Ranking Approach to Max-Ordering Combinatorial Optimization and Network Flows

  • Max ordering (MO) optimization is introduced as tool for modelling production planning with unknown lot sizes and in scenario modelling. In MO optimization a feasible solution set \(X\) and, for each \(x\in X, Q\) individual objective functions \(f_1(x),\dots,f_Q(x)\) are given. The max ordering objective \(g(x):=max\) {\(f_1(x),\dots,f_Q(x)\)} is then minimized over all \(x\in X\). The paper discusses complexity results and describes exact and approximative algorithms for the case where \(X\) is the solution set of combinatorial optimization problems and network flow problems, respectively.
Metadaten
Author:Claus Hüsselmann, Horst W. Hamacher
URN:urn:nbn:de:hbz:386-kluedo-50441
Serie (Series number):Preprints (rote Reihe) des Fachbereich Mathematik (246)
Document Type:Report
Language of publication:English
Publication Date:2017/11/07
Year of Publication:1993
Publishing Institute:Technische Universität Kaiserslautern
Date of the Publication (Server):2017/11/07
Number of page:22
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)