The Shephard-Todd-Chevalley-Serre Theorem

  • This thesis explores the Shephard–Todd–Chevalley–Serre Theorem, which establishes a crucial equivalence in the study of unitary reflection groups. Beginning with an introduction to the theorem's historical development and its foundational contributions by Shephard, Todd, Chevalley, and Serre, the thesis investigates the algebraic and geometric implications of this equivalence. Key topics include affine algebraic varieties, the orbit space as a quotient variety, and detailed proofs of the main theorem.

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Torben Bürger
URN:urn:nbn:de:hbz:386-kluedo-84263
Advisor:Ulrich Thiel
Document Type:Bachelor Thesis
Language of publication:English
Date of Publication (online):2024/10/17
Year of first Publication:2024
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Granting Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Date of the Publication (Server):2024/10/21
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)