Cohomological connectivity of perturbations of map-germs
- Let \(f: (\mathbb {C}^n,S)\rightarrow (\mathbb {C}^p,0)\) be a finite map-germ with \(n < p\) and \(Y_\delta\) the image of a small perturbation \(f_\delta\) . We show that the reduced cohomology of $Y_\delta$ is concentrated in a range of degrees determined by the dimension of the instability locus of \(f\) . In the case \(n\ge p\) , we obtain an analogous result, replacing finiteness by \(\mathcal {K}\) -finiteness and \(Y_\delta\) by the discriminant \(\Delta (f_\delta)\) . We also study the monodromy associated to the perturbation \(f_\delta\) .
| Author: | Yongqiang Liu, Guillermo Peñafort Sanchis, Matthias Zach |
|---|---|
| URN: | urn:nbn:de:hbz:386-kluedo-88313 |
| DOI: | https://doi.org/10.1002/mana.202200460 |
| ISSN: | 1522-2616 |
| Parent Title (English): | Mathematische Nachrichten |
| Publisher: | Wiley |
| Place of publication: | Weinheim |
| Editor: | Robert Denk, Klaus Hulek, J. Seiler |
| Document Type: | Article |
| Language of publication: | English |
| Date of Publication (online): | 2025/03/13 |
| Year of first Publication: | 2024 |
| Publishing Institution: | Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau |
| Date of the Publication (Server): | 2025/04/07 |
| Issue: | (2024) Vol.297 / Issue 5 |
| Page Number: | 31 |
| First Page: | 1601 |
| Last Page: | 1631 |
| Source: | https://onlinelibrary.wiley.com/doi/10.1002/mana.202200460 |
| Faculties / Organisational entities: | Kaiserslautern - Fachbereich Mathematik |
| DDC-Cassification: | 5 Naturwissenschaften und Mathematik / 510 Mathematik |
| Collections: | Open-Access-Publikationsfonds |
| Licence (German): |
