DANIEL NEIDER

INTELLIGENT FORMAL
METHODS

COMBINING DEDUCTIVE AND INDUCTIVE REASONING
TO BUILD RELIABLE SYSTEMS

HABILITATION
JUNE 2022

UNIVERSITY OF KAISERSLAUTERN

Vom Fachbereich Informatik der Technischen Universitdt Kaiserslautern im
Rahmen des Habilitationsverfahrens akzeptierte Habilitationsschrift

To my parents and partner, my greatest supporters

CONTENTS

1 Introduction, 1

2 Intelligent Software Verification, 3
2.1 Horn-ICE Learning, 7
2.2 Two Efficient Horn-ICE Learning Algorithms, 10
2.2.1 Sorcar, 11
2.2.2 A Horn-ICE Learning Algorithm Based on Decision Trees, 17
2.3 Invariant Synthesis for Incomplete Verification Engines, 22
2.3.1 The NPI Framework, 24
2.3.2 A Teacher for Non-Provability Information, 25
2.3.3 Learning from Non-Provability Information, 27
2.4 Notes on Related Work, 28

3 Intelligent Reactive and Functional Synthesis, 31
3.1 Reactive Synthesis, 32
3.1.1 Rational Safety Games, 38
3.1.2 LRA Safety Games, 42
3.1.3 Regular Safety Games, 44
3.2 Functional Synthesis, 48
3.3 Abstract Learning Framework for Synthesis, 55
3.4 Notes on Related Work, 61

4 Intelligent Specification of System Properties, 65
4.1 Learning Specifications from Positive and Negative Examples, 66
4.1.1 Learning LTL Specifications from Positive and Negative Examples, 67
4.1.2 Learning PSL Specifications from Positive and Negative Examples, 73
4.2 Learning Specifications from Positive Examples Only, 81
4.3 Notes on Related Work, 86

5 Conclusion, 89
Primary Bibliography, 91
Secondary Bibliography, 95

Index, 115

INTRODUCTION

Information technology has become an indispensable part of our daily lives, with a
significant proportion of our everyday activities relying on the safe and reliable operation
of computer systems. However, building safe and reliable systems is notoriously difficult.
It involves a host of different tasks, ranging from formalizing the system’s requirements,
to designing and implementing the system, to verifying that it indeed meets its
specification. Each of these tasks is highly complex and—even worse—prone to error.

A promising approach to ensuring safety and reliability of computer systems is the use
of so-called formal methods, a broad range of rigorous, mathematical techniques for
specifying, developing, and verifying hardware, software, cyber-physical systems, and
artificial intelligence (e.g., see Huisman, Gurov, and Malkis [85] for an overview). Unlike
more traditional quality assurance approaches, such as testing, formal methods offer
the unique ability to provide formal proof of the absence of errors, a trait particularly
desirable in the context of today’s ubiquitous safety-critical systems. However, this
advantage comes at a cost: formal methods require extensive training, often assume
idealized or limited settings, and typically demand substantial computational resources
(see corresponding textbooks for an overview [26, 42, 74]). Unfortunately, this cost can
outweigh the expected benefits [147].

This work reports on our research to fundamentally simplify the use of formal methods.
Similar to the vision of artificial intelligence, our overall goal is to automate formal
methods and dramatically expand their applicability. To achieve this goal, we develop
an innovative, novel type of formal methods, which combines inductive techniques from
the area of machine learning and deductive techniques from the area of logic. We name
this new type intelligent formal methods.

In the remainder of this work, we develop intelligent formal methods for three of the
most critical challenges in the development of safe and reliable systems:

o In Chapter 2, we address the problem of software verification [42, 67, 82], which
is the task of proving that a given piece of software satisfies its specification. In
particular, we develop novel methods to learn correctness proofs (in the form of
invariants and method contracts) for a wide range of software, including recursive
programs, concurrent programs, and programs that use dynamically allocated
data structures.

e In Chapter 3, we address the problem of synthesizing both hardware and software
from formal specifications. More specifically, we develop learning-based algorithms

1 Introduction

for two important synthesis settings: reactive synthesis [51] (i.e., the task of
synthesizing systems that continuously interact with their environment) as well
as functional synthesis [18] (i.e., the task of synthesizing implementations of
functions, including loop-free code). Additionally, we develop a general framework
that provides the vocabulary needed to better understand the similarities and
differences between alternative learning-based synthesis algorithms.

e In Chapter 4, we develop novel techniques that fundamentally improve the way
engineers write formal specifications. In particular, we show how machine learning
can be used to infer specifications expressed in Linear Temporal Logic [125] or
the Property Specification Language [61] from examples describing the desired
(and undesired) behavior of a system.

We conclude in Chapter 5 with a summary of our work, a discussion of open challenges
in the area of (intelligent) formal methods, and an outlook on directions for future
research.

Finally, it is important to mention that this document serves as an extended abstract
summarizing our research in the area of intelligent formal methods. It is not meant to be
an entirely original work but a unified compilation of a long series of our research papers.
For the sake of conciseness, we have omitted proofs and all empirical evaluations, which
show that all of our techniques are highly competitive. To provide the necessary context,
we regularly refer to specific results in our original research papers and encourage the
reader to consult this additional material for further details. Moreover, Chapters 2 to 4
conclude with notes on related work. For the reader’s convenience, the bibliography of
this work is partitioned into a primary bibliography, listing the papers compiled into
this document, and a secondary bibliography, containing all other references.

INTELLIGENT SOFTWARE
VERIFICATION

Automated program verification dates back to the 1960s when Floyd [67] and Hoare [82]
pioneered the idea of assigning a formal meaning to programs, thereby providing an
effective way to reason about computer programs rigorously. Since then, the field of
automated verification has made significant progress, and a host of different verification
techniques have been developed. Examples include abstract interpretation [54], deduc-
tive verification (which builds upon Floyd and Hoare’s work as well as the weakest
pre-condition calculus by Dijkstra [55]), software model checking [36, 84], and symbolic
execution [97], to name but a few.

In this work, we focus on deductive verification. To illustrate this approach, consider a
prototypical program P, given by

assume «,;

while (g) {
s;

}

assert [5;

where a and 8 are formulas over the configurations! of the program, ¢ is a Boolean
expression (the loop guard), and s is a program snippet (i.e., a sequence of statements)
representing the loop body. The assume and assert statements serve as the specification
of P: the assume statement represents a pre-condition (i.e., a condition that has to hold
before the code is executed), while the assert statement corresponds to a post-condition
(i.e., a condition that has to hold after the code is executed). The goal of deductive
verification is now to prove that every execution of P that satisfies the pre-condition
and terminates also satisfies the post-condition. This task is referred to as proving the
program, correct or program correctness for short.

On a technical level, the core idea of deductive verification is to translate a program
and its specification into a set of logic formulas, called verification conditions (VCs),
such that the verification conditions are valid if and only if the program satisfies
the specification. Subsequently, highly optimized constraint solvers, such as CVC4/

!To avoid too much notational overhead, we assume a program configuration to be a vector that
records the values of the program’s variables, the content of the heap, and (for technical reasons
that become apparent later) the current location in the code.

2 Intelligent Software Verification

CVC5 [28, 31] or Z3 [114], can be used to check the validity of the verification conditions
in a fully or semi-automated fashion (by checking (un-)satisfiability of the negated
verification conditions). Moreover, if the program does not satisfy its specification,
modern constraint solvers are able to return inputs to the program that witness a
specification violation. Programmers can then use these inputs to locate and fix the
detected errors.

In general, however, deductive verification requires additional guidance. Take the
program P from above as an example: since the exact number of loop iterations is
not known in general and might change depending on the program’s input, the user
needs to provide a so-called loop invariant, which summarizes the effect of the loop
and abstracts from the actual number of times the loop is executed. More formally, a
loop invariant is a formula ~ over the configurations of a program that has to satisfy
three properties:

1. the pre-condition « implies ~;

2. the invariant v and the negation of the loop guard b imply the post-condition 5;
and

3. the invariant is inductive, meaning that if v and the loop guard hold at the
beginning of the loop, then ~ also needs to hold at the end of the loop (i.e., after
executing the loop body).

Once a loop invariant is provided, a constraint solver (or theorem prover) can be used
to establish whether the program P is correct.

Unfortunately, the generation of loop invariants remains a highly challenging, manual
task. Although programmers often have adequate invariants in mind while writing their
code, formalizing them in a logical formalism is error-prone and requires substantial
training and expertise. In fact, the lack of automated means to generate loop invariants
is one of the significant hurdles that prevent a widespread adaptation of deductive
verification in practice. As a consequence, intensive research has been devoted to this
topic, with varying degrees of automation and success (we refer the reader to Garg
et al. [69, 3] for an in-depth discussion of related work).

One of the most promising developments towards a fully automated generation of
loop invariants is the use of machine learning, specifically a framework called ICE
learning [69].> To make this framework precise, let us fix a program P, and let Cp
denote the set of all configurations that can arise while executing P. Given a formula
¢ and a program configuration ¢ € Cp, we then write ¢ |= ¢ if ¢ satisfies ¢, which is
defined in the usual way (e.g., see Bradley and Manna [42]). To ease the presentation in

2The name “ICE learning” arises from so-called implication counterexamples, which are the defining
feature of the framework.

hypothesis invariant ~y

Learner Teacher
(Synthesizer) (Verifier)
stores concrete program has access to the
configurations program

f |

positive, negative, or implication counterexample

Figure 2.1: The ICE learning framework [69].

the remainder, we assume that the satisfaction of a formula ¢ can either be determined
directly from the program configurations or that the program is instrumented with
ghost variables tracking its satisfaction at relevant places in the program (e.g., at the
loop header and immediately after the loop). Moreover, we lift this notation to formulas
involving Boolean program expression (e.g., we write ¢ = ¢ A g if ¢ satisfies ¢ and the
loop guard g).

The general workflow of ICE learning is shown in Figure 2.1. It follows the principle of
counterexample-guided inductive synthesis (CEGIS) [142] and consists of a feedback
loop with two entities: a learner (or synthesizer), who is agnostic to the program under
consideration, and a teacher (or verifier), who is able to reason symbolically about the

program.?

In each round of the feedback loop, the learner proposes a candidate invariant -« based
on the information it has gathered so far. The teacher receives this hypothesis and
checks whether it is an adequate invariant that is sufficient to prove the program
correct. To this end, the teacher can employ any off-the-shelf deductive verifier, such
as Boogie [29], SeaHorn [80], or why3 [65]. If the verification succeeds, the feedback
loop terminates, and the teacher reports that the program is correct. If the verification
fails, however, the teacher is required to return a so-called counterezample, which
guides the learner towards an invariant that proves the program correct. The type of
counterexample depends on which of the three defining properties of an invariant is
violated:

1. If the pre-condition o does not imply -, the teacher returns a so-called pos-
itive counterexample ¢ € Cp such that ¢ = a A =y. The meaning of such a
counterexample is that any future hypothesis must satisfy c.

3The ideas underlying CEGIS date back to the 1970s, when Biermann and Feldman [37] proposed a
similar concept in the context of automata learning.

2 Intelligent Software Verification

2. If the hypothesis v and the negation of the loop guard g do not imply the post-
condition (3, the teacher returns a so-called negative counterexample ¢ € Cp such
that ¢ =~y A =g A =3. The meaning of such a counterexample is that any future
hypothesis must not satisfy c.

3. If the hypothesis H is not inductive, then the teacher returns a so-called implica-
tion counterexample ¢ — ¢ € Cp x Cp such that ¢ = v A g, the program state
¢’ is reached from ¢ by executing the loop body, and ¢’ £ . The meaning of
such a counterexample is that any future hypothesis that satisfies ¢ must also
satisfy /. In contrast to positive and negative counterexamples, however, the
classification of neither ¢ nor ¢ is fixed; instead, the learner is free to choose their
classifications as long as the implication constraint is satisfied.

This process continues until the learner has learned an invariant that is sufficient to
prove the program correct. Note that counterexamples consist of concrete program
configurations, which provide a generic interface to data-driven machine learning
techniques.

In contrast to many other approaches that employ machine learning for verification,
ICE learning has three outstanding features, which contribute significantly to its
success. First, ICE learning provides formal correctness guarantees in that the inferred
invariants indeed prove that the given programs satisfy their specifications. Second,
ICE learning is guaranteed to terminate in many practical settings (e.g., when the class
of potential invariants is finite); once this happens, the feedback loop either returns
a suitable invariant or reports that no invariant exists. Third, ICE learning allows
the reuse of existing verification infrastructure, thus benefiting from any advances in
deductive verification.

However, despite these advantages and its general success, ICE learning also has various
drawbacks:

e Although ICE learning—in general—permits synthesizing loop invariants at
multiple locations in a program, these invariants must be independent of each
other (which essentially amounts to synthesizing one invariant at a time). In
particular, this restriction excludes programs with nested loops and programs
in which several loops occur in sequence. Moreover, the ICE learning framework
cannot synthesize contracts for recursive functions (i.e., their pre-conditions and
post-conditions), which is required for fully automated verification.

e Due to the combinatorial nature of implication counterexamples, the original
ICE learning framework [69] uses constraint solving to implement the learner.
Since constraint solving is computationally hard, this approach is significantly
less scalable than statistical machine learning algorithms.

2.1 Horn-ICE Learning

e To implement a teacher and extract counterexamples, ICE learning requires
that the verification conditions fall into a decidable logic. However, this is often
not the case, specifically when programs manipulate dynamically allocated data
structures, such as arrays, lists, and trees.

In this work, we address all three of these limitations. More specifically, Section 2.1
generalizes the ICE learning framework to a fully automated verification setting where
both loop invariants and function contracts can be synthesized simultaneously. This
generalization, named Horn-ICE learning, also provides an effective way to synthesize
assume-guarantee contracts for the verification of concurrent programs [2], which the
original ICE learning cannot. In Section 2.2, we then present two novel Horn-ICE
learning algorithms, which build on top of popular machine learning techniques and
provide a substantially increased performance compared to the original, constraint-
based approach. Finally, Section 2.3 shows how to automatically generate invariants
and method contracts for programs whose verification conditions do not fall into a
decidable logic. To this end, we develop a modification of the Horn-ICE framework
that permits interfacing with sound-but-incomplete verification engines. We conclude
this chapter in Section 2.4 with a discussion of related work.

2.1 Horn-ICE Learning

In this section, we present a generalization of the ICE learning framework, named Horn-
ICE learning [2], that allows synthesizing multiple, interdependent annotations (i.e.,
loop invariants and function contracts). To illustrate the need for such a generalization,
let us consider the following program P

int funcl(int x) int func2(int x)
requires oaj; requires og;
ensures [1; ensures fo;
{ {
S13 33
int y = func2(x); return x;
S2; }

return y;

where a1, ag and 31, B2 are the pre-conditions and post-conditions of the two functions
funcl and func2, respectively, and si, s9, s3 are program snippets (which modify the

2 Intelligent Software Verification

variables in the current scope and might or might not contains loops). The annotations
a1, g, Ba, B serve as contracts for both functions and enable us to verify each function
individually (by replacing each function call with a sequence of statements that assert
the pre-condition and then assume the post-condition). Note that such a compositional
approach to deductive verification is routinely used in practice because it reduces the
size of the individual verification conditions and permits the verification of multiple
functions in parallel. Moreover, compositional verification is essential in situations
where function calls cannot be inlined (say due to recursion or deep nesting) or where
the program involves concurrency (in which case reasoning in the form of rely-guarantee
contracts is typically used [152]).

Let us now assume a fully automated verification setting, where the function contracts
are not given by the user but need to be synthesized. To understand why this is a
hard problem in general, consider one of the functions in P, say func2. For the sake of
simplicity, let us moreover suppose that func2 is a leaf function in the sense that it
does not call other functions. Already in this simple situation, it is hard to determine
what contract to generate for func2, especially without looking at its clients. There are
many trivial contracts (e.g., ag = B2 = true), while other may be useless for the client
to prove its assertions. In general, there is also no “most useful” contract or, even if it
exists, it may be inexpressible in the logic or too expensive and unnecessary for the
program’s verification. These observations show that the correctness properties being
verified (i.e., the assertions in the program) should somehow dictate the granularity of
the contracts.

To capture such interdependencies between different parts of a program, the concept of
constrained Horn clauses has emerged as a general and robust formalism for expressing
verification conditions [75, 80]. Consider, for instance, the task of verifying the function
funcl of the program P above. Then, one of the verification conditions that we want
to be valid is

[a1(e1) A transg, (1, ¢2) A Ba(c2) A transs, (2, c3)] — Bi(c3)

where transs(c,c’) is a binary relation capturing the semantics of a snippet s in terms
of how it transforms a program configuration c into the configuration ¢’. Note that
this verification condition is indeed in the form of a Horn clause: the antecedent of the
implication is a conjunction of positive (i.e., unnegated) literals, while the consequent is
a single positive literal.* Moreover, Horn clauses are implicitly universally quantified in
the sense that they are required to be satisfied for all possible program configurations.

4 Alternatively, one can define Horn clauses as disjunctions of literals with at most one positive literal
(i-e., all literals, except for at most one, appear negated). Throughout this work, however, we view
Horn constraints as implications since this is a more natural way to represent verification conditions.

2.1 Horn-ICE Learning

Since we are interested in a fully automated verification, all four formulas ay, as, 81, 52
need to be synthesized. When a learner proposes concrete formulas, the teacher checking
the above verification condition may find it to be invalid and produces concrete programs
configurations ci, ca, c3 € Cp that violate the Horn clause. Thus, the teacher has to
inform the learner of the reason why the verification failed and needs to convey that

if ¢; = a1 and ¢a |= fo, then c3 = 51

has to hold. Notice, however, that this information cannot be formulated as an im-
plication counterexample, and the most natural constraint to return to the learner is
indeed in the form of a Horn clause. This observation has motivated us to develop
a generalization of the ICE learning framework, named Horn-ICE learning, in which
implication counterexamples are replaced with Horn clauses. In fact, a very similar
modification has been proposed independently by Champion et al. [48] as a means to
discover refinement types for higher-order functional programs.

The Horn-ICE framework [2] is shown in Figure 2.2. It follows ICE learning closely but
has two distinct differences:

e The learner now has to be able to synthesize multiple, interdependent annotations
simultaneously.

o Implication counterexamples are replaced by Horn counterexamples (c1 A -+ A
¢n) — ¢ where c1,...,c,, ¢ € Cp are program configurations. To simplify our
presentation, we do not explicitly record the information which function contracts
or invariants a Horn counterexample relates. Instead, we include a program
counter in every program configuration that tracks which location in the code
and, hence, to which invariant or function contract a specific configuration refers.
The omitted information can then easily be recovered from the configurations
themselves.

Note that the Horn-ICE learning framework is, in fact, a generalization of ICE learning
since every implication counterexample is a Horn counterexample with a single program
configuration occurring in the antecedent. Like in implication counterexamples, the
program configurations in Horn counterexamples are not labeled (i.e., they are neither
positive nor negative), and the learner has to determine suitable labels in a way
that satisfies the Horn constraint. These logical constraints make Horn-ICE learning
substantially more challenging than the classification tasks usually considered in
machine learning.

Finally, let us briefly discuss the termination of the Horn-ICE framework. Since every
non-trivial semantic property of a program is undecidable in general (which is a famous
result by Rice [131]), we can, of course, not hope that the feedback-loop in Figure 2.2

2 Intelligent Software Verification

annotations v1, ...,

Learner Teacher
(Synthesizer) (Verifier)
stores concrete program has access to the
configurations program

f |

positive, negative, or Horn counterexample

Figure 2.2: The Horn-ICE learning framework [2].

always terminates. However, we discuss several practically relevant settings in the
remainder of this chapter in which our framework is guaranteed to terminate. It then
either returns an invariant or reports that no invariant exists.

In the next section, we present two novel learning algorithms that are specifically
tailored to the Horn-ICE learning framework. In contrast to earlier ICE learning
algorithms, which predominantly rely on constraint solving [69], both algorithms draw
their inspiration from modern machine learning and, hence, can handle large amounts
of data (i.e., counterexamples) effectively.

2.2 Two Efficient Horn-ICE Learning Algorithms

The distinguishing feature of Horn-ICE learning, which sets it apart from many other
machine learning settings, is that it introduces the need for symbolic reasoning into
the learning process: remember that the program states appearing in Horn counterex-
amples are unlabeled, and a learning algorithm has to label them such that the Horn
constraints are satisfied. Thus, the two learning algorithms we design in the course of
this section combine inductive and deductive reasoning to account for this requirement.
Both algorithms rely on common concepts, which we introduce first. To simplify our
presentation, let us assume that the learner has to synthesize a single formula ~. All
challenges that arise for Horn-ICE learning already manifest in this simplified setting,
and both learning algorithms can be lifted to the case of multiple, interdependent
annotations in a straightforward (yet technical) manner.

Given a program P, we assume that the learner stores the counterexamples in a tuple
S = (S4,5-,5-) where S is a finite set of positive examples, S_ of negative examples,
and S—, is a finite set of Horn counterexamples. We call this tuple a Horn-ICE sample
and drop the prefix “Horn-ICE” if it is clear from the context.

10

2.2 Two Efficient Horn-ICE Learning Algorithms

We denote the membership of a program configuration ¢ in a Horn-ICE sample § by ¢ €
S, meaning that c is an element of Sy or S_, or it appears in a Horn counterexample in
S=. Moreover, we define the size of a sample by |S| = [S4|+[S_[+2 (¢, nvnep)eess Mt
1. Note that a Horn-ICE sample is always a finite object since every individual program
configuration is finite, and every iteration of the feedback loop returns a finite number
of configurations. For this section and the next, we encourage the reader to think of
programs over numeric data types, where a program configuration is a finite vector of
numeric values.

Given a Horn-ICE sample § = (54, 5_, 5=), the task of the learner is to generate a
formula ~ that is consistent with S in the sense that

o ¢ =~ for each positive counterexample ¢ € Sy;
o c £~y for each negative counterexample ¢ € S_; and

o each Horn counterexample (c1 A -+ A¢,) — ¢ € S- is satisfied, meaning that
¢i =y for each i € {1,...,n} implies ¢ = ~.

Note that this learning task has two important differences to the standard machine
learning setting. First, our goal is to learn an object that can be used as an annotation for
deductive verification (e.g., a formula or any other object that can be translated into one).
Neural networks, or other statistical machine learning models, are typically too complex
to reason about algorithmically and, hence, are not suited for this purpose. Second,
unlike in machine learning, where the goal is typically to minimize the number of errors,
we cannot allow the formula v to make even a single mistake. If we allowed mistakes,
the teacher could repeatedly return the same counterexample, thereby preventing the
learner from making any progress.

The remainder of this section presents two novel Horn-ICE learning algorithms in
detail. In Section 2.2.1, we develop Sorcar, an algorithm for learning invariants in the
form of conjunctions over a fixed set of predicates. Although this class of invariants
seems restrictive, it turns out that generating conjunctive invariants is highly effective
in practice and used in various industry-strength verification tools, such as Microsoft’s
Static Driver Verifier [102]. In Section 2.2.2, we then present ICE-DT. This algorithm
is based on decision trees and can generate general formulas (in disjunctive normal
form).

2.2.1 Sorcar

Our first Horn-ICE learning algorithm, named Sorcar [10], is designed to learn conjunc-
tive invariants over a fixed set P of predicates. This design choice is motivated by two
observations: first, for a wide range of domains of programs and types of specifications,

11

2 Intelligent Software Verification

it is possible to identify classes of candidate predicates that are typically involved
in invariants (e.g., based on the code of the programs and typical properties of the
specification); second, a conjunction over these predicates is often sufficient to prove
a given program correct. In fact, various industry-strength verification tools use this
exact approach, including Microsoft’s Static Driver Verifier [102] (which is build on
top of Corral [103]) and GPUVerify [33], a tool for checking race-freedom of GPU
kernels.

To ease the presentation throughout this section, we use conjunctions p; A --- A p,
of predicates over P and the corresponding sets {p1,...,p,} C P interchangeably. In
particular, for a subset X = {p1,...,pn} C P of predicates and a program configuration
¢ € Cp, we write ¢ = X if and only if ¢ = p1 A -+ A p,,. Moreover, we call a set X of
predicates consistent with a Horn-ICE sample S if and only if the conjunction A,y p
is consistent with S.

Sorcar uses a modification of the well-known elimination algorithm [95], which we have
adapted to the Horn-ICE framework as described next. Given a Horn-ICE sample
S = (S4,5-,5-), the modified elimination algorithm first initializes a set X = P
containing all predicates. Then, it repeats the following three steps until a fixed point
is reached:

1. The modified elimination algorithm removes all predicates p from X that violate
a positive counterexample (i.e., there exists a positive counterexample ¢ € S
such that ¢ }~ p). The result is the unique largest set X of predicates that is
consistent with S; (i.e., ¢ = X holds for each ¢ € S4).

2. The modified elimination algorithm checks whether all Horn counterexamples are
satisfied. If a Horn counterexample (¢c1 A -+ A ¢,) — ¢ € S is not satisfied, it
means that each program configuration on the left-hand side satisfies X, but the
one on the right-hand side does not. Note, however, that X corresponds to the
semantically smallest set of program configurations expressible by a conjunctive
formula consistent with S. Moreover, ¢y, ..., c, satisfy X. Thus, the right-hand
side ¢ necessarily has to satisfy X as well (otherwise X would not satisfy this
Horn counterexample). The elimination algorithm adds ¢ as a new positive
counterexample to Sy to account for this.

3. The elimination algorithm repeats Steps 1 and 2 until a fixed point is reached.

Once this happens, X is the unique largest set of predicates that is consistent
with S; and S=.

Finally, the modified elimination algorithm checks whether each negative counterexam-
ple violates X (i.e., ¢ = X for each ¢ € S_). If this is the case, then X is the largest
set of predicates that is consistent with S; otherwise, no consistent conjunction over P
exists.

12

2.2 Two Efficient Horn-ICE Learning Algorithms

It is not hard to verify that the runtime of the modified elimination algorithm is
polynomial in the number of predicates and the size of the Horn-ICE sample, provided
predicates can be evaluated in constant time. Moreover, when used as a learner in
the context of the Horn-ICE framework, it converges to a conjunctive invariant in at
most |P| iterations (since at least one predicate is removed in each iteration of the
feedback loop) or reports that no conjunctive invariant over P exists. Note that the
guarantee to converge in at most |P| rounds is of great importance in practice: on the
one hand, each interaction with the teacher is computationally expensive because it
involves one (or more) invocations of a contraint solver; on the other hand, the search
space of potential invariants consists of 27! semantically distinct conjunctions, and the
set P can contain hundreds (or even thousands) of predicates for real-world programs.
Thus, it is essential to keep the number of iterations as small as possible.

The idea of using the elimination algorithm to synthesize conjunctive invariants is
not new and can be traced back to the popular Houdini algorithm by Flanagan and
Leino [66]. However, a major disadvantage of just using the modified elimination
algorithm (or Houdini for that matter) is that it is not property-driven: it generates the
largest conjunction, independent of negative counterexamples, and, hence, independent
of the assertions and specifications in the program. Consequently, a significant amount of
time may be spent finding the tightest invariant (involving many predicates), although
a simpler and weaker invariant suffices to prove the program correct. This observation
has motivated us to develop Sorcar, which is property-driven (i.e., it also considers
the assertions in the program) and has a bias towards learning conjunctions with a
smaller number of predicates than Houdini. In fact, the set of predicates learned by
Sorcar is always a subset of those synthesized by the modified elimination algorithm
and Houdini.

The salient feature of Sorcar is that it learns invariants involving what we call relevant
predicates, which are predicates that have shown some evidence to affect the assertions
in the program. More precisely, we say that a predicate is relevant if it evaluates to
false on some negative counterexample or on a program configuration appearing on the
left-hand side of a Horn counterexample. This definition indicates that at least some
relevant predicates must be part of an invariant because not assuming any leads to an
assertion violation or the invariant not being inductive. In general, however, naively
choosing relevant predicates leads to an exponential number of rounds. Thus, we have
designed Sorcar to select relevant predicates carefully, requiring at most 2|P| rounds to
converge to an invariant. Note that this is only twice the number of rounds that the
modified elimination algorithm and Houdini guarantee.

Algorithm 1 (on Page 15) presents the Sorcar algorithm in pseudo code. It is divided
into a passive part (Sorcar-Passive) and an iterative part (Sorcar-Iterative), the
latter being invoked in every round of the Horn-ICE framework. The passive part of

13

2 Intelligent Software Verification

Sorcar maintains a state in the form of a set R C P, which is empty in the beginning
and used to accumulate relevant predicates (Line 1). The exact choice of relevant
predicates, however, is delegated to an external function Relevant-Predicates. We
treat this function as a parameter for the Sorcar algorithm and discuss four possible
implementations later in this section.

Given a Horn-ICE sample S and a set R C P of relevant predicates, Sorcar-Passive
first constructs the largest conjunction X C P that is consistent with S using the
modified elimination algorithm (Line 7). Since X is the largest set of predicates
consistent with §, it represents the smallest consistent set of program configurations
expressible as a conjunction over P. Consequently, any subset of X, in particular X N R,
is necessarily consistent with S;. However, X N R might not be consistent with S_
or S—. To address this problem, Sorcar-Passive collects all inconsistent negative
counterexamples in a set N and all inconsistent Horn counterexamples in a set H
(Lines 9 to 16). Based on these two sets, it then computes a set of relevant predicates,
which it adds to R (Line 17). As mentioned above, the exact computation of relevant
predicates is delegated to a function Relevant-Predicates, which we consider to be a
parameter. The result of this function is a new set R’ C P of predicates that needs to
contain at least one new predicate that is not yet present in R. Once such a set has been
computed and added to R, the process repeats (R grows monotonically larger) until a
consistent conjunction is found. Then, Sorcar-Passive returns both the conjunction
X N R together with the new set R of relevant predicates.

The condition of the loop in Line 8 immediately shows that the set X N R is consistent
with the Horn-ICE sample S once Sorcar-Passive terminates. The termination
argument, however, is less obvious. To argue termination, we first observe that X is
consistent with each positive counterexample and, hence, X N R remains consistent
with all positive counterexamples during the run of Sorcar-Passive. Next, we observe
that the termination argument is independent of the exact choice of predicates added
to R—in fact, the predicates need not even be relevant to prove termination of Sorcar-
Passive. More precisely, since the function Relevant-Predicates must return a set
R’ C P that contains at least one new (relevant) predicate not currently present
in R, we know that R grows strictly monotonically. In the worst case, the loop in
Lines 8 to 18 repeats |P| times until R = P; then, X N R = X, which is guaranteed to
be consistent with S by construction of X (see Line 7). However, depending on the
implementation of Relevant-Predicates, Sorcar-Passive can terminate early with
a much smaller consistent set X N R C X. Since the time spent in each iteration of the
loop in Lines 8 to 18 is proportional to |P|- |S|+ f(|S|), where the function f captures
the complexity of Relevant-Predicates, the overall runtime of Sorcar-Passive is
in O(|P%-|S|+ |P|- £(IS])). In total, we obtain the following result.

14

1

2

U kW

N O

10

11
12
13
14

15
16

17
18

19
20

21
22
23

2.2 Two Efficient Horn-ICE Learning Algorithms

Algorithm 1: The Sorcar algorithm [10]
static R < 0;

Procedure Sorcar-Iterative(S):
(Y, R) < Sorcar-Passive(S, R);
return Y;

end

Procedure Sorcar-Passive(S = (S4,5_,5-), R):
Run the modified elimination algorithm to compute the largest conjunction
X C P that is consistent with S (abort if no such formula exists);

while X N R is not consistent with S do
N + 0 Stores inconsistent negative counterexamples
H + 0 Stores inconsistent Horn counterexamples

foreach negative counterexample c € S_ not consistent with X N R do
‘ N +— N U{c}

end

foreach Horn counterexample (c1 A --- A ¢cp) — ¢ € S= not consistent with
XNRdo
| H+ HU{(c1 A Aep) = el

end

R < RURelevant-Predicates(N, H, X, R);

end

return (X N R, R);
end

Function Relevant-Predicates(N, H, X, R):
return a set of ' C P of relevant predicates such that R’ \ R # (;
end

15

2 Intelligent Software Verification

Theorem 2.1 (cf. Neider et al. [10, Theorem 1]). Given a Horn-ICE sample S and a
set R C P of relevant predicates, the passive Sorcar algorithm learns a consistent set
of predicates (i.e., a consistent conjunction over P) in time O(|P|*- S|+ |P|- £(IS]))
where f is a function capturing the complexity of the function Relevant-Predicates.

In each round of the Horn-ICE framework, the learner invokes Sorcar-Iterative with
two arguments: a Horn-ICE sample S, which contains all counterexamples that the
learner has received thus far, and a set R C P of relevant predicates. Internally, Sorcar-
Iterative calls Sorcar-Passive, updates the set R, and returns a new conjunctive
formula, which the learner then proposes as a new hypothesis invariant to the teacher.
If the computation of X in Line 7 of Sorcar-Passive fails and the algorithm aborts,
so does Sorcar-Iterative.

A careful analysis of Sorcar’s updates of X and R shows that in each round of the
Horn-ICE framework, either | X| decreases by at least one or |R| increases by at least
one. Since R C P and X C P, this can happen at most 2|P| times before Sorcar either
finds a conjunctive invariant or aborts. In the latter case, the correctness of the Houdini
algorithm implies that no conjunctive invariant over P exists that proves the given
program correct. These results are summarized in the theorem below.

Theorem 2.2 (cf. Neider et al. [10, Theorem 2]). Let P be a program and P a finite
set of predicates over the program configurations C'p. When embedded in the Horn-ICE
framework, the iterative Sorcar algorithm learns an inductive invariant (in the form of
a conjunction over P) that proves the program correct in at most 2|P| rounds, or it
reports