Cohomological connectivity of perturbations of map-germs

  • Let \(f: (\mathbb {C}^n,S)\rightarrow (\mathbb {C}^p,0)\) be a finite map-germ with \(n < p\) and \(Y_\delta\) the image of a small perturbation \(f_\delta\) . We show that the reduced cohomology of $Y_\delta$ is concentrated in a range of degrees determined by the dimension of the instability locus of \(f\) . In the case \(n\ge p\) , we obtain an analogous result, replacing finiteness by \(\mathcal {K}\) -finiteness and \(Y_\delta\) by the discriminant \(\Delta (f_\delta)\) . We also study the monodromy associated to the perturbation \(f_\delta\) .

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Yongqiang Liu, Guillermo Peñafort Sanchis, Matthias Zach
URN:urn:nbn:de:hbz:386-kluedo-88313
DOI:https://doi.org/10.1002/mana.202200460
ISSN:1522-2616
Parent Title (English):Mathematische Nachrichten
Publisher:Wiley
Place of publication:Weinheim
Editor:Robert Denk, Klaus Hulek, J. Seiler
Document Type:Article
Language of publication:English
Date of Publication (online):2025/03/13
Year of first Publication:2024
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Date of the Publication (Server):2025/04/07
Issue:(2024) Vol.297 / Issue 5
Page Number:31
First Page:1601
Last Page:1631
Source:https://onlinelibrary.wiley.com/doi/10.1002/mana.202200460
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Collections:Open-Access-Publikationsfonds
Licence (German):Creative Commons 4.0 - Namensnennung (CC BY 4.0)