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INTRODUCTION 1
Information technology has become an indispensable part of our daily lives, with a
significant proportion of our everyday activities relying on the safe and reliable operation
of computer systems. However, building safe and reliable systems is notoriously difficult.
It involves a host of different tasks, ranging from formalizing the system’s requirements,
to designing and implementing the system, to verifying that it indeed meets its
specification. Each of these tasks is highly complex and—even worse—prone to error.

A promising approach to ensuring safety and reliability of computer systems is the use
of so-called formal methods, a broad range of rigorous, mathematical techniques for
specifying, developing, and verifying hardware, software, cyber-physical systems, and
artificial intelligence (e.g., see Huisman, Gurov, and Malkis [85] for an overview). Unlike
more traditional quality assurance approaches, such as testing, formal methods offer
the unique ability to provide formal proof of the absence of errors, a trait particularly
desirable in the context of today’s ubiquitous safety-critical systems. However, this
advantage comes at a cost: formal methods require extensive training, often assume
idealized or limited settings, and typically demand substantial computational resources
(see corresponding textbooks for an overview [26, 42, 74]). Unfortunately, this cost can
outweigh the expected benefits [147].

This work reports on our research to fundamentally simplify the use of formal methods.
Similar to the vision of artificial intelligence, our overall goal is to automate formal
methods and dramatically expand their applicability. To achieve this goal, we develop
an innovative, novel type of formal methods, which combines inductive techniques from
the area of machine learning and deductive techniques from the area of logic. We name
this new type intelligent formal methods.

In the remainder of this work, we develop intelligent formal methods for three of the
most critical challenges in the development of safe and reliable systems:

• In Chapter 2, we address the problem of software verification [42, 67, 82], which
is the task of proving that a given piece of software satisfies its specification. In
particular, we develop novel methods to learn correctness proofs (in the form of
invariants and method contracts) for a wide range of software, including recursive
programs, concurrent programs, and programs that use dynamically allocated
data structures.

• In Chapter 3, we address the problem of synthesizing both hardware and software
from formal specifications. More specifically, we develop learning-based algorithms
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1 Introduction

for two important synthesis settings: reactive synthesis [51] (i.e., the task of
synthesizing systems that continuously interact with their environment) as well
as functional synthesis [18] (i.e., the task of synthesizing implementations of
functions, including loop-free code). Additionally, we develop a general framework
that provides the vocabulary needed to better understand the similarities and
differences between alternative learning-based synthesis algorithms.

• In Chapter 4, we develop novel techniques that fundamentally improve the way
engineers write formal specifications. In particular, we show how machine learning
can be used to infer specifications expressed in Linear Temporal Logic [125] or
the Property Specification Language [61] from examples describing the desired
(and undesired) behavior of a system.

We conclude in Chapter 5 with a summary of our work, a discussion of open challenges
in the area of (intelligent) formal methods, and an outlook on directions for future
research.

Finally, it is important to mention that this document serves as an extended abstract
summarizing our research in the area of intelligent formal methods. It is not meant to be
an entirely original work but a unified compilation of a long series of our research papers.
For the sake of conciseness, we have omitted proofs and all empirical evaluations, which
show that all of our techniques are highly competitive. To provide the necessary context,
we regularly refer to specific results in our original research papers and encourage the
reader to consult this additional material for further details. Moreover, Chapters 2 to 4
conclude with notes on related work. For the reader’s convenience, the bibliography of
this work is partitioned into a primary bibliography, listing the papers compiled into
this document, and a secondary bibliography, containing all other references.
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INTELLIGENT SOFTWARE
VERIFICATION 2
Automated program verification dates back to the 1960s when Floyd [67] and Hoare [82]
pioneered the idea of assigning a formal meaning to programs, thereby providing an
effective way to reason about computer programs rigorously. Since then, the field of
automated verification has made significant progress, and a host of different verification
techniques have been developed. Examples include abstract interpretation [54], deduc-
tive verification (which builds upon Floyd and Hoare’s work as well as the weakest
pre-condition calculus by Dijkstra [55]), software model checking [36, 84], and symbolic
execution [97], to name but a few.

In this work, we focus on deductive verification. To illustrate this approach, consider a
prototypical program P , given by

assume α;
while (g) {

s;
}
assert β;

where α and β are formulas over the configurations1 of the program, g is a Boolean
expression (the loop guard), and s is a program snippet (i.e., a sequence of statements)
representing the loop body. The assume and assert statements serve as the specification
of P : the assume statement represents a pre-condition (i.e., a condition that has to hold
before the code is executed), while the assert statement corresponds to a post-condition
(i.e., a condition that has to hold after the code is executed). The goal of deductive
verification is now to prove that every execution of P that satisfies the pre-condition
and terminates also satisfies the post-condition. This task is referred to as proving the
program correct or program correctness for short.

On a technical level, the core idea of deductive verification is to translate a program
and its specification into a set of logic formulas, called verification conditions (VCs),
such that the verification conditions are valid if and only if the program satisfies
the specification. Subsequently, highly optimized constraint solvers, such as CVC4/

1To avoid too much notational overhead, we assume a program configuration to be a vector that
records the values of the program’s variables, the content of the heap, and (for technical reasons
that become apparent later) the current location in the code.
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2 Intelligent Software Verification

CVC5 [28, 31] or Z3 [114], can be used to check the validity of the verification conditions
in a fully or semi-automated fashion (by checking (un-)satisfiability of the negated
verification conditions). Moreover, if the program does not satisfy its specification,
modern constraint solvers are able to return inputs to the program that witness a
specification violation. Programmers can then use these inputs to locate and fix the
detected errors.

In general, however, deductive verification requires additional guidance. Take the
program P from above as an example: since the exact number of loop iterations is
not known in general and might change depending on the program’s input, the user
needs to provide a so-called loop invariant, which summarizes the effect of the loop
and abstracts from the actual number of times the loop is executed. More formally, a
loop invariant is a formula γ over the configurations of a program that has to satisfy
three properties:

1. the pre-condition α implies γ;

2. the invariant γ and the negation of the loop guard b imply the post-condition β;
and

3. the invariant is inductive, meaning that if γ and the loop guard hold at the
beginning of the loop, then γ also needs to hold at the end of the loop (i.e., after
executing the loop body).

Once a loop invariant is provided, a constraint solver (or theorem prover) can be used
to establish whether the program P is correct.

Unfortunately, the generation of loop invariants remains a highly challenging, manual
task. Although programmers often have adequate invariants in mind while writing their
code, formalizing them in a logical formalism is error-prone and requires substantial
training and expertise. In fact, the lack of automated means to generate loop invariants
is one of the significant hurdles that prevent a widespread adaptation of deductive
verification in practice. As a consequence, intensive research has been devoted to this
topic, with varying degrees of automation and success (we refer the reader to Garg
et al. [69, 3] for an in-depth discussion of related work).

One of the most promising developments towards a fully automated generation of
loop invariants is the use of machine learning, specifically a framework called ICE
learning [69].2 To make this framework precise, let us fix a program P , and let CP

denote the set of all configurations that can arise while executing P . Given a formula
ϕ and a program configuration c ∈ CP , we then write c |= ϕ if c satisfies ϕ, which is
defined in the usual way (e.g., see Bradley and Manna [42]). To ease the presentation in

2The name “ICE learning” arises from so-called implication counterexamples, which are the defining
feature of the framework.
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Figure 2.1: The ICE learning framework [69].

the remainder, we assume that the satisfaction of a formula ϕ can either be determined
directly from the program configurations or that the program is instrumented with
ghost variables tracking its satisfaction at relevant places in the program (e.g., at the
loop header and immediately after the loop). Moreover, we lift this notation to formulas
involving Boolean program expression (e.g., we write c |= ϕ ∧ g if c satisfies ϕ and the
loop guard g).

The general workflow of ICE learning is shown in Figure 2.1. It follows the principle of
counterexample-guided inductive synthesis (CEGIS) [142] and consists of a feedback
loop with two entities: a learner (or synthesizer), who is agnostic to the program under
consideration, and a teacher (or verifier), who is able to reason symbolically about the
program.3

In each round of the feedback loop, the learner proposes a candidate invariant γ based
on the information it has gathered so far. The teacher receives this hypothesis and
checks whether it is an adequate invariant that is sufficient to prove the program
correct. To this end, the teacher can employ any off-the-shelf deductive verifier, such
as Boogie [29], SeaHorn [80], or why3 [65]. If the verification succeeds, the feedback
loop terminates, and the teacher reports that the program is correct. If the verification
fails, however, the teacher is required to return a so-called counterexample, which
guides the learner towards an invariant that proves the program correct. The type of
counterexample depends on which of the three defining properties of an invariant is
violated:

1. If the pre-condition α does not imply γ, the teacher returns a so-called pos-
itive counterexample c ∈ CP such that c |= α ∧ ¬γ. The meaning of such a
counterexample is that any future hypothesis must satisfy c.

3The ideas underlying CEGIS date back to the 1970s, when Biermann and Feldman [37] proposed a
similar concept in the context of automata learning.
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2 Intelligent Software Verification

2. If the hypothesis γ and the negation of the loop guard g do not imply the post-
condition β, the teacher returns a so-called negative counterexample c ∈ CP such
that c |= γ ∧ ¬g ∧ ¬β. The meaning of such a counterexample is that any future
hypothesis must not satisfy c.

3. If the hypothesis H is not inductive, then the teacher returns a so-called implica-
tion counterexample c→ c′ ∈ CP × CP such that c |= γ ∧ g, the program state
c′ is reached from c by executing the loop body, and c′ ̸|= γ. The meaning of
such a counterexample is that any future hypothesis that satisfies c must also
satisfy c′. In contrast to positive and negative counterexamples, however, the
classification of neither c nor c′ is fixed; instead, the learner is free to choose their
classifications as long as the implication constraint is satisfied.

This process continues until the learner has learned an invariant that is sufficient to
prove the program correct. Note that counterexamples consist of concrete program
configurations, which provide a generic interface to data-driven machine learning
techniques.

In contrast to many other approaches that employ machine learning for verification,
ICE learning has three outstanding features, which contribute significantly to its
success. First, ICE learning provides formal correctness guarantees in that the inferred
invariants indeed prove that the given programs satisfy their specifications. Second,
ICE learning is guaranteed to terminate in many practical settings (e.g., when the class
of potential invariants is finite); once this happens, the feedback loop either returns
a suitable invariant or reports that no invariant exists. Third, ICE learning allows
the reuse of existing verification infrastructure, thus benefiting from any advances in
deductive verification.

However, despite these advantages and its general success, ICE learning also has various
drawbacks:

• Although ICE learning—in general—permits synthesizing loop invariants at
multiple locations in a program, these invariants must be independent of each
other (which essentially amounts to synthesizing one invariant at a time). In
particular, this restriction excludes programs with nested loops and programs
in which several loops occur in sequence. Moreover, the ICE learning framework
cannot synthesize contracts for recursive functions (i.e., their pre-conditions and
post-conditions), which is required for fully automated verification.

• Due to the combinatorial nature of implication counterexamples, the original
ICE learning framework [69] uses constraint solving to implement the learner.
Since constraint solving is computationally hard, this approach is significantly
less scalable than statistical machine learning algorithms.
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2.1 Horn-ICE Learning

• To implement a teacher and extract counterexamples, ICE learning requires
that the verification conditions fall into a decidable logic. However, this is often
not the case, specifically when programs manipulate dynamically allocated data
structures, such as arrays, lists, and trees.

In this work, we address all three of these limitations. More specifically, Section 2.1
generalizes the ICE learning framework to a fully automated verification setting where
both loop invariants and function contracts can be synthesized simultaneously. This
generalization, named Horn-ICE learning, also provides an effective way to synthesize
assume-guarantee contracts for the verification of concurrent programs [2], which the
original ICE learning cannot. In Section 2.2, we then present two novel Horn-ICE
learning algorithms, which build on top of popular machine learning techniques and
provide a substantially increased performance compared to the original, constraint-
based approach. Finally, Section 2.3 shows how to automatically generate invariants
and method contracts for programs whose verification conditions do not fall into a
decidable logic. To this end, we develop a modification of the Horn-ICE framework
that permits interfacing with sound-but-incomplete verification engines. We conclude
this chapter in Section 2.4 with a discussion of related work.

2.1 Horn-ICE Learning

In this section, we present a generalization of the ICE learning framework, named Horn-
ICE learning [2], that allows synthesizing multiple, interdependent annotations (i.e.,
loop invariants and function contracts). To illustrate the need for such a generalization,
let us consider the following program P

int func1(int x)
requires α1;
ensures β1;
{

s1;
int y = func2(x);
s2;
return y;

}

int func2(int x)
requires α2;
ensures β2;
{

s3;
return x;

}

where α1, α2 and β1, β2 are the pre-conditions and post-conditions of the two functions
func1 and func2, respectively, and s1, s2, s3 are program snippets (which modify the
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2 Intelligent Software Verification

variables in the current scope and might or might not contains loops). The annotations
α1, α2, β2, β2 serve as contracts for both functions and enable us to verify each function
individually (by replacing each function call with a sequence of statements that assert
the pre-condition and then assume the post-condition). Note that such a compositional
approach to deductive verification is routinely used in practice because it reduces the
size of the individual verification conditions and permits the verification of multiple
functions in parallel. Moreover, compositional verification is essential in situations
where function calls cannot be inlined (say due to recursion or deep nesting) or where
the program involves concurrency (in which case reasoning in the form of rely-guarantee
contracts is typically used [152]).

Let us now assume a fully automated verification setting, where the function contracts
are not given by the user but need to be synthesized. To understand why this is a
hard problem in general, consider one of the functions in P , say func2. For the sake of
simplicity, let us moreover suppose that func2 is a leaf function in the sense that it
does not call other functions. Already in this simple situation, it is hard to determine
what contract to generate for func2, especially without looking at its clients. There are
many trivial contracts (e.g., α2 = β2 = true), while other may be useless for the client
to prove its assertions. In general, there is also no “most useful” contract or, even if it
exists, it may be inexpressible in the logic or too expensive and unnecessary for the
program’s verification. These observations show that the correctness properties being
verified (i.e., the assertions in the program) should somehow dictate the granularity of
the contracts.

To capture such interdependencies between different parts of a program, the concept of
constrained Horn clauses has emerged as a general and robust formalism for expressing
verification conditions [75, 80]. Consider, for instance, the task of verifying the function
func1 of the program P above. Then, one of the verification conditions that we want
to be valid is [︁

α1(c1) ∧ transs1(c1, c2) ∧ β2(c2) ∧ transs2(c2, c3)
]︁
→ β1(c3)

where transs(c, c′) is a binary relation capturing the semantics of a snippet s in terms
of how it transforms a program configuration c into the configuration c′. Note that
this verification condition is indeed in the form of a Horn clause: the antecedent of the
implication is a conjunction of positive (i.e., unnegated) literals, while the consequent is
a single positive literal.4 Moreover, Horn clauses are implicitly universally quantified in
the sense that they are required to be satisfied for all possible program configurations.

4Alternatively, one can define Horn clauses as disjunctions of literals with at most one positive literal
(i.e., all literals, except for at most one, appear negated). Throughout this work, however, we view
Horn constraints as implications since this is a more natural way to represent verification conditions.
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2.1 Horn-ICE Learning

Since we are interested in a fully automated verification, all four formulas α1, α2, β1, β2
need to be synthesized. When a learner proposes concrete formulas, the teacher checking
the above verification condition may find it to be invalid and produces concrete programs
configurations c1, c2, c3 ∈ CP that violate the Horn clause. Thus, the teacher has to
inform the learner of the reason why the verification failed and needs to convey that

if c1 |= α1 and c2 |= β2, then c3 |= β1

has to hold. Notice, however, that this information cannot be formulated as an im-
plication counterexample, and the most natural constraint to return to the learner is
indeed in the form of a Horn clause. This observation has motivated us to develop
a generalization of the ICE learning framework, named Horn-ICE learning, in which
implication counterexamples are replaced with Horn clauses. In fact, a very similar
modification has been proposed independently by Champion et al. [48] as a means to
discover refinement types for higher-order functional programs.

The Horn-ICE framework [2] is shown in Figure 2.2. It follows ICE learning closely but
has two distinct differences:

• The learner now has to be able to synthesize multiple, interdependent annotations
simultaneously.

• Implication counterexamples are replaced by Horn counterexamples (c1 ∧ · · · ∧
cn) → c where c1, . . . , cn, c ∈ CP are program configurations. To simplify our
presentation, we do not explicitly record the information which function contracts
or invariants a Horn counterexample relates. Instead, we include a program
counter in every program configuration that tracks which location in the code
and, hence, to which invariant or function contract a specific configuration refers.
The omitted information can then easily be recovered from the configurations
themselves.

Note that the Horn-ICE learning framework is, in fact, a generalization of ICE learning
since every implication counterexample is a Horn counterexample with a single program
configuration occurring in the antecedent. Like in implication counterexamples, the
program configurations in Horn counterexamples are not labeled (i.e., they are neither
positive nor negative), and the learner has to determine suitable labels in a way
that satisfies the Horn constraint. These logical constraints make Horn-ICE learning
substantially more challenging than the classification tasks usually considered in
machine learning.

Finally, let us briefly discuss the termination of the Horn-ICE framework. Since every
non-trivial semantic property of a program is undecidable in general (which is a famous
result by Rice [131]), we can, of course, not hope that the feedback-loop in Figure 2.2
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stores concrete program
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Figure 2.2: The Horn-ICE learning framework [2].

always terminates. However, we discuss several practically relevant settings in the
remainder of this chapter in which our framework is guaranteed to terminate. It then
either returns an invariant or reports that no invariant exists.

In the next section, we present two novel learning algorithms that are specifically
tailored to the Horn-ICE learning framework. In contrast to earlier ICE learning
algorithms, which predominantly rely on constraint solving [69], both algorithms draw
their inspiration from modern machine learning and, hence, can handle large amounts
of data (i.e., counterexamples) effectively.

2.2 Two Efficient Horn-ICE Learning Algorithms

The distinguishing feature of Horn-ICE learning, which sets it apart from many other
machine learning settings, is that it introduces the need for symbolic reasoning into
the learning process: remember that the program states appearing in Horn counterex-
amples are unlabeled, and a learning algorithm has to label them such that the Horn
constraints are satisfied. Thus, the two learning algorithms we design in the course of
this section combine inductive and deductive reasoning to account for this requirement.
Both algorithms rely on common concepts, which we introduce first. To simplify our
presentation, let us assume that the learner has to synthesize a single formula γ. All
challenges that arise for Horn-ICE learning already manifest in this simplified setting,
and both learning algorithms can be lifted to the case of multiple, interdependent
annotations in a straightforward (yet technical) manner.

Given a program P , we assume that the learner stores the counterexamples in a tuple
S = (S+, S−, S⇒) where S+ is a finite set of positive examples, S− of negative examples,
and S⇒ is a finite set of Horn counterexamples. We call this tuple a Horn-ICE sample
and drop the prefix “Horn-ICE” if it is clear from the context.
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2.2 Two Efficient Horn-ICE Learning Algorithms

We denote the membership of a program configuration c in a Horn-ICE sample S by c ∈
S, meaning that c is an element of S+ or S−, or it appears in a Horn counterexample in
S⇒. Moreover, we define the size of a sample by |S| = |S+|+|S−|+

∑︁
(c1∧···∧cn)→c∈S⇒ n+

1. Note that a Horn-ICE sample is always a finite object since every individual program
configuration is finite, and every iteration of the feedback loop returns a finite number
of configurations. For this section and the next, we encourage the reader to think of
programs over numeric data types, where a program configuration is a finite vector of
numeric values.

Given a Horn-ICE sample S = (S+, S−, S⇒), the task of the learner is to generate a
formula γ that is consistent with S in the sense that

• c |= γ for each positive counterexample c ∈ S+;

• c ̸|= γ for each negative counterexample c ∈ S−; and

• each Horn counterexample (c1 ∧ · · · ∧ cn) → c ∈ S⇒ is satisfied, meaning that
ci |= γ for each i ∈ {1, . . . , n} implies c |= γ.

Note that this learning task has two important differences to the standard machine
learning setting. First, our goal is to learn an object that can be used as an annotation for
deductive verification (e.g., a formula or any other object that can be translated into one).
Neural networks, or other statistical machine learning models, are typically too complex
to reason about algorithmically and, hence, are not suited for this purpose. Second,
unlike in machine learning, where the goal is typically to minimize the number of errors,
we cannot allow the formula γ to make even a single mistake. If we allowed mistakes,
the teacher could repeatedly return the same counterexample, thereby preventing the
learner from making any progress.

The remainder of this section presents two novel Horn-ICE learning algorithms in
detail. In Section 2.2.1, we develop Sorcar, an algorithm for learning invariants in the
form of conjunctions over a fixed set of predicates. Although this class of invariants
seems restrictive, it turns out that generating conjunctive invariants is highly effective
in practice and used in various industry-strength verification tools, such as Microsoft’s
Static Driver Verifier [102]. In Section 2.2.2, we then present ICE-DT. This algorithm
is based on decision trees and can generate general formulas (in disjunctive normal
form).

2.2.1 Sorcar

Our first Horn-ICE learning algorithm, named Sorcar [10], is designed to learn conjunc-
tive invariants over a fixed set P of predicates. This design choice is motivated by two
observations: first, for a wide range of domains of programs and types of specifications,
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it is possible to identify classes of candidate predicates that are typically involved
in invariants (e.g., based on the code of the programs and typical properties of the
specification); second, a conjunction over these predicates is often sufficient to prove
a given program correct. In fact, various industry-strength verification tools use this
exact approach, including Microsoft’s Static Driver Verifier [102] (which is build on
top of Corral [103]) and GPUVerify [33], a tool for checking race-freedom of GPU
kernels.

To ease the presentation throughout this section, we use conjunctions p1 ∧ · · · ∧ pn

of predicates over P and the corresponding sets {p1, . . . , pn} ⊆ P interchangeably. In
particular, for a subset X = {p1, . . . , pn} ⊆ P of predicates and a program configuration
c ∈ CP , we write c |= X if and only if c |= p1 ∧ · · · ∧ pn. Moreover, we call a set X of
predicates consistent with a Horn-ICE sample S if and only if the conjunction

⋀︁
p∈X p

is consistent with S.

Sorcar uses a modification of the well-known elimination algorithm [95], which we have
adapted to the Horn-ICE framework as described next. Given a Horn-ICE sample
S = (S+, S−, S⇒), the modified elimination algorithm first initializes a set X = P
containing all predicates. Then, it repeats the following three steps until a fixed point
is reached:

1. The modified elimination algorithm removes all predicates p from X that violate
a positive counterexample (i.e., there exists a positive counterexample c ∈ S+
such that c ̸|= p). The result is the unique largest set X of predicates that is
consistent with S+ (i.e., c |= X holds for each c ∈ S+).

2. The modified elimination algorithm checks whether all Horn counterexamples are
satisfied. If a Horn counterexample (c1 ∧ · · · ∧ cn)→ c ∈ S⇒ is not satisfied, it
means that each program configuration on the left-hand side satisfies X, but the
one on the right-hand side does not. Note, however, that X corresponds to the
semantically smallest set of program configurations expressible by a conjunctive
formula consistent with S+. Moreover, c1, . . . , cn satisfy X. Thus, the right-hand
side c necessarily has to satisfy X as well (otherwise X would not satisfy this
Horn counterexample). The elimination algorithm adds c as a new positive
counterexample to S+ to account for this.

3. The elimination algorithm repeats Steps 1 and 2 until a fixed point is reached.
Once this happens, X is the unique largest set of predicates that is consistent
with S+ and S⇒.

Finally, the modified elimination algorithm checks whether each negative counterexam-
ple violates X (i.e., c ̸|= X for each c ∈ S−). If this is the case, then X is the largest
set of predicates that is consistent with S; otherwise, no consistent conjunction over P
exists.

12



2.2 Two Efficient Horn-ICE Learning Algorithms

It is not hard to verify that the runtime of the modified elimination algorithm is
polynomial in the number of predicates and the size of the Horn-ICE sample, provided
predicates can be evaluated in constant time. Moreover, when used as a learner in
the context of the Horn-ICE framework, it converges to a conjunctive invariant in at
most |P| iterations (since at least one predicate is removed in each iteration of the
feedback loop) or reports that no conjunctive invariant over P exists. Note that the
guarantee to converge in at most |P| rounds is of great importance in practice: on the
one hand, each interaction with the teacher is computationally expensive because it
involves one (or more) invocations of a contraint solver; on the other hand, the search
space of potential invariants consists of 2|P| semantically distinct conjunctions, and the
set P can contain hundreds (or even thousands) of predicates for real-world programs.
Thus, it is essential to keep the number of iterations as small as possible.

The idea of using the elimination algorithm to synthesize conjunctive invariants is
not new and can be traced back to the popular Houdini algorithm by Flanagan and
Leino [66]. However, a major disadvantage of just using the modified elimination
algorithm (or Houdini for that matter) is that it is not property-driven: it generates the
largest conjunction, independent of negative counterexamples, and, hence, independent
of the assertions and specifications in the program. Consequently, a significant amount of
time may be spent finding the tightest invariant (involving many predicates), although
a simpler and weaker invariant suffices to prove the program correct. This observation
has motivated us to develop Sorcar, which is property-driven (i.e., it also considers
the assertions in the program) and has a bias towards learning conjunctions with a
smaller number of predicates than Houdini. In fact, the set of predicates learned by
Sorcar is always a subset of those synthesized by the modified elimination algorithm
and Houdini.

The salient feature of Sorcar is that it learns invariants involving what we call relevant
predicates, which are predicates that have shown some evidence to affect the assertions
in the program. More precisely, we say that a predicate is relevant if it evaluates to
false on some negative counterexample or on a program configuration appearing on the
left-hand side of a Horn counterexample. This definition indicates that at least some
relevant predicates must be part of an invariant because not assuming any leads to an
assertion violation or the invariant not being inductive. In general, however, naively
choosing relevant predicates leads to an exponential number of rounds. Thus, we have
designed Sorcar to select relevant predicates carefully, requiring at most 2|P| rounds to
converge to an invariant. Note that this is only twice the number of rounds that the
modified elimination algorithm and Houdini guarantee.

Algorithm 1 (on Page 15) presents the Sorcar algorithm in pseudo code. It is divided
into a passive part (Sorcar-Passive) and an iterative part (Sorcar-Iterative), the
latter being invoked in every round of the Horn-ICE framework. The passive part of
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Sorcar maintains a state in the form of a set R ⊆ P, which is empty in the beginning
and used to accumulate relevant predicates (Line 1). The exact choice of relevant
predicates, however, is delegated to an external function Relevant-Predicates. We
treat this function as a parameter for the Sorcar algorithm and discuss four possible
implementations later in this section.

Given a Horn-ICE sample S and a set R ⊆ P of relevant predicates, Sorcar-Passive
first constructs the largest conjunction X ⊆ P that is consistent with S using the
modified elimination algorithm (Line 7). Since X is the largest set of predicates
consistent with S, it represents the smallest consistent set of program configurations
expressible as a conjunction over P . Consequently, any subset of X, in particular X∩R,
is necessarily consistent with S+. However, X ∩ R might not be consistent with S−
or S⇒. To address this problem, Sorcar-Passive collects all inconsistent negative
counterexamples in a set N and all inconsistent Horn counterexamples in a set H
(Lines 9 to 16). Based on these two sets, it then computes a set of relevant predicates,
which it adds to R (Line 17). As mentioned above, the exact computation of relevant
predicates is delegated to a function Relevant-Predicates, which we consider to be a
parameter. The result of this function is a new set R′ ⊆ P of predicates that needs to
contain at least one new predicate that is not yet present in R. Once such a set has been
computed and added to R, the process repeats (R grows monotonically larger) until a
consistent conjunction is found. Then, Sorcar-Passive returns both the conjunction
X ∩R together with the new set R of relevant predicates.

The condition of the loop in Line 8 immediately shows that the set X ∩R is consistent
with the Horn-ICE sample S once Sorcar-Passive terminates. The termination
argument, however, is less obvious. To argue termination, we first observe that X is
consistent with each positive counterexample and, hence, X ∩ R remains consistent
with all positive counterexamples during the run of Sorcar-Passive. Next, we observe
that the termination argument is independent of the exact choice of predicates added
to R—in fact, the predicates need not even be relevant to prove termination of Sorcar-
Passive. More precisely, since the function Relevant-Predicates must return a set
R′ ⊆ P that contains at least one new (relevant) predicate not currently present
in R, we know that R grows strictly monotonically. In the worst case, the loop in
Lines 8 to 18 repeats |P| times until R = P ; then, X ∩R = X, which is guaranteed to
be consistent with S by construction of X (see Line 7). However, depending on the
implementation of Relevant-Predicates, Sorcar-Passive can terminate early with
a much smaller consistent set X ∩R ⊊ X. Since the time spent in each iteration of the
loop in Lines 8 to 18 is proportional to |P| · |S|+ f(|S|), where the function f captures
the complexity of Relevant-Predicates, the overall runtime of Sorcar-Passive is
in O

(︁
|P|2 · |S|+ |P| · f(|S|)

)︁
. In total, we obtain the following result.
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Algorithm 1: The Sorcar algorithm [10]
1 static R← ∅; // Stores relevant predicates across rounds

2 Procedure Sorcar-Iterative(S):
3 (Y,R)← Sorcar-Passive(S, R);
4 return Y ;
5 end

6 Procedure Sorcar-Passive(S = (S+, S−, S⇒), R):
7 Run the modified elimination algorithm to compute the largest conjunction

X ⊆ P that is consistent with S (abort if no such formula exists);
8 while X ∩R is not consistent with S do
9 N ← ∅; // Stores inconsistent negative counterexamples

10 H ← ∅; // Stores inconsistent Horn counterexamples

11 foreach negative counterexample c ∈ S− not consistent with X ∩R do
12 N ← N ∪ {c};
13 end
14 foreach Horn counterexample (c1 ∧ · · · ∧ cn)→ c ∈ S⇒ not consistent with

X ∩R do
15 H ← H ∪

{︁
(c1 ∧ · · · ∧ cn)→ c

}︁
;

16 end
17 R← R ∪ Relevant-Predicates(N , H, X, R);
18 end
19 return (X ∩R,R);
20 end

21 Function Relevant-Predicates(N , H, X, R):
22 return a set of R′ ⊆ P of relevant predicates such that R′ \R ̸= ∅;
23 end
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Theorem 2.1 (cf. Neider et al. [10, Theorem 1]). Given a Horn-ICE sample S and a
set R ⊆ P of relevant predicates, the passive Sorcar algorithm learns a consistent set
of predicates (i.e., a consistent conjunction over P) in time O

(︁
|P|2 · |S|+ |P| · f(|S|)

)︁
where f is a function capturing the complexity of the function Relevant-Predicates.

In each round of the Horn-ICE framework, the learner invokes Sorcar-Iterative with
two arguments: a Horn-ICE sample S, which contains all counterexamples that the
learner has received thus far, and a set R ⊆ P of relevant predicates. Internally, Sorcar-
Iterative calls Sorcar-Passive, updates the set R, and returns a new conjunctive
formula, which the learner then proposes as a new hypothesis invariant to the teacher.
If the computation of X in Line 7 of Sorcar-Passive fails and the algorithm aborts,
so does Sorcar-Iterative.

A careful analysis of Sorcar’s updates of X and R shows that in each round of the
Horn-ICE framework, either |X| decreases by at least one or |R| increases by at least
one. Since R ⊆ P and X ⊆ P , this can happen at most 2|P| times before Sorcar either
finds a conjunctive invariant or aborts. In the latter case, the correctness of the Houdini
algorithm implies that no conjunctive invariant over P exists that proves the given
program correct. These results are summarized in the theorem below.

Theorem 2.2 (cf. Neider et al. [10, Theorem 2]). Let P be a program and P a finite
set of predicates over the program configurations CP . When embedded in the Horn-ICE
framework, the iterative Sorcar algorithm learns an inductive invariant (in the form of
a conjunction over P) that proves the program correct in at most 2|P| rounds, or it
reports that no such invariant exists.

It is left to show how to select relevant predicates (i.e., how to implement the function
Relevant-Predicates). To this end, we have proposed four different methods.

Relevant-Predicates-Max The function Relevant-Predicates-Max computes the maxi-
mal set of relevant predicates with respect to the sets N and H. To this end, it
simply accumulates all predicates that evaluate to false on a negative counterex-
ample in N or on a program configuration appearing on the left-hand side of a
Horn counterexample in H. Although the resulting set of predicates can be large,
this function performed best in our empirical evaluation.

Relevant-Predicates-First The function Relevant-Predicates-First tries to select a
smaller set of relevant predicates than Relevant-Predicates-Max while giving
the user some control over which predicates to choose. To this end, Relevant-
Predicates-First selects for each negative counterexample and each Horn coun-
terexample only one relevant predicate. The exact choice is determined by a total
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Relevant-Predicates-

Max First Min Greedy

Complexity O(|P| · |S|) O(|P| · |S|) O(2|P| + |S|) O(|P| · |S|2)

Table 2.1: Complexity of the functions to select relevant predicates.

ordering over the predicates, which reflects a preference among predicates and
which we assume to be given by the user.

Relevant-Predicates-Min The function Relevant-Predicates-Min computes a (not nec-
essarily unique) minimum set of relevant predicates with respect to N and H
by (i) reducing it (in polynomial-time) to the well-known minimum hitting set
problem [94] and (ii) using a constraint solver to find an optimal solution. Note
that our reduction implies that finding a minimum set of relevant predicates is
computationally expensive since the hitting set problem is NP-complete.

Relevant-Predicates-Greedy The function Relevant-Predicates-Greedy replaces the
exact computation of a minimum hitting set with a polynomial-time approxi-
mation algorithm, which is based on the well-known greedy algorithm for the
minimum set cover problem [52]. This function guarantees that the resulting set
of predicates is at most logarithmically larger than a minimal one.

The time complexity of all four methods is shown in Table 2.1. Note again that the
runtime of the learner in each iteration of the Horn-ICE framework is less of a concern
compared to the total number of iterations.

2.2.2 A Horn-ICE Learning Algorithm Based on Decision Trees

Despite the success of tools such as Microsoft’s Static Driver Verifier and GPUVerify,
the class of conjunctive formulas is often too restrictive to express the invariants and
methods contracts required to prove a program correct. To enable the use of Horn-
ICE learning also in such situations, we now present a Horn-ICE learning algorithm,
named Horn-ICE-DT [2], that learns general formulas represented as decision trees.
This algorithm is an extension of one of our previous learners for the ICE learning
framework, named ICE-DT [3], which in turn is based on the classical decision tree
learning algorithm of Quinlan [129]. Since Horn-ICE-DT is a generalization of ICE-DT,
we here focus on the former algorithm and refer the reader to Garg et al. [3] for details
about the latter.
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p1

p2 true

false true

Figure 2.3: A decision tree T representing the formula ϕT := (p1 ∧ ¬p2) ∨ ¬p1.

Horn-ICE-DT aims to construct a decision tree representing a Boolean combination of
predicates that are evaluated over program configurations. As for Sorcar, we assume
that a set P of such predicates is given, either provided by the user or automatically
generated from the code of the program (e.g., by instantiating templates with various
combinations of the variables occurring in the program). Moreover, let us assume for
the moment that the set P is finite. We relax this restriction later in this section.

In general, a decision tree is a finite binary tree T whose nodes have either two children
(internal nodes) or no children (leaf nodes). In addition, each internal node is labeled
with a predicate from P, while each leaf node is labeled with either true or false.
Figure 2.3 shows an example of such a decision tree.

In the context of Horn-ICE learning, we view a decision tree as a Boolean classifier
that evaluates program configurations in the following way: starting at the root, we
recursively descend the tree, branching left if the program configuration satisfies the
predicate at the current node or right if the configuration does not satisfy it; the final
evaluation of the program configuration is then the Boolean label of the leaf node that
is eventually reached. Thus, every decision tree T can be seen as a representation of a
Boolean formula ψT defined as

ψT :=
⋁︂

π∈Π

⋀︂
λ∈π

λ,

where Π is the set of all paths from the root of T to a leaf labeled with true and λ ∈ π
denotes the occurrence of the label λ on a node along the path π (negated if the path
branches right). We say that a decision tree T is consistent with a Horn-ICE sample S
if ψT is consistent with S.

While constructing a decision tree, our algorithm needs to deal with partial trees where
some of the leaf nodes are yet unlabeled. Instead of a label, each such node ν stores
a finite set of program configurations, which we denote by Cν ⊂ CP . The sets of
configurations at each node are pairwise disjoint and record the program configurations
that still need processing in the tree.
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Algorithm 2: The Horn-ICE-DT algorithm [2].
1 Procedure Horn-ICE-DT(S = (S+, S−, S⇒)):
2 Initialize a partial decision tree T with unlabeled root node νr and assign all

program configurations in S to Cvr ;
3 Initialize a partial evaluation function η;
4 while there exists an unlabeled node in T do
5 ν ← Select-Node();
6 if ν is pure then Label(ν);
7 if ν is not pure or labeling ν did not succeed then
8 Split(ν);
9 if the split was unsuccessful then abort;

10 end
11 end
12 return T ;
13 end

14 Procedure Select-Node():
15 return an unlabeled node to process next;
16 end

17 Procedure Label(ν):
18 Try to label node ν with true or false and return whether this was successful;
19 end

20 Procedure Split(ν):
21 Split node ν or abort if this is not possible;
22 end

Algorithm 2 presents our learning algorithm in pseudo code. Given a Horn-ICE sample
S = (S+, S−, S⇒), the algorithm starts by creating a partial decision tree T which has
a single unlabeled node that stores all program configurations appearing in S. Moreover,
it initializes a partial function η that maps each configuration in S+ to true, each
configuration in S− to false, and is undefined for each configuration in S⇒ that is not
already contained in S+ or S−. This auxiliary function is used to keep track of the label
(i.e., evaluation) of individual program configurations and is updated during the run of
the algorithm. To simplify the following description, we call a program configuration c
positive if η(c) = true, negative if η(c) = false, and unlabeled otherwise.

The key idea of our algorithm is to repeatedly select an unlabeled leaf node and either
label the node (with true or false) or grow the tree. More precisely, after the algorithm

19



2 Intelligent Software Verification

has selected an unlabeled leaf node ν using the procedure Select-Node (Line 5), it
checks if ν is pure in the sense that each configuration c ∈ Cν is either (a) positive or
unlabeled, or (b) negative or unlabeled. If ν is pure, Algorithm 2 calls the procedure
Label (Line 6), which tries to label the node with true (if Case (a) is satisfied) or
false (if Case (b) is satisfied). To label ν with b ∈ {true, false}, the procedure Label
executes two steps. First, it tentatively maps all unlabeled configurations in Cν to b,
resulting in a new evaluation function η′ that extends the current evaluation η. Second,
it calls a modified version of the pebbling algorithm by Dowling and Gallier [57] to
check whether η′ can be made consistent with S (which is defined as expected). This
involves a satisfiability check of Horn clauses and might force unlabeled configurations
in other parts of the tree to be switched positive or negative in order to satisfy the Horn
counterexamples. If η′ can be made consistent with S, the procedure Label updates η
with all tentative changes, labels the leaf ν with b, and reports success. If η′ cannot be
made consistent with S, the procedure Label reverts all tentative changes and reports
failure.

If the node ν is not pure or it is not possible to label it with true or false, Algorithm 2
calls the procedure Split (Line 8) to grow the tree. This procedure involves four steps.
First, we select a suitable predicate p ∈ P according to a statistical measure based on
the concept of information gain [129]. Second, we replace the node ν by a partial tree
with three nodes: a root node νr labeled with the predicate p as well as two unlabeled
leaf nodes, νp (the left child) and ν¬p (the right child). Third, we split the set Cν into
two disjoint subsets Cp, C¬p such that Cp contains all program configurations c ∈ Cν

that satisfy the predicate p and C¬p contains all program configurations that do not.
Fourth, we store the set Cp in the node νp and C¬p in the node ν¬p. For our algorithm
to make meaningful progress, we require that a split partitions the set Cν into two
nonempty subsets. If none of the predicates in P allows for such a split, the procedure
aborts.

To complete the discussion of Algorithm 2, let us briefly sketch further details of
the procedures Select-Node, Label, and Split. Note that all three procedures are
designed to (heuristically) produce small decision trees (in terms of the number of
nodes) and, hence, small formulas.

Select-Node The task of the Select-Node procedure is to find a suitable unlabeled
node to process next. In contrast to classical decision tree learning, where the
order in which the tree is expanded does not matter, we have to make this
choice carefully because changes in one part of the tree can trigger changes in
other parts in order to satisfy the Horn counterexamples. To account for this,
we have experimented with various strategies to select the next node, including
breadth-first search, depth-first search, random selection, and selections based on
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maximum or minimum entropy. However, a simple breadth-first search performed
best in our empirical evaluation.

Label The procedure Label needs to check whether a pure node can be labeled with
true (or false) and which unlabeled program configurations have to be turned
positive or negative in order to satisfy the Horn counterexamples. To this end, we
have developed a novel algorithm for checking the satisfiability of Horn clauses
based on the pebbling algorithm of Dowling and Gallier [57]. This new algorithm
has two fundamental features. First, it computes the minimal set of (unlabeled)
program configurations that need to be turned positive or negative to satisfy the
Horn constraints. Note that this property is essential to keep the size of trees
small because fixing the labels of too many configurations early on often results
in unnecessary splits later in the learning process. Second, our procedure works
incremental and reuses information of previous invocations. As a result, we can
guarantee an amortized runtime of O

(︁
(|S+|+ |S−|+ |S⇒|) · |S|

)︁
, where the first

factor amounts to the total number of counterexamples in the Horn sample.

Split Splitting a node entails selecting a suitable predicate p ∈ P and performing the
actual split. While the latter task is straightforward, selecting a “good” attribute
is crucial for the performance of Algorithm 2 as it immediately affects the size
of the resulting tree. Since computing minimal decision trees is known to be
computationally hard [86], the procedure Split uses a heuristic approach based
on (weighted) information gain, a statistical measure that is commonly used
in decision tree learning [129]. Moreover, we account for Horn counterexamples
by adding a penalty if a predicate separates a program configuration in the
antecedent of a Horn counterexample from the program configuration in the
consequent.

A careful analysis of Algorithm 2 shows that it always constructs a decision tree that is
consistent with a given Horn-ICE sample S if (a) the constraints in S⇒ are satisfiable
and (b) the sample S is separable in the sense that for each pair c1, c2 ∈ S of program
configurations, there exists a predicate p ∈ P such that c1 |= p if and only if c2 ̸|= p.
Moreover, total runtime of Algorithm 2 is in O

(︁
(|S+|+ |S−|+ |S⇒|) · |S|

)︁
. This result

is summarized in the following theorem.

Theorem 2.3 (cf. Ezudheen et al. [2, Theorem 3.1]). Let S = (S+, S−, S⇒) be a Horn-
ICE sample and P a finite set of predicates. If the constraints in S⇒ are satisfiable
and S is separable, then Algorithm 2 learns a decision tree that is consistent with S in
time O

(︁
(|S+|+ |S−|+ |S⇒|) · |S|

)︁
.

Our algorithm can detect whether S is separable following a strategy introduced in
our earlier work on ICE-DT [3]. For each pair of inseparable configurations c1, c2 ∈ S
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(which can be pre-computed), we add the Horn constraints ({c1}, c2) and ({c2}, c1) to
S⇒, resulting in a new set S′

⇒. Running Algorithm 2 with the augmented Horn-ICE
sample S ′ = (S+, S−, S

′
⇒) is then guaranteed to construct a decision tree consistent

with S if and only if there exists such a tree. Hence, if Algorithm 2 aborts, it follows
that no consistent decision tree over P exists.

The modification above allows us to apply Algorithm 2 even in situations where the
set P of predicates is countably infinite (e.g., comparisons of program variables with
rational values). Starting with a finite set Q containing the first, say, ℓ ∈ N \ {0}
elements of P , we run Algorithm 2 and, if it aborts, add the next ℓ′ ∈ N\{0} predicates
to Q. Once the algorithm succeeds, we have fount a consistent tree and return it. It is
not hard to verify that this approach is indeed guaranteed to converge to an invariant
if one is expressible as a decision tree over P. This result is summarized next.

Theorem 2.4 (cf. Garg et al. [3, Theorem 2]). Let P be a program and P an enumerable
set of predicates over the program configurations SP . When embedded in the Horn-ICE
framework, Horn-ICE-DT learns an inductive invariant that proves the program correct
if one can be expressed as a decision tree over P.

In the presence of numeric variables in the program (and hence in the program
configurations), we can use a modification similar to Quinlan’s C4.5 and C5.0 suite of
algorithms [128] to automatically generate predicates based on the numeric values that
appear in the Horn-ICE sample. Note that such a data-driven approach is substantially
more efficient than a naive enumeration of predicates that does not consider the data
in the sample.

2.3 Invariant Synthesis for Incomplete Verification Engines

Deductive verification is a highly effective approach if the generated verification condi-
tions fall into a decidable logic. For many real-world programs, however, this is not the
case. For instance, when a program accesses the heap, involves non-linear arithmetic, or
its annotations require quantification, the validity problem for the resulting verification
conditions is typically undecidable, thus, preventing the use of off-the-shelf constraint
solvers.

A standard technique to address the problem of undecidable verification conditions
is to build sound-but-incomplete decision procedures, thus skirting the undecidability
barrier. Several such techniques exist: for example, for reasoning with quantified
formulas, tactics such as bounded or model-based quantifier instantiation [72, 113] are
effective in practice, and they are known to be complete in certain settings [108]; in
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Figure 2.4: The NPI framework for synthesizing invariants when checking validity of
verification conditions is undecidable [6, 8].

the realm of heap verification, on the other hand, a method called natural proofs aims
to provide automated and sound-but-incomplete methods for checking the validity of
verification conditions with specifications in separation logic [108, 124, 127].

Although classical invariant synthesis techniques, such as Houdini [66], are sometimes
used with sound-but-incomplete verification engines, there is no principled argument as
to why this should work in general. In fact, we are not aware of any systematic technique
for synthesizing invariants or method contracts when the underlying verification problem
cannot be expressed in a decidable logic. When verification is undecidable and the
engine resorts to sound-but-incomplete heuristics to check the validity of verification
conditions, it is unclear how to extend deductive techniques such as interpolation [110]
or PDR/IC3 [41] to this setting. Data-driven learning of invariants is also hard to
extend because the verification engine can—in general—not produce the concrete
configurations (i.e., counterexamples) that the learner needs.

Motivated by the fact that sound-but-incomplete verification engines have become
increasingly powerful in the last decade, we have developed an extension of the Horn-ICE
framework that provides a principled method to synthesize invariants (and contracts)
when the validity problem for verification conditions is undecidable [6, 8]. As shown in
Figure 2.4, our extension resembles Horn-ICE learning in that it consists of a feedback
loop with two entities: a teacher and a learner. In this more advanced setting, however,
the teacher uses a sound-but-incomplete verification engine, and counterexamples are
logical constraints, named non-provability information (NPI), rather than concrete
program configurations. We call this extension the NPI framework.
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In the following three subsections, we present the NPI framework in more detail:
Section 2.3.1 gives a general overview of its main features, while Sections 2.3.2 and 2.3.3
discuss the teacher and learner, respectively. To ease our presentation in the remainder,
we use a Hoare-style notation [82] of the form {α}s{β} where α, β are formulas
evaluated over program configurations and s is a program snippet. Such a triple,
called Hoare triple, expresses that if the pre-condition α is met, executing the program
snippet s establishes the post-condition β. In the context of deductive verification,
a verification engine takes such Hoare triples as input and produces corresponding
verification conditions, which we denote by VC ({α}s{β}).

2.3.1 The NPI Framework

As shown in Figure 2.4, the NPI framework involves four distinct logics: U , D, B, and
H. For simplicity of exposition, we assume a uniform signature for all of these logics in
terms of constant symbols, relation symbols, functions, types, and so on.

We begin our description of the NPI framework by fixing an undecidable logic U , which
is ideally needed for validating the verification conditions that arise from a program
P . Since checking the validity of formulas in U is undecidable, we assume that the
verification engine approximates verification conditions in a decidable logic D (e.g.,
using bounded quantifier instantiation, bounded unfolding of recursive functions, or
natural proofs). This approximation needs to be sound in the sense that if the resulting
formulas are valid in D, then the original verification conditions are valid in U as well.
In addition, if a formula is not valid in D, we require that the constraint solver for the
logic D returns a model (i.e., a satisfying assignment) for the negation of the formula.
Note that this model may not be a model for the negation of the verification condition
in U .

Next, we fix a hypothesis class H for invariants consisting of positive Boolean combina-
tions over a fixed set P of predicates. Note that only considering positive formulas over
P is not a restriction as one can always add negated predicates to P, thus effectively
synthesizing any Boolean combination of predicates. The restriction to positive Boolean
formulas is, in fact, desirable because it allows restricting invariants to not negate
certain predicates, which is useful when predicates have intuitionistic definitions (as
several recursive definitions of heap properties do). We encourage the reader to think
of predicates such as “the program variable x points to a sorted list”, “the variable y
point to balanced tree”, and so on.

The NPI framework proceeds in rounds, where in each round the synthesizer pro-
poses invariants in H. The teacher (i.e., the sound-but-incomplete verification engine)
generates verification conditions in accordance to these invariants in the underlying
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logic U . It then proceeds to translate them into the decidable logic D and invokes a
constraint solver that decides validity in D. If the verification conditions are found to
be D-valid, then the program is correct because the verification engine soundly reduced
the verification conditions.

However, if the formula is found not to be D-valid, the constraint solver returns a
D-model for the negation of the formula. The teacher then extracts from this model
non-provability information, expressed as Boolean formulas in a Boolean theory B, that
capture more general reasons why the verification failed (we introduce non-provability
information shortly). This non-provability information is communicated to the learner,
which then proceeds to synthesize a new invariant that satisfies the non-provability
information provided in all previous rounds. We assume that the underlying decidable
logic D is stronger than propositional logic B, meaning that every valid statement in B
is valid in D as well.

In order to extract meaningful non-provability information, we make the natural
assumption that a sound-but-incomplete verification engine can do at least minimal
Boolean reasoning. More precisely, we assume that if a Hoare triple {α}s{β} is not
provable, then Boolean weakenings of the pre-condition α and Boolean strengthening
of the post-condition β must also be unprovable. We call a verification engine with this
property normal.

2.3.2 A Teacher for Non-Provability Information

Let us first introduce the following notations to formally define non-provability infor-
mation and its extraction from a failed verification attempt. For any U-formula ϕ, let
approx(ϕ) denote the D-formula that the verification engine generates such that the
D-validity of approx(ϕ) implies the U -validity of ϕ. Moreover, we say that a formula α
is weaker (stronger) than a formula β in a logic L if ⊢L β → α (⊢L α→ β), where ⊢L ϕ
means that ϕ is valid in L. Finally, for a set Q ⊆ P of predicates, let

⋁︁
Q =

⋁︁
p∈Q p

and
⋀︁
Q =

⋀︁
p∈Q p denote the disjunction and conjunction of all predicates in Q,

respectively.

To ease the following exposition, let us assume that the given program P has a single
location at which we need to synthesize an inductive invariant to prove P correct.
Further, suppose the learner conjectures a formula γ as an inductive invariant, and the
verification engine fails to prove the verification condition corresponding to a Hoare
triple {α}s{β}, where either α, β, or both might involve the synthesized formula. This
means that the negation of approx

(︁
VC ({α}s{β})

)︁
is D-satisfiable and the verification

engine needs to extract non-provability information from a model of it. To this end,
we assume that the program snippet s has been augmented with a set of Boolean
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ghost variables g1, . . . , gn that track the predicates p1, . . . , pn appearing in the invariant
(i.e., these ghost variables are assigned the values of the predicates). The valuation
v⃗ = (v1, . . . , vn) of the ghost variables in the model before the execution of s and
the valuation v⃗′ = (v′

1, . . . , v
′
n) after its execution allow us now to derive the desired

non-provability information.

The type of non-provability information the teacher extracts depends on where the
synthesized formula γ appears in a Hoare triple {α}s{β}. More specifically, γ might
appear in α, in β, or in both. We now handle all three cases individually.

• Assume the verification of a Hoare triple of the form {α}s{γ} fails; in other
words, the verification engine cannot prove a verification condition where the
pre-condition α is a user-supplied annotation, and the post-condition is the
synthesized formula γ. Then, approx

(︁
VC ({α}s{γ})

)︁
is not D-valid, and the

decision procedure for D generates a model for its negation. Since γ is a positive
Boolean combination, the reason why v⃗′ does not satisfy γ is due to the variables
mapped to false in v⃗′ since any valuation extending v⃗′ can also not satisfy γ.
Intuitively, this means that the D-solver is not able to prove the predicates in
Pf =

{︁
pi ∈ {p1, . . . , pn} | v′

i = false
}︁
. In other words, {α}s{

⋁︁
Pf} is unprovable

(a witness to this fact is the model of the negation of approx
(︁
VC ({α}s{γ})

)︁
from

which the evaluation v⃗′ is derived). Moreover, note that any invariant γ′ stronger
than

⋁︁
Pf results in an unprovable verification condition because the verification

engine is assumed to be normal. Consequently, the disjunction χ =
⋁︁
Pf can be

seen as a weakening constraint. The teacher now returns χ to the learner, asking
it to never conjecture an invariant γ′ in future rounds that is stronger in the logic
B than χ (i.e., ̸⊢B γ

′ → χ must always hold).

• Assume now that the verification of a Hoare triple of the form {γ}s{β} fails;
in other words, the verification engine cannot prove a verification condition
where the post-condition β is a user-supplied annotation and the pre-condition is
the synthesized formula γ. Using similar arguments as above, the conjunction
η =

⋀︁
Pt with Pt =

{︁
pi ∈ {p1, . . . , pn} | vi = true

}︁
can be seen as a strengthening

constraint (note that we here consider the values of v⃗). The teacher now returns
η to the learner, asking it to never conjecture an invariant γ′ in future rounds
that is weaker in the logic B than η (i.e., ̸⊢B η → γ′ must always hold).

• Finally, consider the case when the verification of a Hoare triple is of the form
{γ}s{γ} fails; in other words, the verification engine cannot prove a verification
condition where both the pre-condition and the post-condition are the synthesized
annotation γ. In this case, the verification engine can offer advice on strengthening
or weakening γ. Analogous to the two cases above, the teacher returns a pair of
formulas (η, χ), called inductivity constraint, based on the variables mapped to
true in v⃗ and to false in v⃗′, respectively. The meaning of such a constraint is that
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2.3 Invariant Synthesis for Incomplete Verification Engines

the invariant synthesizer must conjecture an invariant γ′ in future rounds such
that either ̸⊢B η → γ′ or ̸⊢B γ

′ → χ holds.

We subsume all these constraints under the term non-provability information (NPI).
Note that weakening, strengthening, and inductivity constraints are constraints in the
logic B. Thus, the learner, which we discuss next, only needs to reason in this logic but
not in the more complex logics U or D.

2.3.3 Learning from Non-Provability Information

We assume that the learner stores the non-provability information in a so-called NPI
sample S = (W,S, I) consisting of a finite set W of weakening constraints, a finite set
S of strengthening constraints, and a finite set I of inductivity constraints. We say
that a formula γ is consistent with an NPI sample S if ̸⊢B γ → χ for each χ ∈ W ,
̸⊢B η → γ for each η ∈ S, and ̸⊢B η → γ or ̸⊢B γ → χ for each (η, χ) ∈ I. The learner’s
task is then to synthesize a formula γ from the class H of positive Boolean formulas
that is consistent with the current NPI sample S.

Our learner solves this logical synthesis problem by reducing it to a data-driven Horn-
ICE learning problem. The main idea is to (a) treat each predicate p ∈ P as a Boolean
variable for the purpose of Horn-ICE learning and (b) to translate an NPI sample S
into an equi-consistent Horn-ICE sample SS, meaning that a positive Boolean formula
is consistent with S if and only if it is consistent with SS. Then, learning consistent
H-formulas in the NPI framework amounts to learning consistent H-formulas in the
Horn-ICE framework. This approach allows us to use learning algorithms such as the
modified elimination algorithm (Houdini) and Sorcar to synthesize invariants in the
presence of sound-but-incomplete verification engines.

Our translation, which relies on two functions, c and d. The function c translates a
conjunction

⋀︁
Q, where Q ⊆ P is a subset of predicates, into the valuation c(

⋀︁
Q) =

(v1, . . . , vn) with vi = true if and only if pi ∈ Q. The function d, on the other hand,
translates a disjunction

⋁︁
Q into the valuation d(

⋁︁
Q) = (v1, . . . , vn) with vi = false if

and only if pi ∈ Q.

Given an NPI sample S, we obtain the Horn-ICE sample SS by substituting every
conjunction

⋀︁
Q in S with c(

⋀︁
Q) and every disjunction

⋁︁
Q with d(

⋁︁
Q). Exploiting

the fact that the learner generates positive Boolean formulas only, this translation
indeed results in an equi-consistent Horn-ICE sample (see Neider et al. [8, Theorem 1]).
Moreover, a careful analysis of the properties of non-provability information shows that
at least one incorrect or unprovable formula is excluded from H in every iteration of
the NPI framework. If we assume P to be finite, then there exist only finitely many
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semantically distinct formulas in H, and the NPI framework converges in finite time.
In total, we obtain the following result.

Theorem 2.5 (cf. Neider et al. [8, Theorem 2]). Assume a normal verification engine
for a program P to be given. Moreover, let P be a finite set of predicates over the set CP

of program configurations and H the class consisting of positive Boolean combinations
over predicates in P. If there exists an invariant in H that the verification engine can
use to prove P correct, then the NPI framework is guaranteed to converge to such an
invariant in finite time.

If the learner can produce consistent formulas that are minimal with respect to a total
order on H, we can relax the requirement of P being finite. In this case, Theorem 2.5
remains true even if P contains infinitely many predicates.

2.4 Notes on Related Work

Invariant synthesis is the central problem in automated program verification, and various
techniques have been proposed over the years. Examples include abstract interpretation
[54], interpolation [91, 110], IC3 and PDR [41, 93], predicate abstraction [27], abductive
inference [56], as well as synthesis algorithms that rely on constraint solving [53, 78,
79].

Subsequent to the work of Grebenshchikov et al. [75], Horn clauses have crystallized
as a “universal language” to express verification conditions of programs [35, 38]. For
instance, SeaHorn [80] is a verification framework that translates verification conditions
into constraint Horn clauses that can be solved using several backend solvers, such as
Z3 [114].

Complementary to the purely deductive methods mentioned above are data-driven
invariant synthesis techniques. In fact, this type of invariant synthesis has seen increasing
interest lately [44, 63, 70, 71, 119, 121, 123, 137–140, 154, 155]. When the program
under consideration manipulates complex data structures, such as arrays or pointers, or
when one needs to reason about complicated memory models and their semantics, the
invariant for the correctness of the program might still be simple. In such a scenario, a
black-box, data-driven guess-and-check approach, guided by a finite set of program
configurations, has been shown to be advantageous. This observation has motivated
the development of the ICE learning framework [69] and, subsequently, the Horn-ICE
learning framework [2]. To the best of our knowledge, ICE learning was the first robust
framework for learning inductive invariants.
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The development of Horn-ICE learning algorithms has focused on two important classes
of invariants: conjunctive invariants and invariants that can be expressed as decision
trees. The latter type can easily be translated into formulas in disjunctive normal
form and, hence, provides a standardized way to represent arbitrary formulas over a
particular set of predicates.

Learning conjunctive formulas has a long history. An early example is the so-called
elimination algorithm [95], which operates in the Probably Approximately Correct
Learning (PAC) model. Daikon [62] was the first technique to apply the elimination
algorithm in a software setting, learning likely invariants from dynamic traces. Later, the
popular Houdini algorithm [66] adapted the elimination algorithm to compute inductive
invariants in a fully automated manner. As Garg et al. [69] and subsequently we [2]
have argued, Houdini can be seen as a learning algorithm for conjunctive formulas in
both the ICE learning and the Horn-ICE learning framework. Our Sorcar algorithm [10]
also builds on top of the elimination algorithm but extends it to be property-driven
(i.e., to take the program’s assertion into account).

Apart from ICE-DT and Horn-ICE-DT, we are aware of multiple other algorithms that
learn decision trees in the context of software verification. Among the most prominent
ones is the algorithm by Champion et al. [48], which learns decision trees from Horn
samples in order to synthesize refinement types for higher-order functional programs.
However, this algorithm is different from ICE-DT and Horn-ICE-DT in that it learns
one annotation at a time, while our approaches learn all annotations simultaneously.
Moreover, Champion et al.’s algorithm does neither guarantee always to construct a
decision tree if one exists nor that the learner eventually converges to a solution when
the hypothesis class is infinite. Both are true for ICE-DT and Horn-ICE-DT (under
mild assumptions).

Another example is the algorithm by Zhu, Magill, and Jagannathan [153], which uses
decision tree learning as a back-end for solving constrained Horn clauses. This algorithm
has two main differences to our approach. First, Zhu, Magill, and Jagannathan’s
algorithm generates predicates automatically, whereas we operate within a fixed set of
predicates (octagonal constraints over the program variables). Note, however, that this
is not a restriction but a design choice that balances effectiveness with performance: in
fact, our algorithm can easily handle any other user-specified set of decidable predicates.
Second, Zhu, Magill, and Jagannathan’s algorithm operates in the classical machine
learning setup with only positively and negatively labeled data: if a conjecture is
found to be non-inductive, additional positive and negative examples are generated
by unwinding the constrained Horn clauses a finite number of times (which increases
during the learning process). However, this approach of generating counterexamples
does not guarantee convergence to a solution (if one exists)—a stark contrast to ICE-DT
and Horn-ICE-DT, which both provide this guarantee.
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One interesting question is whether (Horn-)ICE algorithms (particularly Houdini and
Sorcar) are qualitatively related to purely deductive algorithms such as IC3. For
programs with Boolean domains, Vizel et al. [149] have studied this question and found
that (Horn-)ICE learning and IC3 are different in various regards:

• IC3 finds invariants by bounded symbolic exploration, forward from initial con-
figurations and backward from bad configurations (hence, inherently unfolding
loops), while (Horn-)ICE algorithms do not;

• (Horn-)ICE algorithms instead use implications and Horn counterexamples, re-
spectively, which can relate configurations arbitrarily far away from initial or bad
configurations, and there seems to be no analog to this in IC3;

• it is unclear how to restrict IC3 to synthesize invariants in a particular hypothesis
class, such as conjunctions over a particular set of predicates;

• IC3 works in close integration with a SAT solver, whereas (Horn-)ICE algorithms
are essentially independent of the verification engine, communicating with SAT
or SMT solvers only indirectly; and

• we are not aware of any guarantees that IC3 can give in terms of the number of
rounds or conjectures, whereas the (Horn-)ICE algorithms Houdini and Sorcar
give guarantees that are linear in the number of predicates.

Despite these differences, however, Vizel et al. have proposed a new framework that
generalizes both (Horn-)ICE and IC3.

In the context of verifying programs that work over dynamically allocated data struc-
tures, most verification engines are necessarily sound but incomplete (as the underlying
decision problems are undecidable), and invariant synthesis is hard. Nonetheless, shape
analysis has been used successfully to synthesize invariants in various settings [45,
104, 134]. However, most of these methods are tailored to memory safety and other
shallow properties, but they do not handle rich properties expressing full functional
correctness of data structures as we do in the NPI framework. Interpolation has also
been suggested to synthesize invariants involving a combination of data and shape
properties [17]. It is, however, not clear how this technique can be applied to a more
complicated heap structure, such as an AVL tree, where shape and data properties
are not cleanly separated but are intricately connected. Recent work also includes
synthesizing heap invariants in the logic proposed by Itzhaky et al. [87] by extending
IC3 [88, 93]. However, we are not aware of any approach that can fully automatically
verify the extensive benchmark suit that our NPI framework can.
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INTELLIGENT REACTIVE AND
FUNCTIONAL SYNTHESIS 3
Automated synthesis techniques offer an effective and promising way to solve a funda-
mental practical problem: constructing correct and verified hardware and software from
formal specifications. Rather than designing and implementing a complex system by
hand, synthesis techniques enable the construction of its constituent components in an
automated fashion, thus, freeing engineers from this complex and error-prone task. In
addition to being fully automatic, synthesis techniques produce hardware and software
that is correct-by-construction, meaning that the given specification is guaranteed to
be satisfied. Many synthesis techniques also detect if the synthesis task is unrealizable
(i.e., the specification cannot be implemented in hardware or software), in which case
the engineer can correct the specification and repeat the synthesis process.

In this chapter, we show how inductive methods from the area of machine learning can
be used to complement and improve classical, purely deductive synthesis approaches.
In particular, we consider the following two synthesis settings:

• In Section 3.1, we consider reactive synthesis. The task in this setting is to
automatically translate a user-provided (temporal) specification into a reactive
system, which is a circuit or a piece of software that continuously interacts with
its environment (e.g., by serving user requests). The key challenge in this context
arises from the fact that a reactive system is not operating in isolation, but it
has to satisfy its specification regardless of how the (potentially antagonistic)
environment might act. Among the most prominent examples of reactive synthesis
are the synthesis of (parts of) the high-performance bus controller for ARM’s
on-chip communication standard [39] and the abstraction-based controller design
approach, which reduces control problems for continuous systems via finite-state
abstractions to reactive synthesis tasks [130].

• In Section 3.2, we consider functional synthesis. The task here is to synthesize the
implementation of a function (e.g., a mathematical expression or a piece of loop-
free code) from user-given specifications of the desired input-output behavior. As
in reactive synthesis, the synthesized object has to satisfy the given specification
for every possible input, but the specification does not involve temporal constraints
and, hence, does typically not require memory for its implementation. Examples
of this type of synthesis include Sketch [143], a system to synthesize software
from incomplete code, as well as Flash Fill [76], a feature of Microsoft Excel that
synthesizes macros for string manipulation from examples.
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In Section 3.3, we present a framework that unifies (almost) all synthesis techniques
developed in this work (and many more found in the literature). Our ultimate goal is
to provide a common vocabulary and set of definitions that can be used to understand
and combine learning-based synthesis techniques across a wide range of domains. We
conclude this chapter in Section 3.4 with a brief discussion of related work.

3.1 Reactive Synthesis

The concept of reactive synthesis can be traced back to work by Alonzo Church in
1957, which is today known as Church’s synthesis problem [50, 51]. In modern parlance,
Church’s problem asks the following: given a specification on the sequence of inputs and
outputs of a reactive system expressed in a suitable logic, construct one that satisfies
this specification (regardless of the environment’s behavior) or determine that none
exists. This question has attracted a significant amount of attention over the last six
decades, and we refer the reader to the summary articles by Thomas [144, 145] for a
gentle introduction.

The goal of this section is to show how modern machine learning techniques can be
used to solve Church’s synthesis problem. In particular, we describe how the synthesis
problem for safety specifications, a specific type of specifications that requires the system
always to operate safely, can be reduced to the Horn-ICE framework of Section 2.1. This
reduction allows us to use any Horn-ICE learning algorithm for reactive synthesis.

Throughout this section, we follow the game-theoretic approach to reactive synthesis as
popularized by McNaughton [111]. More precisely, we view the problem as an infinite-
duration, two-player game on a directed graph that is played by two antagonistic players:
Player 0 (who embodies the system and seeks to satisfy the specification) and Player 1
(who embodies the environment and wants to violate it). The actual synthesis proceeds
in three steps. First, the specification and a model of the environment are converted
into an infinite game. Second, one computes a winning strategy for the system, which
prescribes how the system needs to play in order to win against every move of the
environment. Third, the winning strategy is translated into hard- or software, resulting
in an implementation of a reactive system that satisfies the given specification.

As alluded to above, we focus on safety games, a class of infinite games that arises
from safety specifications. Such specifications are in fact among the most important in
practice (e.g., see Dwyer, Avrunin, and Corbett [58] for a survey of common specification
patterns) and capture many other interesting properties, including bounded-horizon
reachability. In contrast to McNaughton’s original setting, however, we consider safety
games not only over finite graphs but over graphs with potentially infinitely many
(even uncountably many) vertices. Such games occur naturally, for instance, when
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3.1 Reactive Synthesis

the interaction between the controlled system and its environment is too complex to
be modeled by finite graphs (e.g., in motion planning over unbounded environments)
or when the system has access to dynamic data structures, such as lists, stacks, or
queues.

Formally, a safety game is a five-tuple G = (V0, V1, E, F, I) consisting of two disjoint
sets V0, V1 of vertices controlled by Player 0 and Player 1, respectively (we denote
their union by V = V0 ∪ V1 and assume V ̸= ∅), a directed edge relation E ⊆ V × V , a
nonempty set F ⊆ V of safe vertices, and a nonempty set I ⊆ F of initial vertices. The
directed graph (V,E) is typically called game graph. In contrast to the classical setting,
we do not restrict V to be finite but allow even uncountable sets. However, we do make
the following two restrictions to the edge relation (where E(X) denote the image of a
set X ⊆ V under the edge relation E): we assume that (i) every vertex has at least
one outgoing edge (i.e., E({v}) ̸= ∅ for each v ∈ V ), and (ii) E({v}) is finite for every
v ∈ V , though not necessarily bounded. Note that the first restriction is standard and
merely avoids situations in which the game gets stuck. On the other hand, the second
restriction is required to make the setting amenable to machine learning.

A safety game is played in rounds: initially, a token is placed on one of the initial
vertices v0 ∈ I; in each round, the player controlling the current vertex then moves the
token along one of the outgoing edges to the next vertex. This process of moving the
token is repeated ad infinitum and results in an infinite sequence π = v0v1 . . . ∈ V ω

with v0 ∈ I and (vi, vi+1) ∈ E for every i ∈ N, which is called a play. The winner of a
play is determined by the winning condition F in the sense that a play π = v0v1 . . . is
winning for Player 0 if vi ∈ F for every i ∈ N—otherwise it is winning for Player 1.

As mentioned above, synthesizing a reactive system amounts to computing a so-called
winning strategy for Player 0, which prescribes how Player 0 needs to move to win
a play. For the sake of brevity, we skip a formal definition of winning strategies and
introduce a proxy object instead, which we call a winning set. On an intuitive level,
a winning set is a subset of the safe vertices that contains all initial vertices and is a
trap for Player 1 (i.e., Player 0 can force any play to stay inside this set regardless of
how Player 1 plays). Formally, we say that W ⊆ V is a winning set if it satisfies the
following four properties:

1. I ⊆W ;

2. W ⊆ F ;

3. E({v}) ∩W ̸= ∅ for all v ∈W ∩ V0 (existential closedness); and

4. E({v}) ⊆W for all v ∈W ∩ V1 (universal closedness).

33



3 Intelligent Reactive and Functional Synthesis

0 1 2 3 4 5 . . .

(a) A robot moving on an infinite conveyor belt. The safe area is shaded gray, while the unsafe
area is shown in white. The robot starts inside the area decorated by a bold border.
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(b) A safety game with vertex set {e, s} × N modeling a discretized version of the motion
planning problem of Figure 3.1a (e represents the environment, while s represents the
system). Vertices of Player 0 (the system) are drawn as ellipses, while vertices of Player 1
(the environment) are drawn as rectangles. Initial vertices are decorated with a bold border,
and safe vertices are shaded gray.

Figure 3.1: An example of robotic motion planning (top) together with a possible
encoding as a safety game (bottom).

It is not hard to verify that a winning set W immediately provides a strategy for
Player 0 to win any play: starting in I ⊆ W , Player 0 simply moves to a (fixed)
successor vertex inside W every time the play reaches one of his vertices (note that
this is possible since W is existentially closed). As W is also universally closed, a
straightforward induction over the length of plays proves that every play that starts
inside I and is played according to this strategy stays inside W , no matter how Player 1
plays. Thus, Player 0 wins since W ⊆ F .

Let us illustrate safety games and the notion of winning sets with the example in
Figure 3.1, which is motivated by robotic motion planning. In this example, a robot
moves on an infinite conveyor belt that is “bounded on the left” (see Figure 3.1a).
The conveyor belt is partitioned into a safe and an unsafe area, shaded gray and
white, respectively. The robot starts inside the area marked with a bold border and
is controlled by the system (i.e., Player 0), which can move the robot one unit to the
left (if it is not already at the left edge), one unit to the right, or not move it at all.
The conveyor belt, on the other hand, is controlled by the environment (i.e., Player 1),
which can move the belt to the left or the right, effectively moving the robot by one
unit in the corresponding direction (if it is not already at the left edge). Starting with
Player 1, both players make their moves in alternation, and the system’s goal is to
keep the robot inside the safe area.
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Learner
(Synthesizer)

stores concrete vertices

Teacher
(Verifier)

has access to the game

hypothesis set H ⊆ V

positive, negative, existential, or universal counterexample

Figure 3.2: Our generic framework for learning winning sets [9, 13].

The setting in Figure 3.1a allows for various interpretations, depending on whether
we want to discretize the positions the robot can assume (we discuss various symbolic
representations of safety games later in this section). For instance, Figure 3.1b shows
the game graph resulting from abstracting the conveyor belt into cells of width one,
where we do not distinguish between positions in the interval [i, i+ 1) for i ∈ N. For
this particular game, a winning set is W =

{︁
(s, i) ∈ V | i ≥ 1

}︁
∪

{︁
(e, i) ∈ V | i ≥ 2

}︁
,

and an obvious winning strategy for Player 0 is to always move the robot one unit to
the right.

If the game graph underlying a safety game is finite, a winning set (indeed the largest
one) can be computed in linear time using a simple fixed-point computation [74].
However, for games over infinite game graphs, this is no longer an option as a fixed-
point computation might not converge in finite time. To overcome this severe practical
limitation, we propose a novel framework that learns winning sets rather than computes
them explicitly [9, 13].

Figure 3.2 presents a schematic view of our framework for learning winning sets. Similar
to the methods presented in Chapter 2, it follows the principle of counterexample-guided
inductive synthesis [142] and consists of a feedback loop with two entities: a teacher ,
who knows the safety game, and a learner , whose objective is to learn a winning set,
but who is agnostic to the game.

In every loop iteration, the learner conjectures a hypothesis H ⊆ V based on the
information about the game it has accumulated so far. Then, the teacher checks
whether this set H is, in fact, a winning set. Although the teacher does not know a
winning set (the task is to learn one after all), it can verify whether the hypothesis is
one by checking the four conditions of the definition of winning sets. If the hypothesis
satisfies these conditions, then H is a winning set, and the learning stops. If this is not
the case, the teacher replies with one out of four different types of counterexamples,
which mirror the four conditions in the definition of winning sets:
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1. If I ̸⊆ H, then the teacher returns a positive counterexample v ∈ I \H.

2. If H ̸⊆ F , then the teacher returns a negative counterexample v ∈ H \ F .

3. If there exists a vertex v ∈ H ∩V0 with E({v})∩H = ∅, then the teacher returns
an existential counterexample v → (v1 ∨ · · · ∨ vn) with {v1, . . . , vn} = E({v}).

4. If there exists a vertex v ∈ H ∩ V1 with E({v}) ̸⊆ H, then the teacher returns a
universal counterexample v → (v1 ∧ · · · ∧ vn) with {v1, . . . , vn} = E({v}).

The meaning of a positive counterexample is that any future hypothesis needs to include
this vertex (as it is initial), whereas a negative counterexample must be excluded (as
it is not a safe vertex). An existential counterexample v → (v1 ∨ · · · ∨ vn) signals
that the hypothesis is not existentially closed and requires that if a future hypothesis
contains v, it also needs to contains an least one vertex of the vertices v1, . . . , vn.
Similarly, a universal counterexample v → (v1 ∧ · · · ∧ vn) signals that the hypothesis is
not universally closed and requires that if a future hypothesis contains v, it needs to
contains all vertices v1, . . . , vn. Note that existential and universal counterexamples
are always finite objects since E({v}) is finite for every v ∈ V .

We assume that the learner accumulates counterexamples in a so-called game sample
SG = (S+, S−, S∃, S∀) consisting of a finite set S+ of positive counterexamples, a finite
set S− of negative counterexamples, a finite set S∃ of existential counterexamples, and
a finite set S∀ of universal counterexamples. After receiving a new counterexample, the
task of the learner is then to generate a hypothesis H ⊆ V that is consistent with the
current game sample SG in the sense that

1. v ∈ H for each v ∈ S+;

2. v /∈ H for each v ∈ S−;

3. v ∈ H implies {v1, . . . , vn} ∩H ̸= ∅ for each v → (v1 ∨ · · · ∨ vn) ∈ S∃; and

4. v ∈ H implies {v1, . . . , vn} ⊆ H for each v → (v1 ∧ · · · ∧ vn) ∈ S∀.

Once the learner has generated a new hypothesis, the feedback loop continues with the
next iteration. This process repeats until a winning set is found.

Although infinite games involve two antagonistic players, we can reduce the learning
setup outline above to the Horn-ICE framework of Section 2.1. The idea of this reduction
is to replace each counterexample of a game sample SG in the following manner:

1. we interpret each positive counterexample v ∈ S+ as a negative one,

2. we interpret each negative counterexample v ∈ S− as a positive one,

3. we replace each existential counterexample v → (v1 ∨ · · · ∨ vn) with a Horn
counterexample (v1 ∧ · · · ∧ vn)→ v; and
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4. we replace each universal counterexample v → (v1 ∧ · · · ∧ vn) with n Horn
counterexamples v1 → v, . . . , vn → v.

It is not hard to verify that the resulting sample, which we denote by SHorn , is indeed
a Horn-ICE sample. Moreover, SG and SHorn are “equi-consistent” in the sense that
every set H ⊆ V of vertices is consistent with SG if and only if V \H is consistent with
SHorn (cf. Neider and Markgraf [9, Lemma 1]).5 This reduction allows us to use any
Horn-ICE learning algorithm to learn winning sets.

Our learning framework is straightforward to implement if the underlying game graph
is finite, in which case the teacher can be built on top of an explicit representation of
the game. However, if the underlying game graph becomes too large or is infinite, one
has to choose a suitable representation for sets of vertices and the edge relation that
allows performing operations on the graph symbolically. More precisely, the chosen
symbolic representation must feature Boolean operations (i.e., union, intersection,
and complementation), and the image E(A) and preimage E−1(A) of symbolically
represented sets A ⊆ V need to be computable. Moreover, the emptiness problem (i.e.,
“given a set A, decide whether A = ∅”) needs to be decidable, and it must be possible
to extract an element from A if it is nonempty.

In the remainder of this section, we present implementations of our framework for two
symbolic representations that satisfy these requirements: Section 3.1.1 covers safety
games that are represented in terms of finite-state machines, called rational safety
games [13], whereas Section 3.1.2 covers safety games that are represented in terms of
linear real arithmetic, called LRA safety games [9]. Moreover, Section 3.1.3 introduces
so-called regular safety games [5], which are a subclass of rational safety games that
allow for a richer and, hence, more efficient learning setup.

To simplify the following description, let us assume that a winning set exists and can
be represented in the chosen symbolic representation (e.g., as a formula in linear real
arithmetic). In this case, the game sample is guaranteed to be non-contradictory in the
sense that a consistent hypothesis in the chosen symbolic representation always exists.
However, if no winning set exists or cannot be expressed symbolically, the feedback
loop either repeats forever, or contradictory counterexamples get added to the game
sample eventually. The latter can be detected (e.g., using a modified version of the
pebbling algorithm of Section 2.2.2), in which case the feedback loop stops and reports
that no winning set exists.

5By abuse of notation, we here use a Boolean formula γ : V → B, or classifier, generated by a Horn-ICE
learner and the corresponding set {v ∈ V | γ(v) = true} interchangeably.
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3.1.1 Rational Safety Games

Our first symbolic representation of safety games, which we call rational safety games,
uses finite-state machines to encode the (infinite) game graph [13]. Inspired by regular
model checking [40], the key idea is to label each vertex of the game graph uniquely
with a finite word over an a priori fixed alphabet Σ and represent sets of vertices by
means of regular sets, accepted by nondeterministic finite automata (NFAs). Moreover,
the edge relation is represented by a finite-state transducer. For the sake of simplicity,
we do not distinguish between a vertex and its finite word representation.

To avoid cluttering this section with a series of formal definitions, let us introduce
rational safety games through the example of Figure 3.1 (on Page 34). More precisely,
let us consider the discretized version of the game in Figure 3.1b where the set of
vertices is V = {e, s} × N.

A straightforward encoding is to associate a vertex (x, i) ∈ {e, s} × N with the finite
word xIi over the alphabet Σ = {e, s, I} where x ∈ {e, s} and Ii is the (variable-length)
unary encoding of i. Based on this encoding, we can use the two NFAs

s
IAV0 : and e

IAV1 :

to represent the vertices of Player 0 and Player 1, respectively.6 Similarly, we can use
the NFA

e, s I
IAF :

to represent the set F of safe vertices and the NFA

e I IAI :

to represent the set I of initial vertices. Note that the sets V0, V1, and F are countably
infinite in this example.

As mentioned above, we use transducers as a symbolic representation of the edge
relation of a rational safety game. Intuitively, a transducer is an NFA over the extended

6We here use the usual graphical notation for NFAs: states are drawn as circles, accepting states
are drawn as double-circles, the initial state has an incoming arrow, and transitions are drawn as
arrows connecting states.

38



3.1 Reactive Synthesis

alphabet ˆ︁Σ :=
(︁
Σ ∪ {ε}

)︁
×

(︁
Σ ∪ {ε}

)︁
that processes pairs (u, v) ∈ Σ∗ × Σ∗ of words.

The empty word ε denotes that no letter is consumed in a computational step and
allows relating words of different lengths. Note that the ability to process inputs
asynchronously (as opposed to synchronous, letter-by-letter processing) makes this
class of transducers expressive enough to encode a wide range of relations (called
rational relations), including the configuration graphs of Turing machines.

The edge relation E of the game in Figure 3.1b can now be represented by the
transducer

(s, e)

(I, I)
(I, ε),
(ε, I) (e, s)

(I, I)
(I, ε),
(ε, I)

TE :

where the left branch corresponds to moves of Player 0, while the right branch corre-
sponds to moves of Player 1. Note that the transitions labeled with (s, e) and (e, s)
ensure that both players move in alternation and transitions labeled with (I, ε) and
(ε, I) capture the movement of the robot to the left and right, respectively. It is not
hard to verify that this transducer accepts a pair (xIi, yIj) of words if and only if(︁
(x, i), (y, j)

)︁
∈ E. Thus, TE captures exactly the edge relation of Figure 3.1b.

Since we represent sets of vertices using NFAs, each of the learner’s hypotheses H ⊆ V
needs to be given in the form of an NFA, which we denote by AH . On the other hand,
counterexamples are either words over the alphabet Σ (in the case of positive and
negative counterexamples) or finite sets of words over Σ with logical constraints (in
the case of existential and universal counterexamples). In this section, we assume the
original learning setting of Figure 3.2 (on Page 35) and not the reduction to Horn-ICE
learning; we use this reduction later for LRA games.

It is left to show how to implement a teacher and learner for rational safety games. We
begin with a sketch of a generic teacher and then present two possible implementations
for the learner.

A Teacher for Rational Safety Games

The teacher’s task is to check whether a given NFA AH represents a winning set,
which amounts to checking the inclusion of initial vertices, the exclusion of non-safe
vertices, and existential and universal closedness. Each of these checks can be performed
using a series of standard constructions from automata theory (including intersection,
complement, projection, and cylindrification). More precisely, for each of the four
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properties of winning sets, we compute an NFA A such that the language of A is
empty if and only if the hypothesis AH satisfies the property. Moreover, if AH does
not satisfy the property, then each word u in the language of A is either immediately
a counterexample (in the case of initial and safe vertices) or the left-hand side of an
existential or universal counterexample. In the latter cases, existential or universal
counterexample can simply be obtained by computing the image of the word u under
the edge relation represented by the transducer TE . Note that the order in which the
four properties are checked is not important for the correctness of our framework,
but it might influence its performance. We refer the reader to Neider and Topcu [13,
Section 4] for a detailed description.

Two Learners for Rational Safety Games

The task of a learner is to construct an NFA A that is consistent with the current
game sample SG = (S+, S−, S∃, S∀). To this end, we have developed two learners,
named SAT-Synth and RPNI-Synth, which we sketch below. For technical reasons,
both learners generate deterministic finite automata (DFAs) rather than NFAs.

SAT-Synth The key idea underlying SAT-Synth is to reduce the learning problem
to a series of constraint satisfaction problems in propositional logic and to use
a highly optimized SAT solver to search for a solution. Given a game sample
SG = (S+, S−, S∃, S∀), SAT-Synth creates and solves a sequence of propositional
formulas

(︁
ΦSG

n
)︁

1,2,...
that have the following two properties:

• the formula ΦSG
n is satisfiable if and only if there exists a DFA with n ∈ N\{0}

states that is consistent with SG ; and

• a satisfying assignment v of ΦSG
n contains sufficient information to construct

a DFA Av that has n states and is consistent with SG .

By starting with n = 1 and increasing n by one until ΦSG
n becomes satisfiable,

we obtain an effective algorithm that learns consistent DFAs from game samples
(see Neider and Topcu [13, Theorem 1]).

Given the properties of ΦSG
n , it is not hard to verify that SAT-Synth possesses two

crucial properties, which play an important role in proving the overall convergence
of our framework: (a) SAT-Synth is guaranteed to terminate if SG is contradiction-
free (since n will eventually be large enough), and (b) SAT-Synth learns minimal
consistent DFAs (in terms of the number of states). Note, however, that it is
already computationally hard to synthesize a minimal DFA that is consistent
with positive and negative examples only [73], which justifies the use of a SAT
solver for this task.
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RPNI-Synth RPNI-Synth is based on the popular RPNI algorithm [120], which is a
polynomial-time heuristic for learning DFAs from positive and negative words.
Given a game sample SG = (S+, S−, S∃, S∀), it performs the following three steps:

1. RPNI-Synth determines a (minimal) set of words that the existential and
universal counterexamples force to be included in a hypothesis H and adds
this set to S+. This computation can be done, for instance, using a modified
version of the pebbling algorithm of Section 2.2.2.

2. RPNI-Synth constructs the so-called prefix-tree acceptor of S+ (i.e., the tree-
like DFA that accepts precisely the words in S+). Note that this automaton
is consistent with SG .

3. RPNI-Synth successively tries to merges states of the prefix-tree acceptor,
where a merge is considered successful if the resulting DFA remains consistent
with SG (since merging states of a DFA increases the accepted language in
terms of language inclusion, the merged DFA is guaranteed to be consistent
with S+, but might no longer consistent be with S−, S∃, or S∀). If a merge
was successful, RPNI-Synth proceeds to merge further states of the resulting
DFA. If it was not successful, RPNI-Synth discards the current merge and
proceeds with the DFA of the last successful merge (or the initial one if
no merge was successful yet). The algorithm stops once there are no more
merges left to try.

It is not hard to verify that RPNI-Synth indeed constructs a DFA that is consistent
with SG (if SG is contradiction-free): it starts with a consistent one and discards
any intermediate DFA that is not consistent with SG . However, the resulting DFA
might not be minimal. Hence, we encourage the reader to think of RPNI-Synth
as a polynomial-time heuristic that runs in polynomial time but learns consistent
DFAs that are not necessarily minimal.

The fact that SAT-Synth learns minimal consistent DFAs allows us to show that
our framework converges to a winning set in finite time if one exists. This result is
summarized below.

Theorem 3.1 (cf. Neider and Topcu [13, Theorem 2]). Given a rational safety game G,
SAT-Synth is guaranteed to learn a winning set after a finite number of iterations if
there exists one that is expressible as a DFA.

The proof of the above theorem exploits that adding more and more counterexamples to
a game sample ensures that hypotheses grow monotonically in size. Thus, all hypotheses
of size less or equal to the size of a minimal DFA accepting a winning set will have been
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exhausted eventually. Once this happens, SAT-Synth proposes a winning set. RPNI-
Synth, on the other hand, does not have the same convergence guarantee. However,
our experimental evaluation shows that RPNI-Synth effectively learns winning sets for
most of our benchmarks.

3.1.2 LRA Safety Games

Our second symbolic representation of safety games, which we call LRA safety games,
uses Linear Real Arithmetic (LRA) to encode the (infinite) game graph [9]. The key
idea of this representation is to model vertices as d-dimensional real vectors and use
quantifier-free first-order formulas in LRA to represent both sets of vertices and the
edge relation. Note that LRA games are well suited for modeling cyber-physical systems
and permit game graphs with uncountably many vertices.

Again, let us introduce LRA safety games through the example of Figure 3.1 (on
Page 34). This time, however, we consider an undiscretized version of the game, where
the robot can assume any position x ∈ R≥0 on the conveyor belt. A straightforward
way to represent the game’s vertices is to use two variables, p and x: the variable p can
assume two values, 0 and 1, and models which player moves next; the variable x, on the
other hand, corresponds to the position of the robot and is restricted to non-negative
real values.

Based on the aforementioned encoding, we can use the two formulas

ϕV0(p, x) := p = 0 ∧ x ≥ 0 and ϕV1(p, x) := p = 1 ∧ x ≥ 0

to represent the vertices of Player 0 and Player 1, respectively. Similarly, we can use
the formula

ϕI(p, x) := (p = 0 ∨ p = 1) ∧ x ≥ 1

to represent the set F of safe vertices and the formula

ϕI(p, x) := p = 1 ∧ (x ≥ 1 ∧ x ≤ 2)

to represent the set I of initial vertices.

Finally, we represent the transition relation E using the formula

ϕE(p, x, p′, x′) :=
[︃
p = 0 ∧ p′ = 1 ∧ [(x ≥ 1 ∧ x′ = x− 1) ∨ x′ = x+ 1 ∨ x′ = x]

]︃
∨[︃

p = 1 ∧ p′ = 0 ∧ [(x ≥ 1 ∧ x′ = x− 1) ∨ x′ = x+ 1]
]︃
,
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where the variables p, x encode the source vertex and the variables p′, x′ encode the
destination vertex. Note that the first disjunct of formula ϕE corresponds to the moves
of Player 0, while the second corresponds to the moves of Player 1.

Since we use quantifier-free first-order formulas in LRA to represent sets of vertices, each
of the learner’s hypotheses H ⊆ V needs to be given in the form of such a formula, which
we denote by ϕH . In contrast to rational safety games, we here consider the reduction
to Horn-ICE learning as introduced on Page 36. This means that counterexamples are
either d-dimensional real vectors (in the case of positive and negative counterexamples)
or Horn counterexamples.

It is left to show how to implement a teacher and learner for rational safety games,
which we do in the following.

A Teacher for LRA Safety Games

The teacher’s task is to check whether a given LRA formula ϕH represents a winning
set, which amounts to checking the inclusion of initial vertices, the exclusion of non-safe
vertices, and existential and universal closedness. Each of these checks can be performed
in a straightforward way using calls to an SMT solver (such as CVC4/CVC5 [28, 31] or
Z3 [114]). More precisely, for each of the four properties of winning sets, we generate a
formula ψ such that ψ is valid if and only if the hypothesis ϕH satisfies the property.
Moreover, if ϕH does not satisfy the property, then a model for ¬ψ can be used to derive
a counterexample, which we then translate into the Horn-ICE setting as described on
Page 36. Note again that the order in which the four properties are checked is not
important for the correctness of our framework, but it might influence its performance.
We refer the reader to Neider and Markgraf [9, Section V] for more details.

A Learner for LRA Safety Games

The task of a learner is to construct a quantifier-free LRA formula ϕH that is consistent
with the current Horn-ICE sample S = (S+, S−, S⇒). To this end, we can immediately
apply any Horn-ICE learning algorithm described in Section 2.2. For instance, utilizing
Horn-ICE-DT from Section 2.2.2 results in an effective learning algorithm for winning
sets represented as decision trees. This new synthesis algorithm, which we call DT-
Synth, inherits all advantageous properties from Horn-ICE-DT, including the guarantee
to converge to a solution if one can be expressed as a decision tree. The theorem below
summarizes this result.
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Theorem 3.2 (cf. Neider and Markgraf [9, Theorem 4]). Given an LRA safety game G
and a finite set P of predicates over the symbolic representation of vertices, DT-Synth
is guaranteed to learn a winning set after a finite number of iterations if there exists
one that is expressible as a decision tree over P.

Analogous to Section 2.2.2, we can relax the requirement that the set of predicates
is finite. More precisely, if P is enumerable, DT-Synth still converges to a winning
set if one can be expressed as a decision tree over P (cf. Neider and Markgraf [9,
Theorem 4]).

3.1.3 Regular Safety Games

Regular safety games [5] are a special case of rational safety games in which the edge
relation E is given by so-called length-preserving transducers. This class of transducers
disallows transitions of the form (ε, a) and (a, ε) for any symbol a ∈ Σ and, hence,
cannot relate words of different lengths. Consequently, the infinite graph encoded by a
length-preserving transducer consists of an infinite collection of finite graphs where
only the vertices represented by words of the same length can be connected.

Length-preserving transducers are a popular tool to model and verify parameterized
systems (i.e., reactive systems with a parameterized number of interconnected com-
ponents). A prototypical example is the Dining Philosopher Protocol, in which the
parameter is the number n of philosophers, and one would like to prove liveness for all
values of n ≥ 3. In this section, however, we are not interested in verification but in
synthesizing parameterized systems with safety objectives. Analogous to parameterized
verification, our goal is to synthesize systems for all (potentially infinite) parameter
values at once.

Figure 3.3 illustrates a parameterized version of the safety game of Figure 3.1 (on
Page 34), where the parameter n ≥ 2 corresponds to the (finite) width of the conveyor
belt. In this example, a vertex (x, i) ∈ {e, s} × N is represented by a finite word of the
form xOiIOn−i−1 over the alphabet Σ = {e, s,O, I}. Note that the graph is partitioned
into an infinite number of finite graphs, where the representation of all vertices inside
the same component have the same length.

The fact that (i) length-preserving transducers can only connect vertices represented
by words of the same length and (ii) a unique largest winning set W ⋆ (with respect
to set inclusion) exists in every safety game7 allows us to answer whether a vertex

7It is not hard to verify that winning sets are closed under union (i.e., if W and W ′ are two winning
sets in a safety game G, then W ∪W ′ is also a winning set in G). Thus, the largest winning set—with
respect to set inclusion—is unique (see Markgraf et al. [5, Theorem 1]).
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sIO
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· · ·

Figure 3.3: A parameterized version of the safety game of Figure 3.1 (on Page 34) for
n ≥ 2.

u ∈ Σ∗ is a member of the largest winning set. Indeed, answering this question is
straightforward. Given a regular safety game G = (V0, V1, E, F, I) represented by NFAs
AV0 ,AV1 ,AF ,AI and a length-preserving transducer TE , we first construct a finite
safety game Gu = (V u

0 , V
u

1 , E
u, F u, Iu) where

• V u
0 and V u

1 are the finite restriction of the languages of AV0 and AV1 to vertices
in Σ|u|, respectively (Σ|u| here denotes the set of all words over Σ that have the
same length as u);

• Eu is the finite restriction of the edge relation defined by TE to vertices in Σ|u|;

• Iu = {u}; and

• F u = {v ∈ Σ|u| | AF accepts u}.

In a second step, we then solve the finite safety game Gu (e.g., using a fixed-point
computation) to determine whether Player 1 can enforce the visit of a vertex outside
F u when starting in vertex u. Since computing winning strategies in finite safety
games can be done in linear time (see Grädel, Thomas, and Wilke [74]), we obtain an
effective procedure to answer whether a vertex belongs to the largest winning. Note
that this membership query exploits the length-preserving nature of the transducer
and is undecidable for rational safety games.

We now exploit the fact that deciding membership in the largest winning set is decidable
to design a learning framework that is more efficient than the one for rational and LRA
safety games. The key idea of this new framework, which is shown in Figure 3.4, is to
(a) bias the learning process towards learning the largest winning set (rather than not
caring about which winning set to learn) and (b) use simpler types of counterexamples
(as compared to existential and universal counterexamples, which require non-trivial
logical reasoning).

Our framework follows the minimally adequate teacher (MAT) principle proposed by
Angluin [22] and supports two types of queries: membership queries and equivalence
queries. In our setting, these two queries are as follows:
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Learner
(Synthesizer)

stores concrete vertices

Teacher
(Verifier)

has access to the game

u ∈ Σ∗

“yes” or “no”

hypothesis DFA AH

“yes” or counterexample u ∈ Σ∗

Figure 3.4: Our framework for learning winning sets in regular safety games [5]. Mem-
bership queries are shown as dashed arrows, while equivalence queries are
shown as solid arrows.

• On a membership query, the learner provides a vertex u ∈ Σ∗, and the teacher
has to check whether u is a member of the largest winning set W ⋆.

• On an equivalence query, the learner conjectures a hypothesis DFA AH , and
the teacher has to check whether AH represents the largest winning set W ⋆. If
AH represents W ⋆, the teacher replies “yes”. If not, the teacher replies with a
counterexample u ∈ Σ∗ in the symmetric difference of the language of AH and
W ⋆ (i.e., AH does not accept W ⋆, which is witnessed by u).

The feedback loop of our framework repeats until the teacher replies with “yes”. By
definition of equivalence queries, the learner has then conjectured a winning set,
which we return. Note that the teacher is not allowed to reply with universal or
existential counterexamples but must communicate why a conjecture is not existentially
or universally closed based on a single word u ∈ Σ∗ (we show how this can be done
shortly).

It is left to show how to implement a teacher and a learner for regular safety games,
which we do next.

A Teacher for Regular Safety Games

The teacher’s task is to answer membership and equivalence queries. We do this as
follows:

Membership queries: On a membership query, the teacher needs to decide whether a
given word u ∈ Σ∗ is a member of the largest winning set W ⋆ and returns “yes”
or “no” accordingly. This can be done as described above (see Page 45).
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Equivalence queries: On an equivalence query, the teacher needs to check whether a
given DFA AH represents the largest winning set W ⋆. This test can be performed
similarly to rational safety games by checking all four properties of winning sets
(cf. Section 3.1.1). However, we make the following modifications to the existential
and universal closedness checks to account for the fact that a minimally adequate
teacher cannot reply with existential or universal counterexamples (the checks
for positive and negative counterexamples remain unchanged):

• If AH is not existentially closed (which can be checked as described in
Section 3.1.1), then there exists a vertex u that AH accepts, but all of its
successors u1, . . . , un are rejected by AH . To determine how to resolve this
issue, the teacher performs a membership query with u. If this membership
query returns “no”, the vertex u is not a member of the largest winning set
and should be excluded; thus, the teacher returns u as a counterexample. If
this membership query returns “yes”, on the other hand, the vertex u is a
member of the largest winning set and, hence, one (or more) of its successors
need to be included in the next hypothesis as well. The teacher can test
which ones by asking membership queries for each successor u1, . . . , un. Once
one of these queries returns “yes” (which is guaranteed if a winning set
exists), the teacher returns the corresponding vertex as a counterexample.
(We comment shortly on the fact that returning a single successor vertex
might not result in the largest winning set.)

• If AH is not universally closed (which can be checked as described in
Section 3.1.1), then there exists a vertex u that AH accepts, but at least one
of its successors u1, . . . , un is rejected by AH . Again, the teacher performs
a membership query with u to determine how to resolve this issue. If
this membership query returns “no”, the vertex u is not a member of the
largest winning set and should be excluded; thus, the teacher returns u as
a counterexample. If this membership query returns “yes”, on the other
hand, any successor that is not accepted by AH is a counterexample, and
the teacher returns one of them.

If the conjecture AH passes all four checks, the teacher replies with “yes”.

It is not hard to verify that such a learner satisfies the required protocol and can be
implemented using standard automata constructions. Note that a teacher as defined
above even replies “yes” if the conjectured DFA represents a winning set that is not
necessarily the largest one: a check for existential closedness can only reply a single
counterexample, which can cause other successor vertices that are also members of
the largest winning set to be missing. However, since any winning set is sufficient for
synthesizing a reactive system, we exploit this property of the teacher as a means to
terminate the feedback loop early.

47



3 Intelligent Reactive and Functional Synthesis

A Learner for Regular Safety Games

The task of the learner is to construct a DFA AH that is consistent with the information
obtained from membership and equivalence queries thus far. To this end, we can use
any off-the-shelf learning algorithm that operates in the minimally adequate teacher
setting, such as the algorithm by Angluin [22], the one by Rivest and Schapire [133],
and the one by Kearns and Vazirani [95]. We call the resulting algorithm P-Synth
(where the prefix “P” stands for “Parameterized”).

Theorem 3.3 (cf. Markgraf et al. [5, Theorem 2]). Given a regular safety game G,
P-Synth is guaranteed to learn a winning set if there exists one that is expressible as a
DFA.

The number of membership and equivalence queries that P-Synth asks depends on
the actual learning algorithm used. In the case of Kearns and Vazirani’s algorithm,
for instance, the number of equivalence queries is at most n and the number of
membership queries is in O

(︁
n(n+n|Σ|) +n logm

)︁
where m is the length of the longest

counterexample returned by the teacher (cf. Markgraf et al. [5, Proposition 1]).

3.2 Functional Synthesis

We now turn to the area of functional synthesis and present Alchemist-CS-DT [11,
12], a learning-based framework for synthesizing functions or—equivalently—loop-free
program expressions from logical specifications. Similar to the synthesis techniques
we have discussed in the previous section, Alchemist-CS-DT follows the principle of
counterexample-guided inductive synthesis (CEGIS) [142]. This time, however, the
feedback loop is more complex and cannot as easily be partitioned into a teacher and a
learner as before.

The precise synthesis problem we tackle in this section is that of finding (the implemen-
tation of) a function f that satisfies a logical specification of the form ∀x⃗ : ψ(f, x⃗), where
ψ is a quantifier-free first-order formula over a logic with fixed interpretations of con-
stants, functions, and relations (except for f). We here assume that the quantifier-free
fragment of this logic admits a decidable satisfiability problem, and effective procedures
for producing models of satisfiable formulas are available.

For the rest of this section, let f be a function symbol with arity n representing
the target function that is to be synthesized. We assume that the specification is
written in a first-order logic L over an arbitrary set of function symbols F (including
a special symbol f), constant symbols C, and relation symbols R, all of which have
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fixed interpretations, except for f . Moreover, we assume that L is interpreted over a
countable universe D and, further, a constant symbol exists for every element of D.
Without loss of generality, we allow negations only at atomic predicates and require that
equality is a relation in the logic (with the standard model-theoretic interpretation).

The logical specification itself is of the form ∀x⃗ : ψ(f, x⃗) where ψ is a first-order formula
constructed according to the following grammar (with x being a variable, g ∈ F , c ∈ C,
R ∈ R, and τ⃗ being a vector of terms with a suitable arity):

Terms: τ ::= x | c | f(τ1, . . . , τn) | g(τ⃗)
Formulas: ϕ ::= R(τ⃗) | ¬R(τ⃗) | ϕ ∨ ϕ | ϕ ∧ ϕ

A prototypical example in real arithmetic is the specification

ψ(f, x1, x2) := f(x1, x2) ≤ x1 ∧ f(x1, x2) ≤ x2 ∧
(︁
f(x1, x2) = x1 ∨ f(x1, x2) = x2

)︁
,

which uniquely describes the maximum of the two arguments x1 and x2.

Given a specification ∀x⃗ : ψ(f, x⃗), the synthesis problem is now to find a definition of f
in the form of an expression e such that ∀x⃗ : ψ(e/f, x⃗) is valid; here, ψ(e/f, x⃗) denotes
that every occurrence of f in ψ is replaced with e (after renaming the free variables in e
accordingly). In order to make this problem computationally tractable, we impose two
restrictions: one on the type of functions (i.e., expressions) that we want to synthesize
and one on the logical specification.

Let us begin with the restriction on the type of functions. Intuitively, we focus on
a specific type of functions, named piece-wise, that partition the input domain into
a finite set of regions and apply an L-expression in each region. More formally, a
piece-wise function is a nested if-then-else expression with free variables y1, . . . , yn that
is constructed according to the grammar

Expressions: e ::= c | yi | g(e⃗) | ite
(︁
R(e⃗), e, e

)︁
where i ∈ {1, . . . , n}, c ∈ C, R ∈ R, and g ∈ F \ {f}.8 An example for a piece-wise
function is the expression

e := ite(y1 ≤ y2, y2, y1),

which computes the maximum of y1 and y2 by partitioning the input into two regions
(y1 ≤ y2 and y1 > y2) and applying the two (sub-)expressions y2 and y1 to each region
accordingly. Note that e is indeed a solution to the specification ψ(f, x1, x2) above.

8If desired, our framework can be restricted to synthesize expressions that only use a subset Ĉ ⊆ C
of constants, R̂ ⊆ R of relations, and F̂ ⊆ F of functions. This is useful in situations where one
wants to exclude the use of certain constants, relations, or functions in the synthesized expression.
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The restriction on the type of specifications, on the other hand, is more involved
and requires a detailed discussion. We want to capture the intuitive property that
a specification maps each input to an output independent of how other inputs are
mapped to their outputs. Moreover, for any given expression e that does not satisfy
the specification, it must be possible to algorithmically find a (not necessarily unique)
input ι⃗ ∈ Dn for e such that (a) there exists an evaluation x⃗ (from which ι⃗ is derived)
causing the formula ψ(f, x⃗) to evaluate to false, and (b) the falsehood is caused solely
by the evaluation of e on ι⃗. We call such specifications single-point refutable and use
the input ι⃗ as a means to correct an incorrect hypothesis in the CEGIS loop.

To make the notion of single-point refutable specifications mathematically precise, we
introduce a first-order formula

isou⃗,v,b(ψ),

where u⃗ is a vector of n first-order variables (n is the arity of the function to be
synthesized), v is a first-order variable (different from ones in u⃗), and b ∈ {true, false}.
Intuitively, this function, named isolate transformer , captures whether ψ evaluates to b
if f maps the inputs given by the variables u⃗ to the output given by v and independent
of how f is interpreted on other inputs. To implement isou⃗,v,b, every function application
of f is modified so that it evaluates to the value of v if the input matches u⃗ and to a
special value ⊥ /∈ D if the input does not match u⃗ (the latter signals that the value of f
should be “ignored” in these inputs). Functions on terms that involve ⊥ are evaluated
to ⊥ as well. Additionally, relations are evaluated to b only if none of its arguments
evaluates to ⊥; otherwise, they are mapped to ¬b so as to signal that none of them
contributes to making ψ evaluate to b. Note that the formula isou⃗,v,b(ψ) is over the free
variables x⃗, u⃗, and v, but the function symbol f does no longer occur (it is substituted
by either v or ⊥). Also, note that we cannot draw any conclusion in the case that
isou⃗,v,b(ψ) evaluates to ¬b. We refer the reader to Neider, Saha, and Madhusudan [11]
for a detailed description of the isolate transformer and an example.

We can now formally define single-point refutable specifications. To this end, let us fix
a specification of the form ∀x⃗ : ψ(f, x⃗). Then, we say that ∀x⃗ : ψ(f, x⃗) is single-point
refutable if for every expression e : Dn → D that does not satisfy the specification
(i.e., the specification does not hold under this interpretation for f) there exists
an interpretation for the variables x⃗ and an input ι⃗ that is an interpretation for
the variables u⃗ such that when the variable v is interpreted to be e(ι⃗), the isolate
transformer isou⃗,v,false(ψ) evaluates to false (cf. Neider, Saha, and Madhusudan [11,
Definition 2.8]).

Let us illustrate the definition of single-point refutable specifications through the follow-
ing examples. We fix the underlying logic to be the first-order theory of arithmetic.
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• The specification

∀x1, x2 : f(17, 21) = 16 ∧ f(76, 30) = 52 ∧ · · · ∧ f(22, 45) = 15

is single-point refutable. More generally, any set of input-output examples can
be written as a conjunction of constraints that forms a single-point refutable
specification.

• The specification

∀x1, x2 : f(x1, x2) ≤ x1 ∧ f(x1, x2) ≤ x2 ∧
(︁
f(x1, x2) = x1 ∨ f(x1, x2) = x2

)︁
of the aforementioned maximum function is single-point refutable.

• The specification
∀x : f(0) = 0 ∧ f(x+ 1) = f(x) + 1

is not single-point refutable. To see why, observe that the sub-formula f(x+ 1) =
f(x)+1 relates two distinct inputs on which f is evaluated. Thus, if an expression e
does not satisfy the specification (e.g., e(i) = 0 for all i ∈ N), we cannot isolate
a single input on which e is incorrect. This situation is captured by the isolate
transformer: when the formula isou⃗,v,b(ψ) is parameterized with b = false, at least
one of f(x+ 1) and f(x) evaluates to ⊥ and, hence, the whole formula cannot
evaluate to false.

• Specifications arising from the Horn-ICE framework are not single-point refutable.

Let us now present our general framework for synthesizing piece-wise functions from
single-point refutable specifications, named Alchemist-CS-DT [11, 12]. The high-level
idea is to intertwine logical synthesis methods with highly scalable classification algo-
rithms from machine learning. The former are used to generate appropriate predicates
(to partition the input space into regions) and expressions (to apply in each region),
whereas the task of the latter is to learn how to assemble the predicates and expressions
into a piece-wise function that satisfies the specification.

Alchemist-CS-DT stores three finite sets, which can be accessed and modified globally:
a set P of predicates over the background logic L, a set E of expressions over L, and a
set S of multi-labeled (counter-)examples, where each example (ι⃗, Z) ∈ S consists of
an input ι⃗ ∈ Dn and a set Z ⊆ E of expressions. Moreover, it maintains the following
two invariants:

1. for all examples (ι⃗, Z) ∈ S, each expression e ∈ Z is suitable for the input ι⃗ in
the sense that there exists a function g satisfying the specification such that
e(ι⃗) = g(ι⃗); and
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Figure 3.5: High-level view of Alchemist-CS-DT [11, 12].

2. for each pair (ι⃗1, Z1), (ι⃗2, Z2) ∈ S with Z1∩Z2 = ∅, there exists a predicate p ∈ P
that can separate the inputs ι⃗1, ι⃗2 in the sense that ι⃗1 |= p if and only if ι⃗2 ̸|= p.

We provide further context for both invariants shortly.

Figure 3.5 presents a high-level view of Alchemist-CS-DT. Similar to Section 3.1 (as
well as the ICE learning and Horn-ICE learning), our framework consists of a feedback
loop that follows the principle of counterexample-guided inductive synthesis. Each
iteration of this loop proceeds in five subsequent phases, which we describe below. Note
that our framework does not define a single component for the teacher and the learner.
However, we encourage the reader to think of Phase 2 as the teacher and the remaining
phases as the learner.

Phase 1: Each iteration of the feedback loop starts by invoking a learning algorithm
to learn a classifier κ : Dn → E over the set P of predicates that is consistent
with the sample S in that κ(ι⃗) ∈ Z for each (ι⃗, Z) ∈ S. Intuitively, this means
that κ divides the set of inputs into regions and maps each region to a single
expression such that the mapping is consistent with the sample. We call this a
multi-label learning problem.

A suitable type of classifier is the class of decision trees, which divides the input
space into a finite number of disjoint subsets, each corresponding to a conjunction
of (potentially negated) predicates from P. To learn such decision trees, we
have devised a novel learning algorithm tailored explicitly to the multi-label
learning problem above. However, to avoid cluttering our presentation too much,
we skip an in-depth description here and refer the reader to Neider, Saha, and
Madhusudan [11, 12] for further details.
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Once a consistent decision tree has been learned, we convert it into a piece-wise
function in the logic L. Our conversion recursively replaces each inner node of
the tree with an if-then-else expression (to define the regions) and each leaf with
the expression associated with that leaf (to define the output of the synthesized
function). The resulting expression e : Dn → D is then handed over to the next
phase.

Phase 2: Given an expression e, Alchemist-CS-DT now invokes the so-called coun-
terexample finder to check whether e satisfies the specification. To this end, it
calls an SMT solver to check whether the formula

∃x⃗∃u⃗∃v : v = e(u⃗) ∧ ¬isou⃗,v,false(ψ)

is satisfiable. By definition of single-point refutable specifications, we are guaran-
teed that this formula is satisfiable if and only if e does not satisfy the specification.
Moreover, the valuation of the variables u⃗ in a model is a concrete input ι⃗ ∈ Dn

on which e is definitely wrong in the sense that there exists no function satisfying
the specification that maps ι⃗ to e(ι⃗) (see Neider, Saha, and Madhusudan [11,
Lemma 2.7]). Consequently, if the above formula is unsatisfiable, Alchemist-CS-
DT stops and returns the current function e. If it is satisfiable, on the other hand,
Alchemist-CS-DT hands ι⃗ over to the next phase.

Phase 3: The input ι⃗ serves as a counterexample to the current hypothesis and is
passed to a so-called expression synthesizer . The goal of this synthesizer is to
generate an expression ê that is suitable for the input ι⃗; remember that this means
that there exists a function g satisfying the specification such that ê(ι⃗) = g(ι⃗).
We facilitate this by generating a simpler synthesis problem with a specification
of the form ∀x⃗ : ψ↓ι⃗ ( ˆ︁f, x⃗) where ˆ︁f is a fresh uninterpreted function symbol and

ψ↓ι⃗ ( ˆ︁f, x⃗) := isou⃗,v,true(ψ)
[︁
ι⃗/u⃗, ˆ︁f(ι⃗)/v

]︁
.

Intuitively, the formula ψ↓ι⃗ ( ˆ︁f, x⃗) isolates the original specification to the input-
output pair (u⃗, v) and demands that it evaluates to true under this restriction.
Then, we substitute ι⃗ for u⃗ and a fresh function symbol ˆ︁f (evaluated on ι⃗) for
v. As a result, we obtain that any expression ê synthesized for ˆ︁f maps ι⃗ to a
value that is consistent with the original specification (see Neider, Saha, and
Madhusudan [11, Lemma 3.1]).

It is important to note that this new synthesis problem is more manageable than
the original problem (since it only requires synthesizing an expression for a single
input) and that we can use any existing expression synthesizer to solve it (e.g.,
enumeration-based or SMT-based methods as used in the SyGuS competition [18]).
One of the most critical challenges in this context is to synthesize an expression
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that is general in the sense that it works for all (or at least many) inputs in the
region of ι⃗. For the sake of brevity, however, we skip a detailed description here
and refer the reader to Neider, Saha, and Madhusudan [11, 12], where we have
developed an effective synthesizer for expression in linear integer arithmetic.

After the expression synthesizer has synthesized a suitable expression ê for the
counterexample ι⃗, it adds ê to the global set E (if this expression is not already
present). Then, Alchemist-CS-DT passes ι⃗ onto the next phase. Note that adding
ê to E maintains Invariant 1 above.

Phase 4: Give a counterexample ι⃗, Alchemist-CS-DT invokes a so-called label finder
to determine the set Z ⊆ E of expressions that are suitable for ι⃗. To this end,
the label finder checks for each expression e ∈ E whether the formula

ψ↓ι⃗
(︁
e(ι⃗)/ ˆ︁f(ι⃗), x⃗

)︁
is valid by means of an SMT solver. If the formula is valid, the label finder adds
e to Z (which is initially empty); otherwise, it continues with the next expression
in E. Once all suitable expressions for ι⃗ have been identified, the label finder
adds the pair (ι⃗, Z) as a new example to the sample S.

If the expression ê synthesized in the preceding phase was not already contained
in E, Alchemist-CS-DT also needs to check whether ê is suitable for any of the
existing inputs in the sample S. To this end, the label finder repeats the procedure
laid out above for each such input and updates the sample S accordingly. Then,
Alchemist-CS-DT proceeds to the next phase.

Phase 5: The goal of the last phase is ensure that the global set P of predicates
satisfies Invariant 2 above (i.e., any two examples (ι⃗1, Z1), (ι⃗2, Z2) ∈ S with
Z1 ∩ Z2 = ∅ can be separated by a predicate p ∈ P). Intuitively, if two examples
(ι⃗1, Z1), (ι⃗2, Z2) ∈ S have no suitable expression in common, it means that the
inputs ι⃗1 and ι⃗2 must not be mapped to the same region of the input space—
otherwise, the synthesized function violates the specification on one of the inputs.
Hence, if Z1 ∩ Z2 = ∅, the set P needs to contain at least one predicate p such
that ι⃗1 |= p if and only if ι⃗2 ̸|= p.

Alchemist-CS-DT delegates the task of constructing suitable predicates to a
component that we call predicate synthesizer . This specialized synthesis task is
again more manageable than the original one (since it only requires separating a
finite number of data points), and we can either use existing SyGuS solvers [18] or
classical machine learning algorithms to solve it. Once the predicate synthesizer
has generated sufficiently many new predicts and added them to the global set P ,
Alchemist-CS-DT continues with the next iteration of the feedback loop, which
begins with Phase 1.
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Alchemist-CS-DT’s feedback loop continues until the counterexample finder (Phase 2)
verifies that the current hypothesis expression e satisfies the specification. Once this
happens, the feedback loop stops, and Alchemist-CS-DT returns e.

However, we cannot guarantee that the feedback loop always terminates in finite time
(e.g., if no function exists that satisfies the specification). Nonetheless, our experimental
evaluation shows that Alchemist-CS-DT effectively synthesizes functions for a wide
range of real-world synthesis tasks.

3.3 Abstract Learning Framework for Synthesis

Virtually all learning-based synthesis techniques in current literature, including the
ones presented in this and the previous chapter, rely on the principle of counterexample-
guided inductive synthesis (CEGIS) [142], either implicitly or explicitly. In fact, CEGIS
has emerged as a powerful paradigm in a host of different domains, including synthe-
sizing program invariants for verification [48, 2, 66, 69, 3, 10], synthesizing program
expressions [20, 11, 12, 135, 143], synthesizing string transformers for spreadsheets
(e.g., Flash Fill [76]), reactive synthesis [5, 9, 13], and superoptimization [136], to name
but a few.

To better understand the nuances of different synthesis approaches that use CEGIS,
this section develops a general theory of CEGIS through a formalism we call an abstract
learning framework for synthesis [4]. This framework aims to be general and abstract,
encompassing a majority (if not all) known CEGIS frameworks and several other
synthesis algorithms not generally viewed as falling under the umbrella of CEGIS. The
ultimate goal is to provide a common set of concepts, definitions, and vocabulary that
can be used to understand and combine learning-based synthesis techniques across
different domains.

Figure 3.6 gives an overview of our abstract learning framework for synthesis. We first
give a formal definition and then describe its components and their relations in detail.
In particular, we defer the definition of the teacher and the learner to a later point in
this section, when we have set up all necessary preliminaries.

Formally, an abstract learning framework for synthesis (ALF) [4] is a tuple

A =
(︁
C,H, (S,⊑s,⊔,⊥s), γ, κ)

consisting of

• a class C, called the concept space;

• a class H, called the hypothesis space;
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Figure 3.6: Components of our abstract learning framework for synthesis (ALF) [4].

• a class S that is equipped with a join semi-lattice (S,⊑s,⊔,⊥s), called the sample
space;

• a concretization function γ : H → C; and

• a consistency function κ : S → 2C that satisfies κ(⊥s) = C and κ(S1 ⊔ S2) =
κ(S1) ∩ κ(S2) for all S1, S2 ∈ S.

If the second condition for the consistency function is relaxed to κ(S1 ⊔ S2) ⊆ κ(S1) ∩
κ(S2), we speak of a general ALF. Moreover, we say that an ALF has a complete sample
space if (S,⊑s,⊔,⊥s) is a complete join semi-lattice (i.e., the join is defined for arbitrary
subsets of S). In this case, the consistency relation has to satisfy κ(

⨆︁
S ′) =

⋂︁
S∈S′ κ(S)

for each S ′ ⊆ S (and κ(
⨆︁
S ′) ⊆

⋂︁
S∈S′ κ(S) for general ALFs).

As in computational learning theory (cf. Kearns and Vazirani [95]), we consider a
concept space C that contains the objects that we are interested in. For example, in the
Horn-ICE framework of Section 2.1, an element C ∈ C corresponds to a set of program
configurations. In the functional synthesis setting of Section 3.2, the concept space
could contain functions from Rd to R.

The hypothesis space H contains the objects that a learning algorithm produces. These
are representations of (some) elements from the concept space C. For example, if C
consists of sets of program configurations, then H could be the set of all conjunctive
formulas over some set P of predicates (as in the case of the Sorcar algorithm). On
the other hand, if C consists of functions from Rd to R, then H could be the set of all
functions expressible in Linear Real Arithmetic (as in Section 3.2).
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The relation between hypotheses and concepts is given by a concretization function
γ : H → C that maps hypotheses to concepts. This function defines the semantics of
hypotheses and is usually given naturally.

In classical computational learning theory, one often assumes that the task is to learn a
unique target concept, in which case samples typically consist of positive and negative
examples. However, if the task is to infer a target concept that is not uniquely defined
but should instead satisfy specific properties, just relying on positive and negative
examples is often no longer sufficient. For instance, the Horn-ICE framework does not
require the learner to find a specific invariant—as any invariant suffices—and introduces
Horn counterexamples in addition to positive and negative examples as a means to
refute an incorrect hypothesis.

To reflect this observation, we define the sample space in more general terms. More
precisely, we equip the sample space with a bounded join semi-lattice (S,⊑s,⊔,⊥s)
where ⊑s is a partial order over S with ⊥s as the least element and ⊔ is the binary
least upper-bound operator on S with respect to ⊑s. Intuitively, the teacher returns an
element S ∈ S in order to provide some (new) information about a target concept; the
learner, on the other hand, uses the join operator to combine the samples returned
during the learning process. The least element ⊥s corresponds to the empty sample,
and we encourage the reader to think of the join as the union of samples.

The consistency relation κ captures the semantics of samples with respect to the concept
space by assigning to each sample S ∈ S the set κ(S) of concepts that are consistent
with the sample. The first condition on κ states that all concepts are consistent with
the empty sample ⊥s. The second condition states that the set of samples consistent
with the join of two samples is precisely the set of concepts consistent with both
of the samples. Intuitively, this means that joining samples does not introduce new
inconsistencies, and existing inconsistencies transfer to larger samples. The condition
κ(S1 ⊔S2) ⊆ κ(S1)∩ κ(S2) is natural in that it expresses that if a concept is consistent
with the join of two samples, then the concept must be consistent with both of them
individually. The condition κ(S1⊔S2) ⊇ κ(S1)∩κ(S2), on the other hand, is debatable:
it claims that samples taken together cannot eliminate a concept that they could not
eliminate individually. To reflect this, we have introduced the notion of a general ALF.
However, we have not found any natural example that requires such a generalization
and, hence, restrict our attention to ALFs (instead of general ALFs) in the rest of this
section.

For the remainder, it is helpful to define the set κH(S) := {H ∈ H | γ(H) ∈ κ(S)} of
hypothesis that are consistent with S ∈ S. Moreover, we say that a sample S ∈ S is
realizable if there exists a hypothesis that is consistent with S (i.e., κH(S) ̸= ∅).
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As we have argued above, most learning-based synthesis settings do not have a unique
target concept that the learner needs to produce, but they only require the learner
to synthesize some concept from an a priori fixed subset T ⊆ C of the concept space.
We call such a subset a target specification and define an ALF instance to be a pair
(A, T ) where A is an ALF over the concept space C and T ⊆ C is a target specification.
Moreover, we say that the target specification is realizable by a hypothesis, or simply
realizable, if there is an H ∈ H such that γ(H) ∈ T . For a hypothesis H ∈ H, we
usually write H ∈ T instead of γ(H) ∈ T .

In our abstract learning framework for synthesis, a teacher and a learner interact with
each other to synthesize an element H ∈ H such that γ(H) ∈ T (we formalize both the
teacher and the learner shortly). However, there is a subtle point worth emphasizing. In
most synthesis settings, the teacher does not explicitly know the target specification T .
Instead, it knows properties that define the target specification and can check whether
a hypothesis H ∈ H satisfies these properties. For instance, in the Horn-ICE learning
framework, the teacher does not know an inductive invariant but can check whether a
hypothesis is one. The analogous observation from the area of functional synthesis is
that the teacher knows the logical specification that a function should fulfill (and can
check them), but it does not know a function that satisfies the specification.

Given an ALF A = (C,H, (S,⊑s,⊔,⊥s), γ, κ), we define a learner to be a function
λ : S → H that assigns a hypothesis to every sample. Moreover, we call a learner λ
consistent if γ

(︁
λ(S)

)︁
∈ κ(S) for all realizable samples S ∈ S. Note that a learner is

agnostic of the target specification of an ALF instance.

A teacher, on the other hand, is defined with respect to an ALF instance (A, T ) with
A as above and T ⊆ C. Formally, a teacher is a function τ : H → S that satisfies the
following two properties, which we call progress and honesty:

• τ(H) = ⊥s for all hypotheses H ∈ T , and γ(H) /∈ κ
(︁
τ(H)

)︁
for all H /∈ T

(progress); and

• T ⊆ κ
(︁
τ(H)

)︁
for each H ∈ H (honesty).

Intuitively, the progress property states that if a hypothesis is in T , then the teacher
must return the “empty” sample ⊥s, signaling that the learner has learned a target;
if this is not the case, the teacher must return a sample that rules out the current
hypothesis. Note that this ensures that a consistent learner can never propose the same
hypothesis twice and, hence, makes progress. On the other hand, honesty demands
that the teacher only returns samples that are consistent with all target concepts. The
latter property ensures that the teacher does never rule out a hypothesis in the target
specification.
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Similar to the principle of counterexample-guided inductive synthesis, the learner and
teacher interact iteratively (see Figure 3.6 on Page 56): in each round, the learner
proposes a hypothesis λ(S) for the current sample S ∈ S and adds the feedback τ(λ(S))
of the teacher to obtain the new sample. The combined behavior of the teacher and
learner in one round is then the function fτ,λ : S → S with fτ,λ(S) := S ⊔ τ(λ(S)).
Moreover, we can describe the overall learning process by a transfinite sequence of
samples ⟨Sα

τ,λ | α ∈ O⟩, where O denotes the class of all ordinals, that is defined by

• S0
τ,λ := ⊥s;

• Sα+1
τ,λ := fτ,λ(Sα

τ,λ) for successor ordinals; and

• Sα
τ,λ :=

⨆︁
β<α S

β
τ,λ for limit ordinals.

If the sample lattice is not complete, the above definition is restricted to the first two
items and yields a sequence indexed by natural numbers. The learning stops once the
learner proposes a hypothesis H with H ∈ T .

The following lemma states that the teacher’s properties of progress and honesty
transfer to the iterative setting for consistent learners if the target specification is
realizable. The proof is a transfinite induction, which crucially relies on the properties
of the teacher and the consistency relation.

Lemma 3.1 (cf. Löding, Madhusudan, and Neider [4, Lemma 1]). Let T be realizable,
λ be a consistent learner, and τ be a teacher. If (S,⊑s,⊔,⊥s) is a complete sample
lattice, then

1. the learner makes progress in that for all α ∈ O either κ(Sα
τ,λ) ⊋ κ(Sα+1

τ,λ ) and
λ(Sα

τ,λ) /∈ κ(Sα+1
τ,λ ) holds or λ(Sα

τ,λ) ∈ T holds; and

2. the sample sequence is consistent with the target specification in that T ⊆ κ(Sα
τ,λ)

holds for all α ∈ O.

If S is a non-complete sample lattice, then Items 1 and 2 hold for all α ∈ N.

From the lemma above, we can conclude that the transfinite sequence of hypotheses
constructed by the learner converges to a hypothesis in the target specification. This
fact is formalized next.

Theorem 3.4 (cf. Löding, Madhusudan, and Neider [4, Theorem 1]). Let (S,⊑s,⊔,⊥s)
be a complete sample lattice, T be realizable, λ be a consistent learner, and τ be a
teacher. Then, there exists an ordinal α ∈ O such that λ(Sα

τ,λ) ∈ T .
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Theorem 3.4 ratifies the choice of our definitions, and its proof crucially relies on all
aspects of our definitions (i.e., the honesty and progress properties of the teacher, the
condition imposed on κ in an ALF, the notion of consistent learners, and so on). In
fact, one can view our definitions as axiomatic because omitting any of the properties
no longer allows us to prove convergence to a target concept.

Although Theorem 3.4 demonstrates that our framework is set up correctly, it only
shows transfinite convergence, which is often referred to as convergence in the limit.
However, convergence in finite time is clearly the more desirable notion, and we now
sketch two strategies for designing learners that converge in finite time: finite hypothesis
spaces and Occam learners.9 To simplify the following presentation, we say that a
learner λ converges for a teacher τ if there exists a natural number n ∈ N such that
λ(Sn

λ,τ ) ∈ T , which means that the learner produces a target hypothesis after n steps.
Furthermore, we say that λ converges if it converges for every teacher.

Finite Hypothesis Spaces It is not hard to verify that if the hypothesis space (or the
concept space) is finite, then any consistent learner converges: by Lemma 3.1, the
learner always makes progress and, hence, never proposes two hypotheses that
correspond to the same concept. Consequently, the learner only produces a finite
number of hypotheses before finding one in the target (or it declares that no such
hypothesis exists).

In fact, many synthesis engines rely on a finite hypothesis space. Examples
include Houdini [66] (when viewed as a Horn-ICE learner) as well as Sorcar
and Horn-ICE-DT when used over a finite set of predicates (see Section 2.2).
Moreover, most SyGuS solvers [18, 19] provide a simple mechanism to restrict
the hypothesis space to a finite set through syntactic constraints (i.e., grammars
that only permit a finite number of derivations).

Occam Learners Our second tactic for convergence relies on the Occam razor principle,
which intuitively states that the simplest concept—or theory—that explains a
set of observations is preferable as a virtue in itself. To formalize this idea, we
assume that the hypothesis space is equipped with a total quasi-order ≺. A
quasi-order (also called pre-order) is a transitive and reflexive relation, and the
relation being total means that H ≺ H ′ or H ′ ≺ H holds for all H,H ′ ∈ H. The
difference to an ordinary order relation is that H ≺ H ′ and H ′ ≺ H can hold in
a quasi-order even if H ̸= H ′. We call a total quasi-order over the hypothesis
space a complexity ordering, as it intuitively provides a means to measure the

9We have also developed a third, novel mechanism to guarantee convergence in finite time based on
so-called tractable well-founded quasi-orders. For the sake of brevity, however, we omit a discussion
and refer the reader to Löding, Madhusudan, and Neider [4] for details.
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complexity of a hypothesis. A prototypical example is to order DFAs according
to their number of states.

An Occam learner is now a learner that always constructs hypotheses that are
minimal with respect to a fixed complexity order ≺. In fact, we can show that
if T is realizable and λ is a ≺-Occam learner, then λ converges to a ≺-minimal
target element (cf. Löding, Madhusudan, and Neider [4, Theorem 2]). To see why
this is the case, pick any target element T ∈ γ−1(T ), which exists because T is
realizable. Since τ is honest, T ∈ κ(Sn

τ,λ) for all n ∈ N by Lemma 3.1. Thus, on the
iterated sample sequence, a ≺-Occam learner never constructs an element strictly
above T with respect to ≺. Since there are only finitely many hypotheses that
are not strictly above T , and since the learner always makes progress according
to Lemma 3.1, it converges to a target element in finitely many steps. This target
element does not have any other target elements below it and, thus, is ≺-minimal.

Several existing algorithms in the literature are Occam learners, including several
enumeration-based solvers for SyGuS [18, 19]. Examples from this work are
the extensions of Sorcar and Horn-ICE-DT over infinite sets of predicates (see
Section 2.2) as well as the SAT-Synth algorithm described in Section 3.1.1.

Finally, let us note that not all synthesis techniques can be phrased in terms of an
ALF. For instance, the P-Synth algorithm of Section 3.1.3 actively queries the teacher
for membership information, which cannot (yet) be modeled in our framework. An
extension of our abstract learning framework for synthesis to active learning would be
interesting future work.

3.4 Notes on Related Work

In the area of reactive synthesis, games over various types of infinite graphs have been
studied, predominantly in the context of pushdown graphs [101]. For more general
classes of game graphs, a constraint-based approach [34], relying on constraint solvers
such as Z3 [114], and various learning-based approaches have been proposed, including
the methods for safety games presented in this chapter [5, 9, 13] as well as an earlier
approach for reachability games [115]. In the context of safety games over finite graphs,
recent work [116] has demonstrated the ability of learning-based techniques to extract
small implementations of reactive systems from pre-computed systems with a potentially
large number of states.

The framework of regular model checking [40], on which P-Synth, RPNI-Synth, and
SAT-Synth are based, is used in a number of different domains to verify properties
such as safety [40, 49, 81, 117] and liveness [107, 126]. In particular, for verification
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of safety and liveness properties in parameterized systems, regular model checking
has successfully been used [49, 107]. Similar to our setting, the approaches by Chen
et al. [49] and Lin and Rümmer [107] also employ Angluin-style active learning of
deterministic finite automata to verify properties of parameterized systems.

An orthogonal approach to the algorithms presented in Section 3.1 is to apply decision
tree learning as a post-processing step after a strategy has been synthesized in a
classical manner [43]. The underlying idea is to generate a concise representation of
the given strategy, which is helpful to reduce the memory requirement or when one is
interested in inspecting and understanding the strategy.

In the area of functional synthesis, our task is closely related to the syntax-guided
synthesis framework (SyGuS) [18], which provides a standardized input language
similar to SMTLib [30], to describe synthesis problems. Several solvers following the
counterexample-guided inductive synthesis (CEGIS) approach [142] for SyGuS have
been developed, including enumerative solvers, solvers based on constraint solving, one
based on stochastic search, and one based on the program synthesizer Sketch [141]. A
solver based on CVC4 [31] has also been presented. We refer the reader to the results
of the SyGuS competition [19] for an in-depth discussion of available solvers.

There has also been work on synthesizing piece-wise affine models of hybrid dynamical
systems from input-output examples [21, 32, 64] (we refer the reader to Paoletti et
al. [122] for a comprehensive survey). The setting there is to learn an affine model
passively (i.e., without feedback on whether the synthesized model satisfies some
specification), and, consequently, the learned model only approximates the actual
system. A tool for learning guarded affine functions, which uses a CEGIS approach, is
Alchemist [135]. In contrast to the setting of Section 3.2, however, Alchemist requires
that the specification uniquely determines the function to synthesize.

The abstract learning frameworks for synthesis presented in this chapter generalize
the principle of counterexample-guided inductive synthesis [142] and can be used to
model almost all learning-based synthesis approaches found in the literature. Examples
include synthesizing loop-free programs [77], synthesizing synchronizing code for con-
current programs [47], work on using synthesis to mine specifications [92], synthesizing
bit-manipulating programs and deobfuscating programs [89], superoptimization [136],
deductive program repair [98], synthesis of recursive functional programs over un-
bounded domains [99], as well as synthesis of protocols using enumerative CEGIS
techniques [146]. An example for employing a human as a teacher is Flashfill by Gul-
wani [76], which synthesizes string manipulation macros from user-given input-output
examples in Microsoft Excel.

Finally, it is worth mentioning that Jha and Seshia [90] have independently proposed a
framework similar to ours. Their work focuses on improving the understanding of the
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relative power of CEGIS variants when the types of counterexamples vary that the
teacher is allowed to return. Moreover, the authors study the impact of bounding the
memory available to the learner.
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INTELLIGENT SPECIFICATION OF
SYSTEM PROPERTIES 4
Virtually all formal methods assume that the (formal) specifications are available in
a suitable format, are functionally correct, and express precisely the properties the
engineer has in mind. However, all of these assumptions are often unrealistic in practice.
In fact, formalizing system requirements is known to be notoriously difficult and error-
prone. Even worse, the training effort required to reach proficiency with formal methods
(including their underlying specification languages) can be disproportionate to the
expected benefits [147], and the use of formalisms such as temporal logics requires a
level of sophistication that many users might never achieve [83].

To alleviate this severe practical problem, we have developed a series of methods to
learn formal specifications, thereby removing the need to write specifications by hand.
The key idea is that an engineer provides examples of a system’s desired or undesired
behavior (e.g., traces of executions that the specification should allow or disallow), and
an automated tool then learns a specification that is consistent with the given examples.
Note that learning specifications “completely from scratch” is only a first step towards
a computer-aided approach to writing formal specifications. Ideally, an engineer would
write a high-level sketch of a specification, and an automated tool would fill out missing
parts—either in interaction with the engineer or based on given examples. We further
comment on this vision in Chapter 5, where we discuss future work.

Throughout this chapter, we consider non-terminating systems whose behavior can be
modeled by infinite words. To make this notion mathematically precise, let P be a set
of atomic propositions (or predicates), which capture the relevant properties of the
system in question. Then, a non-terminating execution of a system is an infinite word
α = a0a1 · · · ∈ (2P)ω, where the symbol at ∈ 2P corresponds to sets of propositions that
are true at time point t ∈ N. To ease our notation, we use α[t,∞) = atat+1 · · · to denote
the infinite suffix of α starting at position t ∈ N, and we denote the infix of α starting
at position t and leading up to (but excluding) position t′ ≥ t by α[t, t′) = at · · · at′−1.
Moreover, we address the symbol at position t ∈ N of an infinite word by α[t] (i.e.,
α[t] = α[t, t+ 1)). Note that α[t, t) is the empty word ε for every t ∈ N.

While there exists a wide range of specification formalisms in the literature, we focus
on two specific logics that allow reasoning about temporal properties of systems:
Linear Temporal Logic (LTL) [125] and the core fragment of the Property Specification
Language (PSL) [61]. This choice is motivated by the fact that both LTL and PSL have
been widely adopted in practice and constitute the de facto standard for expressing
properties of reactive systems (e.g., PSL has been canonized as IEEE standard 1850 [24]).
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Moreover, both logics share another important property: two LTL (or PSL) formulas ϕ
and ψ are equivalent if and only if they are satisfied by the same ultimately-periodic
words (i.e., infinite words of the form uvω = uvvv · · · ∈ (2P)ω where u ∈ (2P)∗ is a
finite word and v ∈ (2P)+ is a non-empty finite word).10 This property allows us to
restrict our setting without loss of generality to learning from ultimately-periodic words.
However, it is essential to mention that our algorithms translate to learning LTL and
PSL specifications over finite words in a straightforward manner.

The remainder of this chapter considers two distinct settings. In Section 4.1, we assume
that an engineer can provide both positive and negative examples of a specification,
which correspond to system behaviors that the specification should allow or prohibit,
respectively. This setting arises naturally when the engineer is tasked with writing a
formal specification for a new system yet to be developed. However, a learning-based
approach is also helpful in situations where one wants to infer a specification of an
existing system, which is an essential task in many applications, including explainable
artificial intelligence, modernization of legacy software, and so on. The problem here
is that one only has access to positive examples: one can only observe what a system
can do but never observe what it cannot do. Section 4.2 addresses this issue and shows
how to learn specifications from positive examples only. We conclude this chapter in
Section 4.3 with a brief discussion of related work.

4.1 Learning Specifications from Positive and Negative
Examples

In this section, we present two algorithms for learning temporal logic specifications from
positive and negative examples. We begin in Section 4.1.1 with a learning algorithm
for LTL [125]. In Section 4.1.2, we then show how to extend this algorithm to learn
formulas in the core fragment of PSL [61].

Throughout this section, we assume that the data to learn from is given as two
(potentially empty) finite, disjoint sets S+, S− ⊂ (2P)ω of ultimately-periodic words
uvω ∈ (2P)ω. The words in S+ are interpreted as positive examples, while the words in
S− are interpreted as negative examples. Similar to Chapters 2 and 3, we call the pair
S = (S+, S−) a sample.
10This fact is a consequence of the following two results. First, if ϕ is an LTL or PSL formula, then the

set of all infinite words satisfying ϕ is ω-regular (i.e., can be recognized by a Büchi automaton [23,
125]). Second, two ω-regular languages L1, L2 coincide (i.e., L1 = L2) if and only if both contain
the same ultimately-periodic words. Note that the latter is a folklore result, which one obtains from
the characterization of ω-regular languages in terms of Büchi automata.
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4.1.1 Learning LTL Specifications from Positive and Negative Examples

Linear Temporal Logic (LTL) [125] is an extension of propositional Boolean logic with
modalities that allow expressing temporal properties. Starting with a finite, non-empty
set P of atomic propositions, formulas in LTL are inductively defined according to the
following grammar:

ϕ ::= p ∈ P | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

The reader should interpret the temporal operator X as “next” and U as “until”. We
also allow syntactic sugar in the form of the formulas true := p ∨ ¬p for some p ∈ P,
false := ¬true, as well as ψ ∧ ϕ and ψ → ϕ, which are defined as usual. Moreover, we
allow the additional temporal formulas Fψ := true Uψ (“finally”) and Gψ := ¬F¬ψ
(“globally”). The size of an LTL formula ϕ, which we denote by |ϕ|, is the number of
its unique subformulas. Finally, let Λltl = {¬,∨,X,U} be the set of LTL operators (to
which we add the syntactic sugar if desired).

LTL formulas are interpreted over infinite words α ∈ (2P)ω (i.e., infinite sequences of
sets of atomic propositions, modeling which facts about a system are true at different
points in time). Similar to propositional logic, the semantics of LTL is defined in terms
of a satisfaction relation |=, which formalizes when an infinite word α ∈ (2P)ω satisfies
an LTL formula:

• α |= p if and only if p ∈ α[0];

• α |= ¬ϕ if and only if α ̸|= ϕ;

• α |= ϕ1 ∨ ϕ2 if and only if α |= ϕ1 or α |= ϕ2;

• α |= Xϕ if and only if α[1,∞) |= ϕ or α |= ϕ2; and

• α |= ϕ1 Uϕ2 if and only if there exists a t ∈ N such that α[t,∞) |= ϕ2 and
α[t′,∞) |= ϕ1 for each t′ ∈ {0, . . . , t− 1}.

Note that the satisfaction of a formula, due to the temporal operators, depends on the
satisfaction of its subformulas on (potentially different) infinite suffixes of α.

A prototypical example of an LTL formula is the request-response property G(p→ F q).
This formula states that every request p needs to be answered eventually by a response
q (sometimes X F q is used instead of F q, excluding that the response arrives at the
same point in time as the request is sent). Thus, the ultimately-periodic word ({p}{q})ω

satisfies the formula, while {q}({p})ω does not.

Having defined the syntax and semantics of LTL, we can now formalize our learning
setup. First, we call an LTL formula ϕ consistent with a sample S = (S+, S−) if α |= ϕ
for each uvω ∈ S+ (i.e., all positive examples satisfy ϕ) and α ̸|= ϕ for each uvω ∈ S−
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(i.e., all negative examples violate ϕ). Then, the fundamental learning task we solve in
this section is the following:

“given a sample S, compute an LTL formula of minimal size that is consistent
with S”.

Note that the above task asks to construct an LTL formula that is minimal among
all consistent formulas. The motivation for this requirement is threefold. Firstly, we
observe that the problem becomes simple without a restriction on the size: for α ∈ S+
and β ∈ S−, one can easily construct a formula ϕα,β with α |= ϕα,β and β ̸|= ϕα,β,
which describes the first symbol where α and β differ using a sequence of X-operators
and an appropriate propositional formula; then, ϕ⋆

S :=
⋁︁

α∈S+

⋀︁
β∈S− ϕα,β is trivially

consistent with S. However, simply enumerating all differences of a sample is clearly of
little help towards learning a specification that describes the behavior of a system on
more than just the given examples. Secondly, small formulas tend to provide a good
generalization of the behavior represented by the sample and avoid the possibility of
simply overfitting it. Thirdly, small formulas are simpler for humans to interpret, which
justifies spending effort on learning formulas that are as small as possible.

Algorithm 3 now presents our learning algorithm for LTL formulas from positive
and negative examples in pseudo code. The key idea underlying this algorithm is to
reduce the construction of a minimally consistent LTL formula to a series of constraint
satisfaction problems in propositional logic and to use a highly optimized SAT solver to
search for a solution. More precisely, given a sample S and a natural number n ∈ N\{0},
we construct a propositional formula ΦS

n that has the following two properties:

1. ΦS
n is satisfiable if and only if there exists an LTL formula of size n that is

consistent with S; and

2. if v is a model of ΦS
n , then v contains sufficient information to construct an LTL

formula ϕv of size n that is consistent with S.

By starting with n = 1 and incrementing n until ΦS
n becomes satisfiable, we obtain an

effective learning algorithm for specifications expressed in LTL.

On a technical level, the formula Φn
S is the conjunction

Φn
S := Φsyn

n ∧ Φsem
n ,

where Φsyn
n encodes the syntactic structure of the prospective LTL formula and Φsem

n

imposes semantic constraints that enforce that the prospective LTL formula is consistent
with the sample. In the remainder of this section, we describe both Φsyn

n and Φsem
n in

detail. Moreover, we show the termination and correctness of our learning algorithm.
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Algorithm 3: SAT-based learning algorithm for LTL specifications [7].
Input: a sample S

1 n← 0;
2 repeat
3 n← n+ 1;
4 Construct and solve ΦS

n ;
5 until ΦS

n is satisfiable, say with model v;
6 Construct and return ϕv;

∨
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Figure 4.1: The syntax tree (left), the syntax DAG (middle), and the identifiers of the
syntax DAG (right) of the LTL formula (pU G q) ∨ (F G q).

Syntactic Constraints

The formula Φsyn
n relies on a canonical syntactic representation of LTL formulas, which

we call syntax DAG. A syntax DAGs is essentially a syntax tree (i.e., the unique tree
that is derived from the inductive definition of an LTL formula) in which common sub-
formulas are merged. This merging results in a directed, acyclic graph (DAG), whose
number of nodes coincides with the number of sub-formulas of the prospective LTL
formula. Figures 4.1a and 4.1b illustrate syntax trees and syntax DAGs, respectively.

To simplify our encoding, we assign a unique identifier k ∈ {1, . . . , n} to each node of
a syntax DAG such that (a) the identifier of the root is n and (b) the identifier of an
inner node is larger than the identifiers of its children (see Figure 4.1c). This encoding
entails that Node 1 is always a leaf, necessarily labeled with an atomic proposition.

We encode a syntax DAG using three types of propositional variables:

• xi,λ where i ∈ {1, . . . , n} and λ ∈ Λltl ∪ P;

• li,j where i ∈ {2, . . . , n} and j ∈ {1, . . . , i− 1}; and

• ri,j where i ∈ {2, . . . , n} and j ∈ {1, . . . , i− 1}.
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Intuitively, the variables xi,λ encode a labeling of the syntax DAG in the sense that if
a variable xi,λ is set to true, then Node i is labeled with λ (recall that each node is
labeled with either an operator from Λ or an atomic proposition from P). The variables
li,j and ri,j , on the other hand, encode the structure of the syntax DAG (i.e., the left
and right child of inner nodes): if variable li,j (ri,j) is set to true, then j is the identifier
of the left (right) child of Node i. By convention, we ignore the variables ri,j if Node i is
labeled with a unary operator; similarly, we ignore both li,j and ri,j if Node i is labeled
with an atomic proposition. Note that in the case of li,j and ri,j , the identifier i ranges
from 2 to n because Node 1 is always labeled with an atomic proposition and, hence,
cannot have children. Moreover, j ranges from 1 to i− 1, reflecting that identifiers of
children have to be smaller than the identifier of the current node.

To enforce that the variables xi,λ, li,j , and ri,j in fact encode a syntax DAG, we impose
the following four constraints:[︄ ⋀︂

1≤i≤n

⋁︂
λ∈Λltl∪P

xi,λ

]︄
∧

[︄ ⋀︂
1≤i≤n

⋀︂
λ ̸=λ′∈Λltl∪P

¬xi,λ ∨ ¬xi,λ′

]︄
(4.1)

[︄ ⋀︂
2≤i≤n

⋁︂
1≤j<i

li,j

]︄
∧

[︄ ⋀︂
2≤i≤n

⋀︂
1≤j<j′<i

¬li,j ∨ ¬li,j′

]︄
(4.2)

[︄ ⋀︂
2≤i≤n

⋁︂
1≤j<i

ri,j

]︄
∧

[︄ ⋀︂
2≤i≤n

⋀︂
1≤j<j′<i

¬ri,j ∨ ¬ri,j′

]︄
(4.3)

⋁︂
p∈P

x1,p (4.4)

Constraint (4.1) ensures that each node is labeled with exactly one label. Similarly,
Constraints (4.2) and (4.3) enforce that each node (except for Node 1) has exactly one
left and exactly one right child. Furthermore, Constraint (4.4) makes sure that Node 1
is labeled with an atomic proposition.

Let Φsyn
n now be the conjunction of Constraints (4.1) to (4.4). Then, one can construct

a syntax DAG from a model v of Φsyn
n in a straightforward manner:11 label Node i

with the unique label λ ∈ Λltl ∪ P such that v(xi,λ) = true, designate Node n as the
root, and arrange the nodes of the DAG as uniquely described by v(li,j) and v(ri,j).
Moreover, we can easily derive an LTL formula from this syntax DAG, which we denote
by ϕv. Note, however, that ϕv is not yet related to the sample S and, thus, might or
might not be consistent with it. To enforce that ϕv is indeed consistent with S, we
impose additional constraints (i.e., the formula Φsem

n ), which we describe next.
11Remember that a model is a function that maps the free variables in a formula to the Boolean values

true and false.
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Semantic Constraints

Towards the definition of the formula Φsem
n , we construct for each ultimately periodic

word uvω ∈ S+ ∪ S− a propositional formula Φu,v
n that tracks the satisfaction of the

LTL formula encoded by Φsyn
n (and all its subformulas) on uvω. To this end, we use the

following observation, which reduces the problem of deciding satisfaction of an LTL
formula on an ultimately-periodic word to a problem on a finite prefix.

Observation 4.1 (cf. Neider and Gavran [7, Observation 1]). Let uvω ∈ (2P)ω, ϕ be
an LTL formula over P, and k ∈ N. Then, uvω[|u| + k,∞) = uvω[|u| + m,∞) holds
for all m ∈ N with m ≡ k mod |v|. In addition, uvω[|u| + k,∞) |= ϕ if and only if
uvω[|u|+m,∞) |= ϕ holds for every LTL formula ϕ.

Intuitively, Observation 4.1 states that the suffixes of a word uvω eventually repeat
periodically. Consequently, the valuation of an LTL formula on a word uvω can be
determined based only on the finite prefix uv (recall that the semantics of temporal
operators only depend on the suffixes of a word). To illustrate this claim, consider the
LTL formula Xϕ and assume that we want to determine the satisfaction of Xϕ on
uvω[|uv|−1,∞) (i.e., Xϕ is evaluated at the end of the prefix uv). Then, Observation 4.1
permits us to compute the satisfaction based on the suffix uvω[|u|,∞), as opposed to
the original semantics of the X-operator, which recurs to uvω[|uv|,∞) (i.e., the suffix
starting at the next position). Similar, though more involved arguments can be used
for all other temporal operators as well.

Each formula Φu,v
n is now built over an auxiliary set of propositional variables

• yu,v
i,t where i ∈ {1, . . . , n} is a node in the syntax DAG and t ∈ {0, . . . , |uv| − 1}

is a position in the finite prefix uv.

The meaning of these variables is that yu,v
i,t should be set to true if and only if the LTL

subformula rooted at Node i satisfies the suffix uvω[t,∞). Note that the set of variables
for two distinct words from the sample must be disjoint.

To obtain this desired meaning of the variables yu,v
i,t , we impose the following con-

straints:

⋀︂
1≤i≤n

⋀︂
p∈P

xi,p →
[︄ ⋀︂

0≤t<|uv|

{︄
yu,v

i,t if p ∈ uv[t]
¬yu,v

i,t if p /∈ uv[t]

]︄
(4.5)

⋀︂
1<i≤n
1≤j<i

(xi,¬ ∧ li,j)→
[︄ ⋀︂

0≤t<|uv|

[︄
yu,v

i,t ↔ ¬y
u,v
j,t

]︄]︄
(4.6)

71



4 Intelligent Specification of System Properties

⋀︂
1<i≤n

1≤j,j′<i

(xi,∨ ∧ li,j ∧ ri,j′)→
[︄ ⋀︂

0≤t<|uv|

[︄
yu,v

i,t ↔ (yu,v
j,t ∨ y

u,v
j′,t)

]︄]︄
(4.7)

⋀︂
1<i≤n
1≤j<i

(xi,X ∧ li,j)→
[︄[︄ ⋀︂

0≤t<|uv|−1
yu,v

i,t ↔ yu,v
j,t+1

]︄
∧

[︄
yu,v

i,|uv|−1 ↔ yu,v
j,|u|

]︄]︄
(4.8)

⋀︂
1<i≤n

1≤j,j′<i

(xi,U ∧ li,j ∧ ri,j′)→
[︄[︄ ⋀︂

0≤t<|u|
yu,v

i,t ↔
⋁︂

t≤t′<|uv|

[︄
yu,v

j′,t′ ∧
⋀︂

t≤t′′<t′

yu,v
j,t′′

]︄]︄
∧

[︄ ⋀︂
|u|≤t<|uv|

yu,v
i,t ↔

⋁︂
|u|≤t′<|uv|

[︄
yu,v

j′,t′ ∧
⋀︂

t′′∈t↬u,vt′

yu,v
j,t′′

]︄]︄]︄
(4.9)

Constraint (4.5) implements the LTL semantics of atomic propositions and ensures
that if Node i is labeled with p ∈ P, then yu,v

i,t is set to true if and only if p ∈ uv[t].
Next, Constraints (4.6) and (4.7) implement the semantics of negation and disjunction,
respectively: if Node i is labeled with ¬ and Node j is its left child, then yu,v

i,t is
the negation of yu,v

j,t ; on the other hand, if Node i is labeled with ∨, Node j is its
left child, and Node j′ is its right child, then yu,v

i,t is the disjunction of yu,v
j,t and yu,v

j′,t.
Moreover, Constraint (4.8) implements the semantics of the X-operator, following the
idea of “returning to the beginning of the periodic part v” as sketched above. Finally,
Constraint (4.9) implements the semantics of the U-operator: the first conjunction in
the consequent covers the positions t ∈ {0, . . . , |u| − 1} in the initial part u, while the
second conjunct covers the positions t ∈ {|u|, . . . , |uv| − 1} in the periodic part v. The
second conjunct relies on an auxiliary set t↬u,v t

′ defined by

t↬u,v t
′ :=

{︄
{t, . . . , t′ − 1} if t < t′;
{|u|, . . . , t′ − 1, t, . . . , |uv| − 1} if t ≥ t′,

which contains all positions in v “between t and t′”.

Note that we have omitted the description of the missing operators ∧, →, F, G, and
the constants true and false, which can be implemented analogously. Moreover, note
that our SAT encoding is extensible, and additional LTL operators, such as weak until,
weak release, and strong release, can easily be added.

For each uvω ∈ S+ ∪ S−, let Φu,v
n now be the conjunction of Constraints (4.5) to (4.9).

Then, we define

Φsem
n :=

[︄ ⋀︂
uvω∈S+

Φu,v
n ∧ yu,v

n,0

]︄
∧

[︄ ⋀︂
uvω∈S−

Φu,v
n ∧ ¬yu,v

n,0

]︄
.
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Note that the subformula Φu,v
n ∧y

u,v
n,0 makes sure that uvω ∈ S+ satisfies the prospective

LTL formula (more concretely, uvω starting from position 0 satisfies the LTL formula
at the root of the syntax DAG), while Φu,v

n ∧ ¬yu,v
n,0 ensures that uvω ∈ S− does not

satisfy it.

This concludes the description of our encoding, and we are left with arguing the
correctness and termination of Algorithm 3. We do this next.

Termination and Correctness

It is not hard to verify that Algorithm 3 indeed produces a minimal consistent LTL
formula by virtue of the two defining properties of ΦS

n (cf. Neider and Gavran [7,
Lemma 1]) and the way we increase n. Moreover, termination of Algorithm 3 follows
from the existence of trivial solution ϕ⋆

S (see Page 68), and the size of ϕ⋆
S provides an

upper bound on the value of n. In total, we obtain the following result.

Theorem 4.1 (cf. Neider and Gavran [7, Theorem 1]). Given a sample S, Algorithm 3
terminates and outputs a minimal LTL formula that is consistent with S.

Although SAT solving is a computationally expensive task, our approach performs well
on medium-sized benchmarks [7]. However, to improve the performance, we have also
developed an extension that incorporates decision tree learning. The key idea is to
separate the learning process into two phases. In the first phase, we run Algorithm 3 on
various subsets of the examples. The result is a (small) number of LTL formulas, which
we named LTL primitives, that classify at least these subsets correctly. In the second
phase, we then use a standard learning algorithm for decision trees to learn a Boolean
combination of these LTL primitives that correctly classifies the whole set of examples,
though it might not be minimal. We refer the reader to Neider and Gavran [7] for
further details.

4.1.2 Learning PSL Specifications from Positive and Negative Examples

Although LTL is a very popular specification language, one of its major downsides is
the limited expressive power compared to other temporal logics. Consequently, many
properties that arise naturally (e.g., an event happening at every n-th point in time)
cannot be expressed in LTL. In fact, the class of properties that can be expressed in LTL
corresponds precisely to that of star-free ω-languages [151], which excludes—among
others—all properties involving modulo counting.

73



4 Intelligent Specification of System Properties

To overcome this limitation, the Property Specification Language (PSL) has been
proposed [61]. Although PSL is an extension of LTL and, hence, shares many of its
advantageous properties, PSL differs from LTL in three important aspects:

1. the expressive power of PSL exceeds that of LTL (it is as expressive as the full
class of ω-regular languages [23]);

2. PSL integrates easy-to-understand regular expressions in its syntax; and

3. specifications expressed in PSL can be arbitrarily more succinct than those
expressed in LTL (see Roy, Fisman, and Neider [14, Proposition 1]).

Let us begin our definition of PSL by introducing one of its main constituents, namely
regular expressions. To better align our notation with that of LTL, we use propositional
formulas rather than symbols of an alphabet as atomic regular expressions. Moreover,
we append the subscript “r” to Boolean operators in atomic expressions to not confuse
them with LTL operators. This convention allows us to define the syntax of regular
expressions using the following two simple grammar rules, where the first rule describes
the construction of atomic expressions and the second rules describes the construction
of general regular expressions:

ξ ::= p ∈ P | ¬r ξ | ξ ∨r ξ

ρ ::= ε | ξ | ρ+ ρ | ρ ◦ ρ | ρ∗

As usual, the regular operator + stands for choice, ◦ stands for concatenation, and ∗

stands for finite repetition (Kleene star). We also allow the standard Boolean operators
(e.g., conjunction, implication, and so on) as syntactic sugar in atomic expressions
and use Λatm = {¬r ,∨r} to denote the set of operators that can be used to construct
atomic expressions. Moreover, we denote the set of regular expression operators by
Λre := {+, ◦, ∗}.

To give meaning to regular expressions, we first associate with every atomic expression ξ
a set [[ξ]] ⊆ 2P of symbols in the following way: [[p]] = {A ∈ 2P | p ∈ A}, [[¬r ξ]] = 2P \[[ξ]],
and [[ξ1 ∨r ξ2]] = [[ξ1]] ∪ [[ξ2]]. Based on this notion, we define the semantics of regular
expressions by means of a matching relation ⊢, which formalizes when a finite infix
α[t, t′) of an infinite word α ∈ (2P)ω matches a regular expression:

• u[t, t′) ⊢ ε if and only if t = t′;

• u[t, t′) ⊢ ξ if and only if t′ = t+ 1 and u[t] ∈ [[ξ]];

• u[t, t′) ⊢ ρ1 + ρ2 if and only if u[t, t′) ⊢ ρ1 or u[t, t′) ⊢ ρ2;

• u[t, t′) ⊢ ρ1 ◦ ρ2 if and only if there exists a t′′ ∈ {t, . . . , t′} such that u[t, t′′) ⊢ ρ1
and u[t′′, t′) ⊢ ρ2; and
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4.1 Learning Specifications from Positive and Negative Examples

• u[t, t′) ⊢ ρ∗ if and only if t = t′ or there exists a t′′ ∈ {t + 1, . . . , t′} such that
u[t, t′′) ⊢ ρ and u[t′′, t′) ⊢ ρ∗.

In this section, we consider the so-called core fragment of the Property Specification
Language [61], which we here abbreviate as PSL for the sake of simplicity. This fragment
extends LTL with a single new operator

ρ ↦→ψ,

where ρ is a regular expression and ψ is a PSL formula. The intuitive meaning of this
operator, which is called trigger operator , is that a word α ∈ (2P)ω satisfies the PSL
formula ρ ↦→ψ if and only if ψ holds every time the regular expression ρ matches on a
finite prefix of α. To define the semantics of the trigger operator formally, we extend
the satisfaction relation |= of LTL by

• α |= ρ ↦→ψ if and only if α[0, t) ⊢ ρ implies α[t− 1,∞) |= ψ for all t ∈ N \ {0}.

Moreover, we denote the set of all PSL operators by Λpsl := Λltl ∪ {↦→} and define
the size |ψ| of a PSL formula ψ to be the number of its unique subformulas and
subexpressions. Note that PSL subsumes LTL, meaning that every LTL formula is also
a PSL formula.

A prototypical example of a PSL formula is (true ◦ true)+ ↦→ p, requiring that event
p happens at every even point in time (the regular expression (true ◦ true)+ matches
every non-empty prefix of even length). Note that this property cannot be expressed in
LTL as it requires modulo counting.

Analogous to LTL, we say that a PSL formula ψ is consistent with a sample S = (S+, S−)
if uvω |= ψ for each uvω ∈ S+ and uvω ̸|= ψ for each uvω ∈ S−. Then, the learning
task for PSL is as follows:

“given a sample S, compute a PSL formula of minimal size that is consistent
with S”.

Note that this task asks again to find a minimal PSL formula that is consistent with
the sample.

Our learning algorithm for PSL formulas is shown as pseudo code in Algorithm 4. It
follows the same idea as Algorithm 3 (on Page 69) and reduces the construction of
a minimally consistent PSL formula to a series of constraint satisfaction problems in
propositional logic. More precisely, we construct for a sample S and a natural number
n ∈ N \ {0} a propositional formula ΨS

n that has the following two properties:

1. ΨS
n is satisfiable if and only if there exists a PSL formula of size n that is consistent

with S; and
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Algorithm 4: SAT-based learning algorithm for PSL specifications [14].
Input: a sample S

1 n← 0;
2 repeat
3 n← n+ 1;
4 Construct and solve ΨS

n ;
5 until ΨS

n is satisfiable, say with model v;
6 Construct and return ψv;

2. if v is a model of ΨS
n , then v contains sufficient information to construct a PSL

formula ψv of size n that is consistent with S.

By starting with n = 1 and incrementing n until ΨS
n becomes satisfiable, we obtain an

effective learning algorithm for specifications expressed in PSL.

As before, the formula Ψn
S is a conjunction

Ψn
S := Ψsyn

n ∧Ψsem
n ,

where Ψsyn
n encodes syntactic constraints of the prospective PSL formula and Ψsem

n

enforces semantic constraints (i.e., that the prospective PSL formula is consistent with
the sample). In the remainder of this section, we describe both formulas in detail and
argue the termination and correctness of our learning algorithm.

Syntactic Constraints

The syntactic constraints closely resemble those of LTL, except that they also need to
account for regular expressions and the trigger operator. As before, we use three types
of variables to encode a syntax DAG:

• xi,λ where i ∈ {1, . . . , n} and λ ∈ Λatm ∪ Λre ∪ Λpsl ∪ P ∪ {ε};

• li,j where i ∈ {2, . . . , n} and j ∈ {1, . . . , i− 1}; and

• ri,j where i ∈ {2, . . . , n} and j ∈ {1, . . . , i− 1}.

Again, the variables xi,λ encode the labels of nodes in the syntax DAG, while the
variables li,j and ri,j encode their left and right children, respectively.

To ensure that these variables indeed encode a well-formed syntax DAG, we can reuse
Constraints (4.1) to (4.4) (on Page 70), except that we let λ in Constraint (4.1) now
range over Λatm ∪ Λre ∪ Λpsl ∪ P ∪ {ε}. However, we also need to enforce that the
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labeling of the syntax DAG respects the type of the operators (e.g., children of a
regular expression are always regular expressions themselves). In the case of the trigger
operator, for instance, we can enforce this using the constraint

⋀︂
1<i≤n

1≤j,j′<i

[xi, ↦→ ∧ li,j ∧ ri,j′ ]→
[︄[︄ ⋁︂

λ∈Λatm∪Λre∪P∪{ε}
xj,λ

]︄
∧

[︄ ⋁︂
λ∈Λpsl∪P

xj′,λ

]︄]︄
,

which states that the left operand of the operators is a regular expression and the right
is a PSL formula. Since the constraints for all other operators follow a similar pattern,
we omit them here for the sake of conciseness.

The formula Ψsyn
n is now simply the conjunction of Constraints (4.1) to (4.4), with the

modifications sketched above, as well as the constraints enforcing a correct nesting of
operators. Note that every PSL formula needs to contain at least one atomic proposition
from P, which justifies the inclusion of Constraint (4.4).

Given a model v of Ψsyn
n , we extract a PSL formula ψv as before: we first construct

a syntax DAG by labeling Node i with the unique label λ such that v(xi,λ) = true,
designating Node n as the root, and arranging the nodes of the DAG as uniquely
described by v(li,j) and v(ri,j); then, we construct the PSL formula ψv that is uniquely
determined by this syntax DAG. To enforce that ψv is indeed consistent with S, we
impose additional constraints (i.e., the formula Ψsem

n ), which we describe next.

Semantic Constraints

Analogously to LTL, we design the formula Ψsem
n to capture the semantics of PSL in

propositional logic. However, we also have to account for regular expressions this time,
which complicate matters.

Let us begin by recalling Observation 4.1 (on Page 71): since the infinite suffixes of an
ultimately-periodic word α ∈ (2P)ω repeat, we know that for every LTL formula ϕ and
every k ∈ N, the suffix α[|u|+ k,∞) satisfies ϕ if and only if the suffix α[|u|+m,∞)
for all m ∈ N with m ≡ k mod |v| satisfies ϕ. In other words, the prefix uv of an
ultimately-periodic word uvω already carries sufficient information to determine the
satisfaction of an LTL formula on every suffix of the word. This insight allowed us to
restrict our SAT-encoding to the prefix uv of each ultimately-periodic word uvω in the
sample.

It is not hard to verify that Observation 4.1 remains true even in the case of PSL
formulas. In contrast to LTL, however, actually computing which suffix satisfies a
given PSL formula requires us to work with prefixes longer than uv. To illustrate this
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claim, consider the ultimately-periodic word uvω = ∅{p}(∅)ω and the PSL formula
ψ := (true ◦ true)+ ↦→ p (stating that p is true at every second position). By just
considering the prefix uv = ∅{p}∅, it seems that uvω |= ψ. However, “unrolling” the
repeating part v = ∅ once more, resulting in the prefix uvv = ∅{p}∅∅, immediately
shows that uvω ̸|= ψ.

As the example above shows, gathering enough information about matchings of a
regular expression inside a trigger operator requires unrolling the repeating part v of
an ultimately-periodic word uvω multiple times. Similar to Observation 4.1, the lemma
below provides an upper bound b ∈ N on the number of unrolling that is sufficient to
determine the satisfaction of a trigger operator. This bound depends on the number n
of nodes of the syntax DAG and a function Mu,v : N→ N that maps a position t in the
word uvω to an “appropriate” position within the prefix uv. Formally, we define Mu,v

by

Mu,v(t) :=
{︄
t if t < |uv|; and
|u|+

(︁
(t− |u|) % |v|

)︁
if t ≥ |uv|,

where a% b is the remainder of the division a
b . The proof of our lemma uses a translation

of the regular expression into a DFA, which can incur an exponential blow-up and
causes the bound b to be exponential in n (the latter being an upper bound for the
size of any regular expression that can appear in the prospective PSL formula).

Lemma 4.1 (cf. Roy, Fisman, and Neider [14, Lemma 1]). Let uvω ∈ (2P)ω be an
ultimately-periodic word and ψ = ρ ↦→ψ′ a PSL formula with |ψ| = n. Additionally, let
b = 2n + 1 and t ∈ {0, . . . , |uv| − 1}. Then, uvω[t,∞) |= ψ if and only if uvω[t, t′) ⊢ ρ
implies uvω[Mu,v(t′ − 1),∞) |= ψ′ for each t′ ∈ {0, . . . , |uvb| − 1}.

Note an important corollary of Observation 4.1 and Lemma 4.1: determining matchings
of regular expressions requires us to consider the prefix uvb, but the prefix uv is
sufficient for determining the satisfaction of PSL operators. We exploit this fact in our
construction below.

Equipped with appropriate bounds, we can now construct for each ultimately periodic
word uvω in S+ ∪ S− a propositional formula Ψu,v

n that tracks the satisfaction of the
PSL formula encoded by Ψsyn

n (and all its sub-formulas and sub-expressions) on uvω.
Each of these formulas is built over two types of auxiliary variables, where we set
b = 2n + 1 as in Lemma 4.1:

• yu,v
i,t where i ∈ {1, . . . , n} is a node in the syntax DAG and t ∈ {0, . . . , |uv| − 1}

is a position in the finite prefix uv; and
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• zu,v
i,t,t′ where i ∈ {1, . . . , n} is a node in the syntax DAG and t, t′ ∈ {0, . . . , |uvb|−1}

are positions in the finite prefix uvb with t ≤ t′.

The meaning of these variables is that yu,v
i,t is set to true if and only if uvω[t,∞) satisfies

the PSL formula rooted at Node i (if that node is labeled with a PSL operator);
similarly, zu,v

i,t,t′ is set to true if and only if uvω[t, t′) matches the regular expression
rooted at Node i (if that node is labeled with a regular expression operator). Note that
we have to create both the variables yu,v

i,t and zu,v
i,t,t′ for each node since the “type” of a

node is determined dynamically during SAT solving (by the label λ assigned to that
node).

To ensure our auxiliary variables have the desired meaning, we proceed in two steps.
First, we create constraints to ensure that the variables zu,v

i,t,t′ indeed capture the
matching of regular expressions. The exact constraints are shown below, where we use
a slight modification of the Iverson bracket [i = j] to obtain the truth value of the
comparison i = j:

⋀︂
1≤i≤n

xi,ε →
[︄ ⋀︂

0≤t≤t′<|uvb|
zu,v

i,t,t′ ↔ [t = t′]
]︄

(4.10)

⋀︂
1≤i≤n

⋀︂
p∈P

xi,p →
[︄ ⋀︂

0≤t≤t′<|uvb|

{︄
zu,v

i,t,t′ if t′ = t+ 1 and p ∈ uvb[t]
¬zu,v

i,t,t′ otherwise

]︄
(4.11)⋀︂

1<i≤n
1≤j<i

(xi,¬r ∧ li,j)→
[︄ ⋀︂

0≤t≤t′<|uvb|

[︄
zu,v

i,t,t′ ↔ ¬zu,v
j,t,t′

]︄]︄
(4.12)

⋀︂
1<i≤n

1≤j,j′<i

(xi,∨r ∧ li,j ∧ ri,j′)→
[︄ ⋀︂

0≤t≤t′<|uvb|

[︄
zu,v

i,t,t′ ↔ zu,v
j,t,t′ ∨ zu,v

j′,t,t′

]︄]︄
(4.13)

⋀︂
1<i≤n

1≤j,j′<i

(xi,+ ∧ li,j ∧ ri,j′)→
[︄ ⋀︂

0≤t≤t′<|uvb|

[︄
zu,v

i,t,t′ ↔ zu,v
j,t,t′ ∨ zu,v

j′,t,t′

]︄]︄
(4.14)

⋀︂
1<i≤n

1≤j,j′<i

(xi,◦ ∧ li,j ∧ ri,j′)→
[︄ ⋀︂

0≤t≤t′<|uvb|

[︄
zu,v

i,t,t′ ↔
⋁︂

t≤t′′≤t′

zu,v
j,t,t′′ ∧ zu,v

j′,t′′,t′

]︄]︄
(4.15)

⋀︂
1<i≤n
1≤j<i

(xi,∗ ∧ li,j)→
[︄ ⋀︂

0≤t≤t′<|uvb|

[︄
zu,v

i,t,t′ ↔
[︄
[t = t′] ∨

⋁︂
t<t′′≤t′

zu,v
j,t,t′′ ∧ zu,v

i,t′′,t′

]︄]︄]︄

(4.16)
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Note that Constraints (4.10) to (4.16) closely follow the definition of the matching
relation for regular expressions: Constraints (4.10) to (4.13) capture the semantics of
atomic regular expressions, while Constraints (4.14) to (4.16) capture the operators +,
◦, and ∗. Furthermore, note that Constraints (4.13) and (4.14) coincide.

Next, we need to enforce the desired meaning for the variables yu,v
i,t . To this end, we

can reuse Constraints (4.5) to (4.9) for the operators ¬,∨,X, and U (see Page 72). In
addition, we introduce the following constraint for the trigger operator:

⋀︂
1<i≤n

1≤j,j′<i

(xi, ↦→ ∧ li,j ∧ ri,j′)→
[︄ ⋀︂

0≤t<|uv|

[︄
yu,v

i,t ↔
⋀︂

t<t′<|uvb|

[︄
zu,v

j,t,t′ → yu,v
j′,Mu,v(t′−1)

]︄]︄]︄

(4.17)

Note that this constraint connects variables of the form yu,v
i,t and zu,v

i,t,t′ .

For each uvω ∈ S+ ∪S−, let Ψu,v
n now be the conjunction of Constraints (4.5) to (4.17).

Then, we define

Ψsem
n :=

[︄ ⋀︂
uvω∈S+

Ψu,v
n ∧ yu,v

n,0

]︄
∧

[︄ ⋀︂
uvω∈S−

Ψu,v
n ∧ ¬yu,v

n,0

]︄
.

which enforces that all positive words in S satisfy the prospective PSL formula (yu,v
n,0

has to be true), while all negative words violate it (yu,v
n,0 has to be false).

This concludes the description of our encoding, and we are left with arguing the
correctness and termination of Algorithm 4. We do this next.

Termination and Correctness

As in the case of our learning algorithm for LTL, it is not hard to verify that Algorithm 4
indeed produces a minimal consistent PSL formula by virtue of the two defining
properties of ΨS

n and the way we increase n. Moreover, the size of the LTL formula ϕ⋆
S

(see Page 68) provides an upper bound on the value of n since every LTL formula is
also a PSL formula. Thus, Algorithm 4 is guaranteed to terminate, and we obtain the
following result.

Theorem 4.2 (cf. Roy, Fisman, and Neider [14, Theorem 1]). Given a sample S,
Algorithm 4 terminates and outputs a minimal PSL formula that is consistent with S.
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Finally, let us mention that one can easily restrict Algorithm 4 to learn regular
expressions over finite words. Moreover, it is possible to modify Algorithm 4 to learn
specifications in the form of ω-regular expressions. The latter requires a result similar
to Lemma 4.1 in order to bound the length of prefixes that the algorithm needs to
consider.

4.2 Learning Specifications from Positive Examples Only

The methods presented in Section 4.1 rely on the assumption that both positive and
negative examples are available to learn a specification. However, there exist many
situations where this is not the case. For instance, when inferring the specification
of a system whose implementation is given but too big to be fully analyzed, one can
extract input-output traces that represent possible executions of the system. Proving
that a particular input-output trace is not a possible execution of the system, on the
other hand, is a model checking problem, which can be infeasible to solve for complex
designs. Similarly, one may want to deduce an environment specification to be used
in reactive synthesis from observing the environment. For a black-box environment,
however, we can never know that some behavior cannot occur. These observations give
rise to the question of whether there is some way to learn from positive (or negative)
examples only.

Learning from only one type of example is, in general, an ill-posed problem. In the
case of positive examples, for instance, there is a spectrum of possible specification
solutions ranging from true (i.e., the specification that allows any behavior) all the
way to the specification that only allows precisely the set of positive examples. Both
extremes make little sense, and a learning procedure should provide a mechanism to
rule out these trivial specifications. In fact, a learning procedure should ideally be
parameterized by a tightness value, which allows controlling where on the spectrum
between the two extremes the learned specification lies.

In this section, we propose universal very-weak automata over infinite words as a
representation for specifications, which has a natural definition of tightness, lends itself
to an effective learning procedure, and leads to easily readable specifications. Formally,
a universal very-weak automaton (UVW) is a universal co-Büchi automaton with the
particular structural property that all loops are self-loops. On the one hand, being a
co-Büchi automaton means that a UVW A accepts an infinite word α ∈ (2P)ω if and
only if every run of A on α visits non-final states only finitely often. On the other hand,
the structural constraint implies that every run moves away from the initial state and
eventually loops in a single state (note that the former can only happen finitely often).
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q0

q1
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¬p

true

(a) A UVW in non-decomposed form.

q0 q1 q2

q3 q4 q5

true

p p

true

true

¬p ¬p

true

(b) A decomposition of the UVW in Fig-
ure 4.2a into two simple chains of length
n = 3.

Figure 4.2: Two universal very-weak automata accepting the language defined by the
LTL formula G(p↔ X¬p). For the sake of readability, we use propositional
formulas as labels on transitions. Final states are drawn as double-circles.

To ease our notation, we denote the language of an UVW A (i.e., the set of all words
that A accepts) by L(A).

Figure 4.2 depicts two examples of UVWs over the set P = {p, q} of atomic propositions.
For now, let us consider Figure 4.2a and postpone the discussion of Figure 4.2b to
a later point. Note that we here use propositional formulas as labels on transitions.
Similar to the regular expressions discussed in Section 4.1.2, each such formula ξ
uniquely represents a subset of symbols from the alphabet 2P (i.e., a subset of atomic
propositions), which we again denote by [[ξ]] ⊆ 2P . For instance, the set of symbols
induced by the formula p ∨ ¬q is [[p ∨ ¬q]] =

{︁
∅, {p}, {p, q}

}︁
.

A close inspection of the UVW in Figure 4.2a shows that this UVW accepts exactly
the set of infinite words in which the atomic proposition p alternates—or, equivalently,
that satisfy the LTL formula G(p↔ X¬p) (e.g., the words

(︁
{p}{q}

)︁ω and
(︁
{q}{p, q}

)︁ω

are accepted, while {p}ω and {q}ω are not). To verify this claim, recall that UVWs are
universal co-Büchi automata, meaning that a word is accepted if and only if all runs
visit non-final states only finitely often. In our example, this means that a run must
never reach state q3. However, the UVW is constructed such that every word in which
the atomic proposition p does not alternate induces at least one run that eventually
reaches state q3 and, hence, is not accepting. Thus, the UVW accepts only those words
in which p alternates.

It is worth emphasizing that every UVW can be interpreted as a collection of properties,
each of which describing a situation that leads to a rejection of the input (e.g., the
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upper path in the UVW of Figure 4.2a is taken when p occurs in two consecutive
symbols, while the lower part is taken in case p does not occur in two consecutive
symbols). We encourage the reader to assume this perspective for the rest of this
section.

An essential feature of UVWs is that they characterize precisely the class of properties
that can be expressed in both LTL and the universal fragment of Computation Tree
Logic (ACTL) [109]. While this implies that there are some LTL properties that
UVWs cannot express, the intersection of LTL and ACTL includes the vast majority
of specifications found in case studies on specification types [16]. Moreover, by trading
away the full expressivity of LTL, we obtain a mechanism that makes learning from only
positive examples feasible: UVWs can be decomposed into so-called simple chains, which
represent individual scenarios that describe how a system is required to react in specific
circumstances. This decomposition has two major advantages: first, simple chains are
easy to examine by a specification engineer and can be straightforwardly translated
into LTL (we refer the reader to Ehlers [59] for more details); second, the maximum
length of such a chain is a natural notion for the tightness value of a specification since
longer chains allow for more complex behavior.

Formally, a simple chain [59] is a sequence q1, . . . , qn of distinct states of an UVW
such that there exists a transition from qi to qi+1 for each i ∈ {1, . . . , n− 1} (note that
this definition permits self-loops). A simple chain is called longest (or maximal) in an
automaton if it cannot be extended by an additional state at the beginning or the end
without losing the property that it is contained in the automaton. We say that a UVW
is in decomposed form if there are no transitions between the maximal simple chains of
the UVW and for every such simple chain q1, . . . , qn, there are no “jumping transitions”
(i.e., there does not exist a transition from state qi to a state qj for j > i+ 1). Without
loss of generality, we can assume that every chain in a decomposed UVW has an initial
state, and the last state is non-final—otherwise, the whole chain or the last state can
be removed, respectively. For instance, Figure 4.2b shows the UVW of Figure 4.2a
in decomposed form. For technical reasons, we permit multiple initial states, one per
simple chain.

Given a set S+ ⊂ (2P)ω of positive examples over atomic propositions P , we now want
to learn an “informative” UVW A that accepts all words in S+ (i.e., S+ ⊆ L(A)). Since
we have already argued that this is an ill-posed problem in general, we propose a more
specialized learning setting: we seek to learn the strictest automaton (i.e., accepting
the smallest language in terms of language inclusion) that (a) includes all positive
examples and (b) satisfies a syntactic cut-off criterion.

For UVWs, the length of the longest chain is a natural cut-off criterion, which we
use as our tightness value. Formally, we say that a UVW A is n-tight for a finite set
S+ ⊂ (2P)ω and a natural number n ∈ N if three conditions hold:
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• A accepts all positive examples (i.e., S+ ⊆ L(A));

• there does not exist a simple chain in A that is longer than n; and

• if A′ is a UVW with S+ ⊆ L(A′) ⊂ L(A), then at least one simple chain in A′ is
longer than n.

To simplify our presentation, we typically drop the reference to the set S+ if it is clear
from the context.

A straightforward yet technical proof by contradiction shows that an n-tight UVW
exists for every set S+ of positive examples and every tightness value n ∈ N \ {0}.
Moreover, all n-tight UVWs for a set S+ recognize the same (unique) language, which
subsumes the set S+ and is minimal with respect to language inclusion (cf. Ehlers,
Gavran, and Neider [1, Lemma 1]). Thus, n-tightness is a suitable metric for learning
from positive examples only, which gives rise to the following learning task:

“given a set S+ ⊂ (2P)ω of positive examples (represented as ultimately-
periodic words) and a natural number n ∈ N \ {0}, compute an n-tight
UVW”.

Note that decreasing and increasing the tightness value n allows us to control whether
the specification permits more or less behavior, respectively. This is a consequence
of the fact that longer chains provide more fine-grained control over which words to
accept or reject.

Having defined the learning setup, let us now present our learning algorithm for n-tight
UVWs. Its key idea is to enumerate all simple chains of length n that a decomposed
automaton accepting all elements from S+ can have; as we show later, taking all of
these chains together then results in a UVW that is n-tight and, hence, solves our
learning task. However, enumerating all simple chains that are consistent with the given
positive examples is computationally inefficient as their number grows exponentially
with n and the number of atomic propositions. To mitigate this problem, we define a
partial order over simple chains that is consistent with language inclusion of UVWs.
This approach allows us to consider only those simple chains that are strongest for this
partial order.

To avoid cluttering our presentation with too many technical details, we introduce the
notion of strongest simple chains using the example in Figure 4.3. Assuming that both
chains in this figure are compatible with some set of positive examples over the atomic
propositions P = {p, q}, the one on the right-hand side is stronger than the one on the
left-hand side in the sense that it rejects strictly more words. This claim can be shown
as follows: first; both chains have the same length; second, at each self-loop and each
edge between states, the set of symbols induced by formulas in the simple chain on the
left is a subset of the symbols induced by formulas in the simple chain on the right.
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p

¬q

q

p

¬p p ∨ q

p ∨ ¬q

q

p

true

Figure 4.3: Two simple chains, the one on the right-hand side is syntactically stronger
than the one on the left-hand side.

Algorithm 5: Learning algorithm for n-tight UVWs [1].
Input: a finite set S+ ⊂ (2P)ω of positive examples, consisting of

ultimately-periodic words over a set P of atomic propositions, and a
natural number n ∈ N \ {0}

1 Compute the set Υ of all strongest simple chains of length n that accept all words
in S+ using the Pareto front enumeration algorithm by Ehlers [60];

2 Compute a UVW AS+ recognizing the language
⋂︁

C∈Υ L(AC), where AC is the
UVW that consists of only the simple chain C;

3 return AS+ (or transform it into an equivalent LTL formula ϕS+ and return
ϕS+);

Hence, every rejecting run of the chain on the left is also a rejecting run of the chain
on the right.

The main steps of our learning algorithm for n-tight UVWs are now shown in Algo-
rithm 5. We first compute all strongest simple chains of length n that accept all words
in S+ using a Pareto front enumeration algorithm by Ehlers [60].12 This algorithm
relies on a monotone function fn, which—in our case—maps simple chains to either 0
or 1, depending on whether a simple chain accepts all words in S+ (see Ehlers, Gavran,
and Neider [1, Definition 2 and Lemma 2] for full details). Note that computing the
output of the function fn involves a model checking step to determine whether a simple
chain accepts all words in S+. However, this step can be performed in an efficient,
straightforward manner because all words in S+ are ultimately-periodic.

Once we have computed the set Υ of all strongest simple chains of length n that accept
all words in S+, we construct for every simple chain C ∈ Υ the corresponding UVW AC

that consists of only the simple chain C. Then, we compute an UVW AS+ accepting

12Note that enumerating chains of length n is in fact sufficient: a shorter chain can always be extended
to a chain of length n by duplicating the last (rejecting) state and rerouting the outgoing transitions
of the previously last state to the new last state. This results in a language-equivalent chain of
length n that is not missed during enumeration.
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the language
L(AS+) :=

⋂︂
C∈Υ
L(AC),

which is possible since universal very-weak automata are closed under language inter-
section by just merging the state sets, transition relations, and initial states [59]. The
resulting UVW AS+ is indeed n-tight (as it is guaranteed to accept all words in S+ and
minimal in terms of language inclusion), which solves our learning task. If desired, the
UVW AS+ can finally be translated into an equivalent LTL formula ϕS+ , as described
by Ehlers [59]. In total, we obtain the following result.

Theorem 4.3 (cf. Ehlers, Gavran, and Neider [1, Corollary 1]). Given a finite set
S+ ⊂ (2P)ω of positive examples (represented as ultimately-periodic words) and a
natural number n ∈ N \ {0}, Algorithm 5 learns an n-tight UVW.

To conclude, let us mention a simple yet effective way to improve the performance
of our algorithm. After the Pareto front of strongest chains has been enumerated, we
must merge all strongest simple chains into one UVW. Instead of naively adding all
simple chains to the solution UVW, we can improve this process by alternating between
adding a new simple chain and minimizing the resulting automaton as described by
Adabala and Ehlers [16]. This approach has two advantages. On the one hand, it keeps
the size of intermediate automata manageable. On the other hand, it allows us to use
Algorithm 5 in an anytime fashion: if the process is stopped prematurely (e.g., when a
given resource budget is exceeded), the result is still useful—a UVW that accepts a
subset of the language that the final automaton (given sufficient computation resources)
would accept.

4.3 Notes on Related Work

Learning of formal specifications from examples has recently attracted increasing
attention, not only in the area of formal methods but also in (explainable) artificial
intelligence. As done in this chapter, one typically distinguishes between learning from
both positive and negative examples on the one hand and learning from only one type
of example (most often from positive examples) on the other.

In the context of learning from positive and negative examples, the literature can be
broadly structured along three dimensions. The first dimension is the type of logic or
type of specification language. Examples include learning of specifications expressed
in Signal Temporal Logic [100, 112], Linear Temporal Logic [46, 7, 132], the Property
Specification Language [14] and even branching time logics, such as Computational
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Temporal Logic [150]. To the best of our knowledge, we are the first to devise an
algorithm for learning specifications in PSL or an equally expressive logic.

The second dimension is whether or not the learning algorithm requires the user to
provide templates. Examples that require templates are the algorithms of Li, Dworkin,
and Seshia [106] as well as Lemieux, Park, and Beschastnikh [105]. Note that providing
templates is often a challenging task as it requires the user to have a good understanding
of the data. By contrast, the algorithms presented in this chapter work without templates
and can learn arbitrary formulas without any assistance from the user.

The third dimension distinguishes between algorithms that learn exact specifications
and those that learn approximate ones. Like the majority of algorithms mentioned
so far, the learning algorithms we have devised in this chapter are exact: all three
algorithms learn specifications that describe the data perfectly. On the other hand,
there also exists algorithms that use statistical methods to derive approximate formulas
from noisy data. An example is a work by Kim et al. [96]. Extending our algorithm
to handle noise in the data is a promising direction for future work, which we have
partially addressed in recent work [68].

To learn from positive examples only, none of the above methods provide good results:
they return a trivial solution that accepts all possible examples. However, the problem
of learning a specification from a single type of examples has been studied in other
contexts. One prominent example is process mining (see Aalst et al. [15] for an overview),
where the problem is the following: given a log of events generated by some process, find
a model that satisfies specific properties of interest. Typically, such properties include
fitness (the model should be consistent with the examples from the log), precision
(the model should not be overly general), generalization (the model should not be
overly tight), and simplicity (the model should be simple). Different operationalizations
of these four properties give rise to different problem formulations and solutions. By
choosing UVW as our model, we get (structural) simplicity and connect it to the
generalization property by the tightness value n, for which we require the tightest
possible UVW consistent with the data.

Closely related to our algorithm for learning UVW is an algorithm by Avellaneda
and Petrenko [25] for inferring deterministic automata over finite words from positive
examples alone. This algorithm searches for an automaton A with a fixed number n
of states that is consistent with the given positive examples and for which no n-state
DFA A′ exists such that the language of A′ is a strict subset of the language of A.
Both our method and the one by Avellaneda and Petrenko identify the language to be
learned in the limit and use a single additional parameter for choosing the complexity
of the language to be learned. Unlike our approach, however, the resulting language in
Avellaneda and Petrenko’s algorithm is not unique for a given value of n. Furthermore,
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while our approach is relatively simple to adapt to the finite-word setting, their approach
is much harder to adapt to the infinite-word setting, which we support in our work.

Inverse reinforcement learning [118] is another related problem in which learning hap-
pens over (positive) demonstrations only. However, instead of human-understandable
specifications of the task at hand, inverse reinforcement learning aims to infer reward
functions, which numerically capture the rewards an agent receives while performing
specific actions. Inspired by this setting, Vazquez-Chanlatte et al. [148] have developed
an algorithm to learn LTL-like temporal descriptions of a reward function from demon-
strations. The underlying idea is to proceed in two steps: first, a lattice of implications
between all possible descriptions is pre-computed; second, demonstrations are used
to rule out non-consistent descriptions, thereby “traversing” the lattice until all de-
scriptions have been processed. While this approach has shown promising performance
on real-world examples, its downside is that the first step is highly computationally
expensive and only works if the number of syntactically distinct descriptions is finite.
By contrast, our algorithm does not require such a pre-computation since we use
the syntactic approximation of language inclusion between simple chains of UVWs.
However, Vazquez-Chanlatte et al.’s algorithm successfully handles noise in the sample,
which we currently cannot do.
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CONCLUSION 5
Building safe and reliable systems is hard and involves a large number of highly complex,
manual tasks. By using an innovative combination of inductive methods from the area
of machine learning and deductive methods from the area of logic, this work has
demonstrated how intelligent formal methods can significantly simplify or even
entirely automate many of these tasks. In particular, we have covered three of the most
essential topics in system safety and reliability: software verification, the synthesis of
reactive systems and program code, as well as the challenging and error-prone task of
writing formal specifications.

As a byproduct of our research, we have developed an extensive, learning-based toolbox
that complements and improves existing, purely deductive methods. However, a host
of challenges still exist that prevent the widespread adaptation of formal methods in
practice. Let us conclude this work by sketching how our research can help mitigate the
most important ones. As in the earlier parts of this work, we structure our discussion
along the topics of verification, synthesis, and formal specifications.

In formal verification, one of the most pressing problems is to provide effective methods
to prove the safety and reliability of artificial intelligence. Due to the ubiquitous use of
machine learning technology in modern intelligent systems, this task is exceptionally
challenging. On the one hand, machine learning models differ drastically from classical
hard- and software, and the development of efficient tools for reasoning about statistical
models is still in its infancy. On the other hand, intelligent systems are often an
amalgamation of different components (including hard- and software, cyber-physical
components, and machine learning models), and any end-to-end verification approach
for intelligent systems needs to involve methods from various disciplines. However, the
intelligent formal methods we have developed in this work serve as an ideal foundation to
meet these challenges. In particular, our future research will be targeted at the definition
of a standardized interface between the individual components of an intelligent system
(exploiting the synergies between logic and learning) that allows (a) decomposing a
global specification into local specifications for each component and (b) orchestrating
specialized tools to verify each local specification individually. In this context, our
ultimate goal is to develop effective methods for the end-to-end verification of intelligent
systems that provide a high degree of automation.

In automated synthesis, an emerging trend is to synthesize reactive systems or programs
that integrate machine learning models trained to perform specific, low-level tasks
(e.g., perception). Initial results show the great potential of this novel approach, but its
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fundamental properties, including its strengths, weaknesses, and limitations, are not yet
well understood. Our future research will address this shortcoming. In particular, our
overall goal is to develop a general framework that can model and explain similarities
and differences of techniques that synthesize systems with integrated machine learning
technology. Similar to our abstract learning frameworks for synthesis, this will help us
identify a wide range of domains where such type of synthesis is applicable and simplify
the design and analysis of synthesis algorithms through a common vocabulary.

Finally, a major obstacle in the area of formal specifications is the mismatch between
an engineer’s intuitive understanding of a complex system and the need to express
this intuition in terms of formal logic. To bridge this gap, we plan to develop a
completely novel, computer-aided approach to writing formal specifications, which we
term logic sketching. The vision is that a future engineer writes a partial specification (a
specification sketch), where parts that are difficult to formalize can be left unspecified.
By interacting with the engineer (e.g., by querying for examples of the system’s desired
behavior), an automated tool would then infer the missing parts and complete the
specification the engineer has in mind. While our learning algorithms for LTL and PSL
specifications are helpful first steps in this direction, they clearly require fundamental
extensions to fit into the much more demanding sketching scenario laid out above. Our
future research will focus on this topic.
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