Efficient algorithms for computing the \(L_2\) discrepancy
- The \(L_2\)-discrepancy is a quantitative measure of precision for multivariate quadrature rules. It can be computed explicitly. Previously known algorithms needed \(O(m^2\)) operations, where \(m\) is the number of nodes. In this paper we present algorithms which require \(O(m(log m)^d)\) operations.
| Author: | Stefan Heinrich |
|---|---|
| URN: | urn:nbn:de:hbz:386-kluedo-49411 |
| Series (Serial Number): | Interner Bericht des Fachbereich Informatik (267) |
| Document Type: | Report |
| Language of publication: | English |
| Date of Publication (online): | 2017/10/25 |
| Year of first Publication: | 1995 |
| Publishing Institution: | Technische Universität Kaiserslautern |
| Date of the Publication (Server): | 2017/10/25 |
| Page Number: | 14 |
| Faculties / Organisational entities: | Kaiserslautern - Fachbereich Informatik |
| DDC-Cassification: | 0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik |
| Licence (German): |
