Untersuchungen zu Spincrossover und Valenztautomerie an an Eisen(II)- bzw. Kobalt(II)-Komplexen

  • Mit den Komplexen [Fe(L-N4H2)(NCS)2]∙MeOH (1) und [Fe(L-N2S2)(NCS)2]∙0,5 DMF (2) konnten zwei neue Spincrossover-Verbindungen synthetisiert werden, die Thiocyanat-Anionen als Liganden beinhalten. Die magnetischen Untersuchungen für Komplex 1 wurden aufgrund der verwitterungsanfälligen Kristalle mit einer lösungsmittelfreien Probe ([Fe(L-N4H2)(NCS)2]) durchgeführt. Sowohl die SQUID-Magnetometrie als auch die Mößbauer-Spektroskopie zeigen hierbei einen unvollständigen Spinübergang, bei dem bei tiefen Temperaturen ein high-spin Restanteil von 30 % verbleibt. Die Übergangstemperatur beträgt T1/2 = 141 K, für Komplex 2 wird ein Wert von T1/2 = 232 K gefunden. Der Komplex [Fe(L-N4tBu2)(CN)2]•MeCN (3) ist das erste Beispiel einer eisen(II)-haltigen low-spin Verbindung, die den makrozyklischen Pyridinophanliganden L-N4tBu2 enthält. Durch die Verwendung von Coliganden mit geringerer Ligandenfeldstärke (verglichen zum Cyanid-Anion) gelang es in der vorliegenden Arbeit erstmals, Spincrossover-Komplexe mit dem Liganden L-N4tBu2 zu synthetisieren. Dabei handelt es sich um die Eisen(II)-Komplexe [Fe(L-N4tBu2)(bipy)](BPh4)2•MeCN•Et2O (4), [Fe(L-N4tBu2)(phen)](BPh4)2•Et2O (5a), [Fe(L-N4tBu2)(phen)](BPh4)2•MeCN (5b), [Fe(L-N4tBu2)(dppz)](BPh4)2 (6) sowie [Fe(L-N4tBu2)(bpym)](BPh4)2•MeCN (7), bei denen aromatische Diimine als Coliganden eingesetzt wurden. Die Röntgenstrukturanalysen zeigen mehr oder weniger ausgeprägte Bindungslängenunterschiede, die jeweils auf einen Spincrossover schließen lassen. Die magnetischen Untersuchungen zeigen für die Komplexe 4 (T1/2 = 177 K), 5a (T1/2 = 179 K), 5b (T1/2 ≈ 347 K), 6 (T1/2 = 275 K) und 7 (T1/2 ≈ 335 K) Spinübergänge mit unterschiedlichen Verläufen und Übergangstemperaturen. Besonders hervorzuheben sind dabei die analogen Komplexe 5a und 5b, die sich zwar lediglich durch das im Kristallgitter eingebaute Lösungsmittelmolekül unterscheiden, jedoch völlig verschiedene magnetische Eigenschaften und Spinübergangsarten aufweisen. Neben den einkernigen low-spin Komplexen [Fe(L-N4Me2)(bpym)](ClO4)2 (8) und [Fe(L-N4Me2)(BiBzIm)]∙4 MeOH (9) konnten erstmals mit dem Pyridinophanliganden L-N4Me2 zweikernige Spincrossover-Komplexe hergestellt werden. Der zweikernige Komplex [{Fe(L-N4Me2)}2(BiBzIm)](ClO4)2∙2 EtCN (10) zeigt bei T = 175 K einen abrupten high-spin/high-spin→high-spin/low-spin Übergang. Nur eines der beiden Eisen(II)-Ionen geht beim Abkühlen vom high-spin in den low-spin Zustand über. In der Kristallstruktur können bei tiefen Temperaturen die beiden unterschiedlichen Eisen(II)-Zentren genau lokalisiert werden. Ein solcher high-spin/high-spin→high-spin/low-spin Übergang wird auch für [{Fe(L-N4Me2)}2(BzImCOO)](ClO4)2∙0.5 (CH3)2CO (11) beobachtet. Die Übergangstemperatur beträgt hier T = 210 K. Das high-spin und das low-spin Eisen(II)-Ion können in dieser Kristallstruktur bei tiefer Temperatur ebenfalls genau identifiziert werden. Bei dem Komplex [{Fe(L-N4Me2)}2(pndc)](ClO4)2∙H2O (12) handelt es sich ebenfalls um einen zweikernigen Spincrossover-Komplex, der einen vollständigen Spinübergang aufweist (T1/2 ≈ 260 K). Die Untersuchungen zur Valenztautomerie wurden an Kobalt-Komplexen mit dem redoxaktiven Liganden 3,5-Di-tert-butylcatecholat und den makrozyklischen Pyridinophan-liganden L-N4Me2 und L-N4tBu2 durchgeführt. Die Röntgenstrukturanalyse weist Verbindung [Co(L-N4Me2)(dbc)](BPh4) (13) als diamagnetische low-spin Kobalt(III)-Catecholat-Spezies aus. Die C-C-Bindungen und die C-O-Abstände belegen, dass der Dioxolenligand in der Catecholat-Form vorliegt. Außerdem sind die Co-N- und die Co-O-Bindungslängen sehr kurz, was auf das low-spin Kobalt(III)-Ion zurückzuführen ist. Bei Komplex [Co(L-N4tBu2)(dbsq)](B(C6H4Cl)4) (14) handelt es sich hingegen um eine paramagnetische Kobalt(II)-Semichinonat-Verbindung. In der Kristallstruktur ist im kompletten Temperaturbereich das typische Bindungsschema eines Semichinonatliganden zu erkennen. Dagegen unterscheiden sich die Co-N- und die Co-O-Abstände bei den verschiedenen Messtemperaturen deutlich voneinander. Während die kürzeren Bindungs-längen bei T = 100 K eindeutig auf ein low-spin Kobalt(II)-Ion schließen lassen, legen die bei T = 400 K deutlich elongierten Bindungslängen einen beginnenden Spinübergang in den high-spin Zustand nahe. Dieser Befund wird durch die SQUID-Messung unterstützt, bei der im Temperaturintervall von 50 K bis 200 K konstante Werte für χMT bzw. für µeff gefunden werden, während die Werte für T > 200 K deutlich ansteigen und somit auf einen Spincrossover hinweisen.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Michèle Graf
URN:urn:nbn:de:hbz:386-kluedo-23040
Advisor:Hans-Jörg Krüger
Document Type:Doctoral Thesis
Language of publication:German
Year of Completion:2008
Year of first Publication:2008
Publishing Institution:Technische Universität Kaiserslautern
Granting Institution:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2009/01/22
Date of the Publication (Server):2009/01/28
Tag:Eisen; Kobalt; Spincrossover; Valenztautomerie
Faculties / Organisational entities:Kaiserslautern - Fachbereich Chemie
DDC-Cassification:5 Naturwissenschaften und Mathematik / 540 Chemie
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011