PF- MPC: Particle Filter-Model Predictive Control

  • In this article, a new model predictive control approach to nonlinear stochastic systems will be presented. The new approach is based on particle filters, which are usually used for estimating states or parameters. Here, two particle filters will be combined, the first one giving an estimate for the actual state based on the actual output of the system; the second one gives an estimate of a control input for the system. This is basically done by adopting the basic model predictive control strategies for the second particle filter. Later in this paper, this new approach is applied to a CSTR (continuous stirred-tank reactor) example and to the inverted pendulum.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:D. Stahl, J. Hauth
URN:urn:nbn:de:hbz:386-kluedo-16888
Series (Serial Number):Berichte des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM Report) (201)
Document Type:Report
Language of publication:English
Year of Completion:2011
Year of first Publication:2011
Publishing Institution:Fraunhofer-Institut für Techno- und Wirtschaftsmathematik
Date of the Publication (Server):2011/03/02
Tag:Monte Carlo methods; deterministic technical systems; nonlinear stochastic systems
Faculties / Organisational entities:Fraunhofer (ITWM)
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011