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Abstract
Insurance companies and banks regularly have to face stress tests performed by regulatory
instances. To model their investment decision problems that includes stress scenarios, we
propose the worst-case portfolio approach. Thus, the resulting optimal portfolios are already
stress test prone by construction. A central issue of the worst-case portfolio approach is
that neither the time nor the order of occurrence of the stress scenarios are known. Even
more, there are no probabilistic assumptions regarding the occurrence of the stresses. By
defining the relative worst-case loss and introducing the concept of minimum constant port-
folio processes, we generalize the traditional concepts of the indifference frontier and the
indifference-optimality principle. We prove the existence of a minimum constant portfolio
process that is optimal for the multi-stress worst-case problem. As a main result we derive a
verification theorem that provides conditions on Lagrange multipliers and nonlinear ordinary
differential equations that support the construction of optimal worst-case portfolio strategies.
The practical applicability of the verification theorem is demonstrated via numerical solution
of various worst-case problems with stresses. There, it is in particular shown that an investor
who chooses the worst-case optimal portfolio process may have a preference regarding the
order of stresses, but there may also be stress scenarios where he/she is indifferent regarding
the order and time of occurrence.
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1 Introduction

Stress tests for banks and insurance companies performed by regulatory instances such as
e.g. the European Central Bank are nowadays even an issue of public news. The usual way
how these stresses are considered in finding an optimal investment strategy is to first find a
good strategy with respect to a primal goal (such as expected utility). Then, it is checked if the
resulting strategy also performs acceptable when stresses occur, possibly has to be modified,
and the checking is repeated until all stress criteria are met.

We will in this article present an alternative approach which directly includes the effects
of possible stresses in the investment problem. This new approach consists of modifying the
so-called worst-case scenario approach to portfolio optimization for explicitly considering
the occurrence of stress scenarios. Consequently, the trial-and-error character of the usual
approach can be avoided.

Our approach is mainly motivated by regulatory texts. Indeed, in their methodological
principles of insurance stress testing [4], the European Insurance and Occupational Pensions
Authority (EIOPA) gives the following definition of stress scenarios:

Stress scenarios are severe but plausible hypothetical situations that can adversely
affect the balance sheets and solvency positions of insurance undertakings. Scenarios
can be compromise a single shock or a combination of market, demographic, financial
and insurance-specific shocks that are expected to affect the resilience of individual
undertakings and the insurance sector as a whole.

Further, EIOPA [4] states that so-called equity shocks “are provided in terms of percentage
changes”. A concrete example of a shock is given in the Solvency II Delegated Act Articles
168-173 [3], which deals with the equity risk sub-module of the market risk module of the
standard formula. Here equities are divided into Type 1 and Type 2, depending on where
they are listed. Apart from symmetrical adjustments and further exceptions, a stress of Type
1 equities is a market decline of 39%, wheres for Type 2 equities the decline is 49%.

As usual in the worst-case scenario approach introduced by Korn and Wilmott [13], we
assume that the stresses can all happen, but make no probabilistic assumption if and when
they occur, i.e. with regard to this we follow the concept of Knightian uncertainty (see [7]).

The importance to add stress scenarios to the investment decision problem and not to
make any probabilistic assumptions regarding the occurrence of the scenarios is justified by
the Insurance Regulation Committee of the International Actuarial Association [6]:

The likelihood and financial effect of certain scenarios can be extremely uncertain. In
these cases it is almost impossible to precisely estimate their small probabilities. In
fact, their effect cannot be estimated and even their identification cannot be easily made
through the application of a traditional economic capital model.…Yet, such scenarios
may lead to the largest financial strain for firms or an entire industry. The use of scenario
analysis and stress testing by decision makers and regulators may prove to be the best
approach to prioritize their options, whether to add to capital or to use other approaches
to mitigate these risks.

Solving the worst-case scenario optimal portfolio approach, introduced by Korn and
Wilmott in [13] in the case of the logarithmic utility function, has been extended in [8]
and [10] by using the indifference principle. In [12] the worst-case portfolio problem is
embedded in a classical HJB-framework and a connection to stochastic control theory is
established. Seifried introduced two concepts in [20], which are also of great importance for
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this work, namely the indifference frontier and the indifference optimality principle (see also
[11]), to generalize the results to more general utility functions and price dynamics.

In the course of this work, wewill see in particular that the portfolio optimization problems
considered in [12] and [9], among others, are in fact special cases of the problem introduced
here. More precisely, we have generalised the problem with one stock and n ≥ 1 identical
stresses stated in [12]. Also, our model includes the multi-asset problem with one stress in
[9] as a simple special case.

We will present details of the worst-case scenario approach in the next section, but will
already point out that conventional portfolio optimization methods—such as the stochastic
control approach introduced byMerton [15] or themartingale approach as introduced (among
others) by Pliska [18]—are not applicable as we have neither information on the jump times
nor the jump intensity.

The latter fact distinguishes the worst-case approach from the so-called ambiguity
approaches which are also worst-case approaches to portfolio optimization, but typically
focus on the parameters of the market, e.g., stock price coefficients or the underlying prob-
ability measure. Examples of this approach are e.g. Talay and Zheng [21] where the market
acts against the interest of the trader and chooses themarket coefficients or Pflug andWozabal
[17] who take into account the ambiguity in choosing the probability model, i.e. the under-
lying probability model is not perfectly known. In [19], Schied considers a set of probability
measures to maximize the robust utility of the terminal wealth in a complete market model
and in [5] the standard mean-variance model is extended to model ambiguity aversion via
a minimization over the priors. A generalization of the classical portfolio and consumption
model of an ambiguity type that can be solved by a generalized HJB-equation is given in
Lin and Riedel [14] and in [1], Biagini and Pinar consider a robust Merton problem using
a max–min Hamilton–Jacobi–Bellman–Isaacs PDE. Also in these ambiguity approaches,
there is the possibility of integrating uncertainty with regard to jump processes. Neufeld and
Nutz [16] study a robust portfolio optimization problem with uncertain drift, volatility, and
jump characteristics of the risky assets dynamics by defining a set of possible Lévy triplets.
However, in such a model, the investor is only hedged in the mean against a jump.

A key challenge in our model is that the investor is not only faced with the challenge of
when or if a stress occurs, rather that there are different types of stresses. Therefore there
is the additional uncertainty of not knowing in which order the stresses occur. Due to this
additional uncertainty component the existing results cannot simply be adapted, which is
why in this work we have to introduce new concepts and have to derive new results such as

• the extension of the worst-case concept to different types of stresses,
• allowing for an unknown sequential occurrence of the different types of stresses,
• the concept of minimum constant portfolio processes,
• the proof of existence of an optimal minimum constant portfolio process,
• a verification theorem for the resulting multi-stress-type multi-asset worst-case problem.

While our definitions and the setting will be given for the general case of n ≥ 1 stresses,
we will in this work mostly focus on the case of n = 2 stresses. The extension to the general
case of n ≥ 2 is described in Remark 7.

We start with the introduction of the the worst-case concept in Sect. 2. Then, in Sects. 3
and 4, we solve the portfolio optimization problem in the stress-free world and the problem
when only one stress is left. In Sect. 5, we derive the minimum constant principle and solve
the multi-asset multi-stress worst-case problem. The preceding considerations then enable
us to formulate a verification theorem in Sect. 6. The heuristic construction of the optimal
strategy and numerical examples are shown in Sect. 7.
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2 Worst-case portfolio optimization

In this section, we introduce the mathematical framework that allows us to study a portfolio
optimization problem in a financial market with stresses.
Basic mathematical assumptions. Throughout this work we fix a time horizon T > 0. All
processes are defined on the complete probability space (Ω,F, P).
Asset price dynamics and stress scenarios.We consider a capital market with amoneymarket
account with dynamic evolution given by

dB(t) = B(t)rdt, B(0) = 1,

and d stocks with prices Si (t), i = 1, . . . , d . Before introducing the stock price dynamics
and the suitable filtration on this probability space, we need to introduce the notion of a stress
scenario.

Definition 1 A vector z ∈ R
d with components zi ∈ [0, 1) is called a stress. A pair (z, ξ),

consisting of a stress z and a stochastic process ξ with values in [0, T ] ∪ {∞}, is called a
stress scenario. We will refer to ξ as the time of occurrence of the stress z, where we formally
set {ξ = ∞} if the stress does not occur. For a stress scenario (z, ξ), we further introduce the
(indicator) jump process

Jz(t) := 1{ξ≤t}, t ∈ [0, T ].
Let W (t) be a d-dimensional Brownian motion and consider n stress scenarios(

z(1), ξ1
)
, . . . ,

(
z(n), ξn

)
with corresponding jump processes J j (t) := Jz( j) (t), j = 1, . . . , n.

We then assume that our probability space is equipped with a filtration F = (Ft )t∈[0,T ] that
satisfies the so-called usual conditions and that includes both, the filtration generated by the
Brownian motion W (t) and the one generated by the jump processes J1(t), . . . , Jn(t). To
be able to include the scenario {ξ j = ∞}, for j ∈ {1, . . . , n}, we extend F to [0, T ] ∪ {∞}
by letting F∞ := FT . Note in particular that then all ξ j are stopping times with respect to
this filtratrion. We denote this by ξ j ∈ Θ , i.e. Θ is defined as the set of [0, T ] ∪ {∞}-valued
stopping times.

We are now ready to define the stock price dynamics, for i = 1, . . . , d , via the following
jump diffusion process

dSi (t) = Si (t−)

⎛

⎝bidt +
d∑

j=1

σi j dW j (t) −
n∑

j=1

z( j)i d J j (t)

⎞

⎠ , Si (0) = s0,i .

with the drift vector b = (b1, . . . , bd)T and the volatility matrix σ = (
σi j

)
of full rank.

Our interpretation of Knightian uncertainty about the occurrence of the stresses is, that we
can of course observe the jump processes J j (t) for j ∈ {1, . . . , n}, but have no knowledge
about the likelihood of the actual appearance of the jumps. In particular, we have also no
knowledge on the dynamic properties of the jump processes, such as their possible intensities.

To be in line with our motivating example of stress tests, we assume that each stress can
occur at most once on [0, T ].
Portfolio strategies.Let us consider an investor with an initial capital x > 0, which he/she can
invest in d stocks and the money market account. Furthermore, he/she can observe a stress
scenario and react accordingly after its occurrence. We describe the investor’s behaviour by
a self-financing portfolio process π which denotes the fractions of his/her wealth invested
in the stocks. We assume π to be predictable to model that a reallocation of holdings is not
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possible during the occurrence of a stress. However, it should also avoid a ruin by using
a cautious investment strategy. Technically, we thus define the following set of admissible
portfolio processes.

Definition 2 Let z(1), . . . , z(n) be n stresses with corresponding times of occurrence
ξ1, . . . , ξn ∈ θ . Then, the set of admissible portfolio processes π corresponding to an initial
capital of x > 0 at time t ∈ [0, T ],A(t, x), consists of {Fs, t ≤ s ≤ T }-predictable processes
π such that

1. the investor’s wealth process Xπ is given as the unique solution of the stochastic differ-
ential equation

Xπ (t) = x,

dXπ (s) = Xπ (s−)

( (
r + π(s)T

(
b − r1

))
ds + π(s)T σdW (s)

−
n∑

j=1

π(s)T z( j)d J j (s)

⎞

⎠ ,

for s ∈ [t, T ].
2. π(s), for s ∈ [t, T ], is of the form

π(s) =
∑

u∈{0,1}n
1{ū(s)=u}πu(s),

where all πu(s) are assumed to be predictable and to have right-continuous paths with
left limits on [0, T ], for all u = (u1, . . . , un) ∈ {0, 1}n , and ū(s) = (ū1(s), . . . , ūn(s)) ∈
{0, 1}n , for s ∈ [0, T ], with ūi (s) = 1 iff s ≤ ξi , for i ∈ {1, . . . , n}.

3. We further require

Xπ (s) > 0 ∀s ∈ [t, T ],
∫ T

t
π2
u,i (s)ds < ∞ P-a.s. for i = 1, . . . , d, and u ∈ {0, 1}n .

We introduce the abbreviation A(x) := A(0, x).

Wewould like to use the following remark to draw some conclusions from the above definition
and to introduce a new notation.

Remark 1 1. If, for j ∈ {1, . . . , n}, a stress z( j) occurs at a time ξ j ∈ Θ , ξ j < ∞, the wealth
process Xπ changes at time ξ j according to

Xπ (ξ j ) =
(
1 − π(ξ j )

T z( j)
)
Xπ (ξ j−).

Note that our definition of the portfolio process ensures that a change to the appropriate
πu(.) sub strategy follows directly after the jump.

2. The non-negativity condition in particular implies that an investor does not suffer a total
loss due to any stress, i.e. for n remaining stresses z(1), . . . , z(n) an admissible portfolio
process π needs to fulfil the condition

max
{
π(t)T z( j)| j = 1, . . . , n

}
< 1,

for t ∈ [0, T ].
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3. In the case of n stress scenarios, we will often denote the wealth process Xπ before the
first stress has occurred by Xπ(1,...,1) . This will be of particular interest as we will solve the
worst-case problem by building up our solution recursively, starting from the well-known
no crash optimal portfolio process.

The worst-case optimization problem. Let
(
z(1), ξ1

)
, . . . ,

(
z(n), ξn

)
be n stress scenarios and

letU : (0,∞) → R be the investor’s utility function, which is assumed to be strictly concave,
increasing and continuously differentiable. We call the problem

sup
π∈A(x)

inf
ξ1,...,ξn∈Θ

E0,x,(u1,...,un)
(
U

(
Xπ (T )

))
, u1 = . . . = un = 1,

theworst-case portfolio problemunder stresses, whereEt,x,(u1,...,un) for t ∈ [0, T ] denotes
the conditional expectation given that Xπ (t) = x and u j ∈ {0, 1}, j = 1, . . . , n, with u j = 1
if and only if ξ j ≥ t . These indices are omitted if t = 0 or if u1 = . . . = un = 0.

In the further course of this work, we will look at the case of d stocks and two stresses
z(1) and z(2) with corresponding times of occurrence ξ1, ξ2 ∈ Θ , since the limitation to two
stress scenarios allows for a simpler notation. However, in Remark 7 we will indicate how
the results of this work can be extended to the general problem with n stress scenarios.

Further, we model the investor’s preferences by a CRRA (constant relative risk aversion)
utility function, i.e.

U (x) = 1

1 − γ
x1−γ for γ > 0, γ 	= 1.

In Remark 8 and Remark 9 we explain that the main results can be adapted for the case of
a logarithmic utility function U (x) = ln(x), which can be interpreted as the limit case of
γ → 1.

We make the additional assumption that only one stress can occur at one time instant. In
the following remark we motivate this by a simple example.

Remark 2 We consider the two-stock portfolio process π(t)T = (0.25, 0.25) and assume
that there exist two stresses z(1) and z(2) with

z(1) = (0.5, 0)T and z(2) = (0, 0.5)T .

A simultaneous occurrence of the two stresses at time t would intuitively reduce the wealth
by 25%. On the other hand we have

1 −
((

1 − π(t)T z(2)
) (

1 − π(t)T z(1)
))

= 1 − (1 − 0.5 · 0.25)2 = 23.44%.

Instead, let us now consider the situation in which the two stresses directly follow each other:

1 −
((

1 − π(t−)T z(2)
) (

1 − π(t)T z(1)
))

with π(t−)T = (0.25, 0.25).

Assuming that no trading takes place after the first stress, the following applies: π(t)T =
(2/7, 1/7), and therefore:

1 −
((

1 − π(t−)T z(2)
) (

1 − π(t)T z(1)
))

= 25%.

Hence, in order to reflect an intuitive understanding of stresses in our model, we must assume
that not more than one stress occurs at one time instant.

123



Mathematics and Financial Economics (2022) 16:153–185 159

3 Terminal utility decomposition and the post stress problem

In this section we consider the optimal post stress strategy, i. e. the optimal strategy after the
last possible stress has occurred. For this, we define ξm := max{ξ1, ξ2}. As we are here only
interested in the optimal strategy after the last stress, we consider the case ξm < ∞. For the
sake of simplicity, we will refer to the portfolio process π(0,0) as π(0), for π ∈ A(x). Thus,
we obtain the post stress problem

max
π∈A(ξm ,x)

Eξm ,x
(
U

(
Xπ (T )

))
, (1)

which is the classical Merton problem with random initial time ξm .
Decomposition of the terminal utility. To solve the post stress problem we first look at a
decomposition of the terminal utility. This enables us to solve the Merton problem with
random initial time as well as the classical Merton problem.

Proposition 1 (Terminal utility decomposition) Let z(1) and z(2) be two stresses with corre-
sponding times of occurrences ξ1, ξ2 < ∞. For any admissible portfolio process π ∈ A(x)
we get the following decomposition:

U (Xπ (T )) = U (Xπ (ξm)) exp

(
(1 − γ )

∫ T

ξm

φγ (π(t))dt

)
Y γ

T (π),

where the mapping φγ is given by

φγ (π) = r + πT (b − r1) − 1

2
γπT σσ Tπ

and Y γ (π) = (
Y γ
t (π)

)
t∈[ξm ,T ] is a positive Ft -martingale with Y γ

ξm
(π) = 1.

Proof The proof is analogous to the one of Theorem 5 (Change-of-Measure Device) in [11].
�
Weobtain an analogue decomposition for the case that no stress occurs, i.e. if ξ1 = ξ2 = {∞}.
This decomposition becomes important in Sect. 5, when we have to consider the no stress
scenario while looking at the multi-stress worst-case problem.
The stress-free world. In the stress-free post stress world we now have to solve the Merton
problem with random initial time. With the help of the above decomposition of the terminal
utility we prove that this problem can be solved by maximizing φγ from the utility decom-
position, i.e. a portfolio process π̄ ∈ A(ξm, x) is optimal for the post stress problem (1) if
π̄(0) = π∗, where

π∗ = argmaxπ∈Rd φγ (π).

One can see that the optimal strategy π∗ is constant and independent of ξm and x .

Proposition 2 (Solution of the post stress portfolio problem) For φγ as in Proposition 1, the
optimal strategy π∗ and the corresponding value function v(ξm; x) in the post stress problem
(1) with random initial time ξm ∈ Θ , ξm < ∞, are given by

π∗ = 1

γ

(
σσ T

)−1 (
b − r1

)
, with

v(ξm; x) : = max
π∈A(ξm ,x)

Eξm ,x
(
U

(
Xπ (T )

))

= x1−γ

1 − γ
exp

(
(1 − γ )

∫ T

ξm

φγ (π∗)ds
)

.
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Proof See [11]. 
�
For the interpretation of a stress as a threat we require from now on

0 < (π∗)T z (2)

for every stress z, i.e. the optimal portfolio in the stress-free world should suffer a loss due
to a stress z.

4 The one-stress worst-case problem

We want to approach the multi-stress scenario step wise. Therefore, we first have a look at
the one-stress worst-case problem in the multi asset setting:

sup
π∈A(x)

inf
ξ∈Θ

E0,x,(1)
(
U

(
Xπ (T )

))
,

where we use the notation (z, ξ) instead of (z(1), ξ1). As this problem was discussed in detail
in [9], we only recall ideas and results, and introduce essential concepts.

Based on the results of Sect. 3, we assume in this section, without loss of generality, that
π(0)(t) = π∗, t ∈ [0, T ], for all π ∈ A(x), with π∗ defined as in Proposition 2.
Indifference-optimality and indifference frontier. The following two fundamental concepts
for solvingworst-case portfolio optimization problems introduced in [20] allow to solve these
problems in a very general setting. A central element is the definition of so-called indifference
strategies.

Definition 3 We consider a worst-case portfolio problem with a single stress scenario (z, ξ).
Let further v0(t; x) denote the value function for the corresponding optimal portfolio problem
in the post stress setting. If there exists an admissible portfolio process π ∈ A(x) such that
the process

v0

(
t;

(
1 − π(1)(t)

T z
)
Xπ(1) (t−)

)
, t ∈ [0, T ] ∪ {∞}

is a martingale on [0, T ] ∪ {∞} for
v0

(
∞;

(
1 − π(1)(∞)T z

)
Xπ(1) (∞−)

)
:= U

(
Xπ(1) (T )

)
,

we call π an indifference strategy for the investor.

This definition has two useful properties. First, it is independent of the concrete form of the
utility function. Further, the martingale characterization of an indifference strategy makes its
optimality proof independent of the actual market setting.We cite the indifference-optimality
principle from [11].

Proposition 3 (Indifference-optimality principle) If π̄ is an indifference strategy, and for all
π ∈ A(x) there exists at least a single time of stress occurrence ξ̃ ∈ Θ with

E

(
v0

(
t;

(
1 − π(1)(ξ̃ )T z

)
Xπ(1) (ξ̃−)

))

≤E

(
v0

(
t;

(
1 − π̄(1)(ξ̃ )T z

)
X π̄(1) (ξ̃−)

))

then π̄ is a worst-case optimal portfolio process.
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In Sect. 5,we prove theminimumconstant-optimality principle for themulti-stressworst-case
problem, which is also based on the idea of worst-case indifference.

From Proposition 2 we know that the value function v0(t; x) is continuously differentiable
with respect to t and twice continuously differentiable in x . Thus, application of Itô’s rule
to v0

(
t; (

1 − π(1)(t)T z
)
Xπ(1) (t−)

)
and setting the resulting integrand in the finite variation

part equal to zero, allows to compute an indifference strategy. We will use similar arguments
in the proof of Proposition 5.

Now we can introduce the second essential concept, the indifference frontier. For a proof
of the following multi-asset statement we refer to [9].

Proposition 4 (Indifference frontier) Let Assumption (2) be valid and let π ∈ A(x) be an
admissible portfolio process for the one-stress worst-case portfolio problem with stress sce-
nario (z, ξ). Further, let π̄ be an indifference strategy. Set

τ := inf
{
t : π(1)(t)

T z > π̄(1)(t)
T z

}

and define

π̃(1)(t) := π(1)(t) if t < τ and π̃(1)(t) := π̄(1)(t) if t ≥ τ.

Then, we have π̃ ∈ A(x) and the worst-case bound attained by π̃ is at least as big as that
achieved by π .

Hence, only a portfolio process which does not exceed the indifference frontier of an indif-
ference strategy π̄ , i.e. which does not exceed the indifference level π̄(1)(t)T z for t ∈ [0, T ],
can be a worst-case optimal portfolio process.
Solution of the one-stress worst-case problem. In the multi-asset scenario we lose the unique-
ness of the indifference strategy of the single stock case. This is overcome in [9] by using
Lagrangian-multiplier methods to figure out the worst-case optimal indifference strategy.

Theorem 1 (Solution of the one-stress worst-case problem) Let Assumption (2) be satisfied
and assume a single stress scenario (z, ξ). The optimal portfolio process is the indifference
strategy π̄ , given by

π̄(1)(t) = π∗ − zTπ∗ − N (t)

zT
(
σσ T

)−1
z

(
σσ T

)−1
z,

where N (t) is the unique solution of the ODE

N ′(t) = − 1

2zT
(
σσ T

)−1
z
γ (1 − N (t))

(
zTπ∗ − N (t)

)2
(3)

with final condition N (T ) = 0. The corresponding value function v1(t; x) is
v1(t; x) := sup

π∈A(t,x)
inf

ξ∈Θt
Et,x,(1)

(
U

(
Xπ (T )

)) = v0

(
t;

(
1 − π̄(1)(t)

T z
)
x
)

=Et,x

(
U

(
X π̄(1) (T )

))

for t ∈ [0, T ], where Θt denotes the class of [t, T ] ∪ {∞}-valued stopping times.

Proof See [9]. 
�
We would like to prove some more properties of the relative wealth loss π̄T

(1)z of the optimal
strategy in case that at most one stress can occur.
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Lemma 1 (Decreasing wealth loss) Assume a single stress scenario (z, ξ) and let π̄ be given
as in Theorem 1. Then we obtain

0 ≤ π̄(1)(t)
T z < min{(π∗)T z, 1}

and thus in particular
(
π̄T

(1)z
)′

(t) < 0 and
(
π̄T

(1)z
)′′

(t) < 0 for all t ∈ [0, T ].
Proof Note that for N defined in Theorem 1, we obtain N (t) = π̄(1)(t)T z for all t ∈ [0, T ].
Therefore it is enough to show that N fulfills the above properties. The inequalities 0 ≤
N (t) < 1 for all t ∈ [0, T ] hold by Lemma 4.2. in [20]. We now use similar arguments to
prove N (t) < (π∗)T z for all t ∈ [0, T ]. Equation (3) implies for t ∈ [0, T ]:

∂

∂t
log

(
zTπ∗ − N (t)

)
= 1

2zT
(
σσ T

)−1
z
γ (1 − N (t))

(
zTπ∗ − N (t)

)

if zTπ∗ > N (t). Integrating both sides, applying the exponential function and using N (T ) =
0 leads to

zTπ∗

zTπ∗ − N (t)
= exp

{∫ T

t

1

2zT
(
σσ T

)−1
z
γ (1 − N (s))

(
zTπ∗ − N (s)

)
ds

}

for t ∈ [0, T ], if zTπ∗ > N (s) for s ∈ [t, T ]. The above integrand is a continuous function
in N and N is continuous itself. Therefore there exists an upper bound M > 0 such that for
t ∈ [0, T ]

exp

{∫ T

t

1

2zT
(
σσ T

)−1
z
γ (1 − N (s))

(
zTπ∗ − N (s)

)
ds

}

≤ exp {M(T − t)} ,

and therefore

zTπ∗ − N (t) ≥ exp {−M(T − t)} zTπ∗,

if zTπ∗ > N (s) for s ∈ [t, T ]. We define δ = 1
2 exp {−MT } zTπ∗ and since, by assumption

(2), zTπ∗ > 0 we get δ > 0. Then we obtain for t ∈ [0, T ] that
zTπ∗ − N (t) ≥ 2δ (4)

if zTπ∗ > N (s) for s ∈ [t, T ]. Now we define t̃ as

t̃ := inf
{
t ∈ [0, T ] | zTπ∗ − N (s) ≥ δ for all s ∈ [t, T ]

}
.

The infimum is attained, since zTπ∗ − N (T ) = exp {MT } 2δ ≥ δ. Now we prove by
contradiction that t̃ = 0. For this, assume t̃ > 0. Inequality (4) and the definition of t̃ lead to
zTπ∗−N (t̃) ≥ 2δ. By continuity, there exists t̄ < t̃ , with zTπ∗−N (s) ≥ δ for all s ∈ [t̄, T ],
which is a contradiction to the definition of t̃ . Therefore we get t̃ = 0 and N (t) < (π∗)T z
for all t ∈ [0, T ].

With π̄(1)(t)T z < min{(π∗)T z, 1} and Eq. (3) we directly get N ′(t) =
(
π̄T

(1)z
)′

(t) < 0

for all t ∈ [0, T ]. The second derivative of N is for t ∈ [0, T ] given by
N ′′(t) = K N ′(t)

(
zTπ∗ − N (t)

) (
2 (1 − N (t)) +

(
zTπ∗ − N (t)

))
,

for a constant K > 0.With the above considerations it follows that N ′′(t) =
(
π̄T

(1)z
)′′

(t) < 0

for all t ∈ [0, T ]. 
�
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Note that π̄ is admissible in terms of Definition 2 and the optimal strategy is independent
of the wealth x . Further, the optimal sub strategy π̄(1) from Theorem 1 is deterministic.
Therefore, even in the multi-stress worst-case scenario we can assume that we know the
optimal portfolio process when only one stress can still occur.

5 Themulti-stress worst-case problem

Now we are able to consider the worst-case portfolio problem under stresses with two stress
scenarios (z(1), ξ1) and (z(2), ξ2). Hence, we look at the following portfolio optimization
problem:

sup
π∈A(x)

inf
ξ1,ξ2∈Θ
ξ1 	=ξ2

E0,x,(1,1)
(
U

(
Xπ (T )

))
, (5)

where the requirement ξ1 	= ξ2 is meant in the strong sense that we have the inequality

ξ1(ω) 	= ξ2(ω) for all ω ∈ Ω,

if at least one of the two values is finite. I.e. there shall not be a simultaneous occurrence
of the two stresses, but ξ1(ω) = ξ2(ω) = ∞ should be possible. A central challenge of the
multi-type stress worst-case portfolio problem is the unknown sequential occurrence of the
different types of stresses. The investor not only has the difficulty that he/she does not know
when the next stress will occur, but also which of the remaining stresses will occur. Still, we
can draw on previous results and know the optimal portfolio process when at most one stress
can occur. Thus, we can assume that we know

– the value function v00(t; x) and the optimal sub strategy π̄(0,0) = π∗ if both stress
scenarios have already happened (see Sect. 3),

– the value function v10(t; x) and the optimal sub strategy π̄(1,0) if only the stress scenario
related to z(2) has already happened (see Sect. 4 with (z, ξ) = (z(1), ξ1)),

– the value function v01(t; x) and the optimal sub strategy π̄(0,1) if only the stress scenario
related to z(1) has already happened (see Sect. 4 with (z, ξ) = (z(2), ξ2)).

Hence, it remains to determine the (worst-case) optimal sub strategy π̄(1,1) and the value
function v11(t; x) if both stresses can still occur.
Reformulation of the problem. We now reformulate the problem such that we can at least
partly use existing concepts. For this, we need to introduce the definition of the relative
worst-case loss. This definition takes into account that for an admissible portfolio process at
a certain point in time t ∈ [0, T ], the order in which the stresses occur can have different
effects. In our worst-case approach, the order of occurrence that leads to a lower expected
utility is of particular importance.

Definition 4 For a portfolio processπ wedefine the relative losses at time t ∈ [0, T ], RLπ
12(t)

and RLπ
21(t), depending on the order of stress occurrences, by

1 − RLπ
12(t) :=

(
1 − π(t)T z(1)

) (
1 − π̄(0,1)(t)

T z(2)
)

,

1 − RLπ
21(t) :=

(
1 − π(t)T z(2)

) (
1 − π̄(1,0)(t)

T z(1)
)

.

The relative worst-case loss RLπ (t) of π at time t ∈ [0, T ] is defined as
RLπ (t) := max{RLπ

12(t), RL
π
21(t)}.
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With Θt denoting the class of [t, T ] ∪ {∞}-valued stopping times, we can define the value
function v11(t; x) by

v11(t; x) := sup
π∈A(t,x)

inf
ξ1,ξ2∈Θt
ξ1 	=ξ2

Et,x,(1,1)
(
U

(
Xπ (T )

))
for t ∈ [0, T ],

where we again use the strong notion of the inequality ξ1 	= ξ2 as in (5). Definition 4 allows
to rewrite the value function v11(t; x) in a suitable way.

Lemma 2 (Reformulation of the value function) The value function in the two-stress worst
case problem can be rewritten as follows:

v11(t; x) = sup
π∈A(t,x)

inf
ξ1,ξ2∈Θt
ξ1 	=ξ2

Et,x,(1,1)
(
U

(
Xπ (T )

))

= sup
π∈A(t,x)

inf
ξ∈Θt

Et,x
(
v00

(
ξ ; (1 − RLπ(1,1) (ξ ))Xπ(1,1) (ξ−)

))
,

where v00 (∞; (1 − RLπ(1,1) (∞))Xπ(1,1) (∞−)) := U (Xπ(1,1) (T )).

Proof The idea of this proof is to reduce the worst-case problem to a single stopping time
ξ , instead of ξ1 and ξ2, by taking advantage of the fact that we know the optimal portfolio
process after the first stress has occurred. To do this, we first have to introduce some notations:

• We define

Ã(t, x) := {π̃ |π̃(s) = π(1,1)(s)1{s≤min {ξ1,ξ2}} + π̄(1,0)(s)1{ξ2<s≤ξ1}
+ π̄(0,1)(s)1{ξ1<s≤ξ2} + π∗1{s>max {ξ1,ξ2}} for s ∈ [t, T ] and π ∈ A(t, x)},

as a subset of A(t, x).
• Further, we denote by ξ̃ = min{ξ1, ξ2}, for ξ1, ξ2 ∈ Θt , the time of occurrence of the

first stress.
• Then, we define Eξ̃ ,x,2 as the conditional expectation, given that Xπ (ξ̃ ) = x and that

the second stress can still occur, i.e. Eξ̃ ,x,2 = Eξ̃ ,x,(0,1) if ξ̃ = ξ1 and Eξ̃ ,x,2 = Eξ̃ ,x,(1,0)
otherwise.

Due to the definition of v00 (∞; (1 − RLπ(1,1) (∞))Xπ(1,1) (∞−)), we only need to consider
the case ξ̃ < ∞. Using the introduced notation leads to

sup
π∈A(t,x)

inf
ξ1,ξ2∈Θt
ξ1 	=ξ2

Et,x,(1,1)
(
U

(
Xπ (T )

))

= sup
π∈A(t,x)

inf
ξ1,ξ2∈Θt
ξ1 	=ξ2

Et,x,(1,1)

(
Eξ̃ ,Xπ (ξ̃ ),2

(
U

(
Xπ (T )

)))

= sup
π∈Ã(t,x)

inf
ξ1,ξ2∈Θt
ξ1 	=ξ2

Et,x,(1,1)

(
Eξ̃ ,Xπ (ξ̃ ),2

(
U

(
Xπ (T )

)))

= sup
π∈Ã(t,x)

inf
ξ1,ξ2∈Θt
ξ1 	=ξ2

Et,x,(1,1)

(
1ξ̃=ξ1

Eξ̃ ,Xπ (ξ̃ ),(0,1)

(
U

(
Xπ(T )

))

+ 1ξ̃=ξ2
Eξ̃ ,Xπ (ξ̃ ),(1,0)

(
U

(
Xπ(T )

)) )
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= sup
π∈Ã(t,x)

inf
ξ1,ξ2∈Θt
ξ1 	=ξ2

Et,x,(1,1)

(
1ξ̃=ξ1

v01

(
ξ̃ ;

(
1 − π(1,1)(ξ̃ )T z(1)

)
Xπ(1,1) (ξ̃−)

)

+ 1ξ̃=ξ2
v10

(
ξ̃ ;

(
1 − π(1,1)(ξ̃ )T z(2)

)
Xπ(1,1) (ξ̃−)

) )
.

The first equality follows by the tower property. For the second equality note that in Sects. 3
and 4 we have already determined the optimal strategies for the different cases when at most
one or even no more stress can occur. Thus, an optimal strategy in the case when at most two
stresses can still occur, must have the form of the strategies in the set Ã(t, x), i.e. we can
restrict to this set for determining the optimal strategies. The third equality is a direct result
of the above introduced notation for the conditional expectation and the assumption ξ1 	= ξ2.
Theorem 1 and the definition of Ã(t, x), as well as the definition of the wealth process at
time ξ̃ , lead to the fourth equation.

Note that the reformulated value function now only depends on the time of occurrence of
the first stress and because of ξ1, ξ2 ∈ Θt , this can be any stopping time in Θt . Furthermore
it follows from the definition of ξ̃ that

ξ̃ =
{

ξ1 if v01 (ξ1; Xπ (ξ1)) ≤ v10 (ξ2; Xπ (ξ2)) ,

ξ2 else.

Thus we obtain

sup
π∈Ã(t,x)

inf
ξ1,ξ2∈Θt
ξ1 	=ξ2

Et,x,(1,1)

(
1ξ̃=ξ1

v01

(
ξ̃ ;

(
1 − π(1,1)(ξ̃ )T z(1)

)
Xπ(1,1) (ξ̃−)

)

+ 1ξ̃=ξ2
v10

(
ξ̃ ;

(
1 − π(1,1)(ξ̃ )T z(2)

)
Xπ(1,1) (ξ̃−)

) )

= sup
π∈Ã(t,x)

inf
ξ∈Θt

Et,x

(
min

{
v01

(
ξ ;

(
1 − π(1,1)(ξ)T z(1)

)
Xπ(1,1) (ξ−)

)
,

v10

(
ξ ;

(
1 − π(1,1)(ξ)T z(2)

)
Xπ(1,1) (ξ−)

) })

= sup
π∈Ã(t,x)

inf
ξ∈Θt

Et,x

(
min

{
v00

(
ξ ;

(
1 − RL

π(1,1)
12 (ξ)

)
Xπ(1,1) (ξ−)

)
,

v00

(
ξ ;

(
1 − RL

π(1,1)
21 (ξ)

)
Xπ(1,1) (ξ−)

) })

= sup
π∈Ã(t,x)

inf
ξ∈Θt

Et,x

(
min

{
(1 − RL

π(1,1)
12 (ξ))1−γ v00

(
ξ ; Xπ(1,1) (ξ−)

)
,

(1 − RL
π(1,1)
21 (ξ))1−γ v00

(
ξ ; Xπ(1,1) (ξ−)

) })

= sup
π∈Ã(t,x)

inf
ξ∈Θt

Et,x

(
(1 − RLπ(1,1) (ξ ))1−γ v00

(
ξ ; Xπ(1,1) (ξ−)

) )

= sup
π∈Ã(t,x)

inf
ξ∈Θt

Et,x

(
v00

(
ξ ; (1 − RLπ(1,1) (ξ ))Xπ(1,1) (ξ−)

) )

= sup
π∈A(t,x)

inf
ξ∈Θt

Et,x

(
v00

(
ξ ; (1 − RLπ(1,1) (ξ ))Xπ(1,1) (ξ−)

) )
.

Here, the first equality follows with the above considerations on ξ̃ and the second one with
Theorem 1 and the definition of the relative losses RL

π(1,1)
12 and RL

π(1,1)
21 . Equation three

holds by Proposition 2 and for the fourth equality note that v00 (t; Xπ(1,1) (ξ−)) is negative
for γ > 1 and positive for γ < 1 and for an admissible portfolio process it holds RL

π(1,1)
12 < 1
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and RL
π(1,1)
21 < 1. The second but last equality follows again with Proposition 2 and the last

one holds by the definition of Ã(t, x). 
�
Remark 3 (Admissible portfolio processes) From now on, we denote, without loss of gen-
erality, by A(t, x), for x > 0, t ∈ [0, T ], the reduced set of admissible portfolio processes
Ã(t, x), defined in the proof of Lemma 2.

Remark 4 (Wealth process before the first stress) At this point we would like to note that the
stopping time ξ ∈ Θ , in the reformulated representation of the value function, is the time of
occurrence of the first stress. Thus, the wealth process cannot jump at a time t < ξ . This is of
particular importance when using Itô’s rule in the proofs of Proposition 5 and Proposition 8.

Minimum constant processes and optimality. The main consequence of Lemma 2 is that
we only have to consider the infimum over a single stopping time ξ ∈ Θ in the value
function v11(t; x). This allows to suitably adapt the indifference optimality principle and the
indifference frontier for the two-stress worst-case problem via the introduction of the concept
of the minimum process.

Definition 5 Let π ∈ A(x) be an admissible portfolio process.

1. We define the minimum process Mπ (t) by

Mπ (t) := v00
(
t; (1 − RLπ(1,1) (t))Xπ(1,1) (t−)

)
for t ∈ [0, T ],

with Mπ (∞) := U (Xπ(1,1) (T )).
2. We call π minimum constant if we have

E
(
Mπ (τ1)

) = E
(
Mπ (τ2)

)
for all τ1, τ2 ∈ Θ.

The unknown order of appearance of the two stresses requires that the investor always has to
consider both possible orderings simultaneously when judging a portfolio strategy in terms of
the worst-case approach. For this reason, we have introduced the definition of the minimum
process. The wording minimum process gets its meaning by noting that we have

Mπ (t) = min
{
v01

(
t; (1 − π(1,1)(t)

T z(1))Xπ(1,1) (t−)
)

,

v10

(
t; (1 − π(1,1)(t)

T z(2))Xπ(1,1) (t−)
) }

for t ∈ [0, T ],
with the same arguments as in the proof of Lemma 2. To be able to argue similarly as for the
indifference optimality, we also need minimum constant portfolio processes.

Remark 5 (Connection to the existing literature) In the previous definitionwehave introduced
minimum constant portfolio processes. In addition, we will state the minimum constant-
optimality principle in Proposition 6 and introduce the minimum indifference frontier in
Proposition 7 and Remark 6.

To solve the worst-case scenario portfolio problem with a single stress, the notions
of indifference strategy and indifference frontier have been introduced in [11] and [20].
These indifference concepts are based on an abstract controller-vs-stopper game between the
investor (controller) and the market (stopper).

However there exists a fundamental difference, that clearly distinguishes our new concepts
of minimum constant portfolio processes and of the minimum constant-optimality principle
from the existing literature. For this, consider the one stress scenario, or even the portfolio
optimization problem with n > 1 stress scenarios, consisting of n equal stresses z1 = . . . =
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zn , as solved in [12]. In these problems, the investor chooses the portfolio process and the
market decides when the next stress occurs. In our work, the investor still only has the option
of choosing the portfolio process. The market, as his/her counterpart, now has the possibility
to decide when the next stress will occur as well as which of the remaining stresses occurs.
Thus, themarket has two controls, namely the time and the order of occurrence of the stresses.

The existing concepts of indifference strategies and the indifference optimality principle
are based on the idea that an optimal investor should be indifferent to the time of occurrence
of the next stress, and at the same time presupposes the knowledge of which stress will
be the next. It is exactly this knowledge that we can no longer assume in this work with
multiple different stresses, which is why the introduction of new concepts is necessary. The
new principle of minimum indifference is now intended to take into account an indifference
with regard to the time of occurrence of the worst possible order of stresses. The formal
implementation of these new concepts, which finally results in the proof of existence of an
optimal portfolio process, is described in the remainder of this section.

We are already in a position, where we can prove the existence of a minimum constant
portfolio process.

Proposition 5 (Existence of a minimum constant portfolio process) There exists a minimum
constant portfolio process π̄ ∈ A(x), such that

π̄(1,1)(t) ∈ argmax π∈R2

RLπ (t)=N (t)
φγ (π) for t ∈ [0, T ],

where N is defined for t ∈ [0, T ] by the differential equation

N ′(t) = (1 − N (t))

⎛

⎜
⎝ max

π∈R2

RLπ (t)=N (t)

φγ (π) − φγ (π∗)

⎞

⎟
⎠ , (6)

with N (T ) = 0 and φγ as defined in Proposition 1. Further, for all t ∈ [0, T ] we have
RL π̄(1,1) (t) < 1.

Proof We give the proof in two steps.

(i) First, we show the existence of a deterministic admissible portfolio process π̄ , as
claimed in the assertion. We consider the function

G(t, N ) :=
⎛

⎜
⎝ max

π∈R2

RLπ (t)=N

φγ (π) − φγ (π∗)

⎞

⎟
⎠ .

As φγ (π) is a strictly concave quadratic function in π and RLπ (t) is the maximum of
two linear functions in π with a range of R, the maximization problem inside G(t, N )

can be solved and the maximum is attained. As further RLπ (t) is continuous, both in
t and in π , G(t, N ) is also continuous. Thus, the ordinary differential equation (6) is
well-defined. Now we can apply Lemma 4.2. in [20] and get, for the solution N of
(6), the inequality 0 ≤ N (t) < 1 for all t ∈ [0, T ]. Then it follows directly that a
deterministic admissible portfolio process π̄ ∈ A(x), as defined above, exists and in
particular RL π̄(1,1) = N applies for this portfolio process.
It is admissible as N is continuous and bounded, φγ is a quadratic function with a
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unique maximum and therefore there exists a π̄(1,1), which is continuous and bounded.
Further, we get for every t ∈ [0, T ]

N (t) < 1 ⇔RL π̄(1,1) (t) < 1 ⇔ max{RL π̄(1,1)
12 (t), RL

π̄(1,1)
21 (t)} < 1

⇔1 −
(
1 − π̄(1,1)(t)

T z(1)
) (

1 − π̄(0,1)(t)
T z(2)

)
< 1

∧ 1 −
(
1 − π̄(1,1)(t)

T z(2)
) (

1 − π̄(1,0)(t)
T z(1)

)
< 1

⇔max{π̄(1,1)(t)
T z(1), π̄(1,1)(t)

T z(2)} < 1 ,

where the last equivalence is valid since π̄(1,0) and π̄(0,1) are part of admissible portfolio
processes in the one-stress setting and thus π̄(1,0)(t)T z(1) < 1 and π̄(0,1)(t)T z(2) < 1.

(ii) Now we prove the minimum constant property of an admissible portfolio process π̄ ,
defined as above. For t ∈ [0, T ], the minimum process M π̄ is defined as

M π̄ (t) = v00

(
t; (1 − RL π̄(1,1) (t))X π̄(1,1) (t−)

)
.

By definition of π̄ we have
(
RL π̄(1,1)

)′
(t) = (1 − RL π̄(1,1) (t))

(
φγ (π̄(1,1)(t)) − φγ (π∗)

)
, (7)

with RL π̄(1,1) (T ) = 0. Itô’s rule for v00
(
t; (1 − RL π̄(1,1) (t))X π̄(1,1) (t−)

)
leads to

dv00

(
t; (1 − RL π̄(1,1) (t))X π̄(1,1) (t−)

)

= (v00)t (t; x(t))) dt + (v00)x (t; x(t))) x(t)(r + π̄(1,1)(t)
T (b − r1))dt

− (v00)x (t; x(t))) x(t)
(
RL π̄(1,1)

)′
(t)

1 − RL π̄(1,1) (t)
dt

+ 1

2
(v00)xx (t; x(t))) x(t)2π̄(1,1)(t)

T σσ T π̄(1,1)(t)dt

+ (v00)x (t; x(t))) x(t)π̄(1,1)(t)
T σdW (t),

for x(t) = (
1 − RL π̄(1,1) (t)

)
X π̄(1,1) (t−) and t ∈ [0, T ]. With the representation of

v00(t; x) from Proposition 2 and Eq. (7) we get

dv00 (t; x(t)) = v00 (t; x(t)) (1 − γ ) π̄(1,1)(t)
T σdW (t).

The solution of this SDE is given by

v00

(
t; (1 − RL π̄(1,1) (t))X π̄(1,1) (t−)

)

=v00

(
0; (1 − RL π̄(1,1) (0))X π̄(1,1) (0)

)
· exp

(
(1 − γ )

∫ t

0
π̄(1,1)(s)

T σdW (s)

− 1

2
(1 − γ )2

∫ t

0
π̄(1,1)(s)

T σσ T π̄(1,1)(s)ds
)
,

for t ∈ [0, T ]. Together with the integrability assumptions of an admissible portfolio
process and Novikov’s condition we get that

v00

(
t; (1 − RL π̄(1,1) (t))X π̄(1,1) (t−)

)
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is a martingale on [0, T ]. The boundary condition RLπ(1,1) (T ) = 0 extends the mar-
tingale property for M π̄ to [0, T ] ∪ {∞}. By Doob’s optional sampling theorem the
stopped process is also a martingale and so we get the minimum constant property on
[0, T ] ∪ {∞}. 
�

Before we prove the optimality of such a minimum constant portfolio process, we introduce
two helpful concepts. First, as analogue to the indifference-optimality we formulate the
minimum constant-optimality principle.

Proposition 6 (Minimum constant-optimality principle) If π̄ ∈ A(x) is a minimum constant
portfolio process and for all π ∈ A(x) we have

M π̄ (ξ̃ ) ≥ Mπ (ξ̃ ) for at least one ξ̃ ∈ Θ,

then π̄ solves the worst-case portfolio problem under stresses (5).

Proof The definition of a minimum constant portfolio process implies:

inf
ξ∈Θ

E

(
M π̄ (ξ)

)
= E

(
M π̄ (ξ̃ )

)
≥ E

(
Mπ (ξ̃ )

)
≥ inf

ξ∈Θ
E

(
Mπ (ξ)

)
,

and together with Lemma 2 the claim is proven. 
�
Next, we construct a minimum indifference frontier for the two-stress worst-case problem so
that all portfolio processes which exceed this frontier cannot be optimal for the worst-case
problem.

Proposition 7 (Minimum indifference frontier) Let π ∈ A(x), and let π̄ ∈ A(x) be a mini-
mum constant portfolio process. Set

τ1 := inf
{
t : RLπ(1,1)

12 (t) > RL π̄(1,1) (t)
}

,

τ2 := inf
{
t : RLπ(1,1)

21 (t) > RL π̄(1,1) (t)
}

,

and define

1π̃(1,1)(t) := π(1,1)(t) if t < τ1 and 1π̃(1,1)(t) := π̄(1,1)(t) if t ≥ τ1,

2π̃(1,1)(t) := π(1,1)(t) if t < τ2 and 2π̃(1,1)(t) := π̄(1,1)(t) if t ≥ τ2.

Then, 1π̃ , 2π̃ ∈ A(x) and the worst-case performances in (5) attained by 1π̃ and 2π̃ are at
least as big as that achieved by π .

Proof We give the proof for 1π̃ and τ1. The proof for 2π̃ follows analogously. First note
that 1π̃(1,1) is right-continuous by construction. Further, τ1 is predictable and therefore also
1π̃(1,1) is predictable. Thus we have 1π̃ ∈ A(x).

Now it is enough to look at τ1 < ∞ as otherwise we directly get Mπ (t) = M1π̃ (t) for
all t ∈ [0, T ] ∪ {∞}. By definition we have 1π̃(1,1)(t) = π(1,1)(t) if 0 ≤ t < τ1, and as π̄

is minimum constant, we get that π̃ is minimum constant for [τ1, T ] ∪ {∞}-valued stopping
times. Furthermore, the construction of 1π̃ and τ1 leads to

Mπ (t) = M1π̃ (t) for t ∈ [0, τ1)
and for t = τ1:
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E
(
Mπ (τ1)

) = E
(
v00

(
τ1; (1 − RLπ(1,1) (τ1))X

π(1,1) (τ1−)
))

=E

(
min

{
v00

(
τ1; (1 − RL

π(1,1)
12 (τ1))X

π(1,1) (τ1−)
)

,

v00

(
τ1; (1 − RL

π(1,1)
21 (τ1))X

π(1,1) (τ1−)
) })

≤E

(
min

{
v00

(
τ1; (1 − RL π̄(1,1) (τ1))X

π(1,1) (τ1−)
)

,

v00

(
τ1; (1 − RL

π(1,1)
21 (τ1))X

π(1,1) (τ1−)
) })

≤E

(
v00

(
τ1; (1 − RL π̄(1,1) (τ1))X

π(1,1) (τ1−)
))

= E

(
M1π̃ (τ1)

)
.

The second equality follows from the proof of Lemma 2. The first inequality holds, since
v00 (t; x) ismonotonically increasing in x and by the right-continuity properties of admissible
portfolio processes. Let Θτ1 denote the set of [0, τ1]-valued stopping times. Then, we obtain

inf
ξ∈Θ

E

(
M1π̃ (ξ)

)
= inf

ξ∈Θτ1
E

(
M1π̃ (ξ)

)
≥ inf

ξ∈Θτ1
E

(
Mπ (ξ

) ≥ inf
ξ∈Θ

E
(
Mπ (ξ)

)
,

and the claim follows with Lemma 2. 
�
Remark 6 (Minimum indifference frontier)Webriefly discuss themeaning of the twoprevious
Propositions and the concept of the indifference frontier. For a minimum constant portfolio
process π̄ we define the set I D(π̄) of all admissible portfolio processes that respect the
minimum indifference frontier of π̄ as follows:

I D(π̄) := {π ∈ A(x)|RLπ(1,1) (t) ≤ RL π̄(1,1) (t) for all t ∈ [0, T ]}.
From Proposition 7 we conclude that we can limit the search for the optimal strategy to
I D(π̄) and from Proposition 6 we know that it is enough to show that the minimum constant
portfolio process π̄ is the best strategy in I D(π̄) for the no-stress scenario.

In Theorem 2 we state the existence of an optimal minimum constant portfolio process. Its
proof is based on the following two lemmas.

Lemma 3 (Left-hand derivative of RLπ∗
) Let π∗ be the optimal post stress portfolio process.

Then the left-hand derivative of the relative worst-case loss RLπ∗
exists and we obtain:

lim
h→0
h<0

RLπ∗
(t + h) − RLπ∗

(t)

h
< 0,

for all t ∈ (0, T ], if max
{
(π∗)T z(1), (π∗)T z(2)

}
< 1.

Proof We know that RLπ∗
is the maximum of the two functions RLπ∗

12 and RLπ∗
21 with

derivatives given by (see 1)
(
RLπ∗

12

)′
(t) =

(
1 − (π∗)T z(1)

) (
π̄T

(0,1)z
(2)

)′
(t) < 0,

(
RLπ∗

21

)′
(t) =

(
1 − (π∗)T z(2)

) (
π̄T

(1,0)z
(1)

)′
(t) < 0,

(
RLπ∗

12

)′′
(t) =

(
1 − (π∗)T z(1)

) (
π̄T

(0,1)z
(2)

)′′
(t) < 0,

(
RLπ∗

21

)′′
(t) =

(
1 − (π∗)T z(2)

) (
π̄T

(1,0)z
(1)

)′′
(t) < 0,
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for t ∈ [0, T ]. If RLπ∗
12 (t) = RLπ∗

21 (t) for all t ∈ [0, T ], the claim follows directly by the first
derivatives. Otherwise we should note that RLπ∗

is the maximum of two strictly concave
functions. By Lemma 2.11. in [2], the two functions have a maximum of two intersections.
Thus RLπ∗

is differentiable from the left and together with the above first derivatives of
RLπ∗

12 and RLπ∗
21 , we obtain for the left-hand limit of the difference quotient:

lim
h→0
h<0

RLπ∗
(t + h) − RLπ∗

(t)

h
< 0,

for all t ∈ (0, T ]. 
�
Lemma 4 (Bounded relative worst-case loss) Let π̄ ∈ A(x) be a minimum constant portfolio
process defined as in Proposition 5 and π∗ be the optimal post stress portfolio process. Then,
for all t ∈ [0, T ] we get

RL π̄(1,1) (t) ≤ RLπ∗
(t), if max

{(
π∗)T z(1),

(
π∗)T z(2)

}
< 1.

Proof First we revert time and define F π̄(1,1) (t) = RL π̄(1,1) (T − t). Then we obtain the
forward ODE of RL π̄(1,1) for t ∈ [0, T ]:

(
F π̄(1,1)

)′
(t) = −(1 − F π̄(1,1) (t))

⎛

⎜
⎝ max

π∈R2

RLπ (T−t)=F π̄(1,1) (t)

φγ (π) − φγ (π∗)

⎞

⎟
⎠ ,

with F π̄(1,1) (0) = 0. Further we define Fπ∗
(t) = RLπ∗

(T − t) for t ∈ [0, T ] and with
Lemma 3 we obtain

lim
h→0
h>0

Fπ∗
(t + h) − Fπ∗

(t)

h
> 0, (8)

for all t ∈ [0, T ). Now we have to show that Fπ∗
(t) ≥ F π̄(1,1) (t) for t ∈ [0, T ]. Assumption

(2) leads to

F π̄(1,1) (0) = 0 < max
{(

π∗)T z(1),
(
π∗)T z(2)

}
= Fπ∗

(0).

Let us assume that there exists a t̄ ∈ (0, T ] with Fπ∗
(t̄) < F π̄(1,1) (t̄). Note that π̄(1,1) and π∗

are continuous and so are F π̄(1,1) and Fπ∗
. Therefore, there is at least one point of intersection

t0 ∈ (0, t̄) and an ε > 0, such that Fπ∗
(t0) = F π̄(1,1) (t0) and

Fπ∗
(t0 + h) − F π̄(1,1) (t0 + h) < 0 for all h ∈ (0, ε]

This leads to

lim
h→0
h>0

(
Fπ∗

(t0 + h) − F π̄(1,1) (t0 + h)
)

−
(
Fπ∗

(t0) − F π̄(1,1) (t0)
)

h
≤ 0.

Then, the differentiability of F π̄(1,1) implies

lim
h→0
h>0

Fπ∗
(t0 + h) − Fπ∗

(t0)

h
≤ lim

h→0
h>0

F π̄(1,1) (t0 + h) − F π̄(1,1) (t0)

h

=
(
F π̄(1,1)

)′
(t0).
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However, this is a contradiction, as on one hand inequality (8) is valid and on the other hand,
π∗ is the unconstrained maximizer of φγ which yields

(
F π̄(1,1)

)′
(t0) = − (1 − F π̄(1,1) (t0))

⎛

⎜
⎝ max

π∈R2

RLπ (T−t0)=Fπ∗
(t0)

φγ (π) − φγ (π∗)

⎞

⎟
⎠

= − (1 − F π̄(1,1) (t0))
(
φγ (π∗) − φγ (π∗)

) = 0.

So F π̄(1,1) (t) ≤ Fπ∗
(t) and therefore RL π̄(1,1) (t) ≤ RLπ∗

(t) for all t ∈ [0, T ]. 
�
Theorem 2 (Solution of the multi-stress worst-case problem) Let π̄ ∈ A(x) be a minimum
constant portfolio process defined as in Proposition 5. Then, π̄ is a worst-case optimal
portfolio process of problem (5). For the corresponding value function v11(t; x), we get at
time t = 0:

v11(0; x) = v00

(
0; (1 − RL π̄(1,1) (0))x

)
.

Proof Let π̄ ∈ A(x) be a minimum constant portfolio process defined as in Proposition 5.
In step (i) of this proof we show that RL π̄(1,1) (t) ≤ RLπ∗

(t) for all t ∈ [0, T ]. Then in step
(ii) we prove that

π̄ ∈ argmaxπ∈I D(π̄) E
(
Mπ (∞)

) = argmaxπ∈I D(π̄) E
(
U

(
Xπ(1,1) (T )

))
, (9)

where I D(π̄) is defined by the minimum indifference frontier as

I D(π̄) := {π ∈ A(x)|RLπ(1,1) (t) ≤ RL π̄(1,1) (t) for all t ∈ [0, T ]}.
Hence, π̄ solves the portfolio optimization problem in the stress-free world in the set of all
admissible portfolio processes respecting its indifference frontier. Together with Proposi-
tions 6 and 7 this directly yields optimality of π̄ .

(i) We first want to show that RL π̄(1,1) (t) ≤ RLπ∗
(t) for all t ∈ [0, T ]. For this, we have

to distinguish two cases.

(a) If max
{
(π∗)T z(1), (π∗)T z(2)

}
≥ 1, we get RLπ∗

(t) ≥ 1 for all t ∈ [0, T ].
But by Proposition 5 we know RL π̄(1,1) (t) < 1 for all t ∈ [0, T ] and therefore
RL π̄(1,1) (t) < RLπ∗

(t) for all t ∈ [0, T ].
(b) In the case of max

{
(π∗)T z(1), (π∗)T z(2)

}
< 1, Lemma 4 gives us the inequality.

(ii) Beforewe prove the optimality of π̄ , we show that π̄ solves the constrained optimization
problem

max
π∈I D(π̄)

φγ (π(1,1)(t)) for all t ∈ [0, T ]. (10)

We maximize the quadratic function φγ under linear constraints. From part (i) we
know that the unique optimizer π∗ of φγ in the unconstrained case does not fulfill
the constraints strictly, i.e. RLπ∗

(t) ≮ RL π̄(1,1) (t) < 1 for any t ∈ [0, T ]. Thus,
the optimizer πc of the constrained optimization problem (10) is a boundary point of
I D(π̄). That means RLπc

(1,1) (t) = RL π̄(1,1) (t) for all t ∈ [0, T ]. The definition of π̄ in
Proposition 5 yields

π̄(1,1)(t) ∈ argmax π∈R2

RLπ (t)=RL π̄(1,1) (t)

φγ (π) for all t ∈ [0, T ],
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and thus π̄ is a solution of (10).
Now we show (9) and hence prove the optimality of π̄ . For this, we apply the terminal
utility decomposition of Proposition 1, i.e. for π ∈ A(x) we have in the no-stress
scenario:

U (Xπ(1,1) (T )) = U (x) exp

(
(1 − γ )

∫ T

0
φγ (π(1,1)(t))dt

)
Y γ

T (π(1,1)),

where Y γ (π(1,1)) = (
Y γ
t (π(1,1))

)
t∈[0,T ] is a positive Ft -martingale with Y γ

0 (π(1,1)) =
1. Since π̄ solves (10), we get for π ∈ I D(π̄)

E
(
Mπ (∞)

) = E
(
U (Xπ(1,1) (T ))

)

= E

(
U (x) exp

(
(1 − γ )

∫ T

0
φγ (π(1,1)(t))dt

)
Y γ

T (π(1,1))

)

≤ E

(
U (x) exp

(
(1 − γ )

∫ T

0
φγ (π̄(1,1)(t))dt

)
Y γ

T (π(1,1))

)

= E

(
U (x) exp

(
(1 − γ )

∫ T

0
φγ (π̄(1,1)(t))dt

)
Y γ

T (π̄(1,1))

)
= E

(
M π̄ (∞)

)
.

Combining this with the arguments given at the beginning of this proof, we have shown that a
minimum constant process exists which is a worst-case optimal portfolio process of problem
(5).

Since π̄ is a minimum constant portfolio process by construction, we get, together with
Lemma 2:

v11(0; x) = sup
π∈A(x)

inf
ξ∈Θ

E
(
Mπ (ξ)

) = inf
ξ∈Θ

E

(
M π̄ (ξ)

)
= E

(
M π̄ (0)

)

= E

(
v00

(
0; (1 − RL π̄(1,1) (0))x

))
= v00

(
0; (1 − RL π̄(1,1) (0))x

)
.


�
Wewould like to briefly point out that the previous concepts can be extended to theworst-case
portfolio problem with more than two stresses and also to the case of a logarithmic utility
function.

Remark 7 (Extension to more than two stresses) The recursive determination of the optimal
strategies, depending on how much stresses can still occur, enables the extension to more
than two stresses. The definitions from Sect. 5, as well as the minimum indifference frontier
and the corresponding minimum indifference-optimality principle, can be adapted for the
general n stress case. Since we can define the relative worst-case loss completely analogous
to Definition 4, the existence result in Proposition 5 as well as the proof of optimality in
Theorem 2 can be used for the n stress case.

Remark 8 (Logarithmic utility) Theworst-case portfolio problemunder stresses can be solved
in the case of a logarithmic utility function, i.e. forU (x) = ln(x), with completely analogous
proofs. Note that we obtain, with the help of Itô’s formula, a decomposition of the terminal
utility as in Proposition 1, which is even additive. Based on this, the classicalMerton problem
with random initial time can be solved. The one-stress worst-case problem in the multi asset
setting is also treated in [9]. The proofs of Sect. 5 are quite analogous for the log-utility
case, noting that the newly introduced concepts of the relative worst-case loss and minimum
constant portfolio processes are defined independently of the concrete formof utility function.
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6 Sub-scenarios and a verification theorem

Proposition 2 and Theorem 1 allow us to construct the optimal strategy in the post stress
situation and in the one-stress worst-case setting. In Theorem 2 we have shown that there
exists a minimum constant portfolio process in the multi-stress case, which is optimal if both
stresses can still occur. However, the proof of existence of this strategy, given in Proposition 5,
is not constructive. Therefore, the goal is to derive a verification theorem, on the basis of
which we then create an algorithmic framework, that enables us to construct the optimal
strategy in a multi-stress worst-case scenario.
Sub-scenarios. We first define and determine indifference strategies for the sub-scenarios,
when the order of occurrence of the stresses is known.

Definition 6 We consider a worst-case portfolio problem with two stress scenarios (z(1), ξ1)
and (z(2), ξ2).

1. If there is a π ∈ A(x), such that

v00

(
t; (1 − RL

π(1,1)
12 (t))Xπ(1,1) (t−)

)
, t ∈ [0, T ],

is a martingale on [0, T ] with RL
π(1,1)
12 (T ) = 0, we call π a sub-scenario indifference

strategy for the sub-scenario ξ1 < ξ2.
2. If there is a π ∈ A(x), such that

v00

(
t; (1 − RL

π(1,1)
21 (t))Xπ(1,1) (t−)

)
, t ∈ [0, T ],

is a martingale on [0, T ] with RL
π(1,1)
21 (T ) = 0, we call π a sub-scenario indifference

strategy for the sub-scenario ξ2 < ξ1.

The requiredmartingale property enables us to compute such sub-scenario indifference strate-
gies.

Proposition 8 (Sub-scenario indifference strategy) For π ∈ A(x), define f π(1,1) by

f π(1,1) (t) = π(1,1)(t)
T (b − r1) − 1

2
γ

(
π(1,1)(t)

T σσ Tπ(1,1)(t) + (π∗)T σσ Tπ∗) .

1. Let π ∈ A(x) and π(1,1) be a deterministic solution to the following one-dimensional
coupled, non-linear ordinary differential equation

π(1,1)
′(t)T z(1)

=(1 − π(1,1)(t)
T z(1))

(

f π(1,1) (t) − π̄ ′
(0,1)(t)

T z(2)

1 − π̄(0,1)(t)T z(2)

)

, (11)

for t ∈ [0, T ] and with π(1,1)(T )T z(1) = 0.Then π is a sub-scenario indifference strategy
with respect to the sub-scenario ξ1 < ξ2.

2. Let π ∈ A(x) and π(1,1) be a deterministic solution to the following one-dimensional
coupled, non-linear ordinary differential equation

π(1,1)
′(t)T z(2)

=(1 − π(1,1)(t)
T z(2))

(

f π(1,1) (t) − π̄ ′
(1,0)(t)

T z(1)

1 − π̄(1,0)(t)T z(1)

)

, (12)
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for t ∈ [0, T ] and with π(1,1)(T )T z(2) = 0.Then π is a sub-scenario indifference strategy
with respect to the sub-scenario ξ2 < ξ1.

Proof We give the proof for π ∈ A(x), fulfilling equation (11). The other case follows
analogously. With Definition 4 we get for t ∈ [0, T ] that

v00

(
t; (1 − RL

π(1,1)
12 (t))Xπ(1,1) (t−)

)

=v00

(
t;

(
1 − π(1,1)(t)

T z(1)
) (

1 − π̄(0,1)(t)
T z(2)

)
Xπ(1,1) (t−)

)
.

Now we use the same idea as in the proof of Proposition 5. To prove the martingale property
we use Itô’s rule, the representation of v00(t; x) from Proposition 2, Eq. (11) and get

dv00 (t; x(t)) = v00 (t; x(t)) (1 − γ ) π(1,1)(t)
T σdW (t),

for x(t) = (1 − π(1,1)(t)T z(1))(1 − π̄(0,1)(t)T z(2))Xπ(1,1) (t−). The solution of this SDE is
given by

v00 (t; x(t)) = v00 (0; x(0)) · exp
(
(1 − γ )

∫ t

0
π(1,1)(s)

T σdW (s)

−1

2
(1 − γ )2

∫ t

0
π(1,1)(s)

T σσ Tπ(1,1)(s)ds
)
,

where the second factor is a martingale by Novikov’s condition and the integrability assump-
tions of an admissible portfolio process. Together with the terminal conditionπ(T )T z(1) = 0,
we get the sub-scenario indifference property. 
�

The following Corollary specifies the conditions under which a portfolio process that fulfills
at least one of the two ODEs above is minimum constant.

Corollary 1 (Minimum constant sub-scenario indifference strategy) Let π ∈ A(x) be an
admissible portfolio process and t1, t2 ∈ [0, T ] with t1 ≤ t2. Further, let π(1,1) fulfill one of
the following properties:

(i) π(1,1) is a solution of ODE (11) on [t1, t2] and for all t ∈ [t1, t2] it holds RLπ(1,1) (t) =
RL

π(1,1)
12 (t),

(ii) π(1,1) is a solution of ODE (12) on [t1, t2] and for all t ∈ [t1, t2] it holds RLπ(1,1) (t) =
RL

π(1,1)
21 (t).

Then we have E (Mπ (τ1)) = E (Mπ (τ2)) for all [t1, t2]-valued stopping times τ1 and τ2.

Proof In case of property (i) the relative worst-case loss of π is RLπ(1,1) (t) = RL
π(1,1)
12 (t)

and with the definition of the minimum process Mπ it follows that

Mπ (t) = v00
(
t; (1 − RLπ(1,1) (t))Xπ(1,1) (t−)

)

= v00

(
t; (1 − RL

π(1,1)
12 (t))Xπ(1,1) (t−)

)
for t ∈ [t1, t2].

By construction, π is a sub-scenario indifference strategy for the sub-scenario ξ1 < ξ2
on [t1, t2], i.e. with the same arguments as in the proof of Proposition 8, we get that
v00

(
t; (1 − RLπ

12(t))X
π (t−)

)
is a martingale on [t1, t2]. The result follows with Doob’s

optional sampling theorem. For property (ii) the statement is proven analogously. 
�
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Verification theorem for the multi-stress worst-case problem. The above considerations on
sub-scenario indifference strategies allow us to formulate the verification theorem. Before
we start, however, we would like to look at a short example, which illustrates the general
procedure in a simplified way.

Example 1 We consider the most basic setting of two independent stocks, two possible
stresses each affecting only one stock. Therefore we have z(1) = (k, 0)T , z(2) = (0, k)T

for k ≥ 0 and σ12 = σ21 = 0. With the notation π̄(1,0) = (π̄(1,0),1, π̄(1,0),2)
T and

π̄(0,1) = (π̄(0,1),1, π̄(0,1),2)
T one can show that

π̄ ′
(1,0),1(t)k = (

1 − π̄(1,0),1(t)k
) (

π̄(1,0),1(t) (b1 − r)

− 1

2
γ

(
π̄(1,0),1(t)

2σ 2
11 + (π∗

1 )2σ 2
11

) )
,

π̄ ′
(0,1),2(t)k = (

1 − π̄(0,1),2(t)k
) (

π̄(0,1),2(t) (b2 − r)

− 1

2
γ

(
π̄(0,1),2(t)

2σ 2
22 + (π∗

2 )2σ 2
22

) )
,

with π̄(1,0)(T )T z(1) = π̄(0,1)(T )T z(2) = 0 and

π̄(1,0),2(t) = π∗
2 and π̄(0,1),1(t) = π∗

1 for t ∈ [0, T ].
Using Corollary 1, it is easy to verify that π̄ with π̄(1,1) = (π̄(1,0),1, π̄(0,1),2) is a minimum
constant strategy as it solves the ODEs (11) and (12). Due to the terminal conditions and the
martingale properties we get, for all t ∈ [0, T ],

v00

(
t; (1 − RL

π̄(1,1)
12 (t))X π̄(1,1) (t−)

)
= v00

(
t; (1 − RL

π̄(1,1)
21 (t))X π̄(1,1) (t−)

)
,

and we also have RL π̄(1,1) (t) = RL
π̄(1,1)
12 (t) = RL

π̄(1,1)
21 (t), t ∈ [0, T ]. To show that π̄ solves

the worst-case portfolio problem under stresses, we know, by the proof of Theorem 2, that
it is enough to show that π̄ solves the constrained portfolio optimization problem (10). We
maximize

φγ (π) = r + πT (b − r1) − 1

2
γπT σσ Tπ (13)

point wise in π . The maximizer in the unconstrained case is π∗ = (
π∗
1 , π∗

2

)
and by Lemma

(1) we have

π(1,0),1(t) < π∗
1 and π(0,1),2(t) < π∗

2 . (14)

Furthermore, the set of all strategies respecting the indifference frontier is

I D(π̄) = {π ∈ A(x)|RLπ(1,1) (t) ≤ RL π̄(1,1) (t) for all t ∈ [0, T ]}
={π ∈ A(x)|π(1,1)(t)

T z(1) ≤ π̄(1,1)(t)
T z(1) ∧ π(1,1)(t)

T z(2) ≤ π̄(1,1)(t)
T z(2)

for all t ∈ [0, T ]}
={π ∈ A(x)|π(1,1),1(t) ≤ π̄(1,1),1(t) ∧ π(1,1),2(t) ≤ π̄(1,1),2(t) for all t ∈ [0, T ]},

where we use again the notation π(1,1) = (π(1,1),1, π(1,1),2) for π ∈ A(x). Together with the
quadratic form of (13) and the inequalities (14) we get the optimality of π̄ in the constrained
optimization problem (10) and thus the optimality in the worst-case portfolio problem under
stresses.
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We are now able to determine a verification theorem.

Theorem 3 (Verification Theorem) Consider the worst-case portfolio optimization problem
(5) with stress scenarios

(
z(1), ξ1

)
and

(
z(2), ξ2

)
. Let π̄ ∈ A(x) be an admissible portfolio

process and π∗ be the optimal portfolio process in the post stress problem, defined in Propo-
sition 2. Assume that there exists a k ≥ 0 and 0 = t0 < t1 < . . . < tk < tk+1 = T , such that
on every interval (ts, ts+1], with s = 0, . . . , k, the portfolio process π̄(1,1) fulfills one of the
following properties:

(i) For a j ∈ {1, 2}, the portfolio process π̄(1,1)(t) is given by

π̄(1,1)(t) = π∗(t) − λ j

γ

(
σσ T

)−1
z( j), (15)

where λ j is given by Eq. (18) below, with λ j ≥ 0, and N j (t) is the unique solution
of ODE (19) with terminal condition N j (ts+1) = π̄(1,1)(ts+1)

T z( j). Further, we have

for all t ∈ (ts, ts+1], that RL π̄(1,1) (t) = RL
π̄(1,1)
12 (t) holds if j = 1 and RL π̄(1,1) (t) =

RL
π̄(1,1)
21 (t) if j = 2.

(ii) The portfolio process π̄(1,1)(t) is given by

π̄(1,1)(t) = π∗(t) − λ

γ

(
σσ T

)−1
z(1) − μ

γ

(
σσ T

)−1
z(2), (16)

where λ and μ are given by Eqs. (20) and (21), with λ ≥ 0 and μ ≥ 0, and N (t)
and M(t) are the unique solutions of the ODEs (22) and (23) with terminal conditions
N (ts+1) = π̄(1,1)(ts+1)

T z(1) and M(ts+1) = π̄(1,1)(ts+1)
T z(2). Furthermore, we have

RL
π̄(1,1)
12 (t) = RL

π̄(1,1)
21 (t) for all t ∈ (ts, ts+1].

In case of property (ii), we require that z(1) and z(2) are linearly independent. Finally, we
assume that RL π̄(1,1) (T ) = 0. Then π̄ solves the worst-case portfolio optimization problem
(5) with stress scenarios

(
z(1), ξ1

)
and

(
z(2), ξ2

)
.

Proof Let π̄ ∈ A(x) be an admissible portfolio process that fulfills the properties of the
verification theorem. By Remark 3 it is enough to prove that π̄(1,1) is optimal if both stresses
can still occur. We use the idea of the proof of Theorem 2, especially part (ii). According to
this, we need to show, that

• π̄ is a minimum constant portfolio process, and
• π̄ is optimal in the stress-freeworld under all processes respecting its indifference frontier,

i.e. π̄ solves the constrained optimization problem

max
π∈I D(π̄)

φγ (π(1,1)(t)) for all t ∈ [0, T ]. (17)

We look at the interval (ts, ts+1] for s ∈ {0, . . . , k}, and prove that these two conditions are
fulfilled.

(i) By using Lagrangian-multiplier methods one can show that π̄ with

π̄(1,1)(t) = π∗(t) − λ j

γ

(
σσ T

)−1
z( j),

where

λ j

γ
= π∗(t)T z( j) − N j (t)

(z( j))T
(
σσ T

)−1
z( j)

(18)
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and N j is the unique solution of

N ′
j (t) = (1 − N j (t))

(

f π̄(1,1) (t) − π̄ ′
(0,1)(t)

T z(2)

1 − π̄(0,1)(t)T z(2)

)

, if j = 1,

N ′
j (t) = (1 − N j (t))

(

f π̄(1,1) (t) − π̄ ′
(1,0)(t)

T z(1)

1 − π̄(1,0)(t)T z(1)

)

, if j = 2, (19)

with N j (ts+1) = π̄(1,1)(ts+1)
T z( j) and

f π̄(1,1) (t) = −1

2
γ

(
(
λ j

γ
z( j))T

(
σσ T

)−1
(
λ j

γ
z( j))

)
,

solves the following constrained optimization problem if λ j ≥ 0:

max
π∈ Ĩ D(π̄)

φγ (π(1,1)(t)) for every t ∈ (ts, ts+1].

Here, Ĩ D(π̄) is defined as

Ĩ D(π̄) = {π ∈ A(x)|π(1,1)(t)
T z( j) ≤ π̄(1,1)(t)

T z( j) for t ∈ (ts, ts+1]}.
Furthermore, π̄(1,1) solves ODE (11) on (ts, ts+1] if j = 1 and ODE (12) if j = 2.

From RL π̄(1,1) (t) = RL
π̄(1,1)
12 (t), respectively RL π̄(1,1) (t) = RL

π̄(1,1)
21 (t), we get, that

RLπ(1,1) (t) ≤ RL π̄(1,1) (t) implies π(1,1)(t)T z( j) ≤ π̄(1,1)(t)T z( j). Therefore, we have
I D(π̄) ⊆ Ĩ D(π̄) and thus π̄ solves the constrained optimization problem (17) on
(ts, ts+1]. Further, π̄ fulfills property (i) or (ii) of Corollary 1 on (ts, ts+1].

(ii) Consider π̄ with

π̄(1,1)(t) = π∗(t) − λ

γ

(
σσ T

)−1
z(1) − μ

γ

(
σσ T

)−1
z(2),

where

λ

γ
=

(
π∗(t)T z(1) − N (t)

(z(1))T
(
σσ T

)−1
z(1)

−
(
π∗(t)T z(2) − M(t)

)
(z(1))T

(
σσ T

)−1
z(2)

(z(1))T
(
σσ T

)−1
z(1)(z(2))T

(
σσ T

)−1
z(2)

) /
l,

(20)

μ

γ
=

(
π∗(t)T z(2) − M(t)

(z(2))T
(
σσ T

)−1
z(2)

−
(
π∗(t)T z(1) − N (t)

)
(z(1))T

(
σσ T

)−1
z(2)

(z(1))T
(
σσ T

)−1
z(1)(z(2))T

(
σσ T

)−1
z(2)

) /
l,

(21)

with

l = 1 −
(
(z(1))T

(
σσ T

)−1
z(2)

)2

(z(1))T
(
σσ T

)−1
z(1)(z(2))T

(
σσ T

)−1
z(2)

.

Using the Cholesky decomposition and the Cauchy-Schwarz inequality we get l > 0
by the linear independence assumption. Let N and M denote the unique solutions of

N ′(t) = (1 − N (t))

(

f π̄(1,1) (t) − π̄ ′
(0,1)(t)

T z(2)

1 − π̄(0,1)(t)T z(2)

)

, (22)
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M ′(t) = (1 − M(t))

(

f π̄(1,1) (t) − π̄ ′
(1,0)(t)

T z(1)

1 − π̄(1,0)(t)T z(1)

)

, (23)

with N (ts+1) = π̄(1,1)(ts+1)
T z(1) and M(ts+1) = π̄(1,1)(ts+1)

T z(2) and

f π̄(1,1) (t) = −1

2
γ

(
(
λ

γ
z(1) + μ

γ
z(2))T

(
σσ T

)−1
(
λ

γ
z(1) + μ

γ
z(2))

)
.

Again, by using Lagrangian-multiplier methods and the Karush-Kuhn-Tucker condi-
tions, one can show that π̄ solves the following constrained optimization problem if
λ ≥ 0 and μ ≥ 0:

max
π∈ Ĩ D(π̄)

φγ (π(1,1)(t)) for every t ∈ (ts, ts+1],

with

Ĩ D(π̄) = {π ∈ A(x)|π(1,1)(t)
T z(1) ≤ π̄(1,1)(t)

T z(1)

∧ π(1,1)(t)
T z(2) ≤ π̄(1,1)(t)

T z(2)for t ∈ (ts, ts+1]}.
Furthermore, π̄(1,1) solves ODE (11) and ODE (12). Using the definition of the relative

worst-case loss and RL
π̄(1,1)
12 (t) = RL

π̄(1,1)
21 (t) for all t ∈ (ts, ts+1], RLπ(1,1) (t) ≤

RL π̄(1,1) (t) for t ∈ (ts, ts+1] implies π ∈ Ĩ D(π̄) and therefore I D(π̄) ⊆ Ĩ D(π̄). So
π̄ solves the constrained optimization problem (17) and fulfills property (i) and (ii) of
Corollary 1 on (ts, ts+1].
In summary, this means that π̄ solves the constrained optimization problem and on
each interval (ts, ts+1] for s = 0, . . . , k it fulfills at least one of the two properties of
Corollary 1. Thus, due to the right-continuity and the boundary condition RL π̄(1,1) (T ) =
0, π̄ is minimum constant. 
�

Remark 9 (Notes on the verification theorem) We make a few comments on the verification
theorem.

1. If π̄(1,1), for π̄ ∈ A(x), fulfills property (i) of the verification theorem on the whole
interval [0, T ], then π̄ is by construction a sub-scenario indifference strategy. An investor

using this portfolio process prefers the stress order ξ2 < ξ1 if RL π̄(1,1) (t) = RL
π̄(1,1)
12 (t)

and ξ1 < ξ2 if RL π̄(1,1) (t) = RL
π̄(1,1)
21 (t).

2. An investor with portfolio process π̄ ∈ A(x), where π̄(1,1) fulfills property (ii) of the
verification theorem on the interval [0, T ], with π̄(1,1)(T )T z(1) = 0 and π̄(1,1)(T )T z(2) =
0, is indifferent concerning the time and order of occurrence of the two stresses, since
then we have

E

(
v00

(
τ ;

(
1 − RL

π̄(1,1)
12 (τ )

)
X π̄(1,1) (τ−)

))

=E

(
v00

(
T ;

(
1 − RL

π̄(1,1)
12 (T )

)
X π̄(1,1) (T−)

))

=E

(
v00

(
T ;

(
1 − RL

π̄(1,1)
21 (T )

)
X π̄(1,1) (T−)

))

=E

(
v00

(
τ ;

(
1 − RL

π̄(1,1)
21 (τ )

)
X π̄(1,1) (τ−)

))
for all τ ∈ Θ.

3. The verification theorem in the log-utility case is obtained by setting γ = 1. For this, note
that we can compute sub-scenario indifference strategies in the log-utility case by using
Itô’s rule, analogous to the proof of Proposition 8.
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7 Characterization of the solution and numerical illustration

To apply the verification theorem we are now going to construct, in a heuristic way, general
candidates for the optimal portfolio process. These heuristic constructions do not serve as
an alternative to a proof of existence, but should make it easier to find a suitable process.
As the numerical considerations show, the Lagrange multipliers appearing in the verification
theorem depend to a large extent on the correlations of the stocks and the type of stresses.
Due to the dependence on the ODEs, it must be checked numerically whether they fulfill
the non-negativity conditions of the verification theorem. In the following we describe a
procedure that helps to determine the optimal strategy.

In the numerical considerations of this section, the matrix σ is a d × d lower triangular
matrix of full rank.
Linearly dependent stresses. We consider the situation of two linearly dependent stresses
z(1) = az(2), with a ≥ 1. The proof of the verification theorem implies that a portfolio
process which satisfies property (ii) solves the two ODEs (11) and (12). But this is only
possible if the stresses are linearly independent. Hence, it is sufficient to consider the case
of property (i). The linear dependency and the boundary condition RL π̄(1,1) (T ) = 0 directly
yield π̄(1,1)(T )T z(1) = π̄(1,1)(T )T z(2) = 0. Here, where z(1) is the worse stress, it nowmakes
sense to compute (15) for j = 1, check the required properties and if necessary switch to
j = 2.

A simple example is shown in Fig. 1. Here, we have r = 0, γ = 1.5, T = 20, one stock
with b = 0.03, σ = 0.2, and two linearly dependent stresses z(1) = 0.25 and z(2) = 0.15.
Solving the ODE (11) and verifying the conditions of part (i) of the verification theorem yield
that the worst-case optimal strategy is the optimal sub-scenario indifference strategy for the
sub-scenario ξ1 < ξ2, i.e. one should be prepared for the larger stress occurring first.
Linearly independent stresses. By assumption (2) and since π̄(1,0)(T )T z(1) = 0 and
π̄(0,1)(T )T z(2) = 0, we know that

π̄(1,1)(T ) ∈ argmax π∈R2

πT z(1)≤0
πT z(2)≤0

φγ (π)

Fig. 1 One stock with z(1) = 0.25 and z(2) = 0.15
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Fig. 2 Two uncorrelated stocks with z(1) = (0.15, 0.25)T and z(2) = (0.25, 0.15)T

solves the boundary condition RL π̄(1,1) (T ) = 0, since at least one of the constraints in the
above optimization problem is fulfilled with equality for the optimal solution. If both con-

straints are fulfilled with equality we know that RL π̄(1,1) (T ) = RL
π̄(1,1)
12 (T ) = RL

π̄(1,1)
21 (T )

and therefore we should start to construct π̄(1,1) accordingly to (16). If, without loss of
generality, π̄(1,1)(T )T z(1) < 0 we know that π̄(1,1)(T )T z(2) = 0 (otherwise π∗ would
fulfill the constraints). Then, we construct π̄(1,1) accordingly to (15) with j = 2, since

RL π̄(1,1) (T ) = RL
π̄(1,1)
21 (T ).

Now we look at the interval (ts, ts+1] for s ∈ {0, . . . , k} and a not yet defined ts . If π̄(1,1)
is given by Eq. (15) with j = 1 ( j = 2 is similar) in ts+1, we define ts as

ts = sup{t ≤ ts+1|RL π̄(1,1) (t) > RL
π̄(1,1)
12 (t)}.

In ts one should then check whether the transition to (16) is possible. On the other hand, if
π̄(1,1) is given by Eq. (16) in ts+1 we define ts as

ts = sup{t ≤ ts+1|λ(t) < 0 ∨ μ(t) < 0},
where λ and μ are interpreted as functions in t . Let us assume that w.l.o.g. λ(ts−) ≥ 0 and
μ(ts−) < 0. Then we should switch to (15) with j = 1, since then, due to continuity, we

expect RL π̄(1,1) (ts−) = RL
π̄(1,1)
12 (ts−).

As an example, we consider two uncorrelated stocks with r = 0, γ = 1.5, b =
(0.03, 0.035), σ11 = 0.2, σ22 = 0.3 and T = 20. In Fig. 2, we see the optimal portfo-
lio process for z(1) = (0.15, 0.25)T and z(2) = (0.25, 0.15)T . Here, π̄(1,1) fulfills property
(ii) of the verification theorem on the whole interval [0, T ]. Hence, the investor is indifferent
with respect to the order of occurrence of the stresses. That is not the case for the optimal
portfolio process in Fig. 3. Here, we have z(1) = (0.25, 0.25)T and z(2) = (0.35, 0.15)T . On
the interval [0, 16.1] the process π̄(1,1) fulfills property (ii) of the verification theorem and
afterwards property (i) for j = 1, i.e. from t = 16.1 on, the investor prefers the occurrence
of the stress z(2) first.
Further numerical illustrations. In the following, we give four further numerical examples
to show the extent to which the choice of the stresses influences the construction of the
optimal minimum constant portfolio process. In all examples, we use the same two negatively
correlated stocks and stepwise vary the stresses.We select the following parameters: T = 20,
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Fig. 3 Two uncorrelated stocks with z(1) = (0.25, 0.25)T and z(2) = (0.35, 0.15)T

Fig. 4 Two negatively correlated stocks with z(1) = (0.15, 0.25)T and z(2) = (0.25, 0.15)T

γ = 1.5, b = (0.03, 0.035) and σ11 = 0.2, σ21 = −0.15, σ22 = 0.2. It follows that ln (S2)
has a volatility of 0.25 and the log-prices of the two stocks have a correlation of ρ = −0.6.
In Fig. 4 we use the stresses z(1) = (0.15, 0.25)T and z(2) = (0.25, 0.15)T . The symmetric
stresses cause the optimal strategy to satisfy property (ii) of the verification theorem on the
interval [0, T ] and the investor is therefore indifferent regarding time and order of occurrence
of the stresses. Note that in relation to Fig. 2, the negative correlation leads to significantly
higher investments in the risky assets.

In Fig. 5, we now slightly adjust stress z(2) and consider the stresses z(1) = (0.15, 0.25)T

and z(2) = (0.15, 0.15)T , so that z(1) can be regarded as theworse stress. The optimal strategy
π̄(1,1) fulfills property (i) for j = 1 on the interval [0, 8.8] and afterwards property (ii) of
the verification theorem. Hence, the investor first prefers the occurrence of stress z(2), since

RL π̄(1,1) (t) = RL
π̄(1,1)
12 (t), before being indifferent regarding the order of occurrence.

The time of transition from property (i) to (ii) is shifted back in time in Fig. 6 by further
reducing stress z(2) and using the stresses z(1) = (0.15, 0.25)T and z(2) = (0.1, 0.1)T . Here,
π̄(1,1) fulfills property (i) for j = 1 on the interval [0, 15] and afterwards property (ii).
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Fig. 5 Two negatively correlated stocks with z(1) = (0.15, 0.25)T and z(2) = (0.15, 0.15)T

Fig. 6 Two negatively correlated stocks with z(1) = (0.15, 0.25)T and z(2) = (0.1, 0.1)T

Finally, we swap the components of stress z(1) and consider the stresses z(1) =
(0.25, 0.15)T and z(2) = (0.1, 0.1)T in Fig. 7. Here we have two transitions between the
properties of the verification theorem. On the interval [0, 14.4], the optimal strategy π̄(1,1)
satisfies property (i) for j = 1, on the interval [14.4, 18.5] property (ii) and then again prop-
erty (i), but this time for j = 2. This in particular means that towards the time horizon the
investor prefers stress z(1), which is actually perceived as worse. This is because there is a
short position in the first stock S1 if π̄(1,1) fulfills property (i) for j = 2 close to T .

8 Conclusion

We have modelled a portfolio optimization problem with possible stress scenarios by suit-
ably adapting the worst-case scenario portfolio approach originally introduced in [13]. This
included the introduction of different types of stresses and of an uncertain ordering of their
occurrence. To deal with such a kind of problem, we generalized the concepts of the indiffer-
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Fig. 7 Two negatively correlated stocks with z(1) = (0.25, 0.15)T and z(2) = (0.1, 0.1)T

ence frontier and of the indifference-optimality principle as given in [20] via the introduction
of the minimum constant process.
We succeed in proving the existence of a minimum constant process which solves the multi-
asset multi-stress worst-case problem in case that more than one stress can occur.
With the help of a verification theorem, we developed an algorithmic framework for coming
up with candidates for the optimal worst-case portfolios and then verifying the guess by
checking the validity of one of the two different sufficient conditions in the theorem.
Numerical examples highlighted various different effects. There can be settings where the
investor globally is worst-case hedged against one particular ordering of the stresses. There
can also be the situation where the investor is indifferent with respect to the ordering of the
occurrence of the stresses, or where he/she is locally indifferent, but also locally is focused
to concentrate on a particular ordering as the worst case.
Thus, the stress scenario setting is more complex than the classical worst-case portfolio
problem. It is thus also not surprising that in the verification theorem we can only give
sufficient conditions for a worst-case optimal portfolio strategy.
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