Visual Learning of Socio-Video Semantics

  • Today's ubiquity of visual content as driven by the availability of broadband Internet, low-priced storage, and the omnipresence of camera equipped mobile devices conveys much of our thinking and feeling as individuals and as a society. As a result the growth of video repositories is increasing at enourmous rates with content now being embedded and shared through social media. To make use of this new form of social multimedia, concept detection, the automatic mapping of semantic concepts and video content has to be extended such that concept vocabularies are synchronized with current real-world events, systems can perform scalable concept learning with thousands of concepts, and high-level information such as sentiment can be extracted from visual content. To catch up with these demands the following three contributions are made in this thesis: (i) concept detection is linked to trending topics, (ii) visual learning from web videos is presented including the proper treatment of tags as concept labels, and (iii) the extension of concept detection with adjective noun pairs for sentiment analysis is proposed. In order for concept detection to satisfy users' current information needs, the notion of fixed concept vocabularies has to be reconsidered. This thesis presents a novel concept learning approach built upon dynamic vocabularies, which are automatically augmented with trending topics mined from social media. Once discovered, trending topics are evaluated by forecasting their future progression to predict high impact topics, which are then either mapped to an available static concept vocabulary or trained as individual concept detectors on demand. It is demonstrated in experiments on YouTube video clips that by a visual learning of trending topics, improvements of over 100% in concept detection accuracy can be achieved over static vocabularies (n=78,000). To remove manual efforts related to training data retrieval from YouTube and noise caused by tags being coarse, subjective and context-depedent, this thesis suggests an automatic concept-to-query mapping for the retrieval of relevant training video material, and active relevance filtering to generate reliable annotations from web video tags. Here, the relevance of web tags is modeled as a latent variable, which is combined with an active learning label refinement. In experiments on YouTube, active relevance filtering is found to outperform both automatic filtering and active learning approaches, leading to a reduction of required label inspections by 75% as compared to an expert annotated training dataset (n=100,000). Finally, it is demonstrated, that concept detection can serve as a key component to infer the sentiment reflected in visual content. To extend concept detection for sentiment analysis, adjective noun pairs (ANP) as novel entities for concept learning are proposed in this thesis. First a large-scale visual sentiment ontology consisting of 3,000 ANPs is automatically constructed by mining the web. From this ontology a mid-level representation of visual content – SentiBank – is trained to encode the visual presence of 1,200 ANPs. This novel approach of visual learning is validated in three independent experiments on sentiment prediction (n=2,000), emotion detection (n=807) and pornographic filtering (n=40,000). SentiBank is shown to outperform known low-level feature representations (sentiment prediction, pornography detection) or perform comparable to state-of-the art methods (emotion detection). Altogether, these contributions extend state-of-the-art concept detection approaches such that concept learning can be done autonomously from web videos on a large-scale, and can cope with novel semantic structures such as trending topics or adjective noun pairs, adding a new dimension to the understanding of video content.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Author:Damian Borth
Advisor:Thomas Breuel, Andreas Dengel
Document Type:Doctoral Thesis
Language of publication:English
Date of Publication (online):2015/03/15
Year of first Publication:2015
Publishing Institution:Technische Universität Kaiserslautern
Granting Institution:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2014/07/11
Date of the Publication (Server):2015/03/18
Page Number:166
Faculties / Organisational entities:Kaiserslautern - Fachbereich Informatik
CCS-Classification (computer science):H. Information Systems
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Licence (German):Standard gemäß KLUEDO-Leitlinien vom 13.02.2015