A local-global principle for unipotent characters

  • We obtain an adaptation of Dade's Conjecture and Späth's Character Triple Conjecture to unipotent characters of simple, simply connected finite reductive groups of type A, B and C. In particular, this gives a precise formula for counting the number of unipotent characters of each defect d in any Brauer l-block B in terms of local invariants associated to e-local structures. This provides a geometric version of the local-global principle in representation theory of finite groups. A key ingredient in our proof is the construction of certain parametrisations of unipotent generalised Harish-Chandra series that are compatible with isomorphisms of character triples.
Metadaten
Author:Damiano Rossi
URN:urn:nbn:de:hbz:386-kluedo-87817
Parent Title (English):Forum of Mathematics, Sigma
Publisher:Cambridge University Press
Place of publication:Cambridge, UK
Document Type:Article
Language of publication:English
Date of Publication (online):2024/12/17
Year of first Publication:2024
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Date of the Publication (Server):2025/03/03
Issue:(2024), Vol. 12:e125
Page Number:29
Source:10.1017/fms.2024.78
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
MSC-Classification (mathematics):20-XX GROUP THEORY AND GENERALIZATIONS / 20Cxx Representation theory of groups [See also 19A22 (for representation rings and Burnside rings)] / 20C20 Modular representations and characters
Collections:Open-Access-Publikationsfonds
Licence (German):Zweitveröffentlichung