Worst-Case Portfolio Optimization: Transaction Costs and Bubbles

  • In this thesis we extend the worst-case modeling approach as first introduced by Hua and Wilmott (1997) (option pricing in discrete time) and Korn and Wilmott (2002) (portfolio optimization in continuous time) in various directions. In the continuous-time worst-case portfolio optimization model (as first introduced by Korn and Wilmott (2002)), the financial market is assumed to be under the threat of a crash in the sense that the stock price may crash by an unknown fraction at an unknown time. It is assumed that only an upper bound on the size of the crash is known and that the investor prepares for the worst-possible crash scenario. That is, the investor aims to find the strategy maximizing her objective function in the worst-case crash scenario. In the first part of this thesis, we consider the model of Korn and Wilmott (2002) in the presence of proportional transaction costs. First, we treat the problem without crashes and show that the value function is the unique viscosity solution of a dynamic programming equation (DPE) and then construct the optimal strategies. We then consider the problem in the presence of crash threats, derive the corresponding DPE and characterize the value function as the unique viscosity solution of this DPE. In the last part, we consider the worst-case problem with a random number of crashes by proposing a regime switching model in which each state corresponds to a different crash regime. We interpret each of the crash-threatened regimes of the market as states in which a financial bubble has formed which may lead to a crash. In this model, we prove that the value function is a classical solution of a system of DPEs and derive the optimal strategies.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Christoph Belak
URN:urn:nbn:de:hbz:386-kluedo-40450
Advisor:Jörn Sass
Document Type:Doctoral Thesis
Language of publication:English
Date of Publication (online):2015/04/02
Year of first Publication:2015
Publishing Institution:Technische Universität Kaiserslautern
Granting Institution:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2015/03/17
Date of the Publication (Server):2015/04/07
Page Number:VI, 224
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Standard gemäß KLUEDO-Leitlinien vom 13.02.2015