2.93) may
result in the same reduced iteration (2.94). For example, replacing Ŝuzawa, αuzawa by
Ŝsimple, αsimple in (2.96) results in the following preconditioner Â:

Â = Â∗
simple :=

[
A

B −(1/αsimple)Ŝsimple

]
, (2.103)

which corresponds to a block lower triangular preconditioner L̂D defined in (2.92) if
we take:

Ŝ = (1/αsimple)Ŝsimple, Â = A. (2.104)

Then, the coupled iteration (2.93) with the preconditioner Â = Â∗
simple determines

the following iterative process:
Auk+1

h = fh −BT pkh,

Ŝsimpleδp
k
h = αsimple(Buk+1

h − gh),

pk+1
h = pkh + δpkh.

(2.105)

In the same time, the iterative process (2.105) is also equivalent to the Richard-
son iteration (2.94) for the choice (2.102), hence it is also equivalent to the classi-
cal SIMPLE algorithm (2.99). So, according to the terminology from [25, 24], the
CG-SIMPLE algorithm can be also identified as the preconditioned with SIMPLE CG-
accelerated Uzawa algorithm.

2.B.3 Reduced analogue for the block diagonal preconditioner

Instead of the block lower triangular preconditioners (2.96) and (2.103), in practice
the block diagonal preconditioner is often used:

Âdiag =

[
A

−(1/α)Ŝ

]
.
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Proposition 2.B.3. The stationary iteration corresponding to the operator splitting A =
Â− (Âdiag − A):

Âdiag

[
uk+1
h

pk+1
h

]
= Âdiag

[
uk
h

pkh

]
−
(
A
[
uk
h

pkh

]
−
[
fh
gh

])
is equivalent to the two-step Richardson iteration for the reduced system, given as fol-
lows:

pk+1
h = pkh + αŜ−1(gSh − Spk−1

h ).

2.B.4 Note on the Krylov subspace acceleration

For the coupled form of the Uzawa and SIMPLE algorithms, usually the GMRES (or
BiCG) Krylov subspace method is used to accelerate stationary iterations (2.93) (see,
e.g., [73, 29]), since the corresponding block lower triangular preconditioners are not
symmetric. Alernatively, MINRES can be used with block diagonal preconditioner. We
use CG to accelerate the reduced stationary iterations (2.94). Despite non-accelerated
Uzawa and SIMPLE can be written equivalently in both reduced and coupled forms,
in fact, different Krylov accelerators of the SIMPLE or Uzawa algorithms may result
in non-equivalent iterative methods.

2.C Implementations details

Two implementations of the presented solvers are done. First, in the framework
SCoPeS (stands for Skoltech Computing Permeability Solver). The SCoPeS solver
is built on top of the PETSc open-source library [76, 77], which provides a linear
algebra backend for the scalable (MPI parallel) solution of partial differential equa-
tions, including data structures for sparse matrix computations, a context for Krylov
subspace methods (PETSc.KSP module), and a variety of preconditioners (PETSc.PC
module). Particularly, the PCG method that used for inverting S, Ŝ, and A is im-
plemented within PETSc.KSP.KSPCG routine. We use BoomerAMG [51], which has
demonstrated excellent performance in solving DRP problems. The second imple-
mentation is a part of the PoreChem package [78], where Intel MKL is used for sparse
linear algebra, and SAMG [79] is used for algebraic multigrid.
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1 import numpy as np # dense linear algebra
2 import scipy.sparse as sp # sparse linear algebra
3

4 l = 6
5 n = 2**l # problem size
6 h = 2**(-l) # mesh size
7

8 I_shifted = sp.eye((n)) # 1d identity for shifted grid
9 I_aligned = sp.eye((n-1)) # 1d identity for aligned grid

10 B_1d = sp.diags([-1, 1], [-1, 0], shape=(n, n - 1))/h # 1d derivative
11

12 # co -directional derivatives
13 B_u_x = sp.kron(I_shifted , B_1d) # 2d derivative du/dx
14 B_v_y = sp.kron(B_1d , I_shifted) # 2d derivative dv/dy
15 B = sp.bmat([[-B_u_x , -B_v_y ]]) # negative divergence
16

17 # skew -directional derivatives
18 B_u_y = sp.kron(-B_1d.T, I_aligned) # 2d derivative du/dy
19 B_v_x = sp.kron(I_aligned , -B_1d.T) # 2d derivative dv/dx
20 C = sp.bmat([[-B_u_y , B_v_x ]]) # velocity curl operator
21

22 A_N = B.T@B + C.T@C # Neumann velocity Laplacian
23

24 # perturbation matrix
25 diag = np.zeros(n); diag [0] = 1; diag[-1] = 1
26 I_shifted_tilde = sp.diags(diag , 0)
27 Iu_tilde = sp.kron(I_shifted_tilde , I_aligned)
28 Iv_tilde = sp.kron(I_aligned , I_shifted_tilde)
29 I_uv_tilde = sp.bmat ([[ Iu_tilde , None],[None , Iv_tilde ]])
30

31 A_D = A_N + 2/(h**2)*I_uv_tilde # Dirichlet velocity Laplacian
32

33 stokes_aux = sp.bmat ([[A_N , B.T],[B, None ]]) # Stokes auxiliary
34 stokes_prim = sp.bmat ([[A_D , B.T],[B, None ]]) # Stokes primary
35

36 # construct RHS for the lid -driven cavity problem
37 source = np.zeros(n)
38 source [0] = 1
39 fu = (2/h**2)*np.kron(source , np.ones(n-1))
40 fv = np.zeros(n*(n-1))
41 fp = np.zeros(n*n)
42 f = np.concatenate ((fu ,fv ,fp))
43

44 sol = sp.linalg.spsolve(stokes_prim , f) # solve
45 res = np.linalg.norm(stokes_prim@sol -f)/np.linalg.norm(f)
46 print("residual: " + str(res)) # check the residual is small
47

48 # extract solutions
49 sol_u = sol[:n*(n-1)]
50 sol_v = sol[n*(n-1):-n*n]
51 sol_p = sol[-n*n:]
52 sol_p -= np.sum(sol_p)/n**2 # substruct constant nullspace
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2.D Convergence in preconditioned vs unprecinditioned norm

The Appendix provides additional information for numerical experiments from Sec-
tions 2.5.1 and 2.5.2. Tables 2.8, 2.9, 2.10 correspond to the convergence plot
presented in Fig. 2.4. The tables include relative permeability error ek and the
corresponding number of iteration k for different residual thresholds εS = 10−1,
εS = 10−2, εS = 10−3, respectively. Note, for the CG-SIMPLE algorithm, the tables
include thresholds for both preconditioned and unpreconditioned residual norms for
the comparison purposes. Similar results corresponding to the convergence plot pre-
sented in Fig. 2.8 for thresholds εS = 10−2, εS = 5 · 10−3, εS = 10−3 are provided in
Tables 2.11, 2.12, and 2.13, respectively.
Additionally, in Fig. 2.5, we plot the unpreconditioned residual norm for the CG-
SIMPLE algorithm corresponding to the convergence history from Fig. 2.4, where
the preconditioned residual is plotted. Note, the unpreconditioned residual always
decreases monotonically.

TABLE 2.8: Permeability error ek (iteration k) for residual threshold
εS = 0.1 corresponding to the convergence history from Fig. 2.4.

Sample Uzawa SIMPLE (prec) SIMPLE (unprec)
A 33.24 (9) 16.86 (3) 1.829 (8)
B 51.87 (8) 19.28 (3) 1.955 (8)
C 76.97 (9) 39.10 (4) 4.161(10)
D 11.20 (8) 3.320 (3) 0.571 (7)
E 53.79 (8) 51.42 (3) 3.565(10)
S 0.7281(6) 0.4033(2) 0.059 (6)

TABLE 2.9: Permeability error ek (iteration k) for residual threshold
εS = 0.01 corresponding to the convergence history from Fig. 2.4.

Sample Uzawa SIMPLE (prec) SIMPLE (unprec)
A 3.412(114) 0.840 (10) 0.0128 (23)
B 5.013 (92) 0.678 (11) 0.0162 (24)
C 9.430 (88) 1.613 (13) 0.0357 (27)
D 1.119(112) 0.278 (9) 0.0044 (25)
E 6.097 (74) 1.427 (13) 0.0960(29)
S 0.022 (51) 0.016 (11) 0.0005 (31)

TABLE 2.10: Permeability error ek (iteration k) for residual threshold
εS = 0.001 corresponding to the convergence history from Fig. 2.4.

Sample Uzawa SIMPLE (prec) SIMPLE (unprec)
A 0.2209(1237) 0.0169 (22) 0.00120 (39)
B 0.0146 (800) 0.0221 (23) 0.00260 (44)
C 0.5852 (944) 0.0557 (25) 0.00260 (48)
D 0.0286 (807) 0.0084 (22) 0.00006 (47)
E 0.4030 (837) 0.0936 (26) 0.01230 (55)
S 0.0002 (134) 0.0005 (31) 0.00000 (58)
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TABLE 2.11: Permeability error ek (iteration k) for residual threshold
εS = 0.01 corresponding to the convergence history from Fig. 2.8.

Uzawa SIMPLE (prec) SIMPLE (unprec)
s-t-v=46.9 6.6e− 3 (55) 1.1e− 4 (8) 1.1e− 4 (8)
s-t-v=30.5 4.7e− 3 (42) 4.8e− 4 (9) 1.1e− 4 (12)
s-t-v=22.3 5.6e− 3 (33) 7.7e− 4 (11) 1.4e− 4 (15)
s-t-v=17.3 3.8e− 3 (30) 11.7e− 4 (11) 1.5e− 4 (18)
s-t-v=14.0 3.8e− 3 (25) 9.5e− 4 (13) 1.6e− 4 (20)

TABLE 2.12: Permeability error ek (iteration k) for residual threshold
εS = 0.005 corresponding to the convergence history from Fig. 2.8.

Uzawa SIMPLE (prec) SIMPLE (unprec)
s-t-v=46.9 2.1e− 3 (76) 1.1e− 4 (8) 2.24e− 5 (10)
s-t-v=30.5 1.7e− 3 (53) 1.6e− 4 (11) 2.67e− 5 (15)
s-t-v=22.3 1.4e− 3 (47) 2.5e− 4 (14) 3.17e− 5 (19)
s-t-v=17.3 1.1e− 3 (38) 1.9e− 4 (17) 3.25e− 5 (23)
s-t-v=14.0 0.7e− 3 (35) 2.5e− 4 (18) 3.64e− 5 (26)

TABLE 2.13: Permeability error ek (iteration k) for residual threshold
εS = 0.001 corresponding to the convergence history from Fig. 2.8.

Uzawa SIMPLE (prec) SIMPLE (unprec)
s-t-v=46.9 5.39e− 5 (137) 9.6e− 6 (12) 2.24e− 6 (14)
s-t-v=30.5 4.43e− 5 (97) 5.9e− 6 (17) 1.47e− 6 (21)
s-t-v=22.3 4.26e− 5 (80) 1.4e− 5 (22) 1.47e− 6 (28)
s-t-v=17.3 3.62e− 5 (60) 1.24e− 5 (27) 1.49e− 6 (34)
s-t-v=14.0 3.40e− 5 (51) 1.43e− 5 (29) 1.46e− 6 (39)
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Chapter 3

Stokes-Brinkman equations in
tight porous media

3.1 Problem statement

3.1.1 Representing pore-space geometries: grey-scale images

In the case of grey-scale images, the entire cube Ωh = [0, L]3 (defined in (2.9) for
binary images), consist of three parts:

Ωh = Ω
f
h ∪ Ω

p
h ∪ Ω

s
h, (3.1)

where Ωs
h and Ωf

h are the solid part and the pure fluid part (resolved porosity) as
in the binary case, but additionally Ωp

h appears, which represents the region with
unresolved porosity. Similarly to (2.11), the domain partition (3.1) corresponds to a
disjoint decomposition of the index set In:

In = Inf ⊔ Inp ⊔ Ins ,

such that:
Ω
∗
h =

⋃
(i,j,k)∈In∗

ω(i,j,k), ∗ = f, p, s.

As in the binary case, the solid part Ωs
h is considered impenetrable, hence the compu-

tational domain becomes:
Ωfp
h = Ωf

h ∪ Ωp
h.

The binary images correspond to the case Ωp
h = ∅. However, as it was mentioned in

the Introduction, it is not always possible to resolve a fine micro-structure of a porous
space to the binary state, especially in the case of low porosity images. In general, for
each voxel ω(i,j,k) we prescribe the porosity ϕ(i,j,k) ∈ [0, 100] (%) which defines the
partition (3.1) as follows:

ω(i,j,k) ⊂


Ωf
h if ϕ(i,j,k) = 0,

Ωp
h if ϕ(i,j,k) ∈ (0, 100),

Ωs
h if ϕ(i,j,k) = 100.

(3.2)

For this, the grey part of the image is split into equal intervals and the porosity is
proportionally prescribed for each interval. Note, that in (3.2) different porosity,
coming from the gray image, can be considered in each porous voxel. We call such
images multiclass images. However, most simulations in our numerical experiments
are performed for ternary images with some constant average porosity prescribed to
all porous voxels from Ωp

h. For examples of ternary images see Fig. 3.1.
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3.1.2 Governing equations

There are two basic approaches for the numerical flow simulations when porous and
free-flow regions co-exist at different scales. The first approach is to use the coupled
Stokes-Darcy equations (see, e.g., [80, 81, 82]), which consider different models in
different subdomains coupled via proper interface conditions. In DRP, the other ap-
proach, namely the Stokes-Brinkman model, sometimes also called the single-domain
approach, is valid in both the fluid and porous subregions (see, e.g., [83]). Note,
that often in the literature such models are called just Brinkman models or Darcy-
Brinkman models. However, we use the Stokes-Brinkman term to emphasize that
pure fluid voxels exist in the domain.
Stokes-Brinkman equations. The Stokes-Brinkman equations can be considered as
a combination of Stokes and Darcy equations:

−∆u+K−1u+∇p = 0 in Ωfp
h , K−1 ≥ 0,

−∇ · u = 0 in Ωfp
h .

(3.3)

Here K is a spatially varying permeability tensor, and K−1 is the flow resistivity. To
avoid ambiguity with the effective (macro-scale) permeability keff , we refer this per-
meability tensor K as microscopic permeability. In our study, we consider isotropic
permeability tensors, i.e. K = KI. The flow regime can be administrated via per-
meability tensor K. Namely, in Ωf

h we assume K = +∞, then the reaction term
K−1 disappears and the Stokes-Brinkman system reduces to the Stokes (2.1) system,
while for K ≪ 1, the viscous term can be neglected leading to the Darcy equation.
It is crucial to highlight, that a single equation covers two fundamentally different
flow regimes in this case. Consequently, delivering a unified numerical approach for
solving the Stokes-Brinkman equations presents significant challenges, often necessi-
tating the use of different preconditioners for different flow regimes. Namely, a robust
Stokes-Brinkman solver should be able at efficiently handling both limiting cases: the
Darcy problem (3.5) and the Stokes problem (2.1).

3.1.3 Approximation using Brinkman and Darcy equations

Brinkman perturbation of the Stokes-Brinkman problem. In tight reservoirs,
one may face a necessity to compute the permeability for images where no pure
fluid percolation path exists. In such cases, the flow consequently passes fluid and
porous subregions; hence the effective permeability of the image is governed by the
resistance of the porous subregions, while the resistance of the fluid subdomain could
be neglected. For such samples, the perturbation K̃ of the permeability tensor K can
be considered by introducing a fictitious permeability value KStokes in the pure fluid
voxels from Ωf

h. Then, K̃−1 does not vanish in any of the voxels, and the Stokes-
Brinkman equations (3.3) are thus perturbed to the Brinkman equations:

−∆u+ K̃−1u+∇p = 0 in Ωp
h, K̃−1 > 0,

−∇ · u = 0 in Ωp
h.

(3.4)

The Brinkman equations (see, e.g., [84]) play an important role for classes of porous
media flows, e.g., describing more adequately flows in large porosity domains and
allowing to account for no-slip boundary conditions. Here, however, they are not used
for a more accurate description of the flow, but they are considered as a perturbation
to the Stokes-Brinkman equations (3.3).
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Darcy approximation of the Brinkman problem. The Brinkman problem (3.4) can
be further approximated by neglecting the viscous term, which results in the Darcy
equation:

K̃−1u+∇p = 0 in Ωp
h, K̃−1 > 0,

−∇ · u = 0 in Ωp
h.

(3.5)

It will be shown in this paper that for a certain class of images, the Darcy equa-
tion (3.5) can be solved instead of the Stokes-Brinkman equations (3.3) in order
to dramatically reduce the computational time while preserving the accuracy of the
effective permeability computations.
Note that the idea of solving the Darcy problem instead of the Stokes-Brinkman one is
not a new one; it was earlier explored, e.g., in [15]. Here this approach is a part of the
workflow, which is equipped with a preprocessor module (classifier) to automatically
decide if it is reasonable to solve the Darcy approximation.

3.1.4 Boundary conditions

For multiclass images, we consider the same set of boundary conditions as for the
Stokes problem. If one wants to use the periodic boundary conditions formulated
in Section 2.2.2 for binary images, a similar to (2.16) periodicity constraint should
be imposed on the porous part Ωh

p (2.11), as well as on the microscopic permeability
tensor K. However, most of the experiments from Section 3.4 are performed with the
Pressure-Inflow-Pressure-Outflow boundary conditions imposed in the flow direction
(recall Section 2.A for details). On the interior boundaries, we impose the no-slip
boundary conditions for the Stokes-Brinkman equations. Similarly to (2.12), the
interior boundary for multiclass images is given as follows:

Γ0 = (Ω
f
h ∪ Ω

p
h) ∩ Ω

s
h. (3.6)

It is also worth noting, that no special conditions are imposed on the interface Ω
f
h∩Ω

p
h,

except for the continuity conditions inherited from the discretization, as described in
Section 3.2.1.

Computing permeability

When computing permeability, the velocity is now integrated over Ωfp
h (compare with

2.19):

⟨uz⟩ =
1

|Ωh|

∫
Ωfp

h

uz.

3.2 Adaptation of the CG-SIMPLE algorithm

For solving the Stokes-Brinkman equations, we use the CG-SIMPLE Algorithm 1 de-
scribed for the Stokes problem in Chapter 2, adapted to account for additional reac-
tion (Brinkman) term. After finite-difference discretization of the Stokes-Brinkman
equations using fully-staggered grids, we obtain the following system:

A
[
uh
ph

]
=

[
fh
gh

]
, A =

[
F BT

B 0

]
, (3.7)
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where discretization of the momentum equation is:

F = A+K
−1

, (3.8)

where K is the discretization of the permeability tensor K, assembled as discussed in
subsection 3.2.1. The Schur complement matrix (2.5) becomes:

S = BF−1BT = B(A+K
−1

)−1BT , (3.9)

and the SIMPLE preconditioner becomes:

Ŝsimple = BF̂−1
simpleB

T , F̂simple = diag(A+K
−1

). (3.10)

When Algorithm 1 is applied for the Stokes-Brinkman problem instead of the Stokes
problem, the two major differences are:

1. When applying S on each outer iterations, we need to solve the momentum
equation with the reaction-diffusion matrix (A+K

−1
), instead of the diffusion

matrix A.

2. When applying the SIMPLE preconditioner Ŝsimple, we need to solve the diffu-
sion equation with strongly varying diffusion coefficient.

For both problems, the Algebraic Multigrid method works well.
In the limiting Darcy case (i.e. A = 0), the matrix F is diagonal, such that S = Ŝsimple

and the Algorithm 1 degenerates to one outer iteration. When inverting S = Ŝsimple,
the elliptic nature allows for efficient solutions using established multigrid tech-
niques, even despite possibly intricate geometries and large variations in the micro-
scopic permeability coefficient. In the Brinkman case (i.e. K−1

> 0), the viscous term
is negligible, hence the SIMPLE preconditioner is efficient and typically converges in
a few iterations in practice. For the limiting Stokes case (i.e. K−1

= 0), in Chapter 2
the CG-SIMPLE was systematically studied and justified for tight geometries.

3.2.1 Discretization of the reaction (Brinkman) term

For the discretization of the Stokes-Brinkman equations (3.3), we need to discretize
the flow resistivity tensor K−1, which appears as a reaction term in these equations.
We consider the scalar permeability coefficient K to be a piece-wise constant function
of the porosity ϕ(i,j,k) from (3.2), i.e. for each unresolved voxel ω(i,j,k), (i, j, k) ∈ Inp ,
we have K(i,j,k) = K(ϕ(i,j,k)). The specific correlation formula between the porosity
ϕ(i,j,k) ∈ (0, 100) and microscopic permeability value K(i,j,k) used in our computa-
tional experiments is given in Section 3.4 (see eq. (3.11)). Thus, K can be identified
with a function Kp

h from the discrete pressure space Ph, for which the degrees of free-
dom are located at the centers of the voxels. However, the degrees of freedom for the
velocity components on staggered grids are located on the voxel faces, necessitating
some interpolation. Therefore, we should average either the porosity or the micro-
scopic permeability over the neighboring voxels using the arithmetic mean [85], and
the discretized permeability tensor, denoted as K : (Uh,Vh)

T → (Uh,Vh)
T , should be

constructed respectively. For instance, in 2D square domain, it is given as follows:

K =

[
diag(Ap

xK
p
h)

diag(Ap
yK

p
h)

]
,
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where Ap
x and Ap

y are the averaging operators from the grid Ph to the grids Uh and
Vh, respectively. A formal definition of these averaging operators is given in Section
4.5, where discretization of the convection term for the Navier-Stokes equations is
discussed.

3.3 Computational workflow

The ultimate objective of this Chapter is to propose a workflow for solving single-
phase pore-scale flow problems in tight sandstones characterized by low porosity and
connectivity in the case of the appearance of unresolved porosity. The workflow has
essentially three components.
(i) The first stage, as usually, is the image processing. The multiclass models of real
rock samples from tight reservoirs considered here are built according to the approach
from [86], with the help of the double µCT scanning technique (see Section 3.3.1 for
details).
(ii) At the second stage, the 3D images (multiclass models) are classified with respect
to the connectivity of the resolved pore space Ωf

h.
(iii) At the third stage, either the Stokes-Brinkman or Darcy solver is used to calculate
the effective permeability for different classes of images.

3.3.1 Multiclass model preparation.

For tight reservoir rocks, the usage of DRP is not as straightforward as for higher
porosity sandstones. This is due to the inherent trade-off between the spatial reso-
lution of data and the representativeness of the size of the model. For this regime,
a new approach has been developed to consider in a single 3D digital core model
porosity from different scales (micro and sub-micro). To build a multiclass model of
a core sample, double X-ray µCT scanning is performed. Before scanning, the sample
is seated in the coreholder. The first scan is done for the sample fully saturated with
air. Then, after air evacuation, the sample in the coreholder is saturated with Xenon
(Xe) gas. Xe is a non-reactive and highly mobile gas that also has a lower radiolu-
cency than grains. Comparison of two registered and calibrated 3D µCT data allows
to map the distribution of Xe molecules and their amount in the volume of the dig-
ital core model. Assuming linear dependence between Xe intensity on the µCT data
difference (µCT in air - µCT in Xe) and porosity of the 3D model voxels, it is possible
to create a multiclass model. A specific porosity value characterizes each model class
with a discreteness level equal to 1%. Multiclass model creation includes a few steps:

• Data acquisition for the same sample position, the same resolution, and the
same X-ray parameters (electrical voltage and current, distance between X-ray
source and sample centre, detector exposition and step of sample rotation).

• Image preprocessing (denoising, artefact removing).

• Registration of 3D images (matching images in space) .

• Intensity equilibration (to be sure that minerals without Xe have the same in-
tensity on both 3D images).

• 3D images subtraction (to map only Xe distribution in model volume).

• Parametrization of dependence between Xe intensity and submicron porosity
assuming that on subtracted images, minimum (zero) intensity corresponds
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to 0% porosity (solid) and maximum intensity corresponds to 100% porosity
(void).

• Applying determined “intensity-porosity” correlation to all 3D datasets of sub-
tracted images.

It is also possible to construct a multiclass model by combining information about
pore space structure from various sources of data: µCT, scanning microscopy (SEM),
and focused ion beam with scanning microscopy (FIB-SEM). One can train a deep
neural network to obtain a porosity map directly from SEM or FIB-SEM images. An-
other opportunity is to create a multiclass model by coarsening a high-resolution
binary model to reduce the size of a computational domain but remain the same
physical scale of the model.

3.3.2 Preprocessing stage. Sample classification.

A preprocessor is implemented as a separate module in C++ language; it relies on
the Disjoint Set Union data structure [87]. First of all, as it is usual in DRP, it iden-
tifies isolated fluid (pure fluid or/and porous) subdomains and removes them. Next,
the image is classified. The existence of percolation patch(es) in the computational
domain Ωp

h ∪ Ωf
h is checked. If Ωp

h ∪ Ωf
h is connected, the Stokes-Brinkman problem

(3.3) is well-posed, and the image is classified as an image of Category A. Further-
more, the connectivity of the pure fluid region Ωf

h is checked. If pure fluid percolation
exists, the image is moved from Category A to Category B - images with Stokes con-
nectivity. Note that after such a preprocessing, Category A contains images that do
not have Stokes connectivity but have Stokes-Brinkman connectivity via sequences of
pure fluid and porous voxels.

3.4 Validation and performance study of the developed solvers

The computer simulations have been carried out to evaluate the performance of the
developed Stokes-Brinkman solver for pore-scale simulation on 3D CT images of tight
sandstones in the case of unresolved porosity.
In this Section, the main simulation results are presented. The performance of the
developed Stokes-Brinkman solver, denoted SCoPeS-SB, is systematically investigated
for samples coming from tight reservoirs. The performance of SCoPeS-SB and GeoDict
Stokes-Brinkman solvers is compared for the considered class of problems. Further
on, as discussed above, just Darcy’s problem is solved for images with no Stokes
connectivity using Darcy solver, denoted SCoPeS-D.

3.4.1 Samples database: ternary and multi-class images.

We start from three different multiclass samples of size 3003, named S1,S2,S3, which
are sub-samples of a large multiclass sample. Samples S1,S2,S3 have 3.79, 3.25, 3.78
mln. non-solid voxels, correspondingly. Recall that ternary images are the images
composed of solid voxels, fluid voxels, and identical porous voxels, the latter being
responsible for all unresolved porosity. Stokes-Brinkman equations have to be solved
to compute the permeability for ternary images. For each of these three multiclass
samples, the following procedure for increasing porosity and segmenting into ternary
images is applied. First, given a threshold T ∈ (0, 100], we replace all porous vox-
els ωi,j,k ∈ Ωh

p having porosity ϕi,j,k ≥ T by pure fluid voxels. Next, the remaining



3.4. Validation and performance study of the developed solvers 59

porosity is arithmetically averaged with resulting value ϕ̃ ∈ (0, 100). In this way, nine
ternary samples are created, which are encoded by N_T_ϕ̃.raw, where N=S1,S2,S3, T
= 100,90,80, and ϕ̃ is resulting averaged porosity. Note, T = 100 corresponds to the
case when the porosity is just averaged. Finally, constant permeability value is calcu-
lated for the averaged porosity ϕ̃ according to (3.11) and assigned to all remaining
porous voxels. Table 3.1 summarizes the connectivity for each of the nine samples.
Six of them are from Category A, and three of them are from Category B (marked in
bold).
The following correlation formula between porosity ϕ(i,j,k) ∈ (0, 100) and permeabil-
ity K(i,j,k) [mkDa] was used:

K(i,j,k) = 7.251 · 10−2 exp(0.147 · ϕ(i,j,k)). (3.11)

This correlation formula (3.11) was derived using empirical petrophysical correlation
from FIB-SEM data analysis [88, 86].

TABLE 3.1: Porosity (Resolved/Unresolved) and Connectivity of the S
samples.

Samples ϕ (Res, Unres) Stokes Stokes-Brinkman File name
Connectivity Connectivity

S1_100_61 0.14 (0.044, 0.096) No Yes S1_100_61.raw
S1_90_56 0.14 (0.057, 0.083) No Yes S1_90_56.raw
S1_80_50 0.14 (0.070, 0.070) No Yes S1_80_50.raw

S2_100_60 0.14 (0.050, 0.090) No Yes S2_100_60.raw
S2_90_55 0.14 (0.062, 0.078) Yes Yes S2_90_55.raw
S2_80_49 0.14 (0.075, 0.065) Yes Yes S2_80_49.raw
S3_100_58 0.12 (0.050, 0.070) No Yes S3_100_58.raw
S3_90_53 0.12 (0.057, 0.063) No Yes S3_90_53.raw
S3_80_48 0.12 (0.066, 0.054) Yes Yes S3_80_48.raw

The same segmentation procedure was also applied for two multiclass images of size
6003, named T1,T2, and having 30.5, 30.7 mln. non-solid voxels, respectively. Ad-
ditionally, one large multiclass sample, U1, of size 13503 with 350.8 mln. non-solid
voxels was studied. Porosities and connectivities of these samples are summarized in
Table 3.2.

TABLE 3.2: Porosity (Resolved/Unresolved) and Connectivity of the T ,
U samples.

Samples ϕ (Res, Unres) Stokes Stokes-Brinkman File name
Connectivity Connectivity

T1_100_59 0.141 (0.051, 0.089) No Yes T1_100_59.raw
T1_90_54 0.141 (0.062, 0.079) No Yes T1_90_54.raw
T1_80_49 0.141 (0.073, 0.067) Yes Yes T1_80_49.raw
T2_100_58 0.142 (0.051, 0.091) No Yes T2_100_58.raw
T2_90_54 0.142 (0.061, 0.081) No Yes T2_90_54.raw
T2_80_49 0.142 (0.072, 0.070) Yes Yes T2_80_49.raw
U1_100_59 0.143 (0.052, 0.091) No Yes U1_100_59.raw
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(A) sample T1_100_59 (B) sample T2_100_58

FIGURE 3.1: Ternary samples T1_100_59 and T2_100_58. Colors:
grey - solid region Ωs

h, red - unresolved porosity region Ωp
h, blue - free

pores Ωf
h. GeoDict visualization.

This collection of images gives us a possibility to perform detailed testing of the per-
formance of the Stokes-Brinkman solver for images with different porosity and dif-
ferent fraction of unresolved regions. The effective permeabilities computed with
SCoPeS-SB solver is compared to the results obtained with GeoDict. Figure 3.1
presents explanatory pore-space visualization for two ternary samples: T1_100_59
and T2_100_58. Also, the result of Stokes-Brinkman simulation on ternary sample
S2_80_49 is shown on Figure 3.2.
Not, the Raw files describing the used CT images are provided by the following link
to enable other researchers to use them .

FIGURE 3.2: Velocity magnitude streamlines. Paraview visualization
for ternary sample S2_80_49, Stokes-Brinkman problem.

3.4.2 Simulations on ternary images of size 3003.

Solving Stokes-Brinkman equations for ternary images of Category A (no Stokes
connectivity). Firstly, we consider three Category A images obtained from samples S2
and S3. The simulation results of comparing the SCoPeS-SB solver and the SimpleFFT
solver from GeoDict are presented in Table 3.3. Also, the simulations results with the

https://data.mendeley.com/datasets/y2dk6zk5bh/1
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LIR solver from GeoDict are shown. However, LIR demonstrated poor performance
for low-porosity images, therefore very few results were presented. It can be seen
that SimpleFFT and LIR solvers converge very slowly but have the correct tendency,
and the computed values are not far from what was expected.

TABLE 3.3: Ternary samples S2 and S3 of Category A. Permeability
keffzz in mkDa computed with GeoDict (solvers SimpleFFT and LIR
with periodic bc), and with SCoPeS-SB with pressure drop bc, L =

0.0009 m, nproc=8.

Sample S2_100_60, Perm of porous voxels 493.0 mkDa

GeoDict SCoPeS-SB
Tol Solver keffzz , mkDa CPU, s εS keffzz , mkDa (CPU, s)

10−1 SimpleFFT: 1.20 · 102 20511 10−6 6.80 · 101 (1564)
1.2 · 10−2 SimpleFFT: 7.95 · 101 172009 10−7 7.31 · 101 (2769)
1.9 · 10−1 LIR: 1.04 · 102 214560 10−8 7.27 · 101 (3499)

10−9 7.27 · 101 (4090)

Sample S3_100_58, Perm of porous voxels 367.4 mkDa

GeoDict SCoPeS-SB
Tol Solver: keffzz , mkDa CPU, s εS keffzz , mkDa (CPU, s)

10−1 SimpleFFT: 4.07 · 101 5862 10−7 2.23 · 101 (1829)
1.1 · 10−2 SimpleFFT: 2.86 · 101 81435 10−8 2.54 · 101 (2199)

10−9 2.57 · 101 (2693)
10−10 2.57 · 101 (3265)

Sample S3_90_53, Perm of porous voxels 176.0 mkDa

GeoDict SCoPeS-SB
Tol Solver: keffzz , mkDa CPU, s εS keffzz , mkDa (CPU, s)

10−1 SimpleFFT: 6.52 · 101 10758 10−6 2.50 · 101 (1487)
8 · 10−2 SimpleFFT: 5.18 · 101 104421 10−7 5.12 · 101 (1875)

10−8 4.92 · 101 (2220)
10−9 4.92 · 101 (2733)

Note, all three images produced from S1 sample also belong to Category A, and the
corresponding results are available in Table 3.9 in the Appendix. In all cases, sim-
ulations with SCoPeS-SB show very robust convergence with respect to the selected
tolerance εS . Unlike the GeoDict solvers, the computational time increases moder-
ately when decreasing the tolerance value.
Solving Darcy approximation for ternary images of Category A (no Stokes con-
nectivity). As it was mentioned above, in the case of no Stokes connectivity, it makes
sense to first explore approximating Stokes-Brinkman equations with the Darcy equa-
tion, and after that solve it to compute the flow, and thus the permeability. The
approximation is done by adding artificial permeability in the pure fluid voxels, and
after that dropping the viscous terms. Substituting the velocity (in this case with a
diagonal matrix) into the continuity equation, we obtain a scalar second order elliptic
equation for the pressure.
Simulation results with Darcy model for samples S2 and S3 are presented in Table 3.5.
The results are computed using Darcy solver SCoPeS-D. For comparison, the effective
permeabilities computed with SCoPeS-SB solver are presented in the last line of the
Table. One can see that the computations with the Darcy approximation are about
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150 times faster compared to SCoPeS-SB, and at the same time the same accuracy in
the computation of the permeability of the sample can be achieved. Similar results
for samples S1 are available in Table 3.10 in the Appendix.
Additionally, simulation results from sensitivity study on how the artificial perme-
ability in the Darcy approximation influences the accuracy of the computations are
presented in Table 3.11 in the Appendix. The sample S1_100_61 is considered there.

TABLE 3.4: Hardware/Software Specification.

Samples 3003, 6003

Hardware model Operating System
2 x Intel Xeon E5-2687W v4@3.00 GHz,

RAM 528 Gb DDR4 2400 Hz
Linux 4.15.0-154-generic Ubuntu 18.04.6

Samples 13503

Dell PowerEdge R640,
2 x Intel Xeon Gold 6150@2.7 GHz,

RAM 1536 Gb DDR4
CentOS Linux release 7.9.2009

TABLE 3.5: SCoPeS-D results, Darcy approximation for samples
S2_100_60, S3_100_58 and S3_90_53 of Category A. Permeability
keffzz in mkDa (CPU time in s), εS = 10−9, L = 0.0009 m, nproc=8.
BC: pressure drop 1 Pa. The last line for comparison recalls perme-

ability and CPU time when solving Stokes-Brinkman equations.

KStokes, mkDa S2_100_60 S3_100_58 S3_90_53

105 4.11 · 101 (42.8) 2.34 · 101 (43.4) 3.53 · 101 (42.6)
107 7.43 · 101 (44.1) 2.57 · 101 (43.1) 4.95 · 101 (44.2)
109 7.54 · 101 (44.8) 2.58 · 101 (43.4) 4.99 · 101 (43.5)
1010 7.54 · 101 (44.5) 2.58 · 101 (44.0) 4.99 · 101 (43.7)

SCoPeS-SB: 7.27 · 101 (4090) 2.57 · 101 (3265) 4.92 · 101 (2733)

Solving Stokes-Brinkman equations for ternary images of Category B (Stokes
connectivity). Let us now discuss the simulation results for samples from Category
B (Stokes connectivity). Consider remaining images obtained from samples S2 and
S3. Again, the Stokes-Brinkman equations are solved for them, and the computed
effective permeability and the CPU time are reported in Table 3.6. One can observe
that for these low porosity samples, SCoPeS-SB demonstrates very good performance.
The computed effective permeability values are close to those computed with Geo-
Dict. The convergence with respect to decreasing the tolerance is pronounced and
stable. The increasing of the computational time when decreasing the tolerance is
very moderate.
Solving Darcy approximation for ternary images of Category B (Stokes connec-
tivity). For comparison, the Darcy approximation is also used for computing the
effective permeability of samples from Category B. The results are summarized in Ta-
ble 3.7. As expected, the Darcy approximation is not applicable for computing the
effective permeability of the considered samples, namely samples for which Stokes
connectivity exists. This illustrates the importance of the image classification stage in
the presented workflow.
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TABLE 3.6: Ternary samples S2 and S3 of Category B. Permeability
keffzz in mkDa computed with GeoDict (solvers SimpleFFT and LIR
with periodic bc), and with SCoPeS-SB with pressure drop bc, L =

0.0009 m, nproc=8.

Sample S2_90_55, Perm of porous voxels 236.3 mkDa
GeoDict SCoPeS-SB

Tol Solver keffzz , mkDa (CPU, s) εS keffzz , mkDa (CPU, s)

10−1 SimpleFFT: 6.40 · 102 13996 10−5 5.26 · 102 (1853)
1.1 · 10−2 SimpleFFT: 5.95 · 102 227036 10−6 5.93 · 102 (2343)

10−8 5.91 · 102 (3520)
10−9 5.91 · 102 (4243)

Sample S2_80_49, Perm of porous voxels 97.8 mkDa
GeoDict SCoPeS-SB

Tol Solver: keffzz , mkDa (CPU, s) εS keffzz , mkDa (CPU, s)

10−1 SimpleFFT: 6.13 · 103 2103 10−5 5.95 · 103 (1456)
10−2 SimpleFFT: 5.88 · 103 7347 10−6 5.81 · 103 (1816)
10−3 SimpleFFT: 5.84 · 103 35744 10−7 5.83 · 103 (2319)
10−1 LIR: 6.07 · 103 10509 10−8 5.83 · 103 (2892)
10−2 LIR: 5.86 · 103 33216
10−3 LIR: 5.81 · 103 241828

Sample S3_80_48, Perm of porous voxels 84.4 mkDa
GeoDict SCoPeS-SB

Tol Solver: keffzz , mkDa (CPU, s) εS keffzz , mkDa (CPU, s)

10−1 SimpleFFT: 1.89 · 104 568 10−3 1.63 · 104 (703)
10−2 SimpleFFT: 1.56 · 104 5912 10−4 1.60 · 104 (955)
10−3 SimpleFFT: 1.55 · 104 14099 10−5 1.55 · 104 (1190)

10−7 1.55 · 104 (1945)

TABLE 3.7: SCoPeS-D results, Darcy approximation for samples
S2_90_55, S2_80_49 and S3_80_48 of Category B. Permeability keffzz

in mkDa (CPU time in s), εS = 10−9, L = 0.0009 m, nproc=8. BC:
pressure drop 1 Pa. The last line for comparison recalls permeability

and CPU time when solving Stokes-Brinkman equations.

KStokes, mkDa S2_90_55 S2_80_49 S3_80_48

105 6.13 · 101 (43.3) 8.19 · 101 (45.0) 1.39 · 102 (42.5)
107 1.56 · 103 (43.4) 5.61 · 103 (43.1) 1.05 · 104 (42.7)
109 1.45 · 105 (43.6) 5.57 · 105 (42.9) 1.05 · 106 (43.4)
1011 1.45 · 107 (44.5) 5.57 · 107 (43.6) 1.05 · 108 (43.4)

SCoPeS-SB: 5.91 · 102 (4243) 5.83 · 103 (3600) 1.55 · 104 (1945)

3.4.3 Simulations on multiclass image of size 3003.

The developed solver is able to work directly on multiclass images, such that they
have individual permeability values in each unresolved voxel. On the one hand, this
imposes higher memory requirements to the solver, on the other hand, this feature
of the solver might be essential for certain classes of rocks. To illustrate this option,
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simulations are performed with image S2, as a multiclass image having 100 classes
of porosity to account for the sub-micron scale effects. The results are summarized in
Table 3.8. Robust convergence of the simulations with respect to the tolerance in the
case of multiclass image can be observed. The effective permeabilities computed on
the three ternary images produced from the multiclass image S2 are also provided in
the table. It can be seen that in this particular case the effective permeabilities com-
puted on the multiclass and on the three different ternary images differ significantly.
This means that results obtained from simulations on ternary images might not be
a good approximation of the results obtained on the true, multiclass grey image, at
least if a simple averaging is used when producing ternary image from a multiclass
image.

TABLE 3.8: SCoPeS-SB results, permeability keffzz in mkDa for mul-
ticlass sample S2, L = 0.0009 m, nproc = 8. BC: pressure drop 1
Pa. Permeabilities of the corresponding ternary samples are also re-

minded.

εS keffzz , mkDa CPU time, s

10−5 8.63 · 102 1421
10−6 5.32 · 102 1883
10−7 5.29 · 102 2564
10−8 5.28 · 102 3444
10−9 5.28 · 102 4285

S2_100_60, 10−8 7.27 · 101 3499
S2_90_55, 10−8 5.91 · 102 3520
S2_80_49, 10−7 5.83 · 103 2319

3.4.4 Simulations on ternary images of size 6003 and 13503.

The simulations with larger images show the same behaviour as those with 3003

images. The simulation results for these images are presented in the Appendix. The
simulation results for images T1,T2 of size 6003 are summarized in Table 3.12 for
Category A and in Table 3.12 for Category B. Similarly to the simulation results for
samples of size 3003, one can observe a robust convergence of the SCoPeS-SB solver
with respect to the tolerance decrease. It also can be observed that the computational
time is still relatively low, especially compared to GeoDict SimpleFFT solver. GeoDict-
LIR solver is not explored here, we expect similar performance as for 3003 images.
Comparing computational times reported, e.g., in Tables 3.12 and 3.9, one can see
that the computational time has increased about six times, what is very good result,
having in mind the increase of the size of the samples. In general, when using AMG
preconditioner, one can expect the computation time to increase proportionally to
the number of unknowns. Thus, eight times increase of the CPU time was expected
here. The fact that the increase is only six times can be explained by the fact that the
more computationally intensive task exhibits better parallel scalability. Simulations
with Darcy approximation of Stokes-Brinkman model in the case of 6003 images show
similar performance as in the case of 3003 images. Results of Darcy simulations are
collected in Table 3.13 for Category A and in Table 3.15 for Category B.
Similarly, the results for U1 sample of size 13503 (Category A) are summarized in
Table 3.16 for the Stokes-Brinkman problem and in Table 3.17 for the Darcy problem.
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3.A Simulations on S1 ternary images of size 3003.

All three samples produced from the S1 image belong to category A, no Stokes con-
nectivity. Thus it is expected that the results in this case will be similar to those for
S2_100_60, S2_90_55 and S3_90_53, which also belong to category A. Indeed, the
results from Table 3.9 below are similar to those from Table 3.1 from the main text.

TABLE 3.9: Ternary samples S1 of Category A. Permeability keffzz in
mkDa computed with GeoDict (solvers SimpleFFT and LIR with peri-
odic bc) and with SCoPeS-SB with pressure drop bc, L = 0.0009 m,

nproc=8.

Sample S1_100_61, Perm of porous voxels 571.2 mkDa
GeoDict SCoPeS-SB

Tol Solver keffzz , mkDa CPU, s εS keffzz , mkDa (CPU, s)

10−1 SimpleFFT: 8.74 · 101 4471 10−6 3.42 · 101 (1210)
10−2 SimpleFFT: 6.16 · 101 61406 10−7 5.69 · 101 (1522)
10−1 LIR 1.24 · 102 33968 10−8 5.68 · 101 (1898)

9.95 · 10−2 LIR 6.46 · 101 459561 10−9 5.68 · 101 (2390)

Sample S1_90_56, Perm of porous voxels 273.8 mkDa
GeoDict SCoPeS-SB

Tol Solver: keffzz , mkDa CPU, s εS keffzz , mkDa (CPU, s)

10−1 SimpleFFT: 1.17 · 102 5357 10−6 5.82 · 101 (1227)
2 · 10−2 SimpleFFT: 7.11 · 101 70690 10−7 6.45 · 101 (1584)

10−8 6.34 · 101 (1942)
10−9 6.33 · 101 (2431)

Sample S1_80_50, Perm of porous voxels 113.3 mkDa
GeoDict SCoPeS-SB

Tol Solver: keffzz , mkDa CPU, s εS keffzz , mkDa (CPU, s)

10−1 SimpleFFT: 8.07 · 101 16532 10−6 6.42 · 101 (1292)
5 · 10−3 SimpleFFT: 6.51 · 101 228113 10−7 6.03 · 101 (1628)

10−8 7.01 · 101 (1991)
10−9 6.00 · 101 (2393)

As mentioned above, all three samples produced from the S1 image belong to Cat-
egory A. Thus, it is expected that the accuracy and the performance of the Darcy
approximation in this case will be similar to those for S2_100_60, S2_90_55, and
S3_90_53, which also belong to category A. Indeed, the results from Table 3.10 be-
low are similar to those from Table 3.5 from the main text.
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TABLE 3.10: SCoPeS-D results, Darcy approximation for samples
S1_100_61, S1_90_56 and S1_80_50 of Category A. Permeability keffzz

in mkDa (CPU time in s), εS = 10−9, L = 0.0009 m, nproc=8. BC:
pressure drop 1 Pa. The last line for comparison recalls permeability

and CPU time when solving Stokes-Brinkman equations.

KStokes, mkDa S1_100_61 S1_90_56 S1_80_50

105 4.54 · 101 (43.2) 4.48 · 101 (43.5) 4.07 · 101 (42.6)
107 5.70 · 101 (43.6) 6.35 · 101 (43.6) 6.01 · 101 (43.3)
109 5.72 · 101 (44.1) 6.39 · 101 (44.1) 6.04 · 101 (43.6)
1010 5.72 · 101 (44.5) 6.39 · 101 (43.7) 6.04 · 101 (43.1)

SCoPeS-SB: 5.68 · 101 (2390) 6.34 · 101 (2431) 6.00 · 101 (2393)

3.B Darcy approximation, sensitivity study

As mentioned, Darcy approximation of Stokes-Brinkman equations is used for images
of Category A. Its accuracy and performance were examined before its further us-
age. Simulation results from sensitivity study on how the artificial permeability in
the Darcy approximation influences the accuracy of the computations are presented
in Table 3.11 in the Appendix. The sample S1_100_61 is considered here. This Table
contains three subtables. In the first one, the fictitious permeability KStokes in the
Stokes (pure fluid) voxels is fixed to a moderate value 10−6 m2, and the tolerance for
the iterative method is varied. In the second subtable, a relatively rough tolerance
is fixed for the iterative method (10−4) and the fictitious permeability KStokes is var-
ied. Finally, in the third subtable, the tolerance 10−9 is fixed for the iterative method,
and the fictitious permeability is varied. Comparing to the results from Table 3.11,
one can see that Darcy approximation can be successfully used for fast and accurate
computation of the effective permeability of samples in the case of no Stokes con-
nectivity. The results from Table 3.11 show that relatively low value for the fictitious
permeability should be set in the Stokes voxels, and the iterative method should be
converged with high accuracy. The latter however, in this particular case does not
influence essentially the computational time.

TABLE 3.11: SCoPeS-D results, Darcy approximation for sample
S1_100_61; L = 0.0009 m, nproc=8. BC: pressure drop 1 Pa.

εS KStokes, mkDa keffzz , mkDa CPU time, s

10−4 106 5.51 · 101 39.2
10−5 106 5.51 · 101 40.2
10−6 106 5.51 · 101 40.6

10−4 106 5.51 · 101 39.2
10−4 108 5.75 · 101 38.8
10−4 1010 2.31 · 102 39.3

10−9 105 4.54 · 101 43.2
10−9 106 5.51 · 101 43.4
10−9 1011 5.72 · 101 44.4
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3.C Simulations on ternary images of size 6003 and 13503

TABLE 3.12: Ternary samples T1 and T2 with no Stokes connectiv-
ity. Permeability keffzz in mkDa computed with GeoDict (solvers Sim-
pleFFT and LIR with periodic bc) and with SCoPeS-SB with pressure

drop bc, L = 0.0018 m, nproc=8.

Sample T1_100_59, Perm of porous voxels 425.6 mkDa

GeoDict SCoPeS-SB
Tol Solver keffzz , mkDa (CPU, s) εS keffzz , mkDa (CPU, s)

2.2 · 10−1 SimpleFFT 6.49 · 101 170969 10−6 5.61 · 101 (6082)
10−7 3.33 · 101 (8148)
10−8 3.37 · 101 (10538)
10−9 3.38 · 101 (13027)

Sample T1_90_54, Perm of porous voxels 204.0 mkDa

GeoDict SCoPeS-SB
Tol Solver: keffzz , mkDa (CPU, s) εS keffzz , mkDa (CPU, s)

7.2 · 10−1 SimpleFFT: 1.41 · 102 52369 10−6 3.38 · 101 (6059)
10−7 5.51 · 101 (8035)
10−8 5.48 · 101 (10240)

Sample T2_100_58, Perm of porous voxels 367.4 mkDa

GeoDict SCoPeS-SB
Tol Solver: keffzz (CPU, s) εS keffzz , mkDa (CPU, s)

2 · 10−1 SimpleFFT: 4.25 · 101 1.2509e+6 10−6 3.61 · 101 (6191)
10−7 3.35 · 101 (8320)
10−8 3.36 · 101 (10425)

Sample T2_90_54, Perm of porous voxels 204.0 mkDa

GeoDict SCoPeS-SB
Tol Solver: keffzz , mkDa (CPU, s) εS keffzz , mkDa (CPU, s)

2.4 · 10−1 SimpleFFT: 9.32 · 101 815269 10−6 5.94 · 101 (6333)
10−7 6.38 · 101 (8371)
10−8 6.51 · 101 (10456)
10−9 6.51 · 101 (13191)
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TABLE 3.13: SCoPeS-D results, Darcy approximation for samples
T1_100_59, T1_90_54, T2_100_58 and T2_90_54. Permeability keffzz

in mkDa (CPU time in s), εS = 10−9, L = 0.0018 m, nproc=8. BC:
pressure drop 1 Pa. The last line for comparison recalls permeability

and CPU time when solving Stokes-Brinkman equations.

KStokes, T1_100_59 T1_90_54 T2_100_58 T2_90_54
mkDa

105 2.58 · 101 (260) 2.18 · 101 (319) 2.17 · 101 (321) 2.36 · 101 (322)
107 3.39 · 101 (255) 5.84 · 101 (318) 3.36 · 101 (330) 7.23 · 101 (327)
109 3.40 · 101 (264) 6.21 · 101 (325) 3.39 · 101 (334) 7.77 · 101 (332)
1011 3.41 · 101 (269) 6.22 · 101 (320) 3.39 · 101 (334) 7.77 · 101 (331)

SCoPeS-SB: 3.30 · 101 (9472) 4.33 · 101 (10425) 3.36 · 101 (10425) 6.51 · 101 (10456)

TABLE 3.14: Ternary samples T1 and T2 of Category B. Permeability
keffzz in mkDa computed with GeoDict (solvers SimpleFFT and LIR
with periodic bc) and with SCoPeS-SB with pressure drop bc, L =

0.0018 m, nproc=8.

Sample T1_80_49, Perm of porous voxels 97.8 mkDa

GeoDict SCoPeS-SB
Tol Solver keffzz , mkDa (CPU, s) εS keffzz , mkDa (CPU, s)

10−1 SimpleFFT 6.45 · 102 155062 10−5 5.68 · 102 (4849)
1.3 · 10−2 SimpleFFT 6.01 · 102 834989 10−6 6.06 · 102 (6208)

10−7 5.88 · 102 (8215)
10−8 5.88 · 102 (10460)

Sample T2_80_49, Perm of porous voxels 97.8 mkDa

GeoDict SCoPeS-SB
Tol Solver: keffzz , mkDa (CPU, s) εS keffzz , mkDa (CPU, s)

10−1 SimpleFFT: 6.59 · 103 6087 10−4 1.94 · 103 (4238)
2.6 · 10−2 SimpleFFT 1.59 · 103 682309 10−5 1.49 · 103 (5352)

10−6 1.57 · 103 (6899)
10−7 1.57 · 103 (8801)

TABLE 3.15: SCoPeS-D results, Darcy approximation for samples
S2_90_55, S2_80_49 and S3_80_48. Permeability keffzz in mkDa (CPU
time in s), εS = 10−9, L = 0.0018 m, nproc=8. BC: pressure drop 1
Pa. The last line for comparison recalls permeability and CPU time

when solving Stokes-Brinkman equations.

KStokes, mkDa T1_80_49 T2_80_49

105 2.64 · 101 (314) 3.45 · 101 (320)
107 1.04 · 103 (320) 1.65 · 103 (321)
109 1.02 · 105 (325) 1.60 · 105 (322)
1011 1.02 · 107 (323) 1.60 · 107 (327)

SCoPeS-SB: 5.89 · 102 (8215) 1.57 · 103 (6899)
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TABLE 3.16: Ternary sample U1 with no Stokes connectivity. Perme-
ability keffzz in mkDa computed with GeoDict (solvers SimpleFFT with
periodic bc) and with SCoPeS-SB with pressure drop bc, L = 0.0027

m, nproc=8.

Sample U1_100_59, Perm of porous voxels 425.60 mkDa
GeoDict SCoPeS-SB

Tol Solver keffzz , mkDa (CPU, s) εS keffzz , mkDa (CPU, s)

3.92 · 10−1 SimpleFFT 9.17 · 101 1.11362e+06 10−6 3.34 · 101 (99841)
10−1 (nproc=16) SimpleFFT 6.06 · 101 865126 10−7 3.29 · 101 (129588)

10−1 LIR divergence 10−8 3.28 · 101 (165821)
10−9 3.28 · 101 (205090)

TABLE 3.17: SCoPeS-D results, Darcy approximation for sample U1.
Permeability keffzz in mkDa (CPU time in s), εS = 10−9, L = 0.0009 m,
nproc=8. BC: pressure drop 1 Pa. The last line for comparison recalls
permeability and CPU time when solving Stokes-Brinkman equations.

K−1
Stokes, mkDa U1_100_59

105 2.35 · 101 (7255)
107 3.34 · 101 (7373)
109 3.37 · 101 (7537)
1011 3.37 · 101 (7437)

SCoPeS-SB 3.28 · 101 (205090)
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Chapter 4

Navier-Stokes equations in tight
porous media

4.1 Section outline

In Chapter 2, we have shown that the SIMPLE preconditioner should be used instead
of the established Uzawa preconditioner when solving the Stokes equations in do-
mains with high surface-to-volume ratio. In the present Chapter, we show that these
results are also valid for the Navier-Stokes equations in the case of low Reynolds
numbers. Indeed, it is known that the identity preconditioner (e.g. the pressure mass
matrix) can be used to approximate the (non-symmetric) Schur complement matrix
for the Oseen equations in the case of low Reynolds number (see, e.g. [23], page
71). However, we claim that the well-known SIMPLE preconditioner should be used
instead of the identity for domains with high surface-to-volume ratio.
The outline of the Chapter is as follows:

1. In Section 4.3, we formulate the BiCG-SIMPLE method, which is an analogue
of the CG-SIMPLE Algorithm 1 adapted for the non-symmetric Oseen problem
for low Reynolds numbers.

2. In Section 4.4, we perform validation of the developed Picard-BiCG-SIMPLE
solver for 3D binary image with ≈ 350 mln. of unknowns for low Reynolds
numbers.

3. In Section 4.5, we describe the finite-difference discretization on fully-staggered
grids in the case of simplest geometry.

4. Also, an analogue of the Pressure Convection-Diffusion (PCD) preconditioner
for domains with high surface-to-volume ratio is proposed in Section 4.6 for
higher Reynolds numbers.

4.2 Problem statement

For higher flow rates, it’s essential to consider influence of the inertial forces. The
flow of fast laminar incompressible fluid is governed by the Navier-Stokes equations:

−µ∆u+ (u · ∇)u+∇p = f in Ωf
h,

−∇ · u = 0 in Ωf
h,

(4.1)

where Ωf
h represents a porous space where fluid propagates (see Section 2.1 for the

Stokes equations). In order to formulate the underlying BVP for the equations (4.1),
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the same set of boundary conditions as for the Stokes problem discussed in Chapter
2 can be considered.
Nonlinear iteration. Solving the Navier–Stokes equations (4.1) requires nonlinear
iteration with a linearized problem being solved at every step. Thus, given an “initial
guess” u0, a sequence of iterates u1, u2, . . . is computed, which is supposed to con-
verge to the solution u of the nonlinear problem. In our practical computations, we
consider the Picard linearization of the Navier-Stokes equations [64]. For the Picard
iteration, on each outer nonlinear iteration we solve the Oseen’s problem, which is
given as follows:

−µ∆uk + (uk−1 · ∇)uk +∇pk = f in Ωf
h,

−∇ · uk = 0 in Ωf
h,

(4.2)

where uk−1 denotes velocity from the previous timestep and (uk, pk)
T is the solution

to be computed.
Additionally, we consider the Newton iteration for which it is required to solve the full
Jacobian (also known as the exact Frechet-derivative) of the Navier-Stokes equations
[20, 64]:

−µ∆uk + (uk−1 · ∇)uk + (uk · ∇)uk−1 +∇pk = rk−1 in Ωf
h,

−∇ · uk−1 = 0 in Ωf
h,

(4.3)

where rk−1 is the residual from k − 1 step. Note, in the Newton iteration (4.3) there
is an additional term (uk−1 · ∇)uk comparing with the Picard iteration (4.2).
In what follows, for simplicity of notation, we denote uk−1 = ũ.

4.3 Iterative method and preconditioning: Picard-BiCG-SIMPLE
algorithm

The Picard-BiCG-SIMPLE algorithm consists in firstly applying the Picard linearization
and secondly applyting the BiCG-SIMPLE algorithm for solving the resulting linear
Oseen problem (4.2). After finite-difference discretization of the Oseen equations
(4.2) using fully-staggered grids, we obtain the following system:

A
[
uh
ph

]
=

[
fh
gh

]
, A =

[
F BT

B 0

]
, (4.4)

where the discretization of the momentum equation is:

F = A+ N̂, (4.5)

where N̂ is the upwind discretization of the convection term (uk−1 · ∇)uk. We de-
scribe the discretization in the case of square geometry in Section 4.5. Note, the
discretization for general voxel-based geometries can be found in [38].
The Schur complement matrix from (2.5) becomes:

S = BF−1BT = B(A+ N̂)−1BT , (4.6)

and the SIMPLE preconditioner becomes:

Ŝsimple = BF̂−1
simpleB

T , F̂simple = diag(A+ N̂). (4.7)
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Note, in-spite the preconditioner Ŝsimple is symmetric, it reflects the non-symmetry of
the matrix S from (4.6) since for the upwind differences, we have diag(A + N̂) ̸=
diag(A) (but not for the central differences). Since the matrix S is non-symmetric,
we apply the BiCG Krylov subspace method instead of the CG to solve the Schur
complement system (2.4). The resulting BiCG-SIMPLE algorithm is presented in Al-
gorithm 2. It should be noted, that when applying S on each outer iteration, we
need to solve the momentum equation with the convection-diffusion matrix (A+ N̂),
instead of the diffusion matrix A. The Algebraic Multigrid method works well when
the upwind discretization is used (see, e.g. [20]).

Algorithm 2 Preconditioned BiCG, adapted from [50] (Sec. 7.1).

Require: tolerance εS , initial guess p0h, r∗h arbitrary vector
Ensure: Approximate solution ph for the system (4.6)

1: Compute the initial residual r0 = gh − Sp0h
2: Set d0h = r0h, k = 0
3: while not converged do
4: Solve Ŝd̂kh = dkh for d̂kh
5: Apply Sd̂kh = qkh for qkh

6: αk =
(rkh)

T r∗h
(qkh)

T r∗h
7: sh = rkh − αkq

k
h

8: Solve Ŝŝh = sh for ŝh
9: Apply Sŝh = th for th

10: ωk =
(sh)

T th
(th)T th

11: pk+1
h = pkh + αkd̂

k
h + ωkŝh

12: rk+1
h = sh − ωkth

13: If ∥rk+1
h ∥ < εS (unprec), exit loop

14: βk =
(rk+1

h )T r∗h
(rkh)

T r∗h
× αk

ωk

15: dk+1
h = rk+1

h + βk(d
k
h − ωkq

k
h), k = k + 1

16: end while
17: Return pk+1

h as the approximate solution

4.4 Validation of the developed Navier-Stokes solver

In this Section, we validate the developed Picard-BiCG-SIMPLE algorithm for 3D bi-
nary images. Firstly, we consider the sample S of the size 3003, porosity ϕ = 21%
described in Table 2.1 and pictured in Fig. 2.1. In this computational experiment,
the periodic boundary conditions are imposed in the flow direction z, and the no-slip
boundary conditions are imposed in the tangential directions. We consider L = 1[m]
and compute average velocity for the unit pressure jump dp = 1[Pa] for different val-
ues of the viscosity µ. The computed average velocity is validated against the Geodict
(LIR) solver for the Navier-Stokes equations. For outer iterations, we use εS = 10−2

and for inner iteration we use εA = εŜ = 10−3. The results are presented in Table 4.1
for viscosities µ = {1 · 10−3, 5 · 10−4, 1 · 10−4}; the first row in the Table corresponds
to the Stokes approximation of the Navier-Stokes equations. Additionally, we provide
the respective values of the Reynolds number computed with Geodict. It can be seen
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from the Table, that the computed average velocities are in a good agreement with
validated software Geodict.

TABLE 4.1: Validation of the Picard-BiCG-SIMPLE Algorithm 2 for the
sample S described in Table 2.1, εS = 10−2, dp = 1[Pa], h = 1/300[m].

The number of outer Picard iterations is shown in brackets.

Viscosity, µ[Pa · s] Re Geodict(LIR) Picard-BICG-SIMPLE
1 · 10−3 (Stokes) - 0.0042 (0 it) 0.0042

1 · 10−3 0.163 0.0039 (1 it) 0.0039
5 · 10−4 0.56 0.0068 (3 it) 0.0069
1 · 10−4 5.54 0.0134 (5 it) 0.0133

TABLE 4.2: Validation of the Picard-BiCG-SIMPLE Algorithm 2 for the
high-porosity filter pictured in Fig. 4.1; sample size 779 × 801 × 256,

porosity ϕ = 51%, εS = 10−2, dp = 1[Pa], h = 1/256[m].

Viscosity, µ[Pa · s] Re Geodict(LIR) Picard-BICG-SIMPLE
1 · 10−3 (Stokes) - 0.040 (0 it) 0.040

1 · 10−3 2.15 0.029 (1 it) 0.029
5 · 10−4 5.81 0.039 (3 it) 0.038

Secondly, we consider the high-porosity filter picture in Fig. 4.1 (solid is shown in
grey colour). The size of the filter is 779 × 801 × 256, and the porosity is ϕ = 52%,
which corresponds to the 82.5 mln. of active voxels that is nearly 350 mln. of un-
knowns. The periodic boundary conditions are again imposed in the flow direction
z, and the no-slip boundary conditions are imposed in the tangential directions. We
consider L = 1[m] and similarly to the previous experiment compute average ve-
locity for the unit pressure jump dp = 1[Pa] for different values of the viscosity µ.
The computed average velocity is validated against the Geodict (LIR) solver for the
Navier-Stokes equations. For outer iterations, we use εS = 10−2 and for inner iter-
ation we use εA = εŜ = 10−3. The results are presented in Table 4.2 for viscosities
µ = {1·10−3, 5·10−4}; the first row in the Table corresponds to the Stokes approxima-
tion of the Navier-Stokes equations. It can be seen from the Table, that the computed
average velocities are in a good agreement with validated software Geodict.
For both considered samples, the respective Reynolds numbers are small, which jus-
tifies using the symmetric SIMPLE preconditioner. For higher Reynolds numbers, the
non-symmetric preconditioner might become a necessity.
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FIGURE 4.1: High-porosity filter of the size 779 × 801 × 256, porosity
ϕ = 51%, 82.5 mln. active voxels. Solid is shown in grey colour, fluid

is invisible.

4.5 Discretization of the convection term

In Section 2.6, we discretized the Stokes equations on tensor-structured in the case of
square domain. In the present Section, we proceed to the Navier-Stokes equations by
additionally discretizing the convection term. It’s worth noting, that the convection
term is identical for both the primary and auxiliary BVPs described in Section 2.6.1.
As an example of the Navier-Stokes solution in the square domain, we show the
velocity solution for the lid-driven cavity problem (Re=1000) in Fig. 4.2, and the
corresponding stream function is shown in Fig. 4.3.
The convection term can be expressed in multiple formulations. Below we consider
its gradient, divergence, mixed, and rotational forms. These are also called primitive,
conservative, skew-symmetric, and rotational forms [89].

FIGURE 4.2: Lid-driven cavity problem. Velocity solution of the
Navier-Stokes equations computed for n = 256, L = 1, µ = 1/1000.
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FIGURE 4.3: Lid driven cavity problem. Stream function (1200 levels)
corresponding to the velocity from Fig. 4.2 computed for n = 256,

L = 1, µ = 1/1000.
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Gradient form. For a given velocity field ũ = (ũ, ṽ)T , we consider the first order
convection operator N grad(ũ), defined as follows:

N grad(ũ)u = (ũ · ∇)u = (ũ · ∇u, ũ · ∇v)T = (ũux + ṽuy, ũvx + ṽvy)
T , (4.8)

and the zeroth order reaction operator Rgrad(ũ), defined as follows:

Rgrad(ũ)u = (u · ∇)ũ = (u · ∇ũ,u · ∇ṽ)T = (uũx + vũy, uṽx + vṽy)
T . (4.9)

The superscript grad stands for the gradient form here.
Divergence form. Alternatively, the convective operator N grad(ũ) can be equiva-
lently written as follows:

N div(ũ)u = (∇ · (ũu),∇ · (ũv))T = ((ũu)x + (ṽu)y, (ũv)x + (ṽv)y)
T , (4.10)

and the reaction operator Rgrad(ũ) can be equivalently written as follows:

Rdiv(ũ)u = (∇ · (uũ),∇ · (uṽ))T = ((uũ)x + (vũ)y, (uṽ)x + (vṽ)y)
T . (4.11)

The superscript div stands for the divergence form here. Note, under the divergency
constraints ∇ · ũ = 0 and ∇ · u = 0, we have:

N grad(ũ)u = N div(ũ)u and Rgrad(ũ)u = Rdiv(ũ)u,

respectively. For the nonlinear convection term, we have:

(u · ∇)u = N grad(u)u = N div(u)u = Rgrad(u)u = Rdiv(u)u.

In the literature, a mixed form can often be seen (see, e.g. [90]), obtained by aver-
aging the gradient and divergence forms. This is given by:

2(u · ∇)u = (u · ∇u+∇ · (uu),u · ∇v +∇ · (uv))T

= N grad +N div = Rgrad +Rdiv = N grad +Rdiv = Rgrad +N div.
(4.12)

This form of the convection operator leads to the skew-self-adjoint operator used, for
example, in [91],[92].
Rotational form. In the context of Helmholtz-Hodge decomposition, the rotational
form (see, e.g. [93], [94], [95]) is more suited. Firstly, the convection term in the
gradient form N grad(ũ) and in the divergence form N div(ũ) under the divergency-
constraint, can be equivalently written as follows:

N rot(ũ)u =
1

2
(∇(ũ · u)− [u× (∇× ũ) + ũ× (∇× u) +∇× (ũ× u)]), (4.13)

where the cross product u × q = (−vq, uq)T in 2D is defined similarly to ∇ × q
from (2.55). Similarly, the reaction term in the gradient form Rgrad(ũ) and in the
divergence form Rdiv(ũ), can be equivalently written as follows:

Rrot(ũ)u =
1

2
(∇(u · ũ)− [ũ× (∇× u) + u× (∇× ũ) +∇× (u× ũ)])

=
1

2
(∇(ũ · u)− [u× (∇× ũ) + ũ× (∇× u)−∇× (ũ× u)]).

(4.14)
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Finally, for the convection-reaction term from the Jacobian (4.3), we have:

(ũ · ∇)u+ (u · ∇)ũ = N grad(ũ)u+Rgrad(ũ)u

= N div(ũ)u+Rdiv(ũ)u = N rot(ũ)u+Rrot(ũ)u

= ∇(ũ · u)− [u× (∇× ũ) + ũ× (∇× u)].

(4.15)

Hence, the nonlinear convection term in the rotational form looks as follows:

(u · ∇)u =
1

2
∇(u · u)− u× (∇× u).

Discretization using centered differences

The discretization of the convection term on the fully staggered grids (2.42) requires
averaging. For example, the convection term written in the divergence form (4.10)
contains products ṽu and ũv of the functions living on different grids Uh and Vh. All
averaging operators can be assembled from a single 1d matrix A, which is similar to
the 1d derivative matrix B from (2.54):

A =
1

2


1
1 1

. . . . . .
1 1

1

 , A ∈ Rn×(n−1).

Firstly, the discrete co-directional averaging of the velocity, denoted Au
x : Uh → Ph

and Av
y : Vh → Ph, are assembled as follows:

Au
x = Iωh ⊗A, Au

x ∈ Rnn×n(n−1),

Av
y = A⊗ Iωh , Av

y ∈ Rnn×(n−1)n,

and the discrete averaging of the velocity curl, denoted Aq
x : Qh → Vh and Aq

y : Qh →
Uh, are assembled as follows:

Aq
x = Iωh ⊗A, Aq

x ∈ R(n−1)n×(n−1)(n−1),

Aq
y = A⊗ Iωh , Aq

y ∈ Rn(n−1)×(n−1)(n−1).

Next, the averaging operators from pressure to velocity grids Ap
x : Ph → Uh, Ap

y :
Ph → Vh are given as follows:

Ap
x = (Au

x)
T , Ap

y = (Av
y)

T , (4.16)

and the averaging operators from velocities to curl Au
y : Uh → Qh, Av

x : Vh → Qh are
given as follows:

Au
y = (Aq

y)
T , Av

x = (Aq
x)

T . (4.17)

The discretization N grad
h (ũh) : (Uh,Vh)

T → (Uh,Vh)
T of the convection term N grad(ũ)

from (4.8) is then obtained as follows:

N grad
h (ũh) =

=

[
Ap

xdiag(A
u
x ũh)B

u
x +Aq

ydiag(A
v
xṽh)B

u
y

Aq
xdiag(A

u
y ũh)B

v
x +Ap

ydiag(A
v
yṽh)B

v
y

]
,

(4.18)
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and the discretization Rgrad
h (ũh) : (Uh,Vh)

T → (Uh,Vh)
T of the reaction term Rgrad(ũ)

from (4.9) as follows:

Rgrad
h (ũh) =

[
Ap

xdiag(Bu
xũh)A

u
x Aq

ydiag(Bu
yũh)A

v
x

Aq
xdiag(Bv

xṽh)A
u
y Ap

ydiag(Bv
yṽh)A

v
y

]
.

Similarly, for the discretizations N div
h (ũh) and Rdiv

h (ũh) of the convection and reac-
tion operators N div(ũ) and N div(ũ) from (4.10) and (4.11), we have:

N div
h (ũh) =

=

[
Bp

xdiag(A
u
x ũh)A

u
x +Bq

ydiag(A
v
xṽh)A

u
y

Bq
xdiag(A

u
y ũh)A

v
x +Bp

ydiag(A
v
yṽh)A

v
y

]
,

and:

Rdiv
h (ũh) =

[
Bp
xdiag(Au

xũh)A
u
x Bq

ydiag(Au
yũh)A

v
x

Bq
xdiag(Av

xṽh)A
u
y Bp

ydiag(Av
yṽh)A

v
y

]
,

respectively. To discretize the convection term N rot(ũ) from (4.13), we firstly define
the following notation:

N rot(ũ) =
1

2
(G· − [Qũ +Qu +Q×]),

with the corresponding discretization given as follows:

N rot
h (ũh) =

1

2
(G·

h − [Qũ
h +Qu

h +Q×
h ]), (4.19)

where the potential term G·(ũ) is discretized as follows:

G·
h(ũh) =

[
Bp
xdiag(Au

xũh)A
u
x Bp

xdiag(Av
yṽh)A

v
y

Bp
ydiag(Au

xũh)A
u
x Bp

ydiag(Av
yṽh)A

v
y

]
, (4.20)

the term Qũ(ũ) is discretized as follows:

Qũ
h(ũh) =

=

[
−Aq

ydiag(B
u
y ũh)A

v
x +Aq

ydiag(B
v
xṽh)A

v
x

Aq
xdiag(B

u
y ũh)A

u
y −Aq

xdiag(B
v
xṽh)A

u
y

]
,

(4.21)

the term Qu(ũ) is discretized as follows:

Qu
h(ũh) =

[−Aq
ydiag(Av

xṽh)B
u
y Aq

ydiag(Av
xṽh)B

v
x

Aq
xdiag(Au

yũh)B
u
y −Aq

xdiag(Au
yũh)B

v
x

]
, (4.22)

and the term Q×(ũ) is discretized as follows:

Q×
h (ũh) =

[−Bq
ydiag(Av

xṽh)A
u
y Bq

ydiag(Au
yũh)A

v
x

Bq
xdiag(Av

xṽh)A
u
y −Bq

xdiag(Au
yũh)A

v
x

]
. (4.23)

Similarly, the reaction term Rrot
h (ũh) is assembled.
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Finally, we denote N(ũh) the matrix corresponding to any of the formulations of the
convection term:

N(ũh) =


N grad

h (ũh),

N div
h (ũh),

N rot
h (ũh).

(4.24)

It is worth noting, that the underlying numerical schemes produce the same solution
for any discretization of the convection term.

4.6 On the derivation of the Pressure Convection-Diffusion
preconditioner and its generalization for tight geome-
tries

In order to genralize the results obtained for the Stokes equations to the Oseen equa-
tions (4.2), we try to decompose the convection term using orthogonal operators B
and C similarly to the decomposition (2.62) of the Neumann Laplacian operator AN.
For this, we naturally use the rotational form N rot (4.13). First of all, we define
the discrete dot product operator D(ũh) which is a discretization of the dot product
operator (ũ · u) = ũu+ ṽv:

D =
[
diag(Au

xũh)A
u
x diag(Av

yṽh)A
v
y

]
, D : (Uh,Vh)

T → Ph. (4.25)

Similarly, we define the discrete cross product operator X(ũh) which is a discretiza-
tion of the cross product operator (ũ× u) = −ṽu+ ũv:

X =
[
diag(−Av

xṽh)A
u
y diag(Au

yũh)A
v
x

]
, X : (Uh,Vh)

T → Qh. (4.26)

Then, the matrices G·
h(ũh), Qu

h(ũh), Q×
h (ũh) from (4.19) can be written as follows:

G·
h = BTD, Qu

h = XTC, Q×
h = CTX. (4.27)

Note, the reaction term Qũ
h(ũh) can not be represented in this way. So, the discretiza-

tion of the convection term N rot
h from (4.19) becomes:

N rot
h =

1

2
(BTD− [CTX+XTC+Qũ

h ]), (4.28)

and the discretization of the convection-reaction term from (4.15) becomes:

N rot
h +Rrot

h = BTD− [XTC+Qũ
h ]. (4.29)

If we assume Cũh = 0, then the reaction term Qũ
h disappears, and the discretization

of the auxiliary (enclosed Neumann) Oseen equations becomes:

AN +N rot
h = [BTB+

1

2
BTD] + [CTC− 1

2
(XTC+XTC)]. (4.30)

Note, the left term disappears when (4.30) is multiplied by PKerB from the left, and
the right term disappears when (4.30) is multiplied by PKerC from the right. If we
additionally assume:

BTA = ATB, CTX = XTC, (4.31)
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then, we have:

(AN +N rot
h )−1 = [BTB+

1

2
BTD]† + [CTC− 1

2
(XTC+XTC)]†. (4.32)

Based on this observation, the convection-diffusion preconditioner [96, 97, 90, 98,
64] can be derived, which is given as follows:

Ŝ†
N = (BBT )†(BBT +

1

2
DBT ), (4.33)

where BBT +
1

2
DBT is discretization of the scalar pressure convection-diffusion op-

erator with Neumann b.c, given as follows:

−∆p+ ũpx + ṽpy = −∆p+
1

2
∇ · (ũp).

Similarly to the preconditioner (2.80) derived for the Stokes equations, the analogue
of (4.33) in the limiting case Iu∼ = Iu becomes:

Ŝ†
lim = (BBT )†(

2

h2
Ip +BBT +

1

2
DBT ), (4.34)

where in the right brackets there is discretization of the pressure convection-diffusion-
reaction equation.
In [64] it is said that the preconditioner (4.33) is an analog of the SIMPLE precondi-
tioner due to the inverse Laplacian term (BBT )†, but actually this is an analogue of
the Uzawa preconditioner. Similarly how the preconditioner (2.80) is related to the
SIMPLE for Stokes equations, the analog of the SIMPLE preconditioner for the PCD
preconditioner will be as follows:

Ŝ†
D = (BBT )†(

2

h2
Ip +

1

2
DBT ). (4.35)





83

Chapter 5

Summary

An efficient pore-scale Stokes solver for low porosity images has been developed and
analyzed. A thorough comparative study of the CG-SIMPLE and CG-Uzawa algo-
rithms has been conducted. The results demonstrate that the CG-SIMPLE algorithm,
when applied to 3D rock samples from tight reservoirs, ensures robust and fast con-
vergence to high accuracy in solving the Schur complement problem and in comput-
ing permeability. In contrast, the established CG-Uzawa algorithm tends to stagnate.
This behavior is further explained through a systematic study of synthetic 2D ge-
ometries. The primary conclusion drawn is that the condition number of the Schur
complement matrix increases linearly with increasing the surface-to-volume ratio.
Conversely, the condition number of the Schur complement matrix, preconditioned
with the SIMPLE preconditioner, decreases super-linearly as the surface-to-volume ra-
tio increases. It has also been demonstrated that the number of non-unit eigenvalues
of the Schur complement matrix is determined by the number of the boundary nodes
where the no-slip boundary conditions are imposed on the velocity, as well as by the
connectivity of the flow domain. These findings provide essential insights into the be-
havior of solvers for the Schur complement matrix and demonstrate the effectiveness
of the SIMPLE preconditioner in solving the Stokes problem in tight geometries.
A workflow has been developed for multiclass images derived from tight sandstones.
This workflow comprises an image classification stage and customized, efficient Stokes-
Brinkman and Darcy solvers. Rigorous testing has been conducted to validate the
workflow’s effectiveness. The first stage of the workflow involves classifying images
based on the presence of Stokes percolation patches. This classification enables us
to select an appropriate solver tailored to each specific image. The developed solvers
have been rigorously validated using data computed with commercial software tools.
Extensive testing has been carried out on samples from a real tight reservoir. The
developed Stokes-Brinkman solver demonstrates robust convergence and high effi-
ciency, enabling simulations not only for ternary images but also for multiclass im-
ages. The latter, derived directly from grayscale images, contain individual permeabil-
ity values for each porous voxel. It has also been demonstrated that in cases where
pure fluid percolation is missing, the Darcy approximation of the Stokes-Brinkman
problem can be employed. This results in a significant acceleration of the computa-
tions while maintaining accuracy.
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