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AbstractAbstract

This work mainly focuses on developing higher-order numerical methods for hyperbolic con-
servation laws. It introduces two innovative approaches aiming to enhance the accuracy and
efficiency of the methods. In the explicit setting, our objective is to modify the Active Flux
schemes using the ADER-DG technique. Averaged values of the conserved quantities at the
cell centers (cell averages) and the interface values of the conserved quantities (point values)
are considered as the degrees of freedom of the classical Active Flux method. The conservative
update formula of the proposed higher-order Active Flux (hAF) methods depends on the natural
degrees of freedom of the corresponding ADER-DG scheme rather than on the cell averages.
We construct a highly accurate local space-time predictor by incorporating the information from
point values. The proposed scheme achieves a convergence order of N + 3 for degree N spa-
tial test functions, as it applies information from a more accurate local predictor in the update
formula. We propose two new update strategies for the point values. In the first a Riemann
problem at each interface is solved using information from local predictor. In the second, more
general approach, the conservation law is integrated over time at the cell interfaces. To address
non-physical oscillations in hAF schemes near discontinuities or steep gradients, we employ the
MOOD limiter with some modifications to the existing one in the literature. For linear hyperbolic
problems, we achieve an improvement in the CFL number compared to the ADER-DG schemes.

In the implicit context, our approach starts by extending the existing implicit Active Flux
schemes to linear systems. Then, we introduce a new update strategy for the point values,
creating a new class of higher-order implicit Active Flux methods. The novel Modified Implicit
Active Flux (MIAF) schemes can generate various numerical schemes. The performance of the
selected MIAF schemes is determined by evaluating how they behave in standard test cases.
Additionally, a stability and convergence study has been carried out. Comparing the results of
the existing single-step implicit Active Flux schemes with those of the MIAF schemes shows that
the new approach yields similar outcomes.



ZusammenfassungZusammenfassung

Diese Arbeit behandelt die Entwicklung numerischer Methoden höherer Ordnung für hyper-
bolische Erhaltungsgleichungen. Es werden zwei neue Ansätze vorgestellt, die die Genauigkeit
und Effizienz der Löser verbessern. Für explizite Verfahren modifizieren wir den Active Flux
Ansatz mit Hilfe der ADER-DG-Technik. Als Freiheitsgrade der klassischen Active-Flux-Methode
werden gemittelte Werte der zu erhaltenden Größen in den Gitterzellen (Zellmittelwerte) und
die Punktwerte an den Zell-Interfaces betrachtet. Die konservative Update-Formel der neuen
Active-Flux-Methode höherer Ordnung (hAF) hängt von den Freiheitsgraden des entsprechen-
den ADER-DG-Schemas und nicht von den Gitterzellen ab. Wir konstruieren einen lokalen
Raum-Zeit-Prädiktor, indem wir die Information von den Punktwerten mit einbeziehen. Das
vorgeschlagene Schema erreicht eine Konvergenzordnung von N + 3 für räumliche Testfunktio-
nen vom Grad N , da es die Information aus einem genaueren lokalen Prädiktor in der Update-
Formel verwendet. Wir schlagen zwei neue Updatestrategien für die Punktwerte vor. Bei der
ersten wird ein Riemann-Problem an jedem Interface mithilfe der lokalen Prädiktoren gelöst.
Bei dem zweiten, etwas allgemeineren Verfahren wird die Erhaltungsgleichung in der Zeit ent-
lang des Zellinterfaces integriert. Um nicht-physikalische Oszillationen in den hAF-Schemata in
der Nähe von Unstetigkeiten oder steilen Gradienten zu vermeiden, verwenden wir den MOOD-
Limiter mit einigen Modifikationen gegenüber dem Orginal-Limiter. Für lineare hyperbolische
Probleme erreichen wir eine Verbesserung der CFL-Zahl im Vergleich zu den bisherigen ADER-
DG-Verfahren.

Im impliziten Kontext beginnt unser Ansatz mit der Erweiterung der bestehenden impliziten
Active-Flux-Verfahren auf lineare Systeme. Dann führen wir eine neue Updatestrategie für die
Punktwerte ein und schaffen so eine neue Klasse impliziter Active-Flux-Verfahren höherer Ord-
nung. Diese neuartigen Modified Implicit Active Flux (MIAF)-Verfahren können verschiedene
numerische Verfahren erzeugen. Die Qualität der ausgewählten MIAF-Verfahren wird anhand
von Standard-Testfällen untersucht und Stabilitäts- und Konvergenzstudien werden durchge-
führt. Der Vergleich der Ergebnisse der bestehenden einstufigen impliziten Active-Flux-Schemata
mit dem der MIAF-Schemata zeigt, dass der neue Ansatz zu ähnlichen Ergebnissen führt.
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1 IntroductionIntroduction

This work aims to develop higher-order numerical methods for hyperbolic conservation laws.
Over the past few decades, there has been increasing attention on such methods due to their
greater accuracy, enhanced convergence properties and improved computational efficiency. We
introduce two novel approaches: one emphasizing the development of fully explicit higher-order
methods and the other focusing on implicit higher-order methods.

The literature presents various notable higher-order numerical methods that are specifically
designed to address hyperbolic conservation laws. Among these are the ENO (Essentially Non-
Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes [8, 55, 56], which have
the advantage of taming oscillations near discontinuities due to their construction. The discon-
tinuous Galerkin (DG) finite element method was initially proposed in [50], and Cockburn et
al. subsequently developed it through a series of publications [17–19]. Classical DG schemes
encounter a challenge in matching spatial accuracy equivalent to their temporal accuracy, as
they also employ Runge-Kutta methods for time evolution. Ben-Artzi and Falcovitz [9–12] were
the first to develop a second-order finite volume method based on the solution of generalized
Riemann problems. In order to construct arbitrary higher-order methods, Titarev, Toro et al.
introduced a new approach named ADER, which stands for "Arbitrary high-order schemes us-
ing derivatives" [58, 59]. By combining the ADER approach with the discontinuous Galerkin
(DG) framework, Dumbser et al. [30] developed a single-step scheme (ADER-DG) that provides
higher-order accuracy in both space and time and is more efficient compared to the classical
Runge-Kutta DG schemes.

Moreover, another class of higher-order numerical methods named Active Flux (AF), was
proposed by Roe et al. [35, 51, 52], based on the concept introduced in [62]. The cell averages
and the point values at cell interfaces serve as the degrees of freedom for the classical Active
Flux method, attaining third-order accuracy due to quadratic reconstruction. The update of the
point values uses the characteristic form of the equations, while the update of the cell average
values uses the conservative form. The classical AF method computes the averaged fluxes at the
cell interfaces using Simpson’s rule. In the context of linear hyperbolic problems, characteristic
information is applied [36] to obtain quadrature point values along the cell interfaces. A new
approach proposed in [42] introduces the use of Taylor series expansion with respect to the time
variable and applies Cauchy-Kowalewski procedure to compute the quadrature point values.
For more detailed discussions about the AF method, including its applications in non-linear
hyperbolic problems, refer to [4, 5, 35, 38, 49]. Furthermore, [3] introduced several possible
approaches to enhance accuracy by expanding the stencil or incorporating higher moments as
new degrees of freedom. In [36], an extension of the AF scheme to a two-dimensional problem
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using an unstructured triangular grid is discussed, while [7, 15, 42] introduced Cartesian grid
approaches.

Motivated by the technique proposed in [42], we introduce new higher-order Active Flux
(hAF) schemes. In this approach, the conservative update relies on the natural degrees of freedom
within the corresponding fully discrete formulation for the ADER-DG scheme rather than on
cell averages. The higher-degree spatial reconstruction polynomial is constructed in each cell,
incorporating the information from point values. This polynomial provides the necessary initial
data to build a more accurate local space-time predictor. When constructing the local predictor,
we can use various types of test functions, as employed in [23, 24]. We apply space-time nodal
basis test functions passing through the tensor-product Gauss-Legendre quadrature points on
the space-time reference element similar to that proposed in [33]. This approach yields sparse
block structures in the resulting matrices and enables possible extensions to multi-dimensional
problems efficiently. Applying the information from the local predictor to the update formulas in
hAF methods allows us to achieve higher-order accuracy. Two new approaches are suggested for
updating the point values. The first one needs to solve the Riemann problem at each interface,
making it a highly problem-based approach, while the second approach is more general. In
contrast to the standard ADER-DG approach, which attains a convergence order of N + 1 for
degree N spatial test functions, the new approach achieves a convergence order of N + 3. The
approach shares similarities with the PNPM schemes proposed in [23, 32, 39]. However, in our
method, the development of the spatial reconstruction polynomial is independent of neighboring
cell interactions.

According to the Godunov theorem [41], any linear scheme with an accuracy greater than one
generates oscillations near discontinuities. Even with smooth initial conditions, discontinuities
are natural phenomena in hyperbolic conservation laws. Therefore, when employing higher-order
numerical schemes, it is critical to apply so-called limiters to prevent non-physical oscillations
near discontinuities or steep gradients. The slope-limiter methods introduced by van Leer [63]
and the flux-limiter methods [47, 60] are widely recognized as commonly used limiting techniques.
These methods are known as a priori limiters because they activate based on the data at the
current time level tn. Alternatively, we direct our attention to the application of an a posteriori
limiter named Multi-dimensional Optimal Order Detection (MOOD), which is activated based on
information from both the current time level (tn) and the future time level (tn+1). The literature
[21, 33, 39, 48, 64, 65], extensively discussed the successful application of the MOOD limiter to
higher-order methods in hyperbolic conservation laws. The exploration of the mechanism of the
MOOD limiter within the context of the ADER-DG scheme with degree N spatial test functions
corresponds to [39]. Initially construct a finer subgrid by dividing each cell into Ns = 2N + 1

elements. The projection operator generates subcell averages for the discrete candidate solution.
At each time step, these candidate subcell averages are checked against the detection criteria to
identify troubled cells. For the troubled cells, local recomputation of the solution is performed
using a simple and robust finite volume scheme, such as the ADER-WENO finite volume scheme
[33] or the second-order TVD finite volume scheme [13, 29] to the subcell averages. Finally, the
reconstruction operator can recover the higher-order accurate solution for the troubled cells. The
choice of the number of subcells, Ns = 2N + 1, is intentional. It corresponds to the optimal time
step size of the finite volume scheme applied on subgrids, making it match with the time step
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size of the ADER-DG scheme applied on main grids.
In the context of Active Flux methods, various strategies for limiters have been explored [3–5,

53]. Different types of reconstructions, including hyperbolic reconstruction, piecewise polynomial
reconstruction, and discontinuous reconstruction were proposed in [42]. Our objective is to
apply the MOOD limiter to the hAF schemes. The MOOD limiter follows a similar approach
to the innovative higher-order Active Flux methods, with modifications made for the projection
operator, reconstruction operator, and detection criteria, as they involve point values. We suggest
two different approaches for limiting the point values of the troubled cells. One is based on the
characteristics of the problem, while the second one is more general.

Although higher-order implicit numerical methods are not yet widely known for hyperbolic
conservation laws, we are incorporating the concept outlined in [6] to propose new higher-order
implicit Active Flux schemes. Implicit methods typically relax the strict time restrictions im-
posed by higher-order explicit methods. The finite difference/volume type higher-order implicit
numerical schemes applied in district heating networks, as discussed in [34], are based on the idea
proposed in [57]. Classical implicit schemes such as Crank-Nicolson, Radau IA, Radau IIA, and
DIRK (Crouzeix) are applied to study semi-discrete Active Flux methods discussed in [3]. The
Radau and DIRK schemes are computationally expensive since they exhibit a multi-step nature.
Therefore, we focus on the single-step implicit higher-order Active Flux methods as proposed in
[6]. They employed a single reconstruction polynomial in time to update both cell averages and
point values. We propose the Modified Implicit Active Flux (MIAF) schemes and introduce a
new update strategy for the point values. In our novel approach, the update of cell averages and
point values involves two distinct reconstruction polynomials in time. This method expands the
potential for a wide range of implicit Active Flux schemes.

The thesis is organized as follows: In Chapter 2, it provides a comprehensive overview of the
ADER-DG schemes for hyperbolic conservation laws, including the MOOD limiter. Additionally,
it presents results for various test cases using ADER-DG schemes and discusses an application to a
network. Chapter 3 presents our innovative higher-order Active Flux schemes, with modifications
to the MOOD limiter. The validation of the proposed schemes is done through standard test
cases. Chapter 4 mainly focuses on implicit higher-order numerical methods. The Modified
Implicit Active Flux (MIAF) methods are introduced, and a detailed explanation is provided
through the selected schemes. Chapter 5 concludes the thesis and outlines future work.
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2.1 Higher-order accurate ADER-DG schemes
Initially, Ben-Artzi and Falcovitz proposed to study the Generalized Riemann problem (GRP) to
achieve a second-order finite volume method. Toro’s modifications further advanced the devel-
opment of higher-order accurate methods in both space and time. Based on the solution of GRP,
Titarev, Toro et al. [58, 59] proposed a new approach called ADER, which stands for "Arbitrary
high-order schemes using derivatives". By combining the ADER approach with the discontin-
uous Galerkin (DG) framework, Dumbser et al. [30] developed a single-step scheme, known as
ADER-DG, which is higher-order accurate and more efficient than classical Runge-Kutta DG
schemes. This chapter provides a comprehensive overview of ADER-DG schemes [14, 23–26, 37,
40, 45, 46] for one-dimensional hyperbolic conservation laws, including the processes of devel-
oping higher-order ADER-DG solvers. It explores discussions on stability, order of convergence,
results for hyperbolic conservation law problems, and their applications in a network.

To develop higher-order accurate ADER-DG solvers, we consider a general nonlinear, time-
dependent hyperbolic system of conservation laws expressed as

∂

∂t
u +

∂

∂x
f(u) = 0, x ∈ Ω ⊂ R, t ∈ R+

0 ,

u(x, 0) = u0(x), ∀x ∈ Ω.

(2.1)

Where u = u(x, t) denotes the state vector of conserved quantities, f(u) represents the
possibly nonlinear flux, and Ω stands for the computational domain. The initial condition,
denoted as u0(x), defines the starting state of the problem.

2.1.1 Space discretization

In a one-dimensional domain Ω, let’s denote the end points of each element as xi− 1
2
and xi+ 1

2
,

where index i ranges from 1 to the total number of elements NE . The size of each element is
represented by ∆x = xi+ 1

2
−xi− 1

2
, and the spatial elements Ti =

[
xi− 1

2
, xi+ 1

2

]
hold the following

relation

Ω =

NE⋃

i=1

Ti.

In physical coordinates, the ith space-time control volume at time tn is expressed as Qni =[
xi− 1

2
, xi+ 1

2

]
× [tn, tn + ∆t]. Here, the time step ∆t is defined as ∆t = tn+1 − tn. The spatial

reference element, denoted as TE , is established as TE = [0, 1]. The spatial coordinate is given
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by 0 ≤ ξ ≤ 1 with the transformation relation x = xi− 1
2

+ ξ ·∆x. The mapping from physical
coordinates to reference coordinates and its inverse mapping concerning the spatial element Ti
can be written in a concise notation as follows [23, 27, 28]

x = x(Ti, ξ), ξ = ξ(Ti, x).

At the beginning of each time step, the DG method provides the discrete representation of the
solution (uh(x, tn)) for the vector of conserved quantities in the ith element using the piecewise
polynomials of degree N as

uh(x, tn) = uh(ξ(x), tn) =

N+1∑

m=1

ûm(tn)Φm(ξ) = ûm(tn)Φm(ξ), x ∈ Ti. (2.2)

Where ûm(tn) represents the degrees of freedom at time tn, and Φm = Φm(ξ) are the space-
only dependent test functions defined in the spatial reference element TE . We introduced Einstein
summation, in which we implicitly sum over repeated indices. Hereinafter, we will use this
notation to present our equations in a more concise manner. Throughout this work, we have
used a set of orthogonal spatial basis functions following a similar approach presented in [33].
The Gauss-Legendre quadrature points serve as the nodal points for these basis functions. For
a visual representation of the spatial basis functions for degree 2, please refer to Figure 2.1.
Alternatively, one can use scaled Legendre polynomials as spatial test functions, as detailed in
[24].

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

0 1
ξ

Φ(ξ)

Φ1(ξ) Φ2(ξ) Φ3(ξ)

0 0.5 1
0

0.5

1

ξ

τ

Figure 2.1: The left figure illustrates degree 2 space-only dependent test functions within TE .
The right figure represents nodal points corresponding to degree 2 space-time test functions on
QE .

2.1.2 The local space-time predictor

To construct the local weak formulation of the conservation law problem given in (2.1) in space
and time, we define a space-time reference element QE = [0, 1] × [0, 1] ∈ R2. The following
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relations define the spatial and temporal coordinates

x = xi− 1
2

+ ξ ·∆x, t = tn + τ ·∆t, (2.3)

with 0 ≤ ξ ≤ 1 and 0 ≤ τ ≤ 1.
To govern the local space-time test functions θk = θk(ξ, τ), we employ the tensor product

Gauss-Legendre quadrature points on the space-time reference element QE as the nodal points,
following a similar approach to [14, 33, 37, 64]. The index k ranges from 1 to the number of
degrees of freedom Nd = (N+1)2. Figure 2.1 illustrates the placement of nodal points within QE
used to generate space-time test functions. These test functions provide the necessary information
for the full ADER-DG discretization, ensuring the scheme maintains higher-order accuracy in
space and time. Alternatively, one could construct these space-time polynomials using tensor
product scaled Legendre polynomials, as discussed in [24], or by considering different degrees
of freedom inside space-time reference element QE as proposed in [23]. The local space-time
test functions play a crucial role in constructing the higher-order Active Flux methods and the
modification for the limiter discussed in Chapter 3. Figure 2.2 visualizes the set of space-time
test functions corresponding to degree 2.
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Figure 2.2: Space-time polynomials in QE .

For the sake of writing lengthy expressions more simply, we define two operators

〈f, g〉 =

∫ 1

0

∫ 1

0

f(ξ, τ) · g(ξ, τ)dξdτ,

[f, g]τ =

∫ 1

0

f(ξ, τ) · g(ξ, τ)dξ.
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The first operator represents the space-time scalar product of two functions, f and g, over
the space-time reference elements QE . The second operator provides the spatial scalar product
of two functions over the spatial reference element TE = [0, 1] at a fixed τ .

Next, we transform the conservation law problem given in (2.1) to the space-time reference
element QE using the relations given by (2.3) as

∂

∂τ
u +

∂

∂ξ
f∗(u) = 0 (2.4)

with
f∗(u) = ∆tξxf(u). (2.5)

To get the weak formulation, multiply (2.4) by the space-time dependent test functions θk
and integrate over the reference element QE ,

〈
θk,

∂

∂τ
u

〉
+

〈
θk,

∂

∂ξ
f∗(u)

〉
= 0. (2.6)

In each space-time control volume Qni , we approximate the numerical solution U = U(ξ, τ)

and the numerical flux term F = F(ξ, τ) of (2.6) using the space-time dependent test functions
θk defined in QE . i.e.

U(ξ, τ) = Û `θ`(ξ, τ), (2.7)

F(ξ, τ) = F̂ `θ`(ξ, τ). (2.8)

Inserting the relations (2.7) and (2.8), into the (2.6) yields
〈
θk,

∂

∂τ
U
〉

+

〈
θk,

∂

∂ξ
F∗
〉

= 0. (2.9)

The transformation given in (2.5) can also be used for the degrees of freedom for the numerical
flux term, F̂∗` = ∆tξxF̂ `. Considering the fact that the nodal space-time test functions are
governed based on the tensor product Gauss-Legendre quadrature points, we additionally have
the relationship between the degrees of freedom of the numerical solution Û ` and the degrees of
freedom of the flux F̂ ` as follows [23],

F̂ ` = f(Û `). (2.10)

We avoid using integration by parts in space of (2.9) and instead apply integration by parts in
time. This approach is consistent with our primary focus of governing the local formulation solely
based on the element’s information, independent of neighboring data. The following equation is
obtained

[θk,U ]1 − [θk,uh]0 −
〈
∂

∂τ
θk,U

〉
+

〈
θk,

∂

∂ξ
F∗
〉

= 0. (2.11)

Inserting the relations (2.2), (2.7) and (2.8) into (2.11) we get

[θk, θ`]1 Û ` − [θk,Φm]0 û
n
m −

〈
∂

∂τ
θk, θ`

〉
Û ` +

〈
θk,

∂

∂ξ
θ`

〉
F̂∗` = 0.

Rearranging the terms leads to
(

[θk, θ`]1 −
〈
∂

∂τ
θk, θ`

〉)
Û ` − [θk,Φm]0 û

n
m +

〈
θk,

∂

∂ξ
θ`

〉
F̂∗` = 0. (2.12)
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Defining the following special matrices that are computed once within the space-time reference
element QE , and then stored for future use optimizes the efficiency of our computations

K1 = [θk, θ`]1 −
〈
∂

∂τ
θk, θ`

〉
, Kξ =

〈
θk,

∂

∂ξ
θ`

〉
, F0 = [θk,Φm]0 . (2.13)

A more compact expression for (2.12) can be derived by considering the matrices defined in (2.13)
as follows,

K1Û ` = F0û
n
m −KξF̂

∗
` .

To calculate the Û `, an iteration technique can be used as proposed in [32, 33, 43] with (2.10)

K1Û
r+1

` = F0û
n
m −KξF̂

∗,r
` . (2.14)

Numerically, we can obtain the specific result described in [23, 32], where all eigenvalues of the
matrix K−1

1 Kξ are zero. It implies that the iteration (2.14) follows a contraction relation. The
Banach fixed-point theorem guarantees the existence and uniqueness of the solution Û `. Once we
calculate Û ` using (2.14), the space-time predictor U(ξ, τ) is fully determined for each element
from (2.7).

2.1.3 Fully-discrete formulation for the ADER-DG schemes

The local space-time predictor (U(ξ, τ)) cannot directly update the solution to the next time level
tn+1. This limitation arises because, during its construction, we neglect the effect of neighboring
elements. To perform the correct update of the solution, we consider the one-step ADER-
DG schemes, similar to [14, 23, 31–33, 37, 65]. The procedure is as follows: we multiply the
conservation law (2.1) with a spatial test functions Φk and integrate over the physical space-time
control volume Qni =

[
xi− 1

2
, xi+ 1

2

]
× [tn, tn + ∆t]. Applying integration by parts in space leads

to the following form

∫ tn+1

tn

∫

Ti

Φk
∂uh
∂t

dxdt+

∫ tn+1

tn

∫

∂Ti

Φkf(uh) · ndSdt−
∫ tn+1

tn

∫

Ti

∂Φk
∂x
· f(uh)dxdt = 0 (2.15)

where, n represents the outward unit normal vector on the surface ∂Ti of the element Ti. The
second term in (2.15) establishes the connection between neighboring elements and Ti through
surface integration. To calculate the numerical flux function G(U−,U+), we solve a Riemann
problem at each interface, considering the left and right states denoted by U− and U+ respec-
tively. We employ the Rusanov (local Lax Friedrichs) flux [23, 65] as the numerical flux function
at each interface. Furthermore, we replace the physical flux in the third term of (2.15) with the
numerical flux term defined in equation (2.8). Inserting the relations given by (2.2), (2.7) and
(2.8) into (2.15) we can obtain,

[Φk,Φm]

(
ûn+1
m − ûnm

)
+

∆t

∆x

∫ 1

0

∫

∂Ti

ΦkG(U−,U+) · ndSdτ −
〈
∂Φk
∂ξ

,F∗
〉

= 0.

In this context, we remove the subscript τ of the operator [., .]τ , as the two arguments are
solely space-dependent test functions. Finally, we construct the higher-order accurate ADER-
DG schemes given by

[Φk,Φm]

(
ûn+1
m − ûnm

)
+

∆t

∆x

∫ 1

0

∫

∂Ti

ΦkG(U−,U+) · ndSdτ −
〈
∂Φk
∂ξ

, θ`

〉
F̂∗` = 0. (2.16)
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Using the precomputed matrices defined in (2.13) speeds up computations. The stability of a
higher-order ADER-DG scheme can be guaranteed under a suitable Courant-Friedrichs-Lewy
(CFL) number. It decreases with the degree N of the test functions, as discussed in [33]. This
decrease roughly follows a pattern of 1

(2N+1) . The time step must fulfill the criteria

∆t ≤ 1

(2N + 1)

h

|λmax|
.

Where h is the characteristic mesh size, and |λmax| represents the maximum signal velocity.
Further details regarding the stability of the ADER-DG schemes will be discussed in Section 2.3.1.
To maintain the correct convergence order, we need to ensure an appropriate order of accuracy
for the time integration in (2.15). By achieving this, when we apply degree N spatial test
functions, the ADER-DG scheme attains an order of accuracy of N + 1 in both space and
time for smooth solutions. However, special attention is required near discontinuities or sharp
gradients, as non-physical oscillations may arise due to the Gibbs phenomenon. The next section
introduces so-called limiters, which control these non-physical oscillations.

2.2 MOOD limiter for the ADER-DG schemes
In this section, we focus on limiters designed to tame the Gibbs phenomenon that arises near
discontinuities or steep gradients. There is a vast literature concerning limiters, as nonlinear
hyperbolic problems can generate discontinuities even when starting with a smooth initial con-
dition. Various reconstruction techniques, such as ENO (Essentially Non-Oscillatory)/WENO
(Weighted Essentially Non-Oscillatory) schemes [55, 56], slope limiters (linear reconstruction in
MUSCL schemes), and flux limiters [60], are recognized for producing stable outcomes without
introducing non-physical oscillations. These limiters are commonly referred to as a priori lim-
iters, implying their activation by concerning information from the current time level tn and
produce non-oscillatory results at the next time level tn+1. Throughout this work, we apply
a recently developed MOOD (Multi-dimensional Optimal Order Detection) limiter [16, 21, 22,
33, 39, 48] to reduce non-physical oscillations. The MOOD limiter is considered as a posteriori
limiter, activated based on information from the current time level tn and the approximation of
the solution at the subsequent time level tn+1. When implementing a limiter, we must address
the following two crucial questions:

1. In which specific areas is it necessary to apply limiting?

2. How can we minimize non-physical oscillations occurring in the problematic regions while
preserving higher-order accuracy elsewhere?

Now, we focus on answering these two questions by describing the MOOD paradigm [33, 39].
First, consider the unlimited ADER-DG numerical solution at tn+1 as the candidate solution,
denoted by un+1,∗

h . Then, create a fine subgrid Si =
⋃
j Si,j by dividing each element Ti into

Ns = 2N + 1 equidistant, non-overlapping subcells with the volume |Si,j |. At time tn, the
piece-wise constant subcell averages in each element Ti, denoted by vni,j(x, t

n), can be calculated
considering the L2 projection (P) of the discrete solution uh(x, tn) as

vni,j(x, t
n) =

1

|Si,j |

∫

Si,j

uh(x, tn)dx := P(unh), ∀j ∈ [1, Ns] . (2.17)
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Similarly at tn+1, the candidate subcell averages are computed

vn+1,∗
i,j (x, tn+1) =

1

|Si,j |

∫

Si,j

un+1,∗
h (x, tn+1)dx := P(un+1,∗

h ), ∀j ∈ [1, Ns] .

Since this operator is linear, we compute its associated matrices just once and store them
for future use, optimizing efficiency. The identification of problem cells involves checking the
candidate subcell averages against a set of detection criteria, as defined in [33, 39].

• The physical admissibility detection criteria (PAD) ensures that the candidate solution
provides physically valid results. For instance, in the context of shallow water equations,
the height of the water level must remain non-negative. Similarly, when dealing with the
Euler equations of compressible gas dynamics, both density and pressure must be positive
at all points and times.

• Applying the relaxed discrete maximum principle (DMP) enforces the numerical admissi-
bility detection criteria (NAD)

min
m∈ν(Ti)

(
min

γ∈[1,Ns]
vnm,γ

)
− δ ≤ vn+1,∗

i,j ≤ max
m∈ν(Ti)

(
max

γ∈[1,Ns]
vnm,γ

)
+ δ, ∀j ∈ [1, Ns] ,

where ν(Ti) is a set containing element Ti with its neighbors. We use the parameter values
as specified in [39]

δ = max

(
δ0, ε ·

[
max

m∈ν(Ti)

(
max

γ∈[1,Ns]
vnm,γ

)
− min
m∈ν(Ti)

(
min

γ∈[1,Ns]
vnm,γ

)])
,

with δ0 = 10−5 and ε = 10−4.

If the candidate subcell averages vn+1,∗
i,j in element Ti do not satisfy the specified detection

criteria, then it is marked as a troubled cell. Following this process at each time step allows us
to identify the regions where limiting is required. Once we have identified the troubled cells, let’s
explore methods to eliminate the non-physical oscillations.

One possible approach is to iterate the MOOD algorithm for the problematic cells, gradually
decrementing the degrees of the test functions until the candidate subcell averages become valid.
For more details, see [21, 22, 48]. In the worst case of this strategy, the first-order (degree zero test
functions) solution is acceptable. On the other hand, one could use more accurate ADER-WENO
finite volume methods [33, 39] or any other TVD finite volume (FV) methods [60] directly on
the problematic cells. To prioritize efficiency and accuracy, we employ a second-order accurate
finite volume method with the minmod flux limiter scheme to compute vn+1

i,j starting from vni,j .
We denote it

vi,j(x, t
n+1) = Ψ(vi,j(x, t

n)).

An initial data is necessary to perform the lower-order finite volume update at time level tn+1.
Therefore, the previously limited vn+1

i,j values are kept in memory to be used in the next time
level.

Next, let’s highlight a strategy applied to a fine element Ti, which is not marked as a troubled
cell but contains at least one problematic cell in its ν(Ti). In this situation, we can not accept the
higher order ADER-DG solution un+1,∗

h (x, tn+1) in Ti, as the correct update values to the next
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time level tn+1. Because the flux calculation across the interface between Ti and the troubled
cell follows two different strategies, violating the conservation property of the scheme. To fix this
issue, we assign the lower-order flux to that interface. After making these modifications, we need
to update cell Ti again with the adjusted fluxes. In rare cases, it is possible to generate troubled
cells in this step. Therefore, a loop procedure is imposed to ensure that no problematic cells
pass to the next time level tn+1 without being treated by the second-order FV method. After
successfully treating the troubled cells with a second-order FV method, we can recover the higher-
order solution un+1

h , using the corrected subcell averages. This is done by the reconstruction
operator defined as follows

∫

Si,j

un+1
h (x, tn+1)dx =

∫

Si,j

vn+1
i,j (x, tn+1)dx := R(vn+1

i,j (x, tn+1)), ∀j ∈ [1, Ns] , (2.18)

which satisfy the conservation property on the main cell Ti under additional linear constraint
∫

Ti

un+1
h (x, tn+1)dx =

∫

Ti

vn+1
i,j (x, tn+1)dx. (2.19)

Here, we can use the least-square technique discussed in [27] to solve the system of equations
given in (2.18) and (2.19). In this case, it might be possible to have some oscillations. If so, in the
next time level, that cell is captured again as a troubled cell and treated with a second-order finite
volume method. Moreover, we can identify that the matrix corresponding to the reconstruction
operator in (2.18) is the pseudo-inverse of the matrix corresponding to the projection operator
given in (2.17). Hence, these operators satisfy the following property

R ◦ P = I (2.20)

where I represents the identity operator. Finally, we can combine all these processes to describe
the solution for the troubled cell at tn+1,

un+1
h (x, tn+1) = R

(
Ψ(vni,j(x, t

n))
)
.

The finite volume method applied to troubled cells must satisfy the following stability criteria

∆tFV =
1

Ns

h

|λmax|

where, h
Ns

denotes the subcell size. Choosing the number of subcells as Ns = 2N + 1 matches
the maximum time step size of the finite volume scheme with the maximum time step size of the
ADER-DG scheme.

2.3 Results
In this section, we apply the higher-order accurate ADER-DG schemes presented in Section 2.1.3
to some of the standard problems of hyperbolic conservation laws.

2.3.1 Linear scalar problem

As our first test problem, we consider the simple and widely used linear advection equation to
validate the numerical method. Using this model equation, we explore additional properties of
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the higher-order ADER-DG schemes, such as stability analysis and the order of convergence.
The linear scalar advection equation, expressed with the simple flux function, takes the following
form

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0, f(u(x, t)) = au(x, t), a ∈ R, 0 ≤ x ≤ 2,

u(x, 0) = u0(x).

(2.21)

We impose a special initial condition which is originally present in [54], defined in the domain
[−1, 1] as

u0(x) =





1

6

(
G(x, β, z − δ) +G(x, β, z + δ) + 4G(x, β, z)

)
, −0.8 ≤ x ≤ −0.6;

1, −0.4 ≤ x ≤ −0.2;

1− |10(x− 0.1)|, 0 ≤ x ≤ 0.2;
1

6

(
F (x, α, ã− δ) + F (x, α, ã+ δ) + 4F (x, α, ã)

)
, 0.4 ≤ x ≤ 0.6;

0, otherwise.

(2.22)

Where G(x, β, z) = exp(−β(x − z)2) and F (x, α, ã) =
√

max(1− α2(x− ã)2, 0). The constants
are taken as ã = 0.5, z = −0.7, δ = 0.005, α = 10, and β = log(2)/36δ2.

To ensure compatibility with the domain of the model given in (2.21), we transform the initial
condition’s domain from [−1, 1] to [0, 2]. The wave speed is set to one (a = 1). Figure 2.3 rep-
resents the results for different numbers of elements. The numerical solution obtained using the
6th-order unlimited ADER-DG scheme with 34 elements accurately captures the exact solution
in smooth regions. We intentionally choose 34 elements for the computational domain to match
the total number of degrees of freedom to approximately 200, following the approach outlined in
[54]. The 6th-order unlimited ADER-DG scheme generates non-physical oscillations near the dis-
continuities. When the MOOD limiter is applied with a smaller number of elements, it captures
a relatively higher number of troubled cells. As a result, the overall scheme behaves more closely
to a second-order scheme. Increasing the number of elements in the domain overcomes this issue.
Finally, the results obtained for 200 elements demonstrate that the ADER-DG scheme with the
MOOD limiter effectively suppresses the oscillations and precisely captures the exact solution.

Linear stability and convergence study

Let’s shift our focus to the stability of the ADER-DG schemes presented in Section 2.1.3. There,
we briefly discuss the stability requirements by addressing the choice of the time step according
to the CFL number. Now, we aim to explore the stability in more detail. Our first objective is
to express the full discretization presented in (2.16), in the form of a linear recursion

ûn+1 = Aûn. (2.23)

Here, û represents a vector, including all the degrees of freedom in the domain. Analytically,
converting the full ADER-DG discretization into this form is a challenging task. Alternatively,
with the help of linear algebra technique the matrix A is constructed. Assume our numerical
method (ADER-DG solver) H provides an update for the degrees of freedoms such that

ûn+1 = H(ûn).
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Figure 2.3: The final time is set as T = 8. The blue lines ( ) represent the 6th-order ADER-DG
solution, red lines ( ) highlight troubled cells, green circles ( ) mark the cell averages of the conserved
variable and the exact solution shows in black line ( ). The left column of figures illustrates the results
obtained with the unlimited ADER-DG scheme, with configurations of 34 elements (top), 68 elements
(middle), and 200 elements (bottom). Similarly, the right column of figures demonstrates outcomes of
the ADER-DG scheme with MOOD limiter, corresponding to the same number of elements.

In general, we have the freedom to choose the initial conditions for the problem. Therefore,
we used a set of standard basis vectors, ei = (0, 0, . . . , 1, . . . , 0, 0)

T as initial conditions, where the
components are all zeros, except for one that is equal to one. For a single time step, jth column
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of the iterative matrix A, represented by Aj , can be obtained from the corresponding basis vector
ej such that, H(ej) = Aej = Aj . After progressing through all the standard basis vectors, we
end up with the complete iteration matrix A. Subsequently, we introduce key terminology and
state the theorem regarding the stability of the general linear recursion. For more details, please
refer to [20].

Definition 2.1 Consider a matrix A ∈ Cd×d.

• The spectrum of a matrix A is the set of all eigenvalues of A

σ (A) = {λ ∈ C : det (λI− A) = 0} .

• The index i(λ) of an eigenvalue λ ∈ σ(A) is the maximal dimension of the Jordan
blocks of A containing λ.

• The spectral radius of the matrix A

ρ(A) = max
λ∈σ(A)

|λ|.

Theorem 2.2 — Stability of the linear recursion. The linear recursion xn+1 = Axn with A ∈
Cd×d is stable if and only if the spectral radius satisfies ρ(A) ≤ 1 and all eigenvalues λ ∈ σ(A)

with |λ| = 1 have index i(λ) = 1. It is asymptotically stable exactly if ρ(A) < 1 holds for the
spectral radius.

-1 0 1
-1

0

1
N = 0,  CFL=1.0

-1 0 1
-1

0

1
N = 1,  CFL=0.33

-1 0 1
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1
N = 2,  CFL=0.17

-1 0 1
-1

0

1
N = 3,  CFL=0.1

-1 0 1
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1
N = 4,  CFL=0.069

-1 0 1
-1

0

1
N = 5,  CFL=0.045

Figure 2.4: The spectrum of the iteration matrix A corresponds to the degree of the space-
dependent test functions and optimal CFL numbers.
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We are examining the spectrum of the matrix A under periodic boundary conditions. For
each ADER-DG solver, the CFL number is selected based on the degree of the space-dependent
test functions similar to [23]. Figure 2.4 illustrates the spectrum of the iterative matrix A and its
correlation with the optimal CFL number for the respective degree of the space-dependent test
functions. There, the eigenvalues are represented by blue dots (•), and the reference unit circle
is shown in red. These carefully chosen CFL numbers guarantee the stability of the numerical
scheme by ensuring that the spectrum radius does not exceed 1.

To investigate the convergence behaviour of the schemes, we begin with a smooth initial
condition

u(x, 0) = sin(2πx).

ADER-DG NE L1 OL1 L2 OL2 L∞ OL∞
O2 (N = 1) 10 1.1230E-01 - 8.8790E-02 - 8.8189E-02 -

15 5.0416E-02 1.97 3.9564E-02 1.99 3.9606E-02 1.97
20 2.8495E-02 1.98 2.2295E-02 1.99 2.2124E-02 2.02
25 1.8185E-02 2.01 1.4283E-02 1.99 1.4327E-02 1.94
30 1.2626E-02 2.00 9.9198E-03 1.99 9.9222E-03 2.01

O3 (N = 2) 10 6.9694E-03 - 4.4437E-03 - 3.8638E-03 -
15 2.0357E-03 3.03 1.3062E-03 3.01 1.1298E-03 3.03
20 8.5766E-04 3.00 5.4980E-04 3.00 4.7346E-04 3.02
25 4.3816E-04 3.00 2.8126E-04 3.00 2.4134E-04 3.01
30 2.5363E-04 2.99 1.6268E-04 3.00 1.3914E-04 3.02

O4 (N = 3) 10 1.9648E-04 - 1.1115E-04 - 9.7024E-05 -
15 3.9190E-05 3.97 2.1910E-05 4.00 1.8046E-05 4.14
20 1.2452E-05 3.98 6.9296E-06 4.00 5.4156E-06 4.18
25 5.1370E-06 3.96 2.8619E-06 3.96 2.2968E-06 3.84
30 2.4858E-06 3.98 1.3854E-06 3.97 1.1005E-06 4.03

O5 (N = 4) 10 7.1048E-06 - 3.5316E-06 - 2.3695E-06 -
15 9.4626E-07 4.97 4.7121E-07 4.96 3.2199E-07 4.92
20 2.2543E-07 4.98 1.1213E-07 4.99 7.4454E-08 5.09
25 7.3749E-08 5.00 3.6699E-08 5.00 2.4646E-08 4.95
30 2.9841E-08 4.96 1.4849E-08 4.96 9.8680E-09 5.02

O6 (N = 5) 10 1.4376E-07 - 6.6963E-08 - 5.1882E-08 -
15 1.2841E-08 5.95 5.9371E-09 5.97 4.4743E-09 6.04
20 2.3081E-09 5.96 1.0597E-09 5.98 7.6217E-10 6.15
25 6.0756E-10 5.98 2.7779E-10 6.00 1.9242E-10 6.16
30 2.0411E-10 5.98 9.3326E-11 5.98 6.4608E-11 5.98

Table 2.1: Numerical convergence rates for the advection equation with ADER-DG schemes
evaluated from second to sixth order of accuracy in both space and time.

We then refine the mesh from 10 to 30 elements and proceed to compute the numerical
solution with the final time set to T = 2. The errors and convergence rates in L1,L2 and L∞
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norms are presented in table Table 2.1. The computation of error norms follows the expressions
discussed in [47]

||u− uh||p =

(∫ 1

0

|u(x, t)− uh(x, t)|pdx
) 1

p

,

where u(x, t) and uh(x, t) represent the exact (reference) and the discrete solution respectively.

2.3.2 Linear system

We use linear acoustic equations detailed in [47] to validate our numerical scheme for a linear
system. Let us consider the general linear hyperbolic system as

∂

∂t
u +A

∂

∂x
u = 0,

with

u(x, t) =

[
p(x, t)

v(x, t)

]
, A =

[
0 K0

1
ρ0

0

]
.

We set the constants K0 = ρ0 = 1.4. The periodic boundary conditions are imposed for the
simulation. The initial condition is selected similarly to [42], with the domain x ∈ [−1, 1].

p(x, 0) = exp
(
− 100x2

)
sin
(
80(x− 0.5)

)

v(x, 0) = 0.
(2.24)
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Figure 2.5: The results are presented at the final time T = 7.5. The figures on the left show the
results with 34 elements, while the figures on the right represent the results with 68 elements. The
blue lines ( ) depict the 6th-order ADER-DG solutions and the black line ( ) represents
the exact solution.
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The variables p and v represent pressure and velocity, respectively. The constant K0 is
referred to as the bulk modulus of compressibility of the material, and 1

ρ0
represents constant

density. In acoustics, the impedance of the medium is denoted by Z0, where Z0 = ρ0c0 and c0 is
the speed of sound defined as c0 =

√
K0/ρ0. Considering these parameters, we can express the

exact solution in a simplified form. After starting with the initial condition,

u(x, 0) =

[◦
p
◦
v

]

we can express the exact solution as

p(x, t) =
1

2

[◦
p(x+ c0t) +

◦
p(x− c0t)

]
− Z0

2

[◦
v(x+ c0t)−

◦
v(x− c0t)

]
,

v(x, t) = − 1

2Z0

[◦
p(x+ c0t)−

◦
p(x− c0t)

]
+

1

2

[◦
v(x+ c0t) +

◦
v(x− c0t)

]
.

Figure 2.5 illustrates the 6th-order ADER-DG scheme solution for 34 elements and 68 el-
ements. Note that the scheme with 34 elements has approximately 200 degrees of freedom.
Doubling the number of elements significantly enhances the accuracy of the solution and ensures
the exact solution is captured. Since the MOOD limiter relies on the discrete maximum principle,
it identifies smooth extrema as troubled cells. Therefore, we do not apply the MOOD limiter
for this example. Although it is possible to incorporate a smooth extrema detector, as discussed
in [21], this approach is computationally costly because it relies on curvature-based detection
criteria.

2.3.3 Non-linear scalar problem

Here, we are examining the most straightforward non-linear scalar conservation law problem,
namely inviscid Burgers’ equation as our next test problem. The appropriate initial condition
aligns with the insights presented in [2]

∂

∂t
u+ u

∂

∂x
u = 0, x ∈ X ∈ R, , t ≥ 0,

u(x, 0) = 2.5 exp
(
− (x− 0.5)2

0.12

)
− 0.2.

Here, u : X × R+ → R. At the final time T=0.1, even with a smooth (Gaussian) initial
condition for Burgers’ equation, discontinuities naturally emerge. This phenomenon is illustrated
in Figure 2.6. The 6th-order ADER-DG scheme can sharply capture the discontinuity even with
34 elements. The results show the effect of the MOOD limiter, which removes oscillations near
the discontinuity by considering only a few troubled cells. When the domain is equipped with
100 elements, there is a slight improvement in capturing the exact solution at the discontinuity.

For the convergence study, we adopt the initial condition used in [2]

u(x, 0) = 0.8 + exp
(
− (x− 0.5)2

0.052

)
.

The errors and convergence rates are presented in Table 2.2. The simulation is run for a short
time period, with the final time set at T = 0.01, ensuring the absence of any discontinuity.
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ADER-DG NE L1 OL1 L2 OL2 L∞ OL∞
O2 (N = 1) 16 6.8269E-02 - 7.1878E-02 - 2.4041E-01 -

32 1.7781E-02 1.94 1.8977E-02 1.92 6.0052E-02 2.00

64 4.7072E-03 1.91 5.2699E-03 1.84 2.1628E-02 1.47

128 1.2147E-03 1.95 1.3942E-03 1.91 6.6041E-03 1.71

256 3.1083E-04 1.96 3.6131E-04 1.94 1.6402E-03 2.00

O3 (N = 2) 16 2.0305E-02 - 2.0643E-02 - 4.9406E-02 -

32 2.9214E-03 2.79 3.4023E-03 2.60 1.6742E-02 1.56

64 3.5004E-04 3.06 4.1333E-04 3.04 1.5827E-03 3.40

128 4.4039E-05 2.99 5.3553E-05 2.94 2.7501E-04 2.52

256 5.6608E-06 2.95 6.8580E-06 2.96 3.4984E-05 2.97

O4 (N = 3) 16 5.0856E-03 - 6.2232E-03 - 1.6044E-02 -

32 2.9457E-04 4.10 3.0853E-04 4.33 1.0155E-03 3.98

64 2.2633E-05 3.70 2.8551E-05 3.43 9.8535E-05 3.36

128 1.4865E-06 3.92 1.9869E-06 3.84 9.3929E-06 3.39

256 9.8170E-08 3.92 1.3259E-07 3.90 6.3808E-07 3.87

O5 (N = 4) 16 1.3970E-03 - 1.4977E-03 - 3.3695E-03 -

32 7.2854E-05 4.26 9.6857E-05 3.95 2.8161E-04 3.58

64 1.7814E-06 5.35 2.7504E-06 5.13 1.0285E-05 4.77

128 5.4641E-08 5.02 8.9219E-08 4.94 4.4367E-07 4.53

256 1.6443E-09 5.05 2.6628E-09 5.06 1.4880E-08 4.89

O6 (N = 5) 16 4.9065E-04 - 6.2543E-04 - 1.6424E-03 -

32 8.4737E-06 5.85 1.2074E-05 5.69 4.8502E-05 5.08

64 1.2979E-07 6.02 2.2540E-07 5.74 1.2979E-06 5.22

128 1.9261E-09 6.07 3.2389E-09 6.12 1.6241E-08 6.32

256 4.7120E-11 5.35 5.8295E-11 5.79 2.9072E-10 5.80

Table 2.2: Numerical convergence rates for the Burgers’ equation with ADER-DG schemes evaluated
from second to sixth order of accuracy in both space and time. The reference solution considers the
7th-order ADER-DG solution with 1024 cells.
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Figure 2.6: Situation A consists of 34 elements, while Situation B consists of 100 elements for the
computational domain. Numerical solutions to the Burgers’ equation: the left figure represents
the initial condition, the middle figure depicts the solution with the unlimited 6th-order ADER-
DG scheme, and the right figure shows the solution using the 6th-order ADER-DG scheme with
MOOD limiter. The blue lines ( ) represent the 6th-order ADER-DG solution, red lines
( ) highlight troubled cells, green circles ( ) mark the cell averages, and the black line ( )
represents the reference solution using a first-order upwind scheme with 4000 cells.

2.3.4 Non-linear system

Many physical problems are governed by systems of hyperbolic conservation laws, which are
often represented according to the principles of the well-known shallow water model. Here, we
consider the one-dimensional shallow water system of the form

(
h

hv

)

t

+

(
hv

hv2 + 1
2gh

2

)

x

= 0

where h represents the height of the water surface, v indicates the velocity of the water flow in
the x direction and g is the gravitational acceleration. The initial condition is given as follows

h(x, 0) =




h0 = 1 x < 0.5

h1 = 0.5 x > 0.5
, v(x, 0) = 0.

For a comprehensive exploration of theoretical and numerical aspects, please refer [61]. The
simulation applies periodic boundary conditions. We are examining two scenarios.

First, the 6th-order ADER-DG scheme is applied using 34 elements within the domain x ∈
[0, 1]. Even with less number of elements, it accurately captures the exact solution. Next,
the ADER-DG scheme is implemented with 100 elements. In both scenarios, the unlimited
numerical solution exhibits oscillations near the discontinuities. However, the application of the
MOOD limiter effectively eliminates these oscillations, resulting in sharper outcomes. Figure 2.7
represents the results.



2.3 Results 21

0.0 0.2 0.4 0.6 0.8 1.0
x

0.50

0.75

1.00

h

0.0 0.2 0.4 0.6 0.8 1.0
x

0.8

0.0

0.8

hv

0.0 0.2 0.4 0.6 0.8 1.0
x

0.50

0.75

1.00

h

0.0 0.2 0.4 0.6 0.8 1.0
x

0.8

0.0

0.8

hv

Situation A

0.0 0.2 0.4 0.6 0.8 1.0
x

0.50

0.75

1.00

h

0.0 0.2 0.4 0.6 0.8 1.0
x

0.8

0.0

0.8

hv

0.0 0.2 0.4 0.6 0.8 1.0
x

0.50

0.75

1.00

h

0.0 0.2 0.4 0.6 0.8 1.0
x

0.8

0.0

0.8

hv

Situation B

Figure 2.7: The numerical results for the shallow water system are presented at the final time
T = 0.05. Situation A consists of 34 elements while Situation B consists of 100 elements. In each
situation, the left figures show the unlimited ADER-DG solutions and the right figures represent
the solutions with MOOD limiter. The blue lines ( ) represent the 6th-order ADER-DG
solution, red lines ( ) emphasize troubled cells, and green circles ( ) indicate the cell averages.
The black line ( ) represents the reference solution (Exact Riemann solver) with 5000 cells.
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The convergence study follows a similar approach discussed in Section 2.3.1 and Section 2.3.3
with the smooth initial condition

h(x, 0) = 0.2 sin(2πx) + 0.5,

v(x, 0) = 0.

We compute the errors and convergence rates for the first component (h) of the system at time
T = 0.05 and summarize the results in the Table 2.3. The numerical schemes provide expected
convergence orders.

ADER-DG NE L1 OL1 L2 OL2 L∞ OL∞
O2 (N = 1) 8 1.8317E-02 - 8.3374E-03 - 1.0282E-02 -

16 3.9714E-03 2.20 1.8925E-03 2.13 2.6850E-03 1.93
32 1.0124E-03 1.97 4.8044E-04 1.97 7.2463E-04 1.88
64 2.6478E-04 1.93 1.248E-04 1.94 1.8340E-04 1.98
128 6.5845E-05 2.00 3.1618E-05 1.98 4.4996E-05 2.02

O3 (N = 2) 8 1.3721E-03 - 6.8095E-04 - 1.1589E-03 -
16 1.8458E-04 2.89 8.6319E-05 2.97 8.3208E-05 3.79
32 2.2274E-05 3.05 1.0481E-05 3.04 1.1335E-05 2.87
64 2.8307E-06 2.97 1.3267E-06 2.98 1.3565E-06 3.06
128 3.5822E-07 2.98 1.7040E-07 2.96 1.5819E-07 3.10

O4 (N = 3) 8 1.1659E-04 - 5.4632E-05 - 5.0894E-05 -
16 6.3229E-06 4.20 3.1670E-06 4.10 4.8931E-06 3.37
32 3.8148E-07 4.05 1.9928E-07 3.99 3.6861E-07 3.73
64 2.3666E-08 4.01 1.2591E-08 3.98 2.5182E-08 3.87
128 1.5425E-09 3.93 8.2474E-10 3.93 1.6088E-09 3.96

O5 (N = 4) 4 4.1973E-04 - 1.8409E-04 - 1.3115E-04 -
8 9.5250E-06 5.46 5.3532E-06 5.10 1.3726E-05 3.25
16 3.2398E-07 4.87 1.9951E-07 4.74 4.7506E-07 4.85
32 9.9311E-09 5.02 6.1107E-09 5.02 1.5423E-08 4.94
64 3.1412E-10 4.98 1.8814E-10 5.02 4.0571E-10 5.24

O6 (N = 5) 4 5.1513E-05 - 3.2086E-05 - 8.7117E-05 -
8 8.3077E-07 5.95 4.8777E-07 6.03 8.7476E-07 6.63
16 9.6000E-09 6.43 5.8023E-09 6.39 1.4893E-08 5.87
32 1.5602E-10 5.94 9.7092E-11 5.90 3.3294E-10 5.48

Table 2.3: Numerical convergence rates for the height (h) of the shallow water equations with
ADER-DG schemes evaluated from second to sixth order of accuracy in both space and time.
The reference solution is computed using the 7th-order ADER-DG scheme with 512 cells.

2.3.5 Network

Here, we apply the higher-order accurate ADER-DG solver to solve one-dimensional linear scalar
conservation law problems within a network. The network’s structure is explained in Figure 2.8
as a directed graph, denoted by G =

(
V, E

)
[6]. The symbols V and E represent the sets of nodes

and edges, respectively.
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For each edge e ∈ E , we use a spatially equidistant grid with cells
[
xi− 1

2
, xi+ 1

2

]
, where i ∈ Z,

and ∆x represents the size of the grid cells. In this example, we solve the advection equation by
considering the direction of the edges shown in Figure 2.8. We provide all the parameters and
necessary relations in Example 2.3.

V1

V2

V3

1

2

3

5

4

6

Figure 2.8: Network with three nodes and six edges.

� Example 2.3 Solve,

∂

∂t
ue +

∂

∂x
f(ue) = 0 with f(ue) = aeue ∀e ∈ {1, 2, . . . , 6} = E , ae ∈ R

•(IC) ue(0, x) = 0, ∀e ∈ {1, 2, . . . , 6}

•(BC) u1(t, 0) = sin(Ωt) with Ω =
2π

3
.

(2.25)

The lengths of the edges are

`1 = 5, `2 = `3 = `5 = 20, `4 = `6 = 30.

The advection velocities are

a1 = a3 = a4 = a6 = 1, a2 = 2, a5 =
40

23
.

These coupling conditions are used at the three nodes

at V1,




f
(
u2(t, 0)

)
= α1f

(
u1(t, `1)

)

f
(
u3(t, 0)

)
= (1− α1)f

(
u1(t, `1)

) at V2,




f
(
u4(t, 0)

)
= α2f

(
u2(t, `2)

)

f
(
u5(t, 0)

)
= (1− α2)f

(
u2(t, `2)

)

at V3,
{
f
(
u6(t, 0)

)
= f

(
u3(t, `3)

)
+ f

(
u5(t, `5)

)
, the parametes α1 =

3

4
and α2 =

2

3
.

According to Example 2.3, we formulate the initial-boundary value problem for the network
as shown in (2.25). Initially, we set the entire network to a zero state, with a Dirichlet-type
boundary condition imposed at the left end of the first edge. The objective is to generate
sinusoidal signals at that boundary and propagate them through the network as time evolves.
Nodes V1 and V2 exhibit similar behavior, each dividing the incoming signal into two parts
using the fixed parameters α1 and α2, respectively. Velocities are assigned to induce destructive
interference at node V3, resulting in the exact solution on edge 6 being zero.

Next, let’s focus on determining the appropriate fixed parameters. Given that we know the
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exact solution for the advection equation, it becomes straightforward to express the solution at
nodes V3 for sufficiently large time t. We define the time taken for a signal to pass each edge e
as τe := `e

ae
. Using that fact, one can write the exact solution for the edge 6 as follows:

u6(t, 0) = α1(1− α2)sin
(
Ω(t− τ1 − τ2 − τ5 − τ6)

)
+ (1− α1)sin

(
Ω(t− τ1 − τ3 − τ6)

)
.

The signals must have the same amplitude in opposite directions to achieve destructive interfer-
ence. Therefore, the parameters α1, α2, and Ω must satisfy the following conditions

α1(1− α2) = 1− α1,

Ω(τ2 + τ5) = Ωτ3 + π.
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Figure 2.9: Network simulation results using 5th-order ADER-DG scheme.
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The numerical simulations run using the fifth order accurate ADER-DG scheme with different
cell sizes ∆x = 1

2 and 1
4 . In this scenario, we do not activate any limiter. This example was

proposed in [6], as an illustration of the implicit Active Flux approach. With the highly accurate
ADER-DG scheme, we can achieve excellent accuracy without the need for significant mesh
refinement.
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Figure 2.10: Result for edge 6 at the final time T = 70.





3 Higher-Order Active Flux
Methods

Higher-Order Active Flux
Methods

This chapter introduces new higher-order numerical solvers designed to yield highly accurate and
efficient results for hyperbolic conservation laws. The third-order Active Flux method proposed
in [42] establishes a numerical approach that bridges classical Active Flux method with the ADER
approach. Our novel approach, which combines the Active Flux methods with the ADER-DG
technique, is motivated by the methodology outlined in that paper.

To develop higher-order accurate Active Flux methods, we initiate our exploration by con-
sidering the general one-dimensional system of hyperbolic conservation laws, represented as

∂

∂t
u +

∂

∂x
f(u) = 0, x ∈ Ω ⊂ R, t ∈ R+

0 ,

u(x, 0) = u0(x), ∀x ∈ Ω,

(3.1)

where u = u
(
x, t
)
denotes the state vector of conserved quantities and f(u) represents the

possibly nonlinear flux. The initial condition is u0(x). The classical Active Flux method has two
kinds of degrees of freedom. They are cell averaged values of the conserved quantities and the
point values of the conserved quantities at the cell interfaces. We define these quantities for the
ith element as follows

• Cell averages : ūni ≈ 1
∆x

∫ x
i+ 1

2

x
i− 1

2

u
(
x, tn

)
dx,

• Point values : un
i+ 1

2

≈ u
(
xi+ 1

2
, tn
)
.

Compared to finite difference/volume methods, the point values offer greater flexibility for
the scheme to adapt to a wide range of problems. The cell averages represent the solution across
the entire cell, whereas point values directly capture local information at the cell interfaces. We
can ensure that mass is conserved within each element by using the cell average update formula.

3.1 Third-order Active Flux method
Our motivation for adopting a new approach is rooted in the methodology proposed in [42].
Before we move forward with our new approach, let’s take a moment to summarize the main
ideas and principles of third-order Active Flux methods for linear hyperbolic conservation law
problems. Considering an equidistant grid covering the domain, the averaged values can be
updated using the conservative finite volume update formula

ūn+1
i = ūni −

∆t

∆x

(
Fi+ 1

2
− Fi− 1

2

)
. (3.2)
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Here, Fi+ 1
2
represents the averaged flux across the cell interface at xi+ 1

2
, defined as

Fi+ 1
2
≈ 1

∆t

∫ tn+1

tn
f
(
u
(
xi+ 1

2
, t
))
dt.

The order of accuracy of the scheme mainly depends on the approximation of the flux term.
Here, Simpson’s rule is applied to evaluate the integral as

1

∆t

∫ tn+1

tn
f
(
u
(
xi+ 1

2
, t
))
dt ≈ 1

6

[
f
(
u
(
xi+ 1

2
, tn
))

+ 4f

(
u
(
xi+ 1

2
, tn +

∆t

2

))

+ f
(
u
(
xi+ 1

2
, tn + ∆t

))]
.

Introducing the variables,

uni+ 1
2

= u
(
xi+ 1

2
, tn
)

u
n+ 1

2

i+ 1
2

= u
(
xi+ 1

2
, tn +

∆t

2

)

un+1
i+ 1

2

= u
(
xi+ 1

2
, tn + ∆t

)

leads to

1

∆t

∫ tn+1

tn
f
(
u
(
xi+ 1

2
, t
))
dt ≈ 1

6

[
f
(
uni+ 1

2

)
+ 4f

(
u
n+ 1

2

i+ 1
2

)
+ f

(
un+1
i+ 1

2

)]
. (3.3)

Let’s focus on evaluating the time integral along the cell interface. To accomplish this, we
rely on the data at the points u

(
xi+ 1

2
, tn + τ

)
, where τ ∈ {0,∆t/2,∆t}. We acquire these data

through a polynomial, constructed based on the degrees of freedom within the cell. Specifically,
the piece-wise quadratic reconstruction polynomial in cell i takes the following form

pi(ξ) = uni− 1
2

(
3ξ2 − 4ξ + 1

)
+ ūni

(
6ξ − 6ξ2

)
+ uni+ 1

2

(
3ξ2 − 2ξ

)
(3.4)

where ξ =
(
x− xi− 1

2

)
/∆x with the relation 0 ≤ ξ ≤ 1.

3.1.1 Advection equation

Consider the advection equation of the form

∂

∂t
u+ a

∂

∂x
u = 0, (3.5)

with the conserved quantity u = u(x, t) : R× R+ → R and a ∈ R.

Approach 1

First, the characteristic information of the problem is analyzed. Then, the flux is computed using
Simpson’s rule, as demonstrated in equation (3.3), following a similar approach as described in
[36]. Using the reconstruction polynomial defined in (3.4), we can evaluate interface values at
xi+ 1

2

u(xi+ 1
2
, tn + τ) ≈




pi
(
1− aτ

∆x

)
, a > 0

pi+1

(
− aτ

∆x

)
, a < 0.

(3.6)
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tn

tn + ∆t
2

tn+1 = tn + ∆t

ξ = 0 ξ = 1ξ = 1− a∆t
∆x ξ = 1− a∆t

2∆x

a > 0

Figure 3.1: Characteristic lines accurately pass through the required points at the cell interface
xi+ 1

2
.

The flux can be represented for the positive speed (a > 0) in the form,

Fi+ 1
2

=
a

∆t

∫ tn+1

tn
u
(
xi+ 1

2
, t
)
dt =

a

∆t

∫ tn+1

tn
u
(
xi+ 1

2
− a(t− tn), tn

)
dt

=
1

∆t

∫ x
i+ 1

2

x
i+ 1

2
−a∆t

u
(
x, tn

)
dx

≈ ∆x

∆t

∫ 1

1− a∆t
∆x

pi(ξ)dξ

=
a

6

(
pi
(
1− a∆t

∆x

)
+ 4pi

(
1− a∆t

2∆x

)
+ pi(1)

)
.

After computing the fluxes, the relation provided by (3.2) updates the cell averaged values.
Computing the update of the point value involves setting τ = ∆t in (3.6). Incorporating the
information extracted from the quadratic reconstruction polynomial enables the Active Flux
scheme to achieve a third-order convergence rate.

Approach 2

As an alternative approach suggested in [42], we can use the Taylor series expansion concerning
the time variable

u
(
xi+ 1

2
, tn + τ

)
= u

(
xi+ 1

2
, tn
)

+ τut
(
xi+ 1

2
, tn
)

+
1

2
τ2utt

(
xi+ 1

2
, tn
)

+O
(
τ3
)
. (3.7)

Then, the temporal derivatives are converted to spatial derivatives following the Cauchy-
Kowalewski procedure. The purpose is to approximate the spatial derivatives using the deriva-
tives of the reconstruction polynomial. Considering the advection equation (3.5), we establish
the following relations

ut
(
xi+ 1

2
, tn
)

= −aux
(
xi+ 1

2
, tn
)
, utt

(
xi+ 1

2
, tn
)

= a2uxx
(
xi+ 1

2
, tn
)
. (3.8)
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The spatial derivatives are approximated as follows

ux
(
xi+ 1

2
, tn
)

=





1
∆xp

′
i(1), a > 0

1
∆xp

′
i+1(0), a < 0,

uxx
(
xi+ 1

2
, tn
)

=





1
∆x2 p

′′
i (1), a > 0

1
∆x2 p

′′
i+1(0), a < 0,

(3.9)

where,
p′i(ξ) = uni− 1

2
(6ξ − 4) + ūni (6− 12ξ) + ui+ 1

2
(6ξ − 2) ,

p′′i (ξ) = 6uni− 1
2
− 12ūni + 6ui+ 1

2
.

By substituting (3.8) and (3.9) into (3.7) and varying τ ∈
{

0, ∆t
2 ,∆t

}
, we can derive the

averaged flux at the cell interface xi+ 1
2

Fi+ 1
2

= au
(
xi+ 1

2
, tn
)
− 1

2
∆ta2ux

(
xi+ 1

2
, tn
)

+
1

6
∆t2a3uxx

(
xi+ 1

2
, tn
)
.

Moreover, in [42] it is demonstrated that these two approaches are equivalent. Here, we
provide numerical results for Approach 2 using the initial condition specified in (2.22). We
discretize the domain into 200 cells, covering the interval [0, 2]. The results obtained from the
unlimited third-order Active Flux scheme are presented here. In later sections, the strategy for
eliminating non-physical oscillations will be explored by implementing the MOOD limiter for the
Active Flux method.

0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u

Figure 3.2: The numerical results for the advection equation using "Approach 2" are presented at the
final time T = 8. The wave speed is set to one (a = 1). The green circles ( ) denote the averaged values
of the conserved quantity, while the symbol (+) indicates the point values at the cell interfaces.

In Approach 2, the stability of the scheme is investigated using linear advection equation with
periodic boundary conditions. Following Section 2.3, the Active Flux scheme can be written in
the form of (2.23). The spectrum of the iteration matrix A is shown in Figure 3.3. Considering
Theorem 2.2, the Active Flux scheme remains stable for CFL < 1.
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1

0

1
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Figure 3.3: Spectrum of the iterative matrix A for different CFL numbers. Eigenvalues are
represented by blue dots (•) and the reference unit circle is shown in red.

3.2 Arbitrary higher-order Active Flux methods (hAF)
Here, we propose a new approach to attain arbitrary high-order accuracy by combining the Active
Flux method with ADER-DG techniques. In the classical Active Flux method, cell averages and
the point values serve as the degrees of freedom. In this novel approach, the conservative update
is not based on the averaged values of conserved quantities but rather on the degrees of freedom
of the relevant fully discrete formulation for the ADER-DG scheme. For general hyperbolic
conservation law problems (3.1), the discrete solution is expressed through space-only dependent
test functions of degree N , mirroring the approach outlined in Chapter 2

uh(x, tn) = uh(ξ(x), tn) =

N+1∑

m=1

ûm(tn)ΦNm(ξ) = ûm(tn)ΦNm(ξ), x ∈ Ti. (3.10)

Here, we specify the degree of the test functions N because the hAF methods involve constructing
a more accurate local space-time predictor in each cell that corresponds to the higher-degree
M > N spatial test functions, reflecting our specific goal.

• The discrete solution at time tn is represented using spatial test functions of degree N .

• The initial values (wh(x, tn)) for the local space-time predictor are computed using spatial
test functions of degree M as follows

wh(x, tn) =

M+1∑

m=1

ŵm(tn)ΦMm (ξ) = ŵm(tn)ΦMm (ξ), x ∈ Ti. (3.11)

In addition to the degrees of freedom (ûm(tn)), we also consider two point values at the
cell interfaces in each cell. This capability allows for the representation of a polynomial of
degree M within the space-reference element TE = [0, 1], with the relevant degrees of freedom
situated at the quadrature points corresponding to degree M . The spatial test functions define
the relationship between the higher and lower degrees as M = N + 2. We visually depict the
placement of various degrees of freedom for the 4th-order Active Flux scheme in Figure 3.4. The
construction of space-dependent higher-degree polynomial in the ith cell denoted as Pi, follows
the constraints mentioned below
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Pi(ξ) =

M∑

j=1

ŵj(t
n)ΦMj (ξ) = ŵj(t

n)ΦMj (ξ), (3.12)

Pi(ξ = 0) = PL,

Pi(ξ = 1) = PR,
∫ 1

0

Pi(ξ) · ΦNj dξ =

∫ 1

0

uh(ξ) · ΦNj dξ.

where PL and PR denote the left and right cell interface values respectively.
For the ith cell, we can construct more accurate local space-time predictor

(
UM (ξ, τ)

)
inside

the reference element QE using the information from Pi. Next, the fully discrete ADER-DG
formulation (2.16) is modified by incorporating more precise fluxes and volume integrals. First,
let’s discuss the conservative update formulation. Then, we’ll move on to the step-by-step pro-
cedures for computing the more accurate local space-time predictor for each of the cases listed
below.

• Linear scalar hyperbolic problems.

• Linear hyperbolic systems.

• Nonlinear hyperbolic problems.

τ = 0

τ = 1

ξ = 0 ξ = 1

PL PR

û1 û2
ŵ1 ŵ2 ŵ3 ŵ4

Figure 3.4: The degrees of freedom inside QE relate to the 4th-order Active Flux method. The
red dots ( ) denote the left and right point values at the interfaces, green dots ( ) indicate the
degrees of freedom related to degree N test functions and blue dots ( ) denote the degrees of
freedom used for degree M test functions. The values represented at ( ) serve as the initial
condition for the local space-time predictor. Orange dots ( ) depict the degrees of freedom for
creating local space-time test functions.

3.2.1 Discrete formulations for higher-order Active Flux schemes

This section will provide a more detailed explanation of the two types of update formulations
used by the higher-order Active Flux methods.
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For the interior degrees of freedom

The space-time dependent test functions, denoted by θMk = θMk (ξ, τ) for degree M , can ap-
proximate the numerical solution and the numerical flux term analogous to ADER-DG methods
discussed in Section 2.1.2. The index k ranges from 1 to (M + 1)2.

UM (ξ, τ) =
∑

`

ÛM

` θ
M
` (ξ, τ) := ÛM

` θ
M
` (3.13)

FM (ξ, τ) =
∑

`

F̂M

` θ
M
` (ξ, τ) := F̂M

` θ
M
` (3.14)

We multiply the conservation law (3.1) with a spatial test function ΦNk and integrate over the
physical space-time control volume Qni =

[
xi− 1

2
, xi+ 1

2

]
× [tn, tn + ∆t]. By applying integration

by parts

∫ tn+1

tn

∫

Ti

ΦNk
∂uh
∂t

dxdt+

∫ tn+1

tn

∫

∂Ti

ΦNk f(uh) ·ndSdt−
∫ tn+1

tn

∫

Ti

∂ΦNk
∂x
·f(uh)dxdt = 0. (3.15)

Here, the outward unit normal vector on the surface ∂Ti is denoted by n. By inserting the
relations (3.10), (3.14) and (3.14) into (3.15), we get

[
ΦNk ,Φ

N
m

](
ûn+1
m − ûnm

)
+

∆t

∆x

∫ 1

0

∫

∂Ti

ΦNk G(UM−,UM+) · ndSdτ −
〈
∂ΦNk
∂ξ

,FM∗
〉

= 0.

We introduce numerical flux function G(UM−,UM+). Here, UM− and UM+ represent the
left and right states at each cell interface. Since we consider nodal basis polynomials the relation
F̂M∗
` = ∆tξxF̂

M

` holds. A more simplified version of the fully-discrete formulation can be
represented as follows

[
ΦNk ,Φ

N
m

](
ûn+1
m − ûnm

)
+

∆t

∆x

∫ 1

0

∫

∂Ti

ΦNk G(UM−,UM+) · ndSdτ −
〈
∂ΦNk
∂ξ

, θM`

〉
F̂M∗
` = 0.

(3.16)
Referring to (3.16), the local prediction remains pivotal, as the relation F̂ ` = f(Û `) still holds.

Moreover, while the ADER-DG schemes (2.16) provide N + 1 order accuracy in both space and
time for degree N spatial test functions, the hAF schemes achieve N + 3 order accuracy. In an
upcoming section, we will explore the stability and convergence of hAF schemes in greater detail.

For the Point Values

Since there is no need to apply a conservative update for the point values, we have tested two
approaches for updating them and compared the resulting outcomes.

(P1) The first approach involves computing the local space-time predictor values at the cell
interface xi+ 1

2
for the time level tn+1 considering cells i and i+ 1. We set these values as

the two states for the Riemann problem at each interface.

• UL = UM
i (ξ = 1, τ = 1),

• UR = UM
i+1(ξ = 0, τ = 1),

un+1
i+ 1

2

= solution for RP (UL, UR) .
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(P2) The second approach involves integrating the conservation law specified in (3.1) over time
at the cell interface xi+ 1

2

∫ tn+1

tn

∂

∂t
u
(
xi+ 1

2
, t
)
dt+

∫ tn+1

tn

∂

∂x
f
(
u
(
xi+ 1

2
, t
))
dt = 0.

Simplifying,

un+1
i+ 1

2

= uni+ 1
2
−
∫ tn+1

tn

∂

∂x
f
(
u
(
xi+ 1

2
, t
))
dt

= uni+ 1
2
−
∫ 1

0

∂

∂ξ
f∗ (u) dτ

(3.17)

where f∗ (u) = ∆tξxf (u). In the second step of (3.17), the integration transformed into
the space-time reference coordinate system.

The spatial derivative of the general hyperbolic conservation law (3.1) can be expressed in
the reference coordinates as follows

∂

∂τ

(
∂

∂ξ
u

)
+

∆t

∆x

∂

∂ξ

(
∂

∂ξ
f(u)

)
= 0. (3.18)

The corresponding Rusanov flux of (3.18) is presented in the following form

∂

∂ξ
f ≈ 1

2

[
f
(

(ÛM

R )k

) ∂

∂ξ
θMk (ξ = 0, τ) + f

(
(ÛM

L )k

) ∂

∂ξ
θMk (ξ = 1, τ)

]

− 1

2
σ

[
(ÛM

R )k
∂

∂ξ
θMk (ξ = 0, τ)− (ÛM

L )k
∂

∂ξ
θMk (ξ = 1, τ)

]

where σ is the maximum eigenvalue of the Jacobian matrix related to the problem. ÛM

L

and ÛM

R represent the degrees of freedom of the left and right cells, respectively. The
integration in (3.17) can be computed by evaluating the numerical fluxes at the quadrature
points along the interface in QE .

3.2.2 MOOD limiter for the higher-order Active Flux schemes

The literature has applied various limiting strategies [3, 42] to address non-physical oscillations
observed in Active Flux methods. Inspired by its success in the ADER-DG approach, we aim
to apply the MOOD limiter with some modifications to the newly proposed higher-order Active
Flux schemes. We will explore the adjustments made to the MOOD paradigm in this section.

We start the discussion similar to the approach outlined in Section 2.2. In this new context,
we first consider an unlimited higher-order Active Flux solution un+1,∗

h derived from (3.16),
along with updated point values of the element Ti, denoted as un+1,∗

i− 1
2

and un+1,∗
i+ 1

2

, using P1 or P2
approaches as discussed previously. These quantities are considered as the candidate solutions
for the next time level tn+1. The fine subgrid Si =

⋃
j Si,j is obtained by dividing each element Ti

into Ns = 2N+1 equidistant, non-overlapping subcells. We denote the volume of each subcell as
|Si,j |. The subgrid creation is consistent with the MOOD limiter for the ADER-DG approach to
ensure that the optimal time step remains valid for both higher-order and lower-order numerical
schemes. At time level tn, the subcell averages (vni,j) in each element Ti, can be compute by
using the projection operator. We consider two situations.
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• Situation 1 : The degree of the spatial test functions N = 1.

vni,j(x, t
n) =

1

|Si,j |

∫

Si,j

uh(x, tn)dx := PN (unh), ∀j ∈ [1, Ns] ,

where PN denotes the projection operator related to degree N spatial test functions. Sim-
ilarly at tn+1, the candidate subcell averages are computed

vn+1,∗
i,j (x, tn+1) =

1

|Si,j |

∫

Si,j

un+1,∗
h (x, tn+1)dx := PN (un+1,∗

h ), ∀j ∈ [1, Ns] .

• Situation 2 : The degree of the spatial test functions N ≥ 2.

Our primary objective is the construction of a more accurate projection operator. By
referring to (3.11), we can achieve a better approximation by employing degree M spatial
test functions for the values at time level tn

vni,j(x, t
n) =

1

|Si,j |

∫

Si,j

wh(x, tn)dx := PM (wn
h), ∀j ∈ [1, Ns] ,

where PM denotes the projection operator related to degree M spatial test functions.
Similarly at tn+1, the candidate subcell averages are computed

vn+1,∗
i,j (x, tn+1) =

1

|Si,j |

∫

Si,j

wn+1,∗
h (x, tn+1)dx := PM (wn+1,∗

h ), ∀j ∈ [1, Ns] .

These candidate subcell averages are tested against the detection criteria to identify the
problem cells. At this point, it’s natural to wonder why we’re considering two situations. Later
in this section, we will address this problem.

Detection criteria

We kept the physical admissibility detection criteria (PAD) unchanged and made modifications
only to the numerical admissibility detection criteria (NAD). We imposed the relaxed discrete
maximum principle considering the element Ti as follows. The notations are shown in Figure 3.5.

v(S,min) = min
m∈ν(Ti)

(
min

γ∈[1,Ns]
vnm,γ

)
, v(S,max) = max

m∈ν(Ti)

(
max

γ∈[1,Ns]
vnm,γ

)
,

v(L,min) = min
m∈ν(TL,i)

(
min

γ∈[1,Ns]
vnm,γ

)
, v(L,max) = max

m∈ν(TL,i)

(
max

γ∈[1,Ns]
vnm,γ

)
,

v(R,min) = min
m∈ν(TR,i)

(
min

γ∈[1,Ns]
vnm,γ

)
, v(R,max) = max

m∈ν(TR,i)

(
max

γ∈[1,Ns]
vnm,γ

)
.

• Subcell averages
CVmin = min

(
v(S,min), P(L,i), P(R,i)

)
,

CVmax = max
(
v(S,max), P(L,i), P(R,i)

)
,

CVmin − δv ≤ vn+1,∗
i,j ≤ CVmax + δv ∀j ∈ [1, Ns] . (3.19)
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• Left point value

CPL,min = min
(
v(L,min), P(L,i−1), P(L,i), P(R,i)

)
,

CPL,max = max
(
v(L,max), P(L,i−1), P(L,i), P(R,i)

)
,

CPL,min − δL ≤ un+1,∗
i− 1

2

≤ CPL,max + δL. (3.20)

• Right point value

CPR,min = min
(
v(R,min), P(L,i), P(R,i), P(R,i+1)

)
,

CPR,max = max
(
v(R,max), P(L,i), P(R,i), P(R,i+1)

)
,

CPR,min − δR ≤ un+1,∗
i+ 1

2

≤ CPR,max + δR. (3.21)

The parameters are computed as follows

δv = max
(
δ0, ε · (CVmax − CVmin)

)
,

δL = max
(
δ0, ε · (CPL,max − CPL,min)

)
,

δR = max
(
δ0, ε · (CPR,max − CPR,min)

)
,

where δ0 = 1e− 5 and ε = 1e− 4.

PL,i
PR,i

PL,i−1 PR,i+1

i− 1 i i + 1

∆x

ν(TL,i) ν(TR,i)

ν(Ti)

Figure 3.5: Information regarding the detection procedure in hAF methods. ν(Ti) denotes a
set containing element Ti with its neighbors, ν(TL,i) represents a set containing element Ti with
its left neighboring element and ν(TR,i) represents a set containing element Ti with its right
neighboring element. The point values at time tn are denoted by P with appropriate subscript
indicating their locations.

If the candidate solutions fail to satisfy any of the criteria outlined above (3.19), (3.20), or
(3.21), we identify the corresponding element as a problem cell. These problem cells need to be
updated using a lower-order scheme as discussed in Section 2.2. The second-order finite volume
scheme with minmod limiter is applied to update the subcell averages in the problem cells and
denoted by

vi,j(x, t
n+1) = Ψ(vi,j(x, t

n)). (3.22)
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Subsequently, we must recover the higher-order solution from the subcell averages which are
updated using the lower-order finite volume method given in (3.22). This is done by using the
reconstruction operator RN (or RM ) corresponding to the projection operators PN (or PM ).
The operators satisfy the relation given in (2.20).

At this point, we can explain why we consider two situations for creating the projection
operator. The problem arises at the recovery step. In situation 1, if we consider the matrix
corresponding to the degree M reconstruction operator, we have to solve an underdetermined
system of equations. However, this problem no longer occurs when the degree of the spatial test
functions is greater than or equal to 2. To address this issue, we consider the two situations
mentioned at the beginning of this section in order to create the projection operator.

Furthermore, in situation 1, the matrix related to RN directly provides the û(tn+1) values
in which we are interested. But in situation 2, the matrix related to RM provides the ŵ(tn+1)

values at the degrees of freedoms related to the degree M. We need to do one more step to
compute the û(tn+1) values from them.

From (3.12) the higher-degree polynomial approximation for the values at time level tn+1 can
be written as follows,

Pi(ξ) =

M∑

j=1

ŵj(t
n+1)ΦMj (ξ) = ŵj(t

n+1)ΦMj (ξ), (3.23)

with the relation

∫ 1

0

Pi(ξ) · ΦNj dξ =

∫ 1

0

uh(ξ) · ΦNj dξ. (3.24)

Substituting (3.10) and (3.23) into (3.24) , we can compute the û(tn+1) values.
After following the procedure, we reduce the non-physical oscillations that may arise in the

solution uh(x, tn+1) at the subsequent time level tn+1. However, we have not yet implemented
any limiting strategy for the point values in problem cells. Here we suggest two approaches for
limiting the point values.

(L1) Once the lower-order updated subcell averages are obtained from (3.22), we proceed to
solve the Riemann problem at each cell interface of the troubled cells. We select the two
states for the Riemann problem as the nearest left and right subcell averages at the cell
interface. The solution of the Riemann problem can be assigned as the limited point value
at time level tn+1. Figure 3.6 illustrates the situation.

PL,i PR,i

PL,i−1 PR,i+1

i− 1 i i+ 1i+ 1
2

vn+1
i,5

vn+1
i+1,1

i+ 1
2

un+1
i+ 1

2

= RP
(
vn+1
i,5 ,vn+1

i+1,1

)

Figure 3.6: Limiting the point values considering the solution of the Riemann problem at the
cell interface. This representation corresponds to the 5th- order Active Flux scheme.
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(L2) Alternatively, we can extend the limitation on point values in a broader manner. We
determine the point values at tn+1 by averaging the values of the left and right subcell
averages from (3.22) near the cell interface. In one-dimensional scenarios, this involves
computing the arithmetic mean of the two subcell averages under consideration.

PL,i PR,i

PL,i−1 PR,i+1

i− 1 i i+ 1i+ 1
2

vn+1
i,5

vn+1
i+1,1

i+ 1
2

un+1
i+ 1

2

= 1
2

(
vn+1
i,5 + vn+1

i+1,1

)

Figure 3.7: Limiting the point values considering the arithmetic mean of the nearest subcell
averages at the cell interface. This representation corresponds to the 5th- order Active Flux
scheme.

3.2.3 Linear scalar problem

In this section, we discuss our proposed method by considering a linear scalar hyperbolic problem
with the flux function f(u) = au

∂

∂t
u+ a

∂

∂x
u = 0.

For simplicity, we first transform the problem into the space-time reference element QE
∂

∂τ
u+ a∗

∂

∂ξ
u = 0, with a∗ = ∆tξxa. (3.25)

The weak formulation relies on the local space-time dependent test functions denoted by
θMk (ξ, τ), corresponding to degreeM . We multiply (3.25) by space-time dependent test functions
and integrate over the space-time reference element QE

〈
θMk ,

∂

∂τ
u

〉
+ a∗

〈
θMk ,

∂

∂ξ
u

〉
= 0.

We apply integration by parts in time and it leads to
[
θMk ,UM

]
1
−
[
θMk ,wh

]
0
−
〈
∂

∂τ
θMk ,UM

〉
+ a∗

〈
θMk ,

∂

∂ξ
UM

〉
= 0.

Substituting the relation (3.13) and (3.11),

[
θMk , θ

M
`

]
1
ÛM

` −
[
θMk ,Φ

M
m

]
0
ŵm(tn)−

〈
∂

∂τ
θMk , θ

M
`

〉
ÛM

` + a∗
〈
θMk ,

∂

∂ξ
θM`

〉
ÛM

` = 0.

By rearranging the terms, we can obtain the following expression
([
θMk , θ

M
`

]
1
−
〈
∂

∂τ
θMk , θ

M
`

〉
+ a∗

〈
θMk ,

∂

∂ξ
θM`

〉)
ÛM

` =
[
θMk ,Φ

M
m

]
0
ŵm(tn). (3.26)

Introducing shorthand notation for the matrices: Kτ
k` =

〈
∂

∂τ
θMk , θ

M
`

〉
,Kξ

k` =

〈
θMk ,

∂

∂ξ
θM`

〉
,

F 0
km =

[
θMk ,Φ

M
m

]
0
, F 1

k` =
[
θMk , θ

M
`

]
1
, we can write (3.26) in the compact form
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Yk`Û
M

` = F 0
kmŵm(tn) (3.27)

with the system matrix

Yk` = F 1
k` −Kτ

k` + a∗Kξ
k`.

The system matrix, always invertible as mentioned in [24], ensures that the solution to (3.27)
can be computed directly. Subsequently, using (3.13), we can compute the local spacetime
predictor UM

(
ξ, τ
)
. With all the necessary information at hand, we are prepared to proceed

with the validation of the hAF method for the linear scalar problem.

Results

First, we present the results obtained through the unlimited higher-order Active Flux schemes
proposed in Section 3.2.1. Both approaches for updating the point values (P1 and P2) are
examined. We apply the standard initial conditions proposed in [44] and set the wave speed to
one (a = 1).
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Figure 3.8: The results obtained from the unlimited hAF schemes are compared. The P1 ap-
proach is shown in the top row, while the P2 approach is shown in the bottom row. The domain
consists of 100 elements and the results are presented at the final time T = 8. Black line
represents the exact solution ( ).



40 Chapter 3. Higher-Order Active Flux Methods

According to Figure 3.8, both approaches provide identical results for the linear advection
equation. Next, we consider higher-order Active Flux methods with the MOOD limiter proposed
in Section 3.2.2. Multiple combinations are available to represent these outcomes, employing dif-
ferent types of point value updates (P1 or P2) and limiting strategies (L1 or L2). We specifically
highlight two combinations, with others operating similarly.

1. The P1 point value update and the L1 limiting strategy are both highly dependent on the
characteristics of the problem. This combination is denoted as P1L1.

2. In order to adopt a more generalized approach, we apply P2 point value update and L2
limiting strategy. We denote it as P2L2.

We considered only 6th-order Active Flux scheme with 100 elements to compare the performance
of the two combinations.
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Figure 3.9: Results at the final time T = 8. The point values (+), cell averages ( ), and exact
solution ( ) are displayed. Top row: the unlimited results with P1 approach (left) and results
with P1L1 approach (right) are presented. Bottom row: the unlimited results with P2 approach
(left) and results with P2L2 approach (right) are displayed.
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Stability and convergence

The stability ensures that the numerical method does not amplify errors as the computation
progresses. We can write the hAF scheme in the form of (2.23) and apply the Theorem 2.2
for the stability analysis. The eigenvalues of the matrix A for different schemes are depicted in
Figure 3.10.

Moreover, in Remark 3.1, we compare some properties of the higher-order Active Flux method
and the ADER-DG method considering linear hyperbolic problems.
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Figure 3.10: The eigenvalues (•) of the iterative matrix A for different CFL numbers and related
convergence orders. The reference unit circle is shown in red.

Remark 3.1 Here, we provide a summary of the comparison between the ADER-DG method
and the higher-order Active Flux method, considering linear scalar problems. Let’s consider
a domain with Z cells.

Comparison between the ADER-DG and hAF methods
Order Degree (N) DOF CFL

hAF ADER-DG hAF ADER-DG hAF ADER-DG

3 0 2 2Z+1 3Z 1.0 0.17
4 1 3 3Z+1 4Z 0.33 0.10
5 2 4 4Z+1 5Z 0.17 0.069
6 3 5 5Z+1 6Z 0.10 0.045
7 4 6 6Z+1 7Z 0.069 0.038

The convergence study measures whether the numerical solution approaches the exact solution
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as we refine the number of elements in the grid. We list the convergence results in Table 3.1
for the smooth initial condition u(x, 0) = sin(2πx). As anticipated, hAF schemes achieve the
expected convergence orders. We start with 4 elements in the grid and refine it to 20 elements.
The periodic boundary conditions are imposed. We calculate the data with the final time set at
T = 5.

hAF NE L1 OL1 L2 OL2 L∞ OL∞
O3 (N = 0) 4 8.5982E-02 - 1.0022E-01 - 1.3748E-01 -

8 1.2195E-02 2.81 1.4259E-02 2.81 2.0166E-02 2.76
12 3.8726E-03 2.82 4.2997E-03 2.95 6.0417E-03 2.97
16 1.6244E-03 3.02 1.7967E-03 3.03 2.5198E-03 3.03
20 8.1406E-04 3.09 9.0369E-04 3.07 1.2746E-03 3.05

O4 (N = 1) 4 1.3748E-01 - 1.3748E-01 - 1.3844E-01 -
8 9.4489E-03 3.86 1.0229E-02 3.74 1.3474E-02 3.36
12 1.8843E-03 3.97 2.0692E-03 3.94 2.8335E-03 3.84
16 5.9711E-04 3.99 6.5898E-04 3.97 9.1510E-04 3.92
20 2.4508E-04 3.99 2.7110E-04 3.98 3.7872E-04 3.95

O5 (N = 2) 4 5.6625E-03 - 6.1488E-03 - 8.0592E-03 -
8 1.5934E-04 5.15 1.7756E-04 5.11 2.4818E-04 5.02
12 2.0531E-05 5.05 2.2867E-05 5.05 3.2197E-05 5.03
16 4.8478E-06 5.01 5.3969E-06 5.01 7.6165E-06 5.01
20 1.5860E-06 5.00 1.7653E-06 5.00 2.4940E-06 5.00

O6 (N = 3) 4 1.6970E-04 - 1.7321E-04 - 2.0439E-04 -
8 2.6033E-06 6.02 2.8304E-06 5.93 3.8261E-06 5.73
12 2.2928E-07 5.99 2.5236E-07 5.96 3.5024E-07 5.89
16 4.0847E-08 5.99 4.5143E-08 5.98 6.3193E-08 5.95
20 1.0715E-08 5.99 1.1864E-08 5.98 1.6673E-08 5.97

O7 (N = 4) 4 6.3602E-06 - 6.5791E-06 - 8.0432E-06 -
8 4.7258E-08 7.07 5.1680E-08 6.99 7.0820E-08 6.82
12 2.7627E-09 7.00 3.0454E-09 6.98 4.2418E-09 6.94
16 3.7181E-10 6.97 4.1060E-10 6.96 5.7328E-10 6.95
20 8.0069E-11 6.88 8.8612E-11 6.87 1.2434E-10 6.84

Table 3.1: Numerical convergence rates for the advection equation with higher-order Active Flux
schemes evaluated from third to seventh order of accuracy in both space and time.

3.2.4 Linear systems

The extension of the linear scalar problem to the linear systems can be done as follows. Let us
consider general linear hyperbolic systems of the form

∂

∂t
u +A

∂

∂x
u = 0. (3.28)

The variable u represents a vector with n unknowns, and the matrix A is a square matrix
of size n× n with n real eigenvalues and corresponding n linear independent eigenvectors. The
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linear system given in (3.28) can be transformed to the space-time reference element using the
transformation relations given in (2.3). We get

∂

∂τ
u +A∗

∂

∂ξ
u = 0,

with A∗ = ∆tξxA. Introducing the indices p and q for the variables, the matrix A is defined as
A = (aqp)qp. Furthermore, indices k,` and m correspond to the degrees of freedom. Similar to
(3.26) in Section 3.2.3, we can represent the system as

(
δqp
(
F 1
k` −Kτ

k`

)
+ a∗qpK

ξ
k`

)
ÛM

p` = δqpF
0
kmŵpm(tn) (3.29)

where δqp denotes the Kronecker symbol. Introducing the system matrix

Yqpkl =
(
δqp
(
F 1
k` −Kτ

k`

)
+ a∗qpK

ξ
k`

)
,

compact form of (3.29) can be written as follows

YqpklÛ
M

p` = δqpF
0
kmŵpm(tn). (3.30)

We can compute ÛM

p` from (3.30) and then obtain the local space-time predictor from (3.13).
First, apply the unlimited higher-order Active Flux schemes considering the system (3.28) with

u =

[
p

v

]
, A =

[
0 K0

1
ρ0

0

]
,

where the constants take the values K0 = ρ0 = 1.4. The initial conditions are defined in (2.24).
Figure 3.11 represents the first component p using 3rd and 6th-order Active Flux schemes. Here,
we use approximately 400 degrees of freedom for both schemes. In other words, the domain
contains 200 cells for 3rd-order scheme and 80 cells for 6th-order scheme. This demonstrates that
the 6th-order Active Flux scheme is able to capture all the features of the solution more sharply
than the 3rd-order scheme. We consider the P2 approach for the point value update.
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Figure 3.11: The 3rd-order AF solution (left) and the 6th-order AF solution (right). Results are
presented at the final time T = 7.5. The point values (+) and cell averages ( ) are displayed.
The black line represents the exact solution ( ).
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Next, we aim to apply the MOOD limiter. When applying the MOOD limiter to linear
scalar problems, it demonstrates more favorable outcomes for the general limiting strategy P2L2
than the Riemann solution-based strategy P1L1. This general approach P2L2 involves using the
averaged value of nearest subcell averages as limited point value, making it a preferred choice for
linear systems. Here, we introduce another example with discontinuities. Let’s consider a linear
hyperbolic system (3.28) with,

u =

[
p

v

]
, A =

[
0 1

c̄2 − v̄2 2v̄

]
.

The parameters take the values c̄ = 3/2 and v̄ = −1/2. The system has two waves with the
speeds λ1 = −2 and λ2 = 1. To capture the two waves more accurately, we imposed a Roe-type
flux function for the simulation. Figure 3.12 shows that the numerical solution sharply captured
the discontinuities without producing oscillations. The domain consists of 100 elements. We
impose the following initial conditions

ρ(x, 0) =





1, 0.4 < x < 0.6

0, otherwise,

q(x, 0) = 0.
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Figure 3.12: The results are represented at the final time T = 1. The cell averages are denoted
by ( ) and the point values are indicated by (+). These results correspond to the 6th-order
Active Flux scheme. The black line represents the exact solution ( ).

3.2.5 Non-linear problems

The general non-linear hyperbolic systems given in (3.1) can be written in the space-time refer-
ence coordinate system as

∂

∂τ
u +

∂

∂ξ
f∗(u) = 0, (3.31)

where f∗(u) = ∆tξxf(u). We can multiply (3.31) with the higher degree space-time test func-
tions θMk and integrate over the QE . Applying the integration by parts for the time derivative
term we obtain the following relation
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[
θMk ,u

]
1
−
[
θMk ,w

]
0
−
〈
∂

∂τ
θMk ,u

〉
+

〈
θMk ,

∂

∂ξ
f∗(u)

〉
= 0. (3.32)

Substituting the relations (3.10), (3.11), (3.13) and (3.14) into (3.32), we get

[
θMk , θ

M
`

]
1
ÛM

` −
[
θMk ,Φ

M
m

]
0
ŵm(tn)−

〈
∂

∂τ
θMk , θ

M
`

〉
ÛM

` +

〈
θMk ,

∂

∂ξ
θM`

〉
F̂M∗
` = 0.

The relation between the degrees of freedom of the numerical solution and those of the
numerical flux can be expressed similarly to Chapter 2, as follows

F̂M

` = f(ÛM

` ).

Since we consider a non-linear flux function, the iteration procedure is imposed similarly to
the discussion in Section 2.1.2. Considering the notations defined in Section 3.2.3 we can obtain

(
F 1
k` −Kτ

k`

) (ÛM

`

)r+1

= F 0
kmŵm(tn)−Kξ

k`

(
F̂M∗
`

)r
(3.33)

where r represents the iteration index. In general, the convergence of the iteration (3.33) can
not be guaranteed with the improved CFL numbers presented in Remark 3.1. We consider the
same CFL numbers which we consider in ADER-DG methods (see Section 2.1.3) to ensure the
convergence of the (3.33).

Burgers’ equation

First, we consider the well-known inviscid Burgers’ equation as the non-linear scalar problem.
The initial condition is applied similarly to that in [2].

∂

∂t
u+ u

∂

∂x
u = 0,

u(x, 0) = 2.5 exp
(
− (x− 0.5)2

0.12

)
− 0.2.
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Figure 3.13: The results are presented for 3rd to 6th-order Active Flux schemes under the P1L1
approach using 100 elements. The black line ( ) represents the reference solution using a
first-order upwind scheme with 4000 cells. The final time is set at T = 0.1.
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Point values
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Figure 3.14: The results are presented for 3rd to 6th-order Active Flux schemes under the P2L2
approach using 100 elements. The black line ( ) represents the reference solution using a
first-order upwind scheme with 4000 cells. The final time is set at T = 0.1.

Figure 3.13 and Figure 3.14 correspond to P1L1 and P2L2 approach respectively. All the
hAF schemes yield similar results. A simulation of Burgers’ equation with an initial Gaussian
distribution shows a notable transformation after time T = 0.1. The MOOD limiter successfully
reduces the oscillations near the discontinuity.

Shallow water equations

Exploring nonlinear hyperbolic systems, we turn our attention to the shallow water equations,
which play a critical role in understanding fluid behavior in shallow water environments. The
shallow water system can be written in the following form

(
h

hv

)

t

+

(
hv

hv2 + 1
2gh

2

)

x

= 0,

where h represents the height of the water surface, v indicates the velocity of the water flow in
the x direction and g is the gravitational acceleration. The initial condition is given as follows

h(x, 0) =




h0 = 1, x < 0.5

h1 = 0.5, x > 0.5
, v(x, 0) = 0.

The two combinations, based on the point values update and the limiting strategies, are
tested using a smaller number of elements (32) and a sufficiently larger number of elements
(100). Figure 3.15 shows the results with the more problem-dependent approach P1L1, while
Figure 3.16 represents the more general approach P2L2. Both approaches sharply capture the
exact solution, specially when the number of elements is large. However, hAF schemes are able
to capture all features of the exact solutions with fewer elements.
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Figure 3.15: At the final time T = 0.05, results are shown for the P1L1 approach for the 6th-order
Active Flux scheme with 32 elements (left) and 100 elements (right) in the domain. The black
line ( ) represents the reference solution (Exact Riemann solver) with 5000 cells.
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Figure 3.16: At the final time T = 0.05, results are shown for the P2L2 approach for the 6th-order
Active Flux scheme with 32 elements (left) and 100 elements (right) in the domain. The black
line ( ) represents the reference solution (Exact Riemann solver) with 5000 cells.
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So far, we have studied explicit numerical methods with higher-order accuracy. This chapter
explores higher-order implicit approaches, focusing on implicit finite volume methods [34, 57] and
Active Flux methods [3, 6] for solving hyperbolic conservation law problems. When employing
explicit higher-order methods, the CFL number significantly decreases to ensure the stability of
the scheme. Consequently, we must consider small time steps and thereby reducing the overall
efficiency. However, by adopting implicit approaches, we can overcome this limitation. These
implicit numerical methods use a narrow stencil to achieve higher-order accuracy. While explicit
schemes update the solution directly to the subsequent time level, implicit schemes require the
solution of a system of equations at each time step. The main challenges of implicit methods
include solving a system of equations at each time step and implementing limiters. This chapter
primarily concentrates on the implicit approach to linear hyperbolic problems.

4.1 Implicit finite volume methods
We initiate our discussion by examining higher-order accurate implicit finite volume (FV) meth-
ods with a narrow stencil. Typically, the numerical schemes presented in this section focus on
the linear scalar advection equation of the form

∂

∂t
u+ a

∂

∂x
u = 0, a ∈ R,

u(x, 0) = u0(x).

(4.1)

In this context, u = u
(
x, t
)
represents the conserved quantity with u0(x) denoting the given

initial condition. For simplicity in explanation, we assume the velocity to be a positive real
number (a > 0). Applying one-dimensional uniform spatial discretization with NE elements,
where cells denoted by

[
xi− 1

2
, xi+ 1

2

]
, and index i ranges from 1 to NE , with a cell size of ∆x.

The CFL number c is defined as c = a∆t
∆x , where ∆t = tn+1 − tn represents the time step. The

classical update formula for the finite volume schemes is as follows

un+1
i = uni −

∆t

∆x

(
Fi+ 1

2
− Fi− 1

2

)
, i = 1, 2, 3, . . . , NE , (4.2)

where, uni = u(xi, t
n) is the cell averages defined as uni = 1

∆x

∫ x
i+ 1

2

x
i− 1

2

u(x, tn)dx and Fi± 1
2
are the

numerical fluxes at the cell interfaces. The study on higher-order finite volume schemes is based
on [34].
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4.1.1 Third order scheme

We aim to achieve a third-order scheme by ensuring highly accurate numerical fluxes at the
interfaces. Constructing a time-dependent quadratic polynomial p at the cell interface is crucial,
and it must satisfy the following constraints

c

∆t

∫ tn+ ∆t
c

tn
p(t)dt = uni ,

c

∆t

∫ tn+1+ ∆t
c

tn+1

p(t)dt = un+1
i ,

c

∆t

∫ tn+1+ 2∆t
c

tn+1+ ∆t
c

p(t)dt = un+1
i−1 .

uni−1 uni

un+1
i−1 un+1

i

tn + ∆t
c

tn

tn+1

tn+1 + ∆t
c

tn+1 + 2∆t
c

xi− 3
2

xi− 1
2

xi+ 1
2

Figure 4.1: Characteristic information for 3rd order scheme.

The numerical flux is computed at cell interface by Fi+ 1
2

=
1

∆t

∫ tn+1

tn
ap(t)dt and has the

form as in [34]

Fi+ 1
2

= a

[(
c2 + 3c− 4

6c

)
un+1
i −

(
c2 − c

6c

)
un+1
i−1 +

(
c+ 2

3c

)
uni

]
.

We compute the final update formula as follows,

un+1
i = uni −

[(
c2 + 3c− 4

6

)
un+1
i −

(
2c2 + 2c− 4

6

)
un+1
i−1 +

(
c+ 2

3

)
uni

+

(
c2 − c

6

)
un+1
i−2 −

(
c+ 2

3

)
uni−1

]
.

4.1.2 Fourth order scheme

We can calculate the fourth-order scheme by employing a similar approach to the one described
above. To compute the numerical fluxes, we construct a time-dependent cubic polynomial p at
the cell interface, subject to the following constraints

c

∆t

∫ tn+ ∆t
c

tn
p(t)dt = uni ,

c

∆t

∫ tn+ 2∆t
c

tn+ ∆t
c

p(t)dt = uni−1,

c

∆t

∫ tn+1+ ∆t
c

tn+1

p(t)dt = un+1
i ,

c

∆t

∫ tn+1+ 2∆t
c

tn+1+ ∆t
c

p(t)dt = un+1
i−1 .

After computing the more accurate fluxes across the cell interfaces, we apply the general
finite volume update formula (4.2).
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Figure 4.2: Characteristic information for 4th order scheme.

We represent the flux in the following form as given in [34]

Fi+ 1
2

= a

[(−c2 + 3c+ 10

12c

)
uni +

(
c2 + 3c+ 2

12c

)
uni−1 +

(
c2 + 3c− 10

12c

)
un+1
i

+

(−c2 + 3c− 2

12c

)
un+1
i−1

]
.

We can express the final update formula as follows

un+1
i = uni −

[(−c2 + 3c+ 10

12

)
uni +

(
2c2 − 8

12

)
uni−1 +

(
c2 + 3c− 10

12

)
un+1
i

+

(−2c2 + 8

12

)
un+1
i−1 −

(
c2 + 3c+ 2

12

)
uni−2 +

(
c2 − 3c+ 2

12

)
un+1
i−2

]
.

To investigate the performance of the two methods, we analyze their behaviour using the
standard initial condition proposed in [54]. The simulations run with 200 cells and a CFL number
of approximately 6. As Figure 4.3 depicts, the fourth-order implicit finite volume (FV) method
shows more oscillations. We expect these oscillations because all eigenvalues corresponding to
the fourth-order scheme are equal to one as shown in Figure 4.4. Additionally, we analyze the
convergence of the schemes by applying the smooth initial condition u(x, 0) = sin(2πx). We
start with 32 cells and refine the mesh to 512 cells. We outline the results obtained in this study
in Table Table 4.1.

3rd order FV 4th order FV
Cells L1- error Order of convergence Cells L1- error Order of convergence
32 0.7283 - 32 0.0864 -
64 0.1367 2.41 64 0.0057 3.91
128 0.0182 2.90 128 0.0003 3.99
256 0.0023 2.98 256 2.26E-05 3.99
512 0.0003 3.00 512 1.41E-06 4.00

Table 4.1: The convergence results for the implicit finite volume methods.



52 Chapter 4. Higher Order Implicit Methods

0 0.5 1 1.5 2
x

-0.5

0

0.5

1.0

1.5

u

Order 3
Order 4
Exact

Figure 4.3: Comparison of two schemes using 200 cells with a CFL number of about 6. Results
are shown at final time T = 8.

A detailed discussion on the stability of the two implicit finite volume methods can be found
in [34]. Therefore, we write the implicit finite volume schemes in the following form

Aun+1 = Bun (4.3)

where u represents all degrees of freedom in the domain.
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Figure 4.4: Spectrum of the A−1B matrix for 3rd (top row) and 4th (bottom row) order finite
volume schemes for different CFL numbers. The reference unit circle is shown in red.

The stability of these finite volume schemes can be verified using Theorem 2.2 by analyzing
the spectrum of the matrix A−1B. Figure 4.4 illustrates the spectrum for some CFL numbers
greater than 1. Based on these findings, we can conclude that the 3rd and 4th-order schemes



4.2 Implicit Active Flux methods 53

remain stable for CFL > 1. Additionally, in the case of the 4th-order finite volume method, all
eigenvalues are equal to 1.

4.2 Implicit Active Flux methods
The Active Flux method employs different degrees of freedom than finite volume methods, as
discussed in Chapter 3. Let’s briefly recap the two degrees of freedom for the ith cell:

1. Cell averages of the conserved quantity, denoted as ūi(t) ≈ 1
∆x

∫ x
i+ 1

2

x
i− 1

2

u(x, t)dx.

2. Point values of the conserved quantities at the cell interface, denoted as ui+ 1
2
(t) ≈ u(xi+ 1

2
, t)

Our starting point introduces the semi-discrete Active Flux methods, as outlined in [1, 2].
The spatial integration of the general hyperbolic conservation law ∂tu + ∂xf(u) = 0 yields the
following expression

d

dt
ūi(t) +

f
(
ui+ 1

2
(t)
)
− f

(
ui− 1

2
(t)
)

∆x
= 0. (4.4)

In line with the approach adopted throughout this chapter, we assume the flux function to be
f(u) = au. To derive the third-order approximation for the spatial derivative, we first transform
each element to the spatial reference element TE using ξ =

(
x − xi− 1

2

)
/∆x, where 0 ≤ ξ ≤ 1.

Within TE , we construct a polynomial p(ξ) under the constraints

pi(0) = ui− 1
2
(t), pi(1) = ui+ 1

2
(t),

∫ 1

0

pi(ξ)dξ = ūi(t).

It takes the following form

pi(ξ) = ui− 1
2
(t) + ξ

(
−4ui− 1

2
(t) + 6ūi(t)− 2ui+ 1

2
(t)
)

+ ξ2
(

3ui− 1
2
(t)− 6ūi(t) + 3ui+ 1

2
(t)
)
.

After constructing the spatial polynomial, we then take its derivative at the cell interface at
xi+ 1

2
, providing a third-order approximation for the spatial derivative

d

dt
ui+ 1

2
(t) = −a

2ui− 1
2
(t)− 6ūi(t) + 4ui+ 1

2
(t)

∆x
. (4.5)

We applied more fundamental implicit numerical methods to solve the semi-discrete coupled
ODE system represented in (4.4) and (4.5) with a > 0. Figure 4.5 illustrates the numerical
results for the following classical implicit methods as in [6].

• Crank-Nicolson (CN) method (2nd order)

• Radau IA method (3rd order)

0 1/4 −1/4

2/3 1/4 5/12

1/4 3/4
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• Radau IIA method (3rd order)

1/3 5/12 −1/12

1 3/4 1/4

3/4 1/4

• DIRK method (3rd order)

1/2 +
√

3/6 1/2 +
√

3/6 0

1/2−
√

3/6 −
√

3/3 1/2 +
√

3/6

1/2 1/2

The convergence study follows a similar approach to the one we discussed for implicit finite
volume methods.

CN Radau IA Radau IIA DIRK

Cells L1- error OC L1- error OC L1- error OC L1- error OC

16 1.0050 - 0.1020 - 0.1020 - 0.3395 -

32 0.4214 1.25 0.0127 2.99 0.0127 2.99 0.0649 2.38

64 0.1133 1.89 0.0015 3.01 0.0015 3.01 0.0093 2.79

128 0.0294 1.94 1.89E-4 3.05 1.89E-4 3.05 0.0011 2.99

256 0.0072 2.01 2.34E-5 3.01 2.34E-5 3.01 1.46E-4 3.00

Table 4.2: The errors are calculated using the point values. "OC" stands for Order of convergence.
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Figure 4.5: Results for semi-discrete Active Flux method solving by classical implicit methods
using 100 cells with CFL number around 3. The symbol (+) indicates cell averages, and (×)

represents point values. The final time is set at T = 8.
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4.2.1 Single-step methods

The semi-discrete implicit Active Flux methods achieve maximum third-order accuracy because
the quadratic polynomial provides information for updating the point values. Also, some of them
employ multistep behaviour. These reasons direct our attention to a recently developed method
proposed in [6]. Within this framework, a time-dependent polynomial is constructed along the
cell interface using the characteristic information provided by Figure 4.6. This reconstruction
polynomial involves both the averages and point values update.

ūn
i

ūn
i+1

ūn+1
i+1

ūn+1
i

un
i+1/2

un+1
i+1/2

un+1
i+3/2

tn+1 + ∆t
c

tn+1 − ∆t
c

tn + ∆t
c

tn − ∆t
c

tn

tn+1 = tn + ∆t

Figure 4.6: Dashed lines depict characteristic lines. Cell averages and point values are denoted by
black squares and circles, respectively. Red squares represent the averages of the reconstruction
polynomial in time. Both the black and red squares hold identical values

Following Figure 4.6, one can obtain six data points along the cell interface (which may exceed
the limit

[
tn, tn+1

]
) by applying information from time levels tn and tn+1. We can select the

necessary relations from the following six options to find the reconstruction polynomial in time,
urecon
i+ 1

2

(t), depending on its degree

ureconi+ 1
2

(tn) = uni+ 1
2
,

ureconi+ 1
2

(tn+1) = un+1
i+ 1

2

,

c

∆t

∫ tn+1+ ∆t
c

tn+1

ureconi+ 1
2

(t)dt = ūn+1
i ,

c

∆t

∫ tn+1

tn+1−∆t
c

ureconi+ 1
2

(t)dt = ūn+1
i+1 ,

c

∆t

∫ tn+ ∆t
c

tn
ureconi+ 1

2
(t)dt = ūni ,

c

∆t

∫ tn

tn−∆t
c

ureconi+ 1
2

(t)dt = ūni+1.

In this approach, a reconstruction polynomial of up to degree five is generated to achieve
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sixth-order accuracy. Once the reconstruction polynomial is obtained, updates are performed in
the following manner.

• Averages

ūn+1
i = ūni −

∆t

∆x

(
f̃i+ 1

2
− f̃i− 1

2

)
,

with

f̃i+ 1
2

=
1

∆t

∫ tn+1

tn
f(ureconi+ 1

2
(t))dt.

• Point values

un+1
i+ 3

2

= ureconi+ 1
2

(
tn+1 − ∆t

c

)
.

Next, we will discuss three examples using this approach. To simplify the representation of
the stencil, we will consider a pictorial representation similar to the one shown in . We use
boxes to denote the average values and circles to denote the point values in that representation.
The symbols on the upper line correspond to the time level tn+1, while those below are related
to the time level tn. To generate the reconstruction polynomial, we only consider highlighted
degrees of freedom as shown in the symbols.

Example 1: Third-Order Scheme denoted by

In the first example, we construct a third-order scheme using the stencil as shown in the pictorial
representation. The reconstruction polynomial is of degree 2 and involves un

i+ 1
2

, un+1
i+ 1

2

, and ūn+1
i+1 .

We summarize the necessary steps by considering the CFL number c = a∆t
∆x .

• Reconstruction polynomial in time at xi+ 1
2
,

ureconi+ 1
2

(t) = uni+ 1
2

+
(t− tn)

(3c− 2)∆t

(
− 2(3c2 − 3c+ 1)un+1

i+ 1
2

+ 6c2ūn+1
i+1 − 2(3c− 1)uni+ 1

2

)

+
(t− tn)2

(3c− 2)∆t2

(
3c(2c− 1)un+1

i+ 1
2

− 6c2ūn+1
i+1 + 3cuni+ 1

2

)
.

• The point values update formula is as follows,

(3c− 1)(c− 1)un+1
i+ 1

2

+ 6c(1− c)ūn+1
i+1 + c(3c− 2)un+1

i+ 3
2

− uni+ 1
2

= 0.

• Numerical flux function,

f̃i+ 1
2

=
a

3c− 2

(
− (c− 1)2un+1

i+ 1
2

+ c2ūn+1
i+1 + (c− 1)uni+ 1

2

)
.

• We update the average values in the following manner

−c(c− 1)2un+1
i− 1

2

+ (c− 1)2(c+ 2)ūn+1
i + c(c− 1)2un+1

i+ 1
2

− c3ūn+1
i+1

+c(c− 1)uni− 1
2

+ (3c− 2)ūni − c(c− 1)uni+ 1
2

= 0.
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Example 2: Fourth-Order Scheme denoted by

Here, we summarize the updated formulas for the fourth-order scheme. The values un
i+ 1

2

, un+1
i+ 1

2

,

ūn+1
i , and ūn+1

i+1 are used to generate the reconstruction polynomial of degree 3 in time.

• For the point values update,

−c(c− 1)(2c− 1)ūn+1
i + 2(c− 1)(4c2 + c− 1)un+1

i+ 1
2

− c(c− 1)(10c+ 7)ūn+1
i+1

+2c(2c2 − 1)un+1
i+ 3

2

− 2uni+ 1
2

= 0.

• Numerical flux function,

f̃i+ 1
2

=
a

4(2c2 − 1)

(
− 2(c− 1)2(c+ 1)2un+1

i+ 1
2

+ c2(c+ 1)2ūn+1
i+1

+c2(c− 1)2ūn+1
i + 2(c− 1)(c+ 1)uni+ 1

2

)
.

• For the averages update,

c3(c− 1)2ūn+1
i−1 − 2c(c− 1)2(c+ 1)2un+1

i− 1
2

+ 4(c− 1)2(c+ 1)2ūn+1
i

+2c(c− 1)2(c+ 1)2un+1
i+ 1

2

− c3(c+ 1)2ūn+1
i+1 + 2c(c− 1)(c+ 1)uni− 1

2

−4(1− 2c2)ūni − 2c(c− 1)(c+ 1)uni+ 1
2

= 0.

Example 3: Fifth-Order Scheme denoted by

In the fifth-order scheme, the values ūni , ūni+1, ū
n+1
i , un+1

i+ 1
2

and ūn+1
i+1 are used to generate a

reconstruction polynomial of degree 4 in time. For the simulations, we consider the following
formulas.

• For the point values,

−c(c− 1)2(5c2 − 5c− 1)ūn+1
i + 2c(c− 1)(c+ 1)(10c2 − 15c+ 2)un+1

i+ 1
2

−(c+ 1)(25c4 − 40c3 − 4c2 + 17c− 4)ūn+1
i+1 + 2c(c− 1)(c+ 1)(5c2 − 2)un+1

i+ 3
2

−c(c+ 1)(5c+ 1)ūni + (c− 1)2(5c− 4)ūni+1 = 0.

• Numerical flux function,

f̃i+ 1
2

=
a

4(5c2 − 2)

(
(c− 1)(c+ 1)2(c+ 2)ūn+1

i+1 − 2(c− 2)(c− 1)(c+ 1)(c+ 2)un+1
i+ 1

2

+(c− 2)(c− 1)2(c+ 1)ūn+1
i − (c− 2)(c− 1)2ūni+1 + (c+ 2)(c+ 1)2ūni

)
.

• For the averages,

−c(c− 2)(c− 1)2(c+ 1)ūn+1
i−1 + 2c(c− 2)(c− 1)(c+ 1)(c+ 2)un+1

i− 1
2

−2(c− 2)(c+ 2)(3c2 − 1)ūn+1
i − 2c(c− 2)(c− 1)(c+ 1)(c+ 2)un+1

i+ 1
2

+c(c− 1)(c+ 1)2(c+ 2)ūn+1
i+1 − c(c+ 1)2(c+ 2)ūni−1

+2(c− 2)(c− 1)(c+ 1)(c+ 2)ūni − c(c− 2)(c− 1)2ūni+1 = 0.
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We validate these schemes by considering the Jiang-Shu initial condition [44] with 100 cells
and setting the CFL number to approximately 3. The convergence study begins with a smooth
initial condition u(x, 0) = sin(x) using 16 cells and progressively refines the domain, reaching
512 cells for simulation. The results demonstrate the L1-error computed based on the point
values. As expected, the described schemes achieve the correct convergence rates, as shown in
Figure 4.8. The third-order and fourth-order schemes guarantee stability for CFL > 1, while the
fifth-order scheme ensures stability for CFL > 2. For further investigation in which combinations
are stable, please refer to [6].
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Figure 4.7: Results for single-step implicit Active Flux methods: (+) denotes cell averages,
(×) represents point values, at the final time T = 8. Results of the third-order ( , × ),
fourth-order ( , × ), and fifth-order ( , × ) schemes are presented.
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Figure 4.8: The L1-errors are present for the third-order scheme × , the fourth-order scheme
× , and the fifth-order scheme × .
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For stability analysis, the single-step implicit Active Flux methods can be represented in
the general form outlined in equation (4.3). The eigenvalues of the matrix A−1B, as shown in
Figure 4.9, satisfy the stability criteria specified in Theorem 2.2.
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Figure 4.9: The spectrum of the matrix A−1B related to 3rd-order (top row), 4th-order (middle
row) and 5th-order (bottom row) single-step implicit Active Flux schemes for different CFL
numbers.

4.2.2 Linear systems

Let’s extend the single-step implicit Active Flux method to linear systems of hyperbolic problems.
In this discussion, our focus is on a system characterized by two waves with different speeds.
Let’s consider the following form of the linear system

ut +Aux = 0 (4.6)

where

u = u(x, t) =

[
ρ

q

]
, A =

[
0 1

c̃2 − v2 2v

]
,
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with the given initial condition

ρ(x, 0) =





1, 0.4 < x < 0.6

0, otherwise
, q(x, 0) = 0.

We select parameters c̃ = 3.5 and v = 0.5 to establish two distinct wave speeds, with waves
propagating in opposing directions. The left-going and right-going waves have different CFL
numbers, denoted by cl and cr respectively. Considering the eigenvectors r1 and r2 of the matrix
A, we construct a matrix R =

(
r1|r2

)
. Then we introduce the characteristic variables w = R−1u

to decoupled the system (4.6) into two linear advection equations. We have detailed the process
of solving the linear advection equation in Section 4.2.1 with positive speed (a > 0). Likewise,
we can proceed for the negative speed (a < 0). First, solve for the characteristic variables w =

[W1,W2]
T then we can transform back to the original variables. The relationships concerning

the averages and point value updates are summarized as follows. W1 and W2 represent the
left-going and right-going characteristic waves, respectively.

Third-order scheme

• Averages

(←)

c3l W̄1
n+1
i−1 − cl(cl + 1)2W1n+1

i− 1
2

− (cl − 2)(cl + 1)2W̄1
n+1
i + cl(cl + 1)2W1n+1

i+ 1
2

−cl(cl + 1)W1ni− 1
2
− (3cl + 2)W̄1

n
i + cl(cl − 1)W1ni+ 1

2
= 0.

(→)

−cr(cr − 1)2W2n+1
i− 1

2

+ (cr − 1)2(cr + 2)W̄2
n+1
i + cr(cr − 1)2W2n+1

i+ 1
2

− c3rW̄2
n+1
i+1

+cr(cr − 1)W2ni− 1
2

+ (3cr − 2)W̄2
n
i − cr(cr − 1)W2ni+ 1

2
= 0.

• Point values

(←)

cl(3cl + 2)W1n+1
i− 3

2

− 6cl(cl + 1)W̄1
n+1
i−1 + (3cl + 1)(cl + 1)W1n+1

i− 1
2

−W1ni− 1
2

= 0.

(→)

(3cr − 1)(cr − 1)W2n+1
i+ 1

2

+ 6cr(1− cr)W̄2
n+1
i+1 + cr(3cr − 2)W2n+1

i+ 3
2

−W2ni+ 1
2

= 0.

Fourth-order scheme

• Averages

(←)

c3l (1− cl)2W̄1
n+1
i−1 − 2cl(cl + 1)2(1− cl)2W1n+1

i− 1
2

+ 4(cl + 1)2(1− cl)2W̄1
n+1
i

+2cl(cl + 1)2(1− cl)2W1n+1
i+ 1

2

− c3l (cl + 1)2W̄1
n+1
i+1 + 2cl(cl + 1)(cl − 1)W1ni− 1

2

−4(1− 2c2l )W̄1
n
i − 2cl(cl + 1)(cl − 1)W1ni+ 1

2
= 0.
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(→)

c3r(cr − 1)2W̄2
n+1
i−1 − 2cr(cr − 1)2(cr + 1)2W2n+1

i− 1
2

+ 4(cr − 1)2(cr + 1)2W̄2
n+1
i

+2cr(cr − 1)2(cr + 1)2W2n+1
i+ 1

2

− c3r(cr + 1)2W̄2
n+1
i+1 + 2cr(cr − 1)(cr + 1)W2ni− 1

2

−4(1− 2c2r)W̄2
n
i − 2cr(cr − 1)(cr + 1)W2ni+ 1

2
= 0.

• Point values

(←)

−2cl(2c
2
l − 1)W1n+1

i− 3
2

+ cl(cl + 1)(10cl − 7)W̄1
n+1
i−1 − 2(cl + 1)(4c2l − cl − 1)W1n+1

i− 1
2

+cl(cl + 1)(2cl + 1)W̄1
n+1
i − 2W1ni− 1

2
= 0.

(→)

−cr(cr − 1)(2cr − 1)W̄2
n+1
i + 2(cr − 1)(4c2r + cr − 1)W2n+1

i+ 1
2

−cr(cr − 1)(10cr + 7)W̄2
n+1
i+1 + 2cr(2c

2
r − 1)W2n+1

i+ 3
2

− 2W2ni+ 1
2

= 0.

Fifth-order scheme

• Averages

(←)

−cl(cl + 1)(1− cl)2(cl − 2)W̄1
n+1
i−1 + 2cl(cl + 2)(cl + 1)(cl − 1)(cl − 2)W1n+1

i− 1
2

−2(cl + 2)(cl − 2)(3c2l − 1)W̄1
n+1
i − 2cl(cl + 2)(cl + 1)(cl − 1)(cl − 2)W1n+1

i+ 1
2

+cl(cl + 2)(cl + 1)2(cl − 1)W̄1
n+1
i+1 − cl(cl + 2)(cl + 1)2W̄1

n
i−1

+2(cl + 2)(cl + 1)(cl − 1)(cl − 2)W̄1
n
i − cl(1− cl)2(cl − 2)W̄1

n
i+1 = 0.

(→)

−cr(cr − 2)(cr − 1)2(cr + 1)W̄2
n+1
i−1 + 2cr(cr − 2)(cr − 1)(cr + 1)(cr + 2)W2n+1

i− 1
2

−2(cr − 2)(cr + 2)(3c2r − 1)W̄2
n+1
i − 2cr(cr − 2)(cr − 1)(cr + 1)(cr + 2)W2n+1

i+ 1
2

+cr(cr − 1)(cr + 1)2(cr + 2)W̄2
n+1
i+1 − cr(cr + 1)2(cr + 2)W̄2

n
i−1

+2(cr − 2)(cr − 1)(cr + 1)(cr + 2)W̄2
n
i − cr(cr − 2)(cr − 1)2W̄2

n
i+1 = 0.

• Point values

(←)

−2cl(cl + 1)(cl − 1)(5c2l − 2)W1n+1
i− 3

2

+ (cl − 1)(25c4l + 40c3l − 4c2l − 17cl − 4)W̄1
n+1
i−1

−2cl(cl + 1)(cl − 1)(10c2l + 15cl + 2)W1n+1
i− 1

2

+ cl(cl + 1)2(5c2l + 5cl − 1)W̄1
n+1
i

−(cl + 1)2(5cl + 4)W̄1
n
i−1 + cl(cl − 1)(5cl − 1)W̄1

n
i = 0.
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(→)

−cr(cr − 1)2(5c2r − 5cr − 1)W̄2
n+1
i + 2cr(cr − 1)(cr + 1)(10c2r − 15cr + 2)W2n+1

i+ 1
2

−(cr + 1)(25c4r − 40c3r − 4c2r + 17cr − 4)W̄2
n+1
i+1 + 2cr(cr − 1)(cr + 1)(5c2r − 2)W2n+1

i+ 3
2

−cr(cr + 1)(5cr + 1)W̄2
n
i + (cr − 1)2(5cr − 4)W̄2

n
i+1 = 0.
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Figure 4.10: The results are displayed at the final time T = 1. The domain consists of 100 cells.
The left-going wave has a CFL number 3, while the right-going wave has a CFL number 4. The
cell averages are denoted by (+) and the point values are indicated by (×).

4.3 Modified Implicit Active Flux Methods (MIAF)
In this section, we present a novel approach for updating point values in an alternative manner. In
the previous configuration, we updated point values and averages using a single time-dependent
reconstruction polynomial along the cell interface. In our new approach, we employ two distinct
reconstruction polynomials: one for updating cell averages and the other for updating point
values. The term ’Modified Implicit Active Flux method’ is applied to this approach because
of its broader scope, which enables the generation of a variety of higher-order implicit schemes
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compared to the previous approach. Our goal is to introduce the concept of the Modified Implicit
Active Flux method and validate selected schemes for scalar linear hyperbolic problems.

• The averaged values can be updated using the finite volume update formula,

ūn+1
i = ūni −

∆t

∆x

(
Fi+ 1

2
− Fi− 1

2

)
, i = 1, 2, 3, . . . , NE ,

where the flux calculation at cell interfaces involves the reconstruction polynomial created
in Section 4.2.1. Hence, the final average update formula remains unchanged.

• Let’s concentrate on the specifics of the proposed approach for updating the point values.
Firstly, we’ll integrate the conservation law provided in (4.1) in time at the cell interface
xi+ 1

2
,

∫ tn+1

tn

∂

∂t
u(xi+ 1

2
, t)dt+ a

∫ tn+1

tn

∂

∂x
u(xi+ 1

2
, t)dt = 0.

Simplifying the first term,

un+1
i+ 1

2

= uni+ 1
2
− a

∫ tn+1

tn

∂

∂x
u(xi+ 1

2
, t)dt. (4.7)

Our objective is to approximate the time integration that appears in (4.7) to ensure the
preservation of higher-order accuracy in the scheme. To achieve this, we adopt a two-step
approach, which we will discuss next. We conduct all computations in the space-time
reference coordinate system for simplicity. The coordinate transformations can be written
as, ξ = (x− xi− 1

2
)/∆x and τ = (t− tn)/∆t.

The reconstruction polynomial we establish in Section 4.2.1 remains unchanged for updating
the averaged values. However, when it comes to updating the point values, we generate a
new time-dependent reconstruction polynomial at the cell interface using derivative values. As
mentioned before, the creation of this new reconstruction polynomial involves two steps.

• step 1 : We consider both cell averages and point values to govern the space-dependent
polynomials at time levels tn and tn+1. We determine the degree of these polynomials based
on the desired convergence order of the scheme. In higher-order schemes, we incorporate
information from neighboring cells when creating these spatial polynomials. Our objective
is to calculate spatial derivatives at specific points. This calculation depends on the stencil
chosen for updating the point values.

• step 2 : We generate a time-dependent reconstruction polynomial along the cell interface
using the spatial-derivative values computed in step 1. Guided by the characteristic infor-
mation of the problem, we derive this polynomial by applying interpolation techniques.

Next, we examine the process of the Modified Implicit Active Flux method in detail, focusing
on selected examples. For each problem, we walk through the step-by-step application of the
two-step process outlined above. As before, we consider the conservation law given in (4.1) with
positive speed (a > 0).
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4.3.1 Third-order scheme

We apply quadratic spatial and temporal polynomials to achieve third-order accurate schemes.
We maintain the same procedure discussed in Section 4.2.1 for updating cell averages because
the modification only applies to the point values update. Therefore, we can directly write the
cell averages update formula as follows

−c(c− 1)2un+1
i− 1

2

+ (c− 1)2(c+ 2)ūn+1
i + c(c− 1)2un+1

i+ 1
2

− c3ūn+1
i+1

+c(c− 1)uni− 1
2

+ (3c− 2)ūni − c(c− 1)uni+ 1
2

= 0.
(4.8)

ūn+1
i+1

un
i+1/2

un+1
i+1/2

un+1
i+3/2

tn+1 − ∆t
c

tn

tn+1

u′n+1
i

u′n
i+1/2

u′n+1
i+1/2

tn+1 + ∆t
2c

tn

tn+1

Figure 4.11: On the left side, the figure shows the stencil related to the cell average update ,
while the right side depicts the stencil related to the point value update . We display the
cell averages ( ) and the point values ( ). Additionally, the red circles ( ) represent the spatial
derivative values at the cell centers, and the green circles ( ) represent the spatial derivative
values at the cell interfaces.

Step 1

We outline the procedure for constructing the space-dependent quadratic polynomial pni (ξ), for
the ith cell at time level tn. There we consider the values un

i− 1
2

, ūni , u
n
i+ 1

2

. Analogously, we
can construct the space-dependent polynomial at time level tn+1. The following constraints are
imposed

pni (0) = uni− 1
2
, pni (1) = uni+ 1

2
,

∫ 1

0

pni (ξ)dξ = ūni .

The desired polynomial and its spatial derivative, represented in the reference coordinates,
are provided as follows

pni (ξ) = uni− 1
2

(
3ξ2 − 4ξ + 1

)
+ ūni

(
6ξ − 6ξ2

)
+ uni+ 1

2

(
3ξ2 − 2ξ

)
,

∂

∂ξ
pni (ξ) = uni− 1

2
(6ξ − 4) + ūni (6− 12ξ) + uni+ 1

2
(6ξ − 2) .

At this point, we introduce new variables to approximate the derivative of the conserved
quantity at certain places (see Figure 4.11)
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∂

∂x
u
(
xi+ 1

2
, tn
)

≈ 1

∆x

∂

∂ξ
pni (ξ)

∣∣∣
ξ=1

= u′
n
i+ 1

2
,

∂

∂x
u
(
xi+ 1

2
, tn+1

)
≈ 1

∆x

∂

∂ξ
pn+1
i (ξ)

∣∣∣
ξ=1

= u′
n+1
i+ 1

2
,

∂

∂x
u
(
xi, t

n+1
)

≈ 1

∆x

∂

∂ξ
pn+1
i (ξ)

∣∣∣
ξ= 1

2

= u′
n+1
i .

Step 2

Next, we can construct the time-dependent quadratic reconstruction polynomial using the deriva-
tive values u′ni+ 1

2
, u′n+1

i+ 1
2
, and u′n+1

i .
Let

q(τ) = a0 + a1τ + a2τ
2

be the time-dependent reconstruction polynomial along the cell interface. Our goal is to approx-
imate the integral,

I =

∫ tn+1

tn

∂

∂x
u
(
xi+ 1

2
, t
)
dt

as described in equation (4.7) using this reconstruction polynomial. To achieve this, we employ
the following interpolation strategy




1 0 0

1 1 1

1 (1 + 1
2c ) (1 + 1

2c )
2




︸ ︷︷ ︸
V



a0

a1

a2


 =



u′ni+ 1

2

u′n+1
i+ 1

2

u′n+1
i


 . (4.9)

We simplify the integration as,

I =

∫ tn+1

tn

∂

∂x
u
(
xi+ 1

2
, t
)
dt

≈∆t

∆x

∫ 1

0

q(τ)dτ

=
∆t

∆x

[
a0τ +

a1

2
τ2 +

a2

3
τ3
]1

0

=
∆t

∆x

(
1,

1

2
,

1

3

)


a0

a1

a2


 .

Substituting from (4.9),

I =
∆t

∆x

(
1,

1

2
,

1

3

)
V −1



u′ni+ 1

2

u′n+1
i+ 1

2

u′n+1
i


 .

Introducing the weights W = [w0, w1, w2] =
(
1, 1

2 ,
1
3

)
V −1 we can write,

I =
∆t

∆x

[
w0u

′n
i+ 1

2
+ w1u

′n+1
i+ 1

2
+ w2u

′n+1
i

]
.

Insert it in (4.7),
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un+1
i+ 1

2

= uni+ 1
2
− a∆t

∆x︸ ︷︷ ︸
c

[
w0u

′n
i+ 1

2
+ w1u

′n+1
i+ 1

2
+ w2u

′n+1
i

]
.

We can express the modified point value update formula as follows

un+1
i+ 1

2

− uni+ 1
2

+ c
[
w0u

′n
i+ 1

2
+ w1u

′n+1
i+ 1

2
+ w2u

′n+1
i

]
= 0. (4.10)

The averaged values update formula in (4.8), combined with the point values update in (4.10),
forms an implicit Active Flux scheme of order 3.

4.3.2 Fourth-order scheme

In this section, we provide a detailed exploration of all the crucial aspects of the fourth-order
accurate Modified Implicit Active Flux scheme.

ūn
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ūn+1
i+1

ūn+1
i

un
i+1/2

un+1
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i
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c
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i+1

u′n+1
i

u′n
i+1/2

u′n+1
i+1/2

tn+1 + ∆t
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tn+1 − ∆t
2c

tn

tn+1

Figure 4.12: On the left side, the figure shows the stencil related to the cell average update ,
while the right side depicts the stencil related to the point value update . We display the
cell averages ( ) and the point values ( ). Additionally, the red circles ( ) represent the spatial
derivative values at the cell centers, and the green circles ( ) represent the spatial derivative
values at the cell interfaces.

Initially, we can proceed by directly formulating the update formula for the cell averages, as
discussed in Section 4.2.1

c3(c− 1)2ūn+1
i−1 − 2c(c− 1)2(c+ 1)2un+1

i− 1
2

+ 4(c− 1)2(c+ 1)2ūn+1
i

+2c(c− 1)2(c+ 1)2un+1
i+ 1

2

− c3(c+ 1)2ūn+1
i+1 + 2c(c− 1)(c+ 1)uni− 1

2

−4(1− 2c2)ūni − 2c(c− 1)(c+ 1)uni+ 1
2

= 0.

(4.11)

Next, let’s concentrate on updating the point values using the new approach, ensuring that
the overall scheme maintains fourth-order accuracy.
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Step 1

The space-dependent polynomial of degree 3, denoted by pni (ξ) for the ith cell at time level tn, is
governed under the following constraints. We consider the values un

i− 1
2

, ūni , u
n
i+ 1

2

, ūni+1. It’s worth
noting that the usual bounds for ξ (0 ≤ ξ ≤ 1) may be exceeded when dealing with neighboring
cells. Similarly, we construct the space-dependent polynomial at time level tn+1 and denote it
pn+1
i (ξ).

pni (ξ = 0) = uni− 1
2
, pni (ξ = 1) = uni+ 1

2
,

∫ ξ=1

ξ=0

pni (ξ)dξ = ūni ,

∫ ξ=2

ξ=1

pni (ξ)dξ = ūni+1.

The polynomial pni (ξ) and its spatial derivative can be expressed in the following form,

pni (ξ) = uni− 1
2

(
1− 5ξ + 6ξ2 − 2ξ3

)
+ ūni

(
17

2
ξ − 27

2
ξ2 + 5ξ3

)

+uni+ 1
2

(
−4ξ + 9ξ2 − 4ξ3

)
+ ūni+1

(
1

2
ξ − 3

2
ξ2 + ξ3

)
,

∂

∂ξ
pni (ξ) = uni− 1

2

(
−5 + 12ξ − 6ξ2

)
+ ūni

(
17

2
− 27ξ + 15ξ2

)

+uni+ 1
2

(
−4 + 18ξ − 12ξ2

)
+ ūni+1

(
1

2
− 3ξ + 3ξ2

)
.

Introducing the variables, u′ni+ 1
2
, u′n+1

i+1 ,u′
n+1
i+ 1

2
, and u′n+1

i ,

∂

∂x
u(xi+ 1

2
, tn) ≈ 1

∆x

∂

∂ξ
pni (ξ)

∣∣∣
ξ=1

= u′
n
i+ 1

2
,

∂

∂x
u(xi+1, t

n+1) ≈ 1

∆x

∂

∂ξ
pn+1
i (ξ)

∣∣∣
ξ= 3

2

= u′
n+1
i+1 ,

∂

∂x
u(xi+ 1

2
, tn+1) ≈ 1

∆x

∂

∂ξ
pn+1
i (ξ)

∣∣∣
ξ=1

= u′
n+1
i+ 1

2
,

∂

∂x
u(xi, t

n+1) ≈ 1

∆x

∂

∂ξ
pn+1
i (ξ)

∣∣∣
ξ= 1

2

= u′
n+1
i ,

we can formulate the time-dependent cubic polynomial along the cell interface xi+ 1
2
.

Step 2

Let

q(τ) = a0 + a1τ + a2τ
2 + a3τ

3 (4.12)

be the cubic reconstruction polynomial in time along the cell interface. Using interpolation
techniques allows us to find the integral in (4.7)




1 0 0 0

1 (1− 1
2c ) (1− 1

2c )
2 (1− 1

2c )
3

1 1 1 1

1 (1 + 1
2c ) (1 + 1

2c )
2 (1 + 1

2c )
3




︸ ︷︷ ︸
V




a0

a1

a2

a3




=




u′ni+ 1
2

u′n+1
i+1

u′n+1
i+ 1

2

u′n+1
i



. (4.13)
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Compute the integral presented in (4.7), considering the cubic polynomial defined in (4.12).

I =

∫ tn+1

tn

∂

∂x
u(xi+ 1

2
, t)dt

≈∆t

∆x

∫ 1

0

q(τ)dτ

=
∆t

∆x

[
a0τ +

a1

2
τ2 +

a2

3
τ3 +

a3

4
τ4
]1

0

=
∆t

∆x

(
1,

1

2
,

1

3
,

1

4

)



a0

a1

a2

a4



.

Substituting from (4.13),

I =
∆t

∆x

(
1,

1

2
,

1

3
,

1

4

)
V −1




u′ni+ 1
2

u′n+1
i+1

u′n+1
i+ 1

2

u′n+1
i



.

Introducing the weights W = [w0, w1, w2, w3] =
(
1, 1

2 ,
1
3 ,

1
4

)
V −1 we can write,

I =
∆t

∆x

[
w0u

′n
i+ 1

2
+ w1u

′n+1
i+1 + w2u

′n+1
i+ 1

2
+ w3u

′n+1
i

]
.

Insert it in (4.7),

un+1
i+ 1

2

= uni+ 1
2
− a∆t

∆x︸ ︷︷ ︸
c

[
w0u

′n
i+ 1

2
+ w1u

′n+1
i+1 + w2u

′n+1
i+ 1

2
+ w3u

′n+1
i

]
.

Below, we present the modified formula for updating the point values

un+1
i+ 1

2

− uni+ 1
2

+ c
[
w0u

′n
i+ 1

2
+ w1u

′n+1
i+1 + w2u

′n+1
i+ 1

2
+ w3u

′n+1
i

]
= 0. (4.14)

The averaged values update formula in (4.11), combined with the point values update in
(4.14), forms an implicit Active Flux scheme of order 4.

4.3.3 Fifth-order scheme

Here, we investigate the fifth-order accurate scheme to illustrate the effectiveness of our new
strategy.

We can express the formula for updating averaged values as follows

−c(c− 2)(c− 1)2(c+ 1)ūn+1
i−1 + 2c(c− 2)(c− 1)(c+ 1)(c+ 2)un+1

i− 1
2

−2(c− 2)(c+ 2)(3c2 − 1)ūn+1
i − 2c(c− 2)(c− 1)(c+ 1)(c+ 2)un+1

i+ 1
2

+c(c− 1)(c+ 1)2(c+ 2)ūn+1
i+1 − c(c+ 1)2(c+ 2)ūni−1

+2(c− 2)(c− 1)(c+ 1)(c+ 2)ūni − c(c− 2)(c− 1)2ūni+1 = 0.

(4.15)
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Figure 4.13: On the left side, the figure shows the stencil related to the cell average update ,
while the right side depicts the stencil related to the point value update . We display the
cell averages ( ) and the point values ( ). Additionally, the red circles ( ) represent the spatial
derivative values at the cell centers, and the green circles ( ) represent the spatial derivative
values at the cell interfaces.

Step 1

For fifth-order accurate schemes, it is necessary to incorporate degree four polynomials in both
spatial and temporal dimensions. We’ll start by constructing the space-dependent polynomial
of degree 4 for the ith cell at time tn, denoted by pni (ξ), subject to the following constraints.
Similarly, we can construct the space-dependent polynomial at time level tn+1.

pni (ξ = 0) = uni− 1
2
,

∫ ξ=1

ξ=0

pni (ξ)dξ = ūni , pni (ξ = 1) = uni+ 1
2
,

∫ ξ=2

ξ=1

pni (ξ)dξ = ūni+1, pni (ξ = 2) = uni+ 3
2
.

The spatial polynomial and its derivative take the following form at time level tn

pni (ξ) = uni− 1
2

(
1− 6ξ +

39

4
ξ2 − 6ξ3 +

5

4
ξ4

)
+ ūni

(
23

2
ξ − 99

4
ξ2 + 17ξ3 − 15

4
ξ4

)

+uni+ 1
2

(
−8ξ + 24ξ2 − 20ξ3 + 5ξ4

)
+ ūni+1

(
7

2
ξ − 51

4
ξ2 + 13ξ3 − 15

4
ξ4

)

+uni+ 3
2

(
−ξ +

15

4
ξ2 − 4ξ3 +

5

4
ξ4

)
,

∂

∂ξ
pni (ξ) = uni− 1

2

(
−6 +

39

2
ξ − 18ξ2 + 5ξ3

)
+ ūni

(
23

2
− 99

2
ξ + 51ξ2 − 15ξ3

)

+uni+ 1
2

(
−8 + 48ξ − 60ξ2 + 20ξ3

)
+ ūni+1

(
7

2
− 51

2
ξ + 39ξ2 − 15ξ3

)

+uni+ 3
2

(
−1 +

15

2
ξ − 12ξ2 + 5ξ3

)
.

In the standard procedure, we introduce the variables u′ni+ 1
2
, u′ni , u′

n+1
i+1 , u′

n+1
i+ 1

2
, and u′n+1

i .
Considering the notations as before, we construct a time-dependent polynomial along the cell
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interface to approximate the integral in equation (4.7).

Step 2

Let

q(τ) = a0 + a1τ + a2τ
2 + a3τ

3 + a4τ
4

be the reconstruction polynomial in time along the cell interface. When applying an interpolation
technique, we obtain the following Vandermonde matrix




1 0 0 0 , 0

1 ( 1
2c ) ( 1

2c )
2 ( 1

2c )
3 ( 1

2c )
4

1 (1− 1
2c ) (1− 1

2c )
2 (1− 1

2c )
3 (1− 1

2c )
4

1 1 1 1 1

1 (1 + 1
2c ) (1 + 1

2c )
2 (1 + 1

2c )
3 (1 + 1

2c )
4




︸ ︷︷ ︸
V




a0

a1

a2

a3

a4




=




u′ni+ 1
2

u′ni
u′n+1
i+1

u′n+1
i+ 1

2

u′n+1
i



. (4.16)

Consider the integral,

I =

∫ tn+1

tn

∂

∂x
u(xi+ 1

2
, t)dt

≈∆t

∆x

∫ 1

0

q(τ)dτ

=
∆t

∆x

[
a0τ +

a1

2
τ2 +

a2

3
τ3 +

a3

4
τ4 +

a4

5
τ5
]1

0

=
∆t

∆x

(
1,

1

2
,

1

3
,

1

4
,

1

5

)




a0

a1

a2

a4

a5



.

Substituting the relation from (4.16),

I =
∆t

∆x

(
1,

1

2
,

1

3
,

1

4
,

1

5

)
V −1




u′ni+ 1
2

u′ni
u′n+1
i+1

u′n+1
i+ 1

2

u′n+1
i



.

Introducing the weights W = [w0, w1, w2, w3, w4] =
(
1, 1

2 ,
1
3 ,

1
4 ,

1
5

)
V −1 we can write,

I =
∆t

∆x

[
w0u

′n
i+ 1

2
+ w1u

′n
i + w2u

′n+1
i+1 + w3u

′n+1
i+ 1

2
+ w4u

′n+1
i

]
.

Insert it in (4.7),

un+1
i+ 1

2

= uni+ 1
2
− a∆t

∆x︸ ︷︷ ︸
c

[
w0u

′n
i+ 1

2
+ w1u

′n
i + w2u

′n+1
i+1 + w3u

′n+1
i+ 1

2
+ w4u

′n+1
i

]

The following provides the modified formula for updating point values.
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un+1
i+ 1

2

− uni+ 1
2

+ c
[
w0u

′n
i+ 1

2
+ w1u

′n
i + w2u

′n+1
i+1 + w3u

′n+1
i+ 1

2
+ w4u

′n+1
i

]
= 0. (4.17)

The averaged values update formula in (4.15), combined with the point values update in
(4.17), forms an implicit Active Flux scheme of order 5.

4.3.4 Results, stability and convergence

First, we present the results for the modified implicit Active Flux methods discussed in Sec-
tion 4.3.1, Section 4.3.2, and Section 4.3.3. We consider the initial condition presented in [54],
which includes both smooth and discontinuous regions. The computational domain [0, 2] is
discretized into 100 cells. The CFL number is set to approximately 3. The results display in Fig-
ure 4.14. The higher-order schemes have overshoots and undershoots compared to the 3rd-order
scheme. However, they capture the exact solution more sharply than the 3rd-order scheme.

Next, we compare the results of the Modified Implicit Active Flux schemes with those of
the implicit Active Flux schemes discussed in Section 4.2.1. According to the results shown in
Figure 4.15, the modified implicit Active Flux schemes yield similar outcomes.

The convergence study involves a smooth initial condition u(x, 0) = sin(x) to examine the
convergence of the modified implicit Active Flux methods. We discretize the domain [0, 1] into 100
cells and set the CFL number to 3 for the simulations. We compute the L1 error by considering
the point values at the final time T = 5. As illustrated in Figure 4.16, the schemes exhibit the
expected convergence orders.
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Figure 4.14: The results of the Modified Implicit Active Flux methods are presented at the final
time T = 8. The symbol (◦) denotes cell averages, while (×) indicates point values.
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Figure 4.15: Comparison between the single-step implicit Active Flux method (green) and the
MIAF method (red) at T = 8 with CFL number approximately 3. (a) 3rd-order schemes, (b):
4th-order schemes and (c): 5th-order schemes.The domain consists of 100 cells. The figures on
the right correspond to zoomed-in views of the rectangle region mentioned in the left figures.
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Figure 4.17: The spectrum of the matrix A−1B related to 3rd-order (top row), 4th-order (middle
row) and 5th-order (bottom row) MIAF schemes for different CFL numbers.

For completeness, the schemes are formulated according to the structure outlined in equation
(4.3), and a stability analysis is conducted. Regarding the Modified Implicit Active Flux methods,
the third-order scheme remains stable for CFL > 1, the fourth-order scheme for CFL > 1.18,
and the fifth-order scheme for CFL > 2.43. The stable CFL numbers are determined using a
bisection-type approach, relying on initial guesses. While the schemes demonstrate stability for
CFL numbers greater than those identified, it’s possible that stable regions exist for CFL numbers
lower than those specified. Identifying these regions would require an analytical approach, which
we have not yet explored and remains a topic for future investigation.

4.3.5 Exploring a case study: fifth-order scheme with CFL = 2

As discussed earlier, the Modified Implicit Active Flux methods offer a variety of schemes. Now,
we compare two different fifth-order schemes, where the only difference lies in the method used
to compute the spatial derivatives at a single point. For the fifth-order scheme, we consider the
variables u′ni+ 1

2
, u′ni , u′

n+1
i+1 , u′

n+1
i+ 1

2
, and u′n+1

i . To compare the effect of the spatial derivatives,
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two approaches are used to approximate the variables u′n+1
i+1 , as described in Table 4.3. We

construct the time-dependent reconstruction polynomial accordingly. Since here we only focus
on a particular example that sets the CFL = 2, the fifth-order scheme is marginally stable. The
spectrum of the iterative matrix, depicted in Figure 4.19, shows a circle of eigenvalues equal to
one and others strictly less than one. This suggests that, in this scenario, the updating of point
values and cell averages happens in a decoupled manner.

Similar results can be obtained from the single-step implicit Active Flux scheme Section 4.2.1
as well, and they are presented to conclude the results.
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Table 4.3: The approximation for the derivatives at specific points considering the degree 4
space-dependent polynomial p.

∂
∂ξp

n+1
i

∣∣∣
ξ= 3

2

∂
∂ξp

n+1
i+1

∣∣∣
ξ= 1

2

ξ = 0 ξ = 1 ξ = 2

τ = 0

τ = 1

Figure 4.18: The graphical representation of the two different polynomial approximations for the
derivative.
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Figure 4.19: Spectrum of the matrix A−1B of the fifth-order MIAF schemes and single-step
implicit Active Flux scheme. The left figure corresponds to the "Case1" and the middle figure
corresponds to the "Case2". The right figure is related to the single-step implicit Active Flux
scheme.
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Figure 4.20: Results for the 5th-order schemes with CFL= 2. The left figure shows the results
for "Case 1", the middle figure shows "Case 2" and the right figure provides results for the
single-step implicit Active Flux scheme. The domain consists of 100 cells. The final time is set
at T = 8. The circle (◦) denotes the cell averages and (+) represents the point values.
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In summary, this thesis has explored higher-order numerical methods for hyperbolic conservation
laws. Based on the existing literature, two innovative higher-order numerical methods have been
developed.

Chapter 2 provides a comprehensive overview of the ADER-DG methods, which are consid-
ered one of the foundations of the new approach. Several standard test cases are used to validate
the numerical implementations. The application of the MOOD limiter helps in preventing oscil-
lations near discontinuities.

Chapter 3 introduces the new higher-order Active Flux (hAF) schemes, developed by extend-
ing the classical Active Flux method using the ADER-DG technique. Within each cell, the cell
average value is replaced with the corresponding degrees of freedom from the ADER-DG scheme.
Two approaches are suggested for the point value update. The first suggested approach (P1)
involves solving the Riemann problem at each cell interface, a method that highly depends on the
specific problem. The second approach (P2), which is more general, integrates the conservation
law at cell interfaces and utilizes the differential form of the flux function. The hAF schemes
achieve a convergence rate of N+3 for degree N spatial test functions. Additionally, it is demon-
strated that the CFL number improves for linear problems compared to the ADER-DG schemes.
However, this improvement does not extend to nonlinear hyperbolic scenarios yet. Difficulties
are encountered in achieving convergence in the iteration procedure (Equation 3.33) for local
prediction with the improved CFL number. These aspects will be addressed in future work. To
address the non-physical oscillations that appear near the discontinuities or steep gradients, we
apply the MOOD limiter with some modifications. The detection procedure is improved by in-
corporating information from the point values. Two approaches for limiting the point values are
tested. The first approach (L1) requires to solve Riemann problems at the interfaces of the trou-
bled cells. The second approach (L2), a more general method, uses the volume averaged values
of the corrected subcells as the limited point values. The modified MOOD limiter successfully
performs across all proposed test cases. The schemes, which represent a more general approach
for updating and limiting the point values, yield slightly sharper numerical results compared to
highly problem-specific approaches, particularly for linear scalar hyperbolic problems.

Chapter 4 focuses on implicit higher-order numerical methods. Based on the implicit Active
Flux methods proposed in [6], we extend the concept to linear systems of hyperbolic conservation
laws. Further, a new update strategy has been proposed for the point values in the implicit
setting. The newly proposed Modified Implicit Active Flux (MIAF) schemes yield similar results
to those of the single-step Active Flux methods proposed in [6] but the MIAF approach allows
for a larger variety of implicit numerical schemes. A complete stability analysis of the MIAF
schemes will be conducted in future work.
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