Beitrag zur rechnerischen Abschätzung des Scheiben-Elastizitätsverhaltens in Dickenrichtung vernähter Faser-Kunststoff-Verbund-Laminate
- Die Nähtechnik in Verbindung mit Harzinfusions- und -injektionstechniken eröffnet
ein erhebliches Gewichts- und Kosteneinsparpotential primär belasteter
Strukturbauteile aus Faser-Kunststoff-Verbundwerkstoffen. Dabei ist es unter
bestimmten Voraussetzungen möglich, durch Vernähungen gezielte Steigerungen
mechanischer Eigenschaften zu erreichen. Ein genaues Verständnis wirksamer
Zusammenhänge bezüglich der Änderung mechanischer Kennwerte verglichen mit
dem unvernähten Verbund ist unverzichtbar, um einen Einsatz dieser Technologie im
zivilen Flugzeugbau voranzubringen.
Im Rahmen dieser Arbeit wird eine breit angelegte experimentelle Parameterstudie
zum Einfluss verschiedener Nähparameter auf Scheiben-Elastizitäts- und
Festigkeitseigenschaften von kohlenstofffaserverstärkten Epoxidharzverbunden unter
Zug- und Druckbelastung durchgeführt. Neben der Stichrichtung, der Garnfeinheit,
dem Nahtabstand und der Stichlänge wurde auch die Belastungsrichtung variiert. Bei
einigen Parametereinstellungen konnten keine Änderungen des Elastizitätsmoduls
oder der Festigkeit in der Laminatebene festgestellt werden, wohingegen in anderen
Fällen Reduktionen oder Steigerungen um bis zu einem Drittel des Kennwerts des
unvernähten Laminats beobachtet wurden. Dabei ist vor allem der Einfluss der
Garnfeinheit dominierend.
Die Fehlstellenausbildung infolge eines Stichs in Abhängigkeit der gewählten
Parameter und der Orientierung der Einzelschicht wurde anhand von Schliffbildern in
der Laminatebene untersucht. Ein erheblicher Einfluss der einzelnen Parameter auf
die Fehlstellenausbildung ist festzustellen, wobei wiederum die Garnfeinheit
dominiert. Anhand der Ergebnisse der Auswertung der Fehlstellenausbildung in den
Einzelschichten wurde ein empirisches Modell generiert, womit charakteristische
Fehlstellengröße n wie die Querschnittsfläche, die Breite und die Länge in
Abhängigkeit der genannten Parameter berechnet werden können.
Darauf aufbauend wurde ein Finite-Elemente-Elementarzellenmodell generiert, mit
welchem Scheiben-Elastizitätsgrößen vernähter Laminate abgeschätzt werden
können. Neben der Berücksichtigung der genannten Nähparameter ist der zentrale
Aspekt hierbei die Beschreibung eines Stichs in Form von Reinharzgebiet und
Faserumlenkungsbereich in jeder Einzelschicht.
Stitching technology in combination with Liquid Composite Molding techniques offers
a possibility to reduce significantly weight and costs of primarily loaded structural
parts made of Fiber Reinforced Polymers. Thereby, it is possible to enhance
mechanical properties simultaneously. It is essential to understand effective
correlations of all important parameters concerning changes in mechanical
characteristics due to additional stitching if stitching technologies have to be
established in the civil aircraft industry.
In this thesis, a broad experimental study on the influence of varying stitching
parameters on the membrane tensile and compressive modulus and strength of
carbon fiber reinforced epoxy laminates is presented. The direction of stitching,
thread diameter, spacing and pitch length as well as the direction of testing had been
varied. In some cases, no changes in modulus and strength could be found due to
the chosen parameters, whereas in other cases reductions or enhancements of up to
30 % compared to the unstitched laminate were observed. Thereby, the thread
diameter shows significant influence on these changes in mechanical properties.
In addition, the stitch and void formation in the thickness direction due to the stitching
parameters was investigated by evaluating micrographs in each layer of the laminate.
Again, the thread diameter showed an outstanding influence on the characteristics of
matrix pure area (void) and fiber disorientation. A mathematical model was evaluated
in order to predict in-plane characteristics of stitches and voids, from which the cross
sectional area, the width and the length of a void due to the chosen stitching
parameters can be derived.
Finally, a Finite Element based unit cell model was established to calculate elastic
constants of stitched FRP laminates. With this model it is possible to consider a stitch
as a matrix pure region and additionally an area of in-plane fiber disorientation
depending on the stitching parameters as introduced above. The model was
validated using the experimental data for tensile and compressive loading.
The outstanding flexibility of this FE unit cell approach is shown in a parametric
study, where different void formations as well as stitching parameters were varied in
a stitched, unidirectional laminate. It was found that three different aspects influence
significantly the in-plane elastic constants of stitched laminates. First of all, the
stitching parameters as well as the laminate characteristics define the shape of the
unit cell including the areas of the stitch and the fiber disorientation. Secondly,
stitching changes the fiber volume fraction in all layers, which causes changes in
elastic properties as well. Thirdly, the type and the direction of loading has to be
considered, because each change in the architecture of the laminate results in
different effects on the in-plane elastic constants namely tensile, compressive or
shear moduli as well as the Poisson´s ratios.