In vitro and in vivo biofunctional effects of selected coffee compounds, extracts and brews on key elements of adenosine receptor-mediated signaling pathways and on cellular heme oxygenase

  • Mechanisms underlying the biological effects of coffee and its constituents are incompletely understood. Many effects have been attributed solely to caffeine, neglecting that coffee is a mixture of many chemical substances. Some authors suggest that the main mechanism of action of caffeine is to antagonize adenosine receptors (AR); a second effect is the inhibition of phosphodiesterases with the subsequent accumulation of cAMP and an intensification of the effects of catecholamines. Although the inhibition of phosphodiesterases may contribute to the actions of caffeine, there is growing evidence that most pharmacological effects of this xanthine result from antagonism of AR. One of the main objectives of this work was to investigate whether substances other than caffeine in coffee may influence the homeostasis of intracellular cyclic nucleotides in vitro and in vivo. The influence of selected coffee compounds, extracts and brews on key elements involved in the adenosine receptor-mediated signaling pathway have been investigated. A further aim of this work was also to determine if coffee or some coffee constituents may have a stimulatory effect on the cellular heme oxygenase activity (HO-activity). Two coffee extracts, a slightly (AB1) and an intensively roasted coffee (AB2), were studied along with selected individual compounds. Caffeine and low substituted pyrazines showed no effect on the HO-activity, while NMP, pyrazines with a greater substitution pattern such as Tetramethylpyrazine (TMP) and 2-Ethyl-3,5(6)-dimethylpyrazine (2-E-3,5-DMP) and both coffee extracts significantly induced the HO-activity in liver hepatocellular carcinoma (HepG2), intestinal colo-rectal adenocarcinoma (Caco-2) and in some instances in monocytic leukemia (MM6) cells. It was found that caffeine, theophylline, coffee extracts from conventional or functional coffees, pyrazines (2,3-DE-6-MP, 2-Isobutyl-3-methoxyP), 5-CQA and caffeic acid all significantly inhibited the basal cytoplasmatic PDE activity in lysates of lung tumour xenograft cells (LXFL529L) and human platelets. To a somewhat lesser extent, PDE inhibition was also found in experiments performed with paraxanthine and other pyrazines (2-E-3,5-DMP, TMP and 2-E-5-MP). Thus the degree of roasting has a considerable impact on constituents of influence for PDE activity. Caffeine, coffee polyphenols and some pyrazines and further, as yet unknown roasting products appear to represent the main modulating constituents. In two coffee intervention studies, a short-term (8 weeks) and a long-term study (24 weeks), comprising 8 and 84 healthy volunteers respectively, we examined extracellular key elements of the adenosine pathway including plasma adenosine levels and adenosine deaminase activity. Additionally, we studied the intracellular cAMP concentration and the PDE activity in platelets as surrogate biomarkers of adipocytes. Results of in vitro experiments had suggested that the concentrations of caffeine and coffee extracts required to obtain a half maximal inhibition were in the upper range of physiological conditions. Yet, it was demonstrated for the first time in vivo that moderate consumption of coffee can modulate the activity of platelet phosphodiesterases in humans in long and short term. In both studies, the first exposure to coffee showed a strong inhibition (p<0.001) of the PDE activity in the platelet lysates of the participants while the second coffee phase showed no or a slight effect when compared with the first coffee intervention. In both studies a significant increase (p<0.001) in intraplatelet cAMP concentrations during the wash-out phase (after the first coffee phase) was observed. This response could be due to inhibition of the PDE activity in the previously phase extending in to the wash out phase. However, the behavior of cAMP in the following study phases cannot be easily explained. It may be hypothesized that this effect is attributable to adaptive effects to allow PDE inhibition. One possibility is the modulation of the expression of membrane-bound adenosine receptors in platelet precursors, which still have a nucleus. This may potentially influence adenylate cyclase activity in mature platelets. For the observed effects, in addition to caffeine other ingredients of coffee appear to play a role. The findings suggest that monitoring of cAMP homeostasis in platelets is not a useful surrogate biomarker for effects in other tissues. Neither the activity of adenosine deaminase nor the adenosine concentrations in plasma were markedly modulated by the coffee consumption in both trials. This may reflect the fact that adenosine is subject to quick and effective enzymatic turnover by phosphorylation (adenosine kinase) or deamination (adenosine deaminase) allowing keep its concentration within a well balanced homeostasis. However, it is also well known, that considerable variability exists in the responses to coffee drinking. In part, such variability is due to caffeine tolerance, but there is also evidence for a genetic background. Altogether the data reported here provide further evidence for the perception that coffee consumption is associated with beneficial health effects demonstrated for the cAMP enhancement in platelets, known to counteract platelet aggregation. The effects observed for the influence of cellular heme oxygenase (HO) are in line with the well documented antioxidative activity of coffee and its constituents.

Download full text files

Export metadata

Author:Gina Alejandra Montoya Parra
Advisor:Gerhard Eisenbrand, Elke Richling
Document Type:Doctoral Thesis
Language of publication:English
Publication Date:2012/05/16
Year of Publication:2012
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:0012/04/25
Date of the Publication (Server):2012/05/16
Number of page:265
Faculties / Organisational entities:Kaiserslautern - Fachbereich Chemie
DDC-Cassification:5 Naturwissenschaften und Mathematik / 540 Chemie
Licence (German):Standard gemäß KLUEDO-Leitlinien vom 15.02.2012