Optimization of the DPF-Regeneration Strategy for the Use of Vegetable Oil in a Multi-Fuel-Engine Concept

  • The move away from fossil fuels and the diversification of the primary energy sources used are imperative both in terms of mitigating global warming and ensuring the political independence of the Western world. For the industries of agriculture and forestry, it is possible to secure the basic energy supply through their own yield. The use of vegetable oil is a possibility to satisfy the energy requirements for agricultural machines both autonomously and sustainably. Up to now, rapeseed has been the most important plant for oil production in Western Europe. In the EU, rapeseed oil is currently credited with up to 60% fossil CO2 savings compared to conventional diesel fuel. As a result, since 2018, rapeseed oil is no longer considered as biofuel in the EU. However, if cultivation and processing are completely based on renewable energy sources, up to 90% of fossil CO2 emissions can be saved in the future. This also applies to rapeseed oil, which is a by-product of animal feed production. In addition, pure rapeseed oil is chemically unchanged and thus biodegradable, which makes it particularly attractive for use in environmentally sensitive areas. To increase the attractiveness of rapeseed oil as a fuel for the agricultural industry, a multi-fuel concept for the flexible use of rapeseed oil, diesel fuel and any mixtures of these two fuels would be beneficial, as it minimizes economic risks due to price fluctuations, availability, and taxation. For implementing such a concept, technical adjustments to the propulsion system are necessary. In existing vegetable oil vehicles, cost-intensive additional components are required for diesel particulate filter regeneration. Conventional regeneration via post-injected fuel (which does not participate in combustion) leads to dilution of the engine oil with vegetable oil. This study elaborates the possibilities of DPF regeneration in vegetable oil operation by internal engine measures without the need for post-injection. This includes strategies for generating exhaust gas temperatures in high-idle operation which are suitable for regeneration. For this purpose, strategies combining throttling and retarded combustion are used. The measures were successfully tested with respect to their effectiveness for DPF regeneration. It could also be proved that no increased engine oil dilution occurs as a result of the regeneration procedure. For a prospective series application, however, regeneration should also be possible in transient engine operation. For this purpose, the measures developed for high-idle regeneration have been transferred to partial load points to gain insight into their applicability for transient engine operation. In addition, the effect of external EGR on regeneration has been considered. As the previous investigations of high-idle regeneration showed that regeneration is most critical when pure rapeseed oil is used, the studies of regeneration in part-load operation were limited to pure rapeseed oil. The systematic parameter variations carried out during the studies helped to improve the understanding of the system and the mechanisms of regeneration. The results of the investigation show that the exhaust gas temperature can be increased significantly by the measures studied. However, achieving the exhaust temperature required for DPF regeneration remains a challenge for certain operating points.
Metadaten
Author:Nicolas Walter, Michael GünthnerORCiD, Matthias Thees, Jonas Fuhrmeister
URN:urn:nbn:de:hbz:386-kluedo-73604
ISSN:0148-7191
Parent Title (English):SAE Technical Paper
Editor: SAE International
Document Type:Article
Language of publication:English
Date of Publication (online):2022/09/16
Year of first Publication:2022
Publishing Institution:Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
Date of the Publication (Server):2023/08/02
Issue:2022-24-0030, 2022
Page Number:11
Source:10.4271/2022-24-0030
Faculties / Organisational entities:Kaiserslautern - Fachbereich Maschinenbau und Verfahrenstechnik
DDC-Cassification:6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Collections:Open-Access-Publikationsfonds
Licence (German):Zweitveröffentlichung