Asymptotic Expansions for Dirichlet Series Associated to Cusp Forms

  • We prove an asymptotic expansion of Riemann-Siegel type for Dirichlet series associated to cusp forms. Its derivation starts from a new integral formula for the Dirichlet series and uses sharp asymptotic expansions for partial sums of the Fourier series of the cusp form.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Andreas Guthmann
URN:urn:nbn:de:hbz:386-kluedo-7956
Series (Serial Number):Preprints (rote Reihe) des Fachbereich Mathematik (300)
Document Type:Preprint
Language of publication:English
Year of Completion:1998
Year of first Publication:1998
Publishing Institution:Technische Universität Kaiserslautern
Date of the Publication (Server):2000/04/03
Tag:Dirichlet series; Riemann-Siegel formula; cusp forms
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
MSC-Classification (mathematics):11-XX NUMBER THEORY / 11Mxx Zeta and L-functions: analytic theory / 11M41 Other Dirichlet series and zeta functions (For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72)
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011