Recognition, Analysis, and Assessments of Human Skills using Wearable Sensors

  • One of the biggest social issues in mature societies such as Europe and Japan is the aging population and declining birth rate. These societies have a serious problem with the retirement of the expert workers, doctors, and engineers etc. Especially in the sectors that require long time to make experts in fields like medicine and industry; the retirement and injuries of the experts, is a serious problem. The technology to support the training and assessment of skilled workers (like doctors, manufacturing workers) is strongly required for the society. Although there are some solutions for this problem, most of them are video-based which violates the privacy of the subjects. Furthermore, they are not easy to deploy due to the need for large training data. This thesis provides a novel framework to recognize, analyze, and assess human skills with minimum customization cost. The presented framework tackles this problem in two different domains, industrial setup and medical operations of catheter-based cardiovascular interventions (CBCVI). In particular, the contributions of this thesis are four-fold. First, it proposes an easy-to-deploy framework for human activity recognition based on zero-shot learning approach, which is based on learning basic actions and objects. The model recognizes unseen activities by combinations of basic actions learned in a preliminary way and involved objects. Therefore, it is completely configurable by the user and can be used to detect completely new activities. Second, a novel gaze-estimation model for attention driven object detection task is presented. The key features of the model are: (i) usage of the deformable convolutional layers to better incorporate spatial dependencies of different shapes of objects and backgrounds, (ii) formulation of the gaze-estimation problem in two different way, as a classification as well as a regression problem. We combine both formulations using a joint loss that incorporates both the cross-entropy as well as the mean-squared error in order to train our model. This enhanced the accuracy of the model from 6.8 by using only the cross-entropy loss to 6.4 for the joint loss. The third contribution of this thesis targets the area of quantification of quality of i actions using wearable sensor. To address the variety of scenarios, we have targeted two possibilities: a) both expert and novice data is available , b) only expert data is available, a quite common case in safety critical scenarios. Both of the developed methods from these scenarios are deep learning based. In the first one, we use autoencoders with OneClass SVM, and in the second one we use the Siamese Networks. These methods allow us to encode the expert’s expertise and to learn the differences between novice and expert workers. This enables quantification of the performance of the novice in comparison to the expert worker. The fourth contribution, explicitly targets medical practitioners and provides a methodology for novel gaze-based temporal spatial analysis of CBCVI data. The developed methodology allows continuous registration and analysis of gaze data for analysis of the visual X-ray image processing (XRIP) strategies of expert operators in live-cases scenarios and may assist in transferring experts’ reading skills to novices.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Mohammad Al-Naser
Advisor:Andreas Dengel
Document Type:Doctoral Thesis
Language of publication:English
Publication Date:2022/09/07
Year of Publication:2022
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2021/11/08
Date of the Publication (Server):2022/09/09
Number of page:XX, 148
Faculties / Organisational entities:Kaiserslautern - Fachbereich Informatik
CCS-Classification (computer science):I. Computing Methodologies / I.2 ARTIFICIAL INTELLIGENCE / I.2.1 Applications and Expert Systems (H.4, J)
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)