Rouse Chains with Excluded Volume Interactions: Linear Viscoelasticity

  • Linear viscoelastic properties for a dilute polymer solution are predicted by modeling the solution as a suspension of non-interacting bead-spring chains. The present model, unline the Rouse model, can describe the solution's rheological behavior even when the solvent quality is good, since excluded volume effects are explicitly taken into account through a narrow Gaussian repulsive potential between pairs of beads in a bead-spring chain. The use of the narrow Gaussian potential, which tends to the more commonly used delta-function repulsive potential in the limit of a width parameter d going to zero, enables the performance of Brownian dynamics simulations. The simulations results, which describe the exact behavior of the model, indicate that for chains of arbitrary but finite length, a delta-function potential leads to equilibrium and zero shear rate properties which are identical to the predictions of the Rouse model. On the other hand, a non-zero value of d gives rise to a predictionof swelling at equilibrium, and an increase in zero shear rate properties relative to their Rouse model values. The use of a delta-function potential appears to be justified in the limit of infinite chain length. The exact simulation results are compared with those obtained with an approximate solution, which is based on the assumption that the non-equilibrium configurational distribution function is Gaussian. The Gaussian approximation is shown to be exact to first order in the strength of excluded volume interaction, and is used to explore long chain rheological properties by extrapolating results obtained numerically for finite chains, to the limit of infinite chain length.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:J. Ravi Prakash
URN:urn:nbn:de:hbz:386-kluedo-10016
Series (Serial Number):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (221)
Document Type:Preprint
Language of publication:English
Year of Completion:2000
Year of first Publication:2000
Publishing Institution:Technische Universität Kaiserslautern
Date of the Publication (Server):2000/03/21
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011