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Abstract

Rules are an important knowledge representation formalism in constructive prob-
lem solving. On the other hand, object orientation is an essential key technology for
maintaining large knowledge bases as well as software applications. Trying to take
advantage of the benefits of both paradigms, we integrated PROLOG and SMALLTALK
to build a common base architecture for problem solving. This approach has proven
to be useful in the development of two knowledge-based systems for planning and con-
figuration design (CAPLAN and IDAX). Both applications use PROLOG as an efficient
computational source for the evaluation of knowledge represented as rules.
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1 Motivation — Why PROLOG and SMALLTALK?

Neither completely object-oriented systems nor completely rule-based systems cover all
the requirements that are necessary to develop systems for planning and configuration
design tasks. Of course, each of the programming paradigms is complete with respect to
computability, but the considered problem solving domains have properties which should
not be ignored when choosing the implementation environment.

Planning and configuration design tasks most often take place in technical domains which
are well structured and can be characterized by objects in a natural way. The four ma-
jor elements of the object model abstraction, encapsulation, modularity and hierarchy as
defined in (Booch, 1991) can be identified at once. Following these principles can be ex-
pected to lead to major advantages in code reuseability, rapid prototyping, user interface
development, and maintenance of the system. All these advantages are good reasons for
developing a problem solver for planning or design tasks using an object-oriented approach
(e.g., SMALLTALK).

On the other hand, rules are essential for the representation of inferential knowledge and
PROLOG, especially, offers the capability to process this kind of knowledge efficiently. As a
wide-spread programming language, PROLOG provides a commonly accepted standard for
the representation and evaluation of rules. But we believe that it would not be a good idea
to build a complete problem solver for planning or configuration design in PROLOG because
we would also have to code user interfaces in a declarative way with rules. In principle
this surely might be possible, but it doesn’t seem to be a natural way to do it. There is
much more evidence that the object-oriented approach is better suited for such parts of
software projects. Of course, the opposite is at least questionable too: building another
PROLOG interpreter within the object-oriented framework (e.g., (Aoki et al., 1995; Pachet,
1991)). Our two main reasons for not following this idea are, that we are not interested in
research with repect to PROLOG specific topics (we just want to apply PROLOG) and that
using an existing PROLOG interpreter (written in C) should be a faster way for reasoning
with backward chaining rules.

Trying to profit from the advantages of logic as well as object-oriented programming, we
have developed a problem solving architecture which consists of an object-oriented knowl-
edge base, a SMALLTALK-based problem solver using TMS techniques and a PROLOG inter-
preter as external knowledge source. We decided to use SWI-ProLOG (Wielemaker, 1993).
For the object-oriented core and user interface of the planning and the configuration design
system we took VISUALWORKS. PROLOG and SMALLTALK have been connected by a com-
munications protocol based on Unix-Sockets. PROLOG can be accessed from SMALLTALK for
prooving queries based on a set of given rules and facts, SMALLTALK and its object-oriented
knowledge bases can act as an external database of facts for PROLOG during prooving.

Using this environment we have developed a common architecture for problem solving.
The integration of PROLOG turned out to be especially useful for two knowledge-based
systems described in more detail: CAPLAN! (Weberskirch, 1995) is a generative planning
system that offers several possibilities to control the planning process, e.g., it can act as a
planning assistant in which the user makes all relevant control decisions. CAPLAN/EBL

!Computer Assisted Planning
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4 Base Architecture for Decision-Based Problem Solvers

is an extension with respect to controlling the planning process. It acquires search control
rules through explanation-based learning techniques and uses these rules in future planning
episodes to reject futile alternatives. The configuration design system IDAX? (Paulokat,
1995) uses preference and control rules to make its decisions.

The following pages organized as follows: Section 2 summarizes the common base architec-
ture of the two problem solvers. Section 3 presents an overview of the problem solvers
CAPLAN/EBL and IDAX. Section 4 describes the interface we implemented between
SMALLTALK and PROLOG, the representation of rules in SMALLTALK and objects in PRO-
LOG and explains the rule evaluation process. The last section discusses some advantages
and disadvantages of our approach and makes some concluding remarks.

2 Base Architecture for Decision-Based Problem Solvers

Our generic model of problem solving is based on the REDUX-architecture (Petrie, 1991;
Petrie, 1992), a generic architecture to represent knowledge about plans, contingencies,
and for solving Constraint Decision Problems. It has been successfully reused for several
knowledge-based systems in different areas of Al research including action planning (We-
berskirch, 1995), configuration design (Paulokat, 1995) and workflow-management (Maurer
and Paulokat, 1996; Maurer and Pews, 1996).

A problem is described by an initial situation and a set of open goals. For each specific
application there is a language for describing initial situations and goals. Solving the
problem means to transform the initial situation according to the laws of the respective
domain into a situation in which all the given goals are satisfied. During this process all
open goals are collected on a central agenda from which the problem solver can choose
the next one to work on following the principle of blackboard architecture (Hayes-Roth,
1985). Usually there will be various ways to achieve a single goal. Due to interactions
between the different goals not all of these ways will lead to a solution for the problem.
Thus, an extensive search process is necessary in most cases. We see this search process as
a sequence of decisions, where each decision can make assignments, which form part of the
evolving solution, and either solves a goal immediately or replaces the goal by one or more
simpler goals. Therefore, every (correct) decision represents a step towards a solution of
the complete problem.

Basically, there are two different kinds of decisions that have to be distinguished:

e Selecting one out of several possible operations, where each operation is represented
by a so-called operator,

e Rejecting a single operation, i.e., reducing the number of operators to select from.

Decisions are not necessarily correct with respect to an overall solution of a problem, so
the problem solver has to perform search process. As a consequence of this, both kinds of
decisions can be undone, typically, if the search got stuck and backtracking is unavoidable.

Intelligent Design Assistant based on REDUX
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Decision context and rationales. FEach decision is made in a certain context which
consists of the problem description and the current state of all prior decisions. Usually, a
decision will depend only on a subset of this context and we need to identify the relevant
aspects as exactly as possible in order to create a useful rationale for a decision. Due to
the permanent incompleteness of information every part of the present context may change
in time. Monitoring the dependencies between a decision and the relevant aspects of its
surrounding context allows to detect the necessity or possibility to update this decision.
Therefore, all decisions are embedded in a framework which allows the representation of
decision rationales and other dependencies between decisions. This framework is based on
REDUX (Petrie, 1991; Petrie, 1992), a generic architecture to represent knowledge about
plans, contingencies, and for solving Constraint Decision Problems. The decision depen-
dencies are permanently monitored by a Truth Maintenance System (TMS) (Doyle, 1979)
to keep all decisions in a consistent state. Using Truth Maintenance, we can effectively
determine which decisions need to be reconsidered after the problem description or another
decision has been changed.

Y
User Interface Prolog
Interpreter
Problem Solver .
Constraint |,_. Object-oriented
Solver ' Knowledge base
CBR-
Tool
-~
s T PO 4
Dynamic Knowledge Knowledge sources Satic Knowledge

Figure 1: Base architecture of the problem solver

Knowledge base and knowledge sources. In order to minimize the risk of making a
wrong decision, we try to exploit as much knowledge as possible. Therefore, the problem
solver has access to a number of knowledge sources, which sometimes are computational
elements inferring knowledge from the static and dynamic knowledge base. Sometimes
such knowledge sources are highly domain-dependent, because the underlying knowledge
representation has to be carefully chosen according to each specific aspect of domain know-
ledge. In order to simplify modification and extension of the knowledge base for a certain
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6 Applications

domain, all the different knowledge representations are embedded into an object-oriented
model of the domain, which supports modularity and encapsulation. The knowledge sources
are used to transform the static knowledge into dynamic knowledge represented within the
TMS network (see Figure 1) or to infer knowledge from existing knowledge. Among the
knowledge sources that currently are in use are constraint solvers, rule interpreters and
case-based reasoning systems as well as interactive inferfaces for human experts.

If a knowledge source is activated, it should not only suggest a decision but also give a
rationale for this decision. For example, if a constraint solver determines a certain set of
constraints to be inconsistent with repect to a some new constraints, it is exspected to
be able to give a rationale telling about the reasons for which this inconsistency occurred.
This rationale forms a sufficient precondition, but not a necessary one, assuming that most
rationales are not logically complete.

A PRrOLOG interpreter as a knowledge source. Within the variety of knowledge
representations used in different domains rules are playing an important role because they
are often both comprehensive and expressive. Therefore, the evaluation of rule sets is
a frequently used knowledge source for both, selecting and rejecting operations. This
knowledge source has been realized using a PROLOG interpreter as an efficient engine for
rule evaluation (see Section 4 for details). Successful evaluation of a rule set results in the
application of one top-level selection- or rejection-rule. From the facts used to prove the
precondition of that rule, a rationale can be constructed.

In the following sections we describe in brief two applications based on this problem solv-
ing architecture. Both problem solvers make use of PROLOG-based rule evaluation as an
important knowledge source.

3 Applications

In this section we describe two knowledge-based systems, CAPLAN and IDAX, from different
areas of Al research (action planning and configuration design) that are built upon the base
architecture for problem solving summarized in the last section.

3.1 Planning with CAPlan

First, we give an overview of the CAPLAN planning architecture. We will focus on the
explanation-based learning module of CAPLAN/EBL (Roth-Berghofer, 1996). It learns
operator rejection rules from failures during planning episodes and uses a PROLOG system
to evaluate these rules in order to avoid the same failures in the future.

So far, CAPLAN is an Al planning prototype, but we evaluate it using a complex and
large application domain from the area of mechanical engineering — manufacturing process
planning for rotary symmetrical workpieces (Munoz-Avila and Weberskirch, 1996b). More
information about CAPLAN is present in the World-Wide Web at location http://wuwagr.
informatik.uni-k1l.de/"caplan.
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3.1 Planning with CAPlan 7

3.1.1 The CAPlan Architecture for Domain-Independent Planning

CAPLAN (Weberskirch, 1995) is an SNLP-like (McAllester and Rosenblitt, 1991; Barrett
and Weld, 1994) domain-independent planner that is built upon the generic REDUX ar-
chitecture (Petrie, 1991) for dependency maintenance that already has been subject of
Section 2. CAPLAN is given a specification of the planning domain that consists of a
language to describe world states and the allowed actions that change world states. The
allowed actions are represented using a STRIPS-like (Fikes and Nilsson, 1971) formalism
and consist of preconditions, effects, and constraints, i.e., if the preconditions and the con-
straints are satisfied in a world state, the action will change the world as defined by the
effects.?> The task of CAPLAN is to find a plan, i.e., a sequence of actions (called plan
steps) that transform a given initial world state into a state in which the specified goals
are achieved. The initial situation in this search process is an initial plan representing the
initial world state and the goals with two dummy plan steps, so and ss.* During the plan-
ning process the initial plan is modified (refined) gradually until it becomes a solution plan.
A solution plan must satisfy the correctness condition that for all plan steps (actions) all
preconditions must be established and interactions between parallel steps must be solved.

As described in Section 2, the process of refining the initial plan can be seen a sequence of
decisions. The process proceeds by selecting open preconditions of plan steps or unsolved
interactions (both are open goals on the problem solvers agenda) and by making decisions
about the rejection and selection of operators that refine the plan. The decision to select
a certain operator is equivalent to the decision to select a certain plan refinement method
(Kambhampati et al., 1995) for the current partial plan.

CAPLAN uses so-called control components (Weberskirch, 1995) as a common interface to
control the search process. Each control component relies on a suitable knowledge source
and encapsulates a strategy for problem solving, loosely spoken, the concrete behaviour of
the system at goal selection and operator selection points. In general, a control component
has to do the following things:

e It has to select the goal which has be be processed next from the agenda of open
goals,

e for the selected goal all inconsistent operators (plan refinement operators) have to be
rejected, and

e 3 consistent operator has to be selected and applied.

Different control strategies are available for CAPLAN, e.g., a case-based control strategy
(Munioz-Avila and Weberskirch, 1996a) that uses cases as knowledge source to guide the
planner. In CAPLAN/EBL a control component has been added that learns rules from

3 As explained in (Weberskirch and Mufioz-Avila, 1997) in more detail, CAPLAN extends the standard
SNLP planning paradigm by allowing to define type hierarchies and types constraints in addition to simple
codesignation constraints.

4In each plan s¢ is the first plan step, seo is the last plan step. so has no preconditions but its effects
create the initial world state, so has no effects but its preconditions are the goals that have to be achieved.
All other plan steps are ordered between so and Seco.
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8 Applications

operator failures during planning and evaluates this knowledge using a PROLOG system to
avoid similar failures in other problem solving episodes (Roth-Berghofer, 1996).

3.1.2 Explanation-Based Learning of Control Information

Research in the field of machine learning developed mechanisms to learn the correct be-
haviour at decision points of a search algorithm (to some degree). In planning, especially
the method of Ezplanation-Based Learning (EBL) (DeJong and Mooney, 1986; Mitchell
et al., 1986) has been applied to improve planning performance for state-space planners
by learning control rules (Minton, 1988). Recently, (Katukam and Kambhampati, 1994;
Kambhampati et al., 1996) presented an approach for applying EBL techniques to plan-
space planners® like SNLP which serves as basis for CAPLAN.

In CAPLAN/EBL (Roth-Berghofer, 1996) we extended the learning mechanism described
in (Kambhampati et al., 1996) with respect to the more powerful domain specification
possibilities of our base level planner CAPLAN. Basically, similar to (Kambhampati et al.,
1996) learning concentrates on failures in selecting the right operator. Whenever the planner
reaches a dead end, the local reason for this is that there exists a goal for which all possible
operators are inconsistent with the current plan. Learning from such failures consists of
three steps:

Analysis: Learning starts with analyzing the inconsistencies that led to the failure and
giving an initial failure explanation. These initial explanations can easily be extracted
from what CAPLAN’s consistency tester (Weberskirch, 1995) automatically generates
for inconsistent operators: it determines a set of prior planning decisions that had
effects that led to the inconsistency. FExactly these justifications build the initial
failure explanations.

Regression: A regression mechanism (Kambhampati et al., 1996) allows to combine and
propagate failure explanations backwards in the search tree. The result is a set of
expressions that must have been valid before the failure has been detected by the
planner but that were responsible for it.

Generalization: Following the EBL approach, these explanations are further generalized
to be applicable to a bigger set of examples later. The generalization mechanism
had to be extended in CAPLAN/EBL because operators in CAPLAN may add type
constraints. Thus, generalization will not only replace constants by variables but also
add predicates that check type constraints on these variables (Roth-Berghofer, 1996).

The learning module of CAPLAN/EBL then generates control rules for the rejection of
operators from these regressed and generalized expressions and stores them in its rule base.

5See, for example, (Barrett and Weld, 1994), (Minton et al., 1994) or (Kambhampati et al., 1995) for a
more detailed discussion of difference between these two planning paradigms.
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3.2 Configuration Design with IDAX 9

3.1.3 Learning and Using Operator Rejection Rules

Within CAPLAN/EBL we can distinguish between a learning mode in which the system
analyzes operator selection failures and generates control rules and a rule application mode
in which the planner solves a planning problem using the learned rules.

Learning mode: As described in Section 3.1.2, the learning module of CAPLAN/EBL
analyses operator failures. Rules from regressed and generalized explanations can
be expected to recognize a potential failure of a sequence of operators in advance
as regression eliminates the specific influence of an operator in a failure explanation.
The generated rules have the form reject-op(op, ...) := c1(..), cao(..),
where the c¢;(..) are expressions that refer to the current state of the planning pro-
cess, i.e., elements of the plan or the planning problem. Examples for such predicates
are hasStep(plan,step) or hasOrdering(plan,stepl,step2).

Rule application mode: To use the learned rules we built a control component (RbC,
Rule-based Control) that checks potential operators using the generated rejection
rules. As summarized in Section 3.1.1, a control component has to reject inconsistent
operators. The standard consistency tester only can detect obvious inconsistencies
among constraints that have been added to the plan. Our rule-based control com-
ponent additionally tries to prove that an operator has to be rejected based on the
learned rejection rules and the facts about the current plan state. For the process
of proving an operator rejection this control component uses a PROLOG system (see
Section 4). If PROLOG can prove the necessity to reject an operator, this operator will
be rejected without having been selected. The used PROLOG interface additionally
is capable of giving a rationale for a successful proof, so the results of each successful
proof can be stored in the dependency network of the problem solver in exactly the
same way as the results from simple consistency tests.

(Kambhampati et al., 1996) has shown that rejections found by rule evaluation in the way
described above are correct. So, if an operator is rejected that would have been selected
otherwise, we definitely cut away a branch of the search tree without loosing a solution.
Unfortunately, the process of proving needs time. In our experience, however, the benefits
of rule application are higher than the costs. Especially in non-trivial planning domains
with many different operators that might be chosen for a certain goal, we observed an
increase of the overall planning performance although the time per inference step increased
because of the additional rule evaluation.

3.2 Configuration Design with IDAX

The task of configuration design is to satisfy a functional requirement by assembling an
artefact from a given set of basic components without violating any constraint imposed on
the connection of those components. As the number of available components and possible
assemblies tends to be very large, configuration design is a search-intensive task which
cannot be solved without further knowledge (Mittal and Frayman, 1989).
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Based on the problem solving architecture described in Section 2 we have developed a tool
to support configuration design called IDAXS (Barth et al., 1994; Paulokat, 1995). By now
IDAX is mainly used as a prototype for Al-research, but it forms also part of CYCLOPS
(von Wangenheim, 1996), a system for knowledge-based image understanding which was
exhibited during the CeBIT fair in 1996.

3.2.1 Object-centered Representation of Knowledge

Following the idea that there is a continuum of concepts between the mainly functional
problem description and the resulting assembly of basic components (Mittal and Frayman,
1989), the complete domain knowledge is organized in an abstraction hierarchy of objects
with the basic components at its lowest level. Our approach is truely object-centered as
there does not exist any kind of global knowledge. Instead there are five categories of
domain knowledge associated with each conceptual object:

e Attributes describe properties of an object and can be used to express requirements.

¢ Relations show possible refinements of an object using specialization or decomposi-
tion.

e Constraints represent restrictions between attributes of an object and its compo-
nents.

e Phases describe different strategies used during a configuration process.

e Rules give local, context dependent heuristics for making a good decision.

Attributes, relations, and contraints can be summarized as domain specification aspects,
whereas phases and rules encode (domain-dependent) strategies and heurististics for solving
problems in a certain domain.

3.2.2 The Use of Different Knowledge Sources
The configuration process follows the principle of stepwise top-down refinement along a

structural hierarchy (defined by the specialization relation). Basically each step consists of
three subsequent stages:

1. Choose the next open goal according to the current strategy.
2. Make one or more decisions (rejections and/or selection) concerning the chosen goal.

3. Determine the appropriate strategy for the next step.

In each of theses stages specific knowledge sources are exploited:

SIntelligent Design Assistant based on REDUX
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Configuration Design with IDAX

e The evaluation of the filtering and ordering conditions of the active phase reduces
the number of goals to choose from.

e Destructive constraint propagation leads to the rejection of inconsistent values and
reduces the number of selectable operations. If all but one are rejected, the remaining
operation can instantly be selected.

e The evaluation of the preference rules determines which of the still unrejected oper-
ations should be selected. In addition it returns a rationale for this decision.

e The evaluation of the control rules of the active phase possibly results in entering a
new phase or returning to a previous one.

The last two of these knowledge sources, the evaulation of preference and control rules, rely
on backward-chaining rules that are evaluated by a PROLOG interpreter.

3.2.3 Preference Rules

If a selection among several possible operations is to be made, we need a rating of the
alternatives to determine the optimal choice, which is to be preferred among all others.
The preference order on a set of alternatives is not static, but depends on the context of
the decision. Therefore we use a set of rules to specify the preconditions for the preference
of a certain alternative.

In order to describe the preconditional context for a preference, we need to specify prop-
erties of our configuration problem and its partial solution found so far. We defined a
vocabulary of logical predicates to describe basic properties of the solution, like values or
ranges of attributes, included or excluded parts, chosen components and so on. These pred-
icates (called product predicates) allow a rather natural description of a certain context,
but this description tends to become quiet long if a lot of basic properties are involved.
To shorten the context description, we derive more abstract characteristics (called aspects)
of the context from a set of basic properties. This derivation is done with domain-specific
aspect rules, which take several product predicates as preconditions. As the existence of
an aspect is tested by another product predicate, we can build an abstraction hierarchy of
aspects. The PROLOG interpreter can prove the existence of a certain aspect by evaluation
of the given aspect rules and the preconditional product predicates.

To evaluate a product predicate, the PROLOG interpreter submits a query to the SMALLTALK
system, where the current context is represented using REDUX (see Section 2). REDUX does
not only return the value of the specified property but also a set of TMS nodes, whose cur-
rent labeling represents this property. These TMS nodes are collected during the proof of
the preconditions of a preference rule. A successful evaluation of a preference rule results
in returning the preferred operation along with a collection of TMS nodes justifying its
selection. These nodes are used to generate a sufficient rationale for the decision.

The preference rules for all tasks concerning a single conceptual object are collected in
a rule set and stored in the knowledge base as part of the object’s specification. Use of
inheritance and aggregation within the object model keeps the rule sets as small as possible.
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A rule set is transmitted to the PROLOG system as soon as the respective object becomes
part of the so far generated solution. As most rules are applicable only for a single task,
they are not evaluated more than once during a configuration process, unless backtracking
forces retraction of prior decisions.

Preference rules are used as a heuristic for a local optimization. They are not intended to
increase the speed of the configuration process but the quality of its solution. To ensure this
quality, the decision rationales retrieved during a PROLOG proof are continuously monitored
by REDUX. As soon as such a justification becomes invalid, the concerning decision can be
revised. As the justification only represents a single out of possibly many different proofs
for a preference selection, we first try to find another proof by re-evaluating the previously
used preference rule. Only if this attempt fails, we retract the decision and select another
operation according to the evaluation of the preference rules using the current context.

If part of a configuration process is done by a human expert, he will also have to give
rationales for his decisions. Instead of explicitly enumerating prior decisions or a set of
TMS nodes, the expert can describe this rationale in a much more abstract way using
product predicates (Schirp, 1996). The translation of such a rationale into a set of TMS
nodes is once again done by the PROLOG interpreter. It is also possible to transform a
rationale given by the expert into a preference rule. This provides an easy and direct way
for the acquisition of additional heuristic knowledge, which could be difficult to formalize
otherwise.

3.2.4 Control Rules

Strategic knowledge about the importance of unsolved subproblems and the order they
are to be reduced in, is encapsulated in phases (Giinter, 1991). To increase flexibility, the
sequence of phases is not statically predefined, but individually determined during each
configuration process. Therefore, each phase has to provide additional knowledge about
the conditions that will terminate or suspend the current phase and switch to another one.
This knowledge is expressed using control rules that are constructed in a similiar way like
the preference rules described above.

Instead of a preferred operation, the evaluation of control rules returns the phase that
should be used next. As the decision which phase to follow does not only depend on prop-
erties of the so far developed solution but also on the history and current state of the
configuration process itself, the product predicates are not sufficient to express all possible
conditions. Therefore, additional process predicates have been invented, that describe prop-
erties of the configuration process like a history of used phases, currently open subproblems
and known inconsistencies.

Control rules that are associated with a certain phase remain valid as long as this phase
is not terminated and reside within the rule base of the PROLOG system during this time.
Evaluated after each configuration step, the control rules work as a trigger for the change
of the active phase. As the choice of a phase does not immediately affect the solution under
developement it is not represented in REDUX. Thus, the evaluation of the control rules
does not have to deliver justifying TMS nodes.
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As explained before, our base architecture and the two prototypical applications make use
of an object-oriented environment for the problem solver as well as of an PROLOG inter-
preter as an engine for efficient rule evaluation. The last section explained how these two
applications, CAPLAN/EBL and IDAX, use rule evaluation to speed-up problem solving
or to increase the quality of the solution.

In this section we will describe the communications structure of the underlying combined
SMALLTALK-PROLOG system in more detail. We will present an overview of the system
components and explain how rule evaluation is done in the context of problem solving.

4.1 Interface between SMALLTALK and PROLOG

The PROLOG interpreter is an external knowledge source for SMALLTALK. It can be seen
as a kind of server that is only activated on request by the SMALLTALK client (problem
solver). So far this is, however, not a real client/server architecture, as there can be only
one client at a time. In addition, the so-called PROLOG server can submit queries back to
the SMALLTALK system. Thus, during a query is processed by PROLOG, SMALLTALK is a
kind of server for information about the current state of the problem solving process for
PrROLOG, an extended external database for facts. The possibility of queries from ProLOG
to SMALLTALK was added to avoid a complete replication of the knowledge bases residing
in SMALLTALK.

The interface between SMALLTALK and PROLOG is based on UNIX sockets. SMALLTALK
and PROLOG can either run on the same machine as two different processes or on different
machines that are connected via a TCP/IP network. VISUALWORKS provides classes and
methods for accessing sockets. SWI-PROLOG on the other side allows to add C-functions
which can be accessed through PROLOG predicates. Using this mechanisms, PROLOG
establishes a server socket and listens for requests, and SMALLTALK connects to this socket
to start the evaulation of queries.

4.2 Rules and Objects

Due to different representations of data in the two programming paradigms conversion
functions in both directions are needed. The basic types integer, real and string have direct
equivalents. Objects of class Symbol translate into atoms in PROLOG. This automatic
translation is part of the functionality of our socket communications mechanism.

Rules in SMALLTALK. The term structure is a basic concept of PROLOG and doesn’t
exist in SMALLTALK. We provide a set of SMALLTALK-classes, closely representing the
datastructures used in PROLOG:

e The class PrologTerm has been created to build up the equivalent structures in
SMALLTALK.
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e Predicates in PROLOG are mapped onto instances of the class PrologPredicate.

e PrologPredicates are used to construct instances of PrologRule.

These objects represent PROLOG rules in the object-oriented knowledge base of the problem
solver.

Objects in PrRoOLOG. In PrROLOG C-functions parse a string representation of the trans-
ferred SMALLTALK objects. Such functions exist for either asserting/retracting rules and
facts to/from the rule base of PROLOG, starting the evaluation of rules, sending back queries
of PROLOG to the dynamic knowledge base, and sending back the results.

P . . . I

ru.l.e.(ObUdl'ObJ_l daretm) =1 @ : mapping call_prolog(rule,obj_1,0bj_2)
state predicate, :
- |
@ .

: | control component |

objidi [ | obji dynamic
— I (EEEEEEEE knowledge
state predicate :-

GenerateObj ectl dentity

|
ol|g o

|
smalltalk(obj_idi,...) —q¢— - .
(obj1dt--) : | obj_i

|

|

|

|

|

Smalltalk

PROLOG

Figure 2: Object to atom mapping.

Mapping between objects and atoms. SMALLTALK objects can only be used by
PROLOG in a restricted way. For our purposes, it was sufficient to determine the identity
of an object because we do not need to change or access the internal structure of objects.
This is accomplished by the meta class GenerateObjectIdentity which provides a unique
identifier for every object that is sent to the rule interpreter (see Figure 2). The circled
numbers show the conversion paths of objects to and from PROLOG:

1. A call to PROLOG (assert/retract/query) leads to the conversion of objects into object
identifiers (atoms).

2. Predicates about the state of the problem solving process (state predicates) can send
back queries to the dynamic knowledge base. The object ids of objects involved in
such a query are converted back to the original objects.
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Rule Evaluation Cycle

3. The response of the dynamic knowledge base (including TMS nodes if necessary) is
sent to PROLOG. Again all referenced objects are mapped to identifiers.

4. Given that a rule has fired, the collected TMS node identifiers are transmitted to the
problem solver.

The problem solver therefore can get two results from PROLOG:

Success: If the query could be proven with the given rules and requested facts from the
dynamic knowledge base, PROLOG signals success and gives a rationale that justifies
the success.

Failure: Otherwise the proove failed and no justification can be given.

As the PROLOG server can give rationales for successful prooves, it is fully integrated into
the problem solver based on REDUX. In this way, CAPLAN and IDAX are both able to use
rule-based knowledge which is evaluated on demand by the assisting PROLOG server.

4.3 Rule Evaluation Cycle

The general mechanism for the execution of queries to PROLOG as described in the last
section is used to represent and evaluate rule-based knowledge in our problem solvers
CAPLAN/EBL and IDAX.

|
|
! -
prepare| - assert |4 problem
: }
a qguery |-= :
B < 09090 D |
ey | .| CONTROL
! Y :
' |justification : rules
i | generator '
|
I + \
|
| Problem Solver -
. L - domain
requesting g REDUX
additional |
information : ] : - :
: dynamic knowledge base . static knowledge bases :
L= =
PROLOG ' CAPlan/EBL or IDAX

Figure 3: Rule evaluation
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Discussion and Conclusions

Rule evaluation consists of three phases:

Preparation. Facts and rules are transferred from the knowledge bases and the prob-
lem specification in SMALLTALK to PROLOG. Aspects of static knowledge may be
transmitted completely before the first evaluation starts. Dynamic knowledge, on
the other hand, has to be transmitted during the solving process as it is needed or
becomes available.

Evaluation. During problem solving a control component of the problem solver uses PRO-
LOG as an external knowledge source. It submits queries to the rule interpreter. As
already explained in Section 4.2, PROLOG may request additional information from
the dynamic knowledge base during evaluation. The dependency maintenance system
REDUX at this time acts as an external database of facts for the rule interpreter and
provides the requested information if possible.

Justification Generation. If one of the rules fired, PROLOG returns all information
needed by the justification generator to justify the selection or rejection decision.
Usually, this corresponds to all problem solving decisions (which are represented ex-
plicitly in REDUX) that are responsible for the facts in the dynamic knowledge base,
that were needed for the prove to succeed. The generated justifications will be stored
in the dynamic knowledge base and are used in the further problem solving pro-
cess. Because rule evaluation results in justifications for REDUX the use of rule-based
knowledge is seamlessly integrated into the problem solver.

Figure 3 illustrates the flow of information between the software components within each
rule evaluation cycle.

5 Discussion and Conclusions

In the field of constructive problem solving, rules are an essential formalism to describe
domain knowledge. The need to evaluate rules efficiently on the one hand, and the advan-
tages of object-oriented programming and knowledge representation on the other hand, led
to the approach of combining a SMALLTALK-based problem solver with a PROLOG system.

We consider this solution to be more efficient compared to using rule interpreters written
in SMALLTALK like MeiProlog (Aoki et al., 1995) or Neopus (Pachet, 1991). The crucial
point in using an external PROLOG systems is, of course, the overhead for inter-process
communication. Generally spoken, our approach tends to be more efficient, if the cost for
transmitting rules is small compared to the cost of their evaluation. This condition is usu-
ally fulfilled when using rejection rules (Section 3.1.3) or preference rules (Section 3.2.3),
which both tend to be recursively nested. Control rules (Section 3.2.4) are rather numerous
and simple, thus less efficiently handled. We try to keep the rule sets small by avoiding re-
dundancies and to transmit each rule not more than once, in order to minimize transmission
cost.

Even more time consuming than the transmission of rules are the numerous queries from
the PROLOG interpreter back to the SMALLTALK system. We could avoid many of the
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queries if we would store facts once retrieved from REDUX in the PROLOG database as
well. But this redundant knowledge representation would raise the problem of keeping
both databases consistent with each other. Another possibility to increase the performance
of the coupling is the use of asynchronous communication, which would reduce the time
the SMALLTALK system spends waiting for the answer of a PROLOG request.

Although the problems associated with the hybrid approach presented in this paper are far
from being solved, we estimate the use of PROLOG as a major improvement of our problem
solving architecture. Future research topics, besides an enhancement of the communication
as outlined above, include a partially automated acquisition of preference rules in IDAX and
the use of heuristic selection rules in CAPLAN.
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