Nonparametric changepoint analysis for bernoulli random variables based on neural networks

  • In many medical, financial, industrial, e.t.c. applications of statistics, the model parameters may undergo changes at unknown moment of time. In this thesis, we consider change point analysis in a regression setting for dichotomous responses, i.e. they can be modeled as Bernoulli or 0-1 variables. Applications are widespread including credit scoring in financial statistics and dose-response relations in biometry. The model parameters are estimated using neural network method. We show that the parameter estimates are identifiable up to a given family of transformations and derive the consistency and asymptotic normality of the network parameter estimates using the results in Franke and Neumann Franke Neumann (2000). We use a neural network based likelihood ratio test statistic to detect a change point in a given set of data and derive the limit distribution of the estimator using the results in Gombay and Horvath (1994,1996) under the assumption that the model is properly specified. For the misspecified case, we develop a scaled test statistic for the case of one-dimensional parameter. Through simulation, we show that the sample size, change point location and the size of change influence change point detection. In this work, the maximum likelihood estimation method is used to estimate a change point when it has been detected. Through simulation, we show that change point estimation is influenced by the sample size, change point location and the size of change. We present two methods for determining the change point confidence intervals: Profile log-likelihood ratio and Percentile bootstrap methods. Through simulation, the Percentile bootstrap method is shown to be superior to profile log-likelihood ratio method.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Anthony Waititu Gichuhi
URN:urn:nbn:de:hbz:386-kluedo-22720
Advisor:Thomas Markwig
Document Type:Doctoral Thesis
Language of publication:English
Year of Completion:2008
Year of first Publication:2008
Publishing Institution:Technische Universität Kaiserslautern
Granting Institution:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2008/10/06
Date of the Publication (Server):2008/10/16
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011