Visual Analysis of Variability and Features of Climate Simulation Ensembles

  • This PhD thesis is concerned with the visual analysis of time-dependent scalar field ensembles as occur in climate simulations. Modern climate projections consist of multiple simulation runs (ensemble members) that vary in parameter settings and/or initial values, which leads to variations in the resulting simulation data. The goal of ensemble simulations is to sample the space of possible futures under the given climate model and provide quantitative information about uncertainty in the results. The analysis of such data is challenging because apart from the spatiotemporal data, also variability has to be analyzed and communicated. This thesis presents novel techniques to analyze climate simulation ensembles visually. A central question is how the data can be aggregated under minimized information loss. To address this question, a key technique applied in several places in this work is clustering. The first part of the thesis addresses the challenge of finding clusters in the ensemble simulation data. Various distance metrics lend themselves for the comparison of scalar fields which are explored theoretically and practically. A visual analytics interface allows the user to interactively explore and compare multiple parameter settings for the clustering and investigate the resulting clusters, i.e. prototypical climate phenomena. A central contribution here is the development of design principles for analyzing variability in decadal climate simulations, which has lead to a visualization system centered around the new Clustering Timeline. This is a variant of a Sankey diagram that utilizes clustering results to communicate climatic states over time coupled with ensemble member agreement. It can reveal several interesting properties of the dataset, such as: into how many inherently similar groups the ensemble can be divided at any given time, whether the ensemble diverges in general, whether there are different phases in the time lapse, maybe periodicity, or outliers. The Clustering Timeline is also used to compare multiple climate simulation models and assess their performance. The Hierarchical Clustering Timeline is an advanced version of the above. It introduces the concept of a cluster hierarchy that may group the whole dataset down to the individual static scalar fields into clusters of various sizes and densities recording the nesting relationship between them. One more contribution of this work in terms of visualization research is, that ways are investigated how to practically utilize a hierarchical clustering of time-dependent scalar fields to analyze the data. To this end, a system of different views is proposed which are linked through various interaction possibilities. The main advantage of the system is that a dataset can now be inspected at an arbitrary level of detail without having to recompute a clustering with different parameters. Interesting branches of the simulation can be expanded to reveal smaller differences in critical clusters or folded to show only a coarse representation of the less interesting parts of the dataset. The last building block of the suit of visual analysis methods developed for this thesis aims at a robust, (largely) automatic detection and tracking of certain features in a scalar field ensemble. Techniques are presented that I found can identify and track super- and sub-levelsets. And I derive “centers of action” from these sets which mark the location of extremal climate phenomena that govern the weather (e.g. Icelandic Low and Azores High). The thesis also presents visual and quantitative techniques to evaluate the temporal change of the positions of these centers; such a displacement would be likely to manifest in changes in weather. In a preliminary analysis with my collaborators, we indeed observed changes in the loci of the centers of action in a simulation with increased greenhouse gas concentration as compared to pre-industrial concentration levels.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Christopher KappeORCiD
Advisor:Heike LeitteORCiD
Document Type:Doctoral Thesis
Language of publication:English
Publication Date:2022/09/07
Date of Publication:2022/09/07
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2022/07/13
Date of the Publication (Server):2022/09/12
Tag:climate; clustering; ensemble; scalar field; time-dependent; visual analytics
GND-Keyword:Visualisierung; Visual Analytics; Unsicherheit; Klima
Number of page:VI, 127
Faculties / Organisational entities:Kaiserslautern - Fachbereich Informatik
CCS-Classification (computer science):I. Computing Methodologies / I.3 COMPUTER GRAPHICS
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)