Plane curves of minimal degree with prescribed singularities

  • We prove that there exists a positive α such thatfor any integer d3 and any topological types S1,,Sn of plane curve singularities, satisfying μ(S1)++μ(Sn)αd2, there exists a reduced irreducible plane curve of degree d with exactly n singular points of types S1,,Sn, respectively. This estimate is optimal with respect to theexponent of d. In particular, we prove that for any topological type S there exists an irreducible polynomial of degree d14μ(S) having a singular point of type S.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Gert-Martin Greuel, Christoph Lossen, Eugenii Shustin
URN:urn:nbn:de:hbz:386-kluedo-7268
Document Type:Article
Language of publication:English
Year of Completion:1998
Year of first Publication:1998
Publishing Institution:Technische Universität Kaiserslautern
Date of the Publication (Server):2000/04/03
Tag:Singularity theory
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
MSC-Classification (mathematics):14-XX ALGEBRAIC GEOMETRY / 14Bxx Local theory / 14B05 Singularities [See also 14E15, 14H20, 14J17, 32Sxx, 58Kxx]
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011