Ecophysiological characterization of early successional biological soil crusts in heavily human-impacted areas

  • Ecophysiological characterizations of photoautotrophic communities are not only necessary to identify the response of carbon fixation related to different climatic factors, but also to evaluate risks connected to changing environments. In biological soil crusts (BSCs), the description of ecophysiological features is difficult, due to the high variability in taxonomic composition and variable methodologies applied. Especially for BSCs in early successional stages, the available datasets are rare or focused on individual constituents, although these crusts may represent the only photoautotrophic component in many heavily disturbed ruderal areas, such as parking lots or building areas with increasing surface area worldwide. We analyzed the response of photosynthesis and respiration to changing BSC water contents (WCs), temperature and light in two early successional BSCs. We investigated whether the response of these parameters was different between intact BSC and the isolated dominating components. BSCs dominated by the cyanobacterium Nostoc commune and dominated by the green alga Zygogonium ericetorum were examined. A major divergence between the two BSCs was their absolute carbon fixation rate on a chlorophyll basis, which was significantly higher for the cyanobacterial crust. Nevertheless, independent of species composition, both crust types and their isolated organisms had convergent features such as high light acclimatization and a minor and very late-occurring depression in carbon uptake at water suprasaturation. This particular setup of ecophysiological features may enable these communities to cope with a high variety of climatic stresses and may therefore be a reason for their success in heavily disturbed areas with ongoing human impact. However, the shape of the response was different for intact BSC compared to separated organisms, especially in absolute net photosynthesis (NP) rates. This emphasizes the importance of measuring intact BSCs under natural conditions for collecting reliable data for meaningful analysis of BSC ecosystem services.

Download full text files

Export metadata

Metadaten
Author:Michelle Szyja, Claudia Colesie, Burkhard Büdel
URN:urn:nbn:de:hbz:386-kluedo-53478
DOI:https://doi.org/10.5194/bg-15-1919-2018
Document Type:Article
Language of publication:English
Date of Publication (online):2018/04/03
Year of first Publication:2018
Publishing Institution:Technische Universität Kaiserslautern
Date of the Publication (Server):2018/08/07
Page Number:13
Source:Biogeosciences, 15, 1919-1931, 2018
Faculties / Organisational entities:Kaiserslautern - Fachbereich Biologie
DDC-Cassification:5 Naturwissenschaften und Mathematik / 570 Biowissenschaften, Biologie
Collections:Open-Access-Publikationsfonds
Licence (German):Zweitveröffentlichung