Shannon-Optimal Priors on iid Statistical Experiments Converge Weakly to Jeffreys Prior

  • In 1979, J.M. Bernardo argued heuristically that in the case of regular product experiments his information theoretic reference prior is equal to Jeffreys' prior. In this context, B.S. Clarke and A.R. Barron showed in 1994, that in the same class of experiments Jeffreys' prior is asymptotically optimal in the sense of Shannon, or, in Bayesian terms, Jeffreys' prior is asymptotically least favorable under Kullback Leibler risk. In the present paper, we prove, based on Clarke and Barron's results, that every sequence of Shannon optimal priors on a sequence of regular iid product experiments converges weakly to Jeffreys' prior. This means that for increasing sample size Kullback Leibler least favorable priors tend to Jeffreys' prior.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Holger Scholl
URN:urn:nbn:de:hbz:386-kluedo-7356
Document Type:Preprint
Language of publication:English
Year of Completion:1999
Year of first Publication:1999
Publishing Institution:Technische Universität Kaiserslautern
Date of the Publication (Server):2000/04/03
Tag:Bayes risk; Jeffreys' prior; Kullback Leibler distance; Shannon optimal priors; minimax risk; noninformative prior; reference prior
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011