Cohomological connectivity of perturbations of map-germs
- Let \(f: (\mathbb {C}^n,S)\rightarrow (\mathbb {C}^p,0)\) be a finite map-germ with \(n < p\) and \(Y_\delta\) the image of a small perturbation \(f_\delta\) . We show that the reduced cohomology of $Y_\delta$ is concentrated in a range of degrees determined by the dimension of the instability locus of \(f\) . In the case \(n\ge p\) , we obtain an analogous result, replacing finiteness by \(\mathcal {K}\) -finiteness and \(Y_\delta\) by the discriminant \(\Delta (f_\delta)\) . We also study the monodromy associated to the perturbation \(f_\delta\) .
Author: | Yongqiang Liu, Guillermo Peñafort Sanchis, Matthias Zach |
---|---|
URN: | urn:nbn:de:hbz:386-kluedo-88313 |
DOI: | https://doi.org/10.1002/mana.202200460 |
ISSN: | 1522-2616 |
Parent Title (English): | Mathematische Nachrichten |
Publisher: | Wiley |
Place of publication: | Weinheim |
Editor: | Robert Denk, Klaus Hulek, J. Seiler |
Document Type: | Article |
Language of publication: | English |
Date of Publication (online): | 2025/03/13 |
Year of first Publication: | 2024 |
Publishing Institution: | Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau |
Date of the Publication (Server): | 2025/04/07 |
Issue: | (2024) Vol.297 / Issue 5 |
Page Number: | 31 |
First Page: | 1601 |
Last Page: | 1631 |
Source: | https://onlinelibrary.wiley.com/doi/10.1002/mana.202200460 |
Faculties / Organisational entities: | Kaiserslautern - Fachbereich Mathematik |
DDC-Cassification: | 5 Naturwissenschaften und Mathematik / 510 Mathematik |
Collections: | Open-Access-Publikationsfonds |
Licence (German): |