The pseudokinase Madm and protein phosphatase PP4 control distinct aspects of synaptic plasticity at the Drosophila neuromuscular junction

  • Synapses are the fundamental structures that regulate the functionality of the neural circuit. The ability of the synapse to modulate its structure and function at a fast rate due to various sensory inputs provides the strength to the nervous system to incorporate new adaptations and behaviors in the animal. The synapses are very dynamic throughout the life of the animal starting from early development. Continuous events of formation and elimination of synapse, activation and inhibition of synaptic function are observed in almost all synapses. These processes occur at a high speed and require controlled cellular mechanisms. Imbalance in these processes results in defective nervous system and has been reported in many neurological disorders. Thus, it is important to understand the mechanisms that regulate process of synapse development maintenance and function. Kinases and phosphatases are the key regulators of cellular mechanisms. Understanding the function of these molecules in the neuron will shed light on the molecular mechanisms of synaptic plasticity. Using Drosophila melanogaster larval neuromuscular junction as a model, Bulat et al. (2014) performed a large RNAi based screen targeting kinome and phosphatome of Drosophila to identify the essential kinases and phosphatases and found Myeloid leukemia factor-1 adaptor molecule (Madm) and Protein phosphatase 4 (PP4) as novel regulators of synapse development and maintenance. The function of these molecules in the nervous system has not been reported and hence I investigated on the role of Madm and PP4 in the regulation of synapse development, maintenance and function. Myeloid leukemia factor-1 adaptor molecule (Madm), a ubiquitously expressing psuedokinase essentially functions to regulate synaptic growth, stability and function. Using a combination of genetic and high throughput imaging, I could demonstrate that Madm functions to regulate the synaptic growth and stability from the presynapse and synaptic organization form the postsynapse. Also, I could demonstrate that Madm functions in association with mTOR pathway to regulate synapse growth acting downstream of 4E-BP. In addition, using electrophysiology, we could demonstrate that Madm is essential for the basic synaptic transmission with an additive function of retrograde synaptic potentiation. In summary, I could demonstrate that Madm is a novel regulator of synaptic development, maintenance and function. Protein phosphatase 4 (PP4), a ubiquitously expressing protein phosphatase is involved in the regulation of multiple aspects of the nervous system. I could demonstrate that PP4 is essential for the development of nervous system and the metamorphosis. Using genetics and imaging analysis, I could demonstrate that loss of PP4 results in the abnormal morphology of cell organelles. In addition, I could show that loss of PP4 results in defective brain development with poorly developed structures. Altogether, in this study, I could demonstrate the importance of novel molecules, a pesudokinase Madm and protein phosphatases PP4 in the nervous system to regulate distinct aspects of the neuron.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Kumar Aavula
Advisor:Jan Pielage
Document Type:Doctoral Thesis
Language of publication:English
Publication Date:2019/12/18
Year of Publication:2019
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2018/08/14
Date of the Publication (Server):2023/02/15
Number of page:VI, 153
Faculties / Organisational entities:Kaiserslautern - Fachbereich Biologie
DDC-Cassification:5 Naturwissenschaften und Mathematik / 570 Biowissenschaften, Biologie
Licence (German):Creative Commons 4.0 - Namensnennung (CC BY 4.0)