Mechanische Eigenschaften von Nanoverbundwerkstoffen aus Epoxydharz und keramischen Nanoparktikeln
- Diese Arbeit zielt auf die Entwicklung duroplastischer Nanoverbundwerkstoffe mit hoher
mechanischer und tribologischer Leistungsfähigkeit. Die Basismaterialien sind
Epoxydharz als Matrix sowie keramische Nanopartikel aus Aluminiumoxid und Titandioxid
als Verstärkungsmaterial. Die systematische Variation von Partikelvolumengehalten
und die Herstellung von Nanoverbundwerkstoffen in Serien führen zum Ziel.
Aus diesen Serien lassen sich die für ein gewünschtes Eigenschaftsprofil optimalen
Partikelgehalte ableiten.
Die praxisorientierte Herstellung von Nanoverbundwerkstoffen erfordert die Anwendung
industrienaher und skalierbarer Methoden zur Einarbeitung der pulverförmigen,
agglomerierten Nanopartikel in das flüssige Harz, gefolgt von deren Dispergierung. Dazu
wurden mechanische Dispergiertechnologien ausgewählt und eingesetzt, welche
die Agglomerate durch Einwirkung hoher Kräfte zerkleinern. Dissolver und Tauchmühlen
erwiesen sich als geeignete Maschinen, denn sie erlauben die Dispergierung unter
exakt kontrollierbaren Prozessbedingungen und bewirken eine homogene Verteilung
kleiner Teilchen im flüssigen Epoxydharz, ein Zustand, der auch im ausgehärteten
Material erhalten bleibt. Diese Arbeit stellt geeignete Dispergierprozesse für Dissolver
und Tauchmühle zur Verfügung.
Die so hergestellten Serien an Nanoverbundwerkstoffen wurden umfangreich materialwissenschaftlich
charakterisiert und nach Ursachen für die Wirkung der eingebrachten
Nanopartikel gesucht. Es ergeben sich bei guter Dispergierung deutliche Verbesserungen
der mechanischen Eigenschaften, wobei geringe Nanopartikelgehalte (<5 Vol.%)
bereits ausreichen, um diese zu erzielen. Abhängig vom Partikelgehalt demonstrieren
die Materialien Steigerungen des Elastizitätsmoduls und der Festigkeit bei sehr geringen
Einbußen an Duktilität. Die eingehende Untersuchung der bruchmechanischen
Eigenschaften mittels LEBM liefert Zähigkeitsanstiege (KIc, GIc, CTOD), die mit einer
üblichen Kautschuk-Modifizierung durchaus vergleichbar sind, ohne jedoch deren
Nachteile in Form eines Modulabfalles in Kauf nehmen zu müssen. Keramische Nanopartikel
leisten damit die Auflösung des Steifigkeit-/Zähigkeits-Paradigmas, wodurch
nun Werkstoffe entwickelbar sind, die sich durch verbesserte Bruchzähigkeit bei gleichzeitiger
Steifigkeits- und Festigkeitserhöhung auszeichnen. Mit diesen Charakteristiken
geht auch die Erhöhung der Glasübergangstemperatur und Temperaturstabilität einher.
Unter dynamischer Belastung behindern Nanopartikel sogar die Ausbreitung von
Rissen im Kunststoff und heben damit den Widerstand gegen Ermüdungsrissausbreitung
auf ein höheres Niveau. Weiterhin verbessern geringe Nanopartikelgehalte (0,5-2
Vol%) den Verschleißwiderstand von Epoxydharz unter Gleitverschleißbedingungen.
Fraktographische Untersuchungen ergaben Hinweise auf die verantwortlichen Verstärkungsmechanismen.
Die Nanopartikel bewirken eine Superposition verschiedener
energiedissipativer Mechanismen im Epoxydharz, z.B. Crack pinning, Debonding,
plastische Deformation der Matrix, Mikrorissbildung, Rissablenkung und Ausrundung
der Riss-Spitze. Diese stehen in engem Zusammenhang zur Mikrostruktur der Materialien.
Den Fingerabdruck dieser Mikrostruktur lieferten mikroskopische Methoden
(REM, TEM, AFM). Sie beweisen, dass bereits das Epoxydharz eine komplexe Struktur
aufweist, die sich freilich durch den Einfluss der Nanopartikel und die resultierenden
Grenzflächenwechselwirkungen stark ändert. Um Zusammenhänge zu verdeutlichen,
wurden mikrostrukturelle und mechanische Eigenschaften korreliert, und teilweise
analytisch modelliert (Young’scher Modul). Als hilfreich erwiesen sich hier ergänzende
Untersuchungen der mikromechanischen Eigenschaften in kleinsten Bereichen der
Werkstoffe mittels Nanoindentation.
Im Hinblick auf traditionelle und seit langem bewährte Verbundwerkstoff-Rezepturen
hat sich gezeigt, dass Nanopartikeln ihre Verstärkungswirkung auch in Kombination
mit Mikropartikel (Glaskugeln, CaSiO3) bewahren, sodass bei vergleichbarem oder
erhöhtem Nutzen der Mikropartikelanteil reduziert werden kann.
Aufgrund der überzeugenden Eigenschaften bieten duroplastische Nanoverbundwerkstoffe
ein großes Anwendungspotenzial. Sie sind als tribologisch und mechanisch widerstandsfähige
Beschichtungen, als Matrizes in faserverstärkten Kompositen oder per
se einsetzbar.
This work focuses on the development of thermosetting nanocomposites with high
mechanical and tribological performance. The materials were chosen to be epoxy
resin as a matrix and ceramic nanoparticles (aluminium oxide and titanium dioxide)
as modifiers. The method of choice for reaching the aim is the systematic variation of
particle volume amounts and the manufacturing of series of nanocomposites, which
allow deducing the wished formulations.
The application oriented manufacturing of nanocomposites necessitates the use of
scalable industrial Methods for working the powdery nanoparticle agglomerates into
the liquid resin, followed by dispersion processes. For this purpose, mechanical dispersion
technologies have been chosen and applied, which break the agglomerates
under high shear forces. The Dissolver and the Torus Mill turned out to be suitable
devices allowing to disperse the particles under controlled processing conditions. This
results in a homogeneous distribution of particles in the liquid epoxy. In fact, the state
of well distributed the particles is preserved also in the cured resin. This work provides
suitable dispersion processes for both the Dissolver and the Torus Mill.
The newly developed nanocomposites were extensively characterized with respect to
their mechanical performance, and also with special attention to the reinforcing effects.
Provided that nanoparticles are well dispersed within the polymer, the mechanical
properties have proved to be strongly enhanced by the particles. Low filler amounts
(< 5 Vol.%) are already sufficient to gain the wished effects. Depending on the filler
volume fraction, the materials demonstrate improvements in modulus and strength
without reducing ductility. The detailed examination of fracture mechanical properties
by means of LEFM revealed toughness increases (KIc, GIc, CTOD) which are comparable
to that of rubber tougheners in epoxy. However, the traditional loss in modulus
in the latter systems is avoided by the use of nanoparticles. Accordingly, the ceramic
nanofillers are able to overcome the stiffness-toughness paradigm, so that materials
feature improved fracture toughness, stiffness and strength simultaneously can now be
developed. These characteristics are accompanied at the same time by an increase in
the glass transition temperature and the temperature stability. Besides, the nanoparticles hinder the propagation of small cracks within the matrix and increase the resistance
to fatigue crack propagation. As a matter of fact, one finds also the wear resistance
being improved under sliding wear conditions.
Examinations on fractured specimen surfaces provided information about the mechanisms
responsible for reinforcement. The nanoparticles generate a superposition of several energy dissipating mechanisms in the epoxy, e.g. crack pinning, debonding,
plastic deformation of the matrix, microcracking, crack deflection and crack tip blunting.
These are closely related to the microstructure of the materials. The characteristic
finger prints of the microstructure could be verified by microscopy methods (SEM,
TEM, AFM). It was proved true, that even in neat epoxy resin a complex microstructure
exists, which is, however, strongly influenced by the nanoparticles and the resulting
interfacial interactions. In order to clarify the relevant relationships, the microstructural
and mechanical properties were correlated. On the basis of the latter, the Young’s
modulus was modelled analytically. It proved to be helpful to supplementary conduct
micromechanical properties examinations by nanoindentation in small areas of the
material.
With respect to traditional and approved composite formulations, it was shown that the
nanoparticles preserve their reinforcing capabilities if combined with micro-fillers (glass
spheres, CaSiO3). Therefore, the absolute amount of micro-fillers might now be reduced
at comparable or even improved level of the material’s mechanical performance.
The persuasive properties of epoxy nanocomposites offer a great potential to be applied
in parts and components. They serve well as coatings with high wear resistance,
as matrices in fibre reinforced composites, and as bulk materials.